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Resumé

Den berømte AdS/CFT korrespondance, er en postuleret dualitet mellem en kvan-
teteori, indeholdende tyngdekraft defineret på Anti-de Sitter rum (en speciel type
Einstein mangfoldighed), og en konform feltteori (CFT), der lever på overfladen af
dette rum. Vi betragter en speciel grænse af AdS/CFT korrespondancen, hvor vi
bruger fluid dynamik som en effektiv beskrivelse af CFT’en. Denne grænse giver
anledning til den såkaldte fluid/gravitations korrespondance, der forudsiger, at der
eksisterer en dualitet imellem tyngdekraft og fluid dynamik. Over de seneste par år
har en ny tilgang til denne dualitet, mellem tyngdekraft og fluid dynamik, set dagens
lys. Formålet med denne afhandling er at redegøre for denne nye tilgang. Vi redegør
for hvordan fluid dynamik, som en effektiv beskrivelse af kvantefeltteori, naturligt
kan skrives som en udvikling i kovariante afledte af de fluid dynamiske felter, og viser
hvordan fluid dynamikken for konforme feltteorier kan udtrykkes til given orden i
den omtalte udvikling vha. et sæt Weyl-invariante tensorer. Derefter analyserer vi
dynamikken af fluktuerende braner (i anti-de Sitter) ud fra et holografisk synspunkt.
Denne analyse går ud på, at løse Einsteins ligning (med en negativ kosmologisk kon-
stant) perturbativt i bran-fluktuationen. Ved at bruge værktøjerne fra AdS/CFT
korrespondancen ser vi, at dynamikken af branen præcis kan forstås via den duale
fluid beskrivelse. Vi ser ydermere, at den før omtalte fluid dynamiske udvikling i
de afledte af felterne reproduceres, hvilket lader os udtrække information om fluid
dualen, og dermed den underliggende feltteori. Endelig introducerer vi en ny klasse
af roterende sorte huller i anti-de Sitter, og redegør for deres termodynamik. Disse
sorte huller giver os en ny baggrund at teste fluid/gravitations korrespondancen
imod. Vi finder, at disse sorte huller passer perfekt ind i dualiteten og foreslår en
mulig løsning på ladede sorte hullers fluid dynamik.

Abstract

The famous AdS/CFT correspondence is a conjectured equivalence between a quan-
tum theory containing gravity defined on Anti-de Sitter space (AdS, a special type
of Einstein manifold) and a conformal field theory (CFT) living on the boundary of
this space. We consider a special limit of the AdS/CFT correspondence where we
use fluid dynamics as an effective long-wave description of the CFT. The so-called
fluid/gravity correspondence now predicts a duality between gravity and the effec-
tive fluid dynamic description. Over the recent couple of years a new approach to
understanding this duality between gravity and fluid dynamics has emerged. The
purpose of this thesis is to examine this new approach. We explain how fluid dynam-
ics naturally can be written as a derivative expansion in the fluid dynamic fields and
show how the fluid dynamics of conformal fluids, to a given order in the expansion,
can be written in terms of a finite set of Weyl invariant tensors. We then move on
to describing the dynamics of fluctuating branes (in anti-de Sitter). This analysis
consists of solving Einstein’s equation perturbatively in the brane fluctuation. By
using the tools of the AdS/CFT correspondence we see that the dynamics of the
brane exactly can be understood in terms of its dual fluid description. Moreover
we see that the derivative expansion mentioned above is reproduced, which allows
us to extract information about the dual fluid and thus the underlying field theory.
Finally we introduce a new set of rotating black holes in anti-de Sitter and derive
their thermodynamics. These black holes provide a new background against which
the fluid/gravity correspondence can be (non-trivially) checked. We demonstrate
how these black holes fit perfectly into the fluid/gravity correspondence and propose
a possible solution to the fluid dynamics of charged rotating black holes.



1
Introduction

General introduction and overview

Strongly coupled field theories play an important role in many areas of modern
physics with QCD being the most famous in particle physics. Over the last decades
an enormous amount of research has therefore gone into understanding these theo-
ries. However, many aspects of strongly coupled theories are still poorly understood
as the conventional methods pertaining to weakly coupled theories are not available
in the strongly coupled regime. New non-perturbative methods are therefore needed
to explore the properties of strongly coupled theories.

The AdS/CFT correspondence (discovered by Maldacena in 1997 [1]) has emerged
as a very important tool for constructing such a non-perturbative framework. The
AdS/CFT correspondence conjectures a deep connection between string theory
on curved backgrounds and a certain class of interacting quantum field theories.
More specifically, the remarkable AdS/CFT correspondence predicts a mathemati-
cal equivalence between string theory on a space of the type AdSd+1×XI (where XI

is a compact manifold) and a d dimensional conformal field theory (CFT) defined
on the boundary of AdSd+1 with internal symmetries of the CFT corresponding
to the isometries of the manifold XI . At generic values of parameters both sides
are complicated quantum theories. However, the correspondence is a duality in the
sense that the coupling constants on each side can be matched inversely to each
other. This implies that the weakly coupled regime on the one side is equivalent to
the strongly coupled regime on the other side. Especially if we consider the large
N limit of the conformal boundary theory, the quantum corrections on the string
theory side will be suppressed and the quantum theory on AdSd+1×XI therefore re-
duces to classical string theory. Moreover, if we at the same time consider the strong
’t Hooft coupling limit, all stringy α′ corrections will also be suppressed and the
quantum theory reduces to classical supergravity (SUGRA). Finally, by dimensional
reduction, any two derivative theory on AdSd+1×XI has a universal subsector con-
sisting of gravity on AdSd+1. This corner of the AdS/CFT correspondence therefore
predicts an equivalence between gravity with a negative cosmological constant and
a certain CFT in its planar limit.

Since we consider the strong ’t Hooft coupling limit, the quantum dynamics on
the gauge theory side is still very complicated and non-local. It is therefore useful to
consider yet another limit. It is believed that any interacting quantum field theory
admits an effective long-wave fluid dynamical description at sufficiently high tem-
peratures and energy densities. By considering the fluid dynamical limit of the dual
gauge theory, the effective dynamics of the gauge theory should therefore reduce to
the equations governing relativistic fluid dynamics. The equations of fluid dynamics

1
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are simply the conservation equations expressing conservation of energy and mo-
mentum (and perhaps a set of currents) along with a set of constitutive equations
that express the conserved currents in terms of the fluid dynamical variables. Since
fluid dynamics is an effective long-wave description, the constitutive equations are
naturally expressed as a derivative expansion in the fluid dynamical fields. The
fluid thermodynamics and symmetries determine this expansion up to a finite set
of unknown independent transport coefficients which in turn are determined by the
underlying field theory. Moreover if the field theory possesses conformal symme-
try (as is the case for the field theories relevant to the AdS/CFT correspondence),
both the fluid thermodynamical degrees of freedom and the number of independent
coefficients relevant to the derivative expansion reduce significantly.

These ideas were first implemented by Policastro, Son, and Starinets [2] using a
“Kubo formula” approach to fluid dynamics, which relates the hydrodynamic pole
behavior of certain correlators to the fluid dynamical transport coefficients. The
authors of [2] were for example able to compute the viscosity of a general strongly
coupled QFT with a gravitational dual. The gauge theory side equivalent of this
computation is not known to this date since such a computation would require non-
perturbative method yet to be discovered. This method was later generalized to
extract information about the hydrodynamical behavior about more general field
theories (see [3] for a nice review and an extensive collection of references.) Perhaps
the most remarkable result was the viscosity bound conjecture which states that for
any sensible relativistic quantum field theory [4]

η

s
≥ ~

4π
(1.1)

where η is the viscosity and s is the entropy density. In general η/s≫ 1 for weakly
coupled theories [3], however, as we enter the strongly coupled regime η/s→ O(1).
The viscosity bound tells us that a liquid with a given volume density of entropy
cannot be arbitrarily close to being a perfect fluid.

Recently a new approach to the duality between fluid dynamics and gravity has
emerged. Since gravity on anti-de Sitter backgrounds is dual to an effective fluid
description of certain QFTs, the dynamics of the fluid should directly be encapsu-
lated in the equations of gravity. It should therefore, so to speak, be possible to
directly read of the dynamical properties of the dual fluid by examining the equa-
tions of gravity, which in general would have to be solved in higher (than D = 4)
dimensions. Moreover, it follows that the stationary solutions of gravity should be
mapped to stationary boundary fluid configurations through the correspondence.
This new approach was first implemented to examine stationary black holes by the
paper [5]. This was later extended to include dynamics in the paper [6] which was
generalized to different cases in a set of papers [7, 8, 9, 10] (and others.) The aim
of this thesis is to explore this new framework for the fluid/gravity correspondence.
We will explain how it is possible to extract informations about the transport coef-
ficients directly from Einstein’s equations and examine how the result η/s = 1/4π
is reproduced.
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Outline of the thesis

The thesis is structured as follows:

• In chapter 2 we explain the fundamental concepts needed to understand the
AdS/CFT correspondence. This includes basic introductions to conformal
field theories in curved space, N = 4 Super Yang-Mills, and anti-de Sitter
spaces.

• In chapter 3 we account for the AdS/CFT correspondence and how it is possi-
ble to compute boundary CFT related quantities from the dual gravitational
theory on AdS. Moreover we explain how the fluid/gravity correspondence is
a natural corollary to the AdS/CFT correspondence.

• In chapter 4 we explain how it is possible to use conformal fluid dynamics as a
long-wave effective description of a CFT. We explain how fluid dynamics can
be expressed as a certain derivative expansion in various thermodynamical
quantities and write down the most general expansion for a conformal fluid
up to second order in the derivatives.

• In chapter 5 we utilize the AdS/CFT correspondence to compute the dual
fluids of certain solutions to Einstein’s equations. We show how Einstein’s
equations exactly are equivalent to the fluid dynamical equations governing
the dual boundary fluid. We explain how the derivative expansion from chap-
ter 4 is reproduced and show how it is possible to extract the coefficients of
this expansion from a purely gravitational computation.

• In chapter 6 we introduce a class of exact (rotating) black hole solutions to
Einstein’s equation in anti-de Sitter. We will show how these black holes fit
into the fluid/gravity scheme, both locally and globally, and demonstrate how
the (special case of) five dimensional multi-charged rotating black hole also
fits with the predictions of the fluid/gravity correspondence.

• Finally, in chapter 7 we conclude on the results obtained in the thesis and
discuss some of the possible present and future applications of the fluid/gravity
correspondence.
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2
Conformal field theories
and Anti-de Sitter spaces

2.1 Conformal Transformations

Conformal field theory (especially conformal field theory in two dimensions) is a
vast subject. It is way beyond the scope of this thesis to go into the details of
(quantum) conformal field theories. Here we shall be content with giving a brief
review of the basic ideas of conformal field theory and the concepts needed for the
thesis and in particular needed for understanding conformal fluids. We start by a
review of the theory of conformal transformations in flat Minkowski space.

2.1.1 Conformal Symmetry in Flat Minkowski Space

Consider d dimensional Minkowski space Md. The conformal transformations of
Minkowski space (Md, ηab) are the (smooth) coordinate transformations xa → x̃a

that leave the Minkowski metric ηµν = diag(−,+,· · · ,+) invariant up to some
positive non-vanishing function Ω−2(x):

g̃ab = Ω−2ηab (2.1)

Therefore, the conformal transformations are the transformations that leave the
Minkowski flat space structure invariant up to a local change of scale. We immedi-
ately see that the Poincaré transformations (the semi direct product of translations
and (pseudo)-rotations making up the Poincaré group P (d), see e.g. [11]) of Md

are all conformal since they exactly correspond to Ω = 1. As a trivial example
of a conformal transformation which is not Poincaré, consider the (global) scale
transformation

xµ → x̃µ = λxµ , λ ∈ R (2.2)

This is clearly a conformal transformation with Ω = λ. Notice that the collection
of conformal transformations make up a group denoted C(1, d − 1). This group is
known as the conformal group. According to the above we have P (d) ⊂ C(1, d− 1).
In order to work out the Lie algebra of C(1, d− 1) one must work out the infinites-
imal form of the conformal transformations. By looking at the equation (2.1) for
infinitesimal transformations, it is possible to work out the infinitesimal form of a
general conformal transformation (we refer to [12] for the details). The infinitesimal
conformal transformations fall in four types, two of them being Poincaré transfor-
mations (translations (T ) and Lorentz rotations (R))

(T) xµ → x′µ = xµ + aµ, (R) xµ → x′µ = xµ + ωµνx
ν (ωµν = −ωνµ) (2.3)

5
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while the two remaining are new

(D) xµ → x′µ = (1 + β)xµ, (SCT) xµ → x′µ = xµ + 2(x · b)xµ − bµx2 (2.4)

The first transformation is known as a dilation (D) and is recognized as being the
infinitesimal form of the scale transformation (2.2). The last transformation is the
(infinitesimal) special conformal transformation (SCT). Now let Pµ denote the gen-
erator of translations, Mµν the generator of Lorentz rotations, D the generator of
dilations and Kµ the generator of the SCTs. Using the infinitesimal transformations
(2.3) and (2.4) it is straight forward to work out the algebra of C(1, d−1): In addi-
tion to the usual commutators from the Poincaré algebra we find the commutators

[D,Pµ] = iPµ, [Kµ, Pν ] = 2i(ηµνD −Mµν) (2.5)
[Mµν ,Kρ] = i(ηνρKµ − ηµρKν), [D,Kµ] = −iKµ (2.6)

with the rest of the commutators [D, ∗] = [Kµ, ∗] = 0.
By constructing a new set of generators JAB from Pµ, Mµν , D and Kµ and

using the above algebra, it possible to cast the algebra of the conformal group into
the form [12]

[JAB , JCD] = i
(
ηADJBC + ηBCJAD − ηACJBD − ηBDJAC

)
(2.7)

with ηAB ≡ diag(−,+,+, . . . ,+,−). This algebra is exactly that of SO(2, d) and we
therefore conclude that C(1, d−1) is isomorphic to SO(2, d), C(1, d−1) ∼= SO(2, d).

2.1.2 Conformal Symmetry in Curved Space

Similarly a conformal transformation in curved space M is a transformation that
leaves the (now generally non-flat) metric invariant up to a local scale. However,
it turns out that it is more natural not to define conformal symmetry in terms of
diffeomorphisms but instead in terms of (conformal) equivalence classes of the space
of metrics on M . Two metrics g̃ and g are said to be conformally equivalent if there
exists a non-vanishing function Ω ≡ eφ on M so that

g̃µν = Ω−2gµν = e−2φgµν (2.8)

We emphasize that this equation does not need to be related to a diffeomorphism -
this is a transformation of the metric field, not the coordinates. The two spacetimes
(M, g) and (M, g̃) therefore agree on “angles” between vectors but not on the “length”
of vectors. Especially, the conformal transformation leaves the light cones of the
two spacetimes (M, g) and (M, g̃) invariant and they therefore have identical causal
structure [13]. It is possible to express various geometrical quantities of respectively
(M, g) and (M, g̃) in terms of each other and the function Ω. If we let ∇ν and ∇̃µ
denote respectively the connections w.r.t. gµν and g̃µν it holds that [13] (in fact
such a relation holds for any two connections)

∇µtν = ∇̃µtν − Cνµρtρ (2.9)

for any vector tµ and where the tensor Cρµν is given by

Cρµν =
1
2
g̃ρλ
[∇µg̃νλ +∇ν g̃µλ −∇λg̃µν

]
(2.10)

Since∇µ is the connection w.r.t. gµν it holds∇µgνρ = 0 so∇µg̃νρ = −2Ω−3gνρ∇µΩ.
This enables us to express Cρµν in terms of Ω = eφ

Cρµν = −Ω−3g̃ρλ
[
gνλ∇µΩ + gµλ∇νΩ− gµν∇λΩ

]
= −2δρ(µ∇ν) log Ω + gµνg

ρλ∇λ log Ω

= −2δρ(µ∇ν)φ+ gµνg
ρλ∇λφ

(2.11)
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Now the relation (2.9) directly shows how the Christoffel symbols of (M, g) are
related to those of (M, g̃). We simply have

Γρµν = Γ̃ρµν − Cρµν
= Γ̃ρµν + 2δρ(µ∇ν)φ− gµνg

ρλ∇λφ
(2.12)

Using this, it is straight forward to express the Ricci tensor of (M, g) in terms of
that of (M, g̃). We have

R̃µν = Rµν + (d− 2)∇µ∇νφ+ gµνg
ρλ∇ρ∇λφ

+ (d− 2)(∇µφ)(∇νφ)− (d− 2)gµνg
ρλ(∇ρφ)(∇λφ) (2.13)

From this we can calculate the transformed Ricci scalar. Here we must be a bit
careful and remember that in order to to compute R̃ we must contract with the the
metric g̃µν = e2φgµν :

R̃ = e2φ
[
R+ 2(d− 1)gµν∇µ∇νφ− (d− 1)(d− 2)gµν(∇µφ)(∇νφ)

]
(2.14)

The relations between other conformally related geometrical quantities are derived
in a similar manner see e.g. [14].

2.2 Conformal Theories

2.2.1 Flat space

In flat space, classical conformal field theories arise from the representations of the
conformal algebra (2.5). Let Φ(x) denotes a generic (irreducible) field representation
of the conformal group. Following the well-known method, it is possible to examine
how the generators of the conformal group act on Φ(x). In addition to the usual
Poincaré action

PµΦ(x) = −i∂µΦ(x)
MµνΦ(x) = i(xµ∂ν − xν∂µ)Φ(x) + ΣµνΦ(x)

(2.15)

we also have action from the dilation generator D and the generator of SCTs. They
act like [12]

DΦ(x) = (−xν∂ν + i∆)Φ(x)

KµΦ(x) =
{
i∆xµ − xνΣµν − 2ixµxν∂ν + ix2∂µ

}
Φ(x)

(2.16)

Here Σµν denotes the spin i.e. a matrix representation of the Lorentz group while ∆
is a real number known as the scaling dimension of the field Φ. The general trans-
formation of the field Φ under conformal transformations can now schematically be
written as

Φ′(x) = exp(−
∑
g

iωgGg)Φ(x) (2.17)

where Gg and ωg respectively denote the generator and transformation parameter
associated with the g symmetry. It is now possible to show that under a general
finite conformal transformation the field Φ transforms as (assume that the field has
no spin)

Φ(x)→ Φ′(x′) = [Ω(x)]∆Φ(x) (2.18)

This explains the name for ∆. Fields with spin will of course also have their spin
components transformed in a non-trivial manner. A conformal theory is then exactly
a theory that takes the extra conformal symmetry into account i.e. scaling of fields.
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Especially a conformally invariant theory is a theory whose action is left invariant
by all conformal transformations (2.1), (2.15), (2.16).

In order to make this a bit more concrete, we consider conformal transformations
of a rather general system. For simplicity we will only consider scale transforma-
tions.1 We consider a physical theory consisting of a collection of fields ψi defined
on d-dimensional flat space govern by the generic action

S =
∫

ddx L(ψi(x), ∂µψi(x)) (2.19)

Now suppose that we perform a scale transformation of the physical system by some
factor λ. Assuming that the scaling dimension of the field ψi is denoted ∆i, the
scale transformation of the full physical system is given by

xµ → x′µ = λxµ and ψi(xµ)→ ψ′i(x
′µ) = λ−∆iψi(x) (2.20)

Computing the transformed action S′ ≡ S[φ′] is easy

S′ = λd
∫

ddx L(λ−∆iψi(x), λ−∆i−1∂µψi(x)
)

(2.21)

This expression is obtained by a change in integration variables, using the transfor-
mation rules (2.20) and finally that the form of the Jacobian |∂x′µ/∂xν | = λd. As
a simple example, let us consider a scalar field theory (here m is a parameter which
can be thought of as a mass term)

S =
∫

ddx
1
2
(
∂µψ∂

µψ −m2ψ2
)

(2.22)

We see that theory is scale invariant only, S = S′, if m = 0 and ∆ψ = 1 − d/2.
The massless condition m = 0 makes sense since the presence of a mass introduces
a characteristic length scale into the system and the theory can thus not be scale
invariant. Note that, it is of course not a coincidence that exactly ∆φ = the natural
length dimension of the field leaves the (massless) scalar field action S invariant
under scaling transformations - this is simply because the action has vanishing
length dimension. These arguments clearly extend to more general field theories
[15]. We conclude that, just like a vector field has a direction which correspondingly
must transform under Lorentz transformations, a field also has a length (or scaling)
dimension which means that the field must transform according to this scaling
behavior under conformal transformations.

2.2.2 Conformal theories in curved backgrounds

Having explained how classical conformal field theories arise from representations
of the conformal group and how they essentially correspond to theories that are
invariant under rescalings of the coordinates and the fields, we will now explain
how conformal field theories are defined on curved backgrounds. There are several
more or less mathematical rigorous definitions of conformal field theories in curved
space. Perhaps the best way to understand conformal field theories on curved
spaces would be in terms of fiber bundles, much like we do for spinors on curved
backgrounds [13]. Here we will be content with the definition given by [13] which
is expressed in terms of the equations of motion.

1Of course invariance under scale transformations and the full conformal group is not the same.
However, usually if a theory is scale invariant it will also conformally invariant.
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Suppose that ψ is some matter field living on a space-time (M, gµν), possible
coupled to gravity, with equation of motion H(gµν , ψ) = 0. Now suppose that
perform a conformal transformation:

gµν → g̃µν = e−2φgµν and ψ → ψ̃ = esφψ (2.23)

where s is some number s ∈ R called the conformal weight (conventionally denoted
by Latin letters) of the field ψ. The conformal weight is the curved space gener-
alization of the scaling dimension ∆. The theory described by gµν and ψ is said
to be conformally invariant if the equations of motion are left invariant under the
conformal transformation i.e, H(g̃µν , ψ̃) = 0 for all φ. Equivalently conformal in-
variance could be expressed on the level of invariance of the (matter) action under
conformal transformations, see below.
As an example, consider a free scalar field conformally coupled to gravity with
equation of motion

Hscalar[gµν , ψ] = gµν∇µ∇νψ − d− 2
4(d− 1)

Rψ = 0 (2.24)

where R is the Ricci scalar of the metric gµν . This theory is conformally invariant
if and only if the scalar field ψ is assigned conformal weight s = d/2 − 1. Indeed,
using the scaling relations (2.23) and (2.14), we can show that

Hscalar[e−2φgµν , e(d/2−1)φψ] = e(1+d/2)φ Hscalar[gµν , ψ] = 0 (2.25)

This equation is the curved space, conformally invariant generalization of the Klein-
Gordon equation. It is also possible to show that the curved space Maxwell equa-
tions ∇νFµν = 0 are conformally invariant in four spacetime dimensions [13].

Finally, we examine how the conservation equation

∇µTµν = 0 (2.26)

behaves under conformal transformations. Suppose that Tµν transforms with con-
formal weight w i.e. Tµν → T̃µν = ewφTµν . Notice that the weight w needs not to
be the same as the conformal weight of the underlying field of fields. We then have

∇̃µT̃µν = ∇̃µ(ewφTµν)
= ∂µ(ewφTµν) + Γ̃µµλ(e

wφTλν) + Γ̃νµλ(e
wφTµλ)

= ∇µ(ewφTµν) + Cµµλe
wφTλν + Cνµλe

wφTµλ

= ewφ
{∇µTµν − (d− w + 2)Tµν∇µφ+ T∇νφ}

(2.27)

We therefore see that the conservation equation (2.26) is generally not conformal
invariant. However, we see that if the trace T = gµνTµν of the stress tensor van-
ishes (this is clearly conformally invariant statement) then the equation (2.26) is
conformal invariant if the stress tensor is assigned conformal weight w = d + 2.
On the other hand, assume that the theory is conformally invariant. We then have
S̃M ≡ SM [g̃µν , ψ̃i] = SM ≡ SM [gµν , ψi] under conformal transformations and we
therefore have for the stress tensor

T̃µν = − 2√
g̃

δS̃M
δg̃µν

= −e(d+2)φ 2√
g

δSM
δgµν

= e(d+2)φTµν (2.28)

So, a conformally invariant theory gives rise to a stress tensor which transforms
with conformal weight w = d + 2 under conformal transformations. Moreover, if
the theory is conformally invariant, then the equation (2.26) must be conformally
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invariant, so from the equation (2.27) we see that conformal invariance of a theory
must imply T = 0. Notice that we may also infer the tracelesness of the stress
tensor directly from a variational argument: Consider an infinitesimal conformal
transformation gµν → e−2δφgµν . Under such a transformation we clearly have
δgµν = −2gµνδφ, so T ≡ gµνTµν ∼ gµνδSM/δgµν = −d22 δSM/δφ = 0.

Finally suppose that a conformal theory contains a conserved current Jµ and
consider a conformal transformation gµν → e−2φgµν . Since the theory is conformal,
the conservation equation

∇µJµ = 0 (2.29)

must also hold in the transformed metric i.e.

∇̃µJ̃µ = ∇̃µ(ewφJµ)
= wewφ(∇µφ)Jµ + ewφ∇̃µJµ
= wewφ(∇µφ)Jµ + ewφ∇µJµ + ewφCµµλJ

λ

= ∇µJµ + (w − d)ewφ(∇µφ)Jµ

(2.30)

We therefore conclude that the current transforms as

Jµ → edφJµ (2.31)

under conformal transformations.

2.2.3 Quantum conformal theories

As usual, in the quantum theory the fields are promoted to operators and the
physical theory is then expressed in terms of the correlators of relevant operator
products. Although there are special methods and theorems pertaining to quantum
CFTs the general ideas are the same as with “normal” QFTs.

Many interesting field theories are scale invariant. Examples include four di-
mensional Yang-Mills theory [16]. However, this invariance is typically broken in
the quantum theory. This can be understood directly from the method of renormal-
ization. A renormalizable quantum field theory is defined in terms of some cutoff
which explicitly brakes scale invariance. This procedure implies that the coupling
constant g of the theory is running i.e. it depends directly on the scale µ of the
system. Conventionally this scale dependence of the QFT is expressed in terms of
the β-function

β(g, µ) = g
dg
dµ

(2.32)

If the beta functions of a quantum field theory vanish, usually at particular values
of the coupling parameters, then the full quantum theory is scale-invariant. Almost
all scale-invariant QFTs are also conformally invariant [17].

2.3 Super conformal theories

It is natural to ask whether the conformal group can be combined with supersym-
metry. This is indeed possible in dimensions d ≤ 6 [16]. In addition to the conformal
generators (Pµ,Kµ,D,Mµν) and the supersymmetry generators Q, the superconfor-
mal algebra contains a set of fermionic generators S and (sometimes) R-symmetry
generators (R-symmetry is a symmetry transforming different supercharges of a su-
persymmetric theory into each other). Schematically the commutator relations of
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the superconformal algebra (in addition to those of the conformal algebra) are given
by

[D,Q] = − i
2
Q; [D,S] =

i

2
S; [K,Q] ∼= S; [P, S] ∼= Q

{Q,Q} ∼= P ; {S, S} ∼= K; {Q,S} ∼= M +D +R
(2.33)

The exact form of the algebra depends of the spacetime dimension of on the R-
symmetry group.

2.3.1 N = 4 SYM

Here we consider a specific superconformal theory, namely supersymmetric Yang-
Mills (SYM) theory with four supersymmetries in d = 4 dimensions. This theory has
been studied in great detail. The N = 4 SYM theory in four dimensions contains
one gauge boson Aµ, six scalars φI and four fermions χαi, χα̇i (we refer to [18] for
a much more detailed account of the field content and supersymmetry properties of
N = 4 SYM). Moreover, the theory has a global SO(6) R-symmetry.

