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A number of different proteins possess the ability to polymerize into filamentous structures. Certain
classes of such assemblies can have key functional roles in the cell, such as providing the structural
basis for the cytoskeleton in the case of actin and tubulin, while others are implicated in the
development of many pathological conditions, including Alzheimer’s and Parkinson’s diseases. In
general, the fragmentation of such structures changes the total number of filament ends, which act
as growth sites, and hence is a key feature of the dynamics of filamentous growth phenomena. In
this paper, we present an analytical study of the master equation of breakable filament assembly
and derive closed-form expressions for the time evolution of the filament length distribution for
both open and closed systems with infinite and finite monomer supply, respectively. We use this
theoretical framework to analyse experimental data for length distributions of insulin amyloid fibrils
and show that our theory allows insights into the microscopic mechanisms of biofilament assembly to
be obtained beyond those available from the conventional analysis of filament mass only. C 2015 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4933230]

I. INTRODUCTION

The spontaneous formation of filamentous protein struc-
tures from soluble monomers is a process of fundamental
importance to the normal functioning of biological systems1–6

but is also often encountered as the mechanism responsible
for the formation of protein deposits observed in association
with many neurodegenerative disorders, including Parkin-
son’s, Alzheimer’s, and prion diseases.7,8 As such, numerous
experimental and theoretical studies in the literature have
focussed on understanding the physical principles underlying
the kinetics of the self-assembly of filamentous protein struc-
tures. In addition to the classical picture of primary nucleation
events followed by sequential elongation steps,1,2 fragmenta-
tion has been shown to be a crucial feature characterising the
kinetics of many filamentous assembly systems.9–17 Indeed,
the breakage of long filaments into shorter ones increases the
number of free ends, which act as growth sites, and hence
accelerates the overall growth reaction. An important result of
recent biophysical research is the progress towards the descrip-
tion of the time evolution of the principal moments of the
filament distribution;16–22 these are average quantities which
relate to common experimental observables, including the total
number and mass concentrations of aggregates or the average
length of filaments, and obey a closed set of few coupled
differential equations, which can be treated analytically using
self-consistent methods,16,17,23 providing a route for connect-
ing macroscopic measurements of filamentous protein kinetics
with the underlying microscopic processes. Yet, in many cases,
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knowledge of the detailed nature of the length distribution
is desirable, for instance, because smallest aggregate species
have been associated with higher cellular toxicity in the context
of amyloid formation.24–26 In this context, previous work has
focussed on the steady-state properties of the filament length
distribution,22,27 but in the absence of closed-form expressions
for the time evolution of the aggregate size distribution, many
studies have instead relied on numerical methods for integrat-
ing the kinetic equations.12,14,27–29

Building on previous results,21,22,27 we present here
closed-form expressions for the time evolution of the mass
distribution of breakable filamentous structures. We show that
our theoretical framework allows effective exploration of the
parameter space and identifies the key physical factors that
govern the distribution of aggregate length in breakable fila-
ment assembly. Furthermore, we use the resulting analytical
expressions to fit experimental length distributions obtained
from measurements of growing insulin amyloid fibrils.

II. MASTER EQUATION

We consider a large ensemble of monomeric polypeptide
molecules and aggregates that undergo the growth processes
outlined in Fig. 1: fibrils are formed initially through primary
nucleation and subsequently increase in size through linear
growth, i.e., through the addition/removal of monomeric mole-
cules onto/from the ends of the filament; in addition, aggre-
gates are able to multiply in number through breakage. In the
mean-field limit, the time evolution of the concentrations of the
resulting aggregate structures obeys the law of mass action in

0021-9606/2015/143(16)/164901/14/$30.00 143, 164901-1 © 2015 AIP Publishing LLC
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FIG. 1. (a) Schematic representation of the elementary mechanistic steps of breakable filament assembly. (b) Representative examples of filamentous protein
systems exhibiting fragmentation: AFM/TEM images of fibrillization of yeast prion (Ure2p),10 β2-microglobulin,11 and bovine insulin. Part (b) reproduced with
permission from Tanaka et al., Nature 442, 585 (2006), copyright 2006 Macmillan Publisher Ltd. and Xue et al., Proc. Natl. Acad. Sci. U. S. A. 105, 8926
(2008), copyright 2008 National Academy of Sciences, USA.

form of a mass balance equation,16–22,30

∂ f (t, j)
∂t

= 2k+m(t) f (t, j − 1) − 2k+m(t) f (t, j)
+ 2koff f (t, j + 1) − 2koff f (t, j)

− k−( j − 1) f (t, j) + 2k−
∞

i= j+1

f (t, i)

+ knm(t)ncδ j,nc, (1)

where f (t, j) denotes the concentration of filaments of length
j at time t and k+, koff, k− and kn are the rate constants for fila-
ment elongation, monomer dissociation, fibril breakage, and
homogeneous (primary) nucleation, respectively. The terms
in Eq. (1) proportional to 2k+m(t) describe the reactive flux
associated with aggregate elongation, whereby the factor 2
accounts for the fact that each filament has two active ends.
Similarly, terms proportional to 2koff express the dissociation
of monomers from filament ends. The third line of Eq. (1)
pertains to aggregate fragmentation; the term k−( j − 1) f (t, j)
describes the loss of polymers of length j when they break into
smaller fragments, whereas the sum 2k−


i> j f (t, i) accounts

for the creation of filaments of size j as a result of the breakage
of longer ones. The last line of Eq. (1) describes the generation
of growth-competent aggregates through primary nucleation,
with nc giving the overall dependency of this processes on
the concentration of free monomers, which might, in general,
involve more than one elementary step.18,31,32 The condition
f (t, j) = 0 is imposed for j < nc. Note that in our formalism,
breakage implicitly contributes to the dissociation of poly-
mers. Monomers are, therefore, removed from the ends of
filaments with the effective rate constant koff + k−. Moreover,
in Eq. (1), we have assumed size-independent rate constants.
This assumption was primarily motivated by the fact that cur-
rent experimental data do not provide reliable estimates for
the size dependence of the rates. Our theoretical framework,
however, can in principle be extended to take this effect into
account.33

