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A dense mixture of granules and liquid often shows a severe shear thickening and is called a dilatant fluid. We
construct a fluid dynamics model for the dilatant fluid by introducing a phenomenological state variable for a
local state of dispersed particles. With simple assumptions for an equation of the state variable, we demonstrate
that the model can describe basic features of the dilatant fluid such as the stress-shear rate curve that represents
discontinuous severe shear thickening, hysteresis upon changing shear rate, and instantaneous hardening upon
external impact. An analysis of the model reveals that the shear thickening fluid shows an instability in a shear
flow for some regime and exhibits the shear thickening oscillation (i.e., the oscillatory shear flow alternating
between the thickened and the relaxed states). The results of numerical simulations are presented for one- and
two-dimensional systems.
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I. INTRODUCTION

One of the most common materials of the dilatant fluid is
a dense mixture of cornstarch and water, and it can be used
to demonstrate a number of counterintuitive behaviors that the
shear thickening medium shows: sudden solidification upon
externally applied stress, quick refluidization after the removal
of the stress, formation of holes and protrusions under strong
vibration [1,2], and so on.

These behaviors come from severe shear thickening and
hysteresis, which dense colloid or a dense mixture of granules
and liquid often show. The shear viscosity increases almost
discontinuously by orders of magnitude at a certain critical
shear rate [3], which makes the fluid almost rigid against the
sudden application of stress. It is called a “dilatant fluid” by
analogy with the behavior of a granular medium [4]; when a
granular medium is densely packed in a bag that is flexible but
nonstretchable, it cannot be deformed because the volume is
constant. The granular medium must dilate upon deformation
due to the principle of dilatancy by Reynolds [5].

There are several peculiar features in the shear thickening
of the dilatant fluid.

(i) The thickening is so severe and instantaneous that it
might be used even to reinforce body armor to stop a bullet [6].

(ii) The relaxation after removal of the external stress
occurs within a few seconds, which is quick but not as
instantaneous as in the thickening process.

(iii) The medium in the thickened state behaves almost like
a rigid material allowing little elastic deformation as long as it
is under stress.

(iv) The viscosity shows hysteresis upon changing the shear
rate [7].

(v) Noisy fluctuations have been observed in the response
to an external shear stress in the thickening regime [7,8].

Despite the apparent analogy between the behaviors shown
by these media, it is not clear if the shear thickening of the

dilatant fluid has something to do with the property of dilatancy
of granular media. Originally, the shear thickening in colloid
systems was regarded as a result of the disorder transition of
the layer and/or string structure developed in the low shear
rate regime [9–12]. The dispersed particles align due to the
shear flow to give shear thinning in a low shear regime, but
the turbulent motion in the high shear regime destroys this
structure to give shear thickening. Such layer and/or string
structures have been observed in numerical simulations [13]
and experiments [14], and in some cases the shear thickening
occurs when the structure is broken [9]. However, there
are some other cases where no significant structure change
is observed upon discontinuous shear thickening [15–18].
Hydrocluster formation has been proposed as an alternative
origin of the shear thickening [16,19,20]. Due to hydrodynamic
interaction among particles in the fluid, there is a certain
condition where clusters of particles grow and they can give
large viscosity. Such a cluster structure of particles was first
identified in numerical simulations [19], then suggested by
small angle neutron scattering (SANS) experiments [16].
More direct observation has been made using fast confocal
microscopy [21]. Jamming is another possibility under active
debate in recent years in connection with the glass transition. In
a dense granular system, the jamming can cause the divergence
of viscosity [3,8,22–26]. In connection with the dilatancy,
Brown and Jaeger studied the discontinuous shear thickening
and obtained somewhat empirical constitutive relations [27].

There are no microscopic theories for the dilatant fluid
yet in the sense that the shear thickening is derived from the
elementary interactions among constituents of the medium,
that is, granules and fluid, but there are a couple of semi-
empirical theories: the soft-glassy rheology (SGR) model [28]
and the schematic mode coupling theory (MCT) [29]. The
SGR model is the model based on the stochastic dynamics with
the activation energy that depends on the stress. This model
is extended to describe the shear thickening by introducing
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the stress-dependent effective temperature. MCT, which gives
a reasonable description of the glass transition, has been
extended schematically by introducing a shear-rate-dependent
integral kernel. Both of the theories are semi-empirical and
have been demonstrated to show the discontinuous shear
thickening, but they have not been incorporated in the fluid
dynamics to study its flowing behavior of the medium.

Recently, the present authors constructed a fluid dynamic
model for the dilatant fluid by phenomenologically introducing
an internal state variable, which determines the viscosity of
the medium [30]. The state variable itself is determined by
the local stress [31]. The purpose of this paper is to present
a detailed study on the flowing property of the medium
represented by the model. We demonstrate that the model
shows the discontinuous shear thickening transition and the
hysteresis upon changing the shear rate, as has been observed
in experiments. It is also shown that the steady shear flow
becomes unstable for a certain parameter range against the
shear thickening oscillation, where the medium alternates
between the thickened and the relaxed states.

The paper is organized as follows. The model is introduced
in Sec. II, and it is examined for a simple uniform shear flow
configuration in Sec. III. A similar analysis is given for the
gravitational slope flow and Poiseuille flow in Sec. IV. The
response to an impact is simulated in Sec. V. The effects
of inhomogeneity are studied in Sec. VI by two-dimensional
simulations. A summary and discussions are given in Sec. VII.

