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On chaotic dynamics in transcription factors and
the associated effects in differential gene regulation
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The control of proteins by a transcription factor with periodically varying concentration

exhibits intriguing dynamical behaviour. Even though it is accepted that transcription factors

vary their dynamics in response to different situations, insight into how this affects down-

stream genes is lacking. Here, we investigate how oscillations and chaotic dynamics in the

transcription factor NF-κB can affect downstream protein production. We describe how it is

possible to control the effective dynamics of the transcription factor by stimulating it with an

oscillating ligand. We find that chaotic dynamics modulates gene expression and up-

regulates certain families of low-affinity genes, even in the presence of extrinsic and intrinsic

noise. Furthermore, this leads to an increase in the production of protein complexes and the

efficiency of their assembly. Finally, we show how chaotic dynamics creates a heterogeneous

population of cell states, and describe how this can be beneficial in multi-toxic environments.
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The regulation and control of protein production is a vital
element in all living organisms. This process can be highly
complicated, involving a large number of steps. However,

despite stochastic fluctuations, life is characterised by a high level
of organisation indicative of very precise regulation. A thorough
understanding of the mechanisms and interactions that
maintain the precision of regulation is absent, but the prospect of
discerning and ultimately controlling the production of
specific proteins is one of the great goals in the field of systems
biology.

Control of transcription is a ubiquitous means of regulating
gene expression, but it has only recently been appreciated that
transcription factor dynamics might be important for gene
regulation. For instance, oscillations have been observed in key
transcriptional factors, such as the p53 tumour suppressor or
NF-κB, which regulates numerous genes involved in immune
response1–7. Debate continues about the functional role, if any,
of these oscillations, but it is clear that altering the dynamics of
these transcription factors differentially affects downstream
genes1,2,4,8.

Oscillatory dynamics is the prerequisite for many complex
phenomena—and in the present study for the onset of chaotic
dynamics. Chaos refers to complex, apparently unpredictable,
dynamics that even simple deterministic dynamical systems can
produce (see section What is chaos?). A universal way to achieve
chaos is by driving a nonlinear oscillator (say the NF-κB system)
by an external periodic signal (e.g., by periodically varying a
cytokine-like tumor necrosis factor (TNF) that triggers NF-κB
oscillations). When the external driving signal has low ampli-
tude oscillations, it can entrain or synchronise the nonlinear
oscillator, i.e., if TNF is varied within certain frequency ranges it
will force the NF-κB oscillations to occur with the externally
imposed frequency8,9. As the amplitude of TNF oscillations is
increased, the range of frequencies for which it can entrain NF-
κB becomes larger—these expanding synchronisation regions of
the external amplitude–frequency parameter space are called
Arnold tongues10–12. Such entrainment/synchronisation13 has
been observed in many different physical systems, from fluids14

to quantum mechanical devices15,16, and now also in biological
processes, such as cell cycles17–19, and gene regulatory dynamics
in synthetic populations20. The dynamics gets even more com-
plex as the amplitude of the external driving signal increases
further. First, Arnold tongues start overlapping, which means
the nonlinear oscillator can exist in more than one entrained
state with different frequencies (termed modes), and even small
amounts of intrinsic or extrinsic noise can cause it to hop
between these modes. Such mode-hopping has been observed in
the NF-κB system when driven by a periodically varying TNF
signal of sufficiently high amplitude21. When the external
amplitude is increased even further, then chaotic dynamics is
predicted11,12.

In this paper, we study the possible implications of oscillatory
and chaotic dynamics of a transcription factor, such as NF-κB, on
the downstream genes it controls. We compare the expression of
genes with different affinities to the transcription factor, and show
that chaotic dynamics has differential effects on genes with dif-
ferent affinites. This can be exploited, for instance, to up-regulate
certain proteins, or specific protein complexes. We also show how
chaotic dynamics can generate heterogeneity in a cell population
that can provide a selective advantage in multi-toxic environ-
ments. Our work provides a theoretical framework to study the
effects of dynamically varying transcription factors, and we
believe it constitutes one of the first investigations into how
chaotic dynamics might influence genetic regulation in living
cells.