III. BREAKABLE FILAMENT ASSEMBLY
IN OPEN SYSTEMS

We first examine the time evolution of the full aggregate
size distribution in an open system, where the concentration of
monomers remains constant at the initial value m(t) = m(0),
for instance, through the action of protein synthesis in a living
cell. A discussion on mass-conserving systems is given in
Sec. IV. Under these circumstances, the underlying master
equation, Eq. (1), can be solved exactly to give the full aggre-
gate size distribution in closed form (see Appendix A for de-
tails); however, the resulting expressions are very complicated.
In order to simplify the functional form of the resulting length
distribution, we consider here a continuum limit approxima-
tion of Eq. (1) and describe the aggregate size j as being a
continuous variable x. The quantity of interest is therefore
f (t, x)dx, the concentration of aggregates with size in the range
(x, x + dx) at time t. Within an open system scenario, this
quantity evolves according to the following master equation in
the continuum-limit (see Appendix B for a derivation of this
result):22,27,34

∂ f (τ, x)
∂τ

= −ξ ∂ f (τ, x)
∂x

− x f (τ, x) + 2
 ∞

x

f (τ, z)dz

+ νδ(x − nc), (2)

where, for convenience, we have introduced the rescaled time
variable,

τ = k−t (3)

and the dimensionless parameters

ξ =
2[k+m(0) − koff]

k−
, ν =

knm(0)nc
k−

(4)

measuring the driving forces of linear growth and primary
nucleation relative to fragmentation. Note that for koff = 0,
such that the rate constants for monomer dissociation and fibril
fragmentation are the same, the parameter ξ is related to the
familiar saturation concentration.

For x > nc, the nucleation term in Eq. (2) vanishes and
we can solve Eq. (2) using the Laplace transform f̂ (s, x)
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=
 ∞

0 f (τ, x)e−sτdτ. In terms of this transform, Eq. (2) be-
comes after differentiation with respect to x,

ξ
∂2 f̂ (s, x)

∂x2 + (x + s)∂ f̂ (s, x)
∂x

+ 3 f̂ (s, x) = 0, (5)

where we have assumed that no seed material is present at the
beginning of the reaction. The general solution of Eq. (5) is

f̂ (s, x) = A(s)e− x(x+2s)
2ξ [(x + s)2 − ξ]

+ B(s)
(x + s)√ξ + √2[ξ − (x + s)2]D

(
x+s√

2ξ

)
√
ξ

,

(6)

where D(x) = e−x
2  x

0 ey2
dy denotes the Dawson integral and

A(s) and B(s) are (s-dependent) constants of integration deter-
mined by the boundary conditions. Because the integral over
(nc,∞) of the second term in Eq. (6) is divergent,35 resulting
in an infinite polymer number concentration, we must have
B(s) = 0. In order to fix the value of A(s), we note that the delta
function at x = nc can be reformulated as boundary condition
for f (τ, x) at x = nc,

f (τ, x = nc) = ν

ξ
(7)

or, in terms of the Laplace transform f̂ (s, x),
f̂ (s, x = nc) = ν

ξs
. (8)

Hence, by combining Eq. (6) with Eq. (8), we obtain

f̂ (s, x) = νe−
(x−nc)(x+nc+2s)

2ξ [(x + s)2 − ξ]
ξs[(nc + s)2 − ξ] . (9)

The inverse Laplace transform of Eq. (9) is given by the inver-
sion formula

f (τ, x) = 1
2πi

 c+i∞

c−i∞
f̂ (s, x)esτds

=


Poles of f̂ (s,x)eτs
Res f̂ (s, x)eτs, (10)

where the contour of integration is the closure of any verti-
cal line c such that f̂ (s, x) has no poles on or to the right
of it. By the residue theorem, we can compute the inverse
Laplace transform of f̂ (s, x) as the sum of the residues of
f̂ (s, x)eτs at poles of f̂ (s, x). Equation (9) has simple poles at
0 and ±

√
ξ − nc, which correspond to constant and exponen-

tially decaying/growing terms in f (τ, x), respectively. There-
fore, after employing that for most systems of interest

√
ξ

≫ nc
36 and transforming back to real time t = τ/k−, the result-

ing expression for f (t, x) obtained using Eq. (10) reads

f (t, x) =
νe−

x2−n2
c

2ξ


ξ − x2 + x2 cosh

(
κt + nc−x√

ξ

)
+ 2x
√
ξ sinh

(
κt + nc−x√

ξ

)
ξ2 H(vt − x + nc), (11)

where v = 2[k+m(0) − koff], κ =


2k−[k+m(0) − koff] is an
effective rate constant for aggregate proliferation, and H(x)
is the Heaviside step function, defined by H(x) = 1 for x > 0
and H(x) = 0 for x < 0.

Equation (11) gives, in closed form, the temporal evolu-
tion of the length distribution of breakable filaments in a system
where the concentration of monomers is constant in time. A
comparison of the f (t, x) profiles predicted by Eq. (11) and
the numerical solution of the master equation37 is shown in
Fig. 2. At early times, filament elongation dominates over
fragmentation and the length distribution behaves similarly
to a shock wave moving in size space. The velocity of the
wave front is v = 2[k+m(0) − koff] and its position at time t is
x f = nc + vt. At later times, κt ≫ 1, the shock-wave nature of
the length distribution disappears and the system approaches a
stationary state, as a result of the dominance of the exponential
growing term eκt,22,27,38

f (t, x)
P(t)

κt≫1→ e−
(x−nc)(2√ξ+x+nc)

2ξ x(x + 2
√
ξ)

ξ3/2 , (12)

where P(t) ∼ ν/(2√ξ)eκt is the polymer number concentration
(see Eq. (15)). Under these circumstances, both f (t, x) and
the total number concentration of aggregates are exponentially

growing with time with multiplication rate κ; hence, the frac-
tional occupation f (t, x)/P(t) stays constant in time and takes
the form of a biased Gaussian, which is solely determined by
the parameter ξ.

It is interesting to consider the limit of vanishing fragmen-
tation rate; in this situation, Eq. (11) recovers the solution of
the Oosawa model with constant monomer concentration30

f (t, x) k−→0
→ knm(0)nc−1

2k+
H(vt − x + nc), (13)

where we set koff = 0. In this limit, the master equation reduces
to an advection equation; the aggregate mass distribution is
therefore given by a shock wave moving in x space with
constant velocity v .

