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Convective Instability and Structure Formation in Traffic Flow
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The effects of a localized perturbation in an initially uniform traffic flow are investigated with
the optimal velocity model under an open boundary condition. The parameter region where
the uniform solution is convectively unstable is determined by linear analysis. It is shown that
the oscillatory flow, which is linearly unstable but convectively stabilized, is triggered out of a
linearly unstable uniform flow by a localized perturbation, and in the upper stream it eventually
breaks up into an alternating sequence of jams and free flows. This observation suggests that
the real traffic flow pattern observed near an on-ramp [B. S. Kerner: Phys. Rev. Lett. 81 (1998)
3797] is a noise-sustained structure in an open flow system. We also find that, in a certain
parameter region, the convectively stabilized uniform flow is destabilized by the non-linearly
induced free flow.
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§1. Introduction

Everyone knows that a traffic flow on a freeway is not
always smooth even when there is no obvious obstacle
on the road. Based on serious field observations, it has
been found out that there is a transition from the free
flow to the jam at a certain density of cars;1) this is a
major problem for traffic engineers because the transition
reduces the car flux drastically and should be avoided.
During the last several years, careful analysis of field
data has revealed that there exist more dynamical states
of flow other than the free flow the jam; the synchro-
nized flow2-5) is the flow where the velocity is lower than
the free flow but the flux is relatively higher than the
jam and the flow fluctuates synchronously between dif-
ferent lanes. The stop-and-go state4, 5) is the flow pattern
where each car goes through an alternating sequence of
jams and free flows in a short period of space and time.
The synchronized flow is found in the high density re-
gion which could result in the jam, and often triggered
by a localized perturbation such as an on-ramp; the stop-
and-go state is often observed behind the synchronized
flow region.4) The transition between the jam or the syn-
chronized flow and the free flow has been observed and
hysteretic behavior has been found.3, 4)

Physicists have been intrigued by the phenomenon be-
cause important roles must be played by fluctuations and
instabilities, which are their old friends. Some managed
to invent various kinds of phenomenological models that
reproduce the free flow-jam transition appropriately.6-11)

Then, the next target should be obviously to find out
if these models are able to reproduce other flow states
and patterns found in real traffic.12-19) In the simulations
on macroscopic hydrodynamical traffic flow models with
an on-ramp under the open boundary condition, vari-
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ous kinds of dynamical states have been reported: For
example, the oscillatory flows and the convectively un-
stable uniform flow are formed near the on-ramp,13, 14)

and these flows are supposed to be the origin of the syn-
chronized flow.13) However, the detailed features of these
dynamical states such as stability against perturbation
have not been clarified yet.

Such complex behaviors are also found in microscopic
traffic flow models like car-following models16-18) and cel-
lular automata (CA) models.19) The behavior of the opti-
mal velocity (OV) model,7, 20) that is a one-dimensional
car-following model, have been investigated under the
periodic boundary condition, and found that the model
is able not only to show the transition from the free flow
to the jam, but also to reproduce the flux-density dia-
gram (fundamental diagram).21) On the other hand, the
present authors have investigated the OV model under
an open boundary condition, and found that the oscil-
latory flow and the convectively unstable uniform flow
realize in the OV model.17) Furthermore, it has been
found that a localized perturbation triggers the spatio-
temporal structure of the oscillatory flow followed by an
alternating sequence of jams and free flows out of the
uniform flow.18)

In this paper, we present detailed analysis on the ef-
fects of a localized perturbation in an initially uniform
flow the OV model under the open boundary condi-
tion.17, 18) The features of the convectively unstable uni-
form flow and the oscillatory flow are analyzed in detail,
and it is shown that the structure formation in the OV
model is understood as a pattern formation in a con-
vectively unstable open flow system.22) We also show
that the structure found in the real traffic can be in-
terpreted as a noise-sustained structure, which is formed
when small noise is added constantly to a convectively
unstable uniform flow. It is also found that there is a
parameter region where the structure is wiped away by

with

a nonlinear effect, and that parameter region is deter-
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by which the dispersion relation in the “index frame”
is determined. This equation has two solutions. The
deviation from the uniform solution ∆xn(t) grows with
time when Im[ωI(k)] > 0, where ωI is one of the solutions
of eq. (2.7):

ωI(k) = −i
a

2
+

i

2

√
a2 + 4aU ′(b̄)(eik − 1). (2.8)

The linear instability criterion is given by the condition
Im[ωI(k)] > 0 for any k, and the condition can be rewrit-
ten as

a < 2U ′(b̄). (2.9)

mined.
This paper organized as follows. In §2, we introduce

the OV model. In §3, the characteristic behaviors found
in the numerical simulation are reported and analyzed in
detail. Summary and discussion are given in §4.

