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Roughening of Fracture Surfaces: The Role of Plastic Deformation
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Post mortem analysis of fracture surfaces of ductile and brittle materials on the �m-mm and the nm
scales, respectively, reveal self-affine cracks with anomalous scaling exponent � � 0:8 in three
dimensions and � � 0:65 in two dimensions. Attempts to use elasticity theory to explain this result
failed, yielding exponent � � 0:5 up to logarithms. We show that when the cracks propagate via plastic
void formations in front of the tip, followed by void coalescence, the void positions are positively
correlated to yield exponents higher than 0.5.
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FIG. 1 (color online). The fracture scenario suggested in [12].
This scenario had been documented in detail in corrosive glass
fracture, and also more recently in the fracture of paper [13].
coalescing the voids with the tip, creating a new stress (Figure courtesy of E. Bouchaud.)
Quantitative studies of fracture surfaces reveal self-
affine rough cracks with two scaling regimes: at small
length scales (smaller than a typical crossover length �c)
the roughness exponents � � 0:5, whereas at scales larger
than �c the roughness exponent is � � 0:8. Such mea-
surements were reported first for ductile materials (like
metals) where �c is of the order of 1 �m [1,2], and more
recently for brittle materials like glass, but with a much
smaller value of �c, of about 1 nm [3]. Similar experi-
ments conducted on two-dimensional samples reported
rough cracks with large-scale exponents � � 0:65� 0:04
[4–6]. The exponent � � 0:5 is characteristic of uncorre-
lated random surfaces, but higher exponents indicate
correlated steps [7]; naturally the experimental discovery
of such correlated,‘‘anomalous’’ exponents attracted con-
siderable interest with repeated attempts to derive them
theoretically. A number of studies tried to map the prob-
lem to other models that are not derived from the field
equations [8,9]. Up to now, however, attempts that were
based on elasticity theory have failed to underpin the
mechanism for correlated fracture steps. For realistic
inplane loads, i.e., mode I or mode II fracture, these
attempts invariably ended up with logarithmic roughen-
ing [10] or with the random surface scaling exponents
� � 0:5 [11].

In this Letter we present a quantitative model for self-
affine fracture surfaces based on elasticity theory supple-
mented with considerations of plastic deformations;
focusing on infinite two-dimensional materials we follow
the qualitative picture presented recently in [12]; see
Fig. 1. In this picture there exists a ‘‘process zone’’ in
front of the crack tip in which plastic yield is accompa-
nied by the evolution of damage cavities. A crucial aspect
of this picture is the existence of a typical scale, �c, which
is roughly the distance between the crack tip and the first
void, at the time of the nucleation of the latter. The voids
are nucleated under the influence of the stress field �ij�r�
adjacent to the tip, but not at the tip, due to the existence
of the plastic zone that cuts off the purely linear-elastic
(unphysical) crack-tip singularities. The crack grows by
0031-9007=04=92(24)=245505(4)$22.50
field which induces the nucleation of new voids. In the
picture of [12] the scale �c is also identified with the
typical size of the voids at coalescence. A consequence of
this picture is that the roughening exponent � � 0:5 cor-
responds to the surface structure of individual voids,
whereas the large-scale anomalous exponent has to do
with the correlation between the positions of different
voids that coalesce to constitute the evolving crack. To
dress this picture with quantitative content we need first
to provide a theory for the scale �c and, second, to
demonstrate that the positions of consecutive voids
are positively correlated. These are the main goals of
this Letter.

A simple model for �c can be developed by assuming
the process zone to be properly described by the Huber–
von Mises plasticity theory [14]. This theory focuses on
the deviatoric stress sij � �ij �

1
3 Tr�
ij and on its in-

variants. The second invariant, J2 �
1
2 sijsij, corresponds

to the distortional energy. The material yields as
the distortional energy exceeds a material-dependent
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FIG. 2 (color online). A forward direction profile of the
hydrostatic tension P in units of �Y. On the crack P �

���
3

p
=2,

and it attains a maximum of
���
3

p
on the yield curve. The

threshold line indicates a value of Pc such that
���
3

p
=2<Pc <���

3
p

. The typical length �c is shown. Other directions exhibit
qualitatively similar profiles.
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threshold �2
Y. In two dimensions this yield condition

reads [14]

J2 �
�2

1 � �1�2 � �2
2

3
� �2

Y: (1)

Here �1;2 are the principal stresses given by

�1;2 �
�yy � �xx

2
�

�����������������������������������������
��yy � �xx�

2

4
� �2

xy

s
: (2)

In the purely linear-elastic solution the crack-tip region
is where high stresses are concentrated (in fact, diverging
near a sharp tip). Plasticity implies on the one hand that
the tip is blunted, and on the other hand, that inside the
plastic zone the Huber–von Mises criterion (1) is satisfied.
The outer boundary of the plastic zone is called below the
‘‘yield curve’’ and in polar coordinates around the crack
tip is denoted R���.

