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Complex dynamical systems often show multiple metastable states. In macroevolution, such behavior

is suggested by punctuated equilibrium and discrete geological epochs. In molecular biology, bistability

is found in epigenetics and in the many mutually exclusive states that a human cell can take.

Sociopolitical systems can be single-party regimes or a pluralism of balancing political fractions. To

introduce multistability, we suggest a model system of D mutually exclusive microstates that battle

for dominance in a large system. Assuming one common intermediate state, we obtainDþ 1metastable

macrostates for the system, one of which is a self-reinforced mixture of all Dþ 1 microstates.

Robustness of this metastable mixed state increases with diversity D.

DOI: 10.1103/PhysRevLett.109.100602 PACS numbers: 05.50.+q, 87.23.�n, 87.16.A�

Introduction.—Positive feedback among mutually
opposing states may lead to bistable systems, provided
that the competition involves cooperative interactions. A
classical system is the genetic switch of phage �where two
proteins inhibit the production of each other [1,2].
Bistability, along with its associated epigenetics, is also
found in systems of nucleosomes and ‘‘read-write’’
enzymes [3–10]. A central lesson from the analysis of
epigenetics in Ref. [7] is that bistability can be obtained
from two linear recruitment processes, provided they act
across an intermediate inactive state.

Competing states are also part of society, where opinions
spread through social contacts [11–23]. Especially studied
are the ‘‘voter models’’ [14,15] where agents take one of
two opinions, þ1 or �1, and update them by repeatedly
setting the agents’ states of pairs to be equal. Other inter-
esting approaches include the Axelrod model [11], in
which opinions are multidimensional. These types of mod-
els do not predict bistability, although absence of noise
[12,13,24] allows the systems to settle into a frozen state.
Bistability has however been obtained in the naming game
[25] where two words compete across an intermediate state
and the agents accept both words [26]. Multistability has
been introduced through the network model of Ref. [27].

Here we analyze multistability inspired by a model of
epigenetics [7], which considers three states or species�1,
0, and þ1. In terms of a political battle, the model trans-
lates into a force toward the left that involves a ‘‘left’’-wing
person in state ‘‘�1’’ ‘‘recruiting’’ other persons from the
’’right’’ wing in stateþ1 to the neutral state 0, or from state
0 to state �1. In its symmetric variant, the model assumes
that a right-wing person in state ‘‘þ1’’ imposes a similar
opposing force. When these ‘‘recruitments’’ are supple-
mented with a low rate� for random spontaneous changes,
the model predicts bistability.

We extend the model to D-active states or species
(D � 3). We show that the D � 3 state allows multistabil-
ity between dominating states (DS) where one of the active

species dominates and a metastable mixed state (MMS)
where all the D-active species are almost equally present.
Model and the mixed metastable state.—Here we ex-

plore a system of D-active species that compete across
a common intermediate species (IS). The model with
D ¼ 3 is defined in Fig. 1.
Figure 2 shows the trajectories for the D ¼ 3 model.

Note the transition from the mixed state (MS) at �> 0:31
to a tristable case with an alternating dominance state (DS)
of one of the three active species at �< 0:28. Remarkably,
however, for �� 0:295, the system can be trapped in the
metastable mixed state (MMS).
Deterministic perspective.—The deterministic version

of the Dþ 1 model is

D=3 model

FIG. 1 (color online). Model with D ¼ 3 active states or
species that attack each other across an intermediate inactive
state. At each time step, the system is updated by a recruitment
step r and a noise step n: r) At each time step, a random site j is
selected. If it is in one of the active species, it attempts a
conversion of another randomly selected site k: If k is one of
j’s antagonistic species, it is reset to the IS. If k is IS, then it is
converted to the same state as j. If the state of k is equal the state
of j, then no change is made. n) Select a random site l with
probability � and change its state: If l is active, it becomes IS,
and if l is IS, it becomes one of the randomly chosen active
species.

PRL 109, 100602 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

7 SEPTEMBER 2012

0031-9007=12=109(10)=100602(5) 100602-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.109.100602


dnj
dt

¼ njn0 � nj
X

k>0;k�j

nk � �nj þ �
n0
D

¼ njð2n0 � 1Þ þ n2j � �nj þ �
n0
D

; (1)

dn0
dt

¼ ð1� n0 þ �Þð1� 2n0Þ �
X
j>0

n2j ; (2)

with
P

j>0nj ¼ 1� n0, where nj (j ¼ 1; 2; . . . ; D) denotes

the fractional occupation of the active species. The coupling
between the active species occurs through depletion of n0.
Note that Eq. (2) is redundant if we express n0 in terms of nj
with j > 0 using

P
D
j¼0 nj ¼ 1.

