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Abstract

Cells can often choose among several stably heritable phenotypes. Examples are the
expressions of genes in eukaryotic cells where long chromosomal regions can adopt persistent
and heritable silenced or active states that may be associated with positive feedback in
dynamic modification of nucleosomes. We generalize this mechanism in terms of bistability
associated with valleys in an epigenetic landscape. A transfer matrix method was used to
rigorously follow the system through the disruptive process of cell division. This combined
treatment of noisy dynamics both between and during cell division provides an efficient way to
calculate the stability of alternative states in a broad range of epigenetic systems.

Introduction

Cells carry information handed down from their ancestors and
are able to pass on information to their descendants. In many
cases this ‘memory’ is epigenetic, that is, not stored in the
DNA sequence, allowing cells with identical DNA to maintain
distinct functional identities. Epigenetic cell memory implies
alternative states of gene expression that are stable over time
and are inherited through cell division.

A proposed mechanism for epigenetic cell memory
invokes positive feedback loops in nucleosome modification
[1-6]. Positive feedback is a mechanism seen in many
other regulatory systems where for example the production
of a regulatory protein activates its own production, or more
robustly where two mutual repressors act strongly enough
to prevent co-expression. A complementary view on cell
memory is that of an epigenetic landscape [7, 8], where the
state of a cell develops on some potential energy surface, and
a state is maintained when the cell is caught at a particular
valley for a long time.

In this paper we develop an epigenetic landscape
formalism for cell memory by positive feedback in nucleosome
modification. Instead of viewing cell differentiation as the
‘pushing’ of a cell over a fixed landscape [7, 8], our approach
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suggests that cell fate could be controlled by changing the
landscape.

Models

Inspired by the mating-type switch in Saccharomyces pombe
[9], we introduced a model for bistability by positive feedback
in nucleosome modification [4]. The model had one parameter,
the positive feedback to noise ratio F, and modeled the
dynamics of a system consisting of N nucleosomes where
each could be in one of the three states modified, unmodified
and anti-modified.

Here we introduce a simpler version of this modification
system, in which there are only two chemical states of
each nucleosome. We term these modified (M) and anti-
modified (A) to indicate their mutual exclusivity, with the A
nucleosome carrying either a different chemical modification
or no modification (figure 1). Each nucleosome type recruits
a modifying enzyme that converts the other type to its own
type. Our results from [4] demonstrated that robust bistability
requires an effective cooperativity in the recruitment process.
Here cooperativity could be included directly by requiring
that two local nucleosomes with the same modification, e.g.
M, are needed to make an A — M conversion, as described
in figure 1. Note that this model is not only just a simplified

© 2010 IOP Publishing Ltd  Printed in the UK
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Figure 1. Model. Consider a system with N sites. Each site
represents a nucleosome that can be modified (M) or anti-modified
(A). Transitions between these two states are in part random, and in
part auto-regulated by recruitment of histone-modifying enzymes by
local nucleosomes. At each update, a nucleosome i is either, with
probability 1 — «, set to an M- or an A-state randomly. Or with
probability «, two other nucleosomes are chosen, and if these are in
the same state, then the state of the nucleosome i is set to this state.
The model is parametrized by the positive feedback to the noise
ratio F = a/(1 — ).

version of 3-state model but also has parallels with the mating-
type silencing system in S. cerevisiae, where one typically
considers acetylated and non-acetylated nucleosomes [10—12].

