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Deterministic extinction by mixing in cyclically competing species
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We consider a cyclically competing species model on a ring with global mixing at finite rate, which corresponds
to the well-known Lotka-Volterra equation in the limit of infinite mixing rate. Within a perturbation analysis of
the model from the infinite mixing rate, we provide analytical evidence that extinction occurs deterministically
at sufficiently large but finite values of the mixing rate for any species number N � 3. Further, by focusing on
the cases of rather small species numbers, we discuss numerical results concerning the trajectories toward such
deterministic extinction, including global bifurcations caused by changing the mixing rate.
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I. INTRODUCTION

One of the central interests in the field of theoretical
ecology and game theory is to understand the mechanism of
coexistence and extinction in interacting agents [1–3]. Among
many kinds of models for interacting agents, N -species
cyclic dominance has been studied intensely due to rich
dynamics and possible long-term coexistence. Specifically,
simple models for such cyclic dominance have been introduced
based on differential equations [4,5] or lattice models [6–8],
and could provide a fundamental viewpoint to understand more
complicated cases observed in nature [9–12].

Dynamical behaviors of cyclic dominance between in-
teracting agents may be described by the Lotka-Volterra
(LV) equation or a cyclically competing species model on
a lattice, where the former is supposed to be derived in
the large size limit of the latter in a well-mixed condition.
Specifically, the time evolution of the density Pα of a species
α for α ∈ {1,2, . . . ,N} in the LV equation is described as
follows [1]:

Ṗα = Pα(Pα+ − Pα− ), (1)

where Ṗα is the time derivative of Pα . α+ (α−) denotes a
species forward (backward) next to α in the cyclic sense, i.e.,
it is a prey (predator) of species α (Fig. 1, left panel).

One of the characteristic properties in the LV equation is
the coexistence of all the species where each density shows
neutrally stable oscillations with an amplitude given by the
initial condition [1]. The other characteristic properties in LV
equation often discussed are qualitative differences between
the odd and even species number cases [2,13]. For example, in
the even species number case, odd-labeled species and even-
labeled species antagonize each other, while in the odd species
number case, the overall interaction forms a negative feedback
loop. There has been still recent progress on analytical topics
in the LV equation, focusing on conserved quantities [14,15]
or the related Lyapunov functions in the case of more general
heterogeneous interactions [16–18].

*mitarai@nbi.dk
†ohta.hiroki.6c@kyoto-u.ac.jp

On the other hand, a cyclically competing species model on
a lattice, where each species on a lattice stochastically invades
its neighbor species along the rule of the cyclic dominance,
shows different behaviors from those in the LV equation even
qualitatively. For example, in the one-dimensional case with
the infinite system size, it has been proven that when N � 4,
species at any site is invaded after any time period, showing
slow coarsening, while when N � 5, each site reaches a final
state, leading to an absorbing state [7,19–21]. Although it has
been poorly known how the behaviors of models depend on the
dimensionality of the lattices, an approximation analysis rather
suggests that the behaviors of the models do not approach those
in the LV equation even if the spatial dimension is higher
[22–24].

As mentioned above, mixing in lattice models is supposed
to bridge the gap between the two descriptions of cyclic
ecosystems. However, if the system is not completely well
mixed, it could generally produce some macroscopic behaviors
qualitatively different from those in the well-mixed condition.
For example, one might consider mixing by local mobility, i.e.,
by locally exchanging the position of two species or mixing
induced by a fluid flow, resulting in spatiotemporal density
oscillations such as spirals [25,26] or density oscillations with
an increasing amplitude leading to extinction [27], respec-
tively. Thus, such numerical works have already shown that
mixing tends to induce oscillatory behaviors. However, how a
mixed cyclic ecosystem approaches the LV equation is still not
entirely clear. In this paper, we propose a simple model where
one can extract analytical results, to some extent, on this topic.