The Lagrangian is schematically of the form [19]

L =
1
g2

Tr

[
F 2 + (Dφ)2 + χ /Dχ+

∑
IJ

[φI , φJ ]2 + χΓIφIχ

]
+ θTr[F ∧ F ] (2.34)

again we refer to [18] for the details. The N = 4 SYM theory in four dimensions has
the very special property that its β-function is zero to all orders [19]. It is therefore
a conformally invariant theory.

2.4 Anti de-Sitter space

We will now introduce D = d + 1 dimensional anti-de Sitter space and important
related concepts. Anti de-Sitter space is a maximally symmetric space of Lorentzian
signature with constant negative scalar curvature. Moreover anti-de Sitter space is
a vacuum solution of Einstein’s field equations with negative cosmological constant
Λ.

2.4.1 Defining Anti de-Sitter space

Anti de-Sitter space is conventionally defined as an embedding of R(2,d), that is,
(Y 0,· · · , Y d, Y d+1) ∈ RD+1 equipped with pseudo-metric

ηAB = diag(−,+,+,· · · ,+,−) (2.35)

The embedding space is naturally equipped with the “length” squared

Y 2 ≡ ηABY AY B = −(Y 0)2 +
d∑
i=1

(Y i)2 − (Y d+1)2 (2.36)

In this space, D-dimensional anti-de Sitter space (which we from now on will denote
AdSD) is now defined as being the “sphere” (equipped with the induced metric):

AdSD = {Y ∈ R(2,d) | Y 2 = −L2} (2.37)

The parameter L ∈ R is called the radius of the anti-de Sitter space. Of course
anti-de Sitter spaces with different radii are diffeomorphic. Often we will therefore
set L to unity since it is easily reintroduced into the equations if needed. In a similar
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fashion we would define ordinary de-Sitter space dSD as the locus of Y 2 = L2. Most
of the manipulations below also apply to dSD, however, we shall only be concerned
with anti-de Sitter spaces in this thesis.

As we show below, AdSD of radius L is a maximally symmetric solution to
Einstein’s vacuum equation with a negative cosmological constant given by Λ =
− 1

2 (D − 1)(D − 2)L−2. Before we do this, let us remind ourselves of the equations
of gravity.

2.4.2 AdSD as a gravitational vacuum solution with a negative
cosmological constant

Gravity in D spacetime dimensions with a cosmological constant Λ is governed by
the action

S = SH,Λ + SM (2.38)

where SM describes the action of non-gravitational matter and SH,Λ is the Einstein-
Hilbert action with a cosmological term given by [14] (in principle there will also
be a surface term in this action, such a term is, however, not important here and
we will thus ignore it)

SH,Λ =
1

16πGD

∫
dDx

√
|G|(R− 2Λ) (2.39)

Here R is the Ricci scalar and GAB is the bulk metric (we reserve gµν for the field
theory metric on the boundary). In vacuum SM = 0 and variation of SH leads to
the Einstein equation

EAB ≡ RAB − 1
2
GABR+ ΛGAB = 0 (2.40)

This equation implies that R = 2D/(D − 2)Λ and especially

RAB =
2Λ

D − 2
GAB (2.41)

The metrics of the type RAB ∝ GAB are collectively known as Einstein metrics.
We will now show that AdSD as it is defined in equation (2.37) solves (2.40).
First, we introduce a new set of coordinates (ρ, xA) on R(2,d) by

Y 0 = ρ
1 + x2

1− x2
, Y A = ρ

2xA

1− x2
, for A = 1,· · · , d+ 1 (2.42)

where we have defined2

x2 ≡ (x1)2 +· · ·+ (xn)2 − (xd+1)2 ≡ ηABxAxB (2.43)

These coordinates split up R(2,d) in a radial ρ part and a xA part describing AdSD.
In other words, the coordinates (x1,· · · , xd+1) parametrizes AdSD, this is simply
because y2 = −ρ2, as is easy to check. Now, it is a straight forward exercise to
express dy0 and dyA in terms of dρ and dxA and substitute them into the metric
ds2 = −(dy0)2 +

∑d
i=1(dy

i)2 − (dyd+1)2. In terms of the coordinates (ρ, xA) the
metric of the embedding space then takes the form

ds2 = −dρ2 +
4ρ2

(1− x2)2
dx2 (2.44)

2Notice that unconventionally the time direction is assigned to the last coordinate (so ηAB =
diag(+, +,· · · ,−)).
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This means that the metric of AdSD with AdS-scale ρ2 = L2 is given by the very
simple expression

GAB =
4L2

(1− x2)2
ηAB (2.45)

We therefore conclude that Anti de-Sitter space AdSD is conformally flat meaning
that the metric can be written

GAB = eφ ηAB (2.46)

for some function φ. In our case the function φ is takes the form

φ = log 4b2 − 2 log(1− x2) (2.47)

It is straight forward to write down an expression for the Ricci tensor of a confor-
mally flat metric using the usual expressions for the Christoffel symbols and the
Ricci tensor

ΓCAB =
1
2
GCD

{
∂AGBD + ∂BGDB − ∂DGAB

}
RAB = ∂CΓCAB + ΓCABΓDCD − (B ←→ D)

(2.48)

The Christoffel symbols of the conformally flat metric (2.46) are given by

ΓCAB =
1
2
(
δBA∂Bφ+ δCB∂Aφ− ηAB∂Cφ

)
(2.49)

and plugging this into the general expression for the Ricci tensor, we find that the
Ricci tensor for the conformally flat metric (2.46) is given by the simple expression

RAB =
[
1− D

2

](
∂A∂Bφ− 1

2
∂Aφ∂Bφ

)
+

1
2
ηAB

[(
1− D

2

)
(∂φ)2 − ∂2φ

]
(2.50)

For the function (2.47), we find

∂A∂Bφ =
4

1− x2
ηAB +

8xAxB
(1− x2)2

and ∂Aφ∂Bφ =
16xAxB
(1− x2)2

(2.51)

This is readily plugged into (2.50). We find that

Rµν = −4
(D − 1)
(1− x2)2

ηµν = −
(
D − 1
L2

)
Gµν (2.52)

Comparing this to (2.41), we see that AdSD indeed is a solution to Einsteins vacuum
equation with the negative cosmological constant

Λ = − (D − 1)(D − 2)
2L2

(2.53)

Having defined AdSD we can now move on to describing AdSD in various coordinate
systems but first we will discuss the isometry group of AdSD.

2.4.3 The symmetry group of AdSD

With the definition (2.36) of AdSD, it is (almost) obvious what the symmetry group
of AdSD is. Consider a general transformation of the type

Y A → Y ′A = ΛABY
B (2.54)
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The collection of matrices ΛAB that leave the quadratic (2.36) invariant makes up
the group SO(2, d). The SO(2, d) matrices therefore map AdSD into itself. Note
that the SO(2, d) matrices leave not only the quadratic ηABY AY B invariant but
more generally leave the inner product ηABY A1 Y B2 invariant. The isometry group
of (d+ 1)-dimensional anti-de Sitter space is therefore exactly SO(2, d).
This especially means that a quantum theory on AdSd+1 must be SO(2, d) invariant.
Since a d dimensional quantum conformal field theory is invariant under C(1, d−1),
the fact that C(1, d−1) is isomorphic to SO(2, d) is the very first hint that a quantum
theory on AdSd+1 could be equivalent to a CFT on ∂AdSd+1 (indeed if this were
not the case, such an equivalence could not exist).

2.4.4 Coordinates on anti-de Sitter

Due to the high degree of symmetry, AdSD has several nice coordinate descriptions.
Here we look at some of the relevant for this thesis (and the most used in the
literature).

Stereographic projective coordinates: These are the coordinates intro-
duced in equation (2.42). The AdSD metric in these coordinates is given by (2.45).

Static coordinates: We parametrize the “spatial” part of (2.36) with ordinary
spherical coordinates (r, µi, φi) (for the explicit form of the coordinates see appendix
A) i.e. so that

∑d
i=1(Y

i)2 = r2. The resulting equation (Y 0)2 + (Y d+1)2 = L2 + r2

is now parametrized by setting

Y 0 =
√
L2 + r2 cos(t/L) and Y d+2 =

√
L2 + r2 sin(t/L) (2.55)

This parametrization shows that AdSd+1 has topological structure S1 × Rd. 3 In
the spherical coordinates we have

∑d
i=1 d(Y i)2 = dr2 + r2dΩd−1, so all in all the

metric takes the form

dŝ2 = −(1 + r2/L2
)
dt2 +

dr2

1 + r2/L2
+ r2dΩ2

d−1 (2.56)

This clearly shows the static nature of AdSd+1 with ∂/∂t being the Killing field
generating time translations. Moreover this reveals that SO(2, d) has a (compact)

3In fact the coordinates (2.55) reveal an unpleasant feature of Anti de-Sitter space; it contains
closed time-like curves, see fig. 2.1, and is therefore non-causal. There is, however, a solution
to this problem: We simply unwrap the timelike circle S1, that is, we take −∞ < t < ∞ with
no identifications (this is the universal covering space of the space (2.36)). In this thesis, when
referring to anti-de Sitter space AdSd+1, we will always mean this unwrapped causal version of
AdSd+1.

Figure 2.1: The topological structure of anti de- Sitter.
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subgroup SO(2) × SO(d) (=rotations of S1 times rotations of Sd). Some authors
prefer to redefine the radial coordinate by setting r = L sinhχ. Here the metric is

dŝ2 = − cosh2 χdt2 + L2dχ2 + L2 sinh2 χdΩ2
d (2.57)

This is the form used in e.g. [16]. These coordinates cover the entire manifold and
are therefore also known as global coordinates.

Poincaré coordinates: Define “lightcone” coordinates u and v by

u =
1
L2

(Y 0 − Y d) and v =
1
L2

(Y 0 + Y d) (2.58)

Moreover define xi = Y i/Lu and t = Y d+1/bu. Here u, xi and t are independent
while v must be determined in terms of these. This is done by substituting them
into (2.36):

L4uv + L2u2(t2 − x2) = L2 , x2 ≡
d∑
i=1

(xi)2 (2.59)

which can now be solved for v. This yields v = L−2(u−1−u(t2−x2)) and we obtain

Y 0 =
1
2u

(1 + u2(L2 + x2 − t2)), Y i = Luxi, (2.60)

Y d+1 =
1
2u

(1 + u2(−L2 + x2 − t2)), Y d = Lut (2.61)

The coordinates u, xi, t are known as Poincaré coordinates. The differential ex-
pressions for the Y A’s in terms of u, xi, t are easily worked out and plugged into
the metric induced from R(2,d). This gives the metric in terms of the Poincaré
coordinates

dŝ2 = L2
[
du2/u2 + u2(−dt2 + dx2)

]
(2.62)

Notice that as opposed to the global coordinates, Poincaré coordinates do not cover
the entire manifold. This is seen by noting that the metric expressed in the Poincaré
coordinate chart is singular at u→ 0. Thus the hyperboloid (fig. 2.1) is divided in
two by the hyperplane L2u = Y 0 − Y d = 0, and one chart (u > 0) covers one half
of the hyperboloid while the other (u < 0) covers the other.
A set of related coordinates are obtained by setting z ≡ 1/u. In these coordinates
the metric takes the form

dŝ2 =
L2

z2

(−dt2 + dz2 + dx2
)

(2.63)

There are several other useful coordinate systems which we will not go through
here.

Finally, we mention that it is possible to perform a Wick rotation t → it of
anti-de Sitter and in this way obtain an Euclidean version of AdSD [16]. Effectively
this results in replacing −dt2 with +dt2 in the various expressions. Of course, the
physics and geometry of Euclidean AdSD is equivalent to that of ordinary AdSD
(by analytical continuation). However, it is particular easy to see the boundary
structure of AdSD in Euclidean signature (see below).4

4Moreover as usual a quantum theory (here on AdSD) is better defined on spacetimes of Eu-
clidean signature.
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2.4.5 The Boundary of AdSD

We will now discuss the boundary of AdSD. We start by stating a well-known fact:
The conformal compactification of Minkowski space Md is given by R× Sd−1 [16].
Intuitively, conformal compactification results in adding a point “at spatial infinity”
to Minkowski space. This point, so to speak, closes Rd−1 (the spatial part of Md) to
a (d−1)-dimensional sphere. We will now explain how the boundary of AdSD exactly
is the conformal compactification of Md. Perhaps the easiest way to realize this is
by considering AdSD the global coordinates (2.56). In this set of coordinates the
boundary is located at r =∞ and we see that it exactly has the topological structure
R×Sd−1. This can also be seen by considering the Poincaré coordinates (2.62). Here
the boundary corresponds to u = ∞ (the remaining coordinates parametrize Md)
and a single point “at infinity” u = 0 5. Again we therefore see that the boundary
precisely corresponds to Minkowski space comformally compactified. Having made
this identification, it is possible to show that the isometries of AdSD (∼ SO(2, d))
exactly act as conformal transformations on the boundary [16, 20].

Notice that the metric blows up near the boundary. This is of course not a
coincidence. It is because the boundary is located infinitely far away as measured
by the AdSD metric. This fact also shows that a theory defined on the boundary of
AdSD must be conformal (along with the above remark). Indeed, consider Euclidean
AdSD in stereographic projective coordinates

GAB =
4

(1− x2)2
δAB (2.64)

with x2 ≡∑d+1
i=A(xA)2 < 1. Here the boundary consists of the points

d+1∑
i=A

(xA)2 = 1 (2.65)

The boundary is therefore Sd which is just the Euclidean version of the conformal
compactification of Minkowski space. Again we see that the metric becomes singular
on the boundary. This means that the metric GAB does not extend to the boundary.
It is therefore impossible to define a metric on the boundary directly from GAB . If
we want a metric which does extend to the boundary we can pick a non-vanishing
function f which has first order zero on boundary and use G̃AB = f2GAB (this is
essentially the same as drawing Penrose diagrams for AdSD). The metric G̃AB now
restricts to a metric on the boundary Sd. However, there is no natural choice for
the function f ; the function e−2φf is just as good a choice of function as f . Such
a change in function would induce a conformal transformation G̃AB → e−2φG̃AB .
The boundary metric is therefore only defined modulo conformal transformations.

5The fact that u = 0 corresponds to a single point can be seen by converting to the alternative
Poincaré coordinates (2.63). Here we see that at u = 0 (z = ∞) the metric vanishes in all directions
and u = 0 must therefore correspond to a single point.
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The AdS/CFT
correspondence

3.1 String theoretical background

There are five different types of superstring theories: Type IIA, type IIB, type I,
heterotic string theory with gauge group SO(32) and heterotic string theory with
gauge group E8 × E8. All five theories exist in ten spacetime dimensions. The
Type IIA and type IIB string theories are collectively known as type II superstring
theory. It is not the purpose of this thesis to describe the mathematical details of
these theories, however, excellent reviews can be found in e.g. [21, 22, 23].

It has been shown that the five theories can in fact be related through various
dualities (with S- and T-duality being the most “famous” of these dualities). This
lead Witten (and others) to suggest that the five superstring theories in fact are
different faces of one and the same theory known as M-theory. The fundamental in-
teracting objects of M-theory are branes existing in 11 spacetime dimensions rather
than the strings of 10 dimensional string theory. For a nice summary of the theories
and their interconnecting dualities, see [22].

As described in the next section, all five string theories and M-theory reduce to
a (corresponding) supergravity (SUGRA) description. We will focus on the type II
string theory and M-theory.

3.1.1 Low energy actions

Since the massive tower of string excitations are not attainable in the low energy
limit α′ → 0 1, the low energy string theory behavior is governed by the massless
string excitations. As is well known, the massless type II string excitations in the
bulk originates from the closed string sector. The massless excitations are described
by the dilaton φ, the metric tensor GAB (gravity), fields belonging to NS-NS sector
(for example the antisymmetric Kalb-Ramond field BAB), fields belonging to the RR
sector fields along with their supersymmetric fermionic partners. The low energy
effective supergravity action, here presented in the so-called string-frame, takes the

1In general the mass scale of the modes is set by 1/α′, therefore, in the limit of α′ → 0 only
the massless fields remain.

17
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form [21]

S =
1

2κ2
10

∫
d10x

√
|G|
[
e−2φ

(
R+ 4GAB∂Aφ∂Bφ− 1

12
(H(3))2

)
−1

2

∑
n

1
n!

(F (n))2 + · · ·
] (3.1)

here R is the Ricci scalar associated with GAB , H(3) is the field strength of the
Kalb-Ramond field B(2)

H(3) = dB(2) , (3.2)

the F (n) are the RR n-form field strengths while the dots represent fermionic terms
along with Chern-Simons-like terms of the n-form potentials. It is worth mentioning
that for IIA strings (IIB strings) we only have even (odd) values of n. Moreover,
for type IIB strings the n = 5 field strength is self-dual, F (5) = ∗F (5).

Since 10 dimensional SUGRA is the low energy limit of string theory, the
SUGRA coupling constant κ10 is determined by the string length ℓs (=

√
α′) and

the closed string coupling constant gs. Moreover 10 dimensional SUGRA theory
gives rise to a 10 dimensional theory of gravity (see below) with Newton constant
G10. The relation between the various coupling constants is

2(κ10)2 = 16πG10 = (2π)7ℓ8sg
2
s (3.3)

Alternatively the action can be expressed in the Einstein-frame, obtained by the
following Weyl rescaling2

GsAB → GEAB = e−φ/2GsAB (3.4)

In the Einstein-frame the action schematically takes the form [20]

S =
1

2κ2
10

∫
d10x

√
|G|
[
R− 1

2
GAB∂Aφ∂Bφ− 1

2

∑
n

1
n!
eanφ(F (n))2 + · · ·

]
(3.5)

where the factors an are easily worked out. The pure gravity part of the Lagrangian√|G|R is exactly recognized as that of Einstein gravity. We therefore conclude
that, as stated above, the low energy limit of string theory contains classical Ein-
stein gravity, just as it should. Finally we present the low energy M-theory action
which takes the form of (unique) 11 dimensional SUGRA. The bosonic fields of 11
dimensional SUGRA are the metric GAB and a 3-form potential C with associated
field strength K = dC. The action has the form [20]

S =
1

(κ11)2

(∫
d11x

√
|G|(R− 1

48
K2
)− 1

6

∫
C ∧K ∧K + . . .

)
(3.6)

where the dots represents fermionic terms. Notice that 11 dimensional SUGRA
does not contain the dilaton φ.

3.1.2 Dp-branes

Branes are an integral part of string theory/M-theory. Branes have many different
descriptions and applications. It is not the purpose of this thesis to give a detailed
account of brane physics, here we shall be content with a short review of the basic
properties of p-branes. A nice reference on p-branes can be found in [24].

2We do not write the superscripts s and E in the expressions but the metric in the string-frame
action (3.1) is GsAB and the metric in the Einstein-frame action (3.5) is GEAB .
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The closed string sector description: The first description of p-branes is
the so-called solitonic/gravitational brane description. A p-brane is a supergravity
soliton-like object which extends over p spatial dimensions (and usually one time-
like dimension). Since a p-brane is a (p+1)-dimensional object, it naturally couples
(electrically) to a n− 1 form gauge potential with n = p+2.3 The relevant p-brane
action from the supergravity actions (3.5), (3.6) therefore is

S =
1

16πGD

∫
dDx
√
G

(
R− 1

2
∂Aφ∂

Aφ− 1
2n!

eaφ
(
F (n)

)2) (3.7)

where F (n) is the field strength corresponding to the gauge potential A(n−1), so
F (n) = dA(n−1) (with a ≡ an). Again we have discarded the fermionic terms as
they can be consistently set to zero. Moreover we have ignored the Chern-Simons-
like terms as they will not be important for brane solutions which have a high degree
of transverse symmetry [20]. Varying the action w.r.t. Gµν , A(n) and φ gives the
equations of motion. We find by straight forward computation

RAB =
1
2
∂Aφ∂Bφ

+
1

2n!
eaφ
(
nFAB2···BnFBB2···Bn

− n− 1
D − 2

δAB(F (n))2
)

�φ =
a

2n!
eaφ(F (n))2

∂A(
√
GeaφFAB2···Bn) = 0

where � is the usual Laplacian on scalars. The solution to this set of equations was
first worked out in [25]. A complete solution (and a nice derivation) can be found
in [20]. Here we will be content with writing down the extremal brane solutions.
The extremal branes are the branes where the BPS bound “M ≥ Q” is saturated
resulting in zero temperature and maximal supersymmetry (of the theory living on
the brane, see below). They exhibit a SO(1, p) × SO(d) symmetry and therefore
have the topological structure of R(1,p) × R+ × Sd−1. We therefore introduce a set
of p longitudinal coordinates x1,· · · , xp, a time coordinate t and a radial coordinate
r. The extremal brane solution is now given by

ds2 = H
− d−2
D−2

(
−dt2 +

p∑
i=1

(dxi)2 +H
(
dr2 + r2dΩ2

d−1

))
(3.8)

where dΩd−1 is the metric on Sd−1 and where H is a harmonic function in the
radial variable r (h = const.)

H(r) = 1 +
(
h

r

)d−2

(3.9)

The n− 1 gauge potential and dilaton are given by4

A(n−1) = (H−1 − 1)dt ∧ dx1 ∧ · · · ∧ dxp , e2φ = Ha (3.10)

It can be shown that the tension of the extremal p-brane is given by [26]

Tp =
1

(2π)pℓp+1
s gs

(3.11)

3There is also the possibility that the brane is magnetically coupled to an n− 1 form potential
with n = D − p− 2.

4For the RR 5-form in IIB string theory we replace F (5) → F (5) +∗F (5) due to the self-duality
constraint on F (5).
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Figure 3.1: The open string sectors.

Since the tension goes as ∼ 1/gs, we conclude that branes are new dynamical non-
perturbative (quantum mechanical) objects. The extremal brane (3.8) corresponds
to the classical description of a p-brane in the ground state. Going away from the
extremal condition (Q = M,T = 0) introduces a horizon in the transverse space
(the brane becomes black) and the brane therefore acquires a finite temperature.
The non-extremal black brane corresponds to the classical description of a p-brane
in an exited state of some definite temperature.

The open string sector description: The second description of branes comes
from string theory. Closed strings are not subject to any boundary conditions (since
they have no boundaries). However, (the endpoints of) open strings are either
subject to Neumann or Dirichlet boundary conditions [21]. Assume that a string is
subject to Neumann boundary conditions in the directions x1, · · · , xp and Dirichlet
boundary conditions in the remaining directions. The endpoints of the open string
will then be confined to moving in the same hyperplane in the directions x1, · · · , xp.
Such a hyperplane is known as a Dp-plane (where D stands for Dirichlet). Generally
a Dp-brane is defined as a hyperplane with p spatial dimensions where open strings
can end. It is possible to study the behavior of open strings on Dp-branes. The
(endpoints) of the open strings give rise to a massless U(1) gauge field, a set of
massless Goldstone scalars and additional fermions + massive string excitations, all
living on the Dp-brane. This is generalized to the case where we have more than
one Dp-brane. Suppose that we have N parallel Dp-branes. The endpoints of open
strings can now start and end on each of the different Dp-branes. Clearly this gives
rise to N2 sectors which can be labeled [ij] (see fig. 3.1). As stated above, the open
strings in the [ii] sector give rise to a massless gauge field, however, the [ij] (i 6= j)
sector generally contains no massless gauge fields (because of the string tension).
However, in the limit where the separation between the N branes goes to zero and
the N branes become coincident, the sector [ij] (i 6= j) will contain a massless gauge
field. All in all the N coincident branes have N2 massless gauge fields (along with
scalars and fermions and, of course, massive fields) living in their collective world
volume. The gauge fields are interacting. This can be understood in the string
picture: An open string from the [ij] sector can interact with an open string from
the [jk] sector and form a string belonging to the [ik] sector (by joining start- and
end-points). The effective interacting theory is determined by the Dirac-Born-Infeld
action, schematically of the form [27]

SDBI = −TDpTr
∫

dp+1ξ

√∣∣∣det
(
gµν + 2πα′Fµν

)∣∣∣ (3.12)

where TDp is the tension of the Dp-brane and gµν is the metric on the brane. The
DBI action is an effective action where the massive modes of the open strings are
integrated out. Notice that the DBI action also contains interaction terms with
the massless bulk fields. This means that the DBI action does not only describe
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the gauge fields living on the brane, but also their interactions with the bulk fields.
Physically these interactions correspond to scattering of closed strings on the Dp-
brane (closed strings get “cut open” and form open strings ending on the Dp-brane
and vice versa). If we write the total effective action of the (N coincident) brane(s)
as

S = Sbulk + Sbrane + Sint (3.13)

where Sbulk is the bulk action (closed strings), Sbrane is the action of the fields living
on the brane (open strings), and Sint describes the interaction between fields on the
brane and bulk fields (open ↔ closed strings), it can be shown that the open string
sector decouples from the closed string sector in the limit α′ → 0 with gs fixed (i.e.
the interaction part vanishes in a well-defined manner). Moreover, in this limit only
the zero mass fields need to be considered, especially, as mentioned above, the bulk
theory reduces to supergravity. It can be shown that the massless open string states
are in the adjoint representation of SU(N) and in the limit α′ → 0, with gs fixed,
that Sbrane for the N coincident branes reduces to the action of SU(N) Yang-Mills
theory with coupling constant

g2
YM/4π = gs(2πℓs)p−3 (3.14)

The latter statement can be realized by expanding the DBI action to first order in
α′. Especially in the limit α′ → 0, with gs fixed, the theory of the open strings
on N coincident D3-branes reduces to 3 + 1 dimensional N = 4 SYM theory with
g2
YM/4π = gs [16].

3.2 The AdS/CFT correspondence

The AdS/CFT correspondence [1] (also known as the Maldacena conjecture) comes
from the dual description of Dp-branes. Here we consider type IIB string theory
which is the setting of the original form of the correspondence. The AdS/CFT
correspondence is in essence a duality between the open and closed string sectors
pertaining to Dp-branes. The AdS/CFT correspondence is a vast subject, both
in itself and its applications. Here we will explain the main points behind the
motivation for the correspondence. For nice reviews on the correspondence we refer
to e.g. [20, 17, 19].

3.2.1 Statement of the correspondence

Consider a stack of N coincident D3-branes in type IIB string theory. According
to the brane description in the closed string sector, the brane is a supergravity
background around which we can have quantum mechanical excitations (of the
brane). A short computation shows that the excitations near the brane horizon
have very small energies (due to an overall redshift factor corresponding to the
throat geometry of the brane). This means that in the low energy limit only these
excitations will survive. Moreover, at large distances from the brane, in the low
energy limit, gravity becomes free [17]. We therefore have two decoupled systems:
The low energy excitations near the brane and free SUGRA in the bulk of spacetime.
As explained above, excitations of the brane can be understood in terms of open
strings with endpoints on the brane. As also explained, for D3-branes we have
that in the limit α′ → 0, the following reductions hold Sbulk → SSUGRA, Sint → 0
and Sbrane → SN=4 SYM. In the open string sector we therefore also have two
decoupled systems consisting of respectively free supergravity in the bulk andN = 4
SYM on the brane. Since these two viewpoints must describe the same physics, we
conjecture that, in the low energy limit (α′ → 0), the near horizon excitations of
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the N coincident branes in the closed string sector must be equivalent to N = 4
Super Yang-Mills with gauge group SU(N). In order to understand the low energy,
near horizon brane excitations in the closed string sector (gravity), we must simply
examine the background metric (3.8) when r → 0 and α′ → 0 (and subsequently
scale up the near horizon region in a well-defined manner). This is known as the
near horizon limit. The near-horizon limit of the metric (3.8) is given by [20]

ds2 =
U2

L2

[
−dt2 +

3∑
i=1

(dxi)2
]

+ L2 dU2

U2
+ L2dΩ2

5 (3.15)

where the L parameter can be related to the string parameters by L2 = 2
√
πgsNα

′.
The metric (3.15) is immediately recognized as that of AdS5×S5 with AdS5 radius =
radius of S5 = L (cf. equation (2.62)). The notion of near horizon brane excitations
in the closed string sector should therefore be understood as string theory in its
supergravity limit on the background (3.15). Since, in the near-horizon limit, we
are examining spacetime as r → 0, the gauge theory now lives at U = ∞ i.e. at
the boundary of AdS5 (we know that the boundary of AdS5 exactly corresponds to
four dimensional Minkowski space which is the space on which the gauge theory is
defined). We therefore conclude/conjecture that string theory in its supergravity
limit on AdS5 compactified on S5 is equivalent to N = 4 SYM in four dimensions (=
∂AdS5). This is the AdS/CFT correspondence! As explained in §2.4.3 the isometry
groups of the two sides of the correspondence are isomorphic, just as they should
be. In fact, the AdS/CFT correspondence as it is stated above is in its weakest
form. It is generally believed that the AdS/CFT correspondence holds completely
in general, also away from the low energy (SUGRA) limit [17].

