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Complex networks are important tools for analyzing the information flow in many aspects of nature and
human society. Using data from the microblogging service Twitter, we study networks of correlations in the
occurrence of words from three different categories, international brands, nouns and US major cities. We
create networks where the strength of links is determined by a similarity measure based on the rate of
co-occurrences of words. In comparison with the null model, where words are assumed to be uncorrelated,
the heavy-tailed distribution of pair correlations is shown to be a consequence of groups of words
representing similar entities.

N
etworks are elegant representations of interactions between individuals in large communities and orga-
nizations1–3. These networks are constantly changing according to demands, fashions and flow of ideas4–6.
The worldwide popularity of social media such as Twitter5–7 have made them a considerable component

in research on social networks8,9. Twitter is a microblogging service that allows registered users to post short text-
based announcements, limited to 140 characters in length, known as ‘‘tweets’’, to an online stream. The frequency
by which users interact on a global scale on Twitter allows for a high-resolution real-time analysis of movements
in the society.

From automatic queries to Twitter, we have estimated tweet rates of words from a given set M containing
selected words from one of the three different categories, international brand names, nouns and US major city
names. The rate is measured by the number of new tweets posted per hour. For each query submitted at time t
about a specific word a g M, Twitter returns a finite set of the na(t) latest tweets T1, . . . , Tna tð Þ

� �
. In addition to

the message text string s, each tweet contains the username of the author, the time ti when the tweet was posted
and further details that we have not used. A tweet Ti is therefore a list of information Ti 5 (s, ti, …). The maximum
number of tweets returned from each query is na 5 1500.

The time signal of tweets mentioning a specific word a, ga(t), can be written on the form

ga tð Þ~
X

i

d t{tið Þ, ð1Þ

From the number of tweets and the timestamps we compute an averaged tweet rate of a word a,

ca tð Þ~ 1
t

ðt1zt

t1

ga tð Þdt~
na tð Þ

t
, ð2Þ

Similarly we define a rate by which words a and b co-occur in a tweet at the same time, cab(t) 5 nab(t)/t.
Tweets containing words from the aforementioned categories were recorded over a period of 4 months

November 2010 – February 2011 and a period of two months January 2012 – February 2012. In general the rate,
at which new tweets appear containing words from each of the categories, is too high to count the total number of
tweets. Our analysis is based on estimated tweet rates computed from Eq. (2) using na 5 100–1500. When
averaging over many queries, we did not see a significant difference in the results when using different values of na.

We analyse the correlation between individual words within the mentioned categories. For that purpose, we
define a measure of similarity in terms of the co-occurrence rate of words. The measure is then used to construct
networks where links represent the degree of similarity. The way that we consider correlation networks can be
seen as an alternative to existing studies on semantic networks (see e.g.10).

Results
We define a similarity measure between two words a and b in terms of the rate cab by which new tweets occur
containing both a and b. For example, by considering queries to Twitter containing the terms ‘‘Google’’ and
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‘‘Microsoft’’, we get cGoogle < 130000 tweets per hour and cMicrosoft <
17000 tweets per hour whereas cGoogle,Microsoft < 700 tweets per hour
(January 2011). A normalized symmetric measure of similarity (the
Jaccard index) is naturally defined by

vab~
ca\b

ca|b
~

cab

cazcb{cab
ð3Þ

Alternatively one can use information theory to compute the sim-
ilarity from the joint probability of observing two words in the same
tweet11. This approach is in particular useful when we have access to
the normalized probabilities of observing A and B. Here, because of
limitations to the permissible sample rate of data we only have access

Figure 1 | Networks of correlations between international brands
computed from the corresponding tweet rates on Twitter. A link in the

networks represents the similarity measure computed using Eq. (3). In

panel A, we show a network with links that have a strength larger than

0.004. The color of the nodes are modules found using community

detection. Darker link colors mean stronger links. In Panel B, we show the

adjacency matrix where the individual brands are ranked in modules. The

colors represent the link strengths on a logarithmic scale. The block-

structure is consistent with the clear modularity observed in panel A.

Figure 2 | Network of cities with high similarity. In panel A), we show a

similarity network where nodes are located according to the algorithm of

Fruchterman-Rheingold. In panel B), the corresponding network is shown

where nodes are arranged according to the geographical location of the

cities. In both panels only links with a strength larger than 0.004 are shown.