§2. The Optimal Velocity Model

In the OV model,7, 20) the driver tends to drive at the
optimal velocity determined by the headway of his car.
When the (n+1)th car precedes the nth car, the position
of the nth car xn(t) at time t, obeys the equation of
motion

ẍn(t) = a
[
U(bn(t))− ẋn(t)

]
, (2.1)

with

bn(t) = xn+1(t)− xn(t), (2.2)

where dots mean the time derivative and bn(t) repre-
sents the headway of the nth car at time t. The param-
eter a is a sensitivity constant, and the function U(b),
called the OV function, determines the optimal velocity
for a driver when his headway is b. From the physical
consideration, U(b) → 0 as b → 0 and U(b) → const. as
b→∞. We employ

U(b) = tanh(b− 2) + tanh(2), (2.3)

as in most of works on the OV model.7, 20, 23)

Equation (2.1) has a uniform solution

xn(t) = b̄n+ U(b̄)t, (2.4)

which represents that all the cars go with the same head-
ways b̄ and the same velocity U(b̄). For later convenience,
we briefly summarize the linear instability condition of
the uniform solution.7, 20) The linearized equation of mo-
tion around the uniform solution is given by

∆ẍn(t) = a[U ′(b̄)∆bn(t)−∆ẋn(t)], (2.5)

where the prime means the derivative by its argument,
and ∆xn(t) and ∆bn(t) denote the deviation of the posi-
tion and the headway, respectively. Assuming the form
of its solution as

∆xn(t) ∝ exp[i(kn− ωt)], (2.6)

we obtain

0 = (iω)2 − a(iω)− aU ′(b̄)(eik − 1) ≡ ∆(ω, k), (2.7)

is

the

When the linearly unstable uniform solution is per-

growing perturbation never goes out of the system. Suf-
ficient attention has not been payed to this difference in

turbed under the periodic boundary condition, the effect
of perturbation grows and eventually the system seg-
regates into two regions; the jammed flow region with
smaller headway and lower velocity, and the free flow
region with larger headway and higher velocity.7, 20, 23)

From the weak nonlinear analysis near the neutral sta-
bility line a = 2U ′(b̄), it has been shown that eq. (2.1) is
reduced to the Korteweg-de Vries (KdV) equation when
U ′′(b̄) 6= 0 (b̄ 6= 2 when U(b) is given by eq. (2.3)), or
to the modified KdV (MKdV) equation when U ′′(b̄) = 0
(b̄ = 2).23)

§3. Structure Formation in the OV Model

3.1 Three types of behavior-numerical results

We investigate the effect of a localized perturbation in
an initial uniform flow in the situation where the upper
and the lower stream is distinguished, which is more real-
istic for the freeway traffic flow than the periodic bound-
ary condition. As we will see in the following, the differ-
ence in the boundary condition is crucial when one study
the global structure formation.

In actual simulations, we set the boundary condition
as follows: At the upper stream end (x = 0), cars with
the velocity U(b̄) enter the system with the constant time
interval b̄/U(b̄). Around the lower stream end, the car
that is farthest ahead, which has no car to follow within
the system, obeys the equation of motion

ẍfar = a[U(b̄)− ẋfar], (3.1)

and leaves the system at x = L. Here, b̄ is selected
so that the uniform solution with the headway b̄ goes on
when the initial condition is the uniform solution without
perturbation.

Then we perturb the uniform solution locally in space
and time by shifting the velocity of the 0th car at t = 0
by a small value ε, namely, we set the initial condition
as

xn(0) = b̄n+ L/2, ẋn(0) = U(b̄) for n = ±1,±2, ...,

(3.2)

x0(0) = L/2, ẋ0(0) = U(b̄) + ε. (3.3)

In the numerical simulations, we found three quali-
tatively different regimes within the parameter region
where the initial uniform solution is linearly unstable;17)

The regime where the uniform solution is (i) linearly con-
vectively unstable (Fig. 1(a)), (ii) linearly absolutely un-
stable (Fig. 1(b)), and (iii) absolutely unstable because
of non-linear effect (Fig. 1(c)).

The instability is called convective if the perturba-
tion grows with time but moves in space away from any
fixed location in a given reference frame; the instability
is called absolute if the perturbation grows with time at
any point.24) This difference changes global flow
tern significantly when the upper and the lower stream
is distinguished, while it causes little change in the finite
system under the periodic boundary condition where

the pat-

the

the analyses of the OV model under the periodic bound-
ary condition.
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First we briefly review the behaviors in (i) and (ii).
The uniform solution is linearly convectively unstable
for the parameter ac(b̄) < a < 2U ′(b̄), where ac(b̄) is the
critical value that depends on b̄. In this region, pertur-
bation travels only upstream (Fig. 1(a)), therefore, the

disturbed region eventually goes out of the system, and
the initial uniform solution is recovered. For a < ac(b̄),
the system is in the linearly absolutely unstable region;
the effect of the perturbation travels in both directions
(Fig. 1(b)), and the uniform flow region is eliminated
completely.