II. MODEL

The model is based on the fluid dynamics with an internal
state variable that describes the local structure of particles
dispersed in the liquid. The viscosity of the medium is
determined by the internal state, which in turn changes in
response to the local shear stress. We introduce each element
of the model in the following.

A. Fluid dynamics

The dynamics of the medium as a fluid is represented by
the velocity field v(r), and is governed by the hydrodynamic
equation

ρ
Dvi

Dt
= ∂

∂xj

(−P δi,j + σi,j ) + ρgi, (1)

where the Lagrange derivative is introduced

D

Dt
≡ ∂

∂t
+ vj

∂

∂xj

. (2)

The symbols ρ, P , and σi,j represent the density, the pressure,
and the (i,j ) component of the viscous stress tensor σ̂ ,
respectively. The last term in Eq. (1) represents the body force
on the fluid due to the gravitational acceleration gi . We employ
Einstein’s rule for the summation over repeated suffixes.

We consider the incompressible fluid; thus the pressure P

is determined by the incompressible condition

∇ · v(r) = 0. (3)

(a) (b)

FIG. 1. Schematic pictures for granular configurations: (a) a
relaxed state and (b) a jammed state.

The viscous stress tensor is assumed to be expressed through
the ordinary relation

σi,j = η(φ) γ̇i,j , (4)

with the shear rate tensor

γ̇i,j ≡ ∂vi

∂xj

+ ∂vj

∂xi

− 2

3
δi,j

∂vl

∂xl

. (5)

Note that Eq. (4) does not represent a linear viscosity because
the viscosity η is not constant but depends on the internal state
variable φ of the medium.

B. Internal state of the medium

The dilatant fluid contains dispersed granular particles,
which provides the system with an internal degree of freedom
for a macroscopic description. Figure 1 shows a schematic
illustration for a relaxed state [Fig. 1(a)] and that for a jammed
state [Fig. 1(b)]. The internal state may have a vector or even
higher-order symmetry in general, but in this work we study
a simple case where the state is represented by a scalar field
φ(r). We assign φ = 0 for the relaxed state and φ = 1 for the
jammed state.

For a given flow field v(r), we assume that there exists a
stationary value φ∗, toward which the state variable φ changes
as

τ
Dφ

Dt
= −(φ − φ∗) (6)

with the time scale τ .
We may assume that τ is constant in the case where the

internal state changes due to the thermal fluctuation or some
other mechanism independent of the flowing field. However,
we adopt the variable time scale τ that is inversely proportional
to the local shear rate 
̇,

τ = r 
̇−1, (7)

with a dimensionless constant r because it is more natural to
suppose that the state change is driven by the flow deformation.
Note that this form of τ does not introduce a new time scale to
the system and makes it respond quite peculiarly to an external
impact.

The stationary value φ∗ is determined by the local flow and
we assume that it is an increasing function of the local stress
S. We employ a simple form

φ∗(S) = φM

(S/S0)2

1 + (S/S0)2
, (8)

with the characteristic shear stress S0. The parameter φM

represents the value of the state variable in the high stress limit
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and should depend upon the volume fraction of the granules
and some other parameters of the medium.

For the scalar values of the shear rate 
̇ and the shear stress
S in Eqs. (7) and (8), we adopt the definitions


̇ ≡
√

1
2 Tr[ ˆ̇γ · ˆ̇γ ], S ≡

√
1
2 Tr [σ̂ · σ̂ ], (9)

which reduce to the ordinary shear rate and shear stress in the
case of simple shear flow.

C. Viscosity

The shear thickening property of the model comes from the
φ dependence of the viscosity, for which we assume

η(φ) = η0 exp

[
A

φ

1 − φ

]
, (10)

with the viscosity in the relaxed state η0 and a dimensionless
parameter A. We have introduced the Vogel-Fulcher-type
strong divergence at the jamming point φ = 1 to represent
severe thickening observed in the dilatant fluid. In Eq. (10),
the state variable φ plays an analogous role with the inverse
temperature in the glass transition. Note that the state variable
φ cannot be φ > 1 even when φM > 1 in Eq. (8) if we employ
Eq. (7) because the shear rate vanishes 
̇ ↘ 0 as φ ↗ 1 due
to the diverging viscosity.

D. Unit system

For numerical presentation, we employ the unit system
where

η0 = S0 = ρ = 1, (11)

namely, the time, length, and mass are measured by the units

τ0 ≡ η0

S0
, �0 ≡

√
η0

ρ
τ0, m0 ≡ ρ �3

0, (12)

respectively. The rate 1/τ0 gives the scale for the shear
rate where thickening occurs, and the length scale �0 is the
corresponding hydrodynamic length scale. For the cornstarch
suspension of 41 wt% [3], these parameters may be estimated
as S0 ≈ 50 Pa, η0 ≈ 10 Pa · s, and ρ ≈ 103 kg/m3, which give
τ0 ≈ 0.2 s and �0 ≈ 5 cm.

