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Theoretical models that describe oscillations in biological systems are often either a limit cycle
oscillator, where the deterministic nonlinear dynamics gives sustained periodic oscillations, or a

noise-induced oscillator, where a fixed point is linearly stable with complex eigenvalues, and

addition of noise gives oscillations around the fixed point with fluctuating amplitude. We

investigate how each class of models behaves under the external periodic forcing, taking the well-

studied van der Pol equation as an example. We find that when the forcing is additive, the noise-

induced oscillator can show only one-to-one entrainment to the external frequency, in contrast to

the limit cycle oscillator which is known to entrain to any ratio. When the external forcing is

multiplicative, on the other hand, the noise-induced oscillator can show entrainment to a few ratios

other than one-to-one, while the limit cycle oscillator shows entrain to any ratio. The noise blurs

the entrainment in general, but clear entrainment regions for limit cycles can be identified as long

as the noise is not too strong. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4808253]

Biological systems present us with a wide range of oscilla-

tors, which include cell cycles, circadian rhythms, calcium

oscillations, pace maker cells, and protein responses, but it

is often a challenging task to identify the minimal models

behind these oscillations. The proposed models are typi-

cally categorized into two classes: (i) Limit cycle oscillator,
where fixed points are linearly unstable and the oscilla-

tions are described by stable limit cycles sustained by non-

linearities of the system which are deterministic. Noise can

be added on the top of the deterministic oscillations. (ii)

Noise-induced oscillator, where the fixed point is linearly

stable for the system without noise and the system relaxes

to the fixed point with damped oscillations when tempo-

rally perturbed. Addition of noise to this type of system is

known to show sustained oscillations with fluctuating

amplitudes. We propose a way to distinguish the two, by

using the phenomenon of entrainment to a periodic per-

turbation. Taking the van der Pol equation with noise as

an example, we show that entrainments to all the rational

ratios are seen only in the limit cycle oscillator. In the case

of the noise-induced oscillator with additive external forc-

ing, the oscillator can entrain only at one-to-one ratio,

meaning that the entrainment to other than the one-to-one

ratio is the sign of the dominance of the limit cycle mecha-

nism. When the external forcing is multiplicative, we find

that the noise-induced oscillator with weak nonlinearity

can show some entrainment ratios other than one-to-one,

but not all the ratios.

I. INTRODUCTION

Biological systems present us with a bewildering fauna

of oscillators: cell cycles,1 circadian rhythms,2–5 calcium

oscillations,6 pace maker cells,7 protein responses,8–14 and

so on. Sometimes, however, it is hard to see what are the

minimal models behind these oscillations. Typically, the

models are categorized into two classes: (i) Limit cycle

oscillator: The fixed point is linearly unstable, and the oscil-

lations are described by stable limit cycles sustained by non-

linearity of the system in the deterministic case.11,12 Noise

(e.g., molecular noise due to limited number of copy num-

bers) can be added on the top of the deterministic oscilla-

tions. (ii) Noise-induced oscillator: The fixed point is

linearly stable for the system without noise, and the system

relaxes to the fixed point with damped oscillations when

temporally perturbed. Addition of noise to such a system is

known to show sustained oscillations with fluctuating ampli-

tude.13,14 For some systems, both limit cycle oscillators (i)

and noise-induced oscillators (ii) are proposed as a mecha-

nism for the oscillation.11–13 Here, we propose a way to dis-

tinguish the two, by using the phenomenon of entrainment to

a periodic perturbation.

It is well known that when an periodic perturbation is

added to a deterministic limit cycle, the system’s oscillation

frequency x will be entrained to the external frequency X
with various rational numbers of frequencies x=X ¼ P=Q
for all positive integers P and Q in a finite window of the
external frequency X, where the width of the window

depends on the amplitude of the external forcing.15,16

Entrainment, also called mode-locking, has been observed in

variety of physical systems during the last decades, from

onset of turbulence,17 Josephson junctions,18,19 one-

dimensional conductors,20 semiconductors,21,22 and crys-

tals.23 It has been predicted and verified experimentally that

the mode-locking structure possesses certain universal prop-

erties.15,16 In biological systems, entrainment has been inves-

tigated theoretically for circadian rhythms4,5 as well as in

model systems for protein responses.25 Experimental obser-

vation of entrainment in biological systems is often rather

difficult due to noisy signals, but it has been observed for cir-

cadian rhythms2,3 and synthetic genetic oscillators.24

In this paper, we study the difference in the entrainment

behavior for the limit cycle oscillators and noise-induced

oscillators. Our main question is the following: Can we
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distinguish the two cases by means of the entrainment behav-

ior? We employ the famous van der Pol equation with noise

as an example, because there we can easily study both cases

by changing parameters. We show that entrainments to all

the rational ratios are seen only in the limit cycle oscillator.

