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We formulate general rules for a coarse graining of the dynamics, which we term ‘‘symbolic

dynamics,’’ of feedback networks with monotonic interactions, such as most biological modules.

Networks which are more complex than simple cyclic structures can exhibit multiple different symbolic

dynamics. Nevertheless, we show several examples where the symbolic dynamics is dominated by a single

pattern that is very robust to changes in parameters and is consistent with the dynamics being dictated by a

single feedback loop. Our analysis provides a method for extracting these dominant loops from short time

series, even if they only show transient trajectories.
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Many biological systems can be described by directed
networks, where nodes represent different components
and arrows represent interactions. In cell biology, nodes
are molecules, while arrows stand for complex forma-
tion, protein modification, transcription regulation, etc.
Ecosystems constitute another example, where nodes are
species and arrows represent predation, competition, and
symbiosis. Biological functions are often performed by
specific small subnetworks, or modules [1]. A dynamical
model of a module requires, beyond the knowledge of the
network structure, some hypotheses on the form of the
interactions, which are often poorly characterized. It is
then crucial to develop techniques to study the qualitative
dynamics of modules assuming limited information.

We present a method to obtain information about pat-
terns in the dynamics of biological feedback networks.
Given the network structure, i.e., which nodes activate or
repress which other nodes, it is possible to predict the
ordering of maxima and minima of the dynamical varia-
bles. Vice versa, from an experimentally observed ordering
one can obtain some information about the structure of the
network. The method is a generalization of the one intro-
duced in [2] for the dynamics of a single negative feedback
loop, without any cross-links, where a unique pattern is
allowed. A more complex network structure [3–8] allows
multiple dynamical patterns. Moreover, a particular ob-
served pattern could originate from different network
structures. Nevertheless, our method can reduce the possi-
bilities and provides nontrivial information that can guide
experiments. Our technique also applies when the dynam-
ics is transient, so that information can be obtained, for
example, by watching how the concentrations of proteins
and genes belonging to a given module relax to a stationary
state after a perturbation. This extends the use of our
formalism to cases in which oscillations are damped [7].

We consider a system described by N dynamical vari-
ables, xi, i ¼ 1 . . .N, which we call ‘‘densities’’ and could
represent, for example, the concentrations of the chemical
species composing the network or module. We assume that

they evolve with time in a deterministic way, according to a
system of differential equations:

dxi
dt

¼ giðx1; x2 . . . xNÞ; i ¼ 1 . . .N: (1)

Many possible dynamical systems may correspond to a
given network. The only constraints we impose are that the
interactions be monotonic; i.e., each off-diagonal element
of the Jacobian matrix, @xjgi, is positive everywhere in

phase space (when node j activates i), or negative every-
where (j represses i), or zero everywhere (no arrow from j
to i). In words, activators are always activators, and re-
pressors are always repressors. Indeed, transcription fac-
tors rarely switch from being activators of a particular gene
to repressors at different densities; a predator of a particu-
lar species does not become its prey when its abundances
change. We do not require monotonic self-interactions: a
variable may activate or repress itself depending on the
densities.
We associate to each state (x1; x2 . . . xN) a symbol such

as (þ;�;�; . . .þ ). This N-component sign vector de-
scribes which densities are increasing and which are de-
creasing at a given time: the ith component is just the sign
of giðx1; x2 . . . xNÞ. Such a representation divides the phase
space into sectors, each associated with a symbol, in which
each density has a definite increasing or decreasing behav-
ior. The sectors’ boundaries are the nullclines, i.e., the
manifolds satisfying giðx1; x2 . . . xNÞ ¼ 0. Our goal is to
determine the conditions under which the trajectory can
cross a nullcline. This requires a density to change from
increasing to decreasing (or vice versa) and is equivalent to
determining when the density can have a maximum or
minimum.
For example, a minimum for the variable xi corresponds

to a crossing of the nullcline gi ¼ 0 from the region gi < 0
to the region gi > 0. This is possible only if, somewhere on
the nullcline, the scalar product between the vector field ~g
and the vector rgi (which is normal to the nullcline gi ¼
0) is positive:
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gjðx1; x2 . . . xNÞ@xjgiðx1; x2; . . . xNÞ> 0: (2)

The i ¼ j term is excluded since it is zero on the nullcline.
By assumption, all the derivatives have fixed signs, and in
any given sector the gj’s also have fixed signs (encoded in

the associated symbol). If the symbol and derivative signs
are such that each term is negative, then the sum cannot be
positive. This implies the rule ‘‘A variable cannot have a
minimum if all its repressors are increasing and all its
activators are decreasing.’’ Similarly, for the maxima, ‘‘A
variable cannot have a maximum if all its repressors are
decreasing and all its activators are increasing.’’

Using the above two rules we can construct a network of
allowed transitions for a given biological module, with one
node for each symbol and an arrow for each transition that
does not violate the above rules. Note that the transition
network will only have arrows connecting symbols differ-
ing by a single sign, because each maximum or minimum
corresponds to a single sign flip.