III. SIMPLE SHEAR FLOW UNDER EXTERNAL
SHEAR STRESS

First, we will study behaviors of the dilatant fluid for a
simple shear flow under an externally applied shear stress
[Fig. 2(a)]. The velocity field is assumed to be v = [u(z,t),0,0]
and the external stress imposes the boundary condition

S(z,t)|z=±h = Se, (13)

where we have introduced the notation for the shear stress

S(z,t) ≡ η(φ) γ̇ (z,t), (14)

with the shear rate

γ̇ (z,t) ≡ ∂u(z,t)

∂z
. (15)

θ g

(d)Δ
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(c)

(b)(a)
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h

−h

h

z
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R

FIG. 2. Simple flow configurations and the coordinate system: (a)
shear flow, (b) gravitational slope flow, (c) Poiseuille flow, and (d)
impact by a bullet.

h is the half width of the flow and Se is the applied stress at
the boundaries [Fig. 2(a)]. Then, Eqs. (1) and (6) become

ρ
∂u(z,t)

∂t
= ∂

∂z
S(z,t), (16)

r
∂φ(z,t)

∂t
= −|γ̇ (z,t)| {φ(z,t) − φ∗ [S(z,t)]} , (17)

In the following, we first examine a steady flow solution,
then perform the stability analysis for the solution and the
numerical simulation for these equations of motion.

1. Steady flow solution

The steady solution for Eqs. (13) through (17) can be readily
obtained as

φ = φ∗(Se), γ̇ = Se

η[φ∗(Se)]
≡ γ̇∗(Se). (18)

From these equations, we can obtain the relationship
between the stress and the shear rate, which is plotted in
Fig. 3 for various values of φM with A = 1. In the logarithmic
plots, the straight line with the slope 1 correspond to the linear
stress-shear rate relation with a constant differential viscosity.
One can see that there are two regimes: the low viscosity
regime in the low shear stress and the high viscosity regime in
the high shear stress. Between the two regimes there is a branch
where the shear rate decreases for increasing shear stress. The
state in the middle branch can be unstable against infinitesimal
perturbation.

From this stress-shear rate relation, we expect there should
be hysteresis upon changing the shear rate. If the system
starts from the low shear rate on the lower branch, the stress
increases continuously, but before the system reaches the end
of the lower branch, it should jump to the upper branch by
discontinuous increase of the stress. If the system starts from
the high shear rate on the upper branch and the shear rate
decreases, the stress should jump to the lower branch before
the system reaches the end of the upper branch. This sudden
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FIG. 3. (Color online) The stress-shear rate relation for the
viscosity given by Eq. (18) for various φM with A = 1. The inset
shows the plots in the logarithmic scale.

increase or decrease of stress corresponds to the discontinuous
change of viscosity in the shear thickening.

2. Linear stability of the steady flow

Now we examine the linear stability of the steady shear flow
given by Eq. (18). For a full analysis, an arbitrary perturbation
should be allowed, but here we examine the linear stability
against the restricted perturbation where the velocity is in the x

direction and the spatial dependence is only on the z coordinate

v(r,t) = [γ̇∗z + δu(z,t),0,0], φ(r,t) = φ∗(Se) + δφ(z,t),
(19)

then the dynamics is analyzed using Eqs. (16) and (17). Even
within this restriction, we will see that the steady shear flow
in the middle branch may become unstable and the oscillatory
flow rises.

The linearized equations for the perturbation are now
given by

ρ
∂

∂t
δγ̇ (z,t) = η∗

∂2

∂z2
δγ̇ (z,t) + η′

∗γ̇∗
∂2

∂z2
δφ(z,t), (20)

r
∂

∂t
δφ(z,t) = γ̇∗[φ′

∗ η∗δγ̇ (z,t) + (−1 + φ′
∗η

′
∗γ̇∗)δφ(z,t)],

(21)

where the primes denote the derivative by its argument, and
we have introduced the abbreviated notations

η∗ ≡ η [φ∗(Se)] , η′
∗ ≡ dη(φ)

dφ

∣∣∣∣
φ=φ∗(Se)

, φ′
∗ ≡ dφ∗(Se)

dSe

.

(22)
Then the growth rate �k of the perturbation for the Fourier
component with the wave number k in the z direction is
determined by∣∣∣∣ρ�k + k2η∗, k2η′

∗γ̇∗
−γ̇∗φ′

∗ η∗, r�k − γ̇∗(−1 + φ′
∗η

′
∗γ̇∗)

∣∣∣∣ = 0. (23)

This gives a positive real part of �k for the wave number k

that satisfies

0 < k2 < k2
c ≡ 1

r

(
ρ

η∗

)
Se

(
−dγ̇∗

dSe

)
(24)

in the case dγ̇∗/dSe < 0, that is, Se is in the unstable branch
of the shear stress-shear rate curve. Since the smallest possible
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FIG. 4. (Color online) Oscillation of the average shear rate
u(h)/h in the shear flow for h = 1.3, 2, and 3 with A = φM = 1,
r = 0.1, and Se = 1.1. The (green) line that overlaps the plot for
h = 1.3 shows the plot for f (t) = c1 + c2 e−t/τ sin(ωt + θ ) with
ω = 4.0, τ = 5.8, θ = 0.86, c1 = 0.33, and c2 = 0.056.

wave number k for the perturbation is π/(2h) and η∗/ρ is the
kinematic viscosity for the steady flow, we can interpret this
result in the way that the steady shear flow in the unstable
branch is unstable as long as the system width is larger than
the momentum diffusion length due to the viscosity.

