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In communication networks, structure and dynamics are tightly coupled. The structure controls the flow

of information and is itself shaped by the dynamical process of information exchanged between nodes. In

order to reconcile structure and dynamics, a generic model, based on the local interaction between nodes,

is considered for the communication in large social networks. In agreement with data from a large human

organization, we show that the flow is non-Markovian and controlled by the temporal limitations of

individuals. We confirm the versatility of our model by predicting simultaneously the degree-dependent

node activity, the balance between information input and output of nodes, and the degree distribution.

Finally, we quantify the limitations to network analysis when it is based on data sampled over a finite

period of time.

DOI: 10.1103/PhysRevLett.109.168701 PACS numbers: 89.75.Hc, 89.65.Ef, 89.70.Hj

Limitations on the processing capacities of nodes and
links have a profound impact on the flow of information in
online communication networks [1,2], the spreading of
diseases in human encounter networks [3], and in social
networks [4–7], where links between interacting individu-
als can be highly volatile [8]. It is often assumed that
communication takes place in an unrestrained way on a
set of established connections, thereby neglecting, that
structure and dynamics are interdependent. Here we con-
sider the evolution of a network where links form as a
result of non-Markovian interaction between nodes. In a
time-limited environment, communication demands priori-
tization which is evident from the analysis of correspon-
dence patterns [7,9]. Hence, information flow on a network
is a result of individuals’ choices which are influenced by
the state of surrounding nodes. In natural [10] and online
[11–15] social networks, the nodes’ activity is a nontrivial
function of their degree. The activity level can be quanti-
fied by the number of social relationships simultaneously
maintained by an individual. This number has been sug-
gested to reflect basic cognitive capabilities of primates
[10] and humans [11,14,15]. Here we model a network of
individuals acting under time constraints and compare it
with a complete data set of email communication in a large
organization. The model is discussed in the context of other
communication networks. We predict the information pro-
cessing capacity of individuals as well as the structure of
the network that they form.

We use representative communication data from a large
social organization, the University of Oslo. The data com-
prise a complete time-ordered list of 2:3� 107 emails
between 5600 employees, 30 000 students and approxi-
mately 106 people outside the organization over a period of
three months (Sep.–Nov., 2010). The email content was
not recorded and identities of individuals were encrypted.
We limit the influence of unsolicited bulk emails by

disregarding those simultaneously sent to more than five
recipients. However, the results are not sensitive to the
filtering of bulk emails [16]. Previous work on email data
has considered static network structures [17–22].
Results.—We show that the communication is non-

Markovian by comparing random and directed information
flow. (i) Random flow is given by random walks on
the network. The walker follows an empirical time-
independent jump probability pij¼Nij=

P
kNik from node

i to node j. The sum is taken over all nodes and Nij is the

number of emails sent from i to j during the time span of the
data. (ii) Directed flow is given by the chronological email
exchange. Starting from a random node i, we wait for i to
send an email, say to j. We then jump to j and wait for the
next message j sends either back to i or to a new node k.
Repeating this, we obtain a finite trajectory within the time
span of the data. The numbers of unique nodes visited by the
directed and random flow as function of the number of
jumps are compared by averaging over trajectories origi-
nating from all nodes (Fig. 1). On average, directed flow
visits relatively fewer nodes than random flow, indicating a
significant correlation between sent and receivedmessages.
Our model requires nodes to perform a trade-off be-

tween replying to others and initiating new conversations.
Specifically, we consider N nodes, each initially con-
nected to one other node. The nodes have a limited ca-
pacity and can send a maximum ofNmax messages in a time
step�t ¼ 1 day. The dynamics follows from three possible
actions for a node i of out-degree ki.
(a) i processes received emails and if i has sent less than

Nmax messages, any received email is replied to with a
probability proportional to the sender’s degree. Emails not
replied to within �t are subsequently deleted. In total, �2

replies are sent by this action.
(b) If less than Nmax emails have been sent in (a), the

remaining capacity Nmax � �2 is available for sending
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messages, called �1, to previously established contacts.
The probability of sending a message to a contact is given
by a constant rini. Hence, granted sufficient capacity on
average riniki messages are initiated by i. Nodes with low
ki will generally not reach their full capacity.

(c) Nodes establish new contacts by sending requests
with a probability rreq. The probability that a request is sent

to a node j is proportional to the degree of j, kj. A link is

established between i and j, if j in the next time step
according to (a) replies to i. In reality, contacts might as
well be established by face-to-face encounters, i.e., via
channels not recorded explicitly in our data.

The total number of messages � sent by a node in �t is
the sum � � �0 þ �1 þ �2. Analogously, messages re-
ceived by a node in the same time step are termed � �
�0 þ �1 þ �2. Nodes have an average lifetime � and are
therefore removed from the network with a probability
�t=�. For every node removed, a new node with a single
random connection to an existing node is introduced. � is
estimated to be 5.8 years from the known mean email user
turnover time in the organization. The parameters rini, rreq
and Nmax are determined below.