In the case of the noise-induced oscillator with additive

external forcing, the oscillator can entrain only at one-to-one

ratio, meaning that the entrainment to other than the one-to-

one ratio is the sign of the dominance of the limit cycle

mechanism. When the external forcing is multiplicative, we

find that the noise-induced oscillator with weak nonlinearity

can show some entrainment ratios other than one-to-one, but

not all the ratios. To confirm the generality of the entrain-

ment behavior for the limit cycle system under weak noise,

we also study a biological example, the tumor-necrosis factor

(TNF)-driven oscillating nuclear factor-jB (NF-jB) system,

and confirm that P/Q entrainments can be seen.

II. MODEL

A. van der Pol equation

Consider the following two-dimensional equation with

noise

_x ¼ FðxÞ þ r C; (1)

with

x ¼ x1ðtÞ
x2ðtÞ

� �
; C ¼ C1ðtÞ

C2ðtÞ

� �
; (2)

FðxÞ ¼ x2ðtÞ
�ðBx1ðtÞ2 � dÞx2ðtÞ � x1ðtÞ

� �
: (3)

Here d, r, and B are parameters, and CiðtÞ are uncorrelated,

statistically independent Gaussian white noise, satisfying

hCjðtÞi ¼ 0; hCjðtÞCkðt0Þi ¼ dj;kdðt� t0Þ: (4)

First let us consider the deterministic case, r ¼ 0. The

model has a fixed point at ðx1; x2Þ ¼ ð0; 0Þ, and the eigenval-

ues around this fixed point are

k6 ¼
1

2
ðd6

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � 4
p

Þ; (5)

indicating that the system experiences a Hopf bifurcation at

d¼ 0. When d < 0, the fixed point relaxes to the fixed point

with damped oscillation with the angular frequency

x‘ðdÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jd2 � 4j

p
=2, while when d > 0 and B > 0 the

model shows a stable limit cycle (van der Pol oscillator).

In the stochastic case with r > 0, however, the system

shows a sustained oscillation even in the linearly stable case,

d < 0, because the noise keeps activating the oscillation with

frequency x‘. This is the case of the linear p53 model intro-

duced in Ref. 13. When d > 0; r > 0 adds fluctuations on

the top of the stable oscillation around the limit cycle.

B. Setup

We investigate the entrainment behavior of the model,

focusing on the following three classes of parameter sets.

1. The limit cycle oscillator, with d > 0 and B > 0.

2. For the noise-induced oscillator, we consider the two

subcategories.

(a) The linear system with a stable fixed point, with d < 0

and B¼ 0, i.e., the equations are linear in x and the

fixed point is stable.

(b) The nonlinear system with a stable fixed point, with

d < 0 and B > 0, i.e., the fixed point is linearly stable

but the equations possess a nonlinear term.

When noise-induced oscillators are studied, normally

only linear terms are considered. However, in reality, there

are often nonlinear terms, which can play a role when dis-

tance from the stable fixed point jxj is sufficiently large. This

is the reason why we consider both linear and nonlinear

noise-induced oscillators.

When needed, numerical integration of stochastic differ-

ential equations are performed by using Euler method.

Figure 1 shows the typical behavior of the model in each

categories. The parameters are chosen so that the period and

amplitude are in similar range. Without noise, the limit cycle is

the only case with stable oscillation (Fig. 1(a)), while linear and

nonlinear systems with a stable fixed point exhibit damped

oscillations relaxing to the fixed point (Figs. 1(b) and 1(c)).

When noise is added, the oscillation is perturbed for limit cycle

oscillator (Fig. 1(d)); here, the noise level is chosen so that the

base oscillation is still recognizable. For linear and nonlinear

noise-induced oscillators (Figs. 1(e) and 1(f)), we observe oscil-

lations with the expected angular frequency (x‘ð�0:1Þ � 1).

In order to demonstrate the difference between the two, we

apply the exact same sequence of noises in both cases. We

observe a bigger difference when linear noise-induced oscilla-

tor have large (jxj � 1) amplitude, because the nonlinear term

becomes more important. Naturally this effect depends on the

value of B (data not shown).

We study these oscillators under the following two kinds

of external periodic perturbation.

1. Additive forcing

The first case is an additive forcing, in the form of

_x ¼ FðxÞ þ rCþ AðtÞ; (6)

with

AðtÞ ¼ 0

A

� �
cos Xt: (7)

2. Multiplicative forcing

The second case is an multiplicative forcing (also called

parametric forcing), in the form of

_x ¼ FðxÞ þ rCþMðtÞx; (8)
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where

MðtÞ ¼ 0 0

M 0

� �
cos Xt: (9)

In Sec. III, we first present the behavior of the model

under the additive forcing and then show the parallel results

for the multiplicative forcing.

