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We analyze a class of network motifs in which a short, two-node positive feedback motif is inserted in a
three-node negative feedback loop. We demonstrate that such networks can undergo a bifurcation to a
state where a stable fixed point and a stable limit cycle coexist. At the bifurcation point the period of
the oscillations diverges. Further, intrinsic noise can make the system switch between oscillatory state
and the stationary state spontaneously. We find that this switching also occurs in previous models of
circadian clocks that use this combination of positive and negative feedbacks. Our results suggest that
real-life circadian systems may need specific regulation to prevent or minimize such switching events.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Genetic regulatory networks exhibit a wide range of oscillatory
phenomena, ranging from the fast oscillations in calcium
(Schuster et al., 2002) to the 24 h cycle of circadian clocks
(Winfree, 1980; Pfeuty et al., 2011). The occurrence of oscillations
is generally caused by the presence of a negative feedback loop in
the regulatory network (Tiana et al., 2007; Pigolotti et al., 2007).
From a theoretical point of view, negative feedback can cause a
Hopf bifurcation and thus generate a transition between a stable
fixed point, corresponding to homeostasis, and an attracting limit
cycle, corresponding to oscillations.

However, in real regulatory networks, the loop causing oscilla-
tions is usually embedded in a larger network including multiple
positive and negative feedbacks. In some cases, these additional
loops have a demonstrable biological function, for example in
giving tunability to the oscillation period (Tsai et al., 2008) or in
stabilizing the period of circadian clocks in the presence of
temperature fluctuations or molecular noise (Gonze et al,
2002). In general, one expects that multiple feedback loops could
lead to non-trivial behaviors from the viewpoint of bifurcation
theory. The dynamics could become even richer when the noise
induced by stochastic gene expression is taken into account. As
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we discuss later, circadian clocks are typical examples of genetic
circuits where it may be important to understanding these effects.

In this paper, we present and analyze a class of network motifs
in which a two-node positive feedback motif is inserted into a
three-node negative feedback loop, as represented in Fig. 1. In
Section 2.1, we show that a deterministic dynamical model of the
simplest of such networks, in a suitable parameter range, exhibits
co-existence of a stable fixed point and a stable limit cycle. We
explain this behavior in terms of a saddle-node separatrix-loop
bifurcation (Magnitskii and Sidorov, 2006), and show that it
results in a diverging oscillation period close to the bifurcation
point. In Section 2.2, we use stochastic simulations using the
Gillespie (1977) algorithm to demonstrate that the noise can
make the system switch between oscillatory state and the
stationary state. We show that similar behavior occurs in more
realistic models of circadian clocks that contain the same combi-
nation of positive and negative feedback loops. Section 3 sum-
marizes our thoughts on the relevance of these results for the
behavior of circadian clocks.

2. Results
2.1. Dynamics of the network motif

We study the class of genetic networks represented in Fig. 1. In
each of the four networks, a positive feedback between node
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Fig. 1. Four patterns of motifs, each consisting a switch and a negative feedback
loop. Nodes 1 and 2 form a switch. Nodes 1-3 form a negative feedback loop.

1 and node 2 can give rise to a bi-stable switch. When node 3 is
introduced, nodes 1-3 together form a negative feedback loop.
The negative feedback loop tends to destabilize one of the stable
fixed points of the switch. The simplest motifs that exhibit such
“frustrated bistability” are studied in Krishna et al. (2009). Here,
we study slightly larger networks which allow for more intricate
dynamics, in particular a scenario where a stable limit cycle
emerges around the unstable fixed point while the other stable
fixed point remains unchanged.

We shall first focus our discussion on the network (a) in Fig. 1,
for which we write the following dynamical equations:

dxq o 1
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Here, x;3 are the concentrations of the proteins associated
with the three nodes, o is the strength of the three inhibitory
regulations, h is the Hill coefficient, c is a constant source term for
each node, and y is the degradation rate for each protein (we
assume that all three proteins are stable, and therefore their
degradation rate is determined by the cell division time). f§ is the
control parameter to adjust the inhibition from node 2 to node 1.
To simplify the equations, we introduce dimensionless para-

meters and variables X133 =x123/k, T="7t, A=a/ky, B=c/ky:
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We study this system of equations for parameter values of
h=3,B=0.1, A=5, and vary f as a control parameter, which
changes the strength of the positive feedback relative to the
negative feedback. We found three bifurcation points, at
p=23~203, f=2,~1923, and ff=1;~145 When (>3
(Fig. 2A), only one unstable fixed point and one stable limit cycle
are found in the phase space. Here, the stable limit cycle is a
global attractor. At ff=/3, a saddle-node bifurcation occurs,
where a stable fixed point and a saddle node emerge.

