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When food webs are exposed to species invasion, secondary extinction cascades may be set off. Although
much work has gone into characterizing the structure of food webs, systematic predictions on their evolutionary
dynamics are still scarce. Here we present a theoretical framework that predicts extinctions in terms of an
alternating sequence of two basic processes: resource depletion by or competitive exclusion between consumers.
We first propose a conceptual invasion extinction model (IEM) involving random fitness coefficients. We bolster
this IEM by an analytical, recursive procedure for calculating idealized extinction cascades after any species
addition and simulate the long-time evolution. Our procedure describes minimal food webs where each species
interacts with only a single resource through the generalized Lotka-Volterra equations. For such food webs ex-
tinction cascades are determined uniquely and the system always relaxes to a stable steady state. The dynamics
and scale invariant species life time resemble the behavior of the IEM, and correctly predict an upper limit for
trophic levels as observed in the field.
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I. INTRODUCTION

Biodiversity loss is a two-way road: Humans contribute
to extinction of species and are reversely threatened by
their loss [1]. Increasing global trade activity brings about
worldwide mixing of species [2], by which alien species can
be introduced to local communities [3]—at times resulting
in profound changes to the populations of species or even
eliminating them altogether [3,4]. Endemic species may hence
experience extinction [5,6], especially when the change in
biomass of one species cascades into the community, known
as a trophic cascade [7–9], and eventually reshapes the entire
community. At much longer time scales, new species may be
introduced due to evolution and speciation, which may lead
to either extinctions of existing or stable coexistence of all
species, hence modifying biodiversity. Uncovering the basic
rules of such a dynamics has challenged ecological research
for decades and is a key to the understanding of ecosystem
diversity and robustness [10].

A food web is the complex network formed by the rela-
tionships between all consumers and resources in a habitat.
Among the few basic “laws” of food web ecology is the
competitive exclusion principle [11,12], which states that
when two consumers compete for the exact same resource or
nonliving nutrient source, one consumer, e.g., the one growing
more quickly, will eventually displace the other. This process
hugely restricts stable coexistence of species. If, however, the
faster grower is in turn limited by a predator, then sufficient
resources can be left to the slower. In this sense, the existence
of a species depends on other species further away in the food
web. In the event of invasion, the new species may conflict
with the competitive exclusion principle and its invasion may
cause secondary, cascadelike, extinctions in other branches of
the food web [13].

We recently showed that, despite the restrictions imposed
by competitive exclusion, it is still possible to systemati-

cally construct a large and globally stable food web in a
community. This was achieved through an exact method,
using the generalized Lotka-Volterra (LV) equations without
self-limiting terms for consumers [14]. Technically this was
accomplished by adding species sequentially and ensuring
that neither competitive exclusion [15] nor the feasibility of
the existing species was violated. By “feasibility” it is here
meant that there is a dynamically stable solution where all
species populations are positive. Through this procedure, the
constructed food web could obtain large species richness but
tended to contain species on unrealistically high levels in the
food web.

This paper studies the evolution of a simplified food web
exposed to a series of random invasion events. First we
propose the simple invasion extinction model (IEM), which
is motivated by competitive exclusion, and we show that the
IEM predicts a power-law distribution of species lifetime and
an exponential distribution of extinction event size. We then
analyze successful invasions and possible extinction cascades
for a food web governed by the generalized LV equations. We
prove that hierarchical food webs, i.e., treelike webs where
each consumer has exactly one resource, will always collapse
to a unique stable configuration of species, and we devise a
recursive procedure for exactly calculating extinction cascades
after the invasion by an arbitrary new species. When these
food webs are evolved through many invasion attempts, they
show the same dynamics as the IEM and predict a maximal
number of trophic levels that resembles the four levels in real
food webs. We finally place our assumption of hierarchical
food webs in the context of empirical findings of link strength
distributions and discuss the implications of our work in the
context of biodiversity loss.

In our framework, the principle of competitive exclusion is
strictly applied, and the invasion of a new species is completed
after the system experiences a cascade of extinctions and
reaches a new fixed point. Our bold simplification of one
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resource per consumer allows us to develop a recursive proce-
dure to analyze this limit exactly. The IEM, supported by the
analysis of invasion and extinction dynamics in a treelike food
web, provides analytical expressions of the species lifetime and
the species extinction event size distribution, providing what
is expected in this limit. Our theory thereby serves as another
baseline to understand food webs in the real world.

II. THE INVASION EXTINCTION MODEL (IEM)

Consider a food web that only consists of two trophic
levels, such as a microbial community of bacterial species at
the basal and “predatory” virus species at the consumer level
[16–18]. Competitive exclusion implies that species richness
only increases if the basal species and their consumers increase
one by one sequentially. It is straightforward to check that,
if a consumer can feed on only one type of basal species,
then the invasion by a new consumer can drive extinction
of at most one competing consumer and in extreme cases
its own resource species, but it cannot cause larger cascades.
However, if a fast growing–slowly decaying basal species
invades the system, any resident, more slowly growing, basal
species and their respective consumers will all be driven to
extinction. This has been previously simulated as a model of
bacteria-virus ecosystems where interactions are described by
generalized Lotka-Volterra equations [19]. A similar model
was earlier explored in connection with virus and immune-
system interactions [20].