Except for the direction that the disturbance front
travels, these two behaviors show a common spatio-
temporal structure of flow if the system is large enough;
The oscillatory flow region (a regular stripe pattern in
Fig. 1(b)) is followed by an alternating sequence of jams
and free flows (an irregular stripe with stronger contrast
in Fig. 1(b)). In the oscillatory flow region, the head-
way and the velocity of cars oscillate periodically. This
structure is spontaneously formed when the initial uni-
form solution is linearly unstable and the system size L
is large enough; the structure persists until it goes out of
the system.

On the other hand, the absolute instability caused by
non-linear effect (iii) appears for relatively large value of
b̄. The initial time evolution is qualitatively the same
as in the case of (i) or (ii). However, after the free flow
region with lower car density is induced in the upper
stream of the oscillatory flow region, the downstream
edge of the free flow region advances and invades the
oscillatory flow region (Fig. 1(c)). The oscillatory flow
region is eliminated eventually, and the free flow region
spreads over the whole system. Behind this free flow
region, the short sequence of jams and free flows that is
created by the initial perturbation remains.

In the rest of this section, we analyze these characteris-
tic behaviors. In §3.2, we determine the parameter region
in which the uniform solution is convectively unstable by
the linear analysis. Then, we analyze the oscillatory flow
in detail in §3.3. The spatio-temporal structure of flow
in a large system is investigated in §3.4. The nonlinear
absolute instability (iii) is discussed in §3.5.

3.2 Linear convective instability of uniform solutions

The difference between the convective instability and
the absolute one depends on the reference frame.24) In
the situation where the system has a specific boundary
without Galilean invariance, the instability in the labora-
tory frame, which is stationary relative to the boundary,
determines the system behavior. For simplicity, we first
analyze the behavior observed in the index frame, which
is moving with cars, following the procedure described in
ref. 24, and then consider the behavior observed in the
laboratory frame.

The nature of the instability can be determined by
estimating the linear response to initially localized per-
turbation for large t at a fixed location.24) The solution
of the linearized equation (2.5) for the initial state given

by eqs. (3.2) and (3.3) may be written as

∆xn(t) =

∫ ∞+iσ

−∞+iσ

dω

2π
e−iωtx̂(ω, n), (3.4)

x̂(ω, n) ≡

∫ π

−π

dk

2π
eikn ε

∆(ω, k)
. (3.5)

Where σ is a positive constant to define the integral

Fig. 1. The spatio-temporal diagrams of car density. The hori-
zontal axis is the position of a car x and the vertical axis is time t.
The higher density region is shown as a darker region. The dark-
ness is adjusted so that the initial uniform flow region is shown
by medium grey. (a) a = 1.4, b̄ = 2.0, ε = 0.1, L = 204. The
uniform solution is linearly convectively unstable. (b) a = 1.0,
b̄ = 2.0, ε = 0.1, L = 204. The uniform solution is linearly
absolutely unstable. (c) a = 1.3, b̄ = 2.5, ε = 0.1, L = 800.

The uniform solution is absolutely unstable because of nonlinear
effect. The nonlinearly induced free flow region (the brighter
region) invades the downstream oscillatory flow.
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contour above which x̂(ω, n) is analytic. The function
∆(ω, k) has been defined in eq. (2.7). The asymptotic
behavior of ∆xn(t) for large t at fixed n is determined
by the pole of x̂(ω, n) in the ω plane with the largest
imaginary part; we denote such a pole as ω = ωc. The
pole ωc, in turn, is determined by the analytic structure
of ∆(ω, k) in the k-plane as a function of ω; ωc is deter-
mined by the condition that the two zeros of ∆(ω, k) in
the k-plane pinch the integral contour of eq. (3.5) when
they merge into a double root. Therefore, ωc is given by

dωI(k)

dk

∣∣∣∣
k=kc

= 0, ωI(kc) = ωc, (3.6)

and the asymptotic behavior of ∆xn(t) for large t is es-
timated as24)

∆xn(t) ∝
1
√
t

exp [i(kcn− ωct)] . (3.7)

The velocity with which the disturbance front propa-
gates can be determined by considering the frame mov-
ing at the velocity V where the disturbance neither grows
nor decays. The dispersion relation in the moving frame
is given by