When 4, < 8 < 13 (Fig. 2B), we find one stable limit cycle and
three fixed points—one stable and two unstable. Within this
region, the stable limit cycle is not the global attractor. Depending
on the initial condition, the system may either reach the limit
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Fig. 2. The left column is the real three dimensional phase space. The middle
column is two dimensional illustration of the real phase space. The right most
column shows the right hand side of Eq. (7). Parameters are set to be h=3, B=0.1,
and A=5. (A) A3 < f§, with one stable limit cycle (line) and one unstable fixed point
(plot with #=2.2). (B) 42 < f§ < 3, with three fixed points (an unstable fixed point
with complex eigenvalue (square), saddle node (triangle) and a stable fixed point
(circle)) and a stable limit cycle (plot with #=2). (C) f = 43, the saddle node hits
the limit cycle and forms a homoclinic orbit (plot with =1.923). (D) 4; < ff < 42,
there are only three fixed points (plot with f=1.2). (E) < 44, there is only one
stable fixed point (plot with = 2).

cycle or the stable fixed point. In the parameter range we studied,
the volumes of the two basins of attraction are both non-
negligible, separated by the surface shown in Fig. 3.

Approaching the critical point A, the stable limit cycle
approaches the saddle point, and eventually at =/, (Fig. 2C),
they generate a homoclinic cycle. When f is near /,, the period of
oscillation increases dramatically, and eventually diverges at the
critical point f = /, (Fig. 4) as typical for homoclinic cycles. Such a
bifurcation is classified as saddle-node separatrix-loop bifurca-
tions (Magnitskii and Sidorov, 2006; Izhikevich, 2000) and is a
robust bifurcation scenario in a phase space of dimension 3 or
more (Magnitskii and Sidorov, 2006). It corresponds to an attrac-
tor crisis, so that when f is reduced further, the stable limit cycle
disappears. When /; < f8 < A, (Fig. 2D), three fixed points still
exist in the phase space: a stable fixed point, a saddle node and an
unstable fixed point with complex eigenvalues. The stable fixed
point is the global attractor. At = A;, the saddle node and the
unstable fixed point collide and disappear after a saddle-node
bifurcation. So, when f < A, (Fig. 2E), there is only one fixed point,
which is stable and is a global attractor.

The location and nature of the fixed points can be better
understood by a graphical study of the intersections of the
nullclines. We set d/dt terms in Eqs. (4)-(6) to zero, and
rearrange the resulting algebraic relations to express X, and X3
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Fig. 3. The stable limit cycle and the stable fixed point are shown by solid line and
filled circle, respectively, for h=3, B=0.1, A=5, and f§ = 2. The surface shows the
boundary between the basin of attraction of the stable limit cycle and the basin of
attraction of the stable fixed point.
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Fig. 4. Period of oscillations as a function of 8, with h =3,B=0.1,A=>5. The period
diverges at f = 1, ~1.923 (indicated by a vertical line), where a homoclinic cycle
is present. As § — oo the repressor link from node 2 to node 1 vanishes. What is left
is a standard repressilator and the period one obtains in that limit (equal to 3.7 for
these parameter values, shown by a horizontal line) is the period of this
repressilator.

in terms of X;. Then, using this to eliminate X, and X5 in Eq. (4)
yields

A 1
0= a ) +B—X;. (7)
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Fig. 2 right column shows the right hand side of Eq. (7) as the
parameter f3 is varied. When f > A5 (Fig. 2A), the function has one
zero, corresponding to a unique unstable fixed point in phase
space. When A, < f§ < A3 (Fig. 2B), =/, (Fig. 2C) and 41 < fi<
(Fig. 2D), the function has two additional zeros, indicating two
more fixed points. From the eigenvalues of all three fixed points,
one can show that only one of them (the circular one) is stable.
Finally, when f§ < 4; (Fig. 2E), the function has one zero again. Two
fixed points disappear and only one stable fixed point remains.