Results
The model. Our investigation starts with a model of the tran-
scription factor NF-κB that is known to exhibit oscillatory
dynamics3,9,22. A schematic version of this is found in Fig. 1a and
a full description is presented in the Supplementary Note 1. In
this deliberately simplified model, the oscillations arise from a
single negative feedback loop between NF-κB and its inhibitor
IkBα, and can be triggered by TNF via the activation of the IkB
kinase (IKK). We then allow TNF to oscillate. This system
exhibits Arnold tongues (shown schematically in Fig. 1c), which
are regions of parameter space where the NF-κB oscillation is
entrained to the external TNF oscillation9, i.e., it locks on to the
external signal’s frequency and phase. Outside the Arnold ton-
gues there is no synchronisation. It is straightforward to add
intrinsic noise to this system by explicitly modelling the ran-
domness in binding/unbinding of proteins, phosphorylation, as
well as transcriptional and translation processes using the Gille-
spie algorithm23 (see Supplementary Note 2 and Supplementary
Figure 1C for details). Figure 1c right panel shows that this system
exhibits single-mode oscillations (for low amplitude TNF oscil-
lations), mode-hopping (intermediate amplitude) and chaos (high
amplitude) in this system, as was first noted in ref. 21. Note that
changes in a single parameter are sufficient to obtain all these
different dynamics.

To the above model, we now add genes that are regulated by
NF-κB, following the approach of Mengel et al. 4. We assume that
NF-κB can bind to an enhancer or operator region, and can form
complexes to bind the RNA polymerase, with different affinity,
depending on the gene (schematically shown in Fig. 1d). We
describe the transcription and translation of each gene, labelled i
= 1, 2, 3,…, using the differential equations:

_mi ¼ γi
Nhi

Nhi þ Khi
i

� δimi; ð1Þ

_Pi ¼ Γimi � ΔiPi: ð2Þ

Here, the mi represent the mRNA level transcribed from gene i,
and Pi represents the concentration of proteins produced from
the correspnding mRNA. The first term in the equation for the
mRNA is known as a Hill function; the canonical way to describe
the protein production for genes governed by transcription
factors where each gene has a specific Hill coefficient and effective
affinity4,24–27.

The effective affinity Ki is a parameter that combines the
strength of binding of the transcription factor to the operator/
enhancer region, the strength of binding of RNA polymerase to
the promoter and transcription factor, as well as the effect of
DNA looping that may be needed to bring the enhancer/operator
close to the promoter region. Operationally, Ki sets the
concentration of NF-κB that results in 50% of maximal gene
expression enhancement. The Hill coefficient hi is a measure of
the cooperativity of the transcription factor at that gene. A
thorough description of this is presented in Supplementary
Note 3, and representations of the sigmoidally shaped curves are
shown in Supplementary Figure 1. γi and Γi are the maximal
transcription and translation rates for the gene, while δi and Δi

are inversely proportional to the half-lives of the mRNA and
protein, respectively. While all these parameters affect the
behaviour of genes described by these equations, the affinity Ki

is particularly important. In particular, as we will demonstrate in
subsequent sections, high-affinity genes (HAGs) with low Ki