Suppose M nucleosomes are in the M-state at time 7. We
now express the development of the fraction m = M /N sites
in the M-state. Denoting dm = 1/N, we have

dm
dr

with the rate that the system with fraction m of M-sites gets
one more (or one less) M-sites being R.(m) (or R_(m)) and
with noise having zero mean and being associated with the
randomness of processes in a finite system. The rates are
given by

= (Ry(m) — R_(m)) - dm + noise (1)

Ri(m) = a(l —m)m? + (1 —a)(1 —m),
R_(m) = am(l —m)*+ (1 — a)m. )

Here, the first term is the nucleosome recruitment; in the case
of R,(m), the recruitment occurs with probability «, and it
must involve two M-sites (probability proportional to m?)
and must change the modification on an A-site (probability
proportional to (1 — m)). The second term is the noise effect
which is proportional to (I — «), where a nucleosome can
become M by random conversion from an A-state (probability
proportional to (1 —m)), and vice versa. This noise represents
all events from the cell that are not associated with the direct
recruitment processes from other nucleosomes within our N
nucleosome system. One should be aware that there is another
level of noise in our stochastic description, represented by the
noise in equation (1) which is the noise associated with the
stochasticity of the molecular processes.

The ratio of recruitment (or the positive feedback) to the
noise, F = a/(1 — @), is the parameter of the model. The
Langevin equation for m is then

dm

m = % 2m — )[m({ —m) — 1/F] + noise, 3)

implicitly implying that there is bistability when F > 4
provided that the noise term is small (system size large).

x P(m —dm, t) — [Ry(m) + R_(m)]P(m, 1). )

Results

Epigenetic landscape generated from a positive feedback
system

We extract ‘the potential landscape’ in m-space by comparing
equation (4) with the generic one-dimensional Fokker—Planck
equation for diffusion of a particle in a potential U (m):

8. a9 ()dU(m) 9(D(m)P)
a1 __am__am[ am ]
d dv oP
=—8—[ 1£(m) “”P—D(m)—]. ©)
m om

This equation defines the probability flux J. Here, (1t (m) is the
mobility and D(m) quantifies the stochastic motion in terms
of an m-dependent diffusion coefficient. In the last step, V (m)
represents an effective potential that includes both drift and
noise events, defined as % = % %%.

Expanding equation (2) with equation (4) to second order
indm = 1/N and comparing it with equation (5), we find
the drift (%) = 4(m)(dU /dm), the effective potential V (m),
diffusion D(m) and mobility w(m) as follows:

<i—’f> = %(Zm — D)[m(1 —m) — 1/F] ©6)

V(m) = 2Nm(l —m) + <1 - %N) W[Fm(1 —m)+1] (7)

m(l—m)+1/F
2N? '

Here, the first equation could have been obtained directly from
the Langevin equation (3). From these expressions we can
again see that there is a critical recruitment to the noise ratio
F = a/(1 — a), with m = 1/2 being an unstable fixed point
for F > 4.

Figure 2 shows (dm/df), V(m) and the steady-state
distribution Py(m) for F = 3 and F' = 12, thereby illustrating
monostable and bistable systems. Also note that the analytic
results fit the stochastic simulation, with a deviation that scales
as 1/N with increased system size (not shown). Figure 3
shows how the epigenetic landscape changes gradually as
F increases: from a single steep valley, through an almost
equipotential ‘river plain’, to two valleys. Because F depends
on protein concentrations and affinities, the shape of the
epigenetic landscape is under biological control.

One can repeat these calculations for a model where
recruitment is not requiring the cooperative action of two
nucleosomes. (The second-order terms in equation (2) should
then be replaced by first-order ones.) In that case one never
obtains more than one stable fixed point, confirming that
bistability indeed requires cooperativity [4, 13].

D(m) = u(m) =«

®)
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Figure 2. System properties. Analytical results (solid lines) for a
system of size N = 60 showing (A, D) the drift (dm/dt), (B, E) the
effective potential V (:m) and (C, F) the steady-state distribution
Py(m) in the two regimes: (A, B, C)—-F = 3 where there is no
bistability and (D, E, F)—F = 12 where there is well-defined
bistability, which can be seen in the effective potential (E) with two
valleys separated by a hill. For (dm/dt) and Py(m) (A, C, D, F), the
numerical results are also shown by symbols. Comparing the V (m)
(B, E) and Py(m) (C, F) note that In(Py(m)) ~ —V (m) as expected
in the steady state from requiring that J = 0 in equation (9).