As mentioned above, going away from the extremal condition introduces a hori-
zon (so the brane becomes black) and therefore a finite temperature. By arguing
as above, in the non-extremal case (taking the relevant near-horizon limit), one can
see that in the finite temperature case, the AdS/CFT correspondence becomes a
duality between gravity on a black brane background in AdS5 and thermal N = 4
field theory on the boundary of anti de-Sitter [17, 20].

3.2.2 Regimes of validity

As explained above, we have that the common radius of AdS5 × S5 is given by

L4 = α′24πgsN = α′2g2
YMN = α′2λ (3.16)

where we have defined
λ = g2

YMN (3.17)

According to general gauge dynamics lore, the effective coupling constant for large
N SU(N) gauge theory is not gYM but rather the ’t Hooft coupling λ = g2

YMN
[16]. This means that if we consider the large N planar limit (N → ∞) with λ
fixed, the string coupling will go to zero, gs → 0. In other words, we are considering
the classical (tree-level, no quantum loops) limit of string theory. In this regime
the AdS/CFT correspondence therefore predicts that the full quantum mechanical
behavior of the gauge theory in the planar limit can be obtained from string theory
in its classical limit! Moreover if we consider the case where we hold the radius
parameter L fixed and let λ → ∞ (the extreme non-perturbative, strong coupling
regime) we obtain the α′ → 0 limit of string theory that we considered above. This
is the reason why the AdS/CFT correspondence is called a duality; weak coupling on
one side corresponds to the strongly coupled regime on the other side and vice versa.
All in all we conclude that large N N = 4 SYM in the extreme non-perturbative,
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strongly coupled regime is dual to classical supergravity on AdS5 × S5. This is
indeed a remarkable prediction!

Finally we mention that there also exist AdS/CFT correspondences for the
spaces (from M-theory) AdS7(2L)× S4(L) and AdS4( 1

2L)× S7(L) (in obvious no-
tation) [20] and even in more exotic cases [1, 28]. The most general form of the
AdS/CFT correspondence is therefore between some complicated string/M-theory
on an anti-de Sitter space 5 compactified on some internal compact manifold XI

and a gauge theory living on the boundary of the anti-de Sitter space. The exact
form of the internal manifold XI will not be important for most of this thesis, how-
ever, we emphasize that the form of XI depends crucially on the boundary gauge
theory. For example, the symmetry group of the XI = S5 internal manifold for
the AdS5×S5 AdS/CFT correspondence is SO(6) which exactly corresponds to the
global R-symmetry of N = 4 SYM. For more on the matching of symmetries see
e.g. [20].

3.2.3 Some mathematical aspects of the correspondence

Following the discussion above, we consider the space AdSd+1 × XI where XI is
some compact manifold. According to the Maldacena conjecture string/M-theory
on AdSd+1 ×XI has a dual gauge theory living on the boundary of AdSd+1. The
question now is how the mapping between these two theories looks. This problem
was addressed in several papers using highly detailed string theoretical methods,
however, Witten suggested a surprisingly simple/beautiful explanation of how the
mapping works in the famous paper [29]. This procedure is known as the Witten
prescription which we will now review.

As usual, the fundamental objects in a quantum theory are the correlation func-
tions. Assume that {Oi} are a set of boundary operators. We now wish to under-
stand correlators of the type

〈O1(x1)· · · On(xn)〉 (3.18)

in terms of the bulk theory. It turns out that the mapping is most naturally
expressed on the level of partition functions: As usual the correlator functions
〈O1(x1)· · · On(xn)〉 are obtained by taking functional derivatives of the partition
function of the (boundary) field theory (with field content ψi)

ZO[φ0] =
∫

[Dψ] exp
(
− S[ψi] +

∫
Sd

φ0(x)O(x)
)

=
〈

exp
∫
Sd

φ0O
〉

CFT

(3.19)

Here we work in the Euclidean version of AdSd+1 (so ∂AdSd+1 = Sd) and φ0 is the
current/field that couples to the operator O. Notice that the field φ0 must have
conjugate quantum numbers of the operator O in order for the φ0O coupling term
to form a singlet. The correlation functions are now obtained by

〈O(x)〉 =
δZO[φ0]
δφ0(x)

∣∣∣∣∣
φ0=0

, 〈O(x)O(y)〉 =
δ2ZO[φ0]

δφ0(x)δφ0(y)

∣∣∣∣∣
φ0=0

, and so on. (3.20)

These relations are straight forwardly generalized to an arbitrary number of oper-
ators.

The main point of Witten’s prescription now is that the source φ0 can be iden-
tified with a bulk field φ ! O dual to the boundary operator O, via the AdS/CFT

5In the finite temperature case around an AdSD black brane solution.
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correspondence, in the way we will now explain. For simplicity assume that O is a
scalar and therefore couples to a scalar field φ. Now let ZS [φ0] denote the partition
function of bulk theory, calculated with the boundary condition φ = φ0 on the
boundary of AdSd+1. The idea now is to identify the boundary partition function
with the restricted bulk partition function i.e.,

ZS [φ0] = ZO[φ0] (3.21)

Especially in the large N limit and the limit where the ’t Hooft coupling is large, the
bulk theory reduces to classical supergravity. Here ZS [φ0] is simply calculated by
finding a solution φclassical to the classical equations of motion that fulfills φclassical =
φ0 on the boundary and subsequently evaluating (minus the exponential of) the
classical SUGRA action i.e.

ZS [φ0] = exp
(− IS(φclassical)

)
(3.22)

If the classical SUGRA approximation (= tree level action) is not valid, we must
include stringy α′ corrections and/or quantum loops, when the effective action is
computed. In this thesis we shall only work in the regime where the tree-level
SUGRA approximation is valid, so〈

exp
∫
Sd

φ0O
〉

CFT
= exp

(− IS(φclassical)
)

(3.23)

This is Witten’s suggestion for computing quantum correlator functions of the
boundary theory from the bulk theory. It turns out that the statement (3.23)
needs a slight modification when dealing with more complicated bulk fields φ, more
specifically fields with spin, mass or indices. By analyzing the matter field AdS bulk
equations of motion, it is realized that the above procedure will not work for more
general fields since the boundary condition “φ = φ0” is not attainable [29]. In the
more general case the prescription is modified according to [29] (see also [20, 17])

φ0(x) = lim
z→0

φclassical

z∆
(3.24)

Here z is the coordinate introduced in (2.63) and ∆ is a constant which turns out
to be identical to the conformal dimension of φ to which O couples. Witten’s
prescription tells us how to compute the boundary theory partition function for an
operator O given the dual bulk field φ. It does, however, not tell us which operators
couple to which bulk fields. Figuring out the operator↔ field mapping is in general
a highly technical task and relies heavily on matching various (super)symmetries on
each side. Here we will explain the most important concepts of the operator↔ field
correspondence. A full account can be found in [16]. Again we will focus on our
favorite example: The AdS/CFT correspondence for AdS5 × S5. Since we have a
correspondence between a theory on AdS5×S5 and ∂AdS5, we need a way to control
the field behavior on S5. This is done by performing a Kaluza-Klein reduction of
the type IIB string theory on AdS5 × S5 over the five-sphere to obtain an effective
theory on AdS5: By expanding all the bulk fields in spherical harmonics on S5,
keeping only the lowest harmonics, we obtain a five-dimensional theory containing
a metric GAB , a massless dilaton φ and a set of SO(6) gauge bosons AaB governed
by the action (where the dots represent additional massless fields)

S5D =
N2

8π2L3

∫
d5x
√
|G|
[
R5D − 2Λ− 1

2
GAB∂Aφ∂Bφ− L2

8
Tr
(
FABF

AB
)

+ . . .

]
(3.25)

Here R5D is the Ricci scalar associated with GAB , Λ is the cosmological constant
(2.53) and FAB is the SO(6) field strength (not to be confused with the five-form
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F (5) from the original theory). The operator ↔ field mapping is now then between
these reduced bulk fields and the gauge theory operators. Now taking the fields we
introduced above, it holds that (see [3] and the references therein)

• The dilaton couples to the field theory Lagrangian density operator Oφ =
−L = 1

4TrF 2 +· · ·.
• The SO(6) gauge fields AaB couples to the boundary theory conserved R-charge

currents OAa = Jaµ

• The metric GAB couples to the boundary theory stress tensor OG = Tµν .

This concludes our review of the AdS/CFT correspondence. We will now explain
how the fluid/gravity correspondence is a natural corollary of the AdS/CFT corre-
spondence.

3.3 The universal sector and the fluid/gravity
conjecture

3.3.1 The gravitational sector

As explained above, it is believed that the most general gauge/gravity correspon-
dence is between a two-derivative quantum theory (a quantum theory of gravity)
on a background of the form AdSD×XI (where XI is a compact internal manifold)
and a CFT on the boundary of AdSD. Exactly as we did for type IIB string theory
on AdS5 × S5, it is possible to perform a dimensional reduction of the theory on
AdSD × XI to obtain a theory on AdSD. Heuristically this is done by setting all
the Kaluza-Klein harmonics of the graviton modes on XI along with all the matter
degrees of freedom to zero (we set the matter fields to their background values on
AdSD × XI and thus remove their degrees of freedom). This reduction leads to
D-dimensional Einstein gravity around AdSD i.e. Einstein gravity with a negative
cosmological constant

S =
1

16πGD

∫
dDx

√
|G|(R− 2Λ) (3.26)

Here GD is the D dimensional Newton constant which in principle can be related
to the gauge theory parameters (as in (3.25)). As explained in §2.4 this action leads
to the following equations of motion (we set the anti de-Sitter radius to unity and
let GAB denote the Einstein tensor)

EAB = GAB − (D − 1)(D − 2)
2

GAB = 0⇒
RAB = (1−D)GAB , R = −D(D − 1)

(3.27)

Such a reduction is also known in the literature as a consistent truncation of the
two derivative theory on AdSD × XI [6, 8]. In the gravitational subsector the
dynamics therefore reduce to finding solutions to Einstein’s equation with a negative
cosmological constant that asymptotes to anti de-Sitter. By abuse of nomenclature
we shall refer to such a solution as simply an AdSD solution. This accounts for
the gravitational universal subsector of gauge/gravity theories. Finally, we mention
that in addition to gravity, it is also possible to consider excitations of matter fields.
For example, as we saw (equation (3.25)) for D = 5, dimensional reduction of type
IIB string theory on AdS5×S5 lead to gravity + a set of SO(6) gauge fields (along
with other massless fields). Therefore, keeping the SO(6) excitations, the analog
of the action (3.26) would then be the action of Einstein-Maxwell theory (with a
Chern-Simons term [9]).



Chapter 3. The AdS/CFT correspondence 26

Bulk Boundary
AdS/CFT Complicated gravita-

tional quantum theory on
AdSD × XI (for example
type IIB string theory)

Boundary CFT on Einstein
static universe R × Sd−1 (or
alternatively the Poincaré patch)

Effective
description

Einstein gravity with a
negative cosmological con-
stant

Relativistic fluid dynamics

Table 3.1: Summery of the fluid/gravity correspondence.

3.3.2 The fluid/gravity conjecture

The regime of validity of the AdS/CFT correspondence was discussed above, espe-
cially the regime where string/M-theory on AdSD ×XI is reduced to supergravity.
We also explained how a general two derivative quantum theory on AdSD×XI con-
tains a universal subsector: Gravity on AdSD. While only considering the universal
gravitational subsector simplifies things a lot, the dynamics of the boundary stress
tensor is still very complicated and non-local [8]. It is therefore useful to consider a
further limit. We consider the limit where the stress tensor varies slowly compared
to the local equilibration scale of the field theory (∼ the mean free path). In this
limit we expect the field theory to be locally thermalized and therefore suitable for a
fluid dynamical effective description (more on this in §4.1.1). In this fluid dynamical
limit we therefore expect the non-trivial dynamics of the stress tensor to reduce to
that of fluid dynamics which can be formulated by a set of relativistic Navier-Stokes
equations. It is expected that any quantum field theory admits such a fluid dynam-
ical effective description at sufficiently high temperatures and energy densities. The
fluid/gravity conjecture is therefore a conjectured equivalence between gravity (an
effective description of string theory) and fluid dynamics (an effective description
of the boundary CFT) at high temperatures. The main purpose of this thesis is to
examine some of the many aspect of this correspondence between these two effective
theories.

3.4 The holographic stress tensor

Here we examine dual operator that couples to gravity. As explained above, this
conformal operator turns out to be the stress tensor of the boundary field theory.

3.4.1 The boundary stress tensor from AdS/CFT

In general the stress tensor Tµν of a physical system acts as the source for the
metric gµν since

Tµν =
2√|g| δSMδgµν

(3.28)

Here SM is the non-gravitational part of the action for the system. This means
that a non-zero stress tensor introduces a coupling term gµνTµν into the (classical)
Lagrangian. This especially means that the expectation value of the stress tensor
in the quantum theory is given by

〈Tµν〉 =
2√|g| δ logZ

δgµν
(3.29)
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where logZ ≡ Γ is the effective action of the non-gravitational part of the theory.
According to the AdS/CFT correspondence, the effective action Γ of the boundary
gauge theory can be expressed in terms of the on-shell bulk theory action subject to
certain well-defined boundary conditions. Suppose that the boundary is equipped
with the boundary metric γµν .6 Apart from a normalization factor which we discuss
below, the expectation value of the stress tensor is given by functional differentiating
Γ w.r.t. γµν , and therefore according to the correspondence

〈Tµν〉 ∼ 2√|γ| δSon-shell[GAB ; γµν ]
δγµν

(3.30)

where Son-shell[γµν ] denotes the on-shell gravitational bulk action subject to the
boundary condition that the boundary metric induced from GAB should be γµν .

3.4.2 The quasi-local stress tensor

The stress tensor (3.30) is mathematically identical to the quasilocal stress tensor
originally introduced by Brown and York [30], however the interpretation is differ-
ent. The stress tensor (3.30) comes directly from the AdS/CFT correspondence
while the quasilocal stress tensor of Brown and York was invented before the dis-
covery of the AdS/CFT correspondence in order to give well-defined meanings to
energy, mass etc. in rather arbitrary gravitational backgrounds. Naively we may
write down the gravitational action using the usual expression [13]

S =
1

16πGd+1

[∫
AdSd+1

dd+1x
√
|G|(R− 2Λ

)
+ 2

∫
∂AdSd+1

ddx
√
|γ|Θ

]
(3.31)

here Θµν is the extrinsic curvature (defined below) of the boundary of anti-de Sitter
with induced metric γµν from the metric GAB . This action is clearly divergent: By
virtue of Einstein’s equations, the Ricci scalar is a constant and the on-shell bulk
integral is therefore (proportional to) the volume of AdSd+1 which is of course
infinite. Moreover, it is not clear how we should evaluate the surface integral since
the induced metric blows up near the boundary. Divergent action is a general
feature of the bulk actions in AdS. Such divergences are also expected to show
up on the field theory side of the correspondence before renormalization of the
boundary QFT. This implies that Witten’s prescription should in fact be expressed
in terms of renormalized actions on the gravity side and renormalized correlation
functions on the field theory side. Indeed, such a formalism exists and is known
as holographic renormalization, for a review see [31]. Here we will show how to
renormalize the gravitational action above.

Following the usual renormalization procedure, we must first find a way to regu-
larize the action (3.31). Following [32] we introduce a slicing of AdS in the following
way: We foliate d+ 1 dimensional AdS near the boundary into a one-parameter set
of d geometries homeomorphic to ∂AdSd+1. We denote the coordinates on the time-
like slicing surfaces by xµ while the last spacelike direction is denoted by r where
we demand that ∂AdS is located at r = ∞. Moreover denote the timelike surface
at “radial” coordinate r by ∂AdSr and let γµν be the induced metric on ∂AdSr. We
now redefine the action (3.31) by adding a counter-term action Sct of the type

Sct =
∫
∂AdSr

ddxF(L, γµν) (3.32)

6As usual the proper way to think of the metric on the boundary of anti-de Sitter is as a
conformal class of metrics.
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where F is some functional of the AdS radius L (= 1) and the boundary metric
γµν . The renormalized action is now given by

Sren = S +
1

8πG
Sct (3.33)

where the limit r →∞ is understood. The counter-term action must now be chosen
so that the divergences in S and Sct exactly cancel out as r → ∞, leaving a finite
renormalized gravitational action. Notice that we have assumed that the counter
term action only depends on the intrinsic geometry of the surface ∂AdSr i.e. local
expressions in the boundary metric. This ensures that the full action Sren leads to
the same bulk equations of motion for gravity as the original action S. In order to
write down the quasilocal stress tensor, we must now work out the variation of Sren
w.r.t. the boundary metric γµν . To this end introduce the extrinsic curvature of
∂AdSr

Θµν = −∇µnν (3.34)

where nµ is the outward pointing normal vector to ∂AdSr. The extrinsic curvature
has the associated trace

Θ = Θµ
µ = γµνΘµν (3.35)

Varying the boundary metric γµν leads to an indirect variation of the bulk metric
GAB since we change the boundary conditions. As is well-known, variation of the
bulk part of the action gives a term which is proportional to the equations of motion
plus a boundary term. Since we are considering the on-shell action, the EOM term
vanishes and we are therefore left with only contributions from surface terms. The
variation of the renormalized action is then worked out to [32] (see also e.g. [13])

δSren =
∫
∂M

ddxπµνδγµν +
1

8πG

∫
∂M

ddx
δSct

δγµν
δγµν (3.36)

where πµν is the conjugate momentum to γµν given by the expression

πµν =
1

16πG
√−γ[Θµν −Θγµν

]
(3.37)

This leads to the following expression for the quasilocal stress tensor

TµνBY =
1

8πG

[
Θµν −Θγµν + Tµνct

]
(3.38)

where Tµνct = 2√−γ
δSct
∂γµν

is the counter-term stress tensor. In general the counter-term
action depends on the spacetime dimension. It was computed for various dimensions
in [32], here we present the result for D = d+ 1 = 5 (here Sct =

∫
∂AdSr

Lct)

Lct = − 3
L

√
|γ|
(

1− L2

12
R

)
⇒ Tµνct = − 1

16πG

[
6
L
γµν + LGµν

]
(3.39)

where R and Gµν = Rµν − 1
2Rγ

µν refer to the boundary metric γµν . Using this
counter-term stress tensor (in five dimensions), the stress tensor (3.38) yields a finite
result.

3.4.3 The field theory stress tensor

As mentioned in the introduction to this section, the quasilocal stress tensor in
the form (3.38) is not quite the boundary stress tensor we are looking for. This
is because the metric has conformal dimension ∆ = −2 6= 0 and the boundary
condition for GAB is therefore given according to (3.24).
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Consider an asymptotic anti-de Sitter solution equipped with a set of coordinates
(r, xµ) in which the metric, near the boundary (r =∞), takes the form

ds2 =
dr2

r2
+ r2gµνdx

µdxν +O(r−2) (3.40)

Here the metric gµν denotes the boundary metric while Λ2
rgµν is the induced metric

on ∂AdSr where the scale factor Λr is given by Λr = r. These coordinates are
exactly of the type we considered in the previous section. Near the boundary, the
coordinate z is related to the r coordinate by r = z−1. It therefore follows that the
boundary condition should be chosen as γµν = limr→∞ Λ2

rgµν , therefore

〈Tµν〉 =
2√|g| δSon-shell[GAB ; γµν ]

δgµν
= lim
r→∞Λd+2

r TµνBY (3.41)

We conclude that the boundary field theory stress tensor is given by7

〈Tµν〉 = lim
Λr→∞

Λd+2
r

8πG

[
Θµν −Θgµν +

2√|g| δSct

δgµν

]
(3.43)

where the trace Θ is constructed w.r.t. the metric gµν . The stress tensor (3.43)
coincides with the effective stress tensor obtained in [32] (using a slightly different
argument for the prefactor Λd+2). It turns out that the exact form of Tµνct will not
be important for our purposes. Indeed, suppose that we for some arbitrary anti-de
Sitter solution compute the combination Sµν = rd(Θµ

ν − Θδµν ). The tensor Sµν will
have some divergent terms as r →∞ and we conclude that the counter-term stress
tensor must exactly cancel out these divergences, up to a constant. The boundary
stress tensor can therefore be given a finite value by simply ignoring/subtracting
the divergent terms. In concrete computations we will therefore just use this naive
subtraction method, keeping in mind that this is justified by the holographic renor-
malization procedure and that our stress tensor is only correct up to a (in general)
non-zero constant. This constant turns out to have the interpretation of repre-
senting a zero-point Casimir energy of the boundary theory and will therefore just
correspond to a shift in energy which does not affect the dynamics [32].

7Alternatively, we can write the stress tensor with one index up and one down. It is simply
given by

〈Tµν 〉 = gνρ〈Tµρ〉 = lim
Λ→∞

Λdr
8πG

h
Θµν −Θδµν + Tµct,ν

i
(3.42)

where Θµν = ∇νnµ = γνρΘµρ.
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4
Conformal fluid dynamics

4.1 Fluid Dynamics

In this section we will introduce the theory of relativistic fluid dynamics needed
for this thesis. In the following we will let Md denote a generic d-dimensional
spacetime manifold on which we assume there is some matter content suited for a
fluid mechanical description.

4.1.1 Fluid dynamics as an effective description of QFTs

In this thesis we shall use fluid dynamics as a long wave effective description of
certain quantum field theories. For a nice discussion of relativistic fluid models
and their uses in other areas of modern physics see e.g. [33] In general quantum
field theories are determined by their field content and its action which in turn (in
principle) determines the stress tensor Tµν and a set of conserved currents JµI of
the theory, see any quantum field theory text e.g. [34]. Intrinsic to the theory
is the mean free path, ℓmfp, which indicates the overall interaction scale of the
field theory. This means that if we consider the expectation values 〈Tµν〉 and 〈JµI 〉
on scales ≫ ℓmfp then we expect the short wave behavior of the field theory to
be integrated out, leaving us with a long wave effective description of the field
theory. Here the expectation values are taken over both the quantum and thermal
fluctuations (which of course reduce to the vacuum (|0〉) expectation value at zero
temperature). Here we will assume that our field theory have such an effective fluid
dynamical description.

Moreover we assume that the system is in local thermal equilibrium. The appro-
priate thermodynamical description of a system with currents is the grand canon-
ical ensemble. The grand canonical partition function Zgc is determined by the
temperature T = β−1, pressure p and chemical potentials µI associated with the
currents. The assumption of local thermal equilibrium now is that thermodynam-
ical quantities T , µI , p, ... and so on, do not change on scales ∼ ℓmfp. This means
that it makes sense to promote the thermodynamical quantities to smooth functions
T (xµ), p(xµ), µI(xµ), ....

Finally we require that the scale ℓmfp is much smaller than the curvature and
compactification scales of the manifold Md on which the fluid propagates.

4.1.2 The fluid dynamical equations

We will now write down the fluid dynamical equations. As opposed to most ef-
fective theories, which are formulated by some action principle, fluid dynamics is

31
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described in terms of equations of motion, simply because fluid dynamics incorpo-
rates dissipation which has no action formulation (indeed an action formulation for
special cases of the non-dissipative perfect fluid exists [35]). We start by identifying
the fluid dynamical variables. They consist of the thermodynamical variables such
as the temperature T , energy density ρ (and so on) along with the fluid velocity
uµ which is used to write covariant expressions. The fluid velocity can be thought
of as the velocity by which the fluid propagates on the background manifold Md.
However there is an ambiguity in this definition since generally the flow on en-
ergy/momentum does not have to coincide with the flow of currents. This means
that there is no preferred definition of the fluid ’velocity’. This ’gauge freedom’ in
uµ can be fixed by introducing the so called Landau frame which is defined in the
following way: We let uµ be the (unique) future pointing, timelike, unit normalized
uµu

µ = −1 eigenvector to the stress tensor Tµν . The corresponding eigenvalue
will precisely be minus the energy density ρ [13, 14]. By considering the equation
Tµνuν = −ρuµ in the rest frame we see that the Landau frame exactly corresponds
to defining uµ to coincide with energy-momentum transport in the sense that in the
rest frame T 0i = 0. This is how the Landau frame is defined in the original work of
Landau & Lifshitz [36].

Having identified the fluid dynamical variables and fixed the ambiguity in uµ

we will now present the equations governing fluid dynamics. They consist of a set
of constitutive equations and a set of dynamical equations:

• Constitutive equations: These consist of expressing the stress tensor Tµν
and currents JµI in terms of the fluid dynamical variables.

• Dynamical equations: These are the conservation equations for the stress-
tensor and the currents JµI :

∇µTµν = ∂µT
µν + ΓµµλT

λν + ΓνµλT
µλ = 0

∇µJµI = ∂µJ
µ
I + ΓµµλJ

λ
I = 0

(4.1)

Together with the internal thermodynamical equations, these equations completely
determine the motion of the fluid.

4.1.3 The perfect fluid

Here we will discuss the perfect fluid. The motivation for and derivation of the per-
fect fluid stress tensor can be found in any standard reference on general relativity
see e.g [13, 14]. The stress-tensor of the perfect fluid is constructed out of terms
that are at most zero-derivative in the fluid dynamical variables. This gives

Tµν(0) = (p+ ρ)uµuν + pgµν

JµI,(0) = qIu
µ

(4.2)

Here ρ and p are respectively recognized as the energy density and the pressure.
In the second equation qI is the charge density associated with the current JµI .
Physically the second equation expresses nothing else than that the charge is being
completely driven by advection. For future convenience we introduce the projector
onto spatial directions perpendicular to uµ

∆µν = gµν + uµuν (4.3)

In the same manner the tensor −uµuν is recognized as the projector along uµ. The
stress tensor for the perfect fluid can therefore be written as

Tµν(0) = ρuµuν + p∆µν (4.4)
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Writing the perfect fluid stress tensor in this form directly shows that the energy
density is associated with the time-like vector uµ while the pressure is associated
with the spatial directions.

The entropy current: Now assume that the fluid has an associated entropy
density s and therefore the entropy current

JµS,(0) = suµ (4.5)

By use of simple thermodynamical relations it is possible to show that the entropy
current is conserved [36]

∇µJµS,(0) = 0 (4.6)

The relation (4.6) is clearly the relativistic generalization of the classical equation
dS/dt = 0 and we conclude that the perfect fluid describes a fluid in global equilib-
rium.