In this paper, we study a cyclically competing species model
on a ring by taking into account the effects of a global mixing at
finite rate. By performing a perturbative analysis from the large
mixing rate limit, we will show that, at least, one species has
to go deterministically extinct for any species number N � 3
in the large size limit. We call this extinction occurring in the
large size limit as deterministic extinction. The deterministic
extinction is completely different from the extinction caused
by stochasticity, where internal fluctuations as a result of a
finite system size could cause the extinction of a species, in
particular, when the species population size is low [28]. It turns
out that such deterministic extinction is key to understand why
the relationship between the lattice models and the LV equation
for cyclic ecosystems was elusive.
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FIG. 1. A schematic description of the model. An invasion
through the nearest neighbor (NN) occurs along the cyclic competi-
tion. Individual species on randomly chosen two sites are exchanged
at rate v/2.

II. MODEL

Let us denote a site on a ring (a one-dimensional lattice with
the periodic boundary condition) by an index i ∈ {1, . . . ,L},
and a species on site i by σi ∈ S ≡ {1, . . . ,N} with N � 3.
Each species has one prey and one predator through a cyclic
competition as shown in Fig. 1. Explicitly, we consider a
continuous time Markov process, where the species at site i

with σi = α invades the nearest neighbor sites j ∈ {i − 1,i +
1} with rate 1

2 only if σj = α+ where α± ≡ α ± 1 moduloN ,
making σj = α after invasion. In addition to this invading
process, we introduce the exchange of two individual species
on a uniformly chosen random pair of two sites i,j at rate v/2
per one site as global mixing [29]: namely, (σi,σj ) = (α,β)
with α,β ∈ S is updated as (σi,σj ) = (β,α) after mixing. Note
that this mixing process does not change the population density
of each species in the system [30]. The initial probability of
finding each species α on site i is assumed to be determined
by Q(α), independent of site i, namely, with

∑
α∈S Q(α) = 1.

We define the n-point probability P{αk}nk=1
(t) as the prob-

ability of a randomly chosen segment of n sites containing
the sequence of species {αk}nk=1, in this order from the left
to the right, with αk ∈ S for any integer k, 1 � k � n at
time t . The time evolution of the one-point probability can
be determined by taking into account all possible changes
of species in invasion processes at pairs of adjacent sites.
Then, the one-point probability is described by the following
two-point probabilities:

Ṗα = 1
2 (Pα,α+ + Pα+,α − Pα−,α − Pα,α− ). (2)

In the limit of L → ∞ and v → ∞, one can easily find that this
becomes the LV equation (1). Thus, in general, the evolution
equation of (n − 1)-point probability is exactly described by
only the n-point probability [24]. Note that Eq. (2) does not
explicitly depend on the mixing rate v due to the conservation
of the populations under mixing, while explicit contributions
from mixing arise in Ṗ{αk}nk=1

for any n � 2.

III. RESULTS

A. Perturbative approach to deterministic extinction

We employ a perturbation approach from the infinite mixing
rate where the limit of L → ∞ is taken first. In order to obtain
a closed set of evolution equations, it is key to realize the
following relation for any integer n � 2:

P{αk}nk=1
=

P{αk}n−1
k=1

P{αk}nk=2

P{αk}n−1
k=2

+ O(v−1−2(n−2)), (3)

where P{αk}1
k=2

≡ 1 and O(xa) has a finite real number C

independent of x such that O(xa)/xa � C when x � 1. The
term O(v−1) comes from the fact that in order for α1 to
influence αN , initially species α1 at the most left site has
to invade α2 before mixing to make predator α1 away. The
probability that such an event occurs is O(1/v). Then, the
rest of the term O(v−2(n−2)) comes from the fact that α1 must
succeed to invade αn through the segment of (n − 2) sites
to influence αn at the most right site by invading all species
in-between and α1 at the most left site must not be affected
by the mixing. The probability that such an event occur is
O(v−2) at each invasion, leading to O(v−2(n−2)) totally. Note
that Eq. (3) with n = 3 ignoring O(v−1−2(n−2)) was used as
(Kirkwood) pair approximation in order to analyze the case of
v = 0 [22–24].