Figures 3(a) and 3(b) show the trajectories and fixed
points for the D ¼ 10 model. We see that the model opens
for a DS state at a low �, whereas it gives monostability of
a mixed state at high �.
Fixed point analysis.—For D � 3, the metastable states

are always either a MS or a state where one species
dominates (DS). In such a case, Eqs. (1) and (2) can be
solved analytically for the fixed points as well as for their
linear stability. Consider a situation where one state x ¼ n1
competes against an equal partitioning of the other active
species, each occupying a fraction ð1� x� yÞ=ðD� 1Þ
where y ¼ n0 occupies the IS. Within this constrained
‘‘one against all’’ battle, Eqs. (1) and (2) reduce respec-
tively to

dx

dt
¼ xð2y� 1Þ þ x2 � �xþ �

y

D
; (3)

dy

dt
¼ ð1� yþ �Þð1� 2yÞ � x2 � ð1� x� yÞ2

D� 1
: (4)

The fixed points will be found on the nullcline of Eq. (3),

y ¼ fðxÞ ¼ � Dxðx�1��Þ
�þ2Dx . Equations (3) and (4) always

have a fixed point

x¼ xmð�Þ ¼D� 2�Dþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dð�4�þDþ 4�Dþ 4�2DÞp
2Dð2D� 1Þ ;

which is a MS, as it satisfies fðxmÞ þDxm ¼ 1, corre-
sponding to equal participation of all active species. This
fixed point has only negative eigenvalues for

�>�M ¼�2þ2D�D2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�8Dþ5D2�2D3þD4

p

�3Dþ2D2
:

However, this MS is metastable and thus an MMS only if
there exists a stable competition. This is the case for

�<�DS ¼ D�D2 þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�3D3 þ 2D4
p

2ðD2 �D� 1Þ ;

where the system exhibits a saddle-node bifurcation ‘‘far’’
from the MS. As � is decreased below this point, there
appears a pair of fixed points

x ¼ x�ð�Þ ¼ 1

2D
½�2�þD�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�2 þ 4�Dþ 4�2DþD2 � 4�D2 � 4�2D2

q
�:

Here xþ is a stable fixed point with n1 domination, while

x� is an unstable fixed point. As � decreases, x� will

collide with the MS solution xm at � ¼ �M, as shown for

D ¼ 10 in Fig. 3(c) [28].
The above solution does not include the case where one

of the other active species is dominating. For each DS, the

population of any other active species, xminority, will be

small and given by ðD� 1Þxminority þ xþ þ fðxþÞ ¼ 1.

Figure 3(d) examines �DS and �M as a function of D.
The MMS is sustained in a interval of � 2 ½�M;�DS�,
which becomes wider for a larger D, because

limD!1�DS ¼ 1
2 ð

ffiffiffi
2

p � 1Þ, while �M � 1=ð2DÞ for a large
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FIG. 2 (color online). Dynamical simulation of the D ¼ 3
model in a system of size N ¼ 1000. The grey dots refer to
the IS. Time is counted in number of attempted pair interactions
per site. Panel (C) examines a 10 times longer time interval than
(A) and (B), showing that stability of states depends strongly on
�. Panel (B) shows occasional appearance of the MMS.

PRL 109, 100602 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

7 SEPTEMBER 2012

100602-2



D. When�>�M, the MS is the only stable state. Note that
the MMS cannot be observed at D ¼ 2, where �DS ¼ �M.

Locality and robustness.—The model can be interpreted
in terms of an ecosystem of bacteria that kill each other
by excreting bacteriocins [29]. The IS then corresponds to
the dead situation. The change that an individual of species
j causes on another active species k � j represents a
predator ‘‘killing’’ an individual. The recruitment from
IS to the species j can be interpreted as growth of species
j by consumption. In our well-mixed model, the predator
kills without getting the immediate benefit from the kill;
in other word, the ‘‘corpse’’ is left to be consumed by
‘‘whoever passes by.’’

We now add a spatial component to the model. We first
consider the case where the ‘‘consumption’’ of the resource
and the associated growth happen always locally. In contrast,
the ‘‘killing’’ interaction is assumed tohappen nonlocally, for
example, with diffusive toxins. Figure 4 defines and exam-
ines such a global-localmodel in one dimension. Even for the
D ¼ 3 species and small systems, we easily find �, where
the dynamics exhibit an alternating pattern of a DS and
a MMS.

Figure 4(d) demonstrates that the MMS can be main-
tained even if the interaction strength is assigned randomly.
Figure 4(e) further shows MMS robustness to the introduc-
tion of new species with new interactions [30] each time
the population of one species collapses.
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FIG. 3 (color). Deterministic dynamics for the D ¼ 10 model.
(A, B) Trajectories starting from uniformly distributed n0, n1, n2,
with all other ni equal, shown for � ¼ 0:20 in (A) and � ¼ 0:25
in (B). Trajectories are colored after their final fixed point. Fixed
points are shown as solid red and black dots. Initial conditions fix
ni, i � 3 to be equal and thus exclude trajectories ending in DS
with i � 3. (C) Population size of two of the stable states as a
function of � for D ¼ 10. The dashed ‘‘gold’’-colored curve is
the unstable fixed point that separates the MMS and the DS. (D)
The parameter region with MSS (blue region) and DS (greenþ
blue region), with varying D and �.
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FIG. 4 (color). Dynamics of a variant model where conversion
from IS is local and the general ‘‘kill’’ global [8], as illustrated in
(A): Although noise (n) is unchanged, the recruitment (r) reads
as follows: (r) At each time step, a random site j is selected, and
if it is in one of the active species, then one of two moves is
attempted: (i) With probability 1