4.1.4 Non-equilibrium fluids

We will now look into how it is possible to model dissipation i.e. effects due to
off-diagonal stress. In this section we assume that the are no currents. We saw
that the perfect fluid stress tensor, containing only zeroth order derivatives in the
fluid variables, leads to global equilibrium. It is therefore natural to expect that
dissipation effects will show up in the stress tensor as higher order derivatives of
the fluid variables. We therefore start by writing Tµν as a derivative expansion:

Tµν = ρuµuν + p∆µν + Πµν

Πµν = Πµν
(1) + Πµν

(2) +· · · (4.7)

where Πµν
(n) contains only nth order derivative terms of the fluid fields. Notice that

if we let L denote the typical scale of the flow of the fluid, then we expect the term
Πµν

(n+1) to be suppressed by a factor ℓmfp/L≪ 1 compared to Πµν
(n). The derivative

expansion (4.7) therefore makes sense. Notice that the Landau frame condition
means that

uµΠµν = 0 (4.8)

The tensor Πµν is therefore build from terms which all orthogonal to uµ - here the
projector ∆µν will come in handy. Also note that from the fluid equation of motion
we have

− uµ∇νTµν = (p+ ρ)∇µuµ + uµ∇µρ+ Πµν∇νuµ = 0 (4.9)

We therefore conclude that whenever a singe derivative of the energy density ρ
occurs, it can be replaced with a term which is at least first order of ∇µuν . A
similar result is easily derived for the pressure. Finally the fluid temperature T can
be written in terms of ρ and p through an equation of state. We therefore see that
the expansion (4.7) (no charges) can completely be written as an expansion in the
fluid velocity derivative.

Constructing the most general form of the nth order correction Πµν
(n) is of course a

quite complicated task. However, we can do it for pretty easily for Πµν
(1). It is possible

to decompose ∇µuν into irreducible representations, separating into components
parallel or orthogonal to uµ:

∇µuν = −aµuν + σµν +̟µν +
1

d− 1
ϑ∆µν (4.10)
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where the acceleration (as usual) is defined as aµ = uν∇νuµ and the trace ϑ = ∇νuν
is totally contained in the last term 1

d−1ϑPµν . The shear σµν and vorticity ̟µν are
given by the expressions

σµν =
1
2
(
∆ρ

µ∆
λ
ν∇ρuλ + ∆ρ

µ∆
λ
ν∇λuρ

)− 1
d− 1

ϑ∆µν

̟µν =
1
2
(
∆ρ

µ∆
λ
ν∇ρuλ −∆ρ

µ∆
λ
ν∇λuρ

) (4.11)

It is straight forward to check that the RHS of (4.10) indeed equals ∇µuν . We see
that the first acceleration term −aµuν is parallel with uµ, moreover

uµσ
µν = 0, uµ̟

µν = 0, aµu
µ = 0, σµµ = 0, ̟µ

µ = 0 (4.12)

so the last three terms are all orthogonal to the velocity uµ. The decomposition
(4.10) shows how the different combinations of the velocity gradients transform
under SO(d− 1) rotations around uµ. Since Πµν

(1) must respect this rotational sym-
metry, we see that it must be built out of the terms aµuν , σµν , ̟µν and ϑPµν .
However, since aµuν is not orthogonal to uµ and ̟µν is not symmetric, they can
not contribute. The only possible form of Πµν

(1) therefore is

Πµν
(1) = −2ησµν − ζϑ∆µν (4.13)

where η and ζ respectively is the shear viscosity and the bulk viscosity (i.e., the
friction coefficients associated with respectively fluid stress and expansion). The
parameters η and ζ must for physical reasons be chosen to be non-negative. First
of all if η and ζ are negative it will lead to unphysical instabilities in the fluid.
Moreover the η, ζ < 0 is in direct violation with the second law of thermodynamics.

The entropy current: It is possible to construct an entropy current associated
with the dissipative fluid. As with the stress tensor, we write the entropy current
as a derivative expansion

JµS = suµ + Σµ

Σµ = Σµ(1) + Σµ(2) +· · · (4.14)

By use of various thermodynamical relations it is possible to show that the diver-
gence of the entropy current takes the form [36] (see also [33, 37])

T ∇µJµS = 2ησµνσµν + ζϑ2 (4.15)

We therefore see that η and ζ must be positive η, ζ ≥ 0 in order for the second law
of thermodynamics

∇µJµS ≥ 0 (4.16)

to be satisfied.

4.1.5 Charged fluids

We now consider the most general fluid with a set of conserved currents

∇µJµI = 0 (4.17)

As before we will write the current JµI as a derivative expansion

JµI = qIu
µ + Υµ

I

Υµ
I = Υµ

(1)I + Υµ
(2)I +· · · (4.18)
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On physical grounds, we usually take the diffusion current Υµ
I to be transverse i.e.

uµΥ
µ
I = 0 [33]. Now there are two ways to write down the expression for Υµ

(1).
The first follows [28, 9] where we write down the must general contribution from
various fluid dynamical derivatives and use the the zeroth order equation to express
some thermodynamical derivatives in terms of ∇νuµ. The second approach follows
that of Landau & Lifshitz [36] (see also [33, 37]) where the form of Υµ

(1) is deduced
from the entropy current, the first law of thermodynamics (here written in terms of
covariant derivatives on the manifold)

∇µρ = T ∇µs+ µI∇µqI (4.19)

and the fact that there must be entropy production for all fluid configurations.
When presenting the general first order result we find it convenient not to assume

the Landau frame condition uµΠµν = 0 (for more on fluid dynamics without fixing
uµ to the Landau frame see [33, 37]). This makes it easier comparing the relativistic
laws of fluid dynamics to their well-known classical counterparts and accounts for
the expressions found in [5]. The first order derivative corrections the stress-tensor
and the currents are given by

Tµν(0) = ρuµuν + p∆µν , Πµν
(1) = −ζϑ∆µν − 2ησµν + 2κh(µuν) (4.20)

Jµ(0)I = qIu
µ , Υµ

I = −∆µν
∑
J

DIJ∇ν(µI/T ) (4.21)

where ζ ≥ 0 is the bulk viscosity, η ≥ 0 is the shear viscosity, κ ≥ 0 is the the
thermal conductivity and DIJ ≥ 0 is the IJ ’th diffusion coefficient. Here

hµ = −∆µν(∇νT + aνT ) (4.22)

is the heat flux vector. By using the defining equation (4.8), we see that in the
Landau frame this vector is “gauged out” i.e. hµ = 0. Indeed using the method
of [36] (see also [33, 37]) along with the first law of thermodynamics, it is possible
to show that the divergence of the entropy current associated with 4.20 is positive
definite.

Finally we mention that in d = 4 it is possible to have an additional term

0Iℓµ = 0Iǫµαβγuα∇βuγ (4.23)

in the expression for Υ(1)I . Here 0I is a new transport coefficient associated with
the pseudo-vector ℓµ. Clearly such a term is theoretically possible in d = 4 moreover
it is physically realized for certain field theories [9] (see also §6.3.8).

4.1.6 The Kubo formula and the viscosity/entropy ratio

It is possible to derive an expression for the viscosity η in terms of the correlators
of the stress tensor Tµν . This is the famous Kubo formula. The Kubo formula for
the viscosity is given by [3]

η = − lim
ω→0

1
ω

ImGR
xy,xy(ω,0) (4.24)

Here GR
xy,xy is the momentum space retarded Green’s function of the xy compo-

nent of the stress tensor (operator). Similar formulas can be derived for the other
transport coefficients. The point is that the transport coefficients can in principle
be derived directly from the underlying quantum theory. It should therefore also be
possible to compute e.g. the viscosity η for weakly coupled theories by calculating
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Feynman diagrams. Indeed, such a (highly non-trivial) computation is possible (see
[38]). However, this Feynman diagram approach for computing the transport coef-
ficients is completely unavailable in the strongly coupled regime. The reason that it
is still possible to use the Kubo approach for computing the transport coefficients
for strongly coupled theories is of course because of the duality provided by the
AdS/CFT correspondence [3].

We now address the viscosity/entropy ratio. Given an effective fluid description
of a field theory, the ratio η/s is a measure of how strongly the theory is coupled:
For weakly coupled theories (more specifically our favorite field theory toy model,
φ4-theory), the ratio η/s can be estimated to be [3]

η

s
∼ 1
λ2

(4.25)

where λ is the (weak) coupling. We therefore have η/s ≫ 1 for weakly coupled
theories. By extrapolating (4.25) to λ ∼ 1, we see that η/s ∼ 1 for strongly coupled
theories. The viscosity/entropy bound mentioned in the introduction conjectures
that the limit η/s → 0 can not be obtained, even for extremely strong coupled
theories.

4.2 Conformal Fluid Dynamics

4.2.1 Classification of the conformal fluid observables

We will now look at the fluid dynamics of a conformal field theory. As we have
seen, conformal invariance demands that the trace of the stress tensor vanishes

gµνT
µν = 0 (4.26)

Before we continue, we mention that in principle, on curved backgrounds, the under-
lying quantum theory can contain Weyl anomalies which break Weyl invariance and
therefore lead to trace anomalies. However, such anomalies will be of high deriva-
tive nature and in order to see them in our fluid dynamic effective description, we
would have to go beyond second order fluid dynamics [39]. We will therefore simply
ignore Weyl anomalies.

Now, applying the tracelesness condition to the perfect fluid stress tensor we see
that the energy density ρ and pressure p are related through the conformal equation
of state p = ρ

d−1 . We will now work out the transformation properties of the various
fluid observables under conformal transformations:

gµν → g̃µν = e−2φgµν , gµν → g̃µν = e2φgµν (4.27)

First of all recall that the fluid velocity uµ was defined so that uµuµ = −1 which
must hold both in the original metric and the transformed one. We therefore have
gµνuµuν = g̃µν ũµũν = −1 and we conclude ũµ = eφuµ. Notice that this implies
that the projection tensor ∆µν transforms with conformal weight 2 i.e. ∆̃µν =
ũµũν − g̃µν = e2φ∆µν . Also recall that the stress tensor of a conformal theory
transforms homogeneously under Weyl transformations with weight d+ 2

T̃µν = e(d+2)φTµν (4.28)

Using this we therefore see that the energy density ρ must transform as ρ̃ = edφρ.
Now intensivity and conformal invariance implies that the energy density ρ of a
conformal fluid can be written ρ = η0T d where η0 is a constant. This is realized
using a simple dimensional analysis argument. Indeed, in a finite temperature CFT
the only characteristic variables with non-vanishing length (energy−1) dimension is



Chapter 4. Conformal fluid dynamics 37

Conformal observable Conformal weight
Metric, gµν −2
Fluid velocity, uµ 1
Projection tensor, ∆µν 2
Temperature, T 1
Entropy density, s d− 1
Charge density, qI d− 1
Chemical potentials, µI 1

Table 4.1: Conformal observables

the temperature T and the manifold volume V and since ρ is intensive, it cannot
depend on V . Since ρ has length dimension d, the result follows. The perfect stress
tensor of a conformal fluid is therefore given by

Tµν(0) = η0T d
(
uµuν +

1
d− 1

∆µν
)

(4.29)

We conclude from the scaling behavior of the energy density that the temperature
scales as T̃ = eφT . Finally we can work out the transformation properties of
the chemical potentials. First of all the charge densities transform with conformal
weight d − 1. This is realized by considering e.g. (2.31). Now by the fundamental
relation ρ+p = d

d−1ρ = Ts+µIqI we then conclude that µI scale as µ̃I = eφµI under
Weyl transformations. The conformal weights of the conformal observables relevant
for the zeroth order description of conformal fluid dynamics are summarized in the
table 4.2.1. We now move on to describing the first order conformal properties of
the first order corrections to the stress tensor (4.13).

4.2.2 Conformal properties of Πµν
(1)

The Christoffel symbols transform as

Γµνλ = Γ̃µνλ + δµν ∂λφ+ δµλ∂νφ− g̃νλg̃
µσ∂σφ (4.30)

Using this relation along with the transformation property of uµ we can work out
the transformation of the gradient of the fluid velocity

∇µuν = ∂µu
ν + Γνµλu

λ = e−φ
(∇̃µũν + δνµũ

σ∂σφ− ũµg̃νσ∂σφ
)

(4.31)

We can now deduce the transformation properties of the various fluid quantities
such as shear and vorticity

ϑ ≡ ∇µuµ = e−φ(∇̃µũµ + (d− 1)ũσ∂σφ) = e−φ(ϑ̃+ (d− 1)D̃φ)

aµ ≡ Duµ = e−2φ(ãµ + ∆̃µσ∂σφ)

σµν ≡ ∆λ(µ∇λuν) − 1
d− 1

∆µν∇λuλ = e−3φσ̃µ

̟µν ≡ ∆λ[µ∇λuν] = e−3φ ˜̟ µ

(4.32)

where we have introduced a fluid directional derivative

D ≡ uµ∇µ (4.33)

We therefore see that the trace ϑ and the acceleration aµ do not transform homo-
geneously under Weyl transformations while the shear σµν and vorticity ̟µν both



Chapter 4. Conformal fluid dynamics 38

transform homogeneously with weight 3. From the tracelesness of the stress tensor
we have that for a conformal fluid Πµ

(1)µ = 0. It therefore follows from (4.13) that
the bulk viscosity ξ must vanish for conformal fluids. We conclude that the first or-
der derivative correction to the stress tensor of a conformal fluid with non-vanishing
shear is given by

Πµν
(1) = −2ησµν , η > 0 (4.34)

Since this term must have conformal weight d + 2, we see that the shear viscosity
of a conformal fluid transforms as ˜̃η = e(d−1)φη̃.

Working out which terms are allowed in the stress tensor up to first order for
a conformal theory along with the Weyl scaling of the transport coefficients was
pretty straight forward. However it should be clear that already at second order,
this becomes quite involved. It would therefore be nice to have a general formalism
that allows us to write down higher order derivative terms that transform homoge-
neously under Weyl transformations. Such a construction would be reminiscent of
the construction of the covariant derivative ∇µ well-know from general relativity.

4.2.3 The Weyl-covariant derivative

Indeed such a formalism exists. In this section we follow the beautiful work of [40].
Consider a conformal object Qµ···ν··· with conformal weight w. Under Weyl trans-

formations we have

gµν → g̃µν = e−2φgµν ; Qµ···ν··· → Q̃µ···ν··· = ewφQµ···ν··· (4.35)

We wish to construct a derivative operator D which, in addition to being coordinate
transformation covariant, has the property that DQ transforms homogeneously with
the same weight w as Q under Weyl transformations. To this end introduce a one-
form Aµ with the following “gauge-like” transformation properties

Aµ → Ãµ = Aµ − ∂µφ (4.36)

under Weyl transformations (4.35). Notice that we have not yet specified the explicit
form of Aµ, only how it should transform. Recall that for a general tensor Tµ···ν··· we
have

∇λTµ1µ2···
ν1ν2··· = ∂λT

µ1µ2···
ν1ν2··· + Γµ1

αλT
αµ2···

ν1ν2··· + Γµ2
αλT

µ1α···
ν1ν2··· + · · ·

− Γβν1λT
µ1µ2···

βν2··· − Γβν2λT
µ1µ2···

ν1β··· − · · · (4.37)

This means that using equation (4.30)

∇̃λQ̃µ···ν··· = ∇λQ̃µ···ν··· + (gαλ∂
µφ− δµα∂λφ− δµλ∂αφ)Q̃α···ν··· + · · ·
− (gνλ∂

βφ− δβν ∂λφ− δβλ∂νφ)Q̃µ···β··· − · · ·
= ewφ∇λQµ···ν··· + w(AλewφQµ···ν··· − ÃλQ̃µ···ν···)

+ ewφ(gαλAµ − δµαAλ − δµλAα)Qα···ν··· − (g̃αλÃµ − δµαÃλ − δµλÃα)Q̃α···ν··· + · · ·
−
(
ewφ(gνλAβ − δβνAλ − δβλAν)Qµ···β··· − (g̃νλÃβ − δβν Ãλ − δβλÃν)Q̃µ···β···

)
− · · ·

(4.38)

where we used that gµνAλ = g̃µνÃλ + gµν∂λφ. This means that we can define a
Weyl-covariant derivative by

DλQµ···ν··· = ∇λQµ···ν··· + wAλQµ···ν···
+ (gαλAµ − δµαAλ − δµλAα)Qα···ν··· + · · ·
− (gνλAβ − δβνAλ − δβλAν)Qµ···β··· − · · ·

(4.39)



Chapter 4. Conformal fluid dynamics 39

By moving all the tilded terms in (4.38) to the RHS, we see that this derivative
has the sought property D̃λQ̃µ···ν··· = ewφDλQµ···ν···. We will now work out the explicit
expression of the one-form Aµ. We have that

Dλuµ = ∇λuµ + uλAµ − δµλAαuα (4.40)

The gauge field Aµ is uniquely determined by requiring that the Weyl-covariant
fluid derivative Dλuµ is traceless and transverse i.e. Dµuµ = 0 and uµDµuν = 0.
Indeed, from the first condition Dµuµ = 0 we find that Aµuµ = 1

d−1∇µuµ while the
second condition gives Aµ = uλ∇λuµ −Aλuλuµ, so

Aµ = uλ∇λuµ − 1
d− 1

∇λuλuµ = aµ − ϑ

d− 1
uµ (4.41)

As a consistency check notice that using the relations (4.32) we see that

Aµ = Ãµ + ∂µφ (4.42)

So everything works as it should. We are now ready to cast conformal fluid dynamics
into manifestly Weyl-covariant form. With Aµ defined as in (4.41) the derivative of
the fluid velocity takes the form

Dµuν = ∇µuν + uµaν − ϑ

d− 1
∆µν = σµν +̟µν (4.43)

where the shear σµν and vorticity ̟µν were defined in (4.11). This especially means
that

σµν = D(µuν)

̟µν = D[µuν]
(4.44)

This accounts for the first order terms in the Weyl-covariant formalism. It is also
possible to express the fluid dynamical conservation equations ∇µTµν , ∇µJµ = 0
in terms of the derivative Dµ. We have

DµTµν = ∇µTµν + (w − d− 2)AµTµν +AνTµµ
DµJµ = ∇µJµ + (w − d)AµJµ

(4.45)

Now since Tµν is traceless transforming with weight w = d+2 and Jµ has conformal
weight w = d, we see that the fluid dynamical conservation equations (4.1) can be
written in the manifestly Weyl-covariant form

DµTµν = 0
DµJµ = 0

(4.46)

The entropy current also has conformal weight w = d and the second law of ther-
modynamics can therefore be cast into manifestly Weyl-covariant form as

DµJµS ≥ 0 (4.47)

4.2.4 The Weyl curvature tensors

Here we introduce the various curvature tensors associated with the Weyl-covariant
derivative. These tensors, originally introduced in [40], are important when consid-
ering fluid dynamics to second order.

We start by defining a field strength associated with the field Aµ by

Fµν = ∇µAν −∇νAµ (4.48)
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Notice that this tensor is ’gauge invariant’ under the transformation (4.36) i.e,
Fµν = F̃µν . We will now define a Riemann curvature tensor associated with the
Weyl-covariant derivative Dµ. We do this in the usual way, the curvature tensor
arises from the commutator of covariant derivatives, [Dµ,Dν ]Vλ. Since the Weyl
curvature R ρ

µνλ should only encapsulate the conformal geometry of the underlying
manifold, the object on which we evaluate the commutator should be invariant
under Weyl transformations. Therefore let V µ be a vector with weight w = 0 and
define

[Dµ,Dν ]Vλ = −R ρ
µνλ Vρ (4.49)

Now if V µ is instead a vector of weight w then (using (4.39) on a vector)

[Dµ,Dν ]Vλ = wFµνVλ −R ρ
µνλ Vρ (4.50)

Notice that the first term comes from the wAµ-term in (4.39). We can check that

R ρ
µνλ = R ρ

µνλ +
[∇µ(gλνAρ + δρλAν − δρνAλ) − (µ↔ ν)

]
+
[
(gλνAσ − δσλAν − δσνAλ)(gσµAρ − δρσAµ − δρµAσ) − (µ↔ ν)

]
(4.51)

Lowering the last index we get

Rµνλσ = Rµνλσ + δα[µgν][λδ
β
σ](∇αAβ +AαAβ − A

2

2
gαβ)−Fµνgλσ (4.52)

Now this tensor, being a curvature tensor, fulfills various Bianchi identities which
can be found in [40]. The curvature tensor Rµνλσ does not have the same symmetry
properties as the Riemann tensor Rµνλσ under interchange of indices. We see from
the equation (4.52) that

Rµνλσ +Rµνσλ = −2Fµνgλσ
Rµνλσ −Rλσµν = δα[µgν][λδ

β
σ]Fαβ −Fµνgλσ + Fλσgµν

(4.53)

Having defined a Riemann Weyl invariant curvature tensor we can now proceed to
constructing the Weyl invariant Ricci tensor and scalar: 1

Rµν = R α
µαν = Rµν − (d− 2)

(∇µAν +AµAν −A2gµν
)− gµν∇λAλ −Fµν

R = R− 2(d− 1)∇λAλ + (d− 2)(d− 1)A2

(4.54)

Finally we will take a look at the Weyl tensor Cµνλσ. The Weyl tensor is a well
known example of a conformal tensor (see e.g. [13, 14]) i.e. a tensor that transforms
homogeneously and is independent of the background fluid velocity field (in other
words, it is a purely geometrical quantity). It is not surprising that these tensors
will also be present in our manifestly conformal invariant formalism. We define the
conformal Weyl tensor Cµνλσ in the same way as the ordinary Weyl tensor Cµνλσ
is defined in terms of the ordinary curvature tensors Rµνλσ, Sµν (see e.g. [13, 14]).
We therefore define Cµνλσ by

Rµνλσ = Cµνλσ − δα[µgν][λδβσ]Sαβ (4.55)

where Sµν is the conformal generalization of the the Schouten tensor i.e. the ordi-
nary Schouten tensor Sµν (see e.g [13] for its explicit form) with Rµν replaced with
Rµν . It is now possible to show that [40]

Cµνλσ = Cµνλσ −Fµνgλσ (4.56)
1Since Rµνλσ does not have the same symmetry properties as Rµνλσ it is important which

indices are contracted to construct the Ricci tensor and scalar. Here we use the same convention
as [40].
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which shows how the Weyl tensor emerges from the conformally invariant formalism.
Note how (4.56) directly shows that Cµνλσ transforms homogeneously with weight
w = −2 (recall that Fµν has weight 0 and the metric has weight −2). Moreover
recall that Cµνλσ has the same symmetry properties as Rµνλσ, Cµνλσ = −Cνµλσ,
Cµνλσ = −Cνµσλ, Cµνλσ = +Cλσνµ and is traceless

C α
µαν = 0 (4.57)

4.2.5 Second Order Fluid Dynamics

We are now ready to write down the most general stress tensor of conformal fluid
dynamics to second order. Notice that if κ is some transport coefficient with con-
formal weight w we can define

κ = T wκ0 (4.58)

where κ0 = T −wκ = κ̃0 is invariant under Weyl transformations. In this way we can
absorb the conformal weight of κ into T and trade κ0 in for κ. We will especially
define a new variable νI in terms of the chemical potentials µI by νI = µI/T = ν̃I .

From the above analysis we conclude that, up to second order, any conformal
fluid observable can be written in terms of the following 14 quantities:

O(1) : νI , T , uµ, gµν , εµν···σ
O(D) : DµνI , σµν , ̟µν

O(D2) : DµDννI , DµT , Dλσµν , Dλ̟µν , Fµν , R σ
µνλ

(4.59)

Here εµν···σ is the Levi-Civita tensor i.e. the totally antisymmetric symbol defined
with a factor √g, it therefore transforms as εµν···σ = edφε̃µν···σ under Weyl rescal-
ings. It is from these quantities that the corrections Π(1),Π(2),Υ(1),Υ(2),Σ(1) and
Σ(2) are built. Note that DµT is second order in Dµuν . This follows from the
conformal equation of motion uλDλρ = −Πµνσµν (see (4.72)). Since ρ ∼ T d we
therefore conclude that whenever a singe derivative in the temperature occurs, it
can be replaced with a term containing two or more derivatives of the fluid velocity.
Also note that there is no equation relating the derivative of the chemical poten-
tial to that of the fluid derivative. This means that DµνI can not be replaced by
derivatives of the fluid velocity in the derivative expansion (4.59).

We will now focus on the second order stress tensor correction Πµν
(2) in the case

where there are no charges, νI = 0. Since Πµν
(2) is symmetric, Weyl-covariant,

transverse and traceless, it must be built out of terms with the same properties.
For a general tensor Aµν of rank two it is therefore convenient to introduce the
operation 〈·, ·〉 defined by

A〈µν〉 ≡ ∆µα∆νβA(αβ) − 1
d− 1

∆µν∆αβAαβ (4.60)

When acting on Aµν , this operation exactly subtracts the antisymmetric part, the
longitudinal part, and the trace part of Aµν , leaving the symmetric, transverse and
traceless part of Aµν . Clearly σ〈µν〉 = σµν and ̟〈µν〉 = 0. This means that by
using the 〈·, ·〉 operation on combinations of the terms (4.59) with two free indices
and recalling that the derivative of the temperature can be written in terms of fluid
gradients through the equation of motion, we can write down possible contributions
to Π(2)

µν . They are

uλDλσµν , ̟〈µ
λσ

λν〉, Dλu〈µDλuν〉,
σ
〈µ
λσ

λν〉, ̟〈µ
λ̟

λν〉, C〈µ ν〉
α βu

αuβ ,

R〈µν〉, R〈µ ν〉
α βu

αuβ

(4.61)
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Note that using the properties of Cµνλρ mentioned below equation (4.56), we have
C
〈µ ν〉
α βu

αuβ = Cµ ν
α βu

αuβ . Moreover, using the symmetry properties (4.53), the
last two terms can be written

R〈µν〉 = ∆µα∆νβ(Rαβ +
d

2
Fαβ)− ∆µν

d− 1
∆αβRαβ

R〈µ ν〉
α βu

αuβ = ∆µλ∆νρ(Rλαρβuαuβ − 1
2
Fλρ)− ∆µν

d− 1
∆λρRλαρβuαuβ

(4.62)

Notice that the terms in (4.61) are not all independent, for example

Dλu〈µDλuν〉 = σ
〈µ
λσ

λν〉 + 2̟〈µ
λσ

λν〉 +̟
〈µ
λ̟

λν〉 (4.63)

It is also possible to show that the curvature terms (4.62) can be written in the terms
of the other tensors in (4.61), see appendix B of [40]. The possible independent
contributions to Πµν up to second order therefore are

σµν , Tµν1 = uλDλσµν , Tµν2 = ̟
〈µ
λσ

λν〉

Tµν3 = σ
〈µ
λσ

λν〉, Tµν4 = ̟
〈µ
λ̟

λν〉, Tµν5 = Cµ ν
α βu

αuβ
(4.64)

All the second order tensors are seen to have conformal weight w = 4. The expres-
sions for T2, T3, and T4 are easily written down

T2 = ̟µ
λσ

λν +̟ν
λσ

λµ

T3 = σµλσ
λν − 1

d− 1
∆µνσαβσαβ

T4 = ̟µ
λ̟

λν +
1

d− 1
∆µν̟αβ̟αβ

(4.65)

It therefore follows that the stress tensor can be written (here η1, η2, η3, η4 and η5
are all defined to be Weyl invariant)

Tµν = η0T d
(
uµuν +

1
d− 1

∆µν
)
− 2ησµν

− T d−2(η1T
µν
1 + η2T

µν
2 + η3T

µν
3 + η4T

µν
4 + η5T

µν
5 ) +O(∂3) (4.66)

where the unit temperature energy density η0, shear viscosity η and higher order
transport coefficients depend on the field and interaction content of the underlying
field theory. For later purposes we will find it convenient to introduce a slightly
different parameterization of the stress tensor. We define

T dη0 = (d− 1)p, η1T d−2 = −2ητ1, T d−2η2 = 2ητ2, (4.67)

T d−2η3 = −ξσ, T d−2η4 = −ξ̟, T d−2η5 = −ξC (4.68)

so that (here p is recognized has the fluid pressure)

Tµν = p (gµν + duµuν) − 2η [σµν − τ1Tµν1 + τ2T
µν
2 ] + ξσT

µν
3 + ξ̟Tµν4 + ξCTµν5

(4.69)

4.2.6 Discussion of the entropy current

Here we will elaborate on the entropy current in conformal fluid dynamics discussed
in the papers [40, 8]. The thermodynamical fields satisfy the first and second law
of thermodynamics

T Dµs = Dµρ− µIDµqI , DµJµS ≥ 0 (4.70)
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The first of these two equations is the the first law (4.19) written for a conformal
fluid. Along with the equations of motion DµTµν = DµJµ = 0, these relations
allow us to write down an expression for the entropy current following essentially
the procedure of Landau & Lifshitz [36, 33].

