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Three is much more than two in coarsening dynamics of cyclic competitions
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The classical game of rock-paper-scissors has inspired experiments and spatial model systems that address the
robustness of biological diversity. In particular, the game nicely illustrates that cyclic interactions allow multiple
strategies to coexist for long-time intervals. When formulated in terms of a one-dimensional cellular automata, the
spatial distribution of strategies exhibits coarsening with algebraically growing domain size over time, while the
two-dimensional version allows domains to break and thereby opens the possibility for long-time coexistence. We
consider a quasi-one-dimensional implementation of the cyclic competition, and study the long-term dynamics
as a function of rare invasions between parallel linear ecosystems. We find that increasing the complexity from
two to three parallel subsystems allows a transition from complete coarsening to an active steady state where
the domain size stays finite. We further find that this transition happens irrespective of whether the update is
done in parallel for all sites simultaneously or done randomly in sequential order. In both cases, the active
state is characterized by localized bursts of dislocations, followed by longer periods of coarsening. In the case
of the parallel dynamics, we find that there is another phase transition between the active steady state and the
coarsening state within the three-line system when the invasion rate between the subsystems is varied. We identify
the critical parameter for this transition and show that the density of active boundaries has critical exponents that
are consistent with the directed percolation universality class. On the other hand, numerical simulations with the
random sequential dynamics suggest that the system may exhibit an active steady state as long as the invasion
rate is finite.
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I. INTRODUCTION

Coarsening is important in a number of dynamical sys-
tems [1,2] and may be used to differentiate observed phe-
nomenology into appropriated universality classes [3]. It
appears in decay towards equilibrium in diverse phenomena
such as spinodal decomposition, segregation of grains [4],
opinions [5], languages [6], and populations [7–9], as well as
in the ongoing tendency of biological competition to decrease
species abundance in ecological models [10,11].

The coarsening has been extensively studied for voter
models [3,12] and extended voter models with cyclic competi-
tion, especially for the three-species cyclic competition or the
rock-paper-scissors game [13,14]. For the three-species com-
petition in one dimension, the number of separated populations
coarsens as t−3/4 for the random sequential dynamics, where t

counts the number of update attempts per site. In contrast, the
parallel dynamics provides a slower coarsening characterized
by t−1/2 [13,14]. One can counteract the coarsening in one
dimension by introducing an explicit mutation rate between
species [15] or by introducing mobility [16], both of which
can lead to an active steady state with the coexistence of all
three species. Another more widely studied way is to extend
it to the two-dimensional space, where the species domains
are occasionally broken up into smaller patches, which in
turn allow the long-time coexistence of all three species [17].
This has motivated the extensive study of nonhierarchical
ecosystem models as a mechanism to support the coexistence
of species in ecology research [10,18–23], and cycles have
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been proposed to act as engines of increased diversity in
two-dimensional ecologies [24,25].

In this paper, we consider the cyclic predatory relations
between species in a quasi-one-dimensional ecology. We
demonstrate that when one extends a simple one-dimensional
ecology to three parallel ecologies with weak coupling
between them, one obtains a hugely increased lifetime of
all species. We find that this increase in lifetimes is closely
connected with ongoing “fragmentationlike” events where
invasion from one linear ecology to another initiates a positive
feedback driven by a growing divergence to the third linear
ecology. As the ecologies diverge, more successful invasions
take place between them. This opens the possibility for the
creation of new patches of species within each ecology, and
thereby opens the possibility for a system where the overall
invasion activity remains high. We quantitatively characterize
the transition from the coarsening state to the active state
in the parallel update case by changing the invasion rate
between linear subsystems, and we show that the critical
behavior is consistent with the directed percolation (DP)
universality class [26,27]. We further demonstrate that the
random sequential update tends to make the system reach an
active steady state as long as the invasion rate is finite.

II. COUPLED LINEAR SYSTEMS
OF CYCLIC COMPETITION

We consider a system composed of several one-dimensional
lattices that each have a length L in the x direction. We focus,
in particular, on a stack of n = 3 of these systems positioned
on top of each other in the y direction, as shown in Fig. 1(a).
Periodic boundary conditions are imposed in both the x and
y directions. The simulation is initialized by assigning each
lattice site to be occupied by one of the three species A, B, or
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FIG. 1. Model description and spatiotemporal plot with n = 3.
(a) Schematic description of the model. (b) Spatiotemporal plot from
the parallel dynamics with p = 0.000 25 and L = 5000. The left
panel shows the whole system until t = 5000 for y = 1. The three
panels to the right show a magnification of part of the system (marked
as white box in the left panel) at the corresponding locations for
y = 1,2,3. (c) Same as (b), but for random sequential update with
p = 0.05 and L = 1000.