Using Eq. (3) with n = 3 and ignoring the term of O(v−3),
we obtain the following equation for any α,β ∈ S:

Ṗα,β = 1

2

[
−δβ,α+

Pα,β

Pβ

∑
γ∈S\{β}

Pβ,γ − Pα,βPβ,β−

Pβ

− Pα−,αPα,β

Pα

− δα,β+
Pα,β

Pα

∑
γ∈S\{α}

Pγ,α

+ Pα,α+Pα+,β

Pα+
(1 − δβ,α+ ) + Pα,β+Pβ+,β

Pβ+
(1 − δα,β+ )

+ δα,β (Pα,α+ + Pβ+,β)

]
+ 2v(PαPβ − Pα,β ), (4)

where δa,b is the Kronecker delta function and S \ {α} denotes
the set obtained by excluding α from set S. Thus, Eqs. (2)
and (4) give a closed set of equations, allowing us to calculate
exactly Pα and Pα,β within the errors of O(v−3). It should
be noted that, precisely speaking, we should add that the
reliability of the calculation holds up to only the time regime
t � O(v3) for sufficiently large values of v because of the
possible accumulation of error terms.

We now move on to introduce an indicator:

η(t) ≡ min
α∈S

Pα(t), (5)

in order to discuss the extinction of, at least, one species, which
is defined as η → 0 as t → ∞. Indeed, instead of directly
focusing on η, it turns out that it is convenient to consider a
quantity E ∈ [0,1] representing the intrinsic cyclic symmetry:

E(t) ≡ NN
∏
α∈S

Pα(t) (6)

because E = 0 corresponds to η = 0 and thus one may
conclude that extinction occurs if E → 0 as t → ∞. One
can easily find that E is a conserved quantity in the limit of
v → ∞ by directly analyzing the LV equation (1) [1,16,17].

Let us estimate Ė within O(v−2) by using Eq. (3) with
n = 2 for Pα,β in the following way:

Pα,β = PαPβ + �α,βv−1 + O(v−2), (7)

where the order of �α,β is O(v0) due to Eq. (3). By substituting
Eq. (7) into (4), one obtains the explicit expression of �α,α+ as

�α,α+ = 1
4PαPα+ (Pα− + Pα − Pα+ − Pα++ − 1), (8)
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and relation �α,α+ = �α+,α . Then, one may finally obtain

Ė = −1

4
E

∑
α∈S

(Pα− − Pα+ )2v−1 + O(v−2). (9)

Assuming that this perturbation series has a nonzero radius
of convergence in terms of v−1, let us elaborate on what Eq. (9)
means in terms of extinction. Indeed, Ė is always nonpositive
and can be zero only if the state is extinct with E = 0 or
balanced with Pα− = Pα+ for any α ∈ S. Further, E takes the
maximum value 1 only when the state is symmetric with Pα =
1/N for any α ∈ S. Note that in the case of odd species number,
this symmetric condition is the only case to satisfy the balanced
condition Pα+ = Pα− . Therefore, we may conclude E → 0 as
t → ∞ unless the initial condition satisfies Q(α−) = Q(α+)
for any α ∈ S.

In the case of even species number, there are asymmetric
balanced states with Pα− = Pα+ > 0 and Pα �= Pα+ for any α ∈
S where E /∈ {1,0}. Therefore, such nontrivial asymmetric
balanced points might affect the trajectories of states. In order
to clarify this point, we consider Lotka-Volterra equation
(2) combined with Eqs. (7) and (8), which leads to an
evolution equation (perturbative-LV equation) closed by only
one-point probabilities. Indeed, asymmetric balanced points
in the perturbative-LV equation are fixed points, which can
be simply characterized as a set of (q1,q2) where we put
Pα = q1 � Pα+ = q2 for a odd species number α without
loss of generality. Therefore, the Jacobian matrix at the
asymmetric balanced points has a certain circulant property.
Namely, the Jacobian matrix can be constructed by only three
different 2 × 2 matrices as entries and this Jacobian matrix
is circulant in terms of those entries. Note that the analytical
expressions of eigenvalues for any circulant matrix are well
known independent of the matrix sizes [31].