In the network, darker link colors mean stronger links. In panel C), the

network is shown in the corresponding matrix form.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 2 : 814 | DOI: 10.1038/srep00814 2



to a fraction of the total number of posted tweets and can therefore at
best estimate the relative probabilities.

In Fig. 1A we present a network of international brand names
where the link strength is given by the measure Eq. (3). A threshold
is introduced on the link strength in order to visualize primary
structures, i.e. links between brand with a similarity vAB , 0.004
are omitted. We observe that the network is strongly modular with
groups of brands representing similar products or services. As an
example one can observe distinct groups of European car brands,
Asiatic car brands, consulting and IT companies, and fashion brands.
The modules in the network are coloured according to the commun-
ity detection algorithm introduced in12. Most of the connections
inside the modules are rather obvious, whereas a few links connect-
ing the modules represent less obvious relations between brands. In

Fig. 1B we show the corresponding weighted adjacency matrix,
where individual brands are ranked in modules. Note that the matrix
contains information about brands that were not part of the largest
connected component shown in Fig. 1A.

In Fig. 2A, a similarity network of US cities is shown. The network
provides an alternative map where individual cities only to some
extent are grouped according to their geographical location. The
network is dominated by a central module consisting of New York,
Chicago, Atlanta, Los Angeles and Boston. This is not surprising as
these cities are hubs in the American society. We observe a module of
Californian cities that connects naturally to cities like Denver and
Seattle. We also detect a module of east-coast to mid-western cities
connecting to a module of southern cities. Again the modules were
detected by the algorithm presented in12. It is natural to ask how

Figure 3 | Network of nouns with high similarity. Similarity network of 200 random nouns chosen from a list of the 2000 most common nouns. We only

show the largest connected component for links with a strength larger than 0.04. The corresponding matrix form of the network including all nouns is

shown in pnael B).
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much of the similarity between cities is influenced by the geograph-
ical distance between them. To answer this question, we have com-
pared tweet rates with the distance between cities as well as the size of
the cities. It turns out that there is a weak to moderate correlation
between the size of a city and the number of tweets referring to that
city. The co-occurrence of two cities, however, has no clear correla-
tion with their sizes and the distance between them. That said, when
the nodes in the similarity network are arranged according to their
geographical location it is evident that cities in same regions (states or
neighbouring states) are better inter-connected and therefore often
belong in the same module, see Fig. 2B.

As a final example of a similarity network, we present in Fig. 3 a
network of nouns. From a list of 2000 common nouns in the English
language, 200 nouns are randomly selected and the corresponding
pairwise similarities are computed. Like the previous networks for
brands and cities, the network of nouns also exhibits a pronounced
modularity with modules e.g. representing similar food products.

We now consider further the data underlying the link strengths. As
a main result, we obtain scale free distributions,

p cabð Þ*c{a
ab , ð4Þ

of the pairwise tweet rates cab over six orders of magnitude using the
brand names, nouns as well as major cities, see Fig. 4A. Surprisingly,
the distributions all have the same scaling exponent a 5 1.40 6 0.02
(s.d.). The distribution of the tweet rates of individual search terms a,
ca, does not follow a clear scale invariant distribution (see inset of
Fig. 4). Moreover, the tweet rate of pairs cab does not follow trivially
from the rate of the individual brands, that is, the rate is not propor-
tional to the product cacb which would be the case if a and b were
uncorrelated. In particular we notice that if the distribution of the
rates cx could be approximated by a scale invariant distribution
p cxð Þ*c{a

x then the product z 5 cacb would follow a distribution

p zð Þ*z{a log z2
� �

: ð5Þ

which follows from introducing the auxiliary variable v 5 ca/cb and
performing the integral

ðz= 2

2=z
p z, vð Þdv~

ðz= 2

2=z
p ca z, vð Þ, cb z, vð Þð Þ L ca, cbð Þ

L z, vð Þ

����
����dv, ð6Þ

where is a characteristic minimum tweet-rate that we observe.
The logarithmic correction to the scaling does not provide a stat-

istically significant fit to the data presented in Fig. 4, that is a best fit
has an exponent a < 2 significantly larger than the tweet rate cx of
individual search terms (see the inset of Fig. 4). A power-law distri-
bution has also been observed for the co-occurrence of tags in social
annotation systems14 where users annotate online resources such as
web pages by lists of words. The exponent of the distribution in the
annotation systems (a . 2) is larger than the one reported here and is
close to the distribution of co-occurrence of nouns in sentences of
novels considered below. The distribution of the similarity measure,
Eq. (3), also has a scale invariant form. The value of a is in this case
slightly larger, see Fig. 4B.

Discussion
For comparison, we have performed a similar analysis using search
engines such as Google and Bing. The similarity between two words
was computed from Eq. (3) by inserting the number of web pages that
the search engines return containing the words. That is, instead of a
rate we now use a fixed number. The distributions turn out to be
significantly different (see Fig. 5A) and do not show a clear scaling
behavior as in the case of Twitter. This may in part be explained by
the fact that the search engines return results from web pages which
are not restricted in size and they cover a wide range of media.

Finally, we compare the scaling behavior of word correlations
observed on Twitter by considering the corresponding distribution

of nouns in sentences of novels by Mark Twain (Huckleberry Finn)
and Herman Melville (Moby-Dick). The sentences in these novels
turn out to have a typical length comparable to the 140 character

Figure 4 | Probability density function of tweet rates of pairs of
international brands, major cities in the USA and common English
nouns. The distributions include rates of individual search terms. The

violet circles correspond to brand names, the blue triangles to cities and the

green squares to nouns. Note that the rates of the cities have been

multiplied by 20 to allow for a direct comparison. The distributions of the

rates are scale invariant over more than six orders of magnitude and have

the same exponent a 5 1.40 6 0.02 (s.d.). The dashed line corresponds to a

5 1.4. The inset shows distributions of tweet rates of single brands (purple

circles), major US cities (blue triangles) and English nouns (green squares).

For comparison we have inserted the same line as in the main panel and it is

observed that the individual categories do not have the same scaling

behavior. In panel B), we show the corresponding distribution for the

similarity measure in Eq. (3).
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limit of a tweet and do indeed lead to broad but significantly steeper
distributions in the word correlations (see Fig. 5B). The novels are
written by single authors and typically exhibits a more formal struc-
ture compared to the text messages. At the same time, the pair dis-
tribution of nouns are for the novels compatible with the null model
where all words in the novels are randomized meaning that the
correlated structures in the novels are rather weak. The distributions
of individual words were considered for the same novels in15.
Compared to the novels the distribution of the co-occurrence of
words in tweets is less broad, which might be because the active
vocabulary of the average user of Twitter is less diverse than that
of the authors of the two novels.

Scale invariance is often described by Zipf’s law13 which states that
the frequency of a word (for instance in a language) is inversely
proportional to the rank in the frequency table. In its general for-
mulation Zipf’s law says that the frequency c of a word is a power law
in the rank c , r2a. For the corresponding probability density func-

tions we have p cð Þdc~p rð Þdr?p cð Þ~p rð Þ dr
dc

����
����. Since

dk
dc

~c{1za
a

making the natural assumption that the PDF of the rank is a constant,
we obtain the PDF of the frequency as

p cð Þ*c{1za
a ð7Þ

Empirically the value a , 1 has been found for words in a corpus of a
natural language where as for the population size of cities a , 1.1. In
Fig. 5 (inset) we observed a frequency distribution p(c) , c22 for
words in the two novels leading to a , 1 in good agreement with the
‘established’ Zipf result. For Twitter sentences on the other hand we
found p(c) , c21.4 leading to a rank exponent of the order a 5 2.5
which is quite far from the usual Zipf exponent. We thus conclude,
that texts from human communication on social media leads to a
self-organized state that appears to have no resemblance with the
structure of written texts.

Social media have become vital channels for advertising, dissem-
ination of news and spreading of political opinions, therefore an
understanding of the communication between users in social media
provides important input not only to several branches of science but
also for commercial purposes. For example, the value of a brand is
determined by the consumer awareness and its apparent uniqueness.
Companies put enormous efforts into positioning, i.e. to create the
right image in the mind of potential customers. The modular struc-
ture of the brand network gives a first indication of the association
between the various brands. For high-end fashion brands for
instance, it might be preferable to be associated with similar brands
instead of less valuable brands. At the same time the modular
network can also be used to detect competing brands and as such
provide invaluable information for commercial campaigns. In par-
ticular, the similarity measure could measure the correlation with
‘up-coming’ brands that might eventually turn into serious compe-
titors. Likewise for cities, the network structure could provide a basis
for urban strategies and business planning for travel-agencies.
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