As with the relativistic fluid we assume that the conformal fluid has an associated
conformal entropy current JµS . Again we write the entropy current as a part coming
from the perfect fluid plus some correction Σµ due to dissipation

JµS = suµ + Σµ (4.71)

Using the expressions for the stress tensor and the currents (4.18) along with the
conditions uµΠµν = uµΥ

µ
I = 0, we easily obtain

0 = −uνDµTµν = uµDµρ+ Πµνσµν

0 = DµJµI = uµDµqI +DµΥµ
I

(4.72)

Now using the first law (4.70) we then see

DµJµS =
1
T [−Πµνσµν + µIDµΥµ

I + T DµΣµ] (4.73)

This means that if we know the form of the dissipative stress tensor Πµν and the
dissipative currents Υµ

I , we can work out the dissipative correction to the entropy
current Σµ since DµJµS ≥ 0 for all field configurations. However such a construction
is clearly not unique. We therefore emphasize that the entropy current presented in
this section is a construction which is consistent with the laws of thermodynamics
and which, in principle, should be checked from the underlying quantum theory.
We now proceed as [40] and substitute the expression for the second order stress
tensor (4.66) into the expression for the entropy divergence. Again we will assume
that there are no charges. We find

T DµJµS = DµΣµ + 2ησµνσµν + η1T d−2σµνu
λDλσµν

+ η3T d−2σµνσ
µ
λσ

λν + η4T d−2σµν̟
µ
λ̟

λν + η5T d−2σµνCµανβu
αuβ (4.74)

For completeness notice that the second term in this equation is recognized as the
divergence of the (constructed) entropy current in the uncharged case, see equation
(4.15) (with ϑ = 0). Using the properties of the Weyl covariant derivative, this
expression can be rewritten as

T DµJµS = 2ησµνσµν +DµΣµ + (η3 + η5)T d−2σµνσ
µ
λσ

λν

+ T d−2Dλ
[(2(η1 + η5)σµνσµν + (η4 + η5)̟µν̟µν

4

)
uλ

−η5uµ(G
µν + Fµλ)
d− 2

− (η4 + 3η5)
2(d− 3)

Dν̟λν

]
We refer to [40] for the details of this computation. Now since we are working with
the divergence of a quantity which is correct up to second order in the derivatives,
this expression is correct up to third order in the derivatives. However, it is hard to
see how this should give something positive definite, however, [40] suggests taking

Σλ(≤2) =
(

2T d−3(η1 + η5)σµνσµν + T d−3(η4 + η5)̟µν̟µν

4

)
uλ

+
T d−3η5uµ(Gµν + Fµλ)

d− 2
+
T d−2(η4 + 3η5)

2(d− 3)
Dν̟λν (4.75)
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To second order this gives for the divergence of the entropy current

T DµJµS = 2ησµνσµν + (η3 + η5)T d−3σµνσ
µ
λσ

λν

= 2η
(
σµν +

η3 + η5
4η

σµλσ
λν

)2

≥ 0
(4.76)

since a single derivative of the temperature T counts as two uµ derivatives. This
shows that to second order, the entropy current (4.75) is consistent with the laws
of thermodynamics.

We will now look at a more general expression for the entropy current, origi-
nally proposed in [8]. The paper [8] takes a slightly different approach than [40],
however, the principles are the same. We start by writing down the most general
expression for the entropy current, correct up to second order, and consistent with
Weyl covariance:

JµS = suµ + T d−3uµ [a1σµνσ
µν + a2̟µν̟

µν − a3R]

+ T d−3
[
b1Dλσµν + b2Dλ̟µλ

]
+ · · · (4.77)

where a1, a2, . . . are Weyl invariant constants and the dots represent higher order
terms. A slightly different notation is used by [8], first of all they define a new
variable (which we shall also find convenient to introduce in the subsequent chapter)

b =
d

4πT (4.78)

Moreover they use that

s = αT d−1 = α

(
d

4π

)d−1

b1−d (4.79)

which is realized using the same dimensional-type argument as for the energy den-
sity. The constant α is identified with α =

(
4π
d

)d−1 1
GAdS

using a holographic
computation (this is derived in the next chapter). Using this and the following
identifications a1 = α

(
d
4π

)2
A1, a2 = α

(
d
4π

)2
A2, . . . , the entropy current (4.77)

coincides with the one used in [8]. It is now possible to compute the divergence of
(4.77). The result correct up to third order is [8]

4GAdSb
d−1DµJµS =

2b
d

[
σµν − bd(d− 2)

2

(
A3 − 2A2

d− 2
̟µλ̟

λ
ν

)
− bd(d− 2)

2

(
A3 +

1
d(d− 2)

)(
σ λ
µ σλν + uλDλσµν + Cµανβu

αuβ
)

+
1
2
(A1bd+ τ̟)uλDλσµν

]2

+ b2(B1 + 2A3)DµDνσ
µν + · · ·

(4.80)

The second law of thermodynamics therefore puts the following simple condition on
the coefficients

B1 + 2A3 = 0 (4.81)

Moreover [8] shows that the entropy current (4.75) can be obtained by a certain
choice of the coefficients A1, A2, A3, B1, B2 fulfilling the condition (4.81).



5
Fluid dynamics of

fluctuating branes

5.1 Introduction

We will now implement the ideas behind the fluid/gravity conjecture. In the follow-
ing we will follow the original work of [6] which was later generalized in [7, 9, 8, 10].
Notice that the authors of [6] carried out their computations for D = 5. Here will
generalize the (first order) computations of [6] to an arbitrary number of spacetime
dimensions and thereby verify the results of [8]. Before carrying out the calculations
we will explain the main idea behind this chapter.

The essence of the fluid/gravity correspondence was explained in §3.3 and is
summarized in the table 3.1. The dynamics in the gravitational subsector is com-
pletely determined by the equation

EAB = GAB − (D − 1)(D − 2)
2

GAB = 0 (5.1)

Assuming that the field theory is in the hydrodynamics regime, this means that we
can map gravitational solutions to fluid dynamic solutions through the AdS/CFT
correspondence. We will construct such a map by solving Einstein’s equations per-
turbatively around a well-understood stationary solution. The starting point of
this construction is therefore to find a suitable stationary gravitational background
around which we can do perturbation theory. The dual description of such a station-
ary gravitational configuration must also be stationary i.e. in global equilibrium, in
other words, a perfect fluid. As we explain below (and have motivated in chapter 3)
these stationary gravitational solutions will exactly be the so-called boosted black
branes. These solutions can be thought of as ordinary black brane solutions which

Einstein Gravity Fluid dynamics
Stationary
solutions

Boosted black branes Perfect fluid dynamics

Perturbations Non-uniformly evolving
black branes

Dissipative fluid flows

Table 5.1: According to the fluid/gravity correspondence, the two columns are dual.
By understanding the theory of one column we therefore get an understanding of
the other.

45
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are uniformly moving in their transverse directions. The idea now is to consider
the effect on Einstein’s equations if we slightly perturb the background black brane
metric. Using the tools of the AdS/CFT correspondence, the perturbed gravita-
tional equations should then translate into the equations of relativistic viscous fluid
mechanics, especially the derivative expansion (4.66) and the conservation equation
(4.1). By solving Einstein’s equations in AdSD we can therefore extract informa-
tion about the dual fluid (= compute its transport coefficients) and thereby extract
information about the underlying dual field theory.

It can be shown that the fluid dynamics of a d = 3−1 = 2 dimensional conformal
field theory essentially is trivial (see appendix B of [8]). In the following analysis
we will therefore exclude the D = 2 + 1 = 3 dimensional case.

5.2 The boosted black brane as an ideal fluid

In this section we introduce the boosted black branes in anti-de Sitter background
and show that these solutions are exactly dual to a perfect conformal boundary
fluid. In the dual picture these solutions therefore corresponds to an equilibrium
state of the thermal field theory on Minkowski space. These boosted black branes
will serve as the background spacetime which we will slightly perturb in order to
derive the properties of the dual fluid.

5.2.1 Preliminaries and the black brane temperature

Here we introduce a class of AdSd+1 solutions known as boosted black branes.
Boosted black branes are simply boosted versions of the well-known ordinary black
brane solutions which are the geometry duals to thermal field theory on Minkowski
space (the finite temperature AdS/CFT correspondence). Consider the ordinary
black brane1 metric given by the well-known expression

GABdxAdxB =
r2

L2

[
−f(br)dt2 +

d−1∑
i=1

(dxi)2
]

+
L2

r2f(br)
dr2 (5.2)

with f(r) = 1 − r−d and where A,B as usual denotes the bulk indices. Here
xµ ≡ (t, xi) denotes the transverse boundary coordinates while r is a “radial” AdS
coordinate. Indeed, it is straight forward to show that the Ricci tensor of the metric
GAB fulfills RAB ∝ GAB with R = −d(d+ 1)/L2. The metric (5.2) is therefore an
(asymptotic) AdSd+1 solution. Note that the black brane solution indeed is black:
The metric (5.2) contains an event horizon located at r ≡ r+ = 1/b. This is why
the metric (5.2) becomes singular at r = r+, however, as usual this singularity is
not related to the spacetime but rather to the choice of coordinates - more on this
below.

Now suppose that we perform a “boost” of the black brane in the boundary
directions with boost velocity uµ, uµuµ = −1. The resulting metric is easily found
by covariantizing the metric (5.2). We have that dt = −uµdxµ and dxi = ∆i

µdxµ
where uµ = (1, 0, · · · ) and where ∆µν = uµuν + ηµν is the usual projector onto
the spatial boundary directions with ηµν being the Minkowski boundary metric.
This especially means that dt2 = uµuνdxµdxν and

∑
i(dx

i)2 = ∆µνdxµdxν . The
boosted version of (5.2) is therefore given by

Gboost
AB dxAdxB =

r2

L2

[− f(br)uµuνdxµdxν + ∆µνdxµdxν
]
+

L2

r2f(br)
dr2 (5.3)

1The black brane (5.2) also is known as the planar Schwarzschild black hole (in AdS).
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where uµ is a general four vector fulfilling that uµuµ = −1. Since boosts in the
boundary directions belong to the anti-de Sitter isometry group, the class of so-
lutions (5.3) are all solutions to Einstein’s equation (5.1). This fact is also easily
verified by simply plugging (5.3) into (5.1). It is possible to parameterize the ve-
locity uµ in terms of a set of parameters βi ∈ R in the usual manner

uv =
1√

1− β2
, ui =

βi√
1− β2

(5.4)

Finally, by performing a Wick rotation and compactifying the time direction, we
can show that the temperature of the black brane is given by

T =
dr+
4πL2

=
d

4πL2b
(5.5)

We refer to the appendix B for the details of this short computation. From now on
we will set the AdS radius L to unity L ≡ 1.

5.2.2 The dual fluid of the boosted black brane

In this section we demonstrate that the fluid dual to the boosted black brane is a
conformal perfect fluid. As mentioned in the introduction, such a result must be
expected since the black brane is a stationary gravitational solution. Computing
the boundary stress tensor from the bulk metric field relies on the gravity part of
the AdS/CFT directory. We refer to §3.4 for the mathematical details. Using the
standard method of the AdS/CFT directory (equation (3.43)), it is possible to show
that the stress tensor dual to the boosted black brane metric (5.3) is given by (we
refer to the appendix B for the details of this computation)

Tµν =
1

16πGD

(
4πT
d

)d
[ηµν + duµuν ]

=
d− 1

16πGD

(
4πT
d

)d
[uµuν +

1
d− 1

∆µν ]

(5.6)

where T is the black brane temperature. The stress tensor (5.6) is exactly that of
a perfect fluid fulfilling the conformal equation of state with

ρ =
d− 1

16πGD

(
4πT
d

)d
, p =

ρ

d− 1
(5.7)

We refer to §4.2 on perfect conformal fluid dynamics for the details. We conclude
that the boosted black brane has a dual description in terms of a zeroth order (i.e,
perfect) conformal fluid with fluid velocity corresponding to the boost velocity of the
brane. However, as also mentioned in the introduction, the dual fluid is expected to
have a set non-zero higher order transport coefficients. The dual fluid configuration
of the boosted black brane should therefore be thought of as a viscous fluid that
has reached hydrostatic equilibrium. Indeed, since all the uµ derivatives vanish, we
conclude that all viscous tensors such as the shear σµν vanish.

5.2.3 The boosted black brane in generalized
Gaussian null coordinates

Here we introduce a set ingoing Eddington-Finkelstein-like coordinates which are
suited for solving Einstein’s equation perturbatively. Again consider the black brane
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Figure 5.1: Penrose diagram of the black brane metric with a null tube, (v, xi) =
const., and a Schwarzschild tube, (t, xi) = const., illustrated.

metric (5.2). Now introduce a new set of coordinates (r, v, xi) by the following
equations

v = t+ r∗, dr∗ =
dr

r2f(br)
(5.8)

We shall refer to these coordinates as Gaussian null coordinates. It is straight
forward to show that the in these coordinates, the metric takes the form

GABdxAdxB = 2dvdr − r2f(br)dv2 + r2
d−1∑
i=1

(dxi)2 (5.9)

The Gaussian null coordinates encapsulates the causal structure of the spacetime
in a very nice way. Indeed, suppose that we slightly disturb the the gravitational
field near the boundary. This disturbance will propagate towards the horizon along
the null geodesic (ds2 = 0) which exactly corresponds to the line of constant v,
dv = 0. This property is essential when we will solve the bulk Einstein equations
using a perturbative expansion. Moreover we see that the metric (5.9) is completely
regular at the horizon r = r+. In fact (5.9) only becomes singular at r = 0, which
was of course expected. It is again straight forward to write down the expression
for the boosted black brane by covariantizing the expression (5.9). We get (where
now xµ = (v, xi))

Gboost
AB dxAdxB = −2uµdxµdr − r2f(br)uµuνdxµdxν + r2∆µνdxµdxν (5.10)

5.3 The non-uniformly evolving black branes as a
viscous fluid

In the above section we verified that the fluid/gravity correspondence is valid to
to 0th order. However, the first real check/implementation of the fluid/gravity
correspondence comes at 1th order fluid dynamics. In order to see viscous effects we
must break the uniformity of the black brane so that e.g. the shear becomes non-
zero. We will do this by taking take the uniform black brane (5.10) and promote the
brane velocity and (inverse) temperature to slowly varying fields in the transverse
boundary coordinates uµ → uµ(xα), b→ b(xα):
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G
(0)
ABdxAdxB = −2uµ(xα)dxµdr

− r2f(b(xα)r)uµ(xα)uν(xα)dxµdxν + r2∆µν(xα)dxµdxν (5.11)

Of course this metric will in general not be a solution to Einstein’s equation (5.1)
anymore. However, it is still regular for all r well-separated from r = 0 and we
expect it to be a good approximation to the true solution since locally in xµ it can
be “tubewise” well approximated by a boosted black brane.2

5.3.1 Setting up the perturbative expansion

Following the work of [6] we will now solve Einstein’s equation perturbatively in
the number of field theory xµ derivatives.3 First we will perform a rescaling of the
equations: By a simple scaling transformation it is always possible to set b = 1
at any given boundary point. The condition for the validity of the perturbation
expansion therefore reduces to L≫ 1. Now introduce a parameter ε = O(1/L). We
will now consider a rescaled field theory where the functions b and βi are considered
as functions of the rescaled field coordinates εxµ. We therefore see that every
derivative of b or βi produces a power of ε, it follows that ε counts the number
of derivatives. In the rescaled field theory the derivatives are therefore of O(1).
However a term containing n-derivatives will always have an associated factor εn.
The parameter ε should therefore be thought of as a book-keeping parameter which
keeps track of the field theory derivatives and which should eventually be set to
unity (along with reintroducing the length dimension).

We will now write the bulk metric as a power series in ε. We write

GAB = G
(0)
AB

(
βi, b

)
+ εG

(1)
AB

(
βi, b

)
+ ε2G

(2)
AB

(
βi, b

)
+O(ε3) (5.12)

Here GAB is the metric that solves the full set of Einstein equations while G(0)
AB is

the metric (5.11) that solves Einstein’s equation for b and βi constant. Notice that
G

(0)
AB also will contain ε, ε2, ... terms coming from Taylor expanding the functions

b and βi around the point which we solve (5.1) (see below). Similarly for G(1)
AB ,

G
(2)
AB , . . . . Having corrected the metric, we are forced to correct the temperature

and boost velocity:

βi(xµ) = β
(0)
i (εxµ) + εβ

(1)
i (εxµ) +O(ε2)

b(xµ) = b(0)(εxµ) + εb(1)(εxµ) +O(ε2)
(5.13)

Notice that if we correct the metric up to nth order in ε, consistent perturbation
theory only requires us to correct the temperature and velocities up to (n − 1)th

order. This is because the Einstein equation will not contain terms that have no
derivatives (and a derivative produces an additional factor of ε) since G(0)

AB with b
and βi constant solves the Einstein equation.

As is well known in gravitational problems, gravity has a huge gauge group
consisting of all the possible spacetime diffeomorphisms. In essence this means
that the same gravitational physics can be described in an infinite set of different

2This is where our generalized Gaussian coordinates come to use: The tube of constant r lies
along a null geodesic.

3It is possible to show that the field theory xµ derivatives of either log b(xµ) or βi(x
µ) always

appear with a factor of b ∼ 1/T . This means that the contribution of an n-derivative term always
is suppressed by a factor (b/L)n ∼ 1/(TL)n, where L is the typical transverse variation scale of
the temperature and velocity fields. It therefore follows that provided that LT ≫ 1 it is sensible
to solve Einstein’s equation perturbatively in the number of field theory derivatives.
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coordinate systems. For computational reasons it is therefore useful (however not
necessary) to fix a gauge. We use the following gauge choice

Grr = 0, grµ ∝ uµ, Tr
((
G(0)

)−1
G(n))

)
= 0 ∀n > 0 (5.14)

This is also the gauge used in [6, 8]. For other gauge choices and physical interpre-
tations see [7]. Having discussed some of the general features of the perturbation
expansion, we will now write down an expression for G0

AB to 1th order in ε.
Take some boundary point p. Having promoted the constants b and βi to func-

tions of the rescaled boundary coordinates εxµ, we may now do a Taylor expansion
in the boundary coordinates around the point p. By a simple coordinate trans-
formation we may choose uµ = (1, 0, 0, 0) and (as mentioned above) b = 1 in p.
Notice that we are assuming nothing about the derivatives in p. Also note that
∂µu

i = ∂µβ
i, ∂µu

v = 0 for uµ = (1, 0, 0, 0). We therefore have that around p
(chosen to be in the origin of R3,1 by a simple translation)

G
(0)
AB dxAdxB = 2dvdr − r2f(r)dv2 + r2dxidxi

− ε
(
2xµ∂µβ

(0)
i dxidr − 2xµ∂µβ

(0)
i r2(1− f(r))dxidv − dx

µ∂µb
(0)

rd−1
dv2
)

+O(ε2)

(5.15)

It is to this expression we will add the 1th order correction G(1)
AB so that G(0) +εG(1)

solves (5.1) (to first order in ε).

5.3.2 The SO(d− 1) sectors

Even though the Einstein equation is non-linear, it is often possible, in perturbation
theory, to exploit the symmetries of the background metric to separate the resulting
equations into different sectors of the background symmetries. This decouples the
equations and makes them much easier to solve. The background metric (the first
line of (5.15)) has a clear SO(d − 1) symmetry in which we will decompose the
correction tensor G1.

A generic two-tensor Sµν can be split up into irreducible representations of
SO(d− 1). Clearly the components Svv, Svr, Srv and Svr all transform as scalars
(0) under SO(d− 1). The components Sir and Siv transform like vectors (1) while
the components Sij transform as a SO(d − 1) tensor (1 ⊗ 1). As usual the tensor
Sij can be split up in a trace part (0), an antisymmetrical part (1) and a traceless
symmetrical part (2).

It is now straight forward to write down the transformation properties of the
metric tensor (= symmetric tensor). We must simply have GAB ∈ (0⊕ 0⊕ 0⊕ 0)⊕
(1⊕ 1) ⊕ (2). The collection of scalar representations (the first parentheses) is
referred to as the scalar sector, the collection of vector representations (the second
parentheses) is referred to as the vector sector while the symmetric traceless tensor
representation (the third parentheses) is referred to as the tensor sector. We will
now write down the G(1) correction according to this SO(d− 1) symmetry.

The scalar sector: According to our gauge choice (5.14) we have G(1)
rr = 0.

Moreover, we see that gauge condition (5.14) implies that Tr {Gij} + 2r2Gvr = 0.
The components in the scalar sector in the particular gauge (5.14) can therefore be
parameterized by two independent functions. We parameterize the part of metric
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fluctuation that transform in the 0 rep. in the following way

Tr{G(1)
ij } = (d− 1)r2h(1)(r)

Gvr = −d− 1
2

h(1)(r)

G(1)
vv =

k(1)(r)
rd−2

(5.16)

The vector sector: With the particular choice of uµ and gauge we have that
Gri = 0. One of the vectors is therefore gauged to zero. We parameterize the
remaining vector according to

(G(1)
V )ABdxAdxB = 2r2 (1− f(r)) j(1)i (r)dxidv (5.17)

The tensor sector: Finally we parameterize the tensor sector in the following
way

(G(1)
T )ABdxAdxB = r2αij(r)dxidxj (5.18)

where αij is a symmetric traceless matrix.

5.4 Results of the first order computation

Plugging this into the Einstein equations EAB = 0 yields a set of equations which we
now solve to first order in ε. The full set of equations can be found in the appendix
B.

5.4.1 The structure of the equations

A priori the Einstein equation EAB = 0 contains D(D+1)
2 independent equations.

It will be useful to split these equations up into two classes of equations known
respectively as constraint equations and dynamical equations.

Constraint equations: These are the equations that are first order in r-derivatives.
These equations are obtained by dotting EAB = 0 with ξB where ξB = (dr)B . The
constraint equations are therefore

EABξB = EABGBr = 0 (5.19)

As we shall see below, the set of equations (5.19) are referred to as constraint
equations since they constrain the fluctuating fields b and βi in a certain way.

Dynamical equations: The rest of the D(D−1)
2 equations EAB = 0 are referred

to as dynamical equations. These equations determine the dynamics of GAB given
the constraint equations.

5.4.2 Scalar sector

The scalar sector contains four equations, namely Err = 0, Evr = 0, Evv = 0 and
Tr{Eij} = 0. The constraint equations relevant for the scalar sector are

ErBGBr = r2f(r)Err + Evr = 0 and EvBGBr = r2f(r)Erv + Evv = 0 (5.20)

The first constraint yields

d(d− 1)rd−1h1 +
(

(d− 1)rd − d− 2
2

)
dh1

dr
− dk1

dr
= −2(d− 1)rd−2

(
∂iβ

(0)
i

d− 1

)
(5.21)
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while the second constraint equation is found to be completely independent of r. It
yields

∂vb
(0) =

∂iβ
(0)
i

d− 1
(5.22)

This equation turns out to have a very nice physical interpretation in terms of the
dual boundary theory. It is the temporal component of the energy-momentum con-
servation equation for the dual stress tensor! This relationship if further examined
in §5.6. For now, we will only think about equation (5.21) as a constraint on the
fields b and βi.

In addition to the constraint equations, the scalar sector contains a set of dynam-
ical equations. These two equations can freely be chosen as any linear combination
of Err = 0 and Evv = 0 (we choose Evv = 0) and Tr{Eij} = 0. The first dynamical
equation Evv = 0 is found to be equivalent to the equation

d
dr

[
rd+1 dh(1)(r)

dr

]
= 0 (5.23)

It turns out that the second dynamical equation is automatically satisfied once
(5.20) and (5.23) are satisfied. Indeed we have that

Tr{Eij} = rd−4

[
d
dr
[
rd−1ErBGBr

]
+
(
rd +

d− 2
2

)
Evv
]

(5.24)

We therefore conclude that the scalar sector contains d equations where one of the
equations is redundant.

The equations (5.21) and (5.23) can now be solved. Integration of the dynamical
equation (5.23) shows that

h(1)(r) = γ +
β

rd
(5.25)

where γ and β are two integration constants in r (i.e. γ ≡ γ(xµ) and β ≡ β(xµ)).
Plugging this solution into the constraint (5.21) yields a differential equation for
k(1) which can now be solved. We find that

k(1)(r) = (d− 1)γrd +
2

d− 1
rd−1∂iβ

(0)
i −

d− 2
2

β

rd
+ πv (5.26)

with πv ≡ πv(xµ). The solutions in the scalar sector are therefore given by a three-
parameter family of solutions. However, these solutions can effectively be reduced
to a unique solution by virtue of the boundary conditions, gauge invariance in the
bulk and gauge invariance on the boundary (the final point was discussed in §4.1.4).
First of all, as demonstrated in the appendix B, the parameter γ multiplies a non-
normalizable mode meaning that the field theory stress tensor will blow up in the
large r limit. The bulk term multiplying γ simply grow to fast for them to give
rise to a meaningful dual field theory (our boundary condition). The parameter
γ is therefore forced to γ = 0. Moreover, it is easy to show that with a certain
choice of a the action of the coordinate transformation r → r(1 + εa/rd) removes
the β/rd terms in the expressions for h(1) and k(1) (and adds a constant to k(1),
so effectively the action is (β, πv) → (0, π′v)). Since the terms multiplying β are
produced by coordinate transformations, they are “pure gauge” and β may be set
to zero with out loss of generality. Finally, as we also show in the appendix B, the
constant term πv appearing in (5.26) is fixed to zero by requiring the Landau gauge
condition uµΠµν = 0 for the boundary fluid.

All in all, we find that the solution in the scalar sector, which we denote GS , is
given by

(G(1)
S )AB dxAdxB =

2
d− 1

r∂iβi dv2 (5.27)
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5.4.3 Vector sector

Having solved the equations in the scalar sector we now move on to solving the
vector sector. The equations relevant to the vector sector are the 2(d−1) equations
Eri = 0 and Evi = 0. The constraint equation takes the form

EiBGBr = r2f(r)Eri + Evi = 0 (5.28)

This contraint is again found to be independent of r and yields

∂vβ
(0)
i = ∂ib

(0) (5.29)

Once again, as explained in §5.6, this equation has a very nice interpretation in
terms of the boundary fluid theory. Having worked out the constraint, we can now
write down the dynamical equation. Again this equation can be chosen as any linear
combination of Eri = 0 and Evi = 0, we choose the latter. The equation Evi = 0
yields

d
dr

[
1

rd−1

dj(1)i (r)
dr

]
= −d− 1

r2
∂vβi (5.30)

This equation may now be integrated to yield an expression for the metric fluctua-
tion in the vector sector. We get

j
(1)
i = ∂vβ

(0)
i rd−1 + γir

d + πi (5.31)

Notice that we also use the vector constraint equation (5.29) to obtain this expres-
sion. As in the case of the scalar sector the γi’s multiply non-normalizable modes
and are, by virtue of the boundary conditions, thus forced to zero. Moreover the
Landau frame condition again forces the constants πi parameters to zero. The
solution in the vector sector is therefore

(G(1)
V )AB dxAdxB = 2r∂vβ

(0)
i dvdxi (5.32)

5.4.4 Tensor sector

We are now ready to solve the tensor sector. It is important to realize that at this
point we have already solved the scalar and the vector sector. In particular this
means that we have solved Tr{Eij} = 0. The dynamical equations in the stress
sector therefore reduce to Eij = 0. These dynamical equations give us the following
set of equations

d
dr

(
rd+1f(r)

dα(1)
ij (r)
dr

)
= −2(d− 1)rd−2σ

(0)
ij (5.33)

where we have defined the traceless SO(d− 1) tensor σ(0)
ij by

σ
(0)
ij = ∂(iβ

(0)
j) −

1
d− 1

δij∂mβ
(0)
m (5.34)

The solution the equation (5.33) is again found by direct integration. We will
demand two things of the solution α

(1)
ij : First of all it must be regular everywhere

(especially at the horizon r = 1). Secondly we require that α(1)
ij → 0 for r → ∞

by virtue of the boundary conditions. These two conditions fix the integration
constants relevant for (5.33) and the solution is therefore αij(r) = 2σ(0)

ij F (r), where

F (r) ≡ (d− 1)
∫ ∞

r

dξ
ξd+1f(ξ)

∫ ξ

1

dy yd−2 =
∫ ∞

r

dξ
ξd−1 − 1
ξ(ξd − 1)

(5.35)
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Notice that by choosing the lower limit in the inner integral to 1, the overall solution
will be regular at the horizon r = 1 even though the factor 1/(rd+1f(r)) → ∞ for
r → 1. Finding an analytical expression for the integral (5.35) is quite easy, however,
since it is only the asymptotic form of the bulk metric that is used to obtain the
boundary stress tensor, we shall be content with recording the large r behavior of
F (r):

F (r) =
1
r
− 1
drd

+O(1/rd+1) (5.36)

The solution in the tensor sector is therefore given by the expression

(G(1)
T )AB dxAxB = 2r2F (r)σ(0)

ij dxidxj (5.37)

This concludes the computation in the tensor sector.