We checked numerically the parameter range where the same
bifurcations and qualitatively the same phase space portrait can
be obtained. For A=5 and B=0.1, h = 3 is required to see the same
behavior. For h=3 and B=0.1, A = 3.5 is required. The behavior is
found to be insensitive to the value of B; for h=3 and A=5, the
behavior was unchanged for 0 < B <100. The same bifurcations
can also be found in all the other three motifs listed in Fig. 1.
Namely, the observed sequence of bifurcations is a robust feature
of such motifs.

2.2. Stochastic dynamics

In this section, we investigate the effect of the intrinsic noise
due to the discrete nature of molecular reactions in such motifs.
We use the Gillespie (1977) algorithm for stochastic simulations
of the dynamical system specified by Egs. (1)-(3). We denote the
copy number of molecules of species i as N; The allowed
transitions, along with their kinetic rates, are

VaV/[(1+ (N3 /k)")(A + (N2 /Bl)")]

Nio """ Ni+1, ®
MzﬂlNl_l, 9
NG LITCE Ny (10)
NN, -1, an

V+aV/[(1+(Na/k)"
N3C +oV/[(1+( 2/))]N3+1, (12)

Ns"SN5—1. 13)

To control the noise, we change the volume of the system V,
which changes the production rates of Nj, but leaves the average
concentration x; = N;/V constant, as long as the values of k,7,h,c,c,
and f are unchanged. The larger the value of V, and therefore the
larger the copy numbers N; the smaller the noise (the relative
fluctuations in N;). Note that we do not explicitly consider
processes like mRNA production, binding of transcription factors,
etc. Inclusion of these steps can increase the noise in the system
further (Loinger and Biham, 2007).

Fig. 5 shows the concentration N;/V vs. time for a stochastic
simulation in dimensionless units with h=3,B=0.1,A=5,f=2.
We convert numbers so that the dimensionless concentration
Xi=1 corresponds to one molecule when volume V=1, and
simulated (A) V=1000 and (B) V=100. We can clearly see
switching between the oscillatory state (the stable limit cycle)
and the steady state (the stable fixed point), and this switching
happens more often for smaller V, i.e., for larger noise.

To quantify this switching behavior, we measured the average
switching time from the oscillatory state to the steady state and
vice versa as a function of the system volume V (Fig. 6). Because of
the noisy dynamics, switching is determined by using two
thresholds for the distance from the stable fixed point, S; and
S, > S1: We define a switching event from the steady regime to
oscillatory regime when the distance exceeds S,, while the
reverse switching happens when the distance becomes smaller
than S;. Therefore, when the distance is between S; and S,, there
is a history dependence in which regime the state belongs to. For
this parameter set, the oscillation period is ~ 8.15, thus we can
see that the system with hundreds of molecules (corresponds to
V ~100) can still cause frequent switching, on the order of once
in every 10 oscillations. The switching rate decreases with V as
expected. For large enough V, the switching rate decreases
exponentially with V.
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Fig. 5. Time evolution of the concentrations for the stochastic simulation of the
system with h=3,B=0.1,A=5,f=2. All the units are dimensionless, and con-

centrations are converted to the numbers so that X;=1 corresponds to one
molecule when V=1. (A) V=1000 and (B) V=100.
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Fig. 6. Switching rates from the oscillatory state to the steady state (open circles)
and from the steady state to the oscillatory state (filled circles), as a function of
system volume V, for the same parameter values as in Fig. 5. The threshold values
are set to be S;=0.316, S;=3.317.

Finally, in order to see whether such switching behavior can be
relevant for real biological systems, we study effect of noise on
the more realistic model for Drosophila circadian rhythms
described in Leloup and Goldbeter (2001) and Leloup et al.
(1999). The deterministic version of this model has a combination
of several positive and negative feedback loops and exhibits the
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Fig. 7. Intrinsic noise is introduced to the original model of Drosophila (Leloup
and Goldbeter, 2001; Leloup et al., 1999). Similar phenomena are observed. When
cell size is very large, namely about 100 times of a typical cell volume, i.e. 10° um
(A), the system would switch from oscillation state to steady state at a random
moment due to noise. As the cell size goes down (10* pm in B, 10> um in C), the
switching becomes more and more frequent. A typical cell volumes for Drosophila
is about 10° pm (C), which exhibit very noisy dynamics. Detailed description of
the model with the parameter set is given in Appendix, Fig. 8.
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and tim (Mr) mRNAs, the PER and TIM with three phosphorylation levels of Py (Tp), Py (T1), and P, (T»), respectively, the PER-TIM complex C, and the nuclear form of the
PER-TIM complex (Cy). Parameters used are: n=4, vsp=1.1 nM/h, vsr =1 nM/h, v;p=1.0 nM/h, vp,7=0.7 nM/h, vgp=2.2 nM/h, kep = kst =0.9/h, k;=0.8/h, k=0.2/h,