The evolutionary dynamics of bacterial and phage species
motivates us to propose a simple IEM of evolving random
numbers, focusing on extinctions among basal species (Fig. 1):
At any time step t , the IEM consists of a set of real numbers
ri ∈ [rmin,1] representing decay rates (and/or inverse growth
or “fitness” rates) of basal species. The real number rmin > 0
thereby represents an assumed lower bound to any species’ de-
cay rate while the upper limit of unity represents a normalized
system carrying capacity. An invasion event corresponds to
the introduction of one random number rnew that is uniformly
drawn from the interval [rmin,1]. Initially, the set of resident
species is empty, and hence any initial invasion will give
a one-species community. rnew is always accepted, but any
previous ri > rnew is removed from the set of resident species.
In this simplified model the rate of removal for a given species
is about �r ≡ r − rmin per subsequent addition attempt. The
overall probability P (t) for a species to exist for exactly t

addition attempts is

P (t) =
∫ 1

rmin

dr

(
1 − r

1 − rmin

)t−1
r − rmin

1 − rmin

∼ 1

t(t + 1)
∼ t−2, for t � 1. (1)

The IEM further predicts the ensemble-averaged distribu-
tion of decay coefficients �r to be proportional to (1/�r)[1 −
exp(−t�r)], i.e., for long times t � 1, resident species are
more likely to have large intrinsic fitness 1/�r . Further, for the
long time limit, we obtain the extinction event size distribution,
i.e. the probability P (C) to witness C species becoming extinct
after an invasion of one new species, to be exponentially
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FIG. 1. Invasion extinction model. The schematic exemplifies the
consequence of adding a species Snew with decay rate rnew at the basal
level (blue circles). The blue shaded cube denotes the basic nutrient
source, e.g., sugar. When adding Snew, all consumer-resource species
pairs (green and blue circles) corresponding to basal-level decay rates
ri > rnew become eliminated; in the example these are the species
N3 and N4, corresponding to the the decay coefficients r3 and r4,
respectively. Subsequently, a new level-two species may be added to
Nnew. This dynamics mimics species replacement as it would be seen
in a dynamical implementation of the “kill the winner” scenario for
microbial ecosystems [16].

distributed with typical size one, i.e.,

P (C) ≈ exp(−C)

(for more details, see Sec. A 1).
In the IEM the count of decay coefficients ri , corresponding

to the basal species richness, slowly increases, while most
of the coefficients approach the lower threshold rmin. As the
count increases, the corresponding decay of biomass will,
however, eventually conflict with the assumption of finite
nutrient availability, which in our model is set by a total
carrying capacity of unity. Accordingly, total species richness
will not exceed 1/rmin.

The IEM does not reach steady state, since the fastest-
growing basal species can be out-competed only by even faster
growers, leading to persistent, albeit slow, “improvement” of
fitness. However, the model can also be extended to take into
account extinctions that go beyond this process of replace-
ment by a species of higher fitness if one assumes that any
coefficient can be eliminated at a small rate ε. Under those
circumstances, both “fitnesses” and abundances reach a steady
state, whereas the lifetime distribution P (t) ∝ exp(−εt)/t2

acquires an exponential large-t cutoff. Such extinctions, which
can also affect high fitness species, could, for example, be
caused by an occasional predator that preys on two species
and does so with different strength [19].

In summary, while the IEM makes several simplifying as-
sumptions, e.g., the restriction to resource competition between
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basal species, it does give a flavor of a complex evolutionary
dynamics and allows us to analytically calculate the residence
time distribution and the extinction event size distribution. In
the following we explore a more realistic model of food webs,
showing that the general dynamics of the IEM still hold there.

III. INVASION EXTINCTION DYNAMICS FOR A
MINIMAL FOOD WEB

We now generalize the IEM to a more comprehensive food
web model. This food web evolves from a single limiting
nutrient source by sequential invasions of new species. We
discuss the limit of rare invasions, where species invasions are
sufficiently infrequent to allow the food web to reach a new
steady state before a new invader arrives. The added species
will prey on a random resident species, irrespective of the
resident species’ trophic level. This implies that there are no
imposed limits to the maximum number of trophic levels; a
possible upper limit will rather emerge as a prediction from the
dynamical model. Importantly, we limit ourselves to the case
where each new species N consumes either a single resident
species or the basic nutrient source. This restriction results in
a “maximally trophically coherent” food web [21], where any
species exclusively consumes other species at a specific level.
It further constrains the network structure to be treelike with
a “root” in the nutrient source. Equivalently, we will refer to
this as a “hierarchical” food web.