Whatever is the actual shape of the blunted tip its
boundary cannot support normal components of the
stress. Together with Eq. (1) this implies that on the crack
interface

�1 �
���
3

p
�Y; �2 � 0: (3)

On the other hand, the linear-elastic solution, which is
still valid outside the plastic zone, imposes the outer
boundary conditions on the yield curve. Below we com-
pute the outer stress field exactly for an arbitrarily shaped
crack using the recently developed method of iterated
conformal mappings [15]. For the present argument we
take the outer stress field to conform with the universal
linear-elastic stress field for mode I symmetry,

�ij�r; �� �
KI���������
2�r

p 
I
ij���: (4)

For a crack of length L with �1 being the tensile load at
infinity, the stress intensity factor KI is expected to scale
like KI � �1

����
L

p
. Using this field we can find the yield

curve R���. Typical yield curves for straight and curved
cracks are shown in the insets of Figs. 3 and 6.

The typical scale �c follows from the physics of the
nucleation process.We assume that void nucleation occurs
where the hydrostatic tension P, P � 1

2 Tr�, exceeds some
threshold value Pc. Other assumptions on the nature of
the nucleation process do not affect qualitatively our
main result. The hydrostatic tension increases when we
go away from the tip and reaches a maximum near the
yield curve. To see this, note that on the crack surface P �
�

���
3

p
=2��Y [cf. Equation (3)]. On the yield curve we use

Eq. (4) and the Huber–von Mises criterion together to
solve the angular dependence of the hydrostatic tension in
units of �Y. It attains a maximal value of

���
3

p
�Y and is

considerably higher than �
���
3

p
=2��Y for a wide range of

angles. On the other hand, the linear-elastic solution (4)
implies a monotonically decreasing P outside the yield
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curve. We thus expect P to attain its maximum value near
the yield curve. This conclusion is fully supported by
finite element method calculations; cf. [16]. Finally, since
the nucleation occurs when P exceeds a threshold Pc, this
threshold is between the limit values found above; i.e.,
�

���
3

p
=2��Y <Pc <

���
3

p
�Y. The first void thus appears at a

typical distance �c as shown in Fig. 2. An immediate
consequence of the above discussion is that �c is related to
the crack length via

�c �
K2

I

�2
Y

�

�
�1

�Y

�
2
L: (5)

It is worthwhile to put this prediction to experi-
mental test.

Naturally, the precise location of the nucleating void
experiences a high degree of stochasticity due to material
inhomogeneities. In our model below we assume that the
nucleation can occur randomly anywhere in the region in
which P > Pc with a probability proportional to P� Pc.

The simplest possible crack propagation model is
obtained if we assume that a void is nucleated and then
the crack coalesces with the void before a new void is
nucleated. In experiments it appears that several voids
may nucleate before the coalescence occurs [12,13], but
we demonstrate that already a one void model induces
positive correlations between consecutive void nuclea-
tions, leading eventually to an anomalous roughness ex-
ponent larger than 0.5. Clearly, even this simple model
requires strong tools to compute the stress field around an
arbitrarily shaped crack, to determine at each stage of
growth the location of the yield curve and nucleating
randomly the next void according to the probability
245505-2



10000 11000 12000

−1
00

0
0

50
0

10
00

x

y

FIG. 4. A crack that was generated using our model.
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FIG. 3 (color online). The yield curve (inset) and the proba-
bility distribution function on it for a long straight crack. The
distribution is symmetric and wide enough to allow for devia-
tions from the forward direction.
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FIG. 5. Calculation of the anomalous roughening exponent.
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distribution discussed above. In a recent work we have
developed precisely the necessary tool in the form of the
method of iterated conformal mappings [15].