For a given external shear stress Se in the unstable branch,
the flow becomes unstable for the system wider than 2hc ≡
π/kc, where the growth rate �k has a finite imaginary part ωc

given by

ωc ≡
√

Se

rρ
kc = 1

r

√
Se

(
−dγ̇∗

dSe

)
γ̇∗. (25)

Note that the scales of kc and ωc are typically set by 1/�0 and
1/τ0, although their actual values depend on r and the other
system parameters (i.e. A and φM ).

3. Shear thickening oscillation in unstable shear flow

The oscillatory behavior of the shear flow in the unstable
regime can be seen by numerically integrating Eqs. (16) and
(17) with Eqs. (14) and (15). In Fig. 4, the average shear rates
u(h)/h for (anti)symmetric solutions are plotted as a function
of time for various system width h with the constant shear
stress Se = 1.1 in the unstable regime for A = φM = 1 and
r = 0.1. The initial state is prepared as the steady solution
(18) for Se = 1. For this set of parameters kc = 1.18, which
gives hc = 1.33 and ωc = 3.91.

For h = 1.3, which is smaller than hc, the flow shows
overdumped sinusoidal oscillation with the angular frequency
4.0, which is close to ωc. For larger h, the oscillation becomes
self-sustained and nonlinear; the gradual buildups of the flow
speed are followed by sudden drops.

This nonlinear oscillation of shear thickening fluid is shown
in more detail in Fig. 5, where the time development of the
φ(z) and u(z) are plotted. Only the positive half of the solution
is plotted for the (anti)symmetric solution. In the plots, the
oscillation starts from the almost uniform shear flow in the
high viscosity state with a larger value of φ. This flow cannot
be completely uniform because the external shear stress Se is
in the unstable branch, thus the flow speed builds up gradually
as the internal state φ relaxes to reduce the viscosity, but
eventually φ starts increasing when the shear stress becomes
large enough. Then larger value of φ cause higher viscosity,
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FIG. 5. (Color online) Time development of φ(z) (left) and u(z) (right) in the shear flow oscillation for A = φM = 1, r = 0.1, Se = 1.1,
and h = 2. Only the positive parts of the flow (z > 0) are presented.

which decelerates the flow speed, but this causes an even higher
value of φ because the inertia stress due to the deceleration is
added on top of the stress by the shear flow, which results in
the sudden drop of the flow speed.

IV. GRAVITATIONAL SLOPE FLOW
AND POISEUILLE FLOW

Similar analyses are performed for a gravitational slope
flow and Poiseuille pipe flow.

A. Gravitational slope flow

For the gravitational slope flow [Fig. 2(b)], Eqs. (1) and (6)
should be solved with the boundary conditions

v
∣∣
z=0 = 0, σ̂ · n

∣∣
z=h(x,y) = 0, (26)

where we have assumed that the bottom of the flow is located
at z = 0 and the flow depth at (x,y) is given by h(x,y); the
vector n represents the normal vector to the flow surface. The
gravitational body force is given by

g = (g sin θ,0, − g cos θ ) ≡ (g‖,0, − g⊥), (27)

with the slope angle θ .
For the flow field v = [u(z,t),0,0], Eqs. (1) and (6) become

ρ
∂u(z,t)

∂t
= ∂S(z,t)

∂z
+ g‖, (28)

0 = −∂P (z)

∂z
− g⊥, (29)

r
∂φ(z,t)

∂t
= −|γ̇ (z,t)| {φ(z,t) − φ∗ [S(z,t)]} , (30)

with the shear stress (14) and where the boundary conditions
(26) are given by

u(0) = 0,
∂u(z,t)

∂z

∣∣∣∣
z=h

= 0. (31)

Equation (29) can be solved immediately to give the pressure

P (z) = g⊥(h − z) + P0, (32)

with the atmospheric pressure P0.

The steady solution for Eqs. (28) and (30) under the
boundary condition (31) is given by

φ(z) = φ∗[Sg(z)], γ̇ (z) = Sg(z)

η{φ∗[Sg(z)]} (33)

with the gravitational shear stress

Sg(z) ≡ g‖(h − z). (34)

From these, the flow speed u(z) and the flux per unit width �G

can be calculated by

u(z) =
∫ z

0
γ̇ (z′) dz′, �G =

∫ h

0
u(z)dz. (35)

In Fig. 6, the flow speed profiles and the surface speeds
given by Eq. (35) are plotted for several sets of parameters.
The depth dependences of the flow speed are shown in Fig. 6(a)
for some values of g‖. For small g‖, the flow speed depends
upon the depth parabolically as in a Newtonian fluid, while
for larger g‖ the flow speed profile develops a convex part,
which corresponds with the unstable branch of Fig. 3 in the
shear flow. In Fig. 6(b), the surface speed u(h) is plotted as a
function of g‖ for some values of h. One can see they decreases
for large g‖, which means that the fluid flows more slowly for
a larger inclination angle. This is because the viscosity of the
fluid becomes large in the high shear stress caused by large g‖.

