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Supplement A: Simulation algorithm

In order to obtain detailed balance in equilibrium, every simulation step is
devided up in to the possible moves between the different states, all with
equal probability (1/3 for exclusive binding and 1/4 for inclusive binding, see
Supplement C). The algorithm below describes in regular type the simulation
for the case of exclusive binding, where the points in italic type corresponds
to the additional steps needed to simulate the case of inclusive binding.

If not at the target:

1. Move in space:
a) If the particle is free it is moved a distance v0 = 1, along one of the
6 directions on the lattice.
b) If the particle is bound to an IBS at position r = (x, y, z), it is
moved a distance vIBS ≤ v0, to position rnew along one of the 6 direc-
tions on the lattice with a probability given by the Boltzmann factor
e−(rnew−r)2/2σ2

.

2. Move between IBS and free:
a) If the particle is free at position r = (x, y, z) it is moved to a
state bound to the IBS with probability non√

2πσ2
3 e

−(r−r0)2/2σ2
where

r0 = (x0, y0, z0) is position of the target.
b) If the particle is bound to the IBS it is moved to the free state with
probability koff independently on its position.

3. Move to target:
a) If the particle is free and at a position |r− r0| < ε/2 it binds to the
target with probability 1
b) If the particle is bound to an IBS and at a position |r − r0| < ε/2
it binds to the target with probability 1.

4. Move to target + IBS:)
a) If the particle is free and at position |r− r0| < ε/2, it binds to both
target and IBS with probability 1.
b) If the particle is bound to an IBS and at position |r − r0| < ε/2, it
binds to both target and IBS with probability 1.

If bound to the target:

1. Move in space:
a) Nothing happens.
b) If also bound to IBS nothing happens.
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2. Move to Free:
a) The particle is released from the target with probability δ.
b) If also bound to IBS the particle releases from both with probability

δkoff
√
2πσ2

3
/non.

3. Move to IBS:
a) The particle is released from the target and bound to an IBS (r = r0)
with probability nonδ

koff
√
2πσ2

3 .

b) If also bound to IBS the particle is released from the target with
probability δ.

4. Move between target and target + IBS:
a) If the particle is only bound to the target, the particle also binds to

an IBS (r = r0) with probability non/
√
2πσ2

3
.

b) If the particle is bound to both the target and an IBS, it releases
from the IBS with probability koff .

The algorithm for exclusive binding is used for the non-equilibrium case
where a particle is released at a random position, but the simulation stops
once the target has been found. As a consequence of the detailed balance
requirement, 3 time-steps of our simulation will on average make a free
particle diffuses one lattice point.
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Supplement B: Equilibrium considerations

Figure S1: Upper panel: Probability to bind to the target as a function of bind-
ing to intermediate binding sites. In equilibrium, diffusion dynamics becomes ir-
relevant, so we only show behaviour as function of binding affinity to the IBS.
(koff/kon). Lower panel: Energy landscapes for the exclusive and inclusive bind-
ing, together with corresponding jumping rates. The probability to be bound to the
target, Pb can then be found by the partion function method. Gn is the Gaussian
normalization which equals the probability for an IBS to be located at the target
(r = 0). The ratio of the off- and on-rate of the protein to the target is 1/δ.

Throughout the paper we analyzed the non-equalibrium case where the
particle was released randomly, and disappeared when reaching the target
site. Here we instead consider a protein which is allowed repeatedly to bind
and escape from the target, thereby establishing an equilibrium situation.
In that limit, the activity probability to be at target can be calculated
analytically, using the partition function method, see lower panel of Fig. S1.

In equilibrium, the proability to be at at the target site will be indepen-
dent of whether the IBS is located around the target site or displaced away
from it. Accordingly, the probability to be at the target site is decreasing as
the protain spend more time in the state bound to an IBS by having smaller
off-rate, koff , and/or having larger over all on-rate, kon. This is shown by
the exclusive binding curve and equation in Fig. S1. The decrease reflect an
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IBS that effectively work as a passive sink for the protein in question, also if
the IBS is located just around the target site. A sink which will grow with
increasing binding strength to the IBS.

The “passive sink” can be circumvented if the protein can bind simulta-
neously to the target and the IBS, which we refer to as the inclusive binding
case in the figure. This require that the protein has two binding sites. In
that case the probability to bind to the target site can then increase with the
presense of IBSs, as described by the inclusive binding equations in Fig. S1.
This inclusive binding case correspond to a DNA looping scenario, found
to increase efficiency of transcription factors also for very long loops, for
example phage λ (1).
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