For a species at a trophic level l, its relative change of
biomass concentration is expressed as a function of all species
N ≡ (N (1)

1 , · · · ,N
(l)
i , · · · ) as

Ṅ
(l)
i /N

(l)
i = w

(l)
i (N), (2)

where the per capita growth rate w
(l)
i (N) in the generalized

Lotka-Volterra equations is a linear function of the other
species’ biomass concentrations [22,23]. At the basal level
(l = 1) this flux includes competition for the nutrient source
in terms of logistic growth

w
(1)
i (N) ≡ β

(1)
i g

⎛
⎝1 −

n1∑
j=1

N
(1)
j

Kj

⎞
⎠ − r̃

(1)
i −

n2∑
k=1

α̃
(2,1)
ki N

(2)
k .

(3)

For higher trophic levels (l > 1)

w
(l)
k (N) = β̃

(l)
k α̃

(l,l−1)
km N (l−1)

m − r̃
(l)
k −

nl+1∑
p=1

α̃
(l+1,l)
pk N (l+1)

p . (4)

Here β
(1)
i g are the maximal growth rates of basal species, where

1/g represents the time scale and β
(1)
i denotes a dimensionless

factor that characterizes the difference of the growth rates
among basal species. Kj is the carrying capacity for the basal
species j . The coefficients r̃

(l)
i denote decay (or death) rates,

β̃
(l)
k is the dimensionless consumption efficiency of a species k

at trophic level l, and α̃
(l,l−1)
km are interaction strengths, which

vanish when there is no interaction. The trophic level l may
vary between unity at the basal level, consisting of primary
producers, to the level L, which is the top trophic level,
consisting, e.g., of large predators. For top species, that is,

those that have no consumers, the loss term in w
(l)
k (N) only

contains the intrinsic decay rate r̃
(l)
k . The lack of summation in

the first term for the equation for a consumer reflects that the
consumer k at level l feeds on only one resource species (m)
at level l − 1.

We then cast the equations in dimensionless from, by
measuring time in units of 1/g, normalizing the biomasses
of the basal species j by Kj , and normalizing the consumer k

at the trophic level l by g/α
(l,l−1)
km . This results in the equations

w
(1)
i (N) ≡ β

(1)
i

⎡
⎣1 −

n1∑
j=1

N
(1)
j

⎤
⎦ − r

(1)
i −

n2∑
k=1

α
(2,1)
ki N

(2)
k , (5)

for l = 1, and for higher trophic levels (l > 1),

w
(l)
k (N) = β

(l)
k N (l−1)

m − r
(l)
k −

nl+1∑
p=1

α
(l+1,l)
pk · N (l+1)

p , (6)

with rescaled parameters r
(l)
i ≡ r̃

(l)
i /g, β(2)

k ≡ α
(2,1)
km

g/Km
β̃

(2)
k , β(l)

k ≡
α

(l,l−1)
km

α
(l−1,l−2)
mi

β̃
(l)
k for l � 3, and the rescaled interaction strength

α
(l,l−1)
ki takes the value of either zero or 1. We perform

the analysis using this general dimensionless form and later
discuss plausible parameter values.

When the species interactions are governed by the gen-
eralized LV equations [Eqs. (2)–(6)], stable coexistence for
the food web structure must satisfy the food web assembly
rules [15] in order for the nontrivial steady state wi(N) = 0 to
have a unique solution. These rules can easily be summarized
by visualizing the graph of a food web, consisting of all
species and their interaction links. One then considers a
nonoverlapping pairing of interacting species, which results
when each species is thought of as “paired” with exactly one
other species and each species must be involved in exactly one
such pair. Nutrient sources may, but need not, be involved in
the pairing. The rule of nonoverlapping pairing secures that
there is no competitive exclusion [15]. When the graph is a
tree, it can be checked that the successful pairing is unique.

When a web fulfills the structural requirement associated
to competitive exclusion, it may still do so while giving
(unrealistic) solutions to the LV equations where some species
populations are negative. The additional requirement of only
positive species populations is referred to as “feasibility.” For
a treelike food web that fulfills the pairing rule (Fig. 2), it
has been proven that a feasible solution is globally stable,
and a method to find a parameter set that gives a feasible
solution has been provided [14]. For later use, we refer to
the consumer (resource) within the pair as free (controlled)
[14,15]. As mentioned above, species without consumers are
referred to as top species, which are of course always free.

It is worth noting that the nonoverlapping pairing mathe-
matically results from the condition that det R �= 0 with R the
interaction matrix, and the same topological constraint can be
obtained by the first part of Levin’s loop analysis [24] when
applied to a tree food web. Global stability of the tree food
web ensures the linear stability that is the focus of Levin’s
approach, and hence it also satisfies the criteria for the sign for
the coefficients in the Levin loop analysis.
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FIG. 2. Definitions. (a) Simple food web consisting of four
trophic levels. We define the nutrient source to be trophic level zero.
The trophic level of any species is the average trophic level of its
resources plus 1. Colored circles mark species, light blue ovals mark
pairings of species, and symbol (T) marks the top species, i.e.. species
without consumers. Side branches are marked by the symbol “SB.” A
branching species (or branching point) is marked by “B.” N∗

c = r ′′/β.
(b) An example of a pairing, consisting of a “free” consumer and a
“controlled” resource species. (c) Definition of reff for a controlled
species: reff equals the sum of the decay coefficient of the species
itself and the steady-state density of its controlled consumer(s).
(d) Illustration of the condition for feasibility at branching points,
showing the comparison between r̃

(l)
eff,f and r

(l)
eff,c for two branches

formed by a free, respectively controlled, species. (Figure reproduced
from the literature [14].)