B. Poiseuille flow

Pressure-driven pipe flow with the cylindrical symmetry
around the x axis [Fig. 2(c)] is governed by the equation

ρ
∂u(r,t)

∂t
= +�P

L
+ 1

r

∂

∂r
[rS(r,t)] , (36)

r
∂φ(r,t)

∂t
= −|γ̇ (r,t)|{φ(r,t) − φ∗[S(r,t)]}, (37)

with the shear stress and the shear rate

S(r,t) = η(φ)γ̇ (r,t), γ̇ (r,t) = ∂u(r,t)

∂r
. (38)
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FIG. 6. (Color online) Steady gravitational flows: (a) the flow
speed profiles as a function of z, (b) the surface flow speed vs g‖, and
(c) the time development of the surface speed.

Here �P (>0) is the pressure drop along the pipe over
the length L, and r is the distance from the central axis
r ≡

√
y2 + z2.

The steady flow solution for this configuration is given by

φ(r) = φ∗[SP (r)], γ̇ (r) = SP (r)

η{φ∗[SP (r)]} , (39)

with the Poiseuille shear stress

SP (r) ≡ − 1

2

�P

L
r. (40)

In Fig. 7, the flow speed profiles u(r) and the flow flux �

defined as

� ≡
∫ R

0
u(r)2πr dr (41)

are plotted. The general features of the flow are analogous
to those of the gravitational flow, and the flow flux decreases
upon increasing the pressure gradient for the large pressure
gradient because of the shear thickening.

C. Shear thickening oscillation in gravitational
flow and Poiseuille flow

These steady flows become unstable when the shear stress
is in the range of the unstable branch at some region of the flow.
The oscillations in the surface flow speed and the flow flux are
plotted for the gravitational and Poiseuille flow in Figs. 6(c)
and 7(c), respectively. The shear thickening oscillation appears
in a large-enough system for a certain range of external drive
g‖ or �P/L. The system length scale should be larger than the
viscous length scale of the flow, and the external drive should
be in the range where some part of the flow is in the unstable
branch. From the plots, one can see the oscillation disappears
when the external drive is either too small or too large. In the
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FIG. 7. (Color online) Poiseuille flow: (a) the flow speed profiles
as a function of r , (b) the flow flux vs pressure gradient �P/L, and
(c) the time development of the flux.

former case, the fluid behaves as Newtonian while in the latter
case the size of the unstable region becomes too small. The
shape of the oscillation in the nonlinear oscillation regime is
saw-teeth-like, that is, gradual increases followed by sudden
drops, as we have discussed in the simple shear flow case.

The spatial variation of oscillatory flow is shown in Fig. 8.
The general feature is the same with that of the shear flow, but
the value of φ is zero at the surface of the gravitational flow
and at the center of Poiseuille flow because the shear is zero.

V. RESPONSE TO AN EXTERNAL IMPACT

One of the peculiar features of the dilatant fluid is
instantaneous hardening by an external impact. It hardens
almost immediately upon the application of an external
impact and allows little deformation like rigid material. It
has been demonstrated that the hardening is so rapid that the
material can be used for body armor to stop a bullet [6].
Such instantaneous hardening cannot be explained by the
transformation between steady configurations of granules,
but must be a result of the failure to rearrange the granular
configuration due to some obstruction. Upon sudden impact,
the granules are inhibited to rearrange their configurations due
to either dissipation by the interstitial fluid or the jamming by
direct contacts. In the case of slow deformation, the stress is
low and the lubrication due to the fluid allows the granules to
rearrange themselves so that they can pass each other.

In the present model, this aspect of the medium is
represented by Eq. (7), where the relaxation rate of the
internal state is proportional to the shear rate. For a sudden
deformation, the state variable changes to a high stress value
as the medium deforms. When the medium is dense (φM � 1)
and the external impact is strong enough, the state reaches the
jammed state after a certain amount of deformation, which is
almost independent of the speed of deformation.
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FIG. 8. (Color online) Time development of φ(z) (left) and u(z) (right) in the oscillatory flow of (a) the gravitational slope flow and (b)
the Poiseuille flow. The parameters are A = φM = 1 and r = 0.1 with g‖ = 0.8 and h = 2 for the gravitational flow and with �P/L = 1 and
R = 3 for Poiseuille flow.

To demonstrate this aspect of the model, we perform simple
simulations where the layer of fluid of the thickness h is driven
by a sudden motion of the upper boundary wall at z = h with
the fixed lower boundary at z = 0 [Fig. 1(d)]. Let U (t) ≡
u(h,t) be the velocity of the upper wall. Initially, the fluid is at
rest,

u(z,t) = 0, φ(z,t) = 0, U (t) = 0 for t < 0, (42)

then the upper wall is moved suddenly by the velocity u0 at
t = 0, U (0) = u0. For t > 0, the velocity of the upper wall is
determined by

m
dU (t)

dt
= −η[φ(h,t)]

∂u(z,t)

∂z

∣∣∣∣
z=h

, (43)

with Eqs. (16) and (17), where m is the mass of the upper wall
per unit length.