ωV (k) = −kV + ωI(k), (3.8)

therefore, the condition corresponding to eq. (3.6) with
Im[ωc] = 0 in the moving frame becomes the equation

dωI(k)

dk

∣∣∣∣
k=kc

= V, Im[ωI(kc)− kcV ] = 0, (3.9)

which is the marginal stability condition.25, 26) The first
equation of eq. (3.9) has solutions kc+ and kc−;

kc± = −iLog(z±) + 2πm (m = 0,±1,±2, ...), (3.10)

with

z± =
2V 2

aU ′(b̄)

[
1±

√
1 +

a

4V 2
(a− 4U ′(b̄))

]
, (3.11)

Fig. 2. The state diagram within the linear stability analysis.
The solid line represents the boundary between convective in-
stability and absolute instability a = ac(b̄). The linear neutral
stability line a = 2U ′(b̄) is also shown by the dashed line. The
instability of the uniform solution is convective in the labora-
tory frame between the solid line and the dashed line. The filled
circles are the parameter a = ac(b̄) estimated by the numerical
simulations.17)

dashed line (ac(b̄) < a < 2U ′(b̄)), the uniform solution
is convectively unstable in the laboratory frame, and the
effect of localized perturbation is carried away from the
system.

3.3 Oscillatory flow

Next we analyze the oscillatory flow, which appears
as a regular stripe pattern in the spatio-temporal dia-
gram of density (Fig. 1(b)). This can be observed more
clearly in the snapshot of the headways of cars shown in
Fig. 3. In Fig. 3(a), the linearly unstable uniform flow
remains around the upper and the lower stream end of
the system. Between the alternating sequence of jams
and free flows (around −600 . n . −400) and the uni-
form flow region in the lower stream (−310 . n), we can
see the region in which the headway of cars oscillates
periodically. The amplitude of this oscillation is smaller
than the difference between upper lower
values of headways in the alternating region. This oscil-
latory flow is spontaneously triggered out of the linearly
unstable uniform flow by a localized perturbation and
persists until the oscillatory flow region goes out of the
system.

This oscillatory flow should be expressed by the solu-
tion in the form

bn = b̂+ f(n− ct), (3.12)

with the phase speed c and the periodic function f ,
which, we can assume, has zero average by taking b̂ as the
mean headway; the value of c is negative since the stripe
pattern propagates upstream.17) Substituting eq. (3.12)
into eq. (2.1), we obtain

c2f ′′(z) = a[U(b̂+f(z+1))−U(b̂+f(z))+cf ′(z)]. (3.13)

with z ≡ n − ct. Equation (3.13) can be solved numer-
ically in the minus direction of z axis when the initial
condition for 0 ≤ z ≤ 1 is given. We integrated eq. (3.13)
numerically with the initial condition that corresponds
to the uniform solution headway h in the region
0 < z ≤ 1 with small perturbation at z = 0:

f(z) = h− b̂, f ′(z) = 0 for 0 < z ≤ 1 (3.14)

and

f(0) = h− b̂+ ε, f ′(0) = 0, (3.15)

the and limiting

thewith

where Log means the principal value of logarithm. kc
is the one out of kc± which gives the larger imaginary
value for ωV (kc±); the multivalue-ness of the logarithm
comes from the discreteness of the model and does not
play any role in the analysis.

Our purpose is to determine the instability criterion
in the laboratory frame, which is moving at the veloc-
ity −U(b̄)/b̄ relative to the index frame. This is given
by eq. (3.9); the uniform solution is convectively (abso-
lutely) unstable when V < −U(b̄)/b̄ (V > −U(b̄)/b̄).
Solving eq. (3.9) numerically for a with V = −U(b̄)/b̄,
we obtain the boundary of the convective instability
a = ac(b̄). In Fig. 2, the boundary a = ac(b̄) is shown
by the solid line. The dashed line represents the linear
stability limit a = 2U ′(b̄). Between the solid line and the
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plitude and the wavelength become larger. When h = 2,
the shape of the oscillatory solution looks like a sequence
of pairs of kink and anti-kink (Fig. 4(c)), while it resem-
bles a sequence of KdV solitons when h 6= 2 (Fig. 4(d)).
It is easy to show that, if f0(z) is a solution of eq. (3.13)
with b̂ = 2−δ, then −f0(z) is also a solution of eq. (3.13)
with b̂ = 2+δ because of the symmetry of U(b) at b = 2.