A. Evolution of a food web

We now turn to the actual evolution of our food webs, using
the LV model just described. For simplicity, the selection of
prey by an invader is taken to be entirely random, that is,
any resident species is selected at equal probability. Plausible
variants, such as using weighting of probabilities by species
concentrations, caused no modifications to the conclusions
drawn here. When an invader enters an existing community,
this can be seen as a small population of the invader being added
and the resulting food web integrated until a new steady state
is reached. An example is shown in Figs. 3(a) and 3(b), where
the integration was carried out numerically. Before the addition
[Figs. 3(a) and 3(b), left] and after the transient readjustment
of species concentrations [Fig. 3(a) and 3(b), right], the species
with positive populations fulfill the food web assembly rules,
while the transient [Figs. 3(a), center, and 3(b)] is characterized
by a cascade of extinctions.

While it is in principle possible to carry out such integrations
for a large number of invasion events and thereby obtain
a numerical simulation of long-term evolution, it is more
instructive to look for a systematic procedure by which invader
species cause restructuring of the existing community. In the
following we show that such a procedure indeed exists by first
demonstrating that the steady state of a community is always
unique and globally stable. Second, we give a recursive method
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FIG. 3. Rules for invasions and species extinctions. (a) Introduc-
tion of new species (labeled “7”) eliminates species 6 and 4 by
competitive exclusion and species 5 by resource depletion (since
r7 < r6 and r7 < r4). The node area in the left and right schematic
is proportional to species concentrations; in the central schematic,
the node area is proportional to the species’ decay coefficients ri .
Colors reflect the time of species addition (blue is historic, red
is recent). (b) Simulated population dynamics with extinction of
species 4, 5, and 6. (c) Invasion rules emphasizing the iterative
elimination process: (I) invasion by a new species, (II) competitive
exclusion, and (III) feasibility. The definitions of decay rates in (c)
are as follows: r

(l)
eff ≡ [r (l) + ∑

c N∗(l+1)
c ]/β (l)

i , where the controlled
species concentrations N∗(l+1)

c are determined from Eq. (6); r
(l)
coll,c ≡

r
(l)
eff,c + r

(l+1)
coll,f /β (l); r

(l)
coll,f ≡ max(r (l+1)

coll,c,1, . . . ,r
(l+1)
coll,c,n).

for determining the new steady state after an invasion event has
taken place.

1. Uniqueness and stability of the steady state

On a random invasion to a treelike food web, either the
nonoverlapping pairing or the feasibility of the steady state can
be violated. In such a case, if there is a steady state solution
N = N∗ that satisfies:

If N
∗(l)
i > 0 then w

(l)
i (N) = 0,

(7)
otherwise N

∗(l)
j = 0 and w

(l)
j (N) � 0,
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then it is globally stable, because

V (N) =
L∑

l=1

∑
i

c
(l)
i

[
N

(l)
i − N

∗(l)
i ln N

(l)
i

]
(8)

with

c
(1)
i = 1/β

(1)
i , c

(l)
k = c(l−1)

m /β
(l)
k ,

[see Eq. (6) for indices] is a Lyapunov function [22] for N � 0:

d

dt
V (N) = −

⎡
⎣ ∑

i with N
∗(1)
i >0

(
N

(1)
i − N

∗(1)
i

) ⎤
⎦

2

+
∑

j,l with N
∗(l)
j =0

1

β
(l)
j

N
(l)
j w

(l)
j (N∗) � 0, (9)

and N = N∗ satisfies the equality. Intuitively, V (N) can be
thought of as a measure of the “distance” from steady state,
a sustained decrease in V hence corresponds to a sustained
approach towards the steady-state species concentrations. To
see that dV (N)/dt is not positive, we note that the last term in
Eq. (9) only contains species j,l which have zero population
at steady state stabilized by w

(l)
j (N∗) � 0 [see Eq. (7)]. This

means that if we find a steady-state solution that satisfies
Eq. (7), then it uniquely identifies the species j that is driven
to extinction ({N∗(l)

j = 0 and w
(l)
j (N∗) � 0} ⇒ N

(l)
j = 0).

2. Recursive determination of the steady state

Given the uniqueness and stability of a steady-state solution,
we now only lack a procedure that allows us to find the steady
state. We hereby describe the recursive procedure to determine
how a food web will react to an invasion event by a new species
N that feeds on a single resident species. The outline is as
follows: Thanks to the linearity of the equation w(N) = 0 in all
species biomasses N, it is possible to analytically determine the
possible change of the fixed point affected by the new invader
one by one and calculate the steady-state value of the biomass
exactly. This allows us to find the species that should go extinct.
By removing all of these we can obtain the new, feasible,
and globally stable steady state that satisfies the condition
expressed in Eq. (7), which the Lyapunov function [Eq. (8)]
guarantees to be the final state after the transient period.
Specifically, the following method allows us to analytically find
the final state without explicit (time consuming) integration of
Eq. (2) after species addition.