According to (c), a link is established between i and j if
one of the nodes sends a message to the other and receives
a reply. The probability, Pij, that a message is sent from i to

j in �t is proportional to kj,

Pij ¼
rreqkjP
‘�i k‘

� rreqkj
N hki ; (1)

where we in the approximation assume that ki �
P

‘k‘.
According to (a), the mean number of requests that j
receives during a time step is proportional to rreq and kj.

The probability for j to reply to a request from nodes of

degree k is proportional to �knðkÞ, where � is a constant
and nðkÞ is the number of nodes with degree k. The number
of replies written by j is the product of Eq. (1) and the
integral over nodes

rreqkj
N hki

Z
�knðkÞdk ¼ �rreqkj: (2)

Since nodes reply to requests and therefore establish new
links with a probability proportional to the sender degree,
knðkÞ, the mean degree kc of a node’s contacts is kc �R
k2nðkÞdk=R knðkÞdk ¼ hk2i=hki, a number generally

larger than the mean degree hki (Fig. 3).
Consequently the average degree increase of nodes of

degree k per time step becomes rðkÞ�t � 2�rreqk�t. The

factor of 2 reflects the symmetry of sending and replying.
The rate of losing links is inversely proportional to �, d �
k=�. Hence, the net degree-growth rate becomes �k=�t ¼
kr0, where r0 � ð2�rreq � ��1Þ. As long as a node has

sufficient capacity to reply to all requests its degree in-
creases approximately exponentially, kðtÞ � expðr0tÞ.
The degree distribution follows from the consideration

that during �t, a fraction of nodes nðkÞ of degree k change
their degree, r0½ðk� 1Þnðk� 1Þ � knðkÞ�, and a fraction
1=� is removed. A continuum-limit approximation yields

@nðkÞ
@t

¼ �r0

�
k
@nðkÞ
@k

þ nðkÞ
�
� nðkÞ

�
: (3)

The steady-state solution has the form nðkÞ ¼ nð1Þk��,
where � � ð1� 1=2�rreq�Þ�1. The constant nð1Þ is fixed
by integrating Eq. (3) over k and by demanding that the
total number of nodes N ¼ R

dknðkÞ be constant. This

yields nð1Þ ¼ N ð�� 1Þ. The condition 0< nð1Þ<N
bounds the power-law exponent: 1< �< 2. The data yield
� ’ 1:85 (Fig. 2 inset).
So far we have assumed that nodes have infinite ca-

pacity. As a node’s degree increases, it receives more
messages and this assumption becomes invalid. Consider
the number of messages received by i per time step.
Contact requests from other nodes amount to �0 �
rreqki=hki messages. The senders of these messages are

drawn from a distribution nðkÞ=N . The probability for i
to receive a message from its contacts is proportional to rini
and ki, hence �1 � rini � ki. Analogously, as defined in (a),
i issues �0 � rreq requests to recipients distributed accord-

ing to �1ðkÞ [where �‘ðkÞ � k‘nðkÞ=R k0‘nðk0Þdk0] due to

the weighting of probabilities by the recipient degree. In
the same time step i sends �1 ¼ �1 messages to its con-
tacts. Finally, we consider back-and-forth communication.
For every message sent by i to j, a response is returned with
a probability �ki [Eq. (2)]. In the steady state, the number
of messages sent is identical for all time steps and therefore
i receives

�2 � �kið�0 þ �1 þ �2Þ (4)

FIG. 1 (color). Weighted random, unweighted random, and
directed information flow. The error bars are estimated by boot-
strapping. Inset: Similar plot using model data. The quantitative
discrepancy between model and data results from the relative
dominance of degree-one nodes in the empirical data.
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replies to messages sent in the previous time step. �2 is the
number of messages i sends in response to messages
received from others which again is a sum over contribu-
tions from the actions (a)–(c):

�2 � �ð�0hki�0
þ �1hki�1

þ �2hki��2
Þ: (5)

The terms on the right are, respectively, requests from any
node in the network (distributed as �0), messages from
existing contacts (distributed as �1), and back-and-forth
messages (distributed as ��2

). Each iteration of back-and-

forth communication acts as a shift in the distribution of
recipients relative to the distribution of senders F�l �
��lþ1. The distribution ��2

accounts for all high-order

shifts. To close the equations for �2 and �2, we use
that the reply probability for each iteration is reduced
by a factor � to approximate ��2

’ �2. Inserting Eq. (4),

�0 and �1 in Eq. (5) yields �2 ¼ �½�0hki þ �1kc þ
�kikcð�0 þ �1Þ�=fðkiÞ where we introduce fðkiÞ �
1� �2kikc 	 1. Summing over �0, �1 and �2 we get