5.4.5 The first order metric

Collecting the results from the previous section, we are now ready to write down
the metric that solves Einstein’s equation to first order in ε.

With the function F and the traceless SO(d− 1) tensor σ(0)
ij defined by respec-

tively (5.35) and (5.34), the metric

(G)AB dxAdxB = 2dvdr − r2f(r)dv2 + r2
d−1∑
i=1

(dxi)2

− ε
(
2xµ∂µβ

(0)
i dxidr − 2xµ∂µβ

(0)
i r2(1− f(r))dxidv − dx

µ∂µb
(0)

rd−2
dv2

+
2

d− 1
r∂iβ

(0)
i dv2 + 2r∂vβ

(0)
i dvdxi + 2r2F (r)σ(0)

ij dxidxj
)

(5.38)

solves Einstein’s equation in a neighborhood of xµ = 0 to first order in ε, provided
that

∂vb
(0) =

∂iβ
(0)
i

d− 1
and ∂vβ

(0)
i = ∂ib

(0) (5.39)

We will now write down the global solution to Einstein’s equation correct up to
first order in the derivatives. Since the expression for the metric is ultra-local in
the boundary coordinates (it only depends on the field values in xµ = 0) it can
now be extended to all boundary points: The metric (5.38) was written under the
assumption that uµ = δµ0 and b = 1 in the particular point xµ = 0. In order
to write down the global solution we must therefore simply covariantize (5.38).
Moreover we must re-introduce the length parameter and set ε = 1 (i.e. so that
now O(∂n) = 1/(T L)n ≪ 1). It is easy to see that for b = 1, uµ = δµ0 and to first
order in the derivatives (recall that in this case ∂µu0 = 0, ∂µui = ∂µβ

i), the metric

GAB dxAdxB = −2uµdxµdr − r2f(br)uµuνdxνdxµ + ∆µνdxµdxν

2r2bF (br)σµνdxνdxµ +
2

d− 1
ruµuν∂λu

λdxνdxµ − ruλ∂λ(uµuν)dxνdxµ (5.40)

reduces to the metric (5.38). Here σµν is the viscosity tensor introduced in §4.1
given by σµν = D(µuν). Provided that the fields uµ and b fulfill the constraints
(5.39) (which we will write a covariant expression for below), it follows that the
metric (5.40) is the global solution to Einstein’s equation correct up to first order
in the derivatives.



Chapter 5. Fluid dynamics of fluctuating branes 55

5.5 The boundary stress tensor

Having determined the global metric correct up to first order in the derivatives,
we may now compute the boundary stress tensor. The computation relies on the
standard method from the AdS/CFT directory and can be found in the appendix
B. We find that the stress tensor dual to the metric (5.40) is given by

Tµν =
d− 1

16πGd+1

(
4πT
d

)d [
uµuν +

1
d− 1

∆µν

]
− 1

8πGd+1

(
4πT
d

)d−1

σµν (5.41)

This concludes the first order black brane computations.

5.6 The dual view of the gravitational computation

We saw in §5.2.2 that the dual stress tensor of the boosted black brane is that of
a perfect fluid. We interpreted this through the fluid/gravity correspondence: The
boosted black brane is dual to a certain stationary configuration of a viscous fluid
on the boundary. In §5.3 we promoted the black brane velocity and temperature to
be slowly varying and solved Einstein’s equations by introducing correction terms.
We found that the equations of gravity split up in a dynamical part and a constraint
part. The dynamical equations were completely solved to first order in the deriva-
tives and led to the metric (5.40). This in turn determined the boundary stress
tensor (5.41). The fluid dynamical interpretation of the boundary stress tensor is
clear: According to our discussion on conformal fluid dynamics, the near-equilibrium
stress tensor of a conformal fluid is given by

Tµν = η0T (uµuν +
1

d− 1
∆µν)− 2ηT d−1σµν + higher order corrections. (5.42)

This expression is immediately compared to the dual stress tensor (5.41). Just
as predicted by the fluid/gravity conjecture, introducing dynamics on the gravity
side reveals the viscous nature of the dual fluid. Clearly, the second part of the
stress tensor (5.41) is the first order dissipative correction to the conformal fluid
stress tensor with the viscosity η = 1

16πGd+1

(
4πT
d

)d−1. It is possible to re-write the
expression for η in terms of the gauge theory variables. We for example have for
the D = 5 dimensional truncation (3.25) that η = πN2T 3/8 which is in accordance
with the result of [2]. Note that our computation found that that the stress tensor
contains no bulk viscosity ϑ term. This is of course a key feature of a conformal
fluid. Also notice that even though the first order shear correction is universal (i.e.
it is of the same form for all fluids), the specific temperature dependence in (5.41)
is unique for a conformal fluid. This concludes the interpretation of the dynamical
part of gravity to first order in the derivatives.

The remaining Einstein equations were not solved directly, instead they con-
strained the velocity and temperature derivatives through the constraint equations
(5.39). This suggest that the constraint equations should be understood as the
equations of motion of the boundary theory. Indeed, it is easy to convince oneself
that the covariant version of the equations (5.39) is equivalent to (as usual in the
section, this expression is only correct up to first order in the derivatives)

∇νTµν = 0 (5.43)

This is exactly the equations of motion for the boundary dual fluid! The seem-
ingly arbitrary constraint equations on the gravity side therefore have an extremely
simple interpretation in terms of the dual boundary theory: They simply represent
energy/momentum conservation of the dual fluid.
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Finally we address the viscosity to ratio mentioned in the introduction. The
(shear) viscosity to entropy ratio of a fluid is simply the local ratio between the
entropy density and the viscosity η/s. From conformal thermodynamics we find
that the viscosity to entropy ratio is given by

η/s =
1
4π

(5.44)

This is in accordance with the famous result of [2]. As mentioned in the previous
chapter, the property η/s = O(1) is characteristic of a strongly coupled fluid. As
mentioned in the introduction, it has been conjectured that η/s ≥ 1

4π for any sen-
sible quantum field theory [2]. The theories we are considering therefore exactly
saturate this bound. We will not go further into this very interesting discussion
but merely state that there seems to be some doubt on the validity of the viscos-
ity/entropy bound (see [41] and the references therein).

5.7 The general structure of the perturbation theory

Here we explain how the perturbative procedure presented above generalizes to
arbitrary order following [6]. As usual in perturbation theory, the perturbative ex-
pansion is solved iteratively. Therefore, assume that we have solved the perturbative
problem to (n− 1)th order, in other words, we have solved G(m) for m ≤ n− 1 and
β

(m)
i , b(m) for m ≤ n− 2 (cf. the expansions (5.12) and (5.13)). Moreover, assume

that the stress tensor dual to G up to O(εn−1) obeys the Landau frame condition
uµT

µν
(n−1) = 0.
In general, G(m) is an expression in βi and b containing m derivatives. Inserting

the expansions for the velocities and temperature, Taylor expanding to the relevant
order and plugging the expansion G =

∑n
i=0 ε

mG(m) into Einstein’s equation and
finally extracting the coefficient for εn, we obtain an equation around xµ = 0,
schematically of the form

H
[
G(0)(β(0)

i , b(0))
]
G(n)(r, xµ) = sn (5.45)

Here H is a second order differential operator in only the radial coordinate r and
sn is a “source term” for the operator. It is important to realize that H contains no
boundary derivatives. This follows from the fact that G(n) is already of order n and
that each boundary derivative produces an additional power of ε (H is therefore
also referred to as an ultralocal operator in the boundary directions). As indicated
by the notation, the operator H only depends on the values of β(0)

i and b(0) in the
distinguished point xµ = 0 but not on their derivatives. Finally, the operator H
is independent of the order n. The last point is crucial: The only dependence on
the order n comes from the source term sn. This means that the structure of the
perturbation theory is in fact extremely simple. As in the first order computation,
we may now utilize the SO(d− 1) background symmetry to decouple the equations
into a set of first order operators (which are easily solved by direct integration).
For example, the left hand side of the equations (5.20), (5.21) and (5.23) are the
restriction of the operator H to the scalar sector while the right hand side of the
same equations are the scalar parts of the source term s1. Therefore, going to e.g.
second order in the scalar sector, the equations would have the same form but with
a different source term.

As we saw, the system of equations (5.45) contains a constraint sector and a
dynamical sector. As in the first order case, the constraint equations are obtained
by considering the equation EABξB = 0. Also as in the first order case, this set
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of equations will be equivalent to energy-momentum conservation of the boundary
stress tensor

∇µTµν(n−1) = 0 (5.46)

where Tµν(n−1) is the boundary stress tensor dual to GAB up to order O(εn−1) (the
form of which we already know from (n − 1)th order perturbation theory). The
constraint equations are used to determine (= constraint) the corrections β(n−1)

i

and b(n−1). The solution in the dynamical sector can be written (assuming that we
have fixed some appropriate gauge)

G(n) = particular(sn) + homogeneous(H) (5.47)

Exactly as we saw in the first order case, there is a certain non-uniqueness associ-
ated with this solution, however, (modulo the constraint equations) this does not
correspond to a physical non-uniqueness. The solution to (5.45) is uniquely fixed
by demanding that G asymptotes to AdSd+1 and that G(n) is regular at all r 6= 0,
especially at br = 1. There is still a residual freedom in the solution, this freedom
is removed by requiring the Landau frame condition fulfilled

uµΠ
µν
(n) = 0 (5.48)

This accounts for the structure of higher order perturbation theory. As is hopefully
clear, the methods used for going to e.g. 2nd order are the same as the one used for
solving 1st order perturbation theory. In essence, the only thing that changes is the
source term which becomes more complicated.

5.7.1 Including a weakly curved boundary metric

The computation outlined above allows a slight generalization. Consider the sta-
tionary black brane (5.10). The main idea in the above computation was to let the
constant temperature and boost velocity to be slowly varying fields in the bound-
ary directions and then solve the resulting equations according to this perturbation.
Similarly it is also possible to promote the constant boundary metric to be slowly
varying, that is, in addition to the expansions (5.12) and (5.13), we take

ηµν → gµν = g(0)
µν + εg(1)

µν +O(ε2) (5.49)

Since Einstein’s equation (5.1) contains only zero-derivative and two-derivative
terms (from respectively the metric part and the curvature part of the generalized
Einstein tensor EAB), we see that effects from a weakly curved boundary metric will
not show up at the 1st order derivative level (i.e. at O(ε)). In order to see the ef-
fects of a weakly curved boundary metric we must therefore go to 2nd order. From a
fluid dynamic point of view this is because the boundary fluid couples to the bound-
ary metric gµν through the 2nd order curvature terms introduced in §4.2.4. Before
presenting the results of the full second order computation (including this weakly
curved boundary metric generalization), we will explain how the Weyl invariance of
the boundary fluid can be understood in terms of a class of diffeomorphisms in the
bulk.

5.8 Manifest Weyl invariance of the bulk solutions

As should be clear from the discussion of the AdS boundary, the Weyl invariance of
the boundary theory is related to the re-parametrization invariance of the radial co-
ordinate in the bulk: The boundary theory does not depend on how we parameterize
the radial bulk direction and re-parametrizations of the radial coordinate exactly
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generates Weyl transformations of the boundary theory. To see how this works in
the fluid dynamic regime, consider the uniformly boosted black brane solution

ds2 = −2uµdxµdr − r2f(br)uµuνdxµdxν + r2∆µνdxµdxν (5.50)

Now consider a coordinate transformation of the radial coordinate of the type r →
r̃ = eφr, where φ ≡ φ(xµ) is a function of only the boundary coordinates. The
boosted brane metric now takes the form

ds2 = −2ũµdxµ(dr̃ + r̃Ãνdxν)− r̃2f(b̃r̃)ũµũνdxµdxν + r̃2∆̃µνdxµdxν (5.51)

where Ãµ is the vector field defined by (4.41) and (gµν = ηµν)

g̃µν = e−2φgµν , ũµ = eφuµ, b̃ = e−φb ⇒ T̃ = eφT (5.52)

We can now proceed as in §5.2.2 to compute the boundary stress tensor of the metric
(5.51). We do this in the (r̃, xµ) coordinates, that is, we evaluate the boundary
stress tensor T̃µν on the surface r̃ = const. → ∞ with the boundary metric g̃µν .
The result of this computation is

T̃µν =
1

16πGd+1b̃d
(g̃µν + dũµũν) = e(d+2)φTµν (5.53)

where Tµν is the dual stress tensor computed via the metric (5.50). We conclude
that there is a one-to-one correspondence between the bulk transformations of the
type r → r̃ = eφr and the boundary Weyl transformations (4.27). This means that
performing a Weyl transformation on the boundary induces a transformation of the
dual bulk metric. Let us see what this implies for the fluctuating brane metric GAB
(b and uµ are slowly varying functions of the boundary coordinates) that solves
Einstein’s equation. First we must choose a gauge.4 Here (and below) we will use a
slightly different gauge choice, and more “physical”, than the one we used in the first
order analysis. We will choose the gauge Grr = 0 together with Grµ = −uµ. This
gauge has a very nice geometrical interpretation: In this gauge the lines of constant
xµ are null-geodesics along each of which r is an affine parameter (for more details
on this gauge choice, see [7]). In this gauge the general metric GAB can be written

GABdxAdxB = −2uµdxµ(dr + Vν(r, x)dxν) + Gµν(r, x)dxµdxν (5.54)

where Gµν is the transverse part of Gµν , i.e., uµGµν = 0. Here the tensors Vµ and
Gµν are functions of uµ and b (and their derivatives). For example, to first order
(5.40) we have Gµν = 2r2bF (br)σµν and a similar expression for Aµ. The tensors
Vµ and Gµν go like ∼ r2 and the boundary metric is therefore defined by 5

gµν = lim
r→∞ r−2

[
Gµν − u(µVν)

]
(5.55)

Now suppose that we perform a bulk diffeomorphism r → r̃ = eφr (φ ≡ φ(xµ))
along with a rescaling of the temperature b → b̃ = e−φb. The metric (5.54) now
transforms according to

ũµ = eφuµ, Ṽµ = eφ (Vµ − r∂µφ) , G̃µν = Gµν , g̃µν = e−2φgµν (5.56)

4As mentioned, Weyl invariance of the boundary theory follows from “radial” diffeomorphism
invariance in the bulk. Roughly these transformations fall in two groups: Redefinition of the radial
coordinate in the “boundary direction”, r → eφ(xµ)r (these transformations correspond to Weyl
transformations on the boundary) and redefinition in the “radial direction”, r → eψ(r)r. In order
to get rid of the redundancy in the radial direction we must fix a gauge.

5All boundary indices are raised and lowered with the boundary metric gµν .
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Now since the tensors Vµ and Gµν are functions of uµ and b, which both respectively
pick up a factor of eφ and e−φ under Weyl transformations, we conclude that Gµν

must be invariant under Weyl transformations while Vµ− rAµ must transform as a
Weyl covariant vector with conformal weight w = 1 (using the transformation prop-
erty (4.42) of Aµ). This means that the expression for Gµν , correct up to second
order, must be given by a linear combination of (transverse, however, not trace-
less) terms of the type ∆µν , b

−1σµν , σ
λ
µ σλν , u

λDλσµν , . . . , where the coefficients
are functions of rb = r̃b̃ (cf. the section on second order fluid dynamics). Similarly
we conclude that Vµ must be given by a linear combination of terms of the type
rAµ, b−2uµ,Ruµ,Dλ̟λ

µ, . . . , where the coefficients again are functions of rb. This
is the best we can do using Weyl covariance. In order to determine the precise form
of the different coefficients, one must perturbatively solve the equations of gravity
to second order in the derivatives.

5.9 The second order results

We are now ready to understand and present the results of the second order com-
putation. Following the discussion above, we write the metric according to

GABdxAdxB = −2uµdxµ(dr + Vνdxν) + Gµνdxµdxν (5.57)

As explained in the above section, Weyl covariance determines the structure of the
tensors Vµ and Gµν . In order to find the coefficients multiplying the Weyl invariant
terms of Vµ and Gµν , we must invoke the perturbative procedure accounted for in
§§5.3-5.7. Using this procedure the vector Vµ and the tensor Gµν are determined
to respectively [8, 6] (for the definitions of the various tensors, see §4.2.5)

Vµ = rAµ +
1

d− 2

[
Dλ̟λ

µ −Dλσλµ +
R

2(d− 1)
uµ

]
− 2L(br)

(br)d−2
∆ν
µDλσλν

+
uµ

2(br)d

[
r2(br)df(r) +

1
2
̟αβ̟

αβ + (br)2K2(br)
σαβσ

αβ

d− 1

]
(5.58)

and

Gµν = r2∆µν −̟ λ
µ ̟µν

+ 2(br)2F (br)
[
1
b
σµν + F (br)σ λ

µ σλν

]
− 2(br)2K1(br)

σαβσ
αβ

d− 1
∆µν

− 2(br)2H1(br)
[
uλDλσµν + σ λ

µ σλν −
σαβσ

αβ

d− 1
∆µν + Cµανβu

αuβ
]

+ 2(br)2H2(br)
[
uλDλσµν +̟ λ

µ σλν +̟ λ
ν σµλ

]
(5.59)

The tensors have the predicted structure. The functions f, F,H1,H2,K1,K2, and
L are given by [8] (we of course already know the form of f and F which followed
from respectively the 0th and 1st order computation)

f(br) = 1− 1
(br)d

(5.60)

F (br) =
∫ ∞

br

dξ
ξd−1 − 1
ξ(ξd − 1)

(5.61)

H1(br) =
∫ ∞

br

dξ
ξd−2 − 1
ξ(ξd − 1)

(5.62)

H2(br) =
1
2
F (br)2 −

∫ ∞

br

dξ
ξ(ξd − 1)

∫ ξ

1

dζ
ζd−2 − 1
ζ(ζd − 1)

(5.63)
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Figure 5.2: The ratio τω/b given by the integral (5.69) for boundary spacetime
dimension up to 15. The ratio is bounded from above by 1/2.

K1(br) =
∫ ∞

br

dξ
ξ2

∫ ∞

ξ

dζ ζ2F ′(ζ)2 (5.64)

K2(br) =
∫ ∞

br

dξ
ξ2
[
1− ξ(ξ − 1)F ′(ξ)− 2(d− 1)ξd−1 (5.65)

+
(
2(d− 1)ξd − (d− 2)

) ∫ ∞

ξ

dζ ζ2F ′(ζ)2
]

(5.66)

L(br) =
∫ ∞

br

dξ ξd−1

∫ ∞

ζ

dζ
ζ − 1

ζ3(ζd − 1)
(5.67)

The metric (5.57) with the above functions solves Einstein’s equation to second
order in the derivatives. As usual only the asymptotic form of the above functions
is needed to compute the boundary stress tensor dual to (5.57). By using the
asymptotic form of the functions F,H1,H2,K1,K2, and L (which can be found in
[8]), it is possible to show that the boundary stress tensor dual to (5.57) takes the
form

Tµν = p

[
(gµν + duµuν)− 2η

p
σµν − 2b2I [uλDλσµν +̟µ

λσ
λν +̟ν

λσ
µλ
]

+ 2b2
[
uλDλσµν + σµλσ

λν − 1
d− 1

∆µνσαβσ
αβ + Cµ ν

α βu
αuβ

] ]
= p (gµν + duµuν)− 2η [σµν − τ1Tµν1 + τ2T

µν
2 ] + ξσT

µν
3 + ξ̟Tµν4 + ξCTµν5

(5.68)

where the quantities pertaining to the first equality are given by

b =
d

4πT , p =
ρ

(d− 1)
=

1
16πGd+1bd

, (5.69)
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η =
s

4π
= bp, I ≡

∫ ∞

1

dζ
ζd−2 − 1
ζ(ζd − 1)

(5.70)

In the last equality in (5.69) we recorded the most general expression for the Weyl
covariant stress tensor (cf. §4.2.5). We see that the second order results are in per-
fect agreement with the second order derivative expansion under the identifications

ξσ = ξC = 2η(τ1 + τ2) = 2ηb, τ2 = τω = bI, ξ̟ = 0 (5.71)

A few comments are in order. First of all, as illustrated by the graph 5.2, the ratio
τω/b = I is well behaved and O(1) for arbitrary spacetime dimension (we can show
that τω/b < 1/2 for arbitrary d). Moreover notice that the transport coefficient τ̟
associated with (only) the fluid vorticity vanishes. This observation is important
when we apply the AdS/CFT correspondence to the rotating black holes introduced
in the next chapter. Finally, much like the viscosity/entropy ratio η/s = 1/4π, the
relations (5.71) are universal in the sense that they hold for all uncharged fluids with
a gravity dual in arbitrary dimensions. This is a quite interesting result. It would
be interesting to understand the underlying gravitational structure leading to this
result. Moreover it would be even more interesting to understand this universality
only in terms of the gauge theory.

Finally we mention that it is possible to construct a boundary entropy current
associated with fluctuating black branes by using a geometric argument (roughly a
local version of the area theorem) [42]. By performing such a computation for the
second order fluctuating black brane (5.57), the authors of [8] were able to show
that the form of the “geometric” entropy current is in perfect agreement with the
expansion (4.77) and thus gives a method for working out the coefficients relevant
to this expansion. Moreover [8] beautifully explains how the the second law of
thermodynamics on the fluid side is dual to the Hawking’s area theorem (= the
second law of thermodynamics) on the gravity side.
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6
Black holes in the

fluid/gravity
correspondence

6.1 The Kerr solution in anti-de Sitter

The solutions to Einstein’s vacuum equation are the metrics that fulfill 1

RAB = (D − 1)λGAB (6.2)

One might ask for the most general stationary, regular solution to this equation.
How are the Einstein metrics classified? Apart from this being a mathematically
very interesting problem, this question is clearly also physically relevant (for string
theory ∼ higher dimensional gravity, theories with large extra dimensions, the
AdS/CFT correspondence etc.) The answer to this question in D = 4 with Λ = 0
is well-known; the vacuum solutions to Einstein’s equation are exactly the two pa-
rameter (M,J) family of Kerr solutions (see for example [43], [13]). However, in
spacetimes with dimension D > 4, the family of vacuum solutions becomes much
richer and finding them is an active area of research, both from a purely theoretical
point of view (see for example the reviews [44] and [45]) but also from a practi-
cal/experimental point of view [46], [47]. Although in D > 4 the vacuum solutions
branch out in a wealth of qualitatively different solutions, it turns out, for reasons
explained below, that the four-dimensional Minkowski rotating black hole (Kerr)
solution generalizes to all dimensions and cosmological constants.

6.1.1 The maximally symmetric Einstein metrics

Consider the maximally symmetric, non-compact solutions to Einstein’s vacuum
equation. That is, consider the infinite volume solutions to (6.2) that fulfill (details
on this can be found in e.g. [14])

RABCD =
R

D(D − 1)
(GACGBD −GADGBC) (6.3)

1Here λ is a constant parameter that is related to the cosmological constant Λ by

λ(D − 1)(D − 2) = 2Λ (6.1)

63
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The form of these solutions is well-known. For λ > 0 the solution is de-Sitter space
dSD, for λ = 0 the solution is flat Minkowski space MD while λ < 0 corresponds to
anti-de Sitter space AdSD. These solutions are completely regular and contain no
horizons (indeed the presence of a singularity or a horizon would destroy maximal
symmetry). The three types of metrics can collectively be written in spherical-like
coordinates (t, r, µi, φi) by the following simple expression

dŝ2 = ĜABdxAdxB = −(1− λr2)dt2 +
dr2

1− λr2 + r2dΩ2
D−2 =

 dSD, λ > 0.
MD, λ = 0.

AdSD, λ < 0.


(6.4)

where dΩ2
D−2 is the metric on SD−2 which is given by (see appendix A)

dΩ2
D−2 =

N+ǫ∑
i=1

dµ2
i +

N∑
i=1

µ2
idφ

2
i (6.5)

Here φi denotes the N = [(D − 1)/2] azimuthal angles on SD−2 and µi are the
N + ǫ = [D/2] ’directional cosines’. As explained in the appendix, the coordinates
µk are not ’real’ coordinates since they are not independent as they are subject to
the following constraint

N+ǫ∑
i=1

µ2
i = 1 (6.6)

This equation may be solved for e.g. µN+ǫ leavingN+ǫ−1 independent coordinates.
This must be taken into account if one wishes to do calculations (such as integration)
on the sphere SD−2 in the coordinates (µi, φi). Note that the number of independent
coordinates (one time coordinate, one radial coordinate, N azimuthal coordinates
and N + ǫ − 1 directional cosines) fulfill 1 + 1 + N + (N + ǫ − 1) = D, just as it
should.

6.1.2 The Kerr solution

It is a well-known fact that the original four dimensional Kerr solution in flat space
can be written in the so-called Kerr-Schild form (in fact, this was how the Kerr solu-
tion was derived [48]). This realization allowed Myers and Perry in their celebrated
paper [49] to generalize the Kerr solution to an arbitrary number of (flat) space-
time dimensions. Following the work of [50] we will now review how this method
is generalized to not only an arbitrary number of dimensions but also a non-zero
cosmological constant.

In this section we set GD = 1. If needed, the D dimensional Newton constant
is easily reintroduced into the equations.

The Kerr-Schild ansatz: Inspired by the original Kerr solution, the Kerr-
Schild ansatz for the generalized Kerr solution is

GAB = ĜAB +HAB (6.7)

where ĜAB is a maximally symmetric solution to RAB = (D − 1)λGAB i.e. one of
the solutions (6.4) and HAB can be written as the following tensor product

HAB = 2HθAθB (6.8)

Here H is a scalar function and θA is a null vector w.r.t. ĜAB and therefore also
w.r.t. the full metric GAB , that is

θAGABθB = θAĜABθB = 0 (6.9)
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Moreover, the vector field θA is tangent to a null geodesic w.r.t. both the back-
ground metric and the full metric which may be stated as θB∇AθB = θB∇̂AθB = 0
where ∇̂ (∇) denotes the Levi-Civita connection w.r.t. the (full) metric ĜAB (GAB).
The null condition on the vector θA implies that the inverse of the full metric is
given by GAB = ĜAB −HAB .