(I) Invasion. On invasion by a species N# with decay rate
r# and consumption efficiency β#, there is no consumer for
the new species N #. Accordingly, N # initially grows if its
decay coefficient r# is less than the concentration of its prey N0

times β#. In case of the basal species, it can easily be checked
that N0 should instead be replaced with [1 − ∑n1

j=1 N
(1)
j ]. For

sufficiently small r#, possible conflicts are recursively resolved
by removal of species. Such conflicts can arise directly, when
competitive exclusion is present [Fig. 3(c,II)], or indirectly,
when feasibility is violated [Fig. 3(c,III)].

(II) Competitive exclusion. When an invader leads to vi-
olation of competitive exclusion, or, equivalently, the pairing
rule, then either the species itself or one or several other species

have to be removed. The test for removal starts by considering
subsequent branching points as one moves down the food chain
from the new species. Because pairing was violated, there is at
least one branching point that separates two free species. Let us
assume that this branching point has level l − 1. One now has
to compare the effective decay coefficients r

(l)
eff for the two free

species above the branching point. These are each given by

r
(l)
eff,i =

(
r

(l)
i +

∑
c

N∗(l+1)
c

)
/β

(l)
i . (10)

Here the effective decay rate of the free species i at level l takes
into account predation by the controlled species, marked by
the subscript c, that consume the given species i. The biomass
of these predators N∗ is determined recursively from the top
species as N∗(l)

c = r
(l+1)
eff , where r

(l+1)
eff is the effective decay rate

of the free species feeding on the given controlled species [from
w

(l+1)
i (N) = 0 in Eq. (6)]. Between the two competing free

species, the one corresponding to the smaller effective decay
rate will prevail and the top species on the other branch will
be removed. This is in parallel to the resource-ratio hypothesis
[25,26], which states that when two species compete for a
single resource, the species that requires less of the resource
for its survival in the equilibrium state would out-compete
the other species: Here, the resource is the controlled species
biomass at the branching point, and r

(l+1)
eff denotes the resource

required by the two competing free species.
(III) Feasibility. Once nonoverlapping pairing is satisfied,

one needs to check for feasibility [Fig. 3(c,III)]. Violation
of feasibility can appear due to indirect interaction between
species at a branching point, where the branching point
includes a controlled species or branch. The biomass of the
branching point equals the effective decay rate of its paired free
species, N0 = r̃eff . This now limits the free species’ biomass on
any controlled branch. If there are several controlled branches
above the branching point, then they are compared through
their collective decay rate r

(l)
coll,c (for more details, see Sec. A 2),

see Fig. 3(c,II) (derivations are given in next subsection). If
r

(l)
coll,c > r̃

(l)
eff , then the top species of the corresponding branch

has a negative concentration and is removed. If there is more
than one controlled branch that satisfies the condition, then the
top species of the branch with the largest r (l)

coll,c is removed first.
Alternating the two types of removal (II) and (III) recur-

sively systematically determines how species are sequentially
removed by competitive exclusion, caused by a newly emerg-
ing top predator, and by feasibility of top species that weakens
their supply food chain, respectively. This is illustrated by the
cycle in Fig. 3(c).

Extinctions may hence lead to other extinction events far
away in the food web. The food web is relaxed when the nu-
trient source has been reached and all conflicts remedied. The
resulting network again has a tree structure and is dynamically
stable as well as feasible. As our recursion only eliminates
species with N

∗(l)
j = 0 and this in itself cannot disturb the

remaining species with N∗ = 0, the above recursion exactly
removes the species specified by the unique solution of Eq. (7).

This procedure allows us to simulate a sequence of invasions
and potential subsequent extinctions. Notably, no explicit
numerical integration of the time evolution is required. Our
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FIG. 4. Evolution of fitness and diversity. (a) Decay rate �r ≡
r − rmin for all species vs. time in units of invasion attempts using
rmin = 0.02. Blue, green, orange, and red points mark the presence
of a species at trophic levels 1, 2, 3, and 4. The blue line marks the
lowest decay coefficient at the basal level. The gray line marks the
median decay rate; note its increase whenever a new superior bottom
species appears. Note the double-logarithmic scales. (b) Total species
richness vs. time.

methodology is systematic and yields unique solutions, and
we prove that the time evolution after any invasion attempt
follows a globally stable trajectory.

B. Results

Using our methodology, we can now simulate millions of
invasion attempts and avoid “numerical extinctions” due to
numerically small population sizes or overall high computa-
tional effort. For simplicity, in the simulation we set β

(l)
i = 1

and use the decay rates r
(l)
i to characterize the intrinsic species

fitness. We further comment on the choice of consumption
efficiency in Sec. A 3. As in the introductory two-level IEM,
decay rates are always chosen randomly from a uniform
distribution between rmin and 1. The evolution of the species’
intrinsic fitness [Fig. 4(a)], accompanied by a general increase
in species richness [Fig. 4(b)], shows a stepwise decline in the
lowest values of decay coefficients, i.e., monotonic increase of
maximal intrinsic fitness. This feature is most clearly visible
for basal species (shown in blue). Note that whenever the
lowest decay coefficient for a basal species declines, all other
decay coefficients (i.e., species) are also eliminated. These
increasingly rare events of invasion by a globally superior basal
level species are each followed by self-similar optimizations
of the subsequently adapted occupation of other niches.