Figure 9 shows the displacement X(t) of the upper wall

X(t) =
∫ t

0
U (t ′)dt ′, (44)

for the three cases; φM = 0.8, 1, and 2 for various initial speeds
u0 increases. The wall decelerates rapidly as the fluid thickens
in response to the stress and eventually stops. For φM = 0.8,

 0

 0.5

 1

 1.5

 2

 2.5

 0  0.2  0.4  0.6

D
is

pl
ac

em
en

t  
X

Time

(a) φM = 0.8

 0

 0.2

 0.4

 0.6

 0  0.05  0.1  0.15  0.2
Time

(b) φM = 1.0

 0

 0.05

 0.1

 0.15

 0.2

 0  0.02  0.04  0.06
Time

(c) φM = 2.0

u0 = 40
20
10
5

 0

 0.5

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

D
is

pl
ac

em
en

t  
X

Time

(d) φM = 1.0

u0 = 5
2
1

FIG. 9. (Color online) The time dependence of the displacement
X after the impact for the system of (a) φM = 0.8, (b) 1, and (c) 2
with the initial speed u0 = 40, 20, 10, and 5, (d) and for the system
of φM = 1.0 with u0 = 5, 2, and 1. The other parameters are h = 2,
r = 0.1, and A = m = 1.

the final wall displacement increases as the initial speed u0.
On the other hand, for φM = 1 and 2, the final displacement
hardly depends on u0 when u0 > 5. This is because the fluid
gets jammed at a certain strain as it deforms and cannot deform
further. However, when the initial speed is small enough, the
upper wall does not stop quickly because the fluid does not
thicken as shown Fig. 9(c).

VI. TWO-DIMENSIONAL INHOMOGENEOUS FLOW

Now, we present the results of numerical simulations for
a two-dimensional system in the simple shear configuration
[Fig. 2(a)] to examine how the inhomogeneity in the x direction
affects the system behavior, especially in the case of shear
thickening oscillation.

The velocity field is assumed to be in the x-z plane, v =
[u(x,z,t),0,w(x,z,t)], and in the x direction we employ the
periodic boundary condition with the system length L. We
take L = 10h in the present simulations.

The fluid dynamic equation (1) is integrated using the
standard marker-and-cell (MAC) method [32] for the incom-
pressible fluid, and |∇ · v| is kept less than 10−10. The Euler
method is employed for the time integration of Eqs. (1) and (6).

The motion of the plates at z = ±h is controlled so that the
average shear stress on the plate is equal to Se,

1

L

∫ L

0
η[φ(r,t)]γ̇xz(r,t)

∣∣∣∣
z=±h

dx = Se. (45)

As for the initial configuration at t = 0, we assume that the
fluid is at rest and the state variable φ is close to zero with small
fluctuations introduced at every computational grid point r i ,

v(r,0) = 0, φ(r i ,0) = ξi, (46)

where ξi is a random variable uniformly distributed over [0,ε)
with a small parameter ε. We take ε = 10−4. Note that, for
the case of ε = 0, all quantities do not depend on x, thus
the simulations reduce to the one-dimensional case given in
Sec. III.

A. Flow diagrams

Figure 10 shows a flow diagram in the Se-h plane for
φM = 0.85 with A = 1 and r = 0.1 (the inset for φM = 1).
The diagrams are determined by the simulations at the points
with marks.
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FIG. 10. Flow diagram of the shear flow for φM = 0.85. The
internal state variable φ does not depend on x in the white and the
black regions. The inset is the same diagram obtained for φM = 1.
The other parameters are A = 1, r = 0.1, with L = 10h.

In the steady shear flow (white) and the oscillatory flow
(black) regions, the initial fluctuations do not grow, thus the
flows remain homogeneous in the x direction and are the
same with those in the corresponding one-dimensional cases in
Sec. III (Fig. 11). The dashed lines show the boundary for the
two regimes in the one-dimensional case given by

kc(Se) = π

2h
(47)

using the definition of kc in Eq. (24) as a function of Se.
In the low Se side, one can see that this coincides with the
corresponding boundary in the two-dimensional case between
the steady shear flow and the oscillatory flow.

The major difference between the one- and the two-
dimensional cases is that these two homogeneous flow regimes
are limited to the smaller Se side. In the larger Se region, the
initial fluctuations in the state variable φ grows, thus the flow
results in the inhomogeneous flow in the case of φM = 0.85
(gray) or the jammed flow in the case of φM = 1.0 of the inset.
In the following, we examine the flows in these two regimes.

FIG. 11. (Color online) Time development of the upper plate
velocity Up in the oscillatory flow regime in the two-dimensional
simulation. The initial fluctuations decay quickly and the flows
show homogeneous oscillation as in the case of the one-dimensional
system.

FIG. 12. (Color online) The time evolution of the upper plate
velocity Up in the inhomogeneous oscillatory flow regime with φM =
0.85. The other parameters are h = 5, L = 50, Se = 1.5, A = 1, and
r = 0.1. The initial fluctuation is given by ε = 10−4. The uniform
oscillation flow with ε = 0 (the dashed line) is shown for comparison.

B. Inhomogeneous oscillatory flow

First, we examine the flow for φM = 0.85. In this case, the
viscosity does not diverge and the medium keeps flowing.
In Fig. 12, the time evolution of the upper plate velocity
Up is plotted along with the case without initial fluctuations.
The flow shows irregular oscillation with a smaller amplitude
compared with the noiseless case.