An interesting scenario is the inclusion in the master equa-
tion (1) of a term responsible for the degradation of polymers.21

While this process does not play an important role in experi-
ments of filamentous assembly in vitro that currently account
for the bulk of the accurate available data, application to in
vivo situations requires the inclusion of fibril degradation. Our
framework can be extended to take this effect into account; an
expression for the aggregate size distribution in the presence
of polymer degradation is presented in Appendix C.
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FIG. 2. Time evolution of fractional occupation f (t, x)/P(t) of frangible filaments in an open system. The continuum-limit solution Eq. (11) (red dashed) is
compared with the numerical solution of the master equation (black solid). The parameters are k+= 104 M−1 s−1, koff = 0, kn = 10−5 M−1 s−1, k−= 2×10−7 s−1,
m(0)= 1 µM, nc = 2, and M (0)= P(0)= 0.

Finally, as a consistency check, we derive the time evolu-
tion of the first principal moments starting from the obtained
expressions for the filament size distribution. For example,
the Laplace transform of the polymer number concentra-
tion, P̂(s) =  ∞

0 P(τ)e−sτdτ, is obtained through integration
of Eq. (9) as

P̂(s) =
 ∞

nc

f̂ (s, x)dx =
ν(nc + s)

s(s − √ξ)(s + √ξ) , (14)

where we used
√
ξ ≫ nc. Computing the inverse Laplace

transform of Eq. (14) using Eq. (10) yields

P(t) = ν

2
√
ξ

�
eκt − e−κt

�
− ncν

ξ
(15)

in agreement with previous reports.16–20 Similarly, the follow-
ing formula for the Laplace transform of the polymer mass
concentration is obtained from Eq. (9):

M̂(s) =
 ∞

nc

x f̂ (s, x)dx =
ν[nc(nc + s) + ξ]

s(s − √ξ)(s + √ξ) ,

ξ ≫ nc.

(16)

Computing the inverse Laplace transform of Eq. (16) using
Eq. (10) yields therefore16–20

M(t) = ν

2
�
eκt + e−κt

�
− ν. (17)

Note that while both P(t) and M(t) continue to grow expo-
nentially after the stationary distribution Eq. (12) is attained,
the average length of fibrils, L(t) = M(t)/P(t) ∼ √ξ, stays
constant in this limit.21

IV. BREAKABLE FILAMENT ASSEMBLY
IN CLOSED SYSTEMS

Having elucidated the physical principles underlying
breakable filament growth under constant monomer input, we
now focus on the temporal evolution of the length distribution
of filaments for mass-conserving systems, which are charac-
terized by finite monomer supply.

Through numerical integration of master equation (1),
it has been shown that the full time evolution of the length
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distribution of breakable filaments in a mass-conserving sys-
tem evolves through two key stages of dynamics:27 during the
early stages of the polymerization reaction, the concentration
of monomers is approximatively constant at the value m(0)
and the aggregate size distribution evolves according to the
solution Eq. (11) for an open system discussed in Sec. III;
during the later stages of the reaction, when monomers have
been depleted, the system enters a slow phase of dynamics
where the length distribution shifts smoothly from stationary
distribution (12) into a steady-state distribution dominated by
small filament fragments. This end point of the assembly reac-
tion is characterized by the following expressions for principal
moments:21,22,27

M(∞) = m(0) − k−nc(nc − 1)
2k+

, P(∞) = M(∞)
2nc − 1

. (18)

Relying on the observations above, we account for finite
monomer supply, by assuming the following form for the time-
varying concentration of monomers (Fig. 3):

m(t) =



m(0), for t < T
m(∞) = m(0) − M(∞), for t ≥ T

, (19)

where42

T =
1
κ

log
(

2M(∞)
ν

)
(20)

is the time at which the expression Eq. (17) reaches steady-
state, M(∞),

M(t) =



ν

2
�
eκt + e−κt

�
− ν, for t < T

M(∞), for t ≥ T
. (21)

Accordingly, the number concentration of aggregates is
assumed to evolve as

P(t) =



ν

2
√
ξ

�
eκt − e−κt

�
− ncν

ξ
, for t < T

P(∞) +
(

M(∞)
√
ξ
− P(∞)

)
e−(2nc−1)k−t, for t ≥ T

.

(22)

On assuming Eq. (19), the species distribution f (t, j)
evolves through two stages of dynamics.

A. First time scale: t < T (advection phase)

During this phase of the reaction, the length distribution
develops according to Eq. (11).

B. Second time scale: t > T (redistribution phase)

At the end of the previous time scale, the aggregate size
distribution has reached the stationary value

M(∞)e− ( j−nc)(2√ξ+ j+nc)
2ξ j( j + 2

√
ξ)

ξ2 C f ss( j). (23)

To describe how Eq. (23) develops into the steady-state distri-
bution, we introduce the rescaled time variable

τ = k−(t − T) (24)

and solve Eq. (1) with m(t) = m(∞) and kn = 0,
∂ f (τ, j)

∂τ
= nc(nc − 1) f (τ, j − 1) − nc(nc − 1) f (τ, j)

− ( j − 1) f (τ, j) + 2
∞

i= j+1

f (τ, i) (25)

FIG. 3. The time evolution of the length distribution of breakable protein filaments occurs through two distinct phases: a fast advection phase followed by a
slow length redistribution phase ending into a steady-state distribution dominated by short fragments. The curves were generated using Eqs. (11) and (34) for
the following parameters: k+= 104 M−1 s−1, koff = 0, kn = 10−5 M−1 s−1, k−= 2×10−6 s−1, nc = 2, m(0)= 1 µM, P(0)=M (0)= 0.
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subject to the initial condition

f (τ = 0, j) = f ss( j). (26)

Introducing the generating function39–41

C(z, τ) =
∞

j=nc

f (τ, j)z j (27)

and using the following results:

∞
j=nc

j z j f (τ, j) = z
∂C(z, τ)

∂z
(28)

∞
j=nc

z j
∞

i= j+1

f (τ, i) =
∞

j=nc

f (τ, j)
j−1
i=nc

zi

=
2zncP(τ)