Figure 3. An epigenetic landscape generated from a positive
feedback system. Here the effective potential V (m) from equation
(7) is plotted as a function of F with fixed N = 60. The landscape
changes gradually as F increases, from a single steep valley, through
an almost equipotential ‘river plain’, to two valleys. This change is
associated with stronger recruitment processes at larger F values.

The potential V (m) effectively describes the effective
force on m from the combined effect of recruitment and
noise events. Thus, a large positive gradient in V(m)

means that nucleosomes on average will tend to lose their
m modification. A potential minimum, on the other hand,
means that recruitment processes and noise events balance
such that the number of modified states typically stays around
this minimum. In this way, our potential V (m) plays the
role of an epigenetic landscape in the Waddington sense [7].
In particular, the valleys and hills of this landscape can be
viewed as the metastable epigenetic states and the barriers
between them. We will use this analogy to calculate first
the probability for stochastic switching between such states,
and subsequently we will discuss how one may alter the
landscape by modifying the recruitment processes that define
the landscapes, a modification that was also envisioned by
strings in the Waddington landscape [7].

Stability of a macroscopic state

Now we quantify the stability of a macroscopic state by the
average number of attempted updates per nucleosome before
the full system switches for the first time to the alternate
epigenetic state. Using D = u from equation (8), we in
analogy with Kramers [14] rewrite

J=-D |:—P + —i| =-D exp(—V)i[P exp(V)]
m am

©))

and use the quasi-stationary approximation (i.e. the current
J is constant) to write the flux for going from an A-state
(the potential minimum at m = m4 ~ 0) to an M-state (the
potential minimum at m = my ~ 1):

_ [P exp(V)]n¥
f,;"AM (1/D(m)) exp(V (m)) dm "

(10)

Using a Gaussian approximation (i.e. V (m) harmonic around
both the initial state A and the transition state T with m =
mr = 1/2 and the initial distribution for P(m, t) around the
state A), we obtain the average lifetime of an epigenetic state
T as

T = |—1| x 4nN\/§exp[VT — Vil (11)
for large N and F, where V; = V(m = 1/2) and
Vo = V(my) is the potential minimum for the A-
state (the detailed calculation is given in the appendix).
Figure 4 demonstrates that equation (11) reproduces stochastic
simulations. However, when pushing toward very small N,
there is a tendency that the continuous description deviates
from the stochastic result. Thus, for N of order 10 or below,
we recommend a stochastic simulation.

Equation (11) can also be used to obtain an interesting
prediction from our model. Using the expression for the
potential V from equation (7) for large N, we see that
V(m = %) ~ Nf(F) with a function f(F) independent
of N, and thus that stability scales exponentially with N, i.e.
7 oc N e/ (),
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Figure 4. Stability of a macroscopic state. The first passage time, or
the average lifetime of an epigenetic state 7, is shown as a function
of N (A) and F (B). Symbols show numerical results and lines show
analytical results from equation (11). Time is counted in units of
attempted nucleosome updates per nucleosome.

Effect of cell divisions

Epigenetic states are capable of being inherited across cell
divisions. This can give difficulties for stability of the states
[4], particularly for 2-state systems [13]. At cell division the
genome is duplicated, and following [4, 15] we assume that
the resident nucleosomes are partitioned randomly between
the daughter strands. The vacant positions are filled by new
randomly selected nucleosomes where half are in the M-state
and half in the A-state. We accordingly supplement our model
above with cell divisions at certain fixed time intervals. This
cell generation time is measured in units of the number of
attempted nucleosome updates per nucleosome.

Whereas the potential landscape between cell divisions
drives the system toward one of the epigenetic states, the
randomization at cell divisions brings the system closer to
the top of the potential barrier in the epigenetic landscape.