behave quite differently from low-affinity genes (LAGs) with high
Ki. In Fig. 1e the values of the Hill function Nh/(Kh+ Nh) as NF-
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Fig. 1 Dynamics from coupled oscillators and emergence of chaos. a Schematic picture of a simplified NF-κ B network with a single negative feedback loop
which can generate oscillations. b Schematic picture of oscillations in the external TNF concentration, represented by the changing shade of blue. c
Dynamics that emerges when the NF-kB system is driven by a periodic TNF signal. The left panel shows schematically that there are Arnold tongues,
triangular regions of the TNF amplitude-period parameter space where NF-kB oscillations can be synchronised to the TNF signal. Outside the Arnold
tongues, e.g. point 0, there is no synchronisation. As TNF amplitude increase the Arnold tongues start overlapping and the behaviour becomes more
complex. Keeping the TNF period fixed (here we used T= 50min), as we increase the the TNF amplitude we enter three distinct states: Point 1: A single
Arnold tongue, only allowing one oscillation state. Point 2: Overlap of Arnold tongues, allowing two stable oscillation states. The presence of noise can
cause transitions (mode-hopping). Point 3: Chaotic dynamics, with apparently unpredictable trajectories. The trajectories corresponding to these points are
shown in in the middle panels. Red and blue trajectories correspond to two different initial conditions in a deterministic simulation. The rightmost panels
show the dynamics of NF-κ B vs. time in stochastic simulations where intrinsic noise is implemented using the Gillespie algorithm. d Schematic figure of the
polymerase binding for genes that have NF-κB (green spheres) as a transcription factor. e Profile of the Hill function in Eq. (2) for different values of affinity
and cooperativity. Red: h= 2 and K= 1.0 (HAG). Purple: h= 4 and K= 4.5 (LAG). Green: Example of intermediate values with h= 3 and K= 2.0 (MAG).
Vertically, light blue: a representative NF-κB oscillation
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κB level N varies are shown, along with a typical single-mode NF-
κB oscillation. It is clear from the figure that the same NF-κB
oscillation would be expected to excit HAGs and LAGs to
different levels.

What is chaos? When we speak of chaos, we refer to determi-
nistic chaos. Deterministic means that if one knows the initial
state of the system exactly, then the dynamical trajectory will be
the same every time it is initiated in that state. However, any two
initial conditions infinitesimally apart will have exponentially
diverging trajectories as time proceeds making it practically
impossible to predict the future dynamics—hence chaos28–31. It is
important to note that the unpredictability of chaos does not arise
from stochasticity—the latter refers to a non-deterministic system
with noise. Noise is observed in most real-world systems and can
often result in very different dynamics than the deterministic
version of the same system. For example, noise can cause tran-
sitions between different states which would never occur if the
system were deterministic. Thus, both deterministically chaotic
and noisy systems exhibit unpredictability of their future trajec-
tories, but for very different underlying reasons.

Chaos enhances LAGs. We simulate our model of the NF-κB
system, with periodically varying TNF and intrinsic noise, along
with downstream genes with different affinities and cooperativ-
ities. We then measure the average protein concentration asso-
ciated with each gene over timescales much longer than the half-
lives of the mRNA and proteins. This long-term average is the
simplest measure of the effect of NF-κB oscillations on gene
expression. As shown in Fig. 2, we find that as TNF amplitude
increases, we obtain very different behaviour for HAGs, LAGs
and genes with intermediate affinity (MAGs). As described above
and in Fig. 1, as TNF amplitude is increased, keeping its fre-
quency fixed, the NF-κB dynamics is first a single-mode oscilla-
tion (point 1 in Fig. 1c), then exhibits mode-hopping (point 2 in
Fig. 1c) and finally chaos (point 3 in Fig. 1c) for high amplitude
TNF. The ranges of TNF amplitude which exhibit these three
qualitatively different dynamics are indicated in Fig. 2a–c.

The chaotic regime shows the differential behaviour of the
different genes most clearly. The HAG has a linearly decreasing
average protein level as TNF amplitude is increased, while the
LAG shows exactly the opposite. The MAG exhibits much less
variation with TNF amplitude. It is interesting that genes under
control of NF-κB can thus be designed to have increasing,
decreasing, as well as relatively flat response to variation of a
single parameter. The increasing (decreasing) trend that is seen
for LAGs (HAGs) within the chaotic regime is also seen across
the entire range of TNF amplitudes, going from single-mode
oscillations through mode-hopping to chaos. However, within the
first two regimes the response is relatively flat with major change
happening only near the transition between regimes. Overall, we
see that both HAGs and LAGs could exhibit fold-changes on the
order of two-fold, which we believe should be observable in
experiments, while MAGs could lie within experimental error and
thus appear effectively unresponsive to TNF amplitude.

