Towards a Reliable Method of Measuring AGN Masses Using X-ray Variability

Martin Pessah
University of Arizona

in collaboration with Dimitrios Psaltis
Global timing properties ARE similar!
Mass Measurements from breaks

![Diagram showing mass measurements from breaks in a plot of break timescale versus black hole mass.](image-url)
However..

X-ray binary Power Spectra are \textbf{NOT} well described by power-laws

Characteristic frequencies are \textbf{NOT} constant

Nowak 2000
Belloni et al. 2002

Pottschmidt et al. 2003
Correlations

BHC
Atoll
XRP

Wijnands & Van der Klis, 1999

Belloni-Hasinger Effect

Belloni et al., 2002
Belloni-Hasinger Effect in AGN?

Data from:
- Belloni et al. '02
- Cropper et al. '03
- Markowitz et al. '03
- Marshall et al. '03
- Uttley et al. '02
- Vaughan & Fabian '03
From Observations

Data from Turner et al. '99

\(\sigma_{\text{rms}}^2 \)

\(\log L_x \) (2–10 keV)
We wish...

\[\sigma_{rms}^2 = \sigma_{rms}^2(M, \dot{M}) \]
\[L = L(M, \dot{M}) \]
\[M = M(\sigma_{rms}^2, L) \]
\[\dot{M} = \dot{M}(\sigma_{rms}^2, L) \]

We have...

\[v_{\text{high}} < v_{\text{ISCO}} = \frac{1}{2\pi 6^{3/2}} \frac{c^3}{GM} \]
\[M < \frac{1}{2\pi 6^{3/2}} \frac{c^3}{Gv_{\text{high}}} \]
\[L < L_{\text{Edd}} = 1.310^{38} \frac{M}{M_\odot} \frac{\text{erg}}{\text{s}} \]
\[M > 7.710^{-39} \left(\frac{L}{\text{erg} / \text{s}} \right) M_\odot \]
From Model PSD to RMS

\[\nu P_\nu(\nu) \left[\frac{\text{rms}}{\text{mean}} \right]^2 \]

\[\nu [\text{Hz}] \]

\[10^{-4} \rightarrow 10^{-3} \rightarrow 10^{-2} \]

\[10^{-8} \rightarrow 10^{-6} \rightarrow 10^{-4} \]
From Model PSD to RMS
From Model PSD to RMS

\[\nu P_\nu(\nu) \left[\frac{\text{rms}}{\text{mean}} \right]^2 \]

\[\nu \text{[Hz]} \]

\[10^{-4}, 10^{-3}, 10^{-2} \]

Martin Pessah
University of Arizona, USA

High Energies in the Highlands
Fort William, Scotland, 27 June - 1 July 2005
From Model PSD to RMS
From Model PSD to RMS

Parametrize RMS in terms of highest characteristic frequency.
Upper Bounds from RMS

\[M < \frac{1}{2\pi 6^{3/2}} \frac{c^3}{G\nu_{\text{high}}} \]
Lower Bounds from L_x

\[M > 7.710^{-39} \left(\frac{L}{\text{erg} / \text{s}} \right) M_\odot \]
Upper and Lower Bounds for AGN Masses
Summary & Conclusions

- Robust method to constrain AGN masses
- Explore unification on more solid grounds
- Systematic studies of GBHC & AGN
- Better models for PSD(M) & RMS(M)
- Sampling effects in models (Pessah ‘05)