Therefore, using a standard method for usual circulant
matrices with taking into account such a quasicirculant
property, one may obtain analytical expression of those N

eigenvalues {λ±
k }N/2

k=1 for any even species number N as
follows:

λ±
k = 2εq1q2[1 − Re(ζ k)]

± i
√

2q1q2(1 − ε)2[1 − Re(ζ k)] + O(ε2), (10)

where i is the imaginary unit, ε ≡ v−1/4, ζ = exp(i4π/N ),
k is integer such that 1 � k � N/2, and Re(A) is the real
part of a complex number A. An important point is that
Re(λ±

k ) > 0 for k �= N/2 because [1 − Re(ζ k)] � 0 and the
equality holds only when k = N/2. This zero eigenvalue
is a trivial consequence of

∑
α∈S Pα = 1. This means that

the asymmetric balanced fixed points with Pα = q1 � ε are
unstable. Note that in the case of ε = 0 and q1 = q2, one
may directly derive λ±

k = ±i(2/N) sin(2πk/N ) from Eq. (10),
which is consistent to the eigenvalue of the LV equation (1)
at the fixed point with the symmetric condition for general
species number N [1].

Summarizing the above results, within the perturbation
calculation in terms of v−1, we conclude that for any species
numbers N � 3, E → 0 as t → ∞ unless the initial condition
satisfies Q(α) = Q(α++) and Q(α−) = Q(α+) for any α ∈ S.
This leads to η → 0 as t → ∞ under the same condition.

Note that under the discussion until here, the fixed point with
Pα = 1 and Pβ = 0 for any β �= α is one candidate of the state
with E = 0. However, the eigenvalues at this fixed point in
the limit of ε = 0 take only three values from {1,−1,0} for
general species number N , meaning that this fixed point with
E = 0 is still unstable for sufficient small values of ε. Thus,
next, we examine the different types of trajectories that appear
as E approaches 0.

B. Numerical analysis of extinction trajectories and bifurcation

We next discuss through which trajectory the system
approaches the extinction η → 0, in particular, by employing
the linear stability analysis of Eqs. (2) and (4) at both fixed
points PαPα+ = 0 for any α ∈ S and Pα = 1/N for any α ∈ S,
with Ṗα = 0, Ṗα,β = 0 for any α,β ∈ S. For later convenience,
we call the former fixed point where at least one species
has zero population as an extinction fixed point, and the
latter fixed point as a symmetric fixed point. Note that one
can easily reduce the number of variables from N + N2 to
N2 − N for any species number N by using conservation
laws such as

∑
α∈S Pα = 1. Therefore, we actually deal with

(N2 − N ) × (N2 − N ) Jacobian matrix. In contrast to the
perturbative Lotka-Volterra equation derived in the previous
section, the evolution equations closed by one-point and
two-point probabilities have more information about correct
trajectories, especially for small values of v. However, such a
linear stability analysis for rather small values of v should be
referred to as an approximation, nevertheless, it would give us
insightful information as found below.

We computed Pα,β at the symmetric fixed points by solving
Eqs. (2) and (4) numerically from the initial condition where
Pα = 1/N, Pα,β = δα,β/N . By using this initial condition
with no invasions, one can avoid coarsening effects causing
slow relaxations. At the extinction fixed points, one can
obtain the exact relation Pα,β = PαPβ . Hereafter, we call the
eigenvalue with the largest real part among all the eigenvalues
as the dominant eigenvalue and the corresponding eigenvector
as the dominant eigenvector. If the real part of the dominant
eigenvalue is positive, the dominant eigenvector is also referred
to as the most unstable eigenvector. Let us discuss the cases of
N = 3, N = 4, and also 5 � N � 8 in this order below.