Now, we examine the linear stability of the oscillatory
solutions by calculating the Floquet exponents, which
can be regarded as the complex linear growth rate aver-
aged over the period.27) When we calculate the Floquet
exponents in the system with N cars, the headway of the
(N + 1)th car is needed. We calculated the exponents

h, and c. When c approaches the lower limit of the al-
lowed range in which the oscillatory solutions exist for
given a and h, the amplitude and the wavelength become
smaller, and the shape becomes sinusoidal (Figs. 4(a) and
4(b)). As c becomes larger (|c| becomes smaller), the am-

with ε as small as 10−10. We found the oscillatory so-
lutions for a finite range of the phase speed c; e.g.,
c ∈ (−0.637,−0.556) for a = 1.0 and h = 2.0. When
we set the phase velocity at the value obtained from the
direct simulation of the original equation (2.1), namely,
c = cosc = −0.610 for a = 1.0 and b̄ = 2.0, we get
f(n− cosct) which coincides with the result of the simu-
lation,17) as is shown in Fig. 3(c).

It should be noted that the value h does not coincide
with the mean headway b̂ except for the case of h =
2.0, around h the OV function is symmetric, namely
[U(2 + δ) − U(2)] = −[U(2 − δ) − U(2)]. On the other
hand, when h > 2 (h < 2), b̂ tends to be larger (smaller)
than h, but b̂ depends on not only h but also a and c.

The shape of the oscillatory solution depends on a,

whic

Fig. 3. The snapshots of the car configuration represented by the
bn vs n plot at t = 988 with a = 1.0, b̄ = 2.0, ε = 0.1, and
L = 10000 (the filled circles connected by the dashed line). (a)
The oscillatory flow region appears around −360 < n < −310
followed by the alternating sequence of jams and free flows which
is found in −550 < n < −400. (b) The magnification of (a)
around the oscillatory flow region. (c) The same data are plotted
with the oscillatory solution (the solid line) from eq. (3.13) with
a = .0, h = .0, c = cosc = −0.610.1 2

Fig. 4. The shape of the oscillatory solutions for various param-
eters. The value λ is the wavelength of the oscillatory solution
measured in the index frame. (a) a = 1.0, h = 2.0, c = −0.584,
λ = 5.0. (b) a = 1.0, h = 1.9, c = −0.593, λ = 5.0. (c) a = 1.0,
h = 2.0, c = −0.557, λ = 9.0. (d) a = 1.0, h = 1.9, c = −0.582,
λ = .0.9
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for the following two different boundary conditions: (i)
The periodic boundary condition, where the headway of
the (N + 1)th car equals to that of the first car. This
boundary condition can be imposed only for the oscil-
latory solution whose wavelength measured in the index
frame λ satisfies Mλ = N with an integer M . (ii) The
fixed boundary condition, where the oscillatory solution
is imposed on the (N + 1)th car.

The real parts of the Floquet exponents µj under each
boundary condition are shown in Fig. 5. We can see that
some of µj are positive under the periodic boundary con-
dition (Fig. 5(a)), while all of µj under the fixed bound-
ary condition are negative (Fig. 5(b)). This means the
oscillatory solution is linearly unstable, but the grow-
ing perturbation is carried away if the headway of the
foremost car obeys the oscillatory solution; namely, the
linear instability of the oscillatory solutions is convective
in the index frame.22)

The maximum value of real parts of the exponents un-
der the periodic boundary condition µmax are listed in
Table I for several values of λ and h. We can see that
the value of µmax for the solution with h = 2 tends to be
smaller as the wavelength becomes longer. This tendency
supports the conjecture by Komatsu and Sasa,23) who
have performed the weak nonlinear analysis of the OV

ity V in the index frame and the complex wave number
kc in the linear regime are obtained from eq. (3.9) for a
given set of a and b̄. Then, the angular frequency ωc at
the front in the frame moving with the front is given by

ωc = ωV (kc) = −kcV + ωI(kc), (3.16)

which is real due to eq. (3.9), and the phase velocity c0
in the index frame is

c0 =
Re[ωI(kc)]

Re[kc]
. (3.17)

These results are valid only in the linear regime.
Now, we conjecture that the oscillatory frequency in

the oscillatory flow, whose amplitude is in the nonlinear
regime, is the same with that at front in the linear regime
if they are observed in the moving frame with the front.
This is natural conjecture because the oscillatory flow is
triggered by the oscillation at the front. We demonstrate
that this is true by examining the frequency-wavelength
relation in the moving frame

|ωc| = (V − cosc)
2π

λ
, (3.18)

where cosc is the phase velocity of the oscillatory flow. In
Table II, the two sets of data are listed: the one estimated
from the linear analysis and the other estimated from the
simulation data in the nonlinear region. The agreement
is quite good.