1 − z
− 2C(z, τ)

1 − z
(29)

allow recasting Eq. (25) into the following partial differential
equation:

∂C(z, τ)
∂τ

+ z
∂C(z, τ)

∂z
=


nc(nc − 1)(z − 1) + 1 − 2

1 − z


C(z, τ) + 2zncP(τ)

1 − z
, (30)

which can be solved using the Laplace transform (see Appendix E for details). For systems with nc = 2, which have recently been
shown to play an important role in the formation and proliferation of certain forms of amyloid fibrils,16 the solution to Eq. (30)
reads

C(z, τ) = e2z(1−e−τ)
(

1 − z
1 − ze−τ

)2

e−3τCss(ze−τ) +
(

M(∞)
√
ξ
− P(∞)

)
e−3τ


1 − e2z(1−e−τ)

(
1 − z

1 − ze−τ

)2

+
P(∞)
2z3


2z3 + 3z2 − 3 − e2z(1−e−τ)

(
1 − z

1 − ze−τ

)2

(2z3e−3τ + 3z2e−2τ − 3)

, (31)

where

Css(z) =
∞

j=nc

f ss( j)z j . (32)

As a verification of the consistency of the generating function approach, we evaluate Eq. (31) at z = 1 and recover the expression
for the polymer number concentration, Eq. (22),

C(z = 1, τ) = P(∞) +
(

M(∞)
√
ξ
− P(∞)

)
e−3τ = P(τ). (33)

Finally, expanding Eq. (31) in power series in z yields the following closed-form expression for the length distribution

f (τ, j) =
(

M(∞)
√
ξ
− P(∞)

)
e−3τAj(τ) + P(∞)Bj(τ)

+ e−3τ


f ss( j)e− jτ −
j−2
k=2

f ss(k)e−kτAj−k(τ)

,

(34)

where the coefficients Aj(τ) and Bj(τ) are given by

Aj(τ) =
j−1
k=0

(1 − e−τ)2(k − j) + 1 − e−2τ

k!
[2(1 − e−τ)]ke−( j−k−2)τ − [2(1 − e−τ)] j

j!
, (35)

Bj(τ) =
j−1
k=0

k − j + 4 + e−τ( j − k − 2)
2k!

[2(1 − e−τ)]k+1e−( j−k+1)τ

+
3( j − 1) + 3 j( j − 1)e−τ − 6 j( j + 1)e−2τ + 2 j( j + 1)e−3τ

( j + 3)( j + 1)! [2(1 − e−τ)] j . (36)
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FIG. 4. Comparison between experimental measurements and analytical predictions for the length distribution at different times. The histograms represent the
experimentally obtained length distributions of insulin filaments with histogram bin widths of 500 nm. The solid curves represent the predictions of Eqs. (11)
and (34) with parameters: k+= 2.9×104 M−1 s−1, koff = 0, kn = 0, k−= 1.75×10−8 s−1, nc = 2, m(0)= 87 µM, M (0)= 87 nM, P(0)= 3.3×10−11 M. We stress
that the theoretical curves do not represent fits to the experimental data but are predictions using the values for the rate constants determined solely from the
average length of aggregates at the stationary state (∼

√
ξ) and the time T at which M (t) reaches the plateau.

C. Discussion

Figure 3 shows the behaviour of the aggregate size distri-
bution predicted by our analytical framework, Eqs. (11) and
(34). As can be seen from the figure, the analytical integrated
rate law obtained from the combination of Eqs. (11) and (34)
accounts explicitly for the transition from an open-system
behaviour at early times to a slow approach to steady state
at later times. The aggregate distribution develops initially in
the form of an advective front in aggregate size space until
the stationary distribution Eq. (12) is reached. At later times,
the filament distribution shifts towards shorter fragments as a
result of fragmentation dominating over elongation. At steady-
state t = ∞, contributions from exponential decaying terms in
Eq. (34) vanish and f (t, j) recovers the previously obtained
steady-state distribution27

f (∞, j)
P(∞) =

nc[(nc − 1)nc] j−nc(nc − n2
c + j + j2)(n2

c − 1)!
[1 + (nc − 1)nc + j]! .

(37)

Importantly, the precise form of the length distribution re-
veals that these two stages of the reaction are controlled by
different combinations of the rate parameters. During the first
phase of the reaction, the time evolution and shape of the
distribution are controlled by the parameters ξ, κ, and v: the
parameter ξ controls the shape of the distribution and describes
a balance between filament elongation, which tends to make
the aggregates longer, and filament breakage, which shifts the
distribution towards smaller values of j; the temporal evolution
of f (t, j) is determined by the parameters κ and v , whereby κ
gives the rate of aggregate multiplication and v describes the

wave-front propagation of f (t, j) due to filament elongation.
During the second, slower stage of the reaction, the time be-
haviour of the aggregate size distribution is controlled by the
rate of fragmentation k−. Note that at the end of the reaction,
the fractional aggregate distribution, Eq. (37), is independent
of any kinetic parameter.