C with equal probability. The species interaction is cyclic as
given by the following rule:

A + B → 2A, B + C → 2B, C + A → 2C. (1)

The interactions are limited to the nearest-neighbor sites, and
further limited in the vertical direction by a parameter p that
controls the vertical invasion rate relative to the interaction
rate along the x direction.

The update can be either parallel dynamics or random
sequential dynamics. In the case of parallel dynamics, all
of the bonds in the x direction are updated simultaneously
according to Eq. (1). For example, if the configuration is
ABC, then after one update B will be replaced with A, and C

will be replaced with B, simultaneously; therefore, boundaries
between different species that move in the same direction will
never collide. Then bonds in the vertical direction are selected
with probability p per bond (i.e., pnL bonds are selected on
average) and updated sequentially according to Eq. (1). This
defines one time step in the model.

The random sequential dynamics is defined as follows: (i)
Choose a random bond in the x direction and update its two
neighbors according to the reactions in Eq. (1). (ii) With a
probability p, choose a random bond in the vertical direction
and update its two neighbors according to the reaction in
Eq. (1). One time step is defined here as nL repetitions of
(i) and (ii).

Irrespective of the updating rule, the system consists of
domains that each consist of populations of one of the three
species. These domains are separated by domain boundaries

that move either left or right, as one of the populations
systematically displaces the other.

In the pure one-dimensional case, i.e., n = 1, coarsening
happens through the collision between two moving bound-
aries. Such collisions eliminate the population located in the
domain between the boundaries. For parallel dynamics, the
boundaries move at the same speed and coarsening only occurs
through the collision between a right moving boundary and a
left moving one, resulting in the annihilation of both. For
the random sequential update, the collision of two boundaries
moving in the same direction is also possible due to the
fluctuating speed. Such a collision creates one new boundary
that moves in the opposite direction of its two parents. This
makes the coarsening in the random sequential dynamics faster
than that in the parallel dynamics [13].

When parallel linear systems are added, occasional interac-
tion between the subsystems can create new boundaries. When
n = 2, the introduction of p can increase the fragmentation
of the domains temporarily in early time compared to the
n = 1 case, but in the long term the synchronization of
the two subsystems are enhanced, as shown in the example
spatiotemporal plots in Figs. 2(a) and 2(b). The time evolution

(a)

(b)

FIG. 2. Simulation results for n = 2. (a) Spatiotemporal plot for
each subsystem with the parallel dynamics with p = 0.00025 and
L = 5000. (b) Same as (a), but for random sequential update. (c),(d)
The boundary density ρb as a function of time for (c) the parallel
dynamics and (d) the random sequential dynamics with L = 224 for
various values of p.
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FIG. 3. Qualitative difference between the (a) n = 2 case and (b)
n = 3 case. The vertical transfers are shown as black arrows. (a) In
the initial situation, the difference in the considered region is only one
site. Outside of the considered region, if there are green B species
to the right, they come in to the considered region in later time by
eliminating the blue C species. The red A species cannot come in from
the right, since the boundary between blue C and red A moves to the
right. Similarly, from the left of the considered region, only blue C

can come in to the considered region by eliminating the red A species.
As the time goes, the red A species will disappear from the considered
region, allowing the green B to occupy all of the considered sites in
the long run. (b) When n = 3, the considered region is able to keep
all three species even starting from a very similar situation as (a),
opening the possibility for the creation of new boundaries.

of the density of the domain boundaries ρb, defined as the
number of domain boundaries in one of the subsystems divided
by L, is shown for n = 2 for the parallel dynamics [Fig. 2(c)]
and the random sequential dynamics [Fig. 2(d)]. We see that
the coarsening continues until only the boundaries moving
in parallel are left in the parallel dynamics or until only a
small number (order 10) of boundaries are left in the random
sequential dynamics where the noise masks the coarsening.
We could not find a value of p that can stop the coarsening,
either in the parallel or the random sequential update.