III. RESULTS

A. Additive forcing

1. Linear case

In the case of the additive periodic forcing to a

D-dimensional linear deterministic system, we have in general

_xðtÞ ¼ LxðtÞ þ AðtÞ; (10)

where L is a coefficient matrix of the linearized equation and

A(t) is periodic function in time with a period T, satisfying

A(tþ T)¼A(t).
By expressing xðtÞ ¼

PD
j¼1 CjðtÞuj, with using eigenvec-

tors uj of the matrix L given by Luj ¼ kjuj, we can show that

in the long-time limit we have

lim
t!1

CjðtÞ ¼
X1

n¼�1

Fn

in
2p
T
� kj

ein2p
T t: (11)

Note that <ðkjÞ < 0 because the fixed point x¼ 0 is stable.

Fn is defined by the Fourier expansion of A(t) as

vt
j � AðtÞ ¼

X1
n¼�1

Fnein2p
T t;

where vt
j is the left eigenvector. Therefore the solution will

always be a periodic function of t with the period T in the

long time limit and contains only the frequencies that the

external forcing has. In other words, the system will be

always in a 1/1 entrained state if the perturbation is pure sine

or cosine wave.

When Gaussian white noise is added to Eq. (12), we

have

_xðtÞ ¼ LxðtÞ þ AðtÞ þ rCðtÞ: (12)

In this case, we can evaluate the auto-correlation of CjðtÞ for

large enough t0 (t0 � 1=j<kjj) as

hCjðt0ÞCjðt0 þ sÞi �
X1

n¼�1

X1
n0¼�1

FnFn0

in
2p
T
� kj

� �
in0

2p
T
� kj

� �

� eiðnt0þn0ðt0þsÞÞ2p
T � r2

2kj
e�kjs: (13)

Namely, the response contains oscillations with the frequen-

cies from forcing 2p=T and from the complex part of the

eigenvalue =kj, and the amplitude of the latter is propor-

tional to r.

2. Numerical results

We now investigate numerically the entrainment behav-

iors for all three categories. First we demonstrate the behav-

ior without noise and then show how the noise modifies this

behavior.

a. Without noise. Figure 2 illustrates typical entrain-

ment behaviors for additive forcing when noise is absent.

With a limit cycle oscillator (Figs. 2(a) and 2(d)), the sys-

tem’s angular frequency can entrain to the external angular

X with various ratios, while in the linear system, one-to-one

entrainment occurs (Figs. 2(b) and 2(e)). The nonlinear sys-

tem shows very similar behavior to the linear system, where

we see only one-to-one entrainment (Figs. 2(c) and 2(f)).

In order to define the system’s angular frequency in a

simple way, we adopt the polar coordinate ðr; hÞ using

x1ðtÞ ¼ rðtÞcos hðtÞ; (14)

x2ðtÞ ¼ rðtÞsin hðtÞ; (15)

as proposed in Ref. 26. We define hðtÞ so that ðhðtÞ � hð0ÞÞ=
2p gives the winding number, i.e., how many times the orbit

went around the fixed point by time t. The system’s angular

frequency is numerically calculated from

x ¼ 1

T
½hðTÞ � hð0Þ� (16)

for long enough T (typically 1000 times external forcing pe-

riod). With this definition, Fig. 2(a) shows the entrainment of

the ratio x=X ¼ 2=1, while Fig. 2(d) gives x=X ¼ 1=2.

FIG. 1. The time evolution of x1 (solid line)

and x2 (dashed line) when there is no exter-

nal forcing. (a) Limit cycle oscillator with

d¼ 2 and B¼ 10 without noise (r ¼ 0). (b)

Linear system with d¼�0.1 and B¼ 0 with-

out noise (r ¼ 0). (c) Nonlinear system with

d¼�0.1 and B¼ 1 without noise (r ¼ 0).

For (b) and (c), the initial condition is per-

turbed from the fixed point to demonstrate

the dumped oscillation. (d) Limit cycle os-

cillator with d¼ 2 and B¼ 10 with noise

(r ¼ 0:1). (e) Linear system with d¼�0.1

and B¼ 0 with noise (r ¼ 0:2). (f)

Nonlinear system with d¼�0.1 and B¼ 1

with noise (r ¼ 0:2).