Notably, despite the greater network complexity of the
multilevel model, the gradual increase in species richness
[Fig. 4(b)] still resembles the behavior of the simple two-level

IEM. The resulting fractal-like evolution of the food web can
be illustrated in terms of the origination-extinction matrix
[Figs. 5(a) and 5(b)], where we highlight the pronounced
self-similarity at different temporal scales [comparison of
Figs. 5(a) and 5(b)]. Similar matrices were also used for the
characterization of macroevolution on palaeontological time
scales [27]. Measuring species lifetime in units of addition
attempts t , the lifetime distribution [Fig. 5(b), inset] is found
to be broad, ∼t−2, again consistent with the simple IEM
[Eq. (1)].

Our results do not change qualitatively by varying rmin, and
in all cases the decay coefficients obtained progress infinitely
towards ever smaller values. For larger values of rmin it was
numerically possible to reach a maximal level of species
richness Smax ≈ 2β/rmin. This value results when optimizing
Eq. (2) for the maximal number of parallel two-species stacks
(namely β/rmin) corresponding to completely filling the two
lowest trophic levels [19].

Figure 5(c) shows the species richness at different trophic
levels corresponding to the simulation in Fig. 4(a). Noticeably,
this distribution is independent of sampling time and largely
independent of the assumed value of rmin. Compared with
assembled food webs [14], where a total number of 7–9 trophic
levels was reached, the evolved food webs here are confined
to usually less than five levels, with largest richness at the
second level. The dynamics of this evolutionary “flattening” is
mirrored by the relatively short species lifetimes at both levels
3 and 4 [Fig. 4(a) and Fig. 5(b), inset]. Thus species at levels
three and above are systematically more prone to extinctions,
reflecting their increased exposure and dependence on the
species at lower levels.

The species richness distribution for seven empirically
sampled food webs of free-living species is also limited to
approximately four tropic levels [Fig. 5(d)]. The different
trophic levels of these well-characterized [30–35] and re-
compiled [36,37] food webs have largest species richness at
level 2 and only very few species at levels 5 and beyond.
It should be pointed out that these empirical food webs
presumably under-represent the richness at the basal level, as
distinct species are often lumped into a single category there
[15]. The remaining difference between our simulated food
webs and empirical data is found at levels 3 and 4, which
appear to be penalized too strongly by our assumed treelike
topology: As they are assumed to feed on only one resource,
top consumers become too dependent on extinction of “supply
lines” provided by particular prey species. In empirical food
webs there likely are several distinct nutrient or energy sources,
e.g., sunlight and sugars, leading to larger breadth of the food
webs these nutrients can support. Further, previous analysis
of these empirical food webs suggests that omnivores and
parasites may be prevalent [38,39] and possibly play important
roles in stabilizing these ecosystem [15,36,40], characteristics
not taken into account in our present model.

IV. DISCUSSION AND CONCLUSION

Within the comparably simple generalized Lotka-Volterra
equations [Eqs. (2)–(6)], we studied hierarchical food webs,
where each consumer has exactly one resource. While ide-
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FIG. 5. Species origination and extinction. (a) Time evolution for 106 attempted species additions. Origination and existence time shown on
horizontal and vertical axes, respectively. Inset: Origination-extinction matrix from fossil record data [28]; matrix reproduced from the literature
[27,29]. (b) Magnification of the first 104 addition attempts, i.e., the region within the red box in the lower left corner of (a). Inset: Cumulative
species lifetime distribution for each trophic level (blue to red for levels 1 to 4) and combined (black curve). the straight line indicates a power
law with exponent −2. (c) Average distribution of trophic levels for the data in Figs. 4(a) and 4(b). (d) Trophic levels obtained for the free-living
species of seven high-resolution aquatic food web data sets [15].

alized, our approach can make the evolutionary dynamics of
invasions and extinctions transparent by providing determin-
istic rules for extinction cascades caused by an invader. In
reality, a species may in principle be connected to many others
by consumption links. We, however, note that the strengths
of links are by no means equal: In the field they are often
found to even be bimodally distributed [41–44], meaning
that feeding connections of a given consumer to its prey are
dominated by one strong link. This feature is also seen in
simulations [45,46] when assessing conditions for the growth
of species-rich communities. We have previously explored
by numerical simulations that adding sufficiently weak links
(strength bounded by rmin) to our constructed food webs does
not generally lead to destabilization [14]. Further, in numerical
work where food webs were assembled randomly [45], it was
found that the ability of predators to prey on many different
species generally limited the growth of multilevel food webs.
Hence, models with few strong, but possibly many weak, links
may be realistic. It was concluded that the impact of links either
had to be weakened by nonlinear functional responses or the
number of resource species had to be limited—a conclusion
justified by the consideration of trade-off costs associated with
the ability to generalize predation habits. Even though our
methodology does not make any assumption on the interaction
strength for the feeding links present, in our simulations we
made an additional assumption for simplicity that they have

a similar magnitude. While this claim may be somewhat
justified by the data as we discuss in Sec. A 3, more work is
needed to determine how much a nontrivial interaction strength
distribution could alter the results.