The snapshots of φ for a single cycle of oscillation in
Fig. 13 reveal that the whole system is not thickened and
the oscillation is governed by a few thickening bands. At
the time when Up reaches its minimum [Fig. 13(a)], the
thickening branch with the high value of φ (the white region)
is being extended along the direction of (1,1). As the system

FIG. 13. The snapshots of the state variable φ taken during a cycle
of oscillation presented in Fig. 12. The arrows indicate flow velocity.
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FIG. 14. (Color online) The spatial variation of viscosity η at
z = 0 at several times in the jamming regime. The parameters are
h = 3, L = 30, Se = 1.5, φM = 1 with A = 1 and r = 0.1.

flows, this branch is stretched and Up gradually increases
[Fig. 13(b)], and eventually the branch breaks off and Up

reaches maximum [Fig. 13(c)]. Then the high shear rate makes
the broken branches extend again to the other side to cause
sudden deceleration [Fig. 13(d)]. The thickening branches first
appear both in the (1,1) and (1, − 1) directions, but the latter
tend to disappear and transforms into the (1,1) direction in the
course of time, and only the thickening branches in the (1,1)
direction remain.

C. Jamming caused by the instability

For the case of φM = 1, the viscosity can diverge and the
instability of the homogeneous flow causes the jamming to
stop the flow.

Figures 14 and 15 shows the simulation results for φM = 1.
The time evolution of the viscosity distribution at z = 0 is
shown in Fig. 14. Initially, the viscosity is rather uniform with
some fluctuations, but peak structure appears soon around t =
3 with a certain characteristic length scale. Some of the peaks
grow sharply and the thickening regions strongly localize
(t � 4), then the system is jammed and the flow stops within
a period of oscillation of the homogeneous case (Fig. 16).

Figure 15 shows the gray maps of the pressure P [Fig. 15(a)]
and the state variable φ [Fig. 15(b)] at t = 4. The fluctuation
of φ first stands out just below the moving plates, but higher
φ regions form band structure, and extend along the principal
axis of the shear deformation (1,1) and (1, − 1). Some of the

FIG. 15. (a) The spatial distribution of the pressure P and (b) the
internal state variable φ in the system presented in Fig. 14 at t = 4.

FIG. 16. (Color online) The time evolution of (a) the upper plate
velocity Up and (b) the maximum viscosity in the system presented
in Fig. 14. The dashed lines represent the oscillatory flow without
fluctuations.

bands reach the upper plate from the lower plate and they jam
the system.

In Fig. 16(a), we present the velocity of upper plate Up

as a function of time. The solid line shows the time evolution
starting from the internal state with fluctuations, and the dotted
line represents the case without fluctuations for comparison.
The state variable suddenly loses homogeneity at t = 2.3, then
thickening branches appear and the velocity Up drops to zero.
The maximum viscosity is always found inside the thickening
branch for t � 2.3, and its value sharply increases as plotted in
Fig. 16(b). We cannot simulate the system up to the time when
the plates’ motion actually stops because the numerical time in-
tegration becomes difficult as the viscosity becomes large since
it requires smaller time step. In the present case, however, we
expect the system is jammed because the decrease of Up and
the increase of maximum viscosity are rapid and monotonic.

VII. SUMMARY AND DISCUSSIONS

The shear thickening shown by a dense mixture of granules
and fluid has some peculiar features: (i) instantaneous harden-
ing, (ii) fast relaxation to a flowing state, (iii) rigid thickened
state, (iv) hysteretic thickening transition, and (v) oscillatory
flowing behavior. We constructed a fluid dynamics model by
introducing a phenomenological state variable and showed
that the model can describe these features. We especially
demonstrated that the shear thickening oscillation appears in
various shear flow configurations.

A. Comparison with visco-elasticity

A visco-elastic fluid such as a polymer melt shows analo-
gous behavior to the dilatant fluid; it behaves like a solid in a
short time scale and like a fluid in a long time scale. This may
be compared with that of the dilatant fluid (i.e., instantaneous
hardening in response to an external impact and fluidization
after relaxation of the applied stress). However, there are some
important differences. The visco-elastic medium changes its
behavior according to the observation time scale, and it
also allows large elastic deformation even in a short time
solid like behavior. On the other hand, the dilatant fluid
changes its behavior according to the stress, that is, it stays
hardened while it is under the stress and starts flowing
within a few seconds after the removal of the applied stress.
The dilatant fluid allows little deformation even under large
stress.
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B. Shear stress thickening

In constructing the model, we assume the fluid is shear-
stress thickening, that is, the viscosity depends upon the state
variable φ, and the steady value of the state variable φ∗ is
determined by the local stress as in Eq. (8). It is instructive to
see what would happen if we assume φ∗ as a function of the
shear rate φ∗(γ̇ ). In this case, the viscosity is directly given as
a function of the shear rate η[φ∗(γ̇ )], thus we should not have
a discontinuous thickening unless we assume a discontinuity
either in φ∗(γ̇ ) or in η(φ).

Experimentally, the most direct evidence for the shear-
stress thickening should be obtained by the observation that
the pipe flow flux is not monotonically increasing as a function
of the applied pressure gradient.

C. State variable

Although we introduced the state variable φ phenomeno-
logically, we suppose that the variable represents a certain
microscopic property of the medium, such as contact numbers
between grains, associated with the restrictions against local
rearrangement of granular configuration. The variable could
be a vector or a tensor, but we examined the scalar case for
simplicity. It is notable that even the scalar state variable
produces the anisotropic stress chain like structure in the
system as we have seen in the two-dimensional simulations.