�¼ rreq þ riniki þ �ki
fðkiÞ ½rreq þ rinikc þ�kcðrreq þ rinikiÞ�:

(6)

Here the first three terms (referred to as �<) are messages
sent to recipients selected according to �1 and with mean
degree kc. The other terms, �>, are messages to recipients
distributed according to the higher order distribution �2

which has a mean k
c � hk3i=hk2i> kc and contribute sig-
nificantly only for large ki. The mean of the weighted

recipient degree (weighted by number of messages re-
ceived) is kwrec � kc�<=�þ k
c�>=�, which departs
from kc when �> becomes appreciable (Fig. 3). For low
ki (ki ¼ 1), the ratio of sent to received messages
becomes �=� ’ ðrreq þ riniÞ=ðrreq=hki þ riniÞ> 1. Con-

versely, �=�¼1 when ki ¼ hki; hence, an average node
has a ‘‘balanced’’ email account. When ki becomes larger
than hki, i will increasingly receive requests and responses
to its messages (Fig. 2).
The Dunbar number kD is the degree where � reaches

the capacity limit (� ¼ Nmax) and �=k is maximal. The
scale break in the degree distribution (ksb ’ 250), Fig. 2
(inset), and kD ’ 230, Fig. 4, nearly coincide. In fact ksb is
related to kD because nodes beyond kD have a reduced
probability to form new links. To determine ksb, consider
the evolution of the nodes’ degree in the limit where all
capacity is used for replying, hence �1 ¼ 0. Using that
�0 � �2, we get � � �2 ¼ Nmax which in turn yields
ksb¼��1NmaxfðksbÞðrreqþrinikcÞ�1. ksb is found by solv-

ing this implicit equation. kD then follows from Eq. (6).
The parameters rini ¼ 0:023, rreq ¼ 0:13 andNmax ¼ 12

are determined by the data in Fig. 2. From rreq and � we

obtain� � 0:004. LargerNmax increases the limit of �. rreq
is constrained by the offset at low � and rini effects the
skewness of the curve which follows from analysis of
Eqs. (4) and (6). Figure 4 shows the model prediction of
�=ki and the corresponding email data. We complement
our analysis with numerical computations. Using a large
number of nodes, N ¼ 10 000, we iterate actions (a)–(c)
until the steady state is reached. While the mean-field

FIG. 2 (color online). Average number of messages sent per
message received. Observational data is marked by ‘‘�’’. The
solid line is a best fit by Eq. (6). The dotted lines mark the peak
and the dashed diagonal line shows � ¼ �. Inset: out-degree
distribution for model and empirical data. The dashed line
denotes the scale break ksb ’ 250. Mean degree is 5.4 (Twitter
data yields a mean degree of 8.8 and a similar exponent for the
degree distribution [23]). Note the double-log scales.

FIG. 3 (color online). Mean recipient degree as a function of
degree (h) and weighted by the number of messages sent to
recipients (�). The horizontal line shows hk2i=hki. The curves
marked by ‘‘�’’ and ‘‘4’’ are analogous to the unweighted case
but for half, respectively, and one quarter of the observational
period. Dashed lines show projection of nodes with two values of
k for a varying observation window. Note the double-log scale.
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prediction (Figs. 3 and 4) is close to the numerical solution,
some differences exist; e.g., at small k, �ðkÞ is not a strict
power law in the numerical solution due to the discreteness
of k. Further, the simulation gives a smooth peak in �=k
(Fig. 4) which is narrower than in the empirical data.
This is due to slight overestimation of the repeated back-
and-forth communication between well-connected nodes
(k � 200) relative to the data. We have also simulated the
information flow (Fig. 1) and achieve similar results.
Finally, the average local clustering coefficient of the
empirical and simulated networks is relatively small,
�0:04 for both (similar clustering coefficient � 0:06 [23]
and kD � 150 to 200 have been reported for other commu-
nication networks [11,15,24]). We further checked the
robustness of the model to variations [16].

Discussion.—The data were recorded over three months
and the communication network is therefore a finite-time
projection of the real network. The projection reduces the
number of links. More active links will more likely persist
through the projection than less active links. Figure 3
shows the mean recipient degree krec as a function of the
sender degree ki for three observation time intervals.
Consider again Eq. (6) and remember that recipients of
the �< (�>) messages are distributed as �1 (�2). When
observing only a single day, the probability for an out-link

between i to j not to be active is Pijð�tÞ�1��<kj=kcki�
�>kj=k



cki. For d days we obtain Pijðd�tÞ ¼ Pijð�tÞd. To

produce the projected curves in Fig. 3, Pijðd�tÞ is applied
to both axes, k and krecðkÞ. Averaging with respect to all
recipients j (distributed as �1), the projected sender out