023125-3 Mitarai, Alon, and Jensen Chaos 23, 023125 (2013)

Downloaded 10 Jun 2013 to 130.225.212.155. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://chaos.aip.org/about/rights_and_permissions



b. With noise. The addition of noise blurs the entrain-

ment behavior, as depicted in Fig. 3. For the limit cycle os-

cillator (Figs. 3(a) and 3(d)), we can see that the noise makes

the orbit irregular, which can make the phase to slip. In the

linear noise-induced oscillator for small external angular fre-

quency, we can clearly see that the noise induces the oscilla-

tion with angular frequency close to x‘ on top of one-to-one

entrainment behavior (Fig. 3(b)), as expected from the auto-

correlation Eq. (13). When X is larger than x‘, the external

angular frequency is more visible, because the noise r is

small compared to the amplitude A for this case, although

both frequencies should be present. The nonlinear noise-

induced oscillator behaves again very similar to the linear

case in entrainment behavior (Figs. 3(c) and 3(f)). The visi-

ble difference is a suppression of large amplitude by the non-

linear term.

c. “Devil’s staircase” and “Arnold’s tongues.” For

deterministic limit cycles, the plot of x=X vs X for a fixed

amplitude of external forcing shows an infinitely complex

structure with fractal nature, known as Devil’s stair-

case.15,16,26 For the present system of limit cycle oscillator

without noise, this is also observed as shown in Fig. 4(a)

(solid line). As noise increases, the phase slips occasionally;

therefore, narrow entrainment regions become harder to rec-

ognize (Fig. 4(a), dashed and dotted line). For the systems

with a stable fixed point, there is only one-to-one entrain-

ment for the no noise case (Fig. 4(b), solid line), while noise

induced oscillation around the entrained solution will add

some phase slips giving a change in the angular frequency

when the entrainment is not so strong, resulting in an escape

from the one-to-one ratio as shown in Fig. 4(b).

When entrainment regions for various values of x=X
are plotted in the A-X plain, it gives an “Arnold’s tongue”

structure for the deterministic limit cycles: The entrainment

regions widen as the external forcing amplitude A grows,

resulting in tongue-like shapes of the entrainment region,

when A is large enough the tongues start to overlap.15,16 This

FIG. 2. The time evolution of x1 (solid line) and x2 (dashed line) when there is additive external forcing (dotted line, A¼ 1). The external forcing has angular

frequency X ¼ 0:08 for (a)–(c), and X ¼ 1:7 for (d)–(f). (a), (d) Limit cycle oscillator with d¼ 2 and B¼ 10 without noise (r ¼ 0). (b), (e) Linear system with

a stable fixed point with d¼�0.1 and B¼ 0 without noise (r ¼ 0). (c), (f) Nonlinear system with a stable fixed point with d¼�0.1 and B¼ 1 without noise

(r ¼ 0). For the case with a limit cycle oscillator (a), (d), the system’s angular frequency can entrain to the external angular X with various ratios, while in the

linear and nonlinear systems with a stable fixed point case (b), (c), (e), (f) the system can only entrain to one to one ratio.

FIG. 3. The time evolution of x1 (solid line) and x2 (dashed line) when there is additive external forcing (dotted line, A¼ 1). The external forcing has angular

frequency X ¼ 0:08 for (a)–(c), and X ¼ 1:7 for (d)–(f). (a), (d) Limit cycle oscillator with d¼ 2 and B¼ 10 with noise (r ¼ 0:1). (b), (e) Linear noise-

induced oscillator with d¼�0.1 and B¼ 0 with noise (r ¼ 0:2). (c), (f) Nonlinear noise-induced oscillator with d¼�0.1 and B¼ 1 with noise (r ¼ 0:2). For

the limit cycle oscillator (a), (d), the noise makes the orbit irregular, and the phase sometime slips. In the linear noise-induced oscillator for small external

angular frequency, we can clearly see that the noise put the oscillation with angular frequency close to x‘ on top of one-to-one entrainment behavior (b).

When X is larger than x‘ (e), the external angular frequency is more visible, due to the smaller noise compared to the amplitude. The nonlinear noise-induced

oscillator behaves again very similar to the linear case in entrainment behavior (c), (f), except for the suppression of large amplitude.
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can be seen in the limit cycle oscillator without noise in Fig.

5(a). When noise is added, the phase of the oscillator some-

times slips, resulting in narrower tongues (Fig. 5(b)). For the

noise-induced oscillators (i.e., with a stable fixed point),

there exists only 1/1 entrainment without noise, and with

noise 1/1 entrainment is the only case that gives the tongue-

like structure, both for the linear and nonlinear cases (Figs.

5(c) and 5(d)). We see other ratios of entrainment “regions”

because for a given A with changing X, x=X changes contin-

uously outside of the entrainment region (e.g., Fig. 4(b)).

B. Multiplicative forcing

1. Linear case without noise

We next consider the multiplicative forcing

_xðtÞ ¼ LxðtÞ þMðtÞxðtÞ; (17)

where the matrix M(t) satisfies

Mðtþ TÞ ¼MðtÞ (18)

with T ¼ 2p=X. It is known from Floquet theory27 that the

solution matrix of this equation is expressed as

QðtÞ ¼ eKtUðtÞ; (19)

where

Uðtþ TÞ ¼ UðtÞ; (20)

and a general solution is the linear combinations of column

vectors consisting of Q(t). The eigenvalues of the matrix K,

called Floquet exponents, determine the stability of the solu-

tion: The solution will converge to the fixed point when the

real parts of the Floquet exponents are all negative and

diverges if some Floquet exponent have positive real parts.