D. Jamming and response to impact

A remarkable feature of the dilatant fluid is that hardening
response is so instantaneous that the medium can be used
for body armor to stop a bullet [6]. We believe that such
an instantaneous severe hardening cannot be explained by
a transformation between two steady states, namely, from
the fluid state under low stress to the rigid state under high
stress. Instead, it must be a result that the rapid rearrangement
in the granular configuration is inhibited. There are two
possible mechanisms that inhibit the granular rearrangement
in the densely packed medium: the Reynolds dilatancy and
the formation of stress chains. The Reynolds dilatancy
can inhibit rearrangement by the fluid friction because the
rearrangement should induce the strong interstitial fluid flow
through granules to compensate for the local volume change
caused by the dilatancy. The stress chains through direct
contacts between granules can be formed by the application
external stress and prevent granules from being rearranged.

In the present model, such an aspect of hardening is
represented by the fact that the relaxational time scale for
the state change is not constant but proportional to the shear
rate (7). Then, the state variable φ reaches a steady value φ∗
in a time scale where the strain changes by the amount r .
Consequently, the medium with φM � 1 can deform only up
to a certain strain around r by a hard impact.

E. Shear thickening oscillation

One of interesting results of the present model is the shear
thickening oscillation. The steady shear flow is unstable when
the flow is in the unstable branch of the shear stress–shear
rate curve and is wide enough compared to the diffusion
length scale by the viscosity. In this case, the flow shows

the oscillation between the thick state in the high shear regime
and the thin state in the low shear regime. In two dimensions,
uniform oscillation appears only in the smaller external shear
stress region, but some oscillatory behavior remains even when
inhomogeneity develops in the flow.

The shear thickening oscillation in the homogeneous flow
looks similar to the stick-slip motion in a frictional system.
However, there are some important differences. The stick-slip
motion starts with the sudden acceleration caused by the slip
weakening resistance under the constant speed driving through
a mechanism with finite rigidity, while the shear thickening
oscillation starts with the sudden deceleration caused by the
shear thickening transition under the constant force driving.

Aradian and Cates have also studied the dynamics of
shear thickening fluids and found oscillatory behaviors [33].
They focused, however, on the regime where the structural
relaxation time is much larger than the fluid dynamical
time scale, which is appropriate for liquid crystal systems.
Consequently, the time scale of the oscillation is of the order
or larger than the structural relaxation time scale, therefore
the dynamics is completely dissipative. On the other hand,
in the present case, the structural relaxation time of the
state variable is set by the shear rate and always comparable
with the fluid dynamical time scale, thus the period of the
oscillation is determined by the fluid dynamics. It is also clear
that the stress from the inertia plays an important role in the
thickening phase in the oscillation.

F. Experiments

As for the hysteresis, Deegan observed the hysteresis
loop of the viscosity under the oscillatory stress for the
cornstarch-fluid system and considered it to be the mechanism
for persistent holes [34]. His system is thinner and in the
regime of mild shear thickening in comparison with the system
studied by Fall et al. [3]. In the present work, we try to model
rather severe shear thickening in choosing the functional form
of the viscosity Eq. (10), but the present model qualitatively
reproduces the main feature of his data, by adjusting the
parameters for φM and r (Fig. 17 compared with Fig. 5 of [34]).

−6

−4

−2

 0

 2

 4

 6

−1.5 −1 −0.5  0  0.5  1  1.5

S
tr

es
s

Shear rate

τ = r/γ
.
 ,   r = 2

φM = 0.6
ω = 0.2

Se = 5
4
3
2
1

FIG. 17. (Color online) Hysteresis loops in the shear stress vs
the shear rate in response to oscillatory shear stress for various
amplitudes. The oscillatory stress S(t) = Se sin(ωt) is applied to the
upper plate located at z = h with the lower plate fixed at z = 0. The
system parameters are h = 0.5, φM = 0.6, r = 2, and A = 1.
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For this set of the parameters, the initial noise decays, thus the
one- and two-dimensional simulations give the same results.

Regarding the shear thickening oscillation, we could not
find any literature on the experiment which shows clear
oscillation. This may be partly because the system needs to be
large enough, typically wider than �0 or a few centimeters, and
the inhomogeneity may develop in a three-dimensional system,
which can obscure the oscillation. The noisy fluctuation often
observed in rheometer experiments under constant stress may
be explained by this mechanism [7,8]. Nevertheless, one
may easily notice the oscillation around 10 Hz simply by
pouring the dense water-starch mixture out of a container. We
believe that this oscillation should be explained by the shear
thickening oscillation. We are planning experiments that allow
a quantitative comparison with our results [35].

Although in a different physical context, the clear oscil-
latory flows [36] along with a discontinuous transition and
hysteresis [37,38] have been observed in the liquid crystal

system that shows the shear thinning due to the state-dependent
viscosity. Such behavior could be also described using the
phenomenological model like the present one.

Chaotic dynamics has been observed in dilute aqueous
solutions of a surfactant in the experiment under the constant
shear rate in the shear thickening regime [39,40]. It was
interpreted as the stick-slip transition between the two states
of the fluid structure, thus the physical relevance to the present
instability is not clear, but we also found the chaotic dynamics
in the present model in the case of the constant relaxation time
τ with the large system width.
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