Interestingly, we find qualitatively different results for
n = 3; see Figs. 1(b) and 1(c). Irrespective of whether one
considers parallel or random sequential dynamics, some low p

values make the three-line system develop into an active steady
state. In this state, the coarsening described above is balanced
by ongoing fragmentation events that create new domains.
These events are initiated by occasional small differences
between the three linear ecosystems, which subsequently cause
larger divergences between the systems. We also see this active
steady state behavior for n > 3 systems (data not shown),
demonstrating that it is the transition from n � 2 to n � 3 that
fundamentally changes the overall system behavior.

Let us consider the difference between the n = 2 case and
the n = 3 case. In order to stop coarsening, there should be
possibilities for amplification of the difference between the
subsystems over time. The only nontrivial single site difference

is the situation shown in Fig. 3(a). This initial state allows
a temporal increase of the difference due to the diverging
boundary motions. However, at some point, a vertical invasion
of a species C (blue) from subsystem 1 to subsystem 2 happens,
making both subsystems dominated by species C (blue). The
only possibility to change this convergence to uniformity is
the species B (green) that could come in from the right side
of subsystem 1 [because it may not have species A (red) that
protects against invasion of B (green)]. But then later a vertical
invasion would trigger a spread of the species B (green) for
both subsystems, allowing the species B (green) to occupy
all of the considered sites. Therefore, one cannot keep the
difference between the subsystems with n = 2, and the system
will always tend to coarsen over the long time.

On the contrary, a similar situation for the n = 3 case
can keep the difference among the subsystems. As shown in
Fig. 3(b), the additional third subsystem can keep species A

(red) in the considered region, and the configuration in which
all three species are present in the considered region enables
various ways to create new boundaries. The ability to keep all
of the species in the same region is needed to keep the active
steady state.

The transition to the active steady state in the n = 3 case
is quantitatively different between the parallel and random
sequential update. Note that Fig. 1(b) for parallel dynamics
shows the result with p = 0.00025 with L = 5000, while
Fig. 1(c) for random sequential dynamics shows the result
with p = 0.05 with L = 1000. We also find some qualitative
difference in the transition between the coarsening state and
the active state when varying p. In the subsequent sections, we
further quantify the coarsening dynamics for the two updating
rules.

III. PARALLEL DYNAMICS

In the case of the parallel dynamics, there is no noise in the
horizontal movement of the boundaries. Thus if we initially
synchronize all three subsystems (i.e., S1

i = S2
i = S3

i for all
i, with Sk

i being the species name at the site with x = i and
y = k), then the subsystems will stay synchronized and the
dynamics will be identical to the one-dimensional system,
irrespective of the value of p. Therefore, to maintain the active
steady state, there must remain differences among the three
subsystems, where a case study was already shown in Fig. 3(b).

Figure 4(a) shows the motion of the boundaries (Sk
i �= Sk

i+1)
from the simulation shown in Fig. 1(b). The boundaries
between the domains in subsystem 1 are shown. The green
symbols mark boundary sites where one of the subsystems
is different, whereas thick blue symbols mark sites where
all subsystems differ. The red crosses show the successful
invasions of the species to line 1 from subsystem 2 or 3. We
observe that such vertical transfers create new interfaces.

The competition between the gradual alignment and the
creation of new boundaries by vertical invasion causes a
transition in behavior between a low p case, where there
is a sustained activity, to a high p case, where the system
persistently coarsens. Figure 4(b) shows the development
in the boundary density ρb for different values of p in a
large system. When p is increased from p = 0.000 005 to
p = 0.000 25, we see that the system settles in a steady state
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FIG. 4. (a) Development of used boundaries, with invasion prob-
ability p = 0.00025. Thin black symbols mark the points where the
boundary sites have the same species in all three subsystems. Thick
green circles mark boundary sites where one subsystem deviates,
whereas thick blue circles mark boundary sites where all subsystems
carry different species. The red crosses show events where species
from subsystem 2 or 3 invade subsystem 1. (b) Density of boundaries
per subsystem ρb simulated with system size L = 220 and n = 3. The
p = 0 case is equivalent to the n = 1 case with long-time coarsening
as t−1/2. Inset: The average domain size in the active steady state
1/ρss

b vs p. The dashed line shows 2
√

2/
√

p (see text).

with constant number of domains (boundaries). Also we see
that an increased p increases the number of such boundaries.
However, further increase to p = 0.001 shows the collapse of
the active steady state to the coarsening mode that is also found
for the case of isolated subsystems (p = 0). This is because
high p makes gradual alignment happen too often compared
to the creation of new boundaries. Then, in the high p case,
all of the subsystems act as the same in the long term, which
is equivalent to the one-dimensional case.