Therefore, no entrainment behavior will be observed for a

linear noise-induced oscillator without noise under multipli-

cative forcing.

FIG. 4. “Devil’s staircase” for limit cycle oscillator (a) and linear and nonlinear systems with a stable fixed point (b) under additive forcing with A¼ 1. (a)

The limit cycle oscillator with d¼ 2 and B¼ 10 with r ¼ 0:01 (dotted line), r ¼ 0:1 (dashed line), and r ¼ 0 (solid line). (b) The systems with a stable fixed

point (d¼�0.1). For the case without noise r ¼ 0 (solid line), both linear (B¼ 0) and nonlinear (B¼ 1) systems show only one-to-one entrainment. With

noise, the noisy oscillations around the one-to-one entrained orbit is induced, as shown with r ¼ 0:2 (linear case with B¼ 0 is shown by dashed line, and non-

linear case with B¼ 1 is shown by dotted line).

FIG. 5. “Arnold’s tongue” with additive

forcing for limit cycle oscillator without

(a) and with (b) noise and for noise-

induced oscillator with noise for linear (c)

and nonlinear (d) case. The horizontal

axis is the external frequency X, and the

vertical axis is the forcing amplitude A0.
Entrainment is defined as x=X is within

1% of the given value. (a) The limit cycle

oscillator with d¼ 2 and B¼ 10 with

r ¼ 0:0, which shows standard “Arnold’s

tongue.” Noise (r ¼ 0:1) make phases to

slip, resulting in smaller region of entrain-

ment (b). For noise induced oscillator

with noise (c: d¼�0.1, B¼ 0, r ¼ 0:2,

d: d¼�0.1, B¼ 1, r ¼ 0:2), the tongue-

like triangle structure is observed only for

1/1 entrainment.
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In Fig. 6, we show numerically calculated the maximum

real part of the Floquet exponents kR for Eq. (17) with Eq.

(9) with d¼�0.1 and B¼ 0, as a function of amplitude of

forcing M and external frequency X. When kR < 0 (dark

blue region), jxj will exponentially decay to zero; otherwise,

jxj will diverge except for the marginal case kR ¼ 0.

2. Numerical results

a. Without noise. Figure 7 shows the entrainment

behaviors for multiplicative forcing. For the limit cycle os-

cillator (Figs. 7(a) and 7(c)), there is no qualitative difference

from the additive noise case, i.e., the system shows entrain-

ment with various frequency ratio x=X ¼ P=Q. For the lin-

ear system with a stable fixed point without noise, on the

other hand, the system can either decay to the fixed point

(Fig. 7(b)) or diverge (Fig. 7(d)), which can be predicted

from the Flouquet exponents (Fig. 6). When nonlinear term

is added, it does not prevent the decay (Fig. 7(c)), but the

divergent behavior is suppressed, and system shows the

entrainment behavior (Fig. 7(f)). The frequency ratio x=X is

not necessarily 1/1; the example in Fig. 7(f) gives

x=X ¼ 3=2.

b. With noise. When noise is added, the behavior

changes drastically in the noise-induced oscillators, as shown

in Fig. 8. The noise can induce the oscillation with the angu-

lar frequency close to x‘ for the case where the no-noise sys-

tem would decay to the fixed point (Figs. 8(b) and 8(c)). On

the other hand, in the linear noise-induced oscillator, adding

noise does not prevent divergence (Fig. 8(e)). For the param-

eters where no-noise system would entrain, the noise blurs

the entrainment due to occasional phase slip for both limit

cycle oscillator (Figs. 8(a) and 8(c)) and nonlinear noise-

induced oscillator (Fig. 8(f)).

c. “Devil’s staircase” and “Arnold’s tongue.” We also

study the “Devil’s staircase” for the multiplicative forcing.

For the limit cycle oscillator without noise, we again see

proper devil’s staircase, where noise will blur the entrain-

ment behaviors (Fig. 9(a)). For the noise-induced oscillators,

only the nonlinear case is studied because the linear case

may diverge depending on the parameter values. Without

noise, we see discrete finite regions of entrainment (Fig. 9(b)

squares), while noise induces the oscillations in the decaying

region resulting in a continuous line (Fig. 9(b) dashed line).