Our simple two-level invasion-extinction model can in fact
be seen as implementing the dynamics of an open system of
multiple bacterial strains, each exposed to an exclusive phage
predator. The states in the model correspond to a particular
composition of an ecosystem of coexisting bacteria-phage
pairs, obeying “kill the winner” equations [16]. Our model
thereby speaks to the long-term evolution of such microbial
ecosystems and when changes are governed by spatially sep-
arated systems with occasional emigration. Examples of such
demographic systems are found in the ocean, where spatially
separated samples have partly different bacteria-phage pairs
[19,47].

Notably, the comparison with the kill-the-winner model
underscores our assumption that, for a bacteria-phage ecology,
each phage only preys on a unique bacterial strain, as this
implies that the fastest-growing bacterial strain could only be
replaced by an ever-faster-growing one. It is worth noting that
the average number of prey strains per phage strain at a local
station in the ocean data is 1.4 [19,47], i.e., the majority of
phage strains have only one prey strain. Although this may
often be the case, there is also the possibility that a phage strain
preys on two bacterial strains, which for different adsorption
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rates could then lead to the elimination of the fast grower
[48]. This apparent competition was part of the more detailed
microbial ecosystem model explored previously [19].

Our multilevel food web model allows invaders to aggres-
sively compete with residents in an evolutionary process. The
resulting simulated food webs are typically confined to the
approximately four trophic levels that are typical of empirically
sampled free-living species webs [38]. Compared to empirical
food web data, our evolved treelike food webs underestimate
species richness at trophic levels 3 and 4 and presumably
overestimate stability of lower levels due to the simplified
predation, where each invader only consumes a single prey
species. We interpret these findings as hinting towards the pos-
sible necessity for greater link complexity at the higher trophic
levels in order to achieve more realistic network structures
there. Indeed, we found data collected from the field to show
stronger preference towards omnivory and generalism at those
levels [15]. Also parasitism has recently gained appreciation
as a consumption form that may add to diversity [36]. The
present methodology, including the IEM, may hence serve as
benchmarks for more complex food web models, including
those that involve nonlinear functional responses, omnivory,
or parasitism.

Our models were limited to one feeding interaction per
species. Thereby, the evolving system never reached a true
steady state. Instead the “fittest” species tend to become
increasingly robust as ever-lower decay rates r—or alterna-
tively higher replication rates—are selected for. The erratic
climbing towards improved r could, however, be arrested if
one allowed for consumers to have two (or more) different
resources that may have different values of interaction strength
and consumption efficiency [α and β in Eqs. (5) and (6)]. In
that case, apparent competition [49] between species [50] could
cause the species of lower decay coefficient to be eliminated
by the other through the mediated competition by a common
consumer, as discussed as an effect of a keystone predator
[51]. This type of dynamics would open for a steady-state
“red queen” dynamics where relative fitness can increase also
for the fittest species [19]. Such reshuffling has notably been
discussed in models for coevolutionary avalanches [52,53].
Interestingly, the current analysis adds to these earlier and
more coarse-grained models by pinpointing that changes in
ecosystem composition can be indirect.

The prediction of a power law for species resident times in
food webs makes it tempting to view our model in perspective
of large-scale evolution. In particular, the species lifetime of
∝ 1/t2 is compatible with species longevity distributions in
the fossil record [27]. Also the current model implies cascades
of extinctions that superficially resemble those of Bak and
Sneppen [52], but the current cascades are typically small and
exponentially distributed with a characteristic size of unity.
Thus our model does not speak directly to the large extinction
events in the palaeontological history [54,55]. Rather, the
cascades in the IEM may potentially take the role of the fast
and small neighborhood changes envisioned in the avalanche
scenario proposed by Bak and Sneppen [52].

Finally, the treelike food webs we analyzed highlight a
new interplay between a species’ trophic level, its robustness
against extinctions, and its ability to compensate by diversi-
fying its food sources. Without compensatory food sources,

species at higher trophic levels will more easily be exposed
to perturbations from their prey or the preys’ prey and thus
be expected to suffer shorter existence times. It is therefore
noteworthy that species at higher trophic levels as well as
species with large body size or more specialized diets are often
cited to have relatively high species extinction rates in both the
fossil record and among modern extinctions [56].
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APPENDIX

1. Distribution of decay coefficients
in the iem

We analyze the ensemble-averaged distribution of decay
coefficients �r ≡ r − rmin. Suppose that, at time t , there are
S(r,t)dr numbers ri , i ∈ {1, . . . ,S(r,t)}, that satisfy r < ri <

r + dr . We define the cumulative distribution as C(r,t) =∫ 1
r

S(r ′,t)dr ′, namely S(r,t) = − ∂
∂r

C(r,t).
Since C(r,t + 1) is zero with probability (r − rmin)/(1 −

rmin), and if the new random number takes a value between
r ′ and r ′ + dr ′ with r < r ′ < 1, then C(r,t + 1) will become
C(r,t) − C(r ′,t) + 1. We have

C(r,t + 1) =
(

1

1 − rmin

) ∫ 1

r

[C(r,t) − C(r ′,t) + 1]dr

=
(

1

1 − rmin

)[
(1 − r)C(r,t) −

∫ 1

r

C(r ′,t)dr ′

+ (1 − r)

]
.