However, this oscillatory solution cannot extend over
the whole system, because it is only convectively stable
as we have seen in §3.3. Instead, the motions of cars in
the upper stream gradually deviate from the oscillatory

model. They expected that the periodic solution of the
MKdV equation becomes unstable because of the first-
order correction term of the reduced equation, while the
kink soliton, which can be regarded as a periodic solu-
tion with infinite wavelength, remains stable. We found,
however, this is not a general tendency for the stability
of the solution with h 6= 2.

3.4 Spatio-temporal structure of flow controlled by lin-
ear effect

In this subsection, we analyze the spatio-temporal
structure of flow found in the simulations in the cases
(i) and (ii). First we investigate how a particular oscilla-
tory solution selected in the situation described above,
and then analyze the global spatial structure.

In these cases, the front propagation can be deter-
mined by the linear analysis in §3.2, and the front veloc-

is
Fig. 5. The real parts of the Floquet exponents µj for the oscil-

latory solution with a = 1.0, h = 2.0, c = −0.6837 and λ = 5.0.
The index of the exponents j is labeled so that the exponent
with larger real part has a larger index. The value N in the
figure indicates the number of cars in each calculations. (a) The
value of µj under the periodic boundary condition. Some of µj
are positive, which means the oscillatory solution is linearly un-

stable. (b) The value of µj under the fixed boundary condition.
All of µj are negative, which means the oscillatory solution is
linearly stable.

Table I. The maximum real part of the Flouquet exponent µmax

for oscillatory solutions with a = 1.0 calculated with N = 315
under the periodic boundary condition. The value of µmax for
the solution with h = .0 tends to be smaller as λ becomes larger.

λ µmax (h = 2.0) µmax (h = .9)

4.2 0.0560 0.0576

4.5 0.0403 0.0427
5.0 0.0257 0.0315
7.0 0.0048 0.0402
9.0 0.0009 0.0388

2

1
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Table II. The data list which confirms the relationship in eq. (3.18). The values of c0 from eq. (3.17) and that from the simulation
data are shown in order to check the linear analysis. The values of V0 and ωc are obtained from the linear analysis, and cosc and λ

are from the results of the simulations. The data show good agreement.

a b̄ −c0 −c0 (sim.) −V0 −cosc λ
2π(V0−cosc)

λ
|ωc|

1.0 2.0 0.670 0.669 0.306 0.610 4.36 0.44 0.44
1.5 2.0 0.839 0.842 0.588 0.818 6.35 0.23 0.23

2U ′(b̄)− 0.5 1.8 0.799 0.804 0.552 0.781 6.28 0.23 0.23
2U ′(b̄)− 1.0 2.2 0.629 0.633 0.276 0.573 4.30 0.43 0.43
2U ′(b̄)− 0.5 2.2 0.799 0.806 0.552 0.781 6.28 0.23 0.23

Fig. 6. The time evolution of the n = −578th car’s headway bn(t)
with a = b̄ = ε = .1, and L = (a) near the downstream
front of the disturbed region where the oscillation starts, (b)
within the oscillatory flow region where the amplitude of the
oscillation saturates, (c) around the time where the oscillatory
flow breaks up, and (d) in the alternating sequence of jammed
and free-flow regions, which is not completely periodic.

1, 2, 0 800

finally broken when the edge of the structure reaches to
the boundary of the system. If small perturbation is
added constantly to the convectively unstable uniform
flow, however, the downstream front of the structure
is fixed in space and the structure is sustained; such a
structure is called a noise-sustained structure and often
found in convectively unstable open flow systems, such as
the complex Ginzburg-Landau equation with an advec-
tion term.22) Examples of the noise sustained structure,
formed by adding small random noise to the velocity of
the car when it passes the point x = xb, are shown in
Fig. 7. We can see that the structure appears and is
pinned at x = xb to extend to the upper stream. Once
the convectively unstable uniform flow region is formed
on a freeway, a noise-sustained structure should be ob-
served, because stochastic noise is always present in the
real traffic.

solution, and eventually an alternating sequence of jams
and free flows is formed.

Figure 6 shows the time evolution of the headway of
the −578th car. If we see them from the bottom to the
top, we can follow the patterns that the car goes through
from the upper stream to the lower stream. In the fol-
lowing, however, we see them from the top to the bot-
tom (from the lower to the upper stream), trying to un-
derstand the mechanism how the structure emerges out
of the uniform flow. From the initial linearly unstable
uniform flow in the lower stream, the small oscillation
starts at the downstream front of the disturbed region
(Fig. 6(a)). This oscillation grows as it travels upstream
and the oscillatory flow region is formed when the am-
plitude saturates (Fig. 6(b)). This region breaks up in
the upper stream because the oscillatory flow is stabi-
lized only convectively (Fig. 6(c)), and the alternating
sequence of jams and free flows is formed (Fig. 6(d)).
This alternating region is not completely periodic, be-
cause any infinitesimal perturbation grows as it travels in
the upstream direction. As a result, the spatio-temporal
structure of the oscillatory flow region followed by the
alternating region is observed.