Recall the linearized gravity scheme: Given some background metric ĜAB we
can consider small perturbations of this metric ĜAB → ĜAB + hAB . To linear
order, the inverse perturbed metric is given by ĜAB → ĜAB−hAB . Using this, one
can now work out the field equations to linear order in the perturbation hAB

H[hAB ; ĜAB ] = 0 (6.10)

These are the linearized equations of gravity w.r.t. the background metric ĜAB .
Needless to say, the linearized equations of gravity are much simpler than the full
set of non-linear Einstein equations. It now turns out that given a solution ĜAB to
Einstein’s vacuum equation with a cosmological constant (R̂AB = const.×ĜAB) and
the Kerr-Schild ansatz (6.8), one can show that (see [50] in the references therein)
that the full metric fulfills the Einstein vacuum equation with the same cosmological
constant (RAB = const. × GAB) if HAB = 2HθAθB fulfills the linearized system
of equations i.e. if

H[HAB ; ĜAB ] = 0 (6.11)

So, given the Kerr-Schild ansatz, the problem of finding vacuum solutions with
a cosmological constant reduces to solving linear gravity in the background ĜAB .
This simplifies the mathematical problem significantly, moreover the linearity of
(6.10) allows us to superimpose different vacuum solution to obtain new very non-
trivial solution [51]. In the case of anti-de Sitter (λ < 0) we see that |λ| = L−1,
where L is the usual AdS radius. Since the results below hold for all λ we shall for
completeness keep it as a free parameter, however, we will only be concerned with
the case where λ < 0 (usually we just take λ = −1).

The generalized spheroidal coordinates: Recall that the four dimensional
Minkowski Kerr solution is most naturally presented in a set of ’Boyer-Lindquist
coordinates’ since these coordinates respect the symmetry of the spacetime. This
is also true for the general D dimensional Kerr solution. Also recall that the four-
dimensional Boyer-Lindquist coordinates do not reduce to ordinary spherical coor-
dinates in the zero mass limit but rather to a set of spheroidal coordinates on M4.
This can be understood from the Kerr-Schild form of the metric: If one expresses
M4 in spheroidal coordinates the vector, θA and the scalar function H (which is
proportional to the Kerr mass) both take very simple forms.

We will now explain how these spheroidal coordinates are generalized to cover
all the D dimensional maximally symmetric Einstein metrics. To this end introduce
N (+ǫ) parameters ai (in the case where ǫ = 1 we introduce aN+1 ≡ 0) associated
which each of the N planes of rotation introduced in appendix A. These parameters
will be identified with the rotational parameters of the rotating Kerr black hole
below. Now consider the spacetime (6.4) with coordinates (t, r, µi, φi) and introduce
a new set of ’spheroidal coordinates’ (t, y, νi, φi) by the following defining equation

(1 + λa2
i )r

2µ2
i = (y2 + a2

i )ν
2
i (6.12)

where the νi’s are a new set of directional cosines i.e.

N+ǫ∑
i=1

ν2
i = 1 (6.13)
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Together these two equations imply that the Euclidean distance r2 can be expressed
in terms of (y, νi) by

r2 =
N+ǫ∑
i=1

{
y2 + a2

i

1 + λa2
i

}
ν2
i (6.14)

It is now possible to express pure AdS in terms of this new set of coordinates. After
some calculation we find (see appendix A)

dŝ2 = −W (1− λy2)dt2 + Fdy2 +
N+ǫ∑
i=1

y2 + a2
i

1 + λa2
i

dν2
i

+
N∑
i=1

y2 + a2
i

1 + λa2
i

ν2
i dφ

2
i +

λ

W (1− λy2)

(
N+ǫ∑
i=1

y2 + a2
i

1 + λa2
i

νidνi

)2

(6.15)

where the two scalar functions W and F are given by

W ≡
N+ǫ∑
i=1

ν2
i

1 + λa2
i

, F ≡ y2

1− λy2

N+ǫ∑
i=1

ν2
i

y2 + a2
i

(6.16)

Using the coordinates (t, y, νi, φ) on the background dŝ2 we will now write down
the expression for the general D dimensional Kerr solution. In accordance with the
Kerr-Schild ansatz the Kerr anti-de Sitter metric is given by

ds2 = dŝ2 + 2H(θAdxA)2, H ≡M/U (6.17)

where the one-form θA and the scalar function U are given by [50]

θAdxA = Wdt+ Fdy −
N∑
i=1

aiν
2
i

1 + λa2
i

dφi, U = yǫ
N+ǫ∑
i=1

ν2
i

y2 + a2
i

N∏
j=1

(y2 + a2
j ) (6.18)

The parameter M is a real constant and it has a mass-like interpretation (in curved
backgrounds the notion of mass is even more cumbersome than in flat space).

The Kerr solution in Boyer-Lindquist form: The metric (6.17), (6.18) is
not quite the Boyer-Lindquist form we are looking for. In order to cast the Kerr
metric into Boyer-Lindquist form we introduce a new coordinate transformation
defined by the (exact) differential expressions

dt = dτ +
2Mdy

(1− λy2)(V − 2M)
, dφi = dϕi +

2Maidy
(y2 + a2

i )(V − 2M)
(6.19)

Here the function V is defined by

V ≡ U

F
= yǫ−2(1− λy2)

N∏
i=1

(y2 + a2
i ) (6.20)

Using this coordinate transformation, it is straight forward to show that the Kerr
AdS metric takes the form

ds2 = −W (1− λy2)dτ2 +
2M
V F

(
Wdτ −

N∑
i=1

aiν
2
i dϕi

1 + λa2
i

)2

+
N∑
i=1

y2 + a2
i

1 + λa2
i

ν2
i dϕ

2
i

+
V Fdy2

V − 2M
+
N+ǫ∑
i=1

y2 + a2
i

1 + λa2
i

dν2
i +

λ

W (1− λy2)

(
N+ǫ∑
i=1

y2 + a2
i

1 + λa2
i

νidνi

)2

(6.21)
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This is the generalized Kerr solution in Boyer-Lindquist coordinates. Notice that
the last term is not present in the flat space case and makes the general Kerr solution
somewhat more involved than its flat space counterpart.

It is useful to record the asymptotic form of the generalized AdS Kerr solution.
Of course, the form of the asymptotic metric depends on the coordinates in which it
is presented. Here we will use coordinates such that the metric near the boundary
takes the form

ds2 = −r2dt2 +
dr2

r2
+ r2dΩ2

d−1 +O(1/r2) (6.22)

This is noting but the AdS metric in standard form (6.4) plus some small perturba-
tion (we have set −λ = L−1 = 1). Following the above discussion, it is clear how we
should cast the Kerr solution into this form: We simply perform the inverse coor-
dinate transformation (6.12) of the Boyer-Lindquist metric (6.21) (from ’spheroidal
coordinates’ to ordinary spherical coordinates) and find the form of the Kerr metric
in the r →∞ limit. We find (for details, see appendix A)

ds2 = −(1 + r2)dt2 +
dr2

1 + r2
+ r2

N+ǫ∑
i=1

dµ2
i + r2

N∑
i=1

µ2
idφ

2
i

+
2M
rd−2

γd+2dt2 +
2M
rd+2

γddr2 −
N∑
i=1

4Maiµ
2
i

rd−2
γd+2dtdφi

+
N∑

i,j=1

2Maiajµ
2
iµ

2
j

rd−2
γd+2dφidφj +· · · (6.23)

with

γ−2 = 1−
N∑
i=1

a2
iµ

2
i (6.24)

and where d = D − 1 as usual denotes the boundary dimension. Notice that the
first three terms correspond to pure AdS while the terms proportional to M come
from the AdS black hole as desired. The dots represent terms that are O(1/rD)
compared to the pure AdS metric where the (vanishing) cross terms are given the
natural order in r; for example, since the φi direction has an associated r factor,
the (vanishing) dφidφj component of the pure AdS metric is assigned order O(r2)
and so on.

6.1.3 Horizons

We will now examine the geometrical properties of the generalized Kerr solution.
This analysis follows the same steps as the analysis of the well-known four dimen-
sional Minkowski Kerr black hole, see e.g. [13, 52, 43].

The Kerr solution contains an event horizon. In the Boyer-Lindquist coordinates
the event horizon is located at (the largest possible) y value y+ where the yy metric
component becomes singular [14], i.e

1/Gyy ∼ V (y+)− 2M = 0 (6.25)

Even though the metric (6.21) is only valid outside y > y+, the fact that this equa-
tion has, in general, many solutions suggests that the AdS Kerr spacetime contains
a wealth of event horizons. This implies a non-trivial global spacetime structure
which would be very interesting to examine. However, since this thesis is mainly
concerned with the well-understood asymptotic behavior of the Kerr solution, we
will not go further into this.
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Angular velocities: In order to find the angular velocities Ωi (one for each
rotational degree of freedom) of the Kerr solution, we must determine the timelike
Killing vector field KA

Ω which becomes null on the horizon. Since KA
Ω is Killing we

write it as a linear combination according to

KA
Ω∂A =

∂

∂t
+

N∑
i=1

ΩiH
∂

∂φi
(6.26)

Here t and φi are the Kerr-Schild coordinates from equation (6.15). By solving
KΩAK

A
Ω = 0 on the horizon we find that the parameters Ωi are given by

ΩiH =
ai(1− λy2

+)
y2
+ + a2

i

(6.27)

The existence of such a Killing vector is in fact a more convincing proof that y =
y+ indeed is an event horizon than the condition (6.25) (which is clearly rather
coordinate dependent). Notice that the authors of [50] reach a different set of
values for the angular velocities. They find

Ω̃iH = ΩiH + λai (6.28)

The reason for the discrepancy can be found in the coordinates in which [50] ex-
presses KA

Ω . They find that KA
Ω∂A = ∂/∂τ + Ω̃iH∂/∂ϕ̃i, where the ϕ̃i’s are related

to our ϕi coordinates by dϕ̃i = dϕi + λaidτ . The essential point now is that at
infinity the vectors ∂/∂τ and ∂/∂ϕ̃i reduce to respectively ∂/∂τ → ∂/∂t−λai∂/∂φi
while ∂/∂ϕ̃i → ∂/∂φi. The parameters Ω̃iH of [50] are therefore the angular veloc-
ities of the Kerr black hole, as measured by a rotating frame at infinity, while the
parameters (6.27) are the angular velocities of the black hole, measured by a frame
that is non-rotating at infinity. As usual the latter set of angular velocities are the
proper ones to use.

Event horizon surface area: The metric (6.21) induces the following metric
on the event horizon y = y+ (formally by setting dτ = dy = 0, y = y+ ⇒ V = 2M)

dr2 =
1

F (y+)

(
N∑
i=1

aiν
2
i dϕi

1 + λa2
i

)2

+
N∑
i=1

y2
+ + a2

i

1 + λa2
i

ν2
i dϕ

2
i

+
N+ǫ∑
i=1

y2
+ + a2

i

1 + λa2
i

dν2
i +

λ

W (y+)
(
1− λy2

+

) (N+ǫ∑
i=1

y2
+ + a2

i

1 + λa2
i

νidνi

)2

(6.29)

The topology of this space is clearly SD−2. Having determined the induced metric,
the area of the event horizon is then given by

A =
∫
SD−2

√
Ω̃
N+ǫ−1∏
i=1

dνi
N∏
j=1

dϕj (6.30)

where Ω̃ is the determinant of the above metric. Computing the determinant of the
induced metric is tedious but straight forward. We find that2√

Ω̃ =

[
1

y1−ǫ
+

N∏
i=1

y2
+ + a2

i

1 + λa2
i

] ∏N
j=1 νj

νN+ǫ
(6.31)

2We have showed this in dimensions up to D = 8, which seems to include most physical
relevant cases. It is not clear whether [50] managed to prove this for arbitrary D. However, since
no special features distinguish the D ≤ 8 cases, we can be confident that our expression is valid
in all dimensions.



Chapter 6. Black holes in the fluid/gravity correspondence 69

The last piece multiplying this expression is recognized as the square root of the
usual metric determinant Ω of SD−2 in the given coordinates (see appendix A).
Notice that the leading y+ behavior of this determinant is yD−2

+ , just as it should.
The fact that Ω̃ = const. × Ω renders the integration trivial. In accordance with
[50], we find that for D = 2N + 1 + ǫ even, the horizon area is given by

ǫ = 1 : A = Vol(SD−2)
N∏
i=1

y2
+ + a2

i

1 + λa2
i

(6.32)

while for D odd, the horizon area is given by the expression

ǫ = 0 : A =
Vol(SD−2)

y+

N∏
i=1

y2
+ + a2

i

1 + λa2
i

(6.33)

Surface gravity: The surface gravity κ is defined by the equation

KA
Ω∇AKΩB = −1

2
∇B(KA

ΩKΩA) = κKΩB (6.34)

This is the geodesic equation in a non-affine parameterization. The equation (6.34)
therefore just expresses that KA

Ω is a non-affine parameterized tangent to the null-
geodesic generators of the horizon. Recall that the surface gravity is constant on
(each connected component) of the horizon. Using similar reasoning as in e.g. [13],
we can show that the surface gravity is given by the expression [50]

κ =
1− λy2

+

2V (y+)
dV
dy

∣∣∣∣
y=y+

(6.35)

Carrying out the y differentiation of the function V is trivial. We find that the
surface gravity for even dimensional spacetimes is given by

ǫ = 1 : κ = y+(1− λy2
+)

N∑
i=1

1
y2
+ + a2

i

− 1 + λy2
+

2y+
(6.36)

In a similar way it is possible to show that for odd dimensional spacetimes we have

ǫ = 0 : κ = y+(1− λy2
+)

N∑
i=1

1
y2
+ + a2

i

− 1
y+

(6.37)

The Komar angular momenta: Let JAi be the Killing vector associated with
the rotational symmetry in the φi direction (i.e. JAi ∂A = ∂φi

) and let Ji denote the
corresponding Killing 1-form (i.e, JiA = GABJ

B
i ). The angular momentum Li of

the Kerr spacetime is then given by the usual Komar integral associated with the
symmetry Ji which in form notation is given by the expression (see [13, 53], see also
appendix A)

Li = − 1
8π

∫
SD−2

∗dJi (6.38)

Here we have chosen the spatial boundary at infinity to be SD−2. Notice that by
virtue of Killing’s equation ∇AJiB = ∂[AJiB], so this expression coincides with the
one found in e.g. [13]. By manipulating this expression, it is possible to show that
the Komar integral can be written

Li = − 1
8π

∫
SD−2

nAσB
[
∂AJiB − ΓCABJiC

]
(6.39)
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Here nA and σA are respectively the future pointing (∼ time direction) and outward
pointing (∼ radial direction) normal vectors to the boundary surface SD−2. Notice
that since the Li’s vanish for pure AdSD, this definition of the angular momenta is
rather unambiguous (as opposed to, for example, the Komar mass of a black hole
in an AdSD background [53]).
By using the asymptotic form of the metric (6.23) along with the Christoffel symbols
(A.34), it is possible to show that the Komar angular momenta are given by (see
appendix A)

Li =
MVol(SD−2)

8π
∏N
j=1(1 + λa2

j )

[
2ai

1 + λa2
i

]
(6.40)

6.2 Black hole thermodynamics

We will now review the thermodynamics of the AdS Kerr black hole solution pre-
sented in the previous section. The first law of black hole thermodynamics, when
applied to a charged, rotating black hole, is expected to take the form

dE = TdS + ΩidLi + µIdRI (6.41)

where Li is the i’th angular momentum and RI is the I’th charge with associated
chemical potential µI . Here we employed the fact that the conjugate variable to the
angular momentum Li exactly is the angular velocity Ωi computed above. Since we
are considering uncharged black holes the first law reduces to

dE = TdS + ΩidLi (6.42)

As is well-known we have already calculated the black hole entropy and temperature
once we have computed the area and surface gravity pertaining to the event horizon.
It holds that (the Hawking-Bekenstein formulæ)

S =
A
4

and T =
κ

2π
(6.43)

This means that once we have worked out the area, surface gravity, and angular
momenta, we can determine the energy E(S,Li) of the black hole by integrating up
the first law (6.42), assuming that the expression for dE is an exact differential. In
fact the latter point gives a non-trivial check of the correctness of the expressions
(6.40) [53].

There is another argument for obtaining the energy of a black hole once the
values of T, S and Li are known. The argument, which was first employed in [54],
relies on the Euclidean formulation of field theory. The thermodynamic partition
function Z can be expressed in terms of the Euclidean path integral in the following
way [54]

Z = Tr exp
[−β(H − ΩiLi

)]
=
∫

PBC
D[G] exp (−I[G])

(6.44)

where I is the Euclidean action and where the subscript ’PBC’ indicates that the
path integral is subject to periodic boundary conditions in the Euclidean time direc-
tion (the period is as usual identified with the inverse temperature β). A standard
thermodynamic argument shows that the partition function (in its original form,
the first line of (6.44)) can be written in terms of the grand potential W by

lnZ = −βW with W = E − TS − ΩiLi (6.45)



Chapter 6. Black holes in the fluid/gravity correspondence 71

Now, the path integral in the second line of (6.44) is, in the classical limit relevant
for the corner of the AdS/CFT correspondence considered in this thesis, nothing but
(minus the exponential of) the Euclidean action evaluated on the classical (black
hole) solution. Therefore

Iclassical = βW (6.46)

As usual, the bare gravitational action in AdSD is divergent and must therefore
be regularized in a well-defined manner (see [53, 55]. For a discussion between the
methods presented in [53, 55] and the counter-term prescription discussed in §3.4,
see [56]). The relation (6.46) therefore holds for the renormalized Euclidean action.
By using the relation (6.46) it is therefore possible to obtain a non-trivial check of
the energy computation described in the previous paragraph.

Using the relations (6.40), (6.43), and the first law (6.41), the energy is computed
to [53]

E =
MVol(SD−2)

8π
∏N
i=1(1 + λa2

i )

D − 2− λ
N∑
j=1

2a2
i

1 + λa2
i

 (6.47)

Here the integration constant is fixed by requiring that E = 0 for M = 0. By
explicitly evaluating the Euclidean action of the Kerr solution, the authors of [53]
were able to show that the quantum statistical relation (6.46) is satisfied, thus
providing a consistency check of the Kerr thermodynamic expressions.

6.3 AdS Kerr black holes in the AdS/CFT
correspondence

The rotating Kerr solutions in anti-de Sitter provide us with a new classical gravita-
tional configuration in the bulk which we can check the fluid/gravity correspondence
against. Moreover, using the deep gravitational theorems of Hawking and Beken-
stein we have determined the full thermodynamic behavior of this system which
should be comparable to the thermodynamics of the dual fluid. According to the
fluid/gravity correspondence, the rotating black holes of D dimensional supergrav-
ity are (dual to) certain thermal fluid states of the gauge theory on R × SD−2,
provided that the dual theory is suited for a fluid dynamical effective description.
Notice that due to the structure of the Kerr solution we here take R×SD−2 (confor-
mally = Minkowski) to represent the boundary of AdSD. Before proceeding we will
first derive the condition for the Kerr black holes to be suited for a fluid description
on R × SD−2. It can be argued that the condition for a fluid dynamical effective
description on R× SD−2 to be valid is [5]

ℓmfp ≪ 1 (6.48)

Now the mean free path of a generic fluid can be estimated from kinetic theory
by ℓmfp ∼ η/ρ [3]. As explained, for (at least) the class of gauge theories we are
considering, it holds that η = s/4π. This means that the mean free path of a
rotating conformal fluid on R× SD−2 can be estimated as

ℓmfp ∼ s

4πρ
=

d

4π(D − 2)
1
T

(6.49)

where we substituted in the expressions for the entropy and energy densities which
will be derived below. Here T is the (global) fluid temperature, see below. We
therefore see that the fluid dynamical description is applicable for “hot” fluids,
T ≫ 1, this is just as expected. As usual we identify the dual fluid temperature
with the temperature of the bulk which is given by T = κ/2π. For large horizon
radius y+ we see that y+ ∼ T . The condition for the rotating black holes to be
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suited for a fluid dynamical dual description is therefore directly translated into the
condition that the horizon radius should be large, y+ ≫ 1. 3

6.3.1 The boundary stress tensor

Here we compute the boundary stress tensor dual to the rotating AdS Kerr black
hole. According to the general prescription for calculating the boundary stress
tensor, we must perform a coordinate transformation of the Kerr metric (6.21), so
that it takes the form (6.22) in a neighborhood of the boundary. The result of such
a coordinate transformation to leading order was recorded in the expression (6.23).
Since, to leading order, the metric contains no rµ cross-terms, we conclude that to
leading order nA∂A = nr∂r with

nr =
1

G
1/2
rr

(
1 +

δGrr
Grr

)−1/2

= r
√

1 + 1/r2
(

1− Mγd

rd

)
(6.50)

Since the normal vector nA is only a function of the radial coordinate, we conclude
that the extrinsic curvature is given by

Θµ
ν = −Γµνrn

r (6.51)

Now according to the general formula (3.43), we see that in order to obtain the
boundary stress tensor, we only need to keep the leading order terms in the metric
since higher order contributions will lead to terms of at least order O(1/rd+1) in the
extrinsic curvature.4 The relevant Christoffel symbols were computed in appendix
A. We write

Γµνr = Γ̂µνr + δΓµνr +O
(
1/r2(d+1)

)
, nr = n̂r + δnr +O (1/rd+1

)
(6.52)

here Γ̂µνr and n̂µ respectively denotes the Christoffel symbols and normal vector
of pure AdS and δΓµνr and δnr are the leading order contributions. The extrinsic
curvature is then given by (ignoring the terms independent of the M parameter
corresponding to the counter-term stress tensor)

Θµ
ν = −Γ̂µνrδn

r − δΓµνrn̂r +O (1/rd+1
)

(6.53)

We may now compute the extrinsic curvature. We find

Θt
t = −Mγd+2

rd
(
d− γ−2

)
, Θt

φi
=
Mdγd+2aiµ

2
i

rd
(6.54)

Θφi

φj
=
Mγd+2

rd
(
δijγ

−2 + daiajµ
2
j

)
, Θφi

t = −Mdγd+2ai
rd

, Θθi

θj
=
Mγd

rd
δij (6.55)

Here we have used the manifestly independent coordinates
({θi}, {φj}) on Sd−1 in

which the metric (A.14) is diagonal. It is straight forward to check that Θ = 0.
Having computed the extrinsic curvature and its trace, we can now compute the
boundary stress tensor (3.43). Taking the large r limit and raising the index with
the boundary metric gµνdxµxν = dt2+

∑
i dµ

2
i+
∑
i µ

2
idφ2

i (using (A.13)), we obtain

T tt =
Mγd+2

8πGd+1

(
d− γ−2

)
, T tφi =

Mdγd+2ai
8πGd+1

(6.56)

3This result holds for black holes sitting in AdS of unit radius. We can easily reintroduce the
AdS radius. The condition now is that the black holes radius must be large compared to the radius
of AdS, y+/L ≫ 1.

4The leading order terms in the Christoffel symbols Γµνr will be of order one lower that the ones
of the metric since the Christoffel symbols contain r derivatives.
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Tφiφj =
Mγd+2

8πGd+1

(
1/µ2

jδ
ijγ−2 + daiaj

)
, T θiθj =

Mγd

8πGd+1

(
i−1∏
k=1

sec2 θk

)
δij

(6.57)
This completes the computation of the boundary stress tensor.

As we will see at the end of this section, the stress tensor obtained above is in
complete agreement with the (perfect) stress tensor of a rigidly rotating fluid on the
boundary. In order to demonstrate this we will therefore now turn to examining
fluid dynamics on the boundary manifold R× Sm.

6.3.2 Rotating conformal fluid configurations on R× Sm

Here we examine the rigidly rotating (conformal) fluid configurations on R × Sm.
Therefore consider a conformal fluid on R × Sm with energy density ρ = η0T m+1,
viscosity η and second order transport coefficients η1, η2, . . . . For now, assume that
the fluid has no charges.

Since we are looking for fluid configurations which are dual to the Kerr black
hole, we are seeking stationary fluid configurations, that is, fluids is global equi-
librium. There exists a nice way to determine a subset of these stationary so-
lutions to the equations of fluid dynamics. The following argument is based on
[57]. Assume that the fluid is in equilibrium and thus described by a perfect fluid
stress tensor. Using the equations of motion (i.e. conservation of the stress ten-
sor, DµTµν = ∇µTµν = 0), the first law of thermodynamics (4.19), and imposing
stationarity, it is easy to show that

aµ = −∇µ ln T (6.58)

where aµ is the acceleration of the fluid. Now, since the fluid is stationary it must
have vanishing shear σµν . Moreover, assume that the expansion ϑ of the velocity
also vanishes. It then follows from (4.10) that

∇µuν = ̟µν − uµaν (6.59)

Now using the equation (6.58) we conclude that (recall that ̟(µν) = 0)

∇(µ(αuν)) = αu(µ∇ν) ln(αT ) (6.60)

for any function α. We therefore see that if we choose the function α to be propor-
tional to the inverse temperature field, i.e. α = τ/T , the vector field αuµ is Killing.
A solution to (6.60) therefore is

τuµ∂µ
T = ∂t + ωi∂φi

(6.61)

where we introduced a set of rotational parameters ωi. The temperature field is
now determined by the defining equation uµuµ = −1. We have

T = γτ, uµ = γ(1, 0, · · · , 0, ω1, · · · , ωN ) (6.62)

with

γ =

(
1−

N∑
i=1

gφiφi
ω2
i

)−1/2

=

(
1−

N∑
i=1

( i−1∏
j=1

cos2 θj
)

sin2 θiω
2
i

)−1/2

(6.63)

The fluid (6.62) is in global equilibrium to first order. What about to second
order? Since σµν = 0, the second order contributions Tµν1 , Tµν2 and Tµν3 all vanish.
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Moreover, since R× Sm is conformally flat, the Weyl tensor is identically equal to
zero, Cµνρλ = 0. The dissipative correction Tµν5 therefore also vanishes. This means
that to second order

Πµν = −η4T m−1T4 = −η4T m−1̟
〈µ
λ̟

λν〉 (6.64)

However, the vorticity ̟µν (and therefore the second order correction Tµν4 ) does
in general not vanish for the rotating fluid (6.62). This means that if we want the
rotating fluid to be in thermodynamic and dynamic equilibrium, we must impose the
condition η4 ∼ ξ̟ = 0 on the transport coefficient associated with Tµν4 . Assuming
this, the fluid stress tensor is then given by

Tµν = ρ

(
uµuν +

1
m

∆µν

)
= η0T m+1

(
uµuν +

1
m

∆µν

)
(6.65)

It is of course comforting that the second order analysis of the fluctuating brane in
§5.9, exactly found that ξ̟ = 0. We elaborate on this below.

Now using the expressions for the fluid velocity and the metric on R × Sm, we
can write down the expression for the perfect fluid stress tensor in terms of the
function γ and the constant τ . We find

T tt =
η0τ

m+1

m
γm+1

(
(m+ 1)γ2 − 1

)
, T tφi =

η0(m+ 1)τm+1

m
γm+3ωi,

Tφiφi =
η0τ

m+1

m
γm+1

(m+ 1)γ2ω2
i +

i−1∏
j=1

sec2 θj

 csc2 θi

 , (6.66)

Tφiφj =
η0(m+ 1)τm+1

m
γm+3ωiωj , T θiθi =

η0τ
m+1

m
γm+1

i−1∏
j=1

sec2 θj


where we have explicitly written the gφiφi

= µ2
i angular θi dependence.