In the case of 3-species competition (N = 3), there are
three extinction fixed points where two species have zero
populations, namely, Pα = 1, Pα+ = Pα− = 0 for any α ∈
S. The linear stability analysis indicates that the dominant
eigenvalue is positive at any finite v as shown in Fig. 2(a).
Thus, the extinction fixed points turn out to be saddles.
Therefore, one consistent way to realize the trajectory to
extinction satisfying η → 0 is a heteroclinic cycle connecting
such unstable extinction fixed points. As shown in Fig. 2(b), by
solving numerically Eqs. (2) and (4) from the initial conditions
close to the symmetric fixed point, we indeed observed such
heteroclinic cycles. This kind of trajectory was also observed
by looking at the species densities in Monte Carlo (MC)
simulations at rather small v. This implies that mixing always
causes the deterministic extinction for N = 3 even with small
v, leading to the heteroclinic cycle.

In the case of 4-species competition, there are two con-
nected regions parametrized by a real number p ∈ [0,1],
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FIG. 2. (a) The maximum real part of the eigenvalues λ at the
extinction fixed points for N = 3. The imaginary part is shown in
the inset. (b) Pα(t) computed by Eqs. (2) and (4) for v = 1 from the
symmetric initial condition with a perturbation.

consisting of extinction fixed points corresponding to Pα = p,
Pα++ = 1 − p, and Pα+ = Pα− = 0 for α = 1,2 where survival
of two species is allowed. As shown in Fig. 3(a), we found
that there is a region in the phase space, close to p = 1

2 ,
where only the dominant eigenvalue is zero, meaning that
all the rest eigenvalues have negative real parts. Since the
direction along the connected extinction fixed points in the
phase space is obviously neutrally stable, corresponding the
zero eigenvalue, these extinction fixed points around p = 1

2
compose an attractor. As v is increased, the extinction fixed
points for smaller p � 1

2 lose their local stability, leading that
this extinction attractor disappears for any p in the limit of
v → ∞. Also, the stability analysis of the symmetric fixed
point revealed that as v is decreased from a sufficiently large
value, at v = vc ≈ 0.19, the most unstable eigenvector at
the symmetric fixed point changes from an oscillatory mode
to a nonoscillatory mode [Fig. 3(b)]. Indeed, the numerical
solutions of Eqs. (2) and (4) from the initial conditions close
to the symmetric fixed point provide more information about
what happen near v = vc as follows. For v = 1 > vc, the
trajectories seem to end up with a heteroclinic cycle as shown
in Fig. 3(d), implying that the basin of the extinction attractor
around p = 1

2 is far from the trajectories starting from the
symmetric fixed point toward the heteroclinic cycle. However,
for v = 0.02 < vc, trajectories mostly fall into the extinction
attractor as shown in Fig. 3(c). Thus, at the bifurcation point,
from the viewpoint of the phase space, the newly appearing
trajectory starting from the symmetric fixed point seems to
collide with a boundary of the basin of the extinction attractor;
thus, this bifurcation is a global bifurcation [32]. We also
observed these two different types of trajectories by MC
simulation as shown in Figs. 3(e) and 3(f).

We performed the linear stability analysis at the symmetric
fixed point for also larger N . In the cases of N = 5,6,7,8,
we also found switching of the most unstable eigenvector at
certain values of v. In the case of even N , as observed in
4 species, there is an eigenvector with zero imaginary part
for any finite v, that becomes the most unstable eigenvector
through a bifurcation as v is decreased. In the case of odd N , the
dominant eigenvector has nonzero imaginary part for any finite
v. Importantly, in both cases of even and odd species number
N � 4, we numerically observed that a global bifurcation
occurs as v is decreased from a sufficiently large value.
Below the bifurcation, the system converges to an extinction
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FIG. 3. (a) The maximum real part of eigenvalues at the extinction
fixed point for N = 4 as a function of p. (b) Eigenvalues λ at the
symmetric fixed point with N = 4. The top panel shows the two
eigenvalues with the largest and the second largest real part, and
the bottom panel shows their respective imaginary parts. (c) Pα(t)
computed by Eqs. (2) and (4) with N = 4 from the symmetric initial
condition with a perturbation for v = 0.02. (d) Pα(t) computed by
Eqs. (2) and (4) with N = 4 from the symmetric initial condition
with a perturbation for v = 1. (e), (f) MC simulations: the species
densities with L = 9000 (e), (f) and the spatiotemporal plot with
L = 1000 (g), (h) for v = 0.02 (e), (g) and v = 1 (f), (h), where x is
site number.