The Arnold’s tongue structure for the limit cycle is simi-

lar to those in the additive forcing case, as seen in Figs. 10(a)

and 10(b). The Arnold’s tongues for all the entrainment

ratios are observed without noise, and noise makes the

regions smaller. For the nonlinear system with a stable fixed

point without noise, there are entrainment regions for a few

rational ratios, but the ones that appear are problem specific,

for instance, in the present case, the x=X ¼ 1=3 is not

observed at all in Fig. 10(c). With noise (Fig. 10(d)), the

entrainment regions shrinks, but at the same time the system

can occasionally pass the given ratio of x=X, resulting in

narrow line of “fake” entrainment.

FIG. 6. Maximum real part of the Floquet exponent kR for various M and X,

for the linear system with stable fixed point (d¼�0.1 and B¼ 0) without

noise (r ¼ 0).

FIG. 7. Without noise: The time evolution of x1 (solid line) and x2 (dashed line) when there is multiplicative external forcing (dotted line, M¼ 1). The external

forcing has angular frequency X ¼ 0:5 for (a)–(c), and X ¼ 0:6 for (d)–(f). (a), (d) Limit cycle oscillator with d¼ 2 and B¼ 10 without noise (r ¼ 0). (b), (e)

Linear system with a stable fixed point with d¼�0.1 and B¼ 0 without noise (r ¼ 0). The transient behavior is shown. Note that the y-range in (e) is different

from other plots. (c), (f) Nonlinear system with a stable fixed point with d¼�0.1 and B¼ 1 without noise (r ¼ 0). The limit cycle oscillator shows entrain-

ments (a), (d), but the linear system either decays to zero (b) or diverges (e). The nonlinear system either decays (c) or entrains (f).
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FIG. 8. With noise: The time evolution of x1 (solid line) and x2 (dashed line) when there is multiplicative external forcing (dotted line, M¼ 1). The external

forcing has angular frequency X ¼ 0:5 for (a)–(c), and X ¼ 0:6 for (d)–(f). (a), (d) Limit cycle oscillator with d¼ 2 and B¼ 10 with noise (r ¼ 0:1). (b), (e)

Linear noise-induced oscillator with d¼�0.1 and B¼ 0 with noise (r ¼ 0:2). Note that the y-range in (e) is different from other plots. (c), (f) Nonlinear noise-

induced oscillator with d¼�0.1 and B¼ 1 with noise (r ¼ 0:2). The limit cycle oscillator shows entrainments with some phase slips (a), (d). For the linear

and nonlinear system, the noise induces the oscillatory behavior, for the parameters where the system would decay without noise (b), (c).

FIG. 9. “Devil’s staircase” for limit cycle oscillator (a) and nonlinear noise-induced oscillator (b) under multiplicative forcing with M¼ 1. (a) The limit cycle

oscillator with d¼ 2 and B¼ 10 with r ¼ 0:01 (dotted line), r ¼ 0; 1 (dashed line), and r ¼ 0 (solid line). (b) The nonlinear system with a stable fixed point

with d¼�0.1 and B¼ 1. For the case without noise r ¼ 0 (solid line), the decaying region where x goes to the fixed point is not shown, resulting in three dis-

crete entrainment region. With noise, oscillation is induced in the decaying regime also, resulting in continuous line as shown for r ¼ 0:2 (dashed line).

FIG. 10. “Arnold’s tongue” with multipli-

cative forcing for limit cycle oscillator

without (a) and with (b) noise and for non-

linear system with a stable fixed point

without (c) and with noise (d). The hori-

zontal axis is the external frequency X, and

the vertical axis is the forcing amplitude

M. Entrainment is defined as x=X is within

1% of the given value. (a) The limit cycle

oscillator with d¼ 2 and B¼ 10 with r ¼
0 shows standard “Arnold’s tongue,” while

the noise (r ¼ 0:1) makes the region of

entrainment smaller (b). For nonlinear

noise induced oscillator (d¼�0.1, B¼ 1

(c), there are a few entrainment regions for

no noise case (r ¼ 0), but not all the ratios

are observed. For (c), the exponentially

decaying case were excluded numerically

by the following way: The equations are

integrated with initial condition x(1)¼ 1

and x(2)¼ 0, and if the average amplitude

for 390p=X < t < 400p=X is less than

90% of the average amplitude for

200p=X < t < 210p=X, then the solution

is excluded.
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IV. BIOLOGICAL EXAMPLE: ENTRAINMENT
OF TNF-DRIVEN NF-jB SYSTEM

In this section, we study a biological example, TNF-driven

NF-jB system, to confirm the generality of the entrainment

behavior for the limit cycle system under weak noise.