A mathematical analysis of this behaviour provides some
intuition to understand why HAGs and LAGs respond so
differently: The long-term average protein level is essentially
proportional to the average of the Hill function over the same

long timescale: hPi � Nh

KhþNh

D E
: For HAGs, K is small, and to

lowest order in K/N, hPi � 1� Kh 1
Nh

� �
. In contrast, for LAGs, K

is large, and hPi � Nhh i
Kh (see Supplementary Note 4 for further

details). The averages 〈Nh〉 and 〈1/Nh〉 depend on the probability
distribution of NF-κB values over a long time series. This

distribution is typically unimodal, but is asymmetric and has a
long right tail (see Supplementary Figure 2K–L). Now 〈Nh〉 is
largely dominated by this right tail, especially for large h. Thus, if
the right tail of this distribution became more prominent as TNF
amplitude was increased, we would expect 〈Nh〉 to increase and
this would explain why LAGs show an increasing average protein
level, while 〈1/Nh〉 in contrast is dominated by the other end of
the probability distribution, i.e., very low values of N. Thus, if the
probability of NF-κB spending time at low concentrations
increased with TNF amplitude, then 〈1/Nh〉 would increase,
and the average protein level of LAGs would decrease.
Supplementary Figure 2K–L shows that this is indeed what
happens to the probability distribution of NF-κB as TNF
amplitude is increased—both within the chaotic regime, as well
as across single-mode oscillations, mode-hopping and chaos.
Thus, we conclude that the differential control of HAGs vs. LAGs
is directly caused by the broadening of the range of NF-κB levels
as one goes deeper into the chaotic regime. The increase of peak
NF-κB levels and the decrease of minimum NF-κB levels are both
necessary for such differential control.

Robustness to variations in parameters and noise. We tested
our central result from the previous section at other TNF fre-
quencies (see the heatmaps in Fig. 2j–l and Supplementary
Figure 2A–F) and, for TNF time period in the range 30–120 min,
we found the same trends in average protein levels, as a function
of TNF amplitude.

Since biological systems are often characterised by large
fluctuations and much noise, we also varied the level of intrinsic
noise in the NF-κB system by varying the effective volume of the
system. Decreasing the volume leads to larger fluctuations, but as
shown in Fig. 2d–f, the average protein levels are quite robust to
such increases of intrinsic noise. The mode-hopping region is of
specific interest to changes in noise, since these affect the rate at
which the system jumps from one entrained state to another32.
The chaotic regime, in contrast, already exhibits many hallmarks
of randomness even in the absence of noise, so adding noise does
not affect the behaviour much.

Next, we also wanted to include extrinsic noise into the
variation of TNF. In experimental procedures, as well as in vivo, it
is of course very likely that there will be considerable stochasticity
in the TNF signal. Could such fluctuations mask the differential
control of genes, especially in the chaotic regime? We added
Langevin noise to the periodic TNF waveform at a sufficiently
high level to smear out the predominant frequency in a Fourier
spectrum of the noisy waveform (see Supplementary
Figure 2G-H). We found that this did not affect our results—
NF-κB still showed the same transition from single-mode
oscillation to mode-hopping to chaos as TNF amplitude was
increasing, and HAGs and LAGs showed the same opposite
trends in average protein level as in the absence of TNF noise
(Fig. 2g–i). As with intrinsic noise, the extrinsic noise had most
effect in the mode-hopping regime and minimal effect in the
chaotic regime.

Finally, we also found that our results were unchanged when
we used non-sinusoidal waveforms for TNF (Supplementary
Figure 2I), and when we varied the Hill coefficient (Supplemen-
tary Figure 2J). Thus, these results show that the enhancement of
LAGs in chaotic dynamics is robust to both internal and external
noise, and this effect is a striking feature of chaos in transcription
factors for a large set of parameters.

Chaos increases efficiency in protein complex formation. In
eukaryotic cells, many functions are carried out by complexes of
proteins that are constructed from multiple subunits, for
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instance haemoglobin, that consists of four subunits from two
genes that are located on different chromosomes. A study of the
NF-κB interactome found that amongst 384 genes that are
regulated by NF-κB there were 572 protein–protein interac-
tions33. While these complexes have not been deeply investi-
gated, we expect at least some will have a functional role. For
instance, there seems to be evidence that NF-κB controls

autophagy via multiple pathways, including the up-regulation
of both Beclin 1 and A20, which interact with each other
inhibiting Beclin 1 ubiquitination, and thereby repressing
autophagy34. Therefore, we tested how the concentration of
protein complexes, whose subunits were encoded by NF-κB
controlled genes, was altered as the NF-κB dynamics became
chaotic and the LAGs were up regulated.