2 , a neighbor k to j is selected,

and if k is in IS, it is converted to a species of j; (ii) else, a
random site k is selected, and if k is one of j’s antagonistic
species, it is changed to the IS. If the selected j is not active or k
is not fulfilling the corresponding requirements, then no change
is made. (B, C) show the dynamics for D ¼ 3, � ¼ 0:098, and
N ¼ 100. Note the MMS for time t 2 ½4000; 4800�. (D)
Dynamics of a corresponding D ¼ 20 model where the inter-
actions are randomly assigned a strength rði; jÞ 2 ½0; 1� at the
start of the simulations. The recruitment of a species j by an
active species i, tried in step (r-ii), is then accepted with
probability rði; jÞ. (E) As in (D), but with evolutionary reshuf-
fling of its interactions ri;j each time a population of a species

vanishes. Different colors represent different species, with grey
dots referring to the IS.
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Noticeably, the model where one combines a local kill
with a global invasion gives a MMS (data not shown). This
case may have some relevance for pollinating plants, which
in principle could ‘kill’’ neighbors, but spread their seed far
with the wind.

In case all interactions are local, then even the DS cannot
exist in one dimension (data not shown). However, in two
dimension, the local version of the model shows punctu-
ated switching between DS of the various active species
for a small �. Moreover, Fig. 5 shows that the MMS
is marginally sustained in a two-dimensional geometry,
as it coexists with a DS for � 2 ½0:135; 0:136�. For a
higher D ¼ 100, the MMS remains fragile. Accordingly,
the absence of global interactions in two dimension
allows for a multiple competing DS, but weakens the
MMS.

Cooperativity.—The MMS can also be obtained in a
variant of the model where there is no IS, but where the
active modifications instead consist of selecting two sites i
and j, and if they are the same species Si ¼ Sj ¼ S, one

can recruit a random site k and set Sk ¼ S [8,9]. Its
deterministic counterpart

dni
dt

¼ n2i ð1� niÞ � ni
X
j�i

n2j þ �

�
1

D
� ni

�

¼ X
j>0

�
ninj � �

D

�
ðni � njÞ (5)

supports a DS for �< D
4ðD�1Þ and a MMS for � 2

½1D ; D
4ðD�1Þ�.

Interestingly, for � ¼ 0, D ¼ 2, and reduced coopera-
tivity (n2 ! n1:3), Eq. (5) simplifies to the language
competition model of Ref. [31] that was used to describe
global decay of language diversity during the last century.
Our analysis shows that an appropriate noise or sponta-
neous fluctuation also allows Eq. (5) to describe metastable
coexistence of multiple languages.
Furthermore, a network model proposed in Ref. [27]

shows the same multistability features as found here. In
that model, agents in the form of vertices on a network are
allowed to have one ofD opinions each. These opinions are
updated by voter dynamics on the network. In addition,
agents accept connections with other agents provided they
have equal opinions. When links were removed and agents
with no connections were assigned new opinions ran-
domly, the model obtained a multistable system with a
MMS of disconnected agents. The MMS then correspond
to a dissolved society.
Outlook.—We introduced a model where states or species

compete and exhibit multistability through combinations of
antagonistic conversions. Thereby, we mimic features of
bistability, multistability, and transitions between order
and mixing in some complex systems.
The model is inspired by recent analysis of nucleosome-

mediated epigenetics [7], but can also be considered in
the context of a society with antagonistic political frac-
tions. In this interpretation, the MMS could correspond to a
representative democracy with many balanced interest
groups, whereas the extreme states correspond to a one-
party system.
The model may also be interpreted in terms of an

ecosystem, where the MMS would then represent meta-
stable coexistence of many competing species. The coex-
istence is sustained even in the absence of spatial
constraints. Although the modeled coexistence is primarily
maintained by external noise or on-going reintroduction
of extinct species, the coexistence also gains stability
from a mutual balance. In particular, when the mixed
state collapses, the repressed minority species become
more vulnerable to extinction. The punctuated collapse
of the high-diversity states in Fig. 4(e) may in this sense
be seen as aspects of punctuated coevolution [32–34].
Our main finding is the persistence of the MMS for a

wide range of parameters and model variants. This
robustness is associated to the gap between the popula-
tion of each species in the MMS and the population
it need in order to defeat the sum of ‘‘everybody’’ else.
The MMS crucially depends on either a two-step con-
version over an intermediate state or on a direct coop-
erativity in conversion between active species. The
robustness of the MMS also requires nonlocality in
some of the interactions.
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