Consider that before cell division the system is in a state
with M, = m; x N nucleosomes in the M-state and the
remaining nucleosomes in the A-state. Cell division results
in the distribution of number of M-state nucleosomes M, :

M,,)(N—M,,)(N—M—A)

D(Ma,Mb)ZZZ (M A M,—M
M A

2@N—M—4)
where the sum runs over all the ways of getting from M,, to M,
by selecting M < min(M,, M;) nucleosomes in the M-state
and A < min(N — M,, N — M}) nucleosomes in the A-state
to be transferred directly at the cell division.

Between cell divisions, the system evolves by a stochastic
sequence of single nucleosome exchanges that can be
described by motion in the epigenetic landscape. The
stochastic change M — M =+ 1 can be followed by the master
equation above, and the system evolves toward a steady-state
distribution with two well-separated peaks, see figure 2.

To combine the gradual development in a well-defined
epigenetic landscape between cell divisions, with the
sudden reshuffling at cell divisions we express the gradual
development in terms of matrix operations. The matrix
G that corresponds to equation (2) is only non-zero at the
diagonal and off-diagonal elements: G(M, M + 1) = R, (m),
GM,M—-1) =R (m)andGIM,M) =1—-GM,M —
1) —GM,M + 1) where m = M/N and Ry(m) is from
equation (2). The probability distribution evolves according

12)
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Figure 5. The switching of the macroscopic state via randomization
at the cell division. (A) The averaged development of the M
distribution over one cell generation, with ‘time’ measured in
attempted updates per nucleosome. The simulation uses F = 10
and a generation length of 20 updates per nucleosome. The
evolution starts just after a cell division, where a randomization
(using equation 12) is followed by a drift imposed by the epigenetic
landscape. After about ten updates, one sees that P (M) reaches a
nearly stationary distribution, where a fixed fraction has switched to
the alternate state. Just before the next cell division, one resets
P(M) =0for M > N/2, and renormalizes the distribution.
Iterating this process, panel (B) shows the average number of
generations needed before escape (see escape time discussion in the
text). A direct Monte Carlo simulation result with a generation time
of 30 is also shown by symbols.

to P(M) - P(M') =)_,, G(M, M')P(M) for each update
of a nucleosome in the system.

In figure 5 we show the time evolution of the probability
distribution from one cell division to the next for a system with
N =60, F = 10 and m ~ 0. In panel (A), the simulation
uses a generation length of 20 updates per nucleosome. The
evolution starts just after a cell division, where a randomization
(using equation (12)) is followed by a drift imposed by the
epigenetic landscape. Just before the next cell division, one
resets P(M) = 0 for M > N/2, and renormalizes the
distribution. We see that at cell division a small fraction of
cells reach large m values, and over the next ~ 10 updates per
nucleosome can move to m ~ 1. After around 10 updates,
the P(m) distribution reaches a quasi-steady state, reflecting
that from then on a very small flux goes over the barrier. Thus
after 10 updates, the likelihood of further transitions between
the two epigenetic states can be ignored (for F' > 10).

The time evolution in figure 5 also illustrates that
transitions are entirely dominated by the noise at cell divisions,
at least for large enough F. In fact by stochastic simulation we
have verified that switches only occur when the stochastic
partitioning in a division brings the system close to the
transition state, m ~ 1/2.

An entire cell generation with cell division is described
by the matrix

CM,M") = Z GV (M, MYDM', M") (13)

M
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where g is the number of single nucleosome updates
per cell generation. Iterating the updating process with
renormalization of the distribution, we obtain the probability
distribution P (M’) shortly before a cell division, and estimate
the average number of generations needed before escape
(escape time) as n, = ( ZM,>N/2 P(M’))71 in panel (B). This
escape time is the average time it takes for a system to switch
from one state to another. From figure 5 we see that when
g > 10, the escape time does not depend on the value of g for
F > 10 because of the small escaping rate after 10 updates.