We first consider the example network of Fig. 1(a) (left):
a three-species negative feedback loop with a cross-link
from node 3 to 2 that introduces a positive feedback. By
checking all the allowed transitions we construct the cor-
responding transition network, shown in Fig. 1(a) (right).
For example, from the symbol (�þþ) the transition

ð� þþÞ ! ð�þ�Þ is ruled out because all the activators
of node 3 are increasing; therefore, it cannot have a maxi-
mum. Similarly we rule out all transitions from it except
ð� þþÞ ! ð��þÞ. The result, in this case, is a simple
modification of the transition network for a single negative
feedback loop shown by the solid arrows in Fig. 1(a) (right)
[2]. With the cross-link present, the additionally allowed
transitions are the ones shown with dashed arrows. The
following dynamical system illustrates these possibilities:
_x1 ¼ c� x1x3=ðk1 þ x1Þ; _x2 ¼ x21 þ a½�ðx3 � k2Þ � 1� �
x2; _x3 ¼ x2 � x3. The major nonlinearity is the Heaviside
step function: �ðxÞ ¼ 0 for x < 0, and �ðxÞ ¼ 1 for x > 0
[9]. By choosing parameters such that the cross-link is
weak (c ¼ 30, a ¼ 10, k1 ¼ 0:1, k2 ¼ 20), one obtains
the dynamics of Fig. 1(b), which is identical to the simple
3-species loop. As the strength of the cross-link is in-
creased (a ¼ 50), the symbolic dynamics changes to also
exhibit the dashed transitions. This is shown in Fig. 1(c)
where variable x2 develops a new small maximum, thus
changing the symbolic dynamics.
We now move on to a system that exhibits a richer range

of dynamical behaviors [see Fig. 2(a)]. It consists of two
negative feedback loops, coupled via a shared species. This
network has been widely studied in the ecological litera-
ture [10–12] as a model for three trophic level ecosystems:
species x3 feeds on x2, and x2 feeds on x1. The chaotic
properties of this motif have been used to interpret data
from the Canadian lynx-hare cycle, showing irregular os-
cillations [13].
We consider first the Hastings-Powell (HP) model [11]

as a dynamical system corresponding to this network:
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FIG. 1 (color). Simple example of the use of symbolic dynam-
ics. (a) (left) Scheme of the network. We represent activation by
a normal arrow, and repression by a barred arrow. (right)
Corresponding transition network. We removed for clarity the
symbols (þ�þ) and (�þ�) which have no incoming links.
(b) Dynamics of the 3 variables as a function of time with a weak
cross-link (a ¼ 10, see text), showing the transition cycle in
solid arrows in (a). Inset shows the same on a log scale.
(c) Dynamics for a stronger cross-link (a ¼ 50, see text) which
includes the transitions shown by dashed arrows in (a), zoomed
in the inset. In all plots x1 is blue, x2 is green, and x3 is red.
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FIG. 2 (color). Network of two coupled two-species oscilla-
tors. (a) Structure of the network. (b) The transition network for
this 3-node system. Black arrows indicate all the allowed tran-
sitions. Blue arrows are the transitions actually observed in the
HP system, and red arrows are the transitions observed in the
BHS model (see text). Dashed arrows indicate ‘‘kicks,’’ i.e.,
transitions which are not observed close to the Hopf bifurcation.
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_x1 ¼ rx1ð1� kx1Þ � �1x1x2=ð1þ b1x1Þ;
_x2 ¼ �d1x2 þ �1x1x2=ð1þ b1x1Þ � �2x2x3=ð1þ b2x2Þ;
_x3 ¼ �d2x3 þ �2x2x3=ð1þ b2x2Þ; (3)

with the parameter choices �1 ¼ �2 ¼ 4, b1 ¼ b2 ¼ 3,
d1 ¼ 0:4, d2 ¼ 0:6, k ¼ 1:5. By increasing the parameter
r, a stable limit cycle undergoes a series of period doubling
bifurcations, followed by the onset of chaos. A projection
of the attractor on the x2-x3 plane is shown in Fig. 3. The
chaotic trajectory looks similar to the periodic one, except
for the irregular behavior of the amplitude [12]. This means
that the same sequence corresponding to the periodic orbit
is observed after the onset of chaos. By increasing r even
more, we found a regular window with a change in the
symbolic dynamics [the kick, shown in red in the attractor
in Fig. 3 and in the bifurcation diagram, Fig. 4(a), and
corresponding to the blue dashed transition in Fig. 2(b)].
The kick is still present when, by further increasing r, the
dynamics becomes chaotic again.

The conclusion is that the same symbolic dynamics
observed close to the Hopf bifurcation is found in a large
region of parameter space. We compare the results with a
different system corresponding to the same network, the
model by Blausius, Huppert, and Stone (BHS) [10]:

_x1 ¼ x1 � �1x1x2=ð1þ kx1Þ;
_x2 ¼ �dx2 þ �1x1x2=ð1þ kx1Þ � �2x2x3;

_x3 ¼ cðx�3 � x3Þ þ �2x2x3;

(4)

with parameters �1 ¼ 2, �2 ¼ d ¼ 1, k ¼ 0:12, x�3 ¼
0:006. Here, a convenient control parameter is c. We ob-
serve the same scenario in the bifurcation diagram [see
Fig. 4(b)]: periodic orbit, then chaotic but same periodic
symbolic dynamics, then different symbolic dynamics in a
regular window, and, finally, chaotic symbolic dynamics.