ks=12/(nMh), ks=0.6/h, Kmp=Kmr=02nM, Kp=Kg=1nM,

Kap = Kgr = 0.2 nM,

Kip=Ki1 =Kop = Koy = K3p =Ksr = Kap =Kar =2 nM, Vip=Vir =8 nM/h,

Vap =Var =1 0M/h, Vap = Vsr =8 nM/h, Vap = Var = 1 nM/h, kg = kg = kgy = 0.01/h, Vgr=1.3 nM/h.

coexistence of a stable fixed point and a stable limit cycle (Leloup
and Goldbeter, 2001). We simulated the stochastic version of this
model with parameters used in Leloup et al. (1999). A detailed
description of the model and parameters are given in the
Appendix. We observe again the switching between the oscilla-
tory state and the steady state due to the noise (Fig. 7). The
switching is quite often compared to the oscillation frequency for
the noise level expected for an average cell volume, i.e. 10°> um
(Fig. 7C), where 1 nM corresponds to about 600 molecules.!

3. Summary and discussion

We have analyzed a class of network motifs consisting of a
two-node positive feedback inserted into a three-node negative
feedback loop. We demonstrated that a stable fixed point and a
stable limit cycle can co-exist in this class of motifs. As parameters
are changed, the system undergoes a saddle-node separatrix-loop
bifurcation, with a diverging oscillation period as the system
approaches the bifurcation. The location and nature of the fixed
points were investigated in detail by outlining the intersections of
the nullclines of the three variables. We then studied the effect of
intrinsic noise to the motif, in the parameter regime where a fixed
point and stable limit cycle co-exist. We showed that stochastic
switching between the two happens with a rate that decreases
with decreasing the level of the noise. Actually, our results
complement the study in Pfeuty and Kaneko (2009), where similar
motifs for biochemical systems are studied focusing on how a
negative feedback perturbs the switch by positive feedback loops.

We further showed that similar behavior is observed in a more
complex model of the Drosophila circadian clock. This switching
behavior was not reported in a study of the effect of noise in a
simplified version of the detailed model (Gonze et al., 2002). The
studies on the Drosophila model (Leloup and Goldbeter, 2001;
Leloup et al., 1999; Gonze et al., 2002) focused instead on the
singular behavior of the real circadian clock, where a single pulse
of light can cause long-term suppression of the circadian rhythm
(Winfree, 1980; Honma and Honma, 1999; Leloup and Goldbeter,
2001). The models explain this as a switch from the limit cycle to
the stable fixed point, caused by a short external perturbation
(the pulse of light) to some parameter values. Recent research
suggests an alternate possibility, where the singular behavior is

! Calculation based on 1 nM ~ 6 x 10?*> x 10~° molecules per liter.

caused by desynchronization of the clocks rather than stopping
individual oscillations (Ukai et al., 2007).

Our analysis of simple motif combining positive and negative
feedbacks demonstrates that intrinsic noise, and not just external
perturbations, can also cause switching where a limit cycle and a
stable fixed point coexist in the phase space. As such repeated
switching would disrupt the circadian rhythm, we can predict
that specific regulatory mechanism must exist in real circadian
clocks to suppress it. It would be interesting to explore the space
of small network motifs to understand what mechanisms could
implement this kind of suppression most effectively.
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Appendix A. The model for Drosophila circadian rhythm

We studied the stochastic version of the model for Drosophila
circadian rhythm given in Leloup et al. (1999) and Leloup and
Goldbeter (1998). The summary of the reactions in the model
with deterministic of the model are shown in Fig. 8 with
parameters given in the caption. We converted these equations
into stochastic form using the Gillespie (1977) algorithm, as has
been done to convert the simple motifs equations (1)-(3) to the
stochastic version (8)-(13). The concentrations are converted to
the number of molecules based on the typical cell volume of
drosophila, about 1000 um?3, which means 1 nM corresponds to
about 600 molecules. Fig. 7C is based on this conversion. For the
case where the cell volume is 10 (100) fold bigger, the copy
number is also converted to be 10 (100) fold bigger, which
corresponds to the simulations shown in Fig. 7B (A).