Approximating C(r,t + 1) − C(r,t) ≈ ∂
∂t

C(r,t) and taking the
derivative with respect to r , we have

− ∂

∂t
S(r,t) = r − rmin

1 − rmin
S(r,t) − 1

1 − rmin
. (A1)

Integrating Eq. (A1) under the initial condition S(r,0) = 0, we
finally obtain

S(r,t) = 1

�r

[
1 − exp

(
− �r

1 − rmin
t

)]

≈ 1

�r
[1 − exp(−�rt)],

where rmin � 1 was assumed.
Note that this distribution shows a slower relaxation when

r approaches its lower threshold r → rmin, i.e., �r → 0. For
t � 1/�r , the probability distribution function of �r is a
power law with slope 1, and we have C(r,t) ≈ − log(�r), i.e.,
�r ≈ e−C . At the same time, C(r,t) denotes the extinction
size when the new species has a decay rate r . This gives the
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avalanche size distribution to be

P (C) ≈
∣∣∣∣d�r

dC

∣∣∣∣ ≈ e−C.

2. Collective decay rates

The collective decay rate is defined recursively from the
top species of the branch as r

(l)
coll,c = r

(l)
eff,c + r

(l+1)
coll,f /β(l), for

a controlled species, where r
(l+1)
coll,f is the collective decay

rate of the paired free species, while for a free species, we
have r

(l)
coll,f = max[r (l+1)

coll,c ], where the maximum is taken by
comparing the collective decay rates of all the controlled
species praying on the considered free species.

This rule is easily understood when considering part of the
food web that constitutes a chain and feeds on a controlled

species [as in Fig. 3(c,III), side branch]. Suppose the branching
point is at the tropic level l − 1 and its population is determined
by the effective decay rate of the invading free species at the
level l as N∗(l−1) = r̃eff . The top species of the side controlled
branch should be at level l + 2n + 1 with a positive integer n.
The energy flux for the controlled species at the level l + 2m

in this branch will then be

w(l+2m)(N) = β(l+2m)
[
N (l+2m−1) − r

(l+2m)
eff,c

] − N (l+2m+1).

By setting this to be zero, the steady-state biomass of the free
species in the side chain will be determined by N

∗(l+2m+1)
f =

β(l+2m)[N∗(l+2m−1) − r
(l+2m)
eff,c ]. Recursively, this determines the

biomass of the free top species as

N
∗(l+2n+1)
f = β(l+2n)[N∗(l+2n−1) − r

(l+2n)
eff,c

] = β(l+2n){β(l+2n−2)[N∗(l+2n−3) − r
(l+2n−4)
eff,c

] − r
(l+2n)
eff,c

}
= · · · = �n

k=0β
(l+2k)

[
N∗(l−1) − r

(l)
eff,c

] − �n
k=1β

(l+2k)r
(l+2)
eff,c − · · · − β(l+2n)r

(l+2n)
eff,c .

Thus the condition for the positive biomass for the top species
(N∗l+2n+1

f > 0) gives

r̃eff > r
(l)
eff,c + (1/β(l))r (l+2)

eff,c · · · + �n−1
k=0[1/β(l+2k)]r (l+2n)

eff

= r
(l)
coll,c. (A2)

Namely, one should compare the sum of decay rates of the
controlled species in the side chain, which should be divided
by β as it goes down from the top species population.

3. Realistic values of consumption efficiency

The data we present focus on the consumption efficiency
β(l) = 1 in the dimensionless form multiplied by the ratio
of interaction strength α(l,l−1)/α(l−1,l−2) in successive trophic
levels. The value of α is difficult to evaluate, but studies
[42,57] report the percapita negative effect of predator on prey
to decrease by an order of magnitude with trophic position.

This number can be interpreted as α(l,l−1) multiplied by the
steady-state biomass of prey at the trophic level l − 1, while
the biomass decreases on average an order of magnitude for
higher trophic levels [42,57]. Thus, the simplest assumption of

α(l,l−1)/α(l−1,l−2) ∼ 1 is reasonably consistent with these data.
Assuming this, the conversion efficiency in real food webs are
still expected to be substantially smaller than 1, approximately
β ∼ 0.1. Given that we are working with relatively few trophic
levels, a general decrease in efficiency can be compensated by
a proportional decrease in decay coefficients (r), while giving
similar species richness distributions for the different trophic
levels. Further, the potential decay coefficients for larger
animals at higher food web levels should be systematically
lower than for many of the smaller-sized bottom feeders.
Overall, we therefore find that our prediction of a maximal
food web level of about 4 is robust to realistic variation of
parameters.
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