Considering the system in an active steady state, we can
estimate the average time �t it takes between the first creation
of divergent boundaries at time t∗ [an event such as the vertical
transfer in Fig. 3(b)] to the first transfer of divergent states
among the three subsystems. This time is given by the transfer
rate p per site in a linearly growing divergent region between
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FIG. 5. (a) Large-scale behavior of the vertical transfer events
for parallel update. The red dots show the invasions of species to
subsystem 1 from subsystem 2 or 3. The figure shows a part of a
L = 1 000 000 system. The left panel is for p = 0.000 25 and the
right panel is for p = 0.0005. (b) Scaling plot for the simulations of a
system size L = 226 using p values close to the critical invasion rate
pc. We fitted this to be pc = 0.000 471 and used 1+1 dimensional
DP-scaling exponents δ = 0.0159 and ν|| = 1.733 for rescaling. The
inset shows the time evolution of ρ without such rescaling. (c) Finite
size scaling plot at p = 0.000 475 with z = 1.581. The inset shows
the time evolution of ρ without rescaling.

two subsystems. Assuming that the event occurs when the
cumulative probability is one, we expect

∫ t∗+�t

t∗
ptdt ≈ 1,

which gives �t ≈ √
2/p. As the boundary motion is ballistic,

a new transfer occurs between a divergent region of size �� ≈
2�t ≈ 2

√
2/p. Or said in another way, then the average steady

state domain size for small p should scale as ��, and one
indeed sees it in the inset of Fig. 4(b).

The spatiotemporal plots of successful vertical invasions
are shown in Fig. 5(a) for p = 0.000 25 (left) and p =
0.0005 (right). One observes ballistic lines that follow the
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propagating boundaries until they occasionally disappear due
to local synchronization among the three subsystems. Also,
one observes the occasional creation of new boundaries from
old ones. These creation events seem to occur as dense bursts
of activity. The large-scale structure of this spreading birth and
death process reminds us of the directed percolation (DP) class
of models in 1+1 dimension [27].

For small p [Fig. 5(a), left], the alignment is so slow that
vertical transfer dominates and activity is sustained. At large
p values, the faster alignment between the three subsystems
makes it more difficult to maintain sufficient divergence to
sustain on-going vertical transfer events [Fig. 5(a), right] and
ultimately the whole system aligns to form a few parallel
moving domains. It should be noted that the smallest “unit” of
this DP-like structure is not one site, but is instead given by
the length and time scale of 1/p ∼ 103.

We conjecture that the transition from the active state to the
coarsening state belongs to the DP universality class. Note that
the absorbing state at large p is the state where all three sub-
systems are synchronized, still leaving the possibility for some
diversity with some moving but synchronized boundaries. We,
therefore, chose to study the density of the active sites ρ,
defined as the density of the boundaries that contains sites
which are not completely aligned with other subsystems. The
development of ρ in the inset of Fig. 5(b) illustrates transient
coarsening up to t ∼ 104, after which it changes to either a
steady state density or collapses to zero density. We rescaled
these data by using 1+1 dimensional DP exponents [27,28]
δ = β/ν‖ = 0.0159 and ν‖ = 1.733. By fitting the critical p

at the transition, pc, to 0.000 471, we obtain a data collapse
that is consistent with the DP-universality class, except for
the initial transient regime [Fig. 5(b)]. Figure 5(c) shows
the finite size scaling using another DP-scaling exponent
z = ν‖/ν⊥ = 1.581. Thus both the time coarsening and the
finite size dependence are consistent with the DP-universality
class.

IV. RANDOM SEQUENTIAL DYNAMICS

The behavior of the random sequential dynamics is more
complicated because three subsystems can spontaneously
desynchronize due to the randomness of the movement of
the boundaries in the respective subsystems. For example,
if all three subsystems are locally identical with two left
moving interfaces ABC each, it is possible that the two
boundaries in subsystem 1 merge spontaneously to make
AAC at the next time step. This suddenly creates one right
moving interface, very similar to the situation in Fig. 3(b),
allowing further diversification. Collapse of the interfaces
that are moving in the same direction is the reason why the
random sequential dynamics coarsens faster than the parallel
dynamics in a one-dimensional system. With vertical coupling,
however, it also provides an additional way to create more
boundaries.