Single

Mode 
hopping

Chaos

R
at

io
 to

 u
np

er
tu

rb
ed

1.1
#1
#2
#3
#4
Average

1

0.9

0.8

0.7

0.6
0 0.1 0.2 0.3 0.4

a

TNF amplitude

#1
#2
#3
#4

Average

1.3

1.2

1.1

1

0.9

0.8

0.7
0 0.1 0.2 0.3 0.4

Single

Mode 
hopping

Chaos

R
at

io
 to

 u
np

er
tu

rb
ed

TNF amplitude

b

#1
#2
#3

#4
Average

0.1

2.5

2

1.5

1

0.2 0.3 0.4

Single

Chaos

Mode 
hopping

R
at

io
 to

 u
np

er
tu

rb
ed

TNF amplitude

c

1.1

1

0.9

0.8

0.7

0.5

0.6

TotMean

V = 10–15L

V = 1 × 10–14L

V = 4 × 10–14L

Det + init rand

0 0.1 0.2 0.3 0.4

TNF amplitude

d
3

2.5

2

1.5

1

3

2.5

2

1.5

1

TotMean

V = 10–15L

V = 1 × 10–14L

V = 4 × 10–14L

Det + init rand

0 0.1 0.2 0.3 0.4

TNF amplitude

f

1

0.9

0.8

0.7 Total average
Sigma = 0.1
Sigma = 0.2
Det + VDP noise

0.6

0.1 0.2 0.3 0.4

TNF amplitude

g
Total average
Sigma = 0.1
Sigma = 0.2
Det + VDP noise

1.3

1.2

1.1

1

0.9

0.7

0.8

0 0.1 0.2 0.3 0.4

TNF amplitude

h
Total average
Sigma = 0.1
Sigma = 0.2
Det + VDP noise

0.1 0.2 0.3 0.4

TNF amplitude

i

40 10060 80

0.3

0.2

0.1T
N

F
 A

m
pl

itu
de

0.5

0.75

1.0

TNF period (min)

j

0.3

0.2

0.1

40 10060 80

1.06

0.97

0.88

TNF period (min)

T
N

F
 A

m
pl

itu
de

k

40 10060 80

0.3

0.2

0.1

1.0

2.0

3.0

TNF period (min)

T
N

F
 A

m
pl

itu
de

l

1.3

1.2

1.1

1

0.9

0.7

0.8

Total average

V = 4 10–14L

V = 1 10–14L

V = 10–15L

0 0.1 0.2 0.3 0.4

TNF amplitude

e

Fig. 2 Effects of chaos on protein production. a The average protein level from an HAG (K= 4.5, h= 4), for different values of the TNF amplitude. We
performed four separate simulations of duration 5*105 min. and show their individual means and the mean of these four combined. We used V= 2*10−14L
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calculated in a–c. Here T= 50min. e Same as d but for the MAG. f Same as d but for the LAG. g The average production from the HAG for different
extrinsic noise levels. We performed simulations of duration 1*105 min each datapoint and used the total mean as calculated in a and b. We added Langevin
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We first consider a complex that consists of two subunits. In
this case, the model has the following additional equations, where
P1 and P2 represent the concentrations of the two proteins and
C2,1 the concentration of the complex:

_P1 ¼ Γ1m1 � λCP1P2 � Δ1P1; ð3Þ

_P2 ¼ Γ2m2 � λCP1P2 � Δ2P2; ð4Þ

_C2;1 ¼ λCP1P2 � ΔC2;1: ð5Þ

In the following we will, in order to keep things as simple and
transparent as possible, keep the values of the parameters λ and
Δ fixed even though these could easily differ between
complexes. An exploitation of the effects of the entire
parameter space will be interesting to pursue in future work,
but is beyond the scope of this paper. Obviously if the two
subunits are both HAG proteins, the complex has the highest
average level in the oscillatory regime, while if it consists of two
LAG proteins, the highest average level will be found in the
chaotic regime (Fig. 3b, c). However, if the complex is
heterogeneous and consists of one HAG and one LAG subunit,
as shown schematically in Fig. 3a, the result is not as obvious.
Simulating the above equations for a heterogenous complex, we
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hierarchical assembly (shown above). g Relative concentration for complexes of different compositions. The y-axis show the concentration in chaos divided
by the concentration in the oscillatory regime, and the black line show where these are equal. h Relative concentration per NF-κB for complexes of different

compositions measured by the fraction
CN;nHh i
hNFkBi . Same axis as in g. i Relative concentration per unused subunits for complexes of different compositions

measured by the fraction
CN;nHh iPN

i¼1
hPii

. Same axis as in g. For g–i, the exact ratios are found in the tables in Supplementary Note 5
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find a significantly higher level of the complex in the chaotic
regime, as seen in Fig. 3e.

We then test larger complexes. The concentration of the
protein complex Cn;nH

consisting of n subunits, of which nH are
from an HAG and the rest from an LAG, is modelled by

_Cn;nH
¼ λ

Yn
i¼1

Pi � ΔnCn;nH
: ð6Þ

For n= 3 and nH= 2, we found that the production was also
highest in the chaotic regime and, before moving further, we
tested whether the outcome was different if all complexes
combined randomly (yellow curve in Fig. 3f), or if there was a
hierarchical structure in the assembly (blue and red curves in
Fig. 3f). As we see in Fig. 3f the outcome is quite similar, and we
could therefore focus on the non-hierarchical assembly of
complexes, calculated as shown above. We subsequently tested
for n ∈ [2–10] and in each case we tried with all different
different combinations of HAG and LAG subunits. Unexpect-
edly, we find that all heterogeneous complexes exhibit a higher
average lvel in the chaotic regime (Fig. 3g). This means that
only homogenous HAG complexes would be present at a high
level in the single-mode oscillatory regime. One might ask,
whether this is simply the result of higher mean levels of NF-
κB. Therefore, we normalised the concentration of the
complexes by the mean NF-κB concentration—when this ratio
is large we will say the complexes are produced more efficiently.
As seen in Fig. 3h, all complexes are produced more efficiently
in the chaotic regime—even the homogenous HAG complexes.
Another economical argument for the cell is that if only the
complexes are of importance, then it is necessary to minimise
the number of unused subunits. In Fig. 3i, we see the ratio
between the average concentration of complexes to the
concentration of unused subunits. This ratio too is largest in
the chaotic regime for all complexes, except those made only
from HAG proteins. Thus, a chaotically varying transcription
factor not only up regulates LAGs, but also results in higher and
more economical production of protein complexes composed of
subunits from different genes.

Chaos generates advantageous population heterogeneity. We
now consider how the dynamics of NF-κB can affect a popu-
lation of cells. In the following, we consider the deterministic
NF-κB system, and study a population of N independent cells
that are affected by the same oscillating TNF stimulus. In all
simulations, cells have randomly distributed initial
conditions, i.e., the NF-κB oscillations in different cells are
not initially synchronised. Within each cell, we will track one
LAG and one HAG; parameters are chosen so that the two
corresponding proteins have the same average protein level.
In Fig. 4a–d we see that when NF-κB is in a single-mode
oscillatory state, the average level of both Protein 1 and Protein
2 is homogenous across the population, whereas if NF-κB is
mode-hopping then the distribution of protein levels across
the populaiton is bimodal. In the chaotic regime, the distribu-
tion is broad and heterogenous for both proteins (Fig. 4e, f),
but the LAG has on average a higher expression in this state
(for TNFPeriod= 95 min, we note a special tail, which is caused
by the occurrence of some high-frequency oscillations).