The system has been studied for the deterministic case

in Ref. 25. NF-jB is a transcription factor, and it has been

verified experimentally that NF-jB level in the nucleus

shows sharp oscillations after treatment with TNF.8,9 The

interaction network involves a negative feedback loop

between the NF-jB and an inhibitor, IkBa, which is the

main mechanism for the oscillations. TNF modulates the

state of the IkBa and hence affects the oscillation. TNF can

be added externally to the cell; therefore, it can serve as a

possible probe to study the entrainment, i.e., we can use TNF

level as the external forcing term. In Ref. 25, the system was

modeled by 5 dimensional coupled nonlinear ordinary differ-

ential equations (ODEs)

dx

dt
¼ Fðx; ½TNF�Þ;

where

F1 ¼ kNinðNtot � x1Þ
KI

KI þ x3

� klinx3

x1

KN þ x1

; (21)

F2 ¼ ktx
2
1 � cmx2; (22)

F3 ¼ ktlx2 � ax4ðNtot � x1Þ
x3

KI þ x3

; (23)

F4 ¼ ka½TNF�ðItot � x4 � x5Þ � kix4; (24)

F5 ¼ kix4 � kpx5

kA20

kA20 þ A20½TNF� : (25)

The variable x1 denotes the nuclear NF-jB level, and [TNF]

denotes the TNF level, which we shall change to a periodi-

cally external forcing onto the system. The biological mean-

ing of the variables and parameter values are summarized in

Table I. Note that [TNF] appears twice in Eq. (25) in the

terms multiplied with x; therefore, this is an example of mul-

tiplicative forcing. We study this system with adding a

Gaussian white noise in each term, i.e.,

dx

dt
¼ Fðx; ½TNF�Þ þ r C:

Figures 11(a)–11(c) show the spontaneous oscillation of

nuclear NF-jB, when [TNF] is kept constant at [TNF]¼ 0.5,

without (a) and with noise (b)–(c). We see clear periodic os-

cillation with the period around 110 (minutes). We then

modulate the [TNF] level around this basal level25 as

½TNF� ¼ 0:5þMTNF sin ðXtÞ: (26)

This has been studied in the no-noise case by Jensen and

Krishna,25 and it was found that the entrainments of various

ratios can occur, when the frequency of the NF-jB level is

determined based on the frequency of the peaks. Figure

11(d) shows an example of 1/2 entrainment, for MTNF

¼ 0:05 and X ¼ 0:0297, in the deterministic case. With

weak enough noise, the entrainment is maintained (Fig.

11(e)), but larger noise induces phase slips (Fig. 11(f)), as

has been seen in the Van der Pol system.

In Fig. 12, several Devil’s staircases are shown with and

without noise. In Ref. 25 the Arnold tongues have been cal-

culated, and it has been demonstrated that general P/Q

entrainments occur. A characteristic observation to this sys-

tem is that the tongues overlap easier for larger external

TABLE I. Variables and the parameters in the TNF-driven NF-kB oscilla-

tion, from Ref. 25.

x1 Nuclear NF-kB level

x2 IkB mRNA level

x3 Cytoplasmic IkB protein level

x4 Active IKK level

x5 Inactive IKK level

Ntot Total NfkB level, 1 lM

Itot Total IKK level, 2.0 lM

kNin 5.4 min�1

KI 0.035 lM

klin 0.018 min�1

KN 0.029 lM

kt 1.03 lM�1 min�1

cm 0.017 min�1

ktl 0.24 min�1

a 1.05 lM�1

ka 0.24 min�1

ki 0.18 min�1

kp 0.036 min�1

kA20 0.0018 lM

A20 0.0028 lM

FIG. 11. The oscillations and entrainment

for TNF-driven NF-jB system. The left

panel shows spontaneous oscillations with

[TNF]¼ 0.5 for (a) no noise (r¼ 0) case and

(b) r¼ 0.001, (c) r¼ 0.002. The right panel

shows entrainments with MTNF¼ 0.05 and

X¼ 0.0297 with (d) no noise (r¼ 0) case

and (e) r¼ 0.001, (f) r¼ 0.002. Solid lines

show 3x1, and dashed lines shows [TNF].
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frequency; e.g., MTNF � 0:04 for 1/3 and 1/2 tongues to

overlap, while the 2/1 and 5/2 tongues do not overlap even at

MTNF ¼ 0:1. When the Devil’s staircase are calculated for

overlapping region, non-smooth or irregular jumps between

the steps can be seen and is thus dependent on initial condi-

tions in general. This is visible in our data in Fig. 12, for

large MTNF and larger X. When weak noise is added, it ena-

bles the system to jump to other overlapping tongues, which

results in irregular behavior around the entrainment regions.

As the noise becomes larger, the entrainment is again

smoothed away by phase slips.

V. SUMMARY AND DISCUSSION

Our motivation behind this work was to ask: Can one by

applying an external periodic forcing and studying entrain-

ment determine whether an oscillating system is driven by a

linear mechanism (noise induced oscillator) or a non-linear

mechanism (limit cycle oscillator)? Our answer to this ques-

tion is generally yes. Our obtained results on entrainment

behavior of oscillators are summarized in Table II.