Epigenetic landscape with regulated tilt

Finally, we consider the case where the modification and
anti-modification are not symmetric but one of the effects
is stronger than the other. This asymmetry of modification
could be under biological control in a real system by changing
the concentration of modifying enzymes or by recruiting such
enzymes by transcription factors [6].

One of the simplest ways to include such asymmetry is to
modify the transition rate equation (2) into

R.(m) =2(1 — pa(l —m)m* + (1 —a)(1 —m)

R_(m) = 2nam(l —m)*+ (1 — a)m. 14

Here, a new parameter 7, defined in the range 0 < n < 1, sets
the relative strength of modification versus anti-modification
and gives the symmetric case when n = 1/2.

Figure 6 shows how the potential landscape can be
manipulated by changing the relative strengths of the two
recruitment processes, 1. This potential is directly defined
as V(m) = —1n Py(m), where Py(m) is defined as the steady-
state probability distribution of m. For simplicity the cell
division is not taken into account here. For small 1, the valley
at the M-state is much deeper than that of the A-state, and
the landscape dramatically changes as n increases to give a
landscape where the A-state has a deeper valley than the M-
state.

Discussion

Positive feedback in nucleosome modification is a powerful
mechanism to maintain a dynamic bistable system, even
with destabilizing factors such as cell division. Here
we demonstrated how positive feedback in itself can be
reformulated into an epigenetic landscape with peaks and
valleys that reflects the underlying balance between feedback
and noise. As long as movements are small, dominated
by single nucleosome modifications, the movement in the
landscape can be fully modeled by a Langevin or Fokker—
Planck equation with a first escape time calculated in analogy
with Kramers. When stochastic events are large, as during
cell divisions, a transfer matrix method allowed us to extend
the Fokker—Planck formalism and thereby to set a minimum
timescale for the dynamics of a robust positive feedback.
Finally, we studied how the landscape could be ‘tilted’ by
asymmetry in the nucleosome modification reactions.

‘We expect that the transfer matrix method can be extended
relatively easily to include other nucleosome modification

40
V(m) 30

Figure 6. Epigenetic landscape with asymmetry. The figure shows
V(m) = —In(Py(m)) obtained from the model with asymmetric
transition rate equation (14) using the transfer matrix method. For
simplicity, the cell division is not taken into account here. The
figure shows how the landscape gradually changes from monostable
to bistable and then again to monostable as one changes the
parameter eta. The ‘asymmetry’ parameter n would in principle be
under biological control through changes of concentrations of
modifying enzymes associated with the recruitment processes. The
total recruitment to noise ratio is fixed at F = 20. The figure
illustrate a dramatic tilting of the epigenetic landscape by a
moderate change in nucleosome modification rates.

schemes, for example the 3-state model of [4]. This approach
is more powerful than the mean field approach [13] in the sense
that it allows one to explore the probability distribution. The
method can also deal with cases where the epigenetic system
does not conform to a potential energy surface. For example
noise associated with cell divisions can be included in systems
with double negative feedback between repressors, such as the
CI-Cro feedback loop in the lysis-lysogeny switch of phage
lambda [16].

Our results are consistent with recent observations in
mammalian cells in which increased cell division rates
accelerated stochastic transitions between epigenetic states
[17].

Epigenetic landscapes present a particularly appealing
way to discuss multi-stability of expression states in living
systems. The presented coupling between positive feedback
and the possibility for a drift in a landscape may be useful for
understanding cases where bistable decisions are delayed, as
often seems to be the case in development. Some epigenetic
landscapes may define the activity of transcription factors that
act as histone-modifying complexes, and thereby subsequently
define the input parameters for other landscapes further down
along a developmental pathway. Thereby understanding of
epigenetic stability and regulated tilting of landscapes may
speak to large classes of coupled switch systems.