Such heterogeneity in a cell population can provide a
selective advantage when the population is exposed to
some potentially lethal stresses. Imagine each cell in the
population is exposed to two toxic drugs at concentrations D1

and D2. We assume that at each time step each cell is killed with

probability

PDie ¼ P0
Dh
1

Dh
1 þ Ph

1

þ Dh
2

Dh
2 þ Ph

2

� �
: ð7Þ

This describes a situation where the two proteins P1 and P2 are
stress-responders that can help the cell survive stressed condi-
tions. P0 represents the probability that the drugs kill in the
absence of the protective proteins. We consider the case where P1
is encoded by an HAG and P2 by an LAG, both under control of
NF-κB.

First we consider the situation where only one of these drugs
is present, shown in Fig. 4g, h. When only Drug 1 is added in a
high amount, cells where NF-κB is in a single-mode oscillating
state will have a higher survival rate than cells where NF-κB is
mode-hopping or chaotic. This is what one would expect from
Fig. 3, since HAG proteins are on average at higher levels in the
single-mode oscillatory state. When only Drug 2 is added in a
high amount, cells in chaotic states will have a slightly higher
survival rate, but due to large fluctuations, these cells will also
eventually die due to temporary low levels of Protein 2. Now we
consider what will happen to the system if both drugs are added
in a comparable amounts. We test four different patterns of
adding the drugs (Fig. 4i–l) and find that the cells in the chaotic
state will have significantly higher survival rate compared to the
others. In the Supplementary Note 6, we provide some
mathematical arguments for these results and here we also
show tests of the robustness of these results, and here we found
similar results as shown above (Supplementary Figure 3).
From this we conclude that in the presence of multiple toxic
drugs, a population of cells is better off having a large
heterogeneity in gene expression and up regulating the LAGs
and thus up regulating the product of genes. This is obtained in
the chaotic regime for NF-κB dynamics and this enhances the
survival rate.

Discussion
Transcription factors are known to have different dynamics,
depending on external conditions, but how this may be exploited
to differentially control downstream genes is not well understood.
We have shown how dynamically varying transcription
factors can differentially regulate genes based on an effective
affinity that characterises the interaction between the gene and
the transcription factor. In particular, we suggest that chaotic
dynamics can produce differential control of high vs. LAGs, down
regulating the former while simultaneously up regulating the
latter. We show that this can be used not only to control single
non-interacting genes, but also for upregulating specific com-
plexes of proteins and generating useful heterogeneities in cell
populations.

Our results are derived from a model of the NF-κB system.
Such models have been used to explain numerous experimentally
observed features of NF-κB oscillations3,35, and therefore form a
good basis for our exploration of the effects on downstream
genes. Our model has already successfully predicted the existence
of mode-hopping for a range of TNF amplitudes21. Since chaotic
behaviour within overlapping Arnold tongues is such a funda-
mental feature of driven nonlinear oscillators11,12,36, we are
confident that NF-κB driven by sufficiently large TNF amplitudes
will exhibit deterministic chaos. However, an experimental rea-
lisation of our model37,38 would necessarily be subject to various
sources of noise and stochasticity, and it is not obvious that
deterministically chaotic behaviour can be practically discerned in
the presence of such fluctuations. Fortunately, many sophisticated
methods exist that allow chaos to be distinguished from noise
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without requiring unreasonably long time series; see for example
refs. 39,40. Once chaos is found in the NF-κB system, the next step
of testing whether HAGs respond differently from LAGs can be
tackled using genes that have previously investigated in the
regime where NF-κB shows single-mode oscillations1,8. Since the
expression level of some of these genes track NF-κB oscillations
closely, while others track the mean NF-κB levels, it is likely that
these genes already span a range of affinity values4. The robust-
ness of our results to many parameter values suggests that these
genes may be directly used to study the chaotic regime, without
worrying too much about details, such as their maximal tran-
scription/translation rates or the stabilities of the mRNA and
proteins they encode.

Our model uses periodic variation of TNF to produce com-
plex dynamics of NF-κB. Uncovering conditions where TNF
naturally varies periodically and thereby entrains the NF-κB
oscillations would add substantial weight to our results.