This structure is always seen if the system is large
enough, but the structure itself is moving in the sys-
tem. When the instability of the uniform solution is
convective, the structure eventually goes out of the sys-
tem from the upper stream end. When the instability
is absolute, the structure spreads in the system and is
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value of bfree depends on not only a and b̄ but also the
amplitude of initial perturbation ε. On the other hand,
it has been shown numerically that the headway of the
free flow region under the periodic boundary condition
bfp depends on a only.7, 20, 23) In the simulation, we found
that the difference between bfree and bfp is small, thus
eq. (3.22) with

bfree = bfp, (3.23)

gives the good estimation of Vfree, which depends on
only a and b̄.

The parameter boundary Vfree = V ′0 estimated by
eqs. (3.21), (3.22), and (3.23) is shown in Fig. 8 by
open circles, in which the boundary Vfree = 0 in the lin-
early convectively unstable region V ′0 < 0 is also shown
by filled boxes. In the regions A, B, and C, where
Vfree > V ′0 , the oscillatory flow region is invaded by the
free-flow region induced by the perturbation. The insta-
bility is nonlinearly absolute in the regions B and C: In
the region B, Vfree > 0 > V ′0 , which means the initial
uniform flow is eventually eliminated even though the lin-
ear instability is convective in the laboratory frame. On
the other hand, in the regions D and E, the structure of
flow which we have considered in §3.4 is maintained until
the structure reaches to the boundary of the system.

The headway in the free flow region bfree is almost con-
stant, therefore Vfree can be estimated as17)

Vfree = −
b̄U(bfree)− bfreeU(b̄)

bfree − b̄
, (3.22)

from the condition of the continuity of the flux. The

3.5 Induced free flow by nonlinear effect

It is found in the simulations that the free flow region
induced by perturbation the upper invades the
downstream oscillatory flow region when b̄ is relatively
large (Fig. 1(c)). In this subsection, we estimate the
parameter region in which this occurs.

In this case, the flow pattern is determined by the com-
parison with the velocity of the front of the oscillatory
region in the laboratory frame V ′ and that of the free
flow region Vfree. The condition for the free flow region
to invade the oscillatory flow region is given by

Vfree > V ′. (3.19)

When this condition is satisfied, the spatio-temporal
structure which we discussed in §3.4 is wiped away by
the free flow; the oscillatory flow region is taken over and
the uniform flow region is directly followed by the free
flow region. Behind the free flow region, there remains
the alternating region that is created by a perturbation.
Especially the condition

Vfree > 0 > V ′, (3.20)

is important, because in this case the uniform flow region
is eliminated in the laboratory frame even though its
linear instability is convective, namely, the instability is
linearly convective but nonlinearly absolute.26, 28)

We can calculate V ′ from

V ′ = b̄V + U(b̄), (3.21)

where V is the velocity of the front of oscillatory flow in
the index frame (defined in §3.4).

Now, we estimate the value of Vfree in order to de-
termine the stability limit by the inequalities (3.19) and
(3.20). We can approximate the mean headway in the
oscillatory flow region as b̄, because the oscillatory flow
region is smoothly connected to the uniform flow region.

in stream

Fig. 7. The noise-sustained structure shown by the snapshots of
the velocity. The horizontal axis is the position x, and the verti-
cal axis is the velocity of cars vn. The parameters are set so that
the initial uniform solution is convectively unstable; a = 1.4,
b̄ = 2.0, and L = 1600. Every time a car passes the point
x = xb = (indicated by an arrow), its velocity is shifted by
random noise εr whose value is uniformly distributed between
−5.0 × 10−11 and +5 × 10−11. (a) The snapshot at t = 1556.
(b) The snapshot at t =

1580

1815.

Fig. 8. The state diagram obtained from the linear and the non-
linear analysis. The parameter boundary of Vfree = V ′ and
Vfree = are shown as open circles and filled boxes, respectively.
The solid line is the boundary of V ′ = 0 or a = ac(b̄), and the
dashed line is the linear neutral stability line a = 2U ′(b̄). The
oscillatory flow is invaded by the free flow in the regions A, B,
and C. The region A: 0 > Vfree > V ′, namely the instability
of the uniform solution is nonlinearly convective. The region B:
Vfree > 0 > V ′, namely the instability is linearly convective but
nonlinearly absolute. The region C: Vfree > V ′ > 0, namely
the instability is nonlinearly absolute. The region D: 0 > V ′ >

Vfree, namely the instability is linearly convective. The region
E: V ′ > 0 and V ′ > Vfree, namely the instability is linearly
absolute.