Conclusion

This paper explored theoretical implications of epigenetics
as a dynamic phenomenon, where alternate states of
gene expression are selected and maintained over multiple
generations by ongoing dynamic processes. Our approach
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builds on the assumption that the epigenetic states are
maintained through a positive feedback where nucleosomes
of a certain kind recruit enzymes which in turn convert other
nucleosomes to the same kind. By introducing a minimal
model for such a dynamic system, we demonstrated that the
on-going nucleosome updating rates only need to be g = 10
updates per nucleosome per generation to provide robust
maintenance. This result is closely linked to the convergence
of the P(M) distribution after cell division (figure 4), which
we find to be rather insensitive to the value of F. Thus we
expect that any model working with positive feedback as a key
maintenance factor, in principle, would work with a moderate
number of updates per generation.

It is important to note that the stability of the epigenetic
state depends on the update rules at the cell division especially
in the 2-state model. In our model, on average half of
the nucleosomes come from parental DNA, and the rest of
them are either in the modified or the unmodified state with
equal probability; thus, effectively 75% nucleosomes are in
the same epigenetic state as the parental DNA. Thus, most
of the cells are still in the same valley in the epigenetic
potential (figure 2(E)) and come back to the original epigenetic
state. However, if half of the nucleosomes are replaced with
unmodified nucleosomes at the cell division in the 2-state
model, the system prefers unmodified states and one needs
extra mechanisms to keep the modified state stable [13]. It
is not clear which mechanism operates at DNA replication in
different systems, but our formulation is applicable in both
cases. More experimental information about the nucleosomes
inserted after DNA replication will be critical in understanding
the stability of epigenetic states.

Our analysis also showed formally that bistability requires
cooperativity of recruitment, in the sense that equation (2)
requires more than first-order terms in order to provide
separation between two states. In the model in Dodd
[4] the recruitment was implemented by requiring that two
independent recruitment processes were of the same type,
whereas we here simply assumed that the two simultaneously
recruiting nucleosomes are of the same type. Our analogy
between system size and effective randomness allowed us
to show formally that stability of inherited states will
grow exponentially with the number of nucleosomes in the
considered region of the chromosome.

Our analysis opens for understanding development
in epigenetic landscapes, in terms of positive feedback
mechanisms that are linked to each other through expression
of nucleosome-modifying enzymes.
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Appendix. Analytical calculation of the stability of a
macroscopic state

Assuming V (m) is harmonic around m = m, and hence the
initial distribution P (m) is a Gaussian around m = m, (and

P(my) =~ 0), we get
[P (m) exp(V(m))];" ~ —P(mu)exp(V(ma))

1
= - exp(V(ma)),
2o

with 1/02 = (d*V(m)/dm?),=p,. From the condition
dV(m)/dm|,=n, = 0 and equation (7), we have m, =
1/2 - J/1/4—1/F +1/(2N), and

(A1)

, (Vi) AN — F
%A= < dm? )mzm T AN(FN +2F —4N)
N 1 1
" N(F—4) NF’
where we assume N > land F > 1 (ie.a =~ 1).
Approximating V (m) as harmonic around the transition

state T with m = my = 1/2 and noting that V (m) takes the
maximum at m = my, we have

mpy 1
/m Do) exp(V(m))dm

A

00 _ 2
~ ! exp(V(mT))/ exp |:—(m—mT)] dm

(A.2)

~ D(mr) 202
27'[0%
= 74 A3
D7) exp(V(mr)) (A.3)
with
pio (LY 1eFA
T dm? ), (4 — F)N —2F
1+F/4 1
N ——— o~ (A.4)
N(F—4) 4N
Noting
a(l/4+1/F) 1
D =~ —, A5
(mr) e Y (A.5)
we get
1 8N frr  WVmr) | [y ~V(ma)
T = m N —— A 2more’"" S 2roye” VM (A.6)
o
4
~ 4nN,/f exp[V(mr) — V(ma)]. (A7)
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