fixed point where several species survive as observed also in
4-species case. Specifically, in typical numerical experiments
from the symmetric initial condition with a perturbation,
just 
N/2� species have nonzero populations at the reached
extinction fixed points in the case of species number N .
Note that for N = 3, we did not find any switching of the
most unstable eigenvector. Finally, for general N as far as
we have studied, the real part of the dominant eigenvalue is
non-negative and approaches zero only in the limit of both
v → 0 and v → ∞. Thus, from the viewpoint of this instability
of the symmetric fixed point, the two limits of v → 0 and
v → ∞ are rather singular.

032318-4



DETERMINISTIC EXTINCTION BY MIXING IN . . . PHYSICAL REVIEW E 95, 032318 (2017)

IV. CONCLUDING REMARKS

In this paper, we have studied a cyclically competing species
model on a ring with a global mixing. With a perturbative
analysis combined with numerical methods, we have clarified
that the deterministic extinction occurs for any species number
N � 3 at rather general mixing rate v and its singular
appearance from the two limits of v → 0 and v → ∞ is a
key to bridge the gap between two descriptions of the LV
equation and lattice models.

It would be natural to ask how the dimension of a
lattice affects the dynamics of the system with invasion
rate 1/2d. Indeed, in general, the deterministic extinction
at sufficiently large mixing rates is expected to remain in
higher dimensions because for such large mixing rates, the
system would behave as if invasion rate was unchanged
compared to that in one dimension. Nevertheless, since it is
also expected that some dynamical behaviors different from
those in one dimension occur for rather small mixing rates
in higher dimension, it is intriguing to perform the detailed
numerical and analytical studies in higher dimensions. The
current analysis for one dimension could be generalized to that
for higher dimensions. As a key point for such further studies,
in order to compute the dynamics of the two-point probabilities
as an exact perturbation in terms of v−1, it seems to be
necessary to consider 2d + 1 point probabilities which come
from one site and its 2d neighbor sites, instead of three-point
probabilities.

The global mixing studied in this paper is not only of
theoretical interest. For example, a bacterial system consisting
of toxin-producing, sensitive, and immune bacteria strains can
form a cyclic competition, and the mixing process in a liquid
culture could be effectively global because of a vigorous

mixing [9,10]. The present results in this paper imply that
the effects of deterministic extinction could be rather widely
observed in experiments because of the difficulties to realize
precisely a well-mixed condition in reality. In experiments,
we expect that the effects from deterministic extinction are
observed when each species density is sufficiently far from
zero, and eventually one species goes extinct because of
intrinsic stochasticity in the finite-size system when the
minimum species density gets close to zero compared to the
strength of the stochasticity.

Lastly, let us mention the universality of the deterministic
extinction in the presence of a mixing process in terms
of different spatial descriptions. Indeed, the deterministic
extinction by mixing similar to the behavior studied in this
paper has been observed in a lattice model of 3-species
cyclic competition under a flow at fast mixing [27], and
also in the framework of the continuous limit described by
a partial differential equation of populations under a turbulent
convective flow at fast mixing [33]. Such observations of
deterministic extinction in different spatial descriptions imply
the universality of deterministic extinction in cyclic systems
with fast mixing, to some extent. Thus, we hope that the
obtained results in this paper could provide a fundamental
viewpoint to develop our understanding of mixing-induced
deterministic extinction in more general ecosystems.
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