References

Gillespie, D.T., 1977. Exact stochastic simulation of coupled chemical reactions.
J. Phys. Chem. 81, 2340-2361.

Gonze, D., Halloy, ]., Goldbeter, A., 2002. Robustness of circadian rhythms with
respect to molecular noise. Proc. Natl. Acad. Sci. 99, 673-678.

Honma, S., Honma, KI., 1999. Light-induced uncoupling of multioscillatory
circadian system in a diurnal rodent, Asian chipmunk. Am. J. Physiol. Regul.
Integrative Comp. Physiol. 276, 1390-1396.



210 W. Li et al. / Journal of Theoretical Biology 307 (2012) 205-210

Izhikevich, E.M., 2000. Neural excitability, spiking, and bursting. Int. J. Bifurcation
Chaos 10, 1171-1266.

Krishna, S., Semsey, S., Jensen, M.H., 2009. Frustrated bistability as a means to
engineer oscillations in biological systems. Phys. Biol. 6, 036009.

Leloup, ]J.C., Goldbeter, A., 1998. A model for circadian rhythms in drosophila
incorporating the formation of a complex between the PER and TIM proteins.
] Biol. Rhythms 13, 70-87.

Leloup, J.C., Goldbeter, A., 2001. A molecular explanation for the long-term
suppression of circadian rhythms by a single light pulse. Am. . Physiol. Regul.
Integrative Comp. Physiol. 280, R1206-R1212.

Leloup, J.C., Gonze, D., Goldbeter, A., 1999. Limit cycle models for circadian
rhythms based on transcriptional regulation in drosophila and neurospora.
J. Biol. Rhythms 14, 433-448.

Loinger, A., Biham, O., 2007. Stochastic simulations of the repressilator circuit.
Phys. Rev. E 76, 051917.

Magnitskii, N.A., Sidorov, S.V., 2006. New Methods for Chaotic Dynamics. World
Scientific Publishing Company.

Pfeuty, B., Thommen, Q., Lefranc, M., 2011. Robust entrainment of circadian
oscillators requires specific phase response curves. Biophys. J. 100, 2557.

Pfeuty, B., Kaneko, K., 2009. The combination of positive and negative feedback
loops confers exquisite flexibility to biochemical switches. Phys. Biol. 6,
046013.

Pigolotti, S., Krishna, S. Jensen, M.H., 2007. Oscillation patterns in negative
feedback loops. Proc. Natl. Acad. Sci. 104, 6533-6537.

Schuster, S., Marhl, M., Hofer, T., 2002. Modelling of simple and complex calcium
oscillations. Eur. J. Biochem. 269, 1333-1355.

Tiana, G., Krishna, S., Pigolotti, S., Jensen, M.H., Sneppen, K., 2007. Oscillations and
temporal signalling in cells. Phys. Biol. 4, 45719-3.

Tsai, T.Y.C., Choi, Y.S., Ma, W., Pomerening, J.R., Tang, C., Ferrell Jr., J.E., 2008.
Robust, tunable biological oscillations from interlinked positive and negative
feedback loops. Science 321, 126-129.

Ukai, H., Kobayashi, T.J., Nagano, M., Masumoto, K.H., Sujino, M., Kondo, T., Yagita,
K., Shigeyoshi, Y., Ueda, H.R., 2007. Melanopsin-dependent photo-perturbation
reveals desynchronization underlying the singularity of mammalian circadian
clocks. Nat. Cell Biol. 9, 1327-1334.

Winfree, A.T., 1980. The Geometry of Biological Time. Springer, New York.



	Switching between oscillations and homeostasis in competing negative and positive feedback motifs
	Introduction
	Results
	Dynamics of the network motif
	Stochastic dynamics

	Summary and discussion
	Acknowledgment
	The model for Drosophila circadian rhythm
	References