First of all, this allows the three-line system to maintain an
active steady state for much higher p values than in the parallel
update case, a robustness that reflects the more frequent
diversification events. Furthermore, the fully synchronized
state is no longer an absorbing state. Numerically this seems
to result in the loss of a clear transition with changing value
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FIG. 6. (a) Large-scale structure of the vertical transfer events for
L = 100 000 with random sequential update. The red dots shows the
invasion of species to subsystem 1 from subsystems 2 and 3. The
left panel shows p = 0.0005 and the right panel shows p = 0.25.
(b) Density of interface per subsystem with L = 220 and n = 3. The
random sequential update for p = 0 (equivalent to n = 1, with long-
time behavior t−3/4), p = 0.0005,0.05,0.25, and 0.5. Inset shows the
average domain size in the steady state 1/ρss

b as a function of p. The
data for p = 0.3 was obtained from the simulation with L = 224.

of p. This manifests itself in the spatiotemporal plot of the
successful invasion to subsystem 1 from other subsystems
shown in Fig. 6(a). In contrast to the parallel dynamics
case in Fig. 5(b), we see continuous ballistic trajectories that
closely follow the moving domain boundaries in one of the
subsystems. This is because the random fluctuations of the
boundary motions keep desynchronizing the subsystems to
allow vertical transfers, until the boundary disappears. In other
words, in the random update case, an active site can only be
annihilated by meeting another active site. This in itself is
qualitatively different from the DP-universality class.

The time evolution of the boundary density ρb is shown
in Fig. 6(b). The p = 0 (pure one-dimensional) case shows
coarsening that declines as t−3/4 in the long-time limit.
Introducing a small finite p increases ρb compared to the
p = 0 case. Increasing p to 0.0005 and further to 0.05 allowed
the system to reach a steady state with a constant ρb. Further
increase of p decreased ρb at the steady state, but no sudden
collapse was observed. The corresponding nonmonotonous
behavior of the average steady state domain size 1/ρss

b as a
function of p is shown in the inset. Simulations with larger
p always allowed us to find correspondingly larger systems
with an active steady state within the range that we could test
numerically (we tried up to size L = 226).
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V. DISCUSSION

We have shown that the transition from coarsening of do-
mains of the rock-paper-scissors game to an active steady state
with a finite level of interface density requires at least three
coupled linear subsystems. With such systems, it becomes
difficult to synchronize all three, which in turn gives rise to the
creation of new domains through the mutual invasions.

With the parallel dynamics, the complete synchronization
of the three linear subsystems acts as an absorbing state, and the
system exhibits a transition from the active steady state where
subsystems never synchronize to the absorbing state. We have
shown that the transition is consistent with the DP-universality
class in the 1+1 dimension.

It has been conjectured that the short-range process is a
requirement for the DP-universality class [27]. The observa-
tion of the DP class in the present model was unexpected be-
cause of the apparent long-range correlation between ballistic
boundaries. When subsystems are coupled by rare invasions,
however, the invasion from other subsystems breaks up this
correlation, and the interaction between domains becomes
“short range” when viewed on length scales larger than 1/p.
Since the critical p happens to be about 0.0005, the DP
behavior appears only after a long transient in large systems.

When the update is random and sequential, the synchro-
nized state is no longer an absorbing state. It is then possible
that the active steady state may exist as long as p is finite. Since

p is the rate per site for the vertical invasion, we can, in prin-
ciple, consider p → ∞ limit, where all three subsystems stay
synchronized. Note that this limit is not exactly the same as the
pure one-dimensional system since if a boundary of one of the
three subsystems proceeds more than average by chance, that
will be copied to other subsystems immediately, namely, the
fluctuation tends to make the interface motion slightly faster,
which may result in faster coarsening than a one-dimensional
system. We did not identify any transition in the system’s
behavior at finite p in the random sequential dynamics. We
speculate that this type of system deviates fundamentally from
the DP class because the active (desynchronized) boundary
cannot “die” by itself, but rather needs another active site to
be eliminated. The feature that there is no spontaneous death
process differentiates it from the DP process.

The overall lesson from this work is that three is much
more than two and provides an engine for sustained yet
dynamic heterogeneity in the spatial rock-paper-scissors game.
Thus parallel systems open the possibility for a qualitatively
different way of sustaining patchiness from increasing the
number of species in a cycle of invasions [13,14].
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