In the method of iterated conformal mappings one
starts with a crack for which the conformal map from
the exterior of the unit circle to the exterior of the crack is
known. (Below we start with a long crack, in the form of a
mathematical branch cut of length 1000 in units of �c.)
We can then grow the crack by little steps in desired
directions, computing at all times the conformal map
from the exterior of the unit circle to the exterior of the
resulting crack. Having the conformal map makes the
exact calculation of the stress field (for arbitrary loads
at infinity) straightforward in principle and highly af-
fordable in practice. The details of the method and its
machine implementations are described in full detail in
[15]. We should stress here that the method naturally
grows cracks with finite curvature tips, and each step
adds on a small addition to the tip, also of a finite size
that is controlled in the algorithm.

Having the stress field around the crack we can readily
find the yield curve, and the physical region in its vicinity
where a void can be nucleated (naturally, the width of this
region depends on the critical value Pc which is a
parameter of the algorithm, as �Y is). Choosing with
probability / P� Pc the position of the next void,
we use this site as a pointer that directs the crack tip.
Figure 3 shows a typical yield curve and the correspond-
ing probability distribution function ( / P� Pc) on this
curve for a straight crack. The distribution is symmetric
and wide enough to allow for deviations from the forward
direction.
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We then use the method of iterated conformal map-
pings to make a growth step to coalesce the tip with the
void. Naturally the step sizes are of the order of �c. Thus
the radius of curvature at the tip is also of the order of �c.
We note that this model forsakes the details of the void
structure and all the length scales below �c. This is
clearly acceptable as long as we are mainly interested
in the scaling properties on scales larger than �c.

In Fig. 4 we present a typical crack that had been grown
using this method. The positive correlation between suc-
cessive void nucleation and coalescence events is obvious
245505-3
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FIG. 6 (color online). The yield curve (inset) and the proba-
bility distribution function on it for a straight crack followed
by an upturn. The angle � is measured relative to the horizontal
direction. It is clear that the distribution is skewed in favor of
positive angles.
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even to the naked eye. Once the crack steps upward, there
is a high probability to continue upward, and vice versa.
This is precisely the property that we were after. A
quantitative measurement of this tendency is the rough-
ening exponent, which we compute as follows. Measuring
the height fluctuations y�x� in the graph of the crack, one
defines h�r� according to

h�r� � hmaxfy�~xx�gx<~xx<x�r �minfy�~xx�gx<~xx<x�rix: (6)

For self-affine graphs the scaling exponent � is defined
via the scaling relation

h�r� � r� : (7)

In Fig. 5 we present a log-log plot of h�r� vs r, with a best
power-law fit of � � 0:64� 0:04. Indeed as anticipated
from the visual observation of Fig. 4 the exponent is
higher than 0.5.

We note that our measured scaling exponent is very
close to the exponents observed in two-dimensional
experiments. (Of course we cannot expect a two-
dimensional theory to agree with three-dimensional ex-
periments—the scaling exponents are, as always,
strongly dimension dependent). The question of univer-
sality of this exponent should await, however, the inclu-
sion of more voids; this may very well lead to more
correlated surfaces with higher exponents. We are more
interested in the physcial aspects of our model and the
main points of the model are worth reiterating. First, we
have a new typical scale, �c, which is crucial. Growing
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directly at the tip of the crack results in a very strong
preference for the forward direction, meaning that a step
up will most likely be followed by a step down, and vice
versa, as shown in [11]. The introduction of the physics of
the plastic zone results in creating a finite distance away
from the tip to realize the next growth step. Second, a
growth in the upward (or downward) direction is affect-
ing the next stress field such as to bias the next growth
step to be correlated with the last one. To see this clearly
we present in Fig. 6 the yield curve and the corresponding
probability distribution function ( / P� Pc) on this
curve for a long straight crack followed by an upward
turn. It is clear that the distribution is skewed in favor of
positive angles with respect to the forward direction.
When the crack grows further this tendency becomes
more pronounced. This is the essence of the positive
correlation mechanism.

To improve our model further one needs to solve ex-
actly for the stress field around a crack and a single void
ahead. This will allow the introduction of two voids in the
physically required places. Such an improved model,
which is presently under construction, calls for mapping
conformally doubly connected regions; The results of this
model will be presented in a forthcoming paper.
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