Oscillatory dynamics is believed to be of importance to several
processes in the immune system41 and there exists evidence
that TNF does indeed vary in a pulsatile or periodic manner in
some situations42–45, as well as mathematical models that
attempt to explain the underlying mechanisms42,46, but it is
unclear whether these natural oscillations entrain NF-κB. The
positive feedback between NF-κB and TNF that has been
hypothesised to produce travelling waves of TNF is perhaps the
most promising scenario we are aware of where periodic TNF
modulation may occur naturally46.

Chaotic dynamics has thus far been underestimated as a means
for controlling genes, perhaps because of its unpredictability. Our
work shows that deterministic chaos potentially expands the
toolbox available for single cells to control gene expression
dynamically and specifically. We hope this will inspire theoretical
and experimental exploration of the presence and utility of chaos
in living cells.
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Fig. 4 Population heterogeneity emerges from chaos. a Protein concentration from an HAG with K= 1, h= 2 and external TNF period 50min. Bottom: The
concentration corresponding to a single-mode oscillation; TNF amplitude: 0.04. Middle: The concentration corresponding to mode-hopping; TNF
amplitude: 0.12. Top: The concentration corresponding to chaos; TNF amplitude: 0.36. b Protein concentration from an LAG with K= 4.5, h= 4. TNF period
50min. TNF amplitudes are identical to those used in a. c Protein concentration from the HAG. TNF period 95min. Bottom: The concentration
corresponding to a single-mode oscillation; TNF amplitude: 0.1. Middle: The concentration corresponding to mode-hopping; TNF amplitude: 0.2. Top: The
concentration corresponding to chaos; TNF amplitude: 0.4. d Protein concentration from the LAG. TNF period 95min. TNF amplitudes are identical to
those used in c. e Distribution of protein concentrations in the chaotic state (TNF period: 50min, TNF amplitude: 0.36). f Distribution of protein
concentrations in the chaotic state (TNF period: 95min, TNF amplitude: 0.4). g Number of surviving cells vs. time (drug is added at T= 4000min). D1=
6000, D2= 0. h Same as g with D1= 0, D2= 6000. i Same as g with D1= D2= 3000. j Same as g with _D1þ2 ¼ Nð0; 100:0Þ and D1+2(0)= 3000. The
panel below shows a specific trajectory on this pattern. In general D1 is above D2 50% of the times and vice versa. k Same as g with

D1þ2ðtÞ ¼ 3000þ 1500 � sin t
5000 þΩ
� �

. l Same as g with D1+2(t)= 7000 if sin t
5000 þΩ
� �

>0:95 and otherwise D1+2(t)= 3000
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Methods
Simulations. All deterministic simulations were performed by numerically
integrating the dynamical equations using the Runge–Kutta fourth-order
method, and for optimisation reasons, some of the equations were simulated
using Euler integration. Whenever Euler integration was used it was tested that it
generated similar results as the Runge–Kutta fourth-order method. For all sto-
chastic simulations of NF-kB dynamics, we used the Gillespie algorithm23. For
noise in the external TNF oscillations we used Langevin simulations of the
different oscillations.

Regions of chaos. To find the regions of parameter space that exhibit chaotic
dynamics, we first computed the standard deviation in the NF-kB amplitudes from
each time series, and found the parameter points at which this grew dis-
continuously, as we increased the TNF amplitude. Within these regions, we further
tested for chaos by calculating the divergence of trajectories that started at
almost identical initial points, using deterministic simulations. Parameter regions
where such trajectories diverged exponentially were labelled as regions exhibiting
chaos.

Code availability. All computer code is available upon request at heltberg@nbi.ku.dk
or mhjensen@nbi.dk. The majority of scripts can also be found at https://github.com/
Mathiasheltberg/ChaoticDynamicsInTranscriptionFactors.

Data availability
All the data in this paper, was generated using deterministic and stochastic
simulations. All scripts to generate the data are available upon request at helt-
berg@nbi.ku.dk or mhjensen@nbi.dk. The majority of scripts can also be found at
https://github.com/Mathiasheltberg/ChaoticDynamicsInTranscriptionFactors.
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