Now let us consider the charged case. Here we will restrict ourselves to first
order. Therefore, assume that the fluid has a set of conserved charges (which we
will from now on call ’R-charges’, since they will exactly correspond to the R-charges
of the underlying field theory) with corresponding currents

rµI = rIu
µ + Υµ

I (6.67)

Here rI is the charge density corresponding to the I’th R-charge. According to the
discussion in §4.1.5, the most general first order current dissipation term is given
by ∇µ(µI/T ) = Dµ(µI/T ) (in the conformal case this follows directly from Weyl
invariance). Here we have ignored the subtle case of d = 4 (see below). This means
that in order for the current dissipation Υµ

I to vanish (to first order), we must take

µI = νIT = γτνI (6.68)

where νI is a constant. We have now solved the fluid dynamics of the R-charged
fluid to first order which is also easy to check by direct computation [5]. The fluid
velocity and temperature are given by (6.62) and the R-charge current is rµI = rIu

µ.
Finally, since the fluid is described by perfect fluid dynamics, the entropy current
is given by

JµS = suµ ⇒ DµJµS = 0 (6.69)
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6.3.3 Conserved quantities

We will now write down the expressions for the total energy, entropy, angular mo-
menta, and R-charges of the solution (6.66). Recall that a Killing vector Kµ on an
arbitrary manifold has an associated Komar current

Jµ[K] = Kν

[
Tµν − 1

2
gµνT

]
(6.70)

It can been shown that this current is conserved, see e.g. [14]. The conserved
quantity (the Komar charge) associated with this current is therefore given by 5

Q[K] = −
∫

Σ

nµJ
µ[K] (6.71)

here nµ is the normal vector to the timelike surface Σ. The expression (6.71) is
independent of the surface Σ. It follows that it is independent of time i.e. conserved.

Returning to our fluid on R × Sm we will take Σ to be the surface of constant
t. Since the fluid is conformal and the metric is diagonal we have

Q[K] = −
∫
Sm

gµνK
µT tν (6.72)

where evaluation of the expression for constant t is understood. Now, the manifold
R × Sm has the Killing vectors ∂/∂t and ∂/∂φ1, · · · , ∂/∂φN . The vector ∂/∂t is
the generator of time translations and the associated conserved quantity Q(∂t) is
therefore naturally identified with the energy of the fluid solution. The vector ∂/∂φi
is the generator of the i’th angular momentum and we therefore associate Q(∂φi

)
with the φi angular momentum of the solution. We therefore have

E = −
∫
Sm

gttT
tt, Li = −

∫
Sm

gφiφi
T tφi (6.73)

Finally, since the (perfect) entropy and R-charge currents are conserved, we can
write down the total conserved entropy and R-charge of the solution:

S = −
∫
Sm

nµJ
µ
S =

∫
Sm

J tS , RI = −
∫
Sm

nµr
µ
I =

∫
Sm

rtI (6.74)

6.3.4 Evaluation of conserved quantities

Here we compute the total energy, entropy, angular momenta, and R-charges of
the solution (6.66). First, using conformal invariance we will parametrize the full
thermodynamic behavior of the system in terms of a single function H({νI}), where
νI = µI/T are the reduced chemical potentials. Let E , S, RI respectively denote
the energy, entropy, and charge contained in a small volume V and consider the
grand potential

Φ = E − T S − µIRI with first law dΦ = −SdT − pdV −RIdµI (6.75)

It now follows from extensivity and conformal invariance that

Φ = −V T m+1H
({νI}) (6.76)

5As usual when writing expressions like
R
M f we mean

R
dDx

p|g| f(x) where g is the metric
of the D-dimensional manifold M .
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where the function H is only a function of the reduced potentials νI . Therefore
using this simple expression for Φ and the relation (6.75), we obtain

ρ = mp = mAT m+1, s = BT m, rI = CIT m (6.77)

where the Weyl invariant functions A,B, and CI are given by (as usual a tilde
denotes a Weyl transformed quantity)

A ≡ H = Ã, B ≡ (m+ 1)H − νI∂νI
H = B̃, C ≡ ∂H

∂νI
= C̃ (6.78)

Using the equations (6.65), (6.67), and (6.69), we therefore see that

η0 = mA, J tS = Bγm+1τm, rtI = CIγ
m+1τm. (6.79)

We can now carry out the integrations. The relevant integrals can be derived from
the identity [5] ∫

Sm

γm+1[{ωi}] =
Vol(Sm)∏N
j=1(1− ω2

j )
(6.80)

where γ is the function introduced in equation (6.63). By parameterizing Sm using
the directional cosines

({µi}, {φj}), this identity is easily verified for odd m by a
simple rescaling of the variables. Suppose that m is odd i.e. ǫ = 0. From the above
identity it follows that (identical results hold when m is even)

d
d(1− ω2

i )

(
Vol(Sm)∏N
j=1(1− ω2

j )

)
=
∫
Sm

dγd[{ωi}]
d(1− ω2

i )
=
∫
Sm

m+ 1
2

γm+3µ2
i (6.81)

therefore ∫
Sm

γm+3µ2
i =

2
(m+ 1)(1− ω2

i )
Vol(Sm)∏N
j=1(1− ω2

j )
(6.82)

By using the defining relation
∑
i µ

2
i = 1, we therefore obtain that∫

Sm

γm+3 =
Vol(Sm)

(m+ 1)
∏N
j=1(1− ω2

j )

(
2
N∑
i=1

ω2
i

1− ω2
i

+m+ 1

)
(6.83)

The relations (6.80), (6.82) and (6.83) are precisely the ones needed to evaluate the
conserved quantities. We find

E =
Aτm+1Vol(Sm)∏

i(1− ω2
i )

2
∑
j

ω2
j

1− ω2
j

+m

 , S =
BτmVol(Sm)∏

i(1− ω2
i )

(6.84)

Li =
Aτm+1Vol(Sm)∏

j(1− ω2
j )

[
2ωi

1− ωia

]
, RI =

CIτ
mVol(Sm)∏
i(1− ω2

i )
(6.85)

Having determined the global conserved charges of the fluid solution we can now
examine its (global) thermodynamics. Physically such an analysis makes sense since
the fluid is in global thermodynamic equilibrium.

6.3.5 Thermodynamics of the fluid solution

Since the rotating fluid is in (global) thermodynamic equilibrium, we expect that
its thermodynamics can be encapsulated by a grand canonical partition function
Zgc of the form

Zgc = Tr

{
exp

[
1
T

(
−H + ΩiLi + ξIRI

)]}
(6.86)
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where the trace is taken over the globally defined fluid states. Using a standard
thermodynamic argument, the partition function can be written as

Zgc = exp
[
− 1
T

(
E − TS − ΩiLi − ξIRI

)]
(6.87)

Here T is the global temperature, Ωi is the global “chemical potential” associated
with the i’th angular momentum, and ξI is the chemical potential associated with
the I’th R-charge. It is important to stress out that the globally defined temperature
T must not be confused with the (local) fluid temperature T . In the same way the
chemical potentials ξI must not be confused with the fluid chemical potentials µI .
The thermodynamic system (6.86) has the associated first law

dE = TdS + ΩidLi + ξIdRI (6.88)

so

T =
(
∂E

∂S

)
Ωi,RI

Ωi =
(
∂E

∂Li

)
S,Ωj 6=i,RI

ξI =
(
∂E

∂RI

)
S,Ωi,RJ 6=I

(6.89)

Using these relations we can now compute the global temperature, “angular veloci-
ties”, and chemical potentials of the fluid configuration. In order to do this, notice
that the energy can be written

E = ωiLi +
m

m+ 1
τνIRI +

m

m+ 1
τS (6.90)

and therefore

dE = ωidLi+Lidωi+
m

m+ 1
(
τνIdRI+τRIdνI

)
+

m

m+ 1
(
τdS+(S+νIRI)dτ

)
(6.91)

A straight forward computation reveals that (just use the expressions for S and RI)

(S + νIRI)dτ =
1
m
τdS − τ(S + νJRJ)

∑
i

ωidωi
1− ωi − τRIdνI +

1
m
τνIdRI (6.92)

Substituting this into (6.91) and using the relations (6.84), we finally obtain

dE = τdS + ΩidLi + τνIdRI (6.93)

We therefore conclude
T = τ, Ωi = ωi, ξI = τνI (6.94)

The result is just as expected: The global temperature T equals the (constant)
local rest frame temperature i.e. T = T /γ and so forth. Having computed the
temperature and potentials we can now finally compute the partition function from
(6.87). It is easy to show that Zgc takes the simple form

lnZgc =
Vol(Sm)TmH({ξI/T})∏

i(1− Ω2
i )

=
lnZ(Ω=0)

gc∏
i(1− Ω2

i )
(6.95)

Notice that the function H({ξI/T}) is rather arbitrary, it depends on the properties
of the conformal “stuff” making up the fluid. Also notice that the partition function
Zgc is completely fixed once the form of H({ξI/T}) is specified. This means that
the fluid dynamical analysis of the conformal fluid on R×Sm tells us nothing about
the thermodynamic properties of the charged fluid at rest. This was of course
pretty much expected. However, once the thermodynamics of the fluid at rest is
given, the thermodynamics of the corresponding rotating fluid is known. All in all,
summarizing the above computation, the thermodynamics of the conformal rotating
fluid is completely determined by the equations (6.94), (6.84), and (6.85).
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6.3.6 Comparison between AdSD Kerr black holes and perfect fluid
dynamics on R× SD−2

We are now ready to compare the physics on the gravitational side with a perfect
rotating conformal fluid on R× SD−2. As we have argued above, the fluid/gravity
correspondence is expected to be valid for Kerr black holes in the large horizon
limit. We will therefore start by working out the thermodynamics of the rotating
Kerr black hole in the large horizon limit. This is then readily compared to the
fluid thermodynamic formulæ derived above.

Thermodynamics of Kerr black holes in the large horizon limit: We
will now relate the horizon radius y+ to the M parameter in the large horizon limit.
The black hole horizon is located at y = y+ where y+ is the largest root of the
equation (here we as usual take λ = −1, cf. §6.1.3)

V − 2M = yǫ−2(1 + y2)
N∏
i=1

(y2 + a2
i )− 2M = 0 (6.96)

This means that if y+ ≫ 1, the horizon radius is related to the M parameter by

2M = yD−1
+

(
1 +O(1/y2

+)
)

(6.97)

where as usual D denotes the dimension of the bulk. Notice that this relation holds
for both D even and odd. Now it is straightforward to express the temperature
T = κ/2π in terms of the horizon radius in the large horizon limit. We use the
expressions (6.36) and (6.37) in the limit y+ ≫ 1. Notice how the extra term
in (6.36) exactly ensures that the expressions are identical for even and odd D
dimensions. We find

T =
[
(D − 1)y+

4π

] (
1 +O(1/y2

+)
)

(6.98)

This especially means that, in the large horizon limit, the M parameter is related
to the temperature in the following way

2M = TD−1

[
4π

D − 1

]D−1 (
1 +O(1/T 2)

)
(6.99)

This expression can now be substituted into the thermodynamic formulæof §6.2.
First of all we see that, to leading order, the angular velocity can be identified with
the corresponding rotational parameter, that is, Ωi = ai. We then find to leading
order

E =
Vol(SD−2)TD−1

16πGD
∏N
j=1(1− a2

j )

[
4π

D − 1

]D−1
[
N∑
i=1

2a2
i

1− a2
i

+D − 2

]

Li =
Vol(SD−2)TD−1

16πGD
∏N
j=1(1− a2

j )

[
4π

D − 1

]D−1 [ 2ai
1− a2

i

]

S =
(D − 1)Vol(SD−2)TD−2

16πGD
∏N
j=1(1− a2

j )

[
4π

D − 1

]D−1

Ri = 0

(6.100)

where we have re-introduced the D dimensional gravitational constant.
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Thermodynamics of uncharged rotating fluids: The thermodynamics of
the most general R-charged rotating conformal fluid on R × Sm was derived in
§§6.3.4-6.3.5. Here we will focus on the case where the fluid is uncharged, νI = 0.
In this case the thermodynamic function H is simply a constant

H = h (6.101)

And it follows that A = h, B = (m + 1)h and C = 0. According to the equations
(6.84), the energy, angular momenta, and entropy of the uncharged conformal rigidly
rotating fluid is then given by

E =
hVol(Sm)Tm+1∏N

i=1(1− Ω2
j )

 N∑
j=1

2Ω2
i

1− Ω2
i

+m

 , S =
(m+ 1)hVol(Sm)Tm∏N

j=1(1− Ω2
j )

(6.102)

Li =
hVol(Sm)Tm+1∏N

j=1(1− Ω2
j )

[
2Ωi

1− Ω2
i

]
, Ri = 0 (6.103)

These expressions can now directly be compared to those of the large rotating black
holes (6.100). We see that by identifying D withm+2, the Kerr rotation parameters
ai with Ωi (this amounts to identifying the Kerr rotation parameters with the fluid
rotation parameters, cf. equation (6.94)) and the constant h with

h =
1

16πGD

[ 4π
D − 1

]D−1

(6.104)

the thermodynamics of the two systems are in complete agreement. Moreover by
comparing the dual boundary stress tensor (computed in §6.3.1) with the perfect
fluid stress tensor (6.66) and making the identifications above, we see that there is
complete agreement between the two expressions.

Moreover we see that the (unit temperature) energy density of the fluid exactly
is the same as we found for the black brane (cf. equation (5.41)). We have therefore
demonstrated that the fluid/gravity correspondence, developed for the fluctuating
black brane, applies directly to the rotating black holes of Einstein gravity. Fur-
thermore we saw that the fluid dynamic analysis of the boosted black brane yielded
ξ̟ = 0. In the rotating Kerr black hole scheme this condition on ξ̟ is a consistency
requirement. This, as far as we see, provides a non-trivial check of the fluid/gravity
correspondence. Following the same line of thought, it is possible that the fact
that the boundary stress tensor of the rotating Kerr black hole is that of a perfect
fluid, could be used (on grounds of consistency) to deduce that certain higher order
transport coefficients (containing only vorticity terms) must vanish. We will now
briefly discuss the rotating N = 4 Yang-Mills plasma on R× S3.

6.3.7 The rotating N = 4 Yang-Mills plasma on R× S3

We will now show how it is possible to consider rotating plasma configurations of
N = 4 SYM, using the above fluid dynamical analysis. To this end consider the
consistent truncation of supergravity on AdS5×S5, given by (3.25). Instead of only
considering pure gravity, we now wish also to consider excitations of the SO(6) gauge
fields (and scalar fields which were represented by the dots in (3.25)). However, we
will only consider a subgroup of these excitations (this amounts to performing yet
another truncation of the theory). In the following we will only consider the abelian
part of SO(6): The maximal abelian subgroup of SO(6) is U(1)3. With the rest of
the gauge degrees of freedom set to zero, we then obtain the so-called STU model,
which is a consistent truncation of supergravity on AdS5 × S5 with U(1)3 which
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is dual to N = 4 SYM with 3 Cartan U(1)3R’s inside SU(4)R ∼= SO(6) [58]. The
truncated action takes the form (I = 1, 2, 3) [58, 59]

S =
1

16πG5

∫ √
|G|
[
R+ 2V(X)− 1

2
EIJ(X)(F I)AB(F J )AB − EIJ (X)∂AXI∂AXJ

+
1

24
√|G|CIJKǫABCDE(F I)AB(F J )CF (AK)E

]
(6.105)

where is CIJK is totally symmetric with C123 = 1 and where the scalar potential
and the metric on the scalar manifold are given by (notice that our notation differs
from that of [58, 59], since we reserve G for the bulk metric).

V(X) = 2
3∑
I=1

1
XI

, EIJ =
1
2
diag

(
1

(XI)2

)
(6.106)

Moreover, the three scalars are subject to the constraint X1X2X3 = 1. Notice that
the last term in the action (6.105) is immediately recognized as the Chern-Simons
term

CIJK

∫
F I ∧ F J ∧AK (6.107)

One can now straightforwardly work out the equations of motion pertaining to the
STU action (6.105). Several solutions to the EOM are known, here we write down
the three-charge non-extremal black brane STU solution. The metric part of the
solution is given by [60]

ds2 = −H− 2
3 f(r)dt2 +H 1

3

(
dr2

f(r)
+ r2

3∑
i=1

dx2
i

)
(6.108)

f(r) =
M

r2
− r2H, HI = 1 +

qI
r2
, H = H1H2H3 (6.109)

while the gauge field part takes the form

XI =
H 1

3

HI
, AIt =

√
MqI

r2 + qI
(6.110)

This SO(6) charged black brane, or equivalently SO(6) charged non-rotating black
hole (see appendix A of [59] for a discussion of the relationship between the black
brane and black hole solution), is dual to the N = 4 SYM R-charged plasma on
R×S3 at rest. By working out the thermodynamics of the STU black brane (6.108),
we can then obtain an equation of state for the N = 4 R-charged plasma at rest,
using the AdS/CFT correspondence. The equation of state is determined by the
following partition function [5, 59]

ZN=4 SYM
gc, rest =

2π2NVol(S3)T 3
∏
I(1 + κI)3

(2 +
∑
J κJ −

∏
κJ)4

(6.111)

Here the auxiliary parameters κI are directly related to theR-charge density/entropy
density ratio in the following way6

κI =
4π2r2I
s2

(6.113)

6Although not important for our purposes, we mention that the κI parameters are constrained
by κI ≥ 0 and X

I

1

1 + κI
− 1 ≥ 0 (6.112)

which is obtained by requiring thermodynamic stability. The latter constraint amounts to requiring
non-negative temperature T ≥ 0.
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Having extracted the equation of state for the N = 4 SYM R-charged plasma at
rest, we can immediately write down the partition function for the rotating N = 4
plasma configuration. According to the equation (6.95), it is given by

ZN=4 SYM
gc =

2π2NVol(S3)T 3
∏
I(1 + κI)3

(1− Ω2
1)(1− Ω2

2) (2 +
∑
J κJ −

∏
κJ)4

(6.114)

Here we used that S3 is parametrized by two azimuthal angles φ1, φ2 and one
directional cosine θ. In these coordinates the function γ, defined by (6.63), takes
the form

γ−2 = 1− Ω2
1 sin2 θ − Ω2

2 cos2 θ (6.115)

Here we used equation (6.94) to identify the rotational parameters ω1 and ω2 with
the conjugate variables to the angular momenta (respectively Ω1 and Ω2).

Much like we have black brane (transverse planar symmetry) and black hole
(transverse spherical symmetry) solutions to Einstein gravity, there also exist known
five dimensional rotating SO(6) charged black hole solutions. Since these rotating
black holes are expected to be dual to rotating N = 4 SYM plasma configurations,
these black holes will provide a check of the validity of (6.114). This analysis was
carried out in the paper [5]. The analysis is essentially same as the one we carried out
in §6.3.6, however, the thermodynamic expressions are of course more complicated
(as they now also contain (three) R-charge(s)). Here we summarize the results of
[5]. For the original references on the R-charged rotating black hole solutions and
their thermodynamics, we refer to [5].

• The thermodynamics predicted from (6.114) is in complete agreement, to
order O(1/y2

+), with the thermodynamics of the large horizon rotating R-
charged black hole with two R-charges set equal to zero.

• The thermodynamics predicted from (6.114) is in complete agreement, to
order O(1/y+), with the thermodynamics of the large horizon rotating R-
charged black hole with all R-charges equal.

• Finally the same produce can be carried out for respectively the rotating fluid
of the M5 and the M2 brane conformal field theory on respectively R × S2

and R× S5. The thermodynamics predicted from (the equivalent of) (6.114)
is in complete agreement, to order O(1/y2

+), with the thermodynamics of the
large horizon rotating R-charged black hole with arbitrary R-charges.

Notice that the difference between the large horizon black hole thermodynamics and
the thermodynamics of the dual fluid is expected to show up at O(1/y2

+). This is
because, as argued above, ℓmfp ∼ 1/y+ and we have only solved the fluid dynamics
to first order in ℓmfp. It is, however, quite a surprise that we see that there already
is a discrepancy at O(1/y+) ∼ O(ℓmfp) for black holes with all R-charges non-zero.

6.3.8 Resolution to the N = 4 fluid/gravity discrepancy

The simplest explanation for the discrepancy is that, in the case of the most general
R-charged fluid, the velocity field (constructed in the previous section), does not
solve the equations of fluid dynamics to first order in ℓmfp (only to zeroth order).
This indeed seems to be the case. As mentioned in §4.1.5, in four dimensions, it is
possible to construct a pseudo-vector containing only one derivative by

ℓµ = ǫµνρλuνDρuλ (6.116)
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This (Weyl covariant) term can then be used to alter the equation for the current
dissipation (4.18) according to

ΥI = DI∆µνDννI + 0Iℓµ (6.117)

Notice that the vector ℓµ cannot be used to construct corrections to the stress tensor
to first order (in the Landau frame), so only the R-charge currents get corrected.
The pseudo-vector term was not considered by the authors of [5], however, as was
first realized in [9], such a term can be physically realized (the authors of [9] consid-
ered an Einstein-Maxwell + Chern-Simons term type system). More recently the
fluid dynamics of the fluctuating STU brane was worked out (conceptually in the
same way as presented in chapter 5) in the paper [58]. The authors of [58] were
able to compute the 0I transport coefficient associated with ℓµ, they found

0I ∼ CIJK

√
MqJ

√
MqK

(y2
+ + qJ)(y2

+ + qK)
−
√
MqI
3M

CJKL

√
MqJ

√
MqK

√
MqL

(y2
+ + qJ)(y2

+ + qK)(y2
+ + qL)

(6.118)

We see that the form of this transport coefficient accounts for the above obser-
vations. Indeed, for a general R-charged black hole we have non-zero 0I ’s and we
expect the thermodynamics to get corrections of order O(ℓmfp). However, when two
of the R-charges are zero, we see that all the 0I ’s vanish and the thermodynamics
should only get corrections at O(ℓ2mfp). Finally we emphasize that a one-derivative
pseudo-vector term can only be constructed in four dimensions. Of course similar
pseudo-vector terms can be constructed in higher dimensions, but they will contain
more than one derivative. First order pseudo-vector corrections are therefore only
seen in four dimensional theories. This explains why we do not see a first order
discrepancy in the M2- and M5-brane conformal field theories.

In the four dimensional case, it should be possible to include these correction
terms and solve fluid dynamics to first order. This would introduce O(ℓmfp) correc-
tions to the temperature and therefore the global thermodynamic charges. Hope-
fully such an analysis would account for the O(ℓmfp) corrections to the large horizon
black hole thermodynamic expressions. We will leave this analysis for future work.
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Concluding remarks

Conclusion

In this thesis we have motivated the existence of a correspondence between gravity
and fluid dynamics (as an effective long-wave description of a boundary CFT), using
the AdS/CFT correspondence. It was explicitly shown how the finite temperature
AdS/CFT correspondence gives a mapping between the solutions to the relativis-
tic Navier-Stokes equation, governing fluid dynamics, to a set of “slowly varying”
solutions to Einstein’s equation with a negative cosmological constant. More specif-
ically we have demonstrated how the equations of gravity can be used to directly
extract information about a given strongly coupled CFT (in the planar limit) with
a gravitational dual. It was shown how the transport coefficients, determining the
kinematic properties of the fluid, in principle can be found by perturbatively solving
Einstein’s equation. We emphasize that, with the technology available today, such
an analytical computation is not possible, using only gauge theoretical methods.
Since fluid dynamics is a long-wave effective description of a given CFT, knowing
the properties of the fluid (both transport coefficients but perhaps also the phase
structure), can presumably tell us a lot about the fundamental properties of the
underlying field theory. The fluid/gravity correspondence thus provides us with an
extremely powerful tool for understanding strongly coupled theories.

Outlook

The fluid/gravity correspondence has several “obvious” generalizations: In addi-
tion to studying gravity systems coupled to matter, in the fluid/gravity correspon-
dence (which we touched upon in §6.3.7), it would be very interesting to study the
fluid/gravity correspondence away from the different limits considered in the thesis.
For example, how does the fluid/gravity correspondence look if we consider stringy
effects on the gravitational side? Moreover, we could consider the effect of quantum
corrections on the gravity side or, equivalently, go away from the large N limit on
the gauge theory side. It is possible that this could teach us important lessons in
gravity, string theory and strongly coupled theories. These fascinating issues are
currently being studied by the fluid/gravity community.

As mentioned in the introduction, one of the ultimate goals of the fluid/gravity
correspondence is to understand the Quark Gluon Plasma state, studied experi-
mentally in RHIC and LHC. The QGP is believed to be a phase of QCD which
is completely locally thermalized and thus suitable for an effective fluid dynamic
description. The fluid/gravity correspondence therefore seems to be a promising
tool for getting a better understanding of the QGP. Although QCD is a strongly
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coupled theory, it is obviously a long way from the conformal field theories con-
sidered in this thesis. First of all, QCD does not exhibit supersymmetry and is,
more importantly, obviously not a conformal field theory. Moreover N = 3 ≪ ∞
for QCD , which posses an even greater problem, since taking the planar limit was
vital for doing computations in the AdS/CFT correspondence. However, there do
exist methods for breaking SUSY and conformal invariance of the original bound-
ary theory (we refer to the reviews [17, 20] and the references therein). Moreover
there has also been developed methods for going away from the N = ∞ limit for
certain theories. Finally models that mimic some of the properties of QCD have
been constructed, for example the STU model (6.105), which was an example of a
multi-charged plasma [58]. Needless to say, directly obtaining QCD from a theory
with a known gravitational dual (e.g. N = 4 SYM) is still far away, however, it is
the hope that these methods in the future can be implemented in the fluid/gravity
scheme and thus provide a non-perturbative framework for understanding the QGP.

Recently the fluid/gravity correspondence has found applications in a completely
different type of physical theories, namely condensed matter systems. More specif-
ically holographic methods seem to be a promising tool (it already is) for under-
standing quantum critical systems. A quantum critical system is a condensed matter
system containing a quantum critical point which is a special class of continuous
phase transition that takes place at zero temperature. As usual a condensed matter
system is effectively described in terms of quasi particles which, at quantum criti-
cality, interact in a non-weak manner. Moreover, the system at a quantum critical
point exhibits scale invariance. These are exactly the essential properties of the
boundary theory in the AdS/CFT correspondence. For an excellent introduction
to these concepts and ideas, see [61]. When dealing with condensed matter sys-
tems, there is a subtlety which we have not mentioned. The theory of condensed
matter systems is non-relativistic, one therefore needs to find a way of reducing the
(relativistic) fluid/gravity correspondence to a non-relativistic fluid/gravity duality.
Indeed, such a formalism exists, see [28] for a nice introduction.

So far we have only discussed what the equations of gravity can teach us about
the fluid dynamics of strongly coupled theories. We have, however, not discussed
the opposite point. What can we learn about gravity from the equations of hy-
drodynamics? Since the equations of fluid dynamics have been studied in great
detail over the last couple of centuries, it is possible that the understanding of fluid
dynamics could lead to new insights into gravitational physics. For example, the
fluid/gravity correspondence seems to be a natural setting for understanding the
holography of turbulence [62].



A
Various AdS-Kerr black

hole computations

A.1 Coordinates on Sm

We will now show how it is possible to construct coordinates on the m dimensional
sphere. To this end consider Sm as embedded in m+1 dimensional Euclidean space
Rm+1 and introduce the two numbers n ≡ [(m+ 2)/2] and N ≡ [(m+ 1)/2] along
with an evenness integer ǫ ≡ n−N . Here [x] denotes the integer part of the number
x. All in all, if m is even i.e. m = 2q then n = q + 1, N = q, ǫ = 1 and if m is odd
i.e. m = 2q+1 then n = N = q+1 and ǫ = 0. Usually in D dimensional spacetimes
we consider D−2 dimensional spheres. In this case the numbers n and N are given
by n = [D/2] and N = [(D−1)/2]. In both cases we have D = 2m+2 = 2N+1+ǫ.

Euclidean m + 1 dimensional space has N commuting generators of rotation
corresponding to N orthogonal two-dimensional planes. Of course, each of these
planes have an U(1) symmetry seen from Rm+1 but also seen from the embedded
m-sphere. Indeed, consider the embedding

ǫ = 0 : (
U(1)︷ ︸︸ ︷
x1, y1,

U(1)︷ ︸︸ ︷
x2, y2,· · · ,

U(1)︷ ︸︸ ︷
xN , yN ) ∈ Sm ⊂ Rm+1

ǫ = 