degree becomes kðdÞi � kih1� Pd
iji�1

. Similarly one can

consider the projection of the mean recipient degree lead-
ing to a similar reduction in the degree for finite-time data.
For example, consider the data for the quarter period
(d � 23) in Fig. 3. We have Pijð�tÞd’ð1�riniÞd and

therefore kðdÞi =ki < 1=2; hence, less than half the links
persist.
Concluding remarks.—The finite capacity of agents in

social networks induces an upper limit on the number of
possible interactions [11,13–15].We propose a comprehen-
sive model that reconciles structure and dynamics of net-
works with finite capacity agents that dynamically form or
lose links. In agreement with a complete set of email data
and results from other social networks [13,23], our model
predicts a scale-free degree distribution up to a distinct scale
break induced by the capacity limit. Further, as agents gain
importance in the network, the per-link activity first in-
creases with node degree, peaks at intermediate degrees,
and declines at large degrees. The model and data therefore
support the hypothesis of a general limit on the number
(150–250) of active social relations that an individual can
maintain [10] and is in agreement with empirical observa-
tions on social networks [11,24].
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[11] B. Gonçalves, N. Perra, and A. Vespignani, PLoS ONE 6,
e22 656 (2011).

[12] J. Ugander, B. Karrer, L. Backstrom, and C. Marlow,
arXiv:1111.4503v1.

[13] R. Corten, PLoS ONE 7, e34 760 (2012).
[14] C. Wilson, B. Boe, A. Sala, K. P. N. Puttaswamy, and B.Y.

Zhao, inEuroSys ’09Proceedings of the 4thACMEuropean
Conference onComputer Systems (ACM,NewYork, 2009),
p. 205.

[15] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi, in
Proceedings of the 2nd ACM SIGCOMM Workshop On
Social Networks, Barcelona, Spain (ACM, New York, NY,
2009).

[16] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.109.168701 for fur-
ther details on the robustness of the model when various
assumptions are relaxed and for comments on the filtering
of bulk emails.

[17] H. Ebel, L. I. Mielsch, and S. Bornholdt, Phys. Rev. E 66,
035103 (2002).

[18] R. Guimerà, L. Danon, A. Dı́az-Guilera, F. Giralt, and
A. Arenas, Phys. Rev. E 68, 065103R (2003).

[19] M. E. J. Newman, S. Forrest, and J. Balthrop, Phys. Rev. E
66, 035101 (2002).

[20] J. P. Eckmann, E. Moses, and D. Sergi, Proc. Natl. Acad.
Sci. U.S.A. 101, 14 333 (2004).

[21] J. Mathiesen, B. Jamtveit, and K. Sneppen, Phys. Rev. E
82, 016104 (2010).

[22] B. Jamtveit, E. Jettestuen, and J. Mathiesen, Proc. Natl.
Acad. Sci. U.S.A. 106, 13 160 (2009).

[23] M. De Choudhury, Y.-R. Lin, H. Sundaram, K. S. Candan,
L. Xie, and A. Kelliher, in Proceedings of the 4th
International AAAI Conference on Weblogs and Social
Media (Association for the Advancement of Artificial In-
telligence, Palo Alto, CA, 2010), p. 34; http://konect
.uni-koblenz.de/networks/munmun_twitterex_at.

[24] H. Chun et al., IMC’08 (ACM, New York, 2008).

PRL 109, 168701 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

19 OCTOBER 2012

168701-5

http://dx.doi.org/10.1016/0047-2484(92)90081-J
http://dx.doi.org/10.1006/anbe.2001.1808
http://dx.doi.org/10.1371/journal.pone.0022656
http://dx.doi.org/10.1371/journal.pone.0022656
http://arXiv.org/abs/1111.4503v1
http://dx.doi.org/10.1371/journal.pone.0034760
http://link.aps.org/supplemental/10.1103/PhysRevLett.109.168701
http://link.aps.org/supplemental/10.1103/PhysRevLett.109.168701
http://dx.doi.org/10.1103/PhysRevE.66.035103
http://dx.doi.org/10.1103/PhysRevE.66.035103
http://dx.doi.org/10.1103/PhysRevE.68.065103
http://dx.doi.org/10.1103/PhysRevE.66.035101
http://dx.doi.org/10.1103/PhysRevE.66.035101
http://dx.doi.org/10.1073/pnas.0405728101
http://dx.doi.org/10.1073/pnas.0405728101
http://dx.doi.org/10.1103/PhysRevE.82.016104
http://dx.doi.org/10.1103/PhysRevE.82.016104
http://dx.doi.org/10.1073/pnas.0903190106
http://dx.doi.org/10.1073/pnas.0903190106
http://konect.uni-koblenz.de/networks/munmun_twitterex_at
http://konect.uni-koblenz.de/networks/munmun_twitterex_at