Note, however, that the periodic symbolic dynamics ob-
served close to the Hopf bifurcation is different from that
observed in the HP model.
To test the robustness of the two sequences, we tried to

change the functional form of the interaction between x2
and x3 by setting b2 ¼ 0 in the HP model or, conversely,
introducing saturated response in the BHS model. We also
tried to vary the parameters of both systems, by up to 50%
from their default values. The two symbolic sequences
were not affected by any of these changes. A possible
cause for this robust difference could be the logistic term
in the first equation of (3), acting as a regulator so that the
full dynamics is bottom-up controlled.
The difference between the symbolic dynamics of the

HP and BHS systems can be used for model selection: in
the example of the Canadian lynx system, one has access
only to the lynx population time series, but temporal
measurements of the hare and grass abundances could be
used to understand which model is more appropriate.
Interestingly, from the point of view of maxima or minima
order, these two systems behave like two different, single
negative feedback loops [2]: 3 a 2 a 1 a 3 (HP system)
and 1 ! 2 ! 3 a 1 (BHS system). Both these ‘‘effective’’
loops would include an effective interaction between var-
iables x1 and x3.
So far we have gone from a known network to the

transition network to the time series. The reverse process
uses the transitions observed in an experimental time series
to infer information about the underlying network. For
example, the circadian oscillations of the three genes
kaiA, B, C in cyanobacteria [14] were shown in Ref. [2]
to have the following symbolic dynamics (B, A, C):
ðþþþÞ! ð�þþÞ! ð��þÞ! ð���Þ! ðþ��Þ!
ðþþ�Þ! ðþþþÞ. Several networks are consistent with
this pattern—the simplest is the loop B ! A ! C a B, as
suggested in Ref. [2]. Experiments have shown that A ! C
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FIG. 3 (color). Two dimensional projection of the attractor of
the system of Eq. (3) for different values of the control parameter
r ¼ 2:0 (top left), r ¼ 2:6 (top right), r ¼ 3:0 (bottom left), r ¼
3:3 (bottom right).
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FIG. 4 (color). Bifurcation diagrams. (top) HP model (3),
minima of x2 plotted versus r. (bottom) BHS model (4), maxima
of x1 versus c. In both plots, red dots indicate the appearance of
kicks in the trajectory and symbolic dynamics (see text).
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and C a B, and that all three genes are essential for oscil-
lations [15]. With this information we can get nontrivial
guidelines for which further interactions to look for ex-
perimentally: (i) kaiA must be either activated by kaiB or
repressed by kaiC (or both) and (ii) if kaiA is not activated
by kaiB, then, in addition to kaiC a kaiA, kaiB must
activate kaiC, so that the underlying network looks similar
to Fig. 2(a). Of course, these predictions are for effective
interactions, which at the molecular level could involve
multiple intermediates, such as chemical complexes and
various protein activity states. Reference [2] shows how the
method can reconstruct effective interactions even in the
presence of intermediate species.

This circadian example also points out how much infor-
mation our method provides. The transition ðþ þþÞ !
ð�þþÞ means that either B a A or C a A. Later tran-
sitions show that either A ! B or C a B, and A ! C or
B ! C. Even without the extra experimental information,
our method reduces the possibilities for the adjacency
matrix of the underlying network from 36 to 53, a factor
of �6. In a general N node system, with M independent
observed transitions, the fraction of allowed adjacency
matrices is ½1� ð2=3ÞN�1�M; the smaller the network and
the more the transitions seen, the more useful the method.
A full oscillation cycle would show at least N independent
transitions. If the system instead reaches a fixed point, the
transient can still be used.

Our method can be considered as complementary to the
‘‘threshold’’ method, described in Refs. [16–19], which
provides a different way of dividing the phase space into
sectors, based on a choice of thresholds for each variable.
The threshold method generates a transition diagram,
which depends on parameter values. It is particularly suited
to cases where the input functions are Boolean or steplike,
so thresholds can be easily identified, and self-interactions
are piecewise linear [20]. Our ‘‘derivative’’ method, in
contrast, requires no choice of thresholds, generates a
diagram independent of parameter values, and works for
arbitrary self-interactions, but requires monotonicity in the
other interactions.

In summary, we showed a method to construct a sym-
bolic transition network that imposes a strong constraint
on the dynamics monotonic system, like many biologi-
cal modules. In all the cases we studied, the periodic
symbolic dynamics observed close to the Hopf bifurca-
tion is found in a large region of parameter space, even

when the system becomes chaotic. This explains the com-
monly observed phenomenology of a chaotic attractor
consisting of oscillations with randomly varying ampli-
tude [12]. The oscillatory systems we looked at produce
a symbolic sequence identical to that of a single nega-
tive feedback loop for most studied parameter values. By
identifying these loops, our method can be used to de-
rive minimal models of complex, oscillatory biological
systems.
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