0
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other hand, analogous oscillatory behaviors have been
also found in other car-following models.16, 29, 30) If these
oscillatory flows are stabilized convectively, they could
be triggered out of the unstable uniform flow and the
structure formation mechanism examined in the present
work should be common to such car-following models.31)

Another kind of traffic flow models is the CA model, in
which the idea of linear instability does not exist. A phe-
nomenon analogous to the convective stability, however,
should be seen in the case where the car-car interaction
is defined only through the distance to the preceding
car.8, 10, 19) Therefore unstable flow can be convectively
stabilized in the situation where the upper and the lower
stream is distinguished. The oscillatory behavior is more
difficult to realize in the CA models, in which all of the
variables like velocity or position are treated as discrete
ones. Recently, however, multi-value extension of CA
models has been investigated, and some of the models
have shown the complex behavior similar to the stop-
and-go state.19) Therefore, the spatio-temporal structure
may also be seen in such CA models as it is expected to
be seen in car-following models.

In hydrodynamical models, we cannot follow the mo-
tion of each car, thus the nature of instability in the
index frame is not clear. However, in the simulations
der the open boundary condition with an on-ramp,13, 14)

un-

§4. Summary and Discussion

In summary, we have examined the effects of a local-
ized perturbation in an initially uniform traffic flow on
the OV model in the system with an open boundary.
The parameter region where the uniform solution is lin-
early convectively unstable in the laboratory frame has
been determined. It has been also shown that the spatio-
temporal structure of flow, the oscillatory flow followed
by an alternating sequence jams and free flows, is trig-
gered out of the linearly unstable uniform flow by a lo-
calized perturbation. We have analyzed the oscillatory
solutions in detail, and have found that they are linearly
unstable but are convectively stabilized. It has been con-
firmed that the oscillatory flow that is triggered out of
the uniform flow by a localized perturbation is linearly
selected, and the mechanism of the global flow pattern
formation can be understood in the general framework
of the pattern formation in a convectively unstable open
flow system. We also determined the parameter region
where the oscillatory flow is invaded by non-linearly in-
duced free flow and the convectively stabilized uniform
solution within the linear regimes becomes absolutely un-
stable by the non-linearity.

In the following, we discuss the present results in con-
nection with other traffic flow models and the real traffic
flow observations.

First we consider car-following models including the
OV model, in which each car never affected by the mo-
tion of the cars behind. As we have seen, the convec-
tive nature of instability in the index frame plays an
important role in the structure formation. For the car-
following models, it is evident that linearly unstable so-
lutions are convectively unstable in the index frame, be-
cause a perturbation never affects preceding cars. On the

of

convectively unstable uniform flow and oscillatory flows
have been found to be triggered by influx of the on-ramp.
It is not obvious if the oscillatory flows in the hydrody-
namical models and that in the OV model have the same
physical origin, because in the latter case we found that
only a few cars are included in one wave length, therefore
the validity of the continuous description is not appar-
ent. Despite that, it is expected that a noise-sustained
structure similar to the one found in the present work
is seen in hydrodynamical models by adding small noise
constantly to the convectively unstable uniform flow.

The spatio-temporal structure of flow is also observed
in the real traffic flow;4) the synchronized flow followed
by the stop-and-go state, which is often found near an on-
ramp. This structure is analogous to the one found in the
OV model, when we associate the oscillatory flow with
the synchronized flow and the alternating region with the
stop-and-go state. Based on this observation, we propose
the following scenario to explain the structure formation
in the real traffic: First, the convectively unstable uni-
form flow is formed by the influx from an on-ramp, as is
seen in the hydrodynamical models.13, 14) Then, the os-
cillatory flow, which we believe is the synchronized flow,
is triggered out of the convectively unstable uniform flow,
due to the stochastic noise. The oscillatory flow is only
convectively stabilized, therefore it breaks up in the up-
per stream. As a result, an alternating sequence of jams
and free flows, namely the stop-and-go state, is formed
in the upper stream of the oscillatory flow. This struc-
ture is maintained by the stochastic noise, namely, it is
a noise-sustained structure.

Within the above scenario, the first step, i.e. the mech-
anism of the transition from the free flow to the convec-
tively unstable uniform flow, is only speculation based on
the corresponding simulations for hydrodynamical mod-
els. To clarify the condition where the linearly unsta-
ble uniform flow appears at least temporarily in the OV
model is a future problem.
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