V. DYNAMICS OF FILAMENT LENGTH DISTRIBUTION
REVEALS MOLECULAR MECHANISMS
OF INSULIN ASSEMBLY

To date, the experimental analysis of filamentous growth
reactions has mainly focussed on fitting average quantities,
such as the polymer mass concentration M(t).43 Values for
the governing rate-constants are estimated from a global fit
of aggregate mass traces to analytically determined functions
corresponding to the correct microscopic mechanism. While
powerful, this approach is necessarily limited by the fact that
it relies on the analysis of average quantities, which, in certain
cases, cannot provide enough information for discriminat-
ing between different possible dominant microscopic mech-
anisms. For example, when the system proliferates through a
monomer-independent secondary mechanism, fitting the time
course of the aggregate mass only does not allow to estab-
lish whether the underlying microscopic mechanism is fibril
breakage or saturated surface-catalyzed (secondary) nucle-
ation.44 We now show that the availability of our theoretical
framework opens up new possibilities of studying filament
length distributions quantitatively to complement the anal-
ysis of principal moments. We demonstrate the power of
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this approach by analysing experimental measurements of
the length distribution of growing insulin filaments. Fibril
length distributions were measured from seeded aggregation
kinetic experiments monitored by changes in Thioflavin T
fluorescence and subsequent atomic force microscope (AFM)
imaging at different times (see Appendix E for details on
materials and methods). The experiment showed that starting
from the initial filament distribution, filaments steadily grew
longer through recruitment of free polypeptide molecules at
the ends of aggregates until, after about 320 min, the length
distribution shifted towards shorter fibrils. The experimental
results for the length distribution of the insulin fibrils are
plotted in Fig. 4. Importantly, while fitting of the time course
for the polymer mass concentration M(t) to kinetic models
of protein filament formation dominated by fragmentation
or saturated secondary nucleation would result in the same
exact functional form,44 the time evolution of the filament
distribution is clearly consistent only with a fragmentation
model, as saturated secondary nucleation would not lead to
a shift of f (t, j) towards shorter fibrils at late times. In order
to compare our model predictions with the AFM data, the
values for the rate constants for elongation and fragmentation
are determined from the average length of aggregates at the
stationary state (≈1.7 × 104) and the time at which the mass
concentration M(t) of fibrils reaches the plateau (≈320 min),
yielding values of k+ = 2.9 × 104 M−1 s−1 and k− = 1.75
× 10−8 s−1.45 The prediction for the form of the filament length
distribution using the obtained values for the rate constants is
shown in Fig. 4. The obtained values for the kinetic parameters
are in agreement with previous reports, considering changes in
temperature.46 Finally, we note that while a global fit of exper-
imental measurements of the total aggregate mass concentra-
tion is able to fix only the combined rate parameter k+k−, the
analysis of filament length distributions described here allows
the determination of the individual rate constants. Overall,
these results demonstrate the power of chemical kinetics for
quantitatively predicting the behaviour of the fibril popula-
tion with time hence providing a valuable tool to increase
our mechanistic understanding of linear protein aggregation
phenomena.

VI. CONCLUSIONS

In this paper, we have presented an analytical study of the
kinetics of breakable filament self-assembly. We have obtained
closed-form expressions describing the temporal evolution of
the length distribution of the resulting filamentous structures.
These results uncover the basic physical behaviour that deter-
mines the time evolution of the aggregate size distribution.
Furthermore, we have demonstrated that our theoretical model
yields good agreement with experimental data of the length
distribution of growing insulin fibrils and provides insights into
the underlying microscopic mechanisms in action.
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APPENDIX A: EXACT SOLUTION FOR THE LENGTH
DISTRIBUTION IN AN OPEN SYSTEM

In this appendix, we focus on systems with constant mono-
mer concentration. Building on the approach of Pöschel and
Brilliantov,22 we derive exact expressions describing the time
evolution of the aggregate distribution in the discrete case,
which is solution of the following master equation:
∂ f (τ, j)

∂τ
= ξ f (τ, j − 1) − ξ f (τ, j)

+ 2
∞

i= j+1

f (τ, i) − ( j − 1) f (τ, j) + νδ j,nc, (A1)

where we have introduced the rescaled time variable τ = k−t.

1. Principal moments

Preliminary insights into the form of the filament size
distribution is obtained by considering the principal moments
of the length distribution, defined as

In(t) =
∞

j=nc

jn f ( j, t). (A2)

Of particular experimental interest are the aggregate number
concentration I0(t) ≡ P(t) (zeroth moment) and the concentra-
tion of monomers in aggregates I1(t) ≡ M(t) (first moment).
These are average quantities, which obey a set of two coupled
ordinary differential equations (moment equations) obtained
by summing master equation (A1) on both sides over aggrega-
tion number, yielding a solution as a sum of exponentials16–22

P(t) =C1eκt + C2e−κt − ncν

ξ
,

M(t) =
ξC1eκt −


ξC2e−κt − ν,

(A3)

where the constants C1,2 are given by

C1,2 =
1
2

(
P(0) ± M(0)

√
ξ
± ν
√
ξ

)
. (A4)

2. Solution for the aggregate size distribution

In order to solve for f (τ, j), we rewrite the first fragmen-
tation term in Eq. (A1) as

∞
i= j+1

f (τ, i) = P(τ) − f (τ, j) − f (τ, j − 1) −
j−2
i=nc

f (τ, i),

(A5)

such that from Eq. (A3), Eq. (A1) becomes
∂ f (τ, j)

∂τ
= −(ξ + j + 1) f (τ, j) + (ξ − 2) f (τ, j − 1)

− 2
j−2
i=nc

f (τ, i) + 2C1e
√
ξτ

+ 2C2e−
√
ξτ − 2P + νδ j,nc, (A6)
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where P = ncν/ξ. Written in this form, Eq. (A6) can be solved
recursively, as the time evolution of f (τ, j) is now coupled
only to that of the concentrations f (τ, i) with i < j. For j = nc,
Eq. (A6) admits the simple solution22

f (τ,nc) = 2C1

ξ +
√
ξ + nc + 1

e
√
ξτ +

2C2

ξ −
√
ξ + nc + 1

e−
√
ξτ

+Cnce−αncτ − 2P − ν

ξ + nc + 1
, (A7)

where αk = ξ + k + 1 and the constant of integration

Cnc= f0(nc) − 2C1

ξ +
√
ξ + nc + 1

− 2C2

ξ −
√
ξ + nc + 1

+
2P − ν

ξ + nc + 1
(A8)

has been determined by implementing the initial condition at
t = 0. Since we are interested in the long-time limit, we seek
for a general solution of Eq. (A6) in the form21

f (τ, j) = Aje
√
ξτ, (A9)

where the coefficients Aj obey the following recursion relation,
which are obtained by inserting Eq. (A9) into Eq. (A6):22

Aj

C1
=

(ξ − 2)
ξ +
√
ξ + j + 1

Aj−1

C1

+
2

ξ +
√
ξ + j + 1

*.
,
1 −

j−2
i=nc

Ai

C1

+/
-
. (A10)