When the forcing is additive, there is clear difference

between the limit cycle oscillators and the noise-induced

oscillators. The former can entrain to any frequency ratio,

while the latter shows only one-to-one entrainment. Therefore,

if one see entrainment to P=Q 6¼ 1 ratio, under additive forc-

ing, it is a sign of limit cycle oscillator.

When the forcing is multiplicative, the non-linear noise-

induced oscillators can also show P=Q 6¼ 1 ratio entrain-

ment, but not necessarily all of the rational ratios. If the

system is noise-induced oscillator and the non-linear term is

small, one might be able to capture the diverging tendency

of the amplitude, because saturation happens when the am-

plitude is large enough to make the non-linear term relevant.

In such a case, one might see big difference in amplitude for

a fixed M with varying X.

We thus urge experiment to be performed on oscillating

biological systems. It is well known that some proteins (p53,

NF-kB, Wnt) can oscillate in cells under stress responses. In

the case of p53, both non-linear11,12 and linear models have

been proposed.13 By applying an external time dependant

signal such as DNA damaging radiation or drugs which spe-

cifically perturb the p53 circuit, it might be possible to

entrain the internal oscillation and draw conclusions on the

basis of our results summarized in Table II. In the case of

FIG. 12. “Devil’s staircase” for TNF-driven

NF-jB system without and with noise, with

(a) MTNF ¼ 0:006, (b) MTNF ¼ 0:02, (c) MTNF

¼ 0:05, and (d) MTNF ¼ 0:1. The entrainment

regions are calculated from the frequency of

the peaks in the deterministic case. In the finite

noise case, we define the nuclear NF-jB peak

as follows: We first determined the maximum

value Nmax and the minimum value Nmin of x1

of the steady state in the deterministic simula-

tion for the given parameters. We then calculate

two thresholds, NH ¼ ðNmax þ NminÞ=2 and

NL ¼ ðNmax þ 3NminÞ=4. Next we perform the

corresponding simulation with finite r. We

define a switching event from the “low” state to

“high” state when x1 exceeds NH, while the

reverse switching happens when x1 becomes

smaller than NL. The number of peaks are cal-

culated from how often the “high” states are

reached. This way we can filter out the wiggly

motion due to the noise and thus define the

overall peak.

TABLE II. Summary of entrainment behavior of oscillators under additive and multiplicative forcing. A and M in the “force” column represent additive and

multiplicative forcing, respectively.

Oscillator No noise With noise Force

Limit cycle Entrainment to any P/Q Entrainment to any P/Q with phase slips A

Entrainment to any P/Q Entrainment to any P/Q with phase slips M

Linear One-to-one entrainmenta One-to-one entrainmenta with phase slips A

Noise-induced Decay or diverge Noise-induced oscillation with �x‘ M

or diverge

Nonlinear One-to-one entrainmenta One-to-one entrainmenta with phase slips A

Noise-induced Small decay or Noise-induced oscillation with �x‘ or M

Some P/Q entrainment Some P/Q entrainment with phase slips

aAll the frequencies contained in the forcing can be observed.
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NF-kB oscillations, one might be able to entrain the internal

oscillation by an externally varying cytokine (like TNF) sig-

nal.25 Potentially, it could lead to a way of controlling the

DNA-repair pathway.

The present research also opens for further theoretical

investigations. The P=Q 6¼ 1 entrainment of the winding

number for a nonlinear noise-induced oscillator with multi-

plicative forcing is a purely numerical observation, and fur-

ther research is needed to refine the condition when this can

occur. We did not study the strong noise case either, and it

would be interesting to investigate in more details the active

role of noise in the entrainments of limit cycles. In many bio-

logical examples, where dynamics are molecular reaction

based, additive Gaussian white noise is not appropriate for

large noise because it does not reflect the noise amplitude de-

pendence on the molecule number: instead either a concen-

tration dependent noise amplitude or a stochastic treatment

of molecule numbers should be performed.

Finally, we would like to briefly comment on “noise-

induced” oscillations by mechanisms other than the linear

model studied here. It has been long known that when noise

is added to excitable system with a stable fixed point, regular

oscillatory behaviour can be observed at a certain level of

noise (coherence resonance).28,29 Since the nonlinearity

plays an important role in an oscillation, such a system

shows mode-locking behaviour similar to the deterministic

nonlinear oscillators.30 More recently, in gene network mod-

els with negative feedback, it has been shown that the noise

due to finiteness of the number of molecules can modify the

condition for oscillatory behaviour31 or enhance the oscilla-

tion.32 It would also be interesting to see the entrainment

behaviour in such systems.
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