3. Solution of the recursion relation

As an intermediate step towards the solution of Eq. (A1),
now derive the exact solution of the following recursion

relation:

x j =
a − 2

b + j + 1
x j−1 +

2
b + j + 1

*.
,
1 −

j−2
i=nc

xi
+/
-
, (A11)

subject to given initial conditions xnc C X and xnc+1 = [(a
− 2)X + 2]/(b + nc + 2) C Y . An obstacle to solving Eq. (A11)
is the unlimited number of terms involved in the sum. To
avoid this difficulty, we transform the recurrence relation into
a recursion of fixed degree by setting up a subtraction of sums
for j ≥ nc + 2,

(b + j + 1)x j = (a − 2)x j−1 + 2 *.
,
1 −

j−2
i=nc

xi
+/
-
, (A12)

(b + j)x j−1 = ax j−2 + 2 *.
,
1 −

j−2
i=nc

xi
+/
-
. (A13)

Productively, subtracting Eq. (A12) from Eq. (A13) yields

(b + j + 1)x j = (a + b − 2 + j)x j−1 − ax j−2. (A14)

By using the ansatz x j = x̃ j/(b + nc + 1) j+1−nc, where (a)n
= a(a + 1) . . . (a + n − 1) denotes the Pochhammer symbol,
and by writing j = k + nc with k = 0,1, . . . , we can recast
Eq. (A14) into the simpler form

x̃k = (a + b − 2 + nc + k)x̃k−1 − a(b + nc + k)x̃k−2 (A15)

valid for all k ≥ 2. To solve Eq. (A15), we introduce the
generating function

C(z) =
∞
k=2

zk x̃k . (A16)

Multiplying Eq. (A15) with zk and taking the sum over k on
both sides yields a differential equation for C(z),

(az3 − z2)∂C(z)
∂z

=
�(a + b − 1 + nc)z − a(b + nc + 2)z2 − 1

�
C(z)

+ [(a + b + nc)x̃1 − a(b + nc + 2)x̃0] z2 − a(b + nc + 3)x̃1z3, (A17)

where x̃0 = (b + nc + 1)X and x̃1 = (b + nc + 1)(b + nc + 2)Y . According to Eq. (A16), to obtain x̃k, we solve Eq. (A17) subject
to the initial condition C(z = 0) = 0,

C(z)= az2(A + Bz + Cz2) + Dze−1/zEb+nc+1(−1/z)
(b + nc + 1)(az − 1)3 ,

(A18)

where

A = a(2b − a + 2nc + 4)x̃0 + (a − 3b − 3nc − 3)x̃1, (A19)

B = a(1 + b + nc)(3x̃1 − ax̃0), (A20)

C = −a2(1 + b + nc)x̃1, (A21)

D = a[2(2 + b + nc) − (1 + b + nc)(2 + b + nc) − a2]x̃0

+ [a2 + (b + nc − 2a)(1 + b + nc)]x̃1 (A22)

and subsequently expand the resulting generating function C(z) in power series in z around the point z = 0, yielding
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x j=
Γ(b + nc + 1)

(1 + b + nc)Γ(b + j + 2)

D

n
s=0

am

2
(m + 1)(m + 2)Γ(1 + b + nc + n − m)

Γ(b + nc + 1)

− A
an+1

2
(n + 1)(n + 2) − B

an

2
n(n + 1) − C

an−1

2
n(n − 1) , (A23)

where n = j − nc − 2.

4. Discussion

Using Eq. (A23), we are now in the position to obtain
explicitly the following exact solution for the aggregate distri-
bution:

f (t, j)
P(t) = am

ξm−1

c
Γ(c)

Γ(c + m + 1) +
α

c

m−2
s=0

ξ s(s + 1)(s + 2)

× Γ(c + m − s − 2)
Γ(c + m + 1) , (A24)

with m = j − nc, c = ξ +
√
ξ + nc + 1, d = ξ −

√
ξ + nc + 1,

and

am= 3m(m + 1)(nc − 1) + m(m + 1)(nc + 2)ξ (A25)
+ 2ξ[3 + m(m + nc + 2)] + (m + 1)(m + 2)ξ3/2

+ 2(m + 1)ξ2, (A26)
b= 6(nc − 1) + (1 + 5nc)


ξ + 5ξ + 3ξ3/2. (A27)

Computation of the principal moments using Eq. (A24)
yields

P(t) =
∞

j=nc

f (t, j) = C1eκt (A28)

and

M(t) =
∞

j=nc

j f (t, j) = [(2nc − 1) + 
ξ]C1eκt . (A29)

It is interesting to note the appearance in Eq. (A29) of addi-
tional terms proportional to (2nc − 1)C1 when compared to
Eq. (A3). This difference originates from the fact that the
derivation of Eq. (A3) neglects the term −(2nc − 1)k−P(t)
describing the production of monomers when a filament breaks
at a position that is closer than (nc − 1) bonds from either fibril
ends. This approximation is justified for ξ ≫ 1, in which case
Eq. (A29) becomes

M(t) ≈ 
ξC1eκt (A30)

and recovers Eq. (A3) exactly.

APPENDIX B: CONTINUUM-LIMIT DESCRIPTION
OF BREAKABLE FILAMENT ASSEMBLY

In this appendix, we provide the details pertaining to the
derivation of continuum-limit master equation (2).

In the transformation from a discrete to a continuum
description of protein aggregation, we replace the discrete
index j with a continuum variable x and expand the finite
differences in Eq. (1) in terms of partial derivatives to leading

order

f (t, j ± 1) = f (t, x) ± ∂ f (t, x)
∂x

+ O( f ′′), (B1)

and replace sums with integrals, e.g.,

∞
i= j+1

f (t, i) ≈
 ∞

x

f (t, z)dz. (B2)

By introducing the polymerisation drift coefficient v(t) = 2
[k+m(t) − koff], the master equation, Eq. (1), can be therefore
formulated in the continuum limit as27,34

∂ f (t, x)
∂t

= −v(t)∂ f (t, x)
∂x

− k−x f (t, x) + 2k−

 ∞

x

f (t, z)dz

+ knm(t)ncδ(x − nc). (B3)

We note that in the transition from a discrete to a con-
tinuum formulation of Eq. (1), the multiplicative pre-factor
(x − 1) in the loss term related to fragmentation has been
replaced by x. This fact follows intuition since rewriting
(x − 1) ≈ x is justified for large aggregation numbers and also
because this approximation corresponds to a scenario in which
filaments can break anywhere along the continuous chain, even
infinitely close to the ends. We also note that the continuum
approximation provided by Eq. (B3) was derived by replacing
finite differences with first-order derivatives. In general, a
better approximation is obtained by considering higher order
terms in the Taylor expansion

f (t, j ± 1) = f (t, x) ± ∂ f (t, x)
∂x

+
1
2
∂2 f (t, x)
∂x2 + · · ·. (B4)

For example, if derivatives up to second order are considered in
the expansion, an additional term on the right hand side of the
continuum master equation is obtained, which is of the form

D(t)∂
2 f (t, x)
∂x2 , (B5)

where D(t) = k+m(t) + koff describes a time dependent diffu-
sion process in length space that acts to broaden the length
distribution.

APPENDIX C: FILAMENT SIZE DISTRIBUTION
IN THE PRESENCE OF AGGREGATE DEGRADATION

In this appendix, we extend the theoretical framework of
Sec. III to the situation when aggregate degradation mecha-
nisms are active.21 Aggregates are assumed to undergo degra-
dation at the rate kdeg, which is independent of their size;
this framework, however, could in principle accommodate a
size dependent rate of degradation. Under these circumstances,
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continuum-limit master equation (2) becomes

∂ f (τ, x)
∂τ

= −ξ ∂ f (τ, x)
∂x

− (x + α) f (τ, x) + 2
 ∞

x

f (τ, z)dz

+ νδ(x − nc), (C1)

where τ = k−t and

ξ =
2[k+m(0) − koff]

k−
, ν =

knm(0)nc
k−

, α =
kdeg

k−
. (C2)

Using the same arguments as in Sec. III, we introduce the
Laplace transform

f̂ (s, x) =
 ∞

0
f (τ, x)e−sτdτ (C3)

and obtain after differentiation with respect to x,

ξ
∂2 f̂ (s, x)

∂x2 + (x + s + α)∂ f̂ (s, x)
∂x

+ 3 f̂ (s, x) = 0 (C4)

subject to the boundary condition

f̂ (s, x = nc) = ν

ξs
. (C5)

The solution is

f̂ (s, x) = νe−
(x−nc)(x+nc+2s+2α)

2ξ [(x + s + α)2 − ξ]
ξs[(nc + s + α)2 − ξ] . (C6)

The inverse Laplace transform of Eq. (C6) yields the following
solution for the aggregate size distribution:

f (t, x) = νe−
x2−n2

c
2ξ

ξ(ξ − α2)
�
ξ − (x + α)2� e−

α(x−nc)
ξ + x(x + 2α) cosh

(
κt +

nc − x
√
ξ

)
e−kdegt

+ x
(
2

ξ +

αx
√
ξ

)
sinh

(
κt +

nc − x
√
ξ

)
e−kdegt


H(vt − x + nc), (C7)

where we used
√
ξ ≫ nc. The long-time limit of Eq. (C7) reads

f (t, x)
P(t)

κt≫1→ e−
(x−nc)(2√ξ+x+nc)

2ξ x(x + 2
√
ξ)

ξ3/2 , (C8)

where

P(t) = ν

2(√ξ − α) e(κ−kdeg)t, κt ≫ 1. (C9)

It is worth noting that in the presence of degradation, the form
of the stationary fractional occupation, Eq. (C8), is the same
as that of Eq. (12).

APPENDIX D: PRESENCE OF SEED MATERIAL

The approach outlined in Sec. III can be generalized to
the case when a non-zero concentration of seed aggregates is
present initially. In this case, the general solution for f (t, x) can
be expressed as the sum of the solution of the corresponding
homogeneous equation, Eq. (11), and a particular solution of

the non-homogeneous equation. For example, for the initial
condition

f (t = 0, x) = P(0)δ(x − nc), (D1)

the Laplace transform of the non-homogeneous solution,
f̂ (s, x) =  ∞

0 f (τ, x)e−sτdτ with τ = k−t, satisfies

s f̂ (s, x) − P(0)δ(x − nc) =−ξ ∂ f̂ (s, x)
∂x

− x f̂ (s, x)

+ 2
 ∞

x

f̂ (s, z)dz. (D2)

Following a similar reasoning as in Sec. III, the required solu-
tion to Eq. (D2) reads

f̂ (s, x) = P(0)e− (x−nc)(x+nc+2s)
2ξ [(x + s)2 − ξ]

ξ[(nc + s)2 − ξ] . (D3)

Computing the inverse Laplace transform of Eq. (D3) for√
ξ ≫ nc yields

f (t, x) = δ(x − vt − nc)e−
x2−(x−v t )2

2ξ + fh(t, x)

+

P(0)e−
x2−n2

c
2ξ x


2
√
ξ cosh

(
κt + nc−x√

ξ

)
+ x sinh

(
κt + nc−x√

ξ

)
ξ3/2 H(vt − x + nc), (D4)

where fh(t, x) is the expression Eq. (11). Equation (D4) for
the time evolution of the aggregate size distribution has three
terms. The first term is the initial distribution that displaces
through size space at velocity v and decays exponentially as

it moves along the x-axis. The advective motion in size space
is due to filament elongation, while the decay is due to the
combined effects of elongation and fragmentation. The second
and third terms in Eq. (D4) represent the exponentially growing

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  130.225.188.33 On: Tue, 01 Nov

2016 12:27:16



164901-12 Michaels et al. J. Chem. Phys. 143, 164901 (2015)

biased Gaussian concentration profile of the aggregate distri-
bution that trails behind the travelling initial delta function. As
t → ∞, the moving initial distribution vanishes and Eq. (D4)
recovers a stationary behaviour similar to Eq. (12) indepen-
dently of the initial state of the assembly reaction

f (t, x)
P(t)

κt≫1→ e−
(x−nc)(x+nc+2

√
ξ)

2ξ x(x + 2
√
ξ)

ξ3/2 , (D5)

where from Eq. (D4),

P(t) = ν

2
√
ξ

�
eκt − e−κt

�
+

P(0)
2

�
eκt + e−κt

�
− ncν

ξ
. (D6)

APPENDIX E: DERIVATION OF EQ. (34)

In this appendix, we provide the mathematical details
pertaining to the solution of Eq. (30). Introducing the Laplace
transform

Ĉ(z, s) =
 ∞

0
C(z, τ)e−sτdτ, (E1)

transforms Eq. (30) into

z
∂Ĉ(z, s)

∂z
=


nc(nc − 1)(z − 1) − s + 1 − 2

1 − z


Ĉ(z, s)

+
2zncP̂(s)

1 − z
+ Css(z), (E2)

where

P̂(s) = P(∞)
s
+

M (∞)√
ξ
− P(∞)

s + 2nc − 1
. (E3)

The solution of Eq. (E2) subject to Ĉ(z = 0, s) = 0 reads

Ĉ(z, s) = eaz(1 − z)2
za+1

 z

0

wae−aw

(1 − w)2
(
w

z

) s
×


Css(w) + 2wncP̂(s)

1 − w


dw, (E4)

where, for convenience, we have introduced

a = nc(nc − 1). (E5)

Taking the inverse Laplace transform of Eq. (E4) yields

C(z, τ) = eaz(1−e
−τ)

(
1 − z

1 − ze−τ

)2

e−(a+1)τCss(ze−τ) + 2P(∞)eaz(1 − z)2
za+1

 z

ze−τ

wn2
c

(1 − w)3 e−awdw

+ 2
(

M(∞)
√
ξ
− P(∞)

)
e−(2nc−1)τ eaz(1 − z)2

za+2−2nc

 z

ze−τ

w(nc−1)2

(1 − w)3 e−awdw, (E6)

where we used the following results:

L−1
(
w

z

) s
= δ(τ + log w − log z)
= δ

�
w − ze−τ

�
w, (E7)

L−1

s−1

(
w

z

) s
= H

�
w − ze−τ

�
, (E8)

L−1

(s + q)−1

(
w

z

) s
= e−qτ

( z
w

)q
H
�
w − ze−τ

�
. (E9)

Evaluating integrals in Eq. (E6) for nc = 2 yields Eq. (34) of
the main text. In addition, at steady state, Eq. (E6) becomes

C(z,∞)
P(∞) =

2eaz(1 − z)2
za+1

 z

0

wa+nce−aw

(1 − w)3 dw. (E10)

Expanding Eq. (E10) as a power series in z yields the aggregate
size distribution at steady state27

f (∞, j)
P(∞) =

nc[(nc − 1)nc] j−nc(nc − n2
c + j + j2)(n2

c − 1)!
[1 + (nc − 1)nc + j]! .

(E11)

APPENDIX F: MATERIALS AND METHODS
1. Fluorescence measurements

Fibril length distributions were measured from seeded
fibril growth kinetic runs monitored by changes in Thioflavin T

fluorescence. Bovine insulin monomer (Gemini Bio-Products,
USA) was dissolved at a concentration of 0.5 mg ml−1 in a
solution of 10 mM HCl and 30 mM NaCl in Milli-Q water
with 60 µM Thioavin T (ThT) fluorescent dye and 0.5 µg ml−1

seed fibrils at a total volume of 1.5 ml. Precise protein mono-
mer concentration was determined by absorbance spectros-
copy using a Cary 400 Scan UV-visible spectrophotome-
ter or Thermo Scientific Nanodrop 2000 spectrophotometer
with molar extinction coefficient 1.0 cm−1 for 1.0 mg ml−1 at
276 nm. Immediately before starting the kinetic run, seed fibres
were added to the cuvettes containing the monomer solution
and mixed by inversion several times. Thermostat-controlled
temperature was maintained at 45 ◦C and the progress of
fibril growth was followed by measuring ThT fluorescence
at 1 min intervals with excitation wavelength 440 nm and
emission wavelength 480 nm. After each 30 min period, the
reaction mixture was mixed by inverting the cuvette several
times before a 10 µl reaction aliquot was removed and diluted
in 10 mM HCl to appropriate concentrations for AFM imaging.
Both the reaction aliquots and reaction aliquot dilutions were
stored at 4 ◦C until preparation of AFM slides to slow fibril
growth and breakage kinetics. A fluorescence measurement
and reaction aliquot were also taken after 24 h to provide
information about the long-time limit at equilibrium. Taken
as a value corresponding to 100% completion of aggrega-
tion, this final fluorescence value was used to normalise the
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fluorescence measurements of each sample to give the frac-
tion of protein incorporated into filaments as a function of
time. This allowed sample comparison and the extent of the
aggregation process at each time point, when a reaction aliquot
was removed, to be determined. As suggested by DePace
et al.,47 to avoid shear forces causing fibril fragmentation
during pipetting, wide-bore pipette tips were used by cutting
all pipette tips 1 cm from the end to create a width 1-2 mm
in diameter. Furthermore, mixing of solutions during dilution
was achieved only by inversion to avoid shearing during all
manipulations.

2. AFM imaging

20 µl of protein sample was deposited onto a cleaved
mica surface affixed onto a glass microscope slide and left
to air dry before subsequently washing with 20 µl Milli-Q
water and blotting dry to remove any deposited salt which
would obscure AFM imaging. Samples were imaged using
intermittent contact tapping mode AFM in air using a JPK
Nanowizard II AFM (JPK Instruments AG, Germany) with
cantilever tips supplied by MikroMasch, Estonia (resonance
frequencies 75, 105, and 155 kHz and force constants 0.6,
0.95, and 1.75 N m−1, respectively). After initial AFM imag-
ing, insulin fibril samples with a high background monomer
concentration were covered with 30 µl 10 mM HCl and left
for 5 min to redissolve deposited monomer before blotting.
Samples were then washed twice with 20 µl Milli-Q water
and blotted dry before reimaging. Height trace data from AFM
images was processed using either JPK Data Processing or
Gwyddion image processing software for vertical rescaling.
Data levelling for background subtraction and correction for
an offset in height data was achieved by applying a global
linear plane subtraction from all data to remove any tilt angle
from the sample support, or, where appropriate, correction by
subtraction of a quadratic or quartic polynomial fit from each
scan line independently.

3. Fibril length measurements

AFM images were analysed using ImageJ software to
measure fibril contour lengths. Fibril curvature was approxi-
mated by using a segmented straight line tool. Fibrils of inde-
terminate length extending outside the image region and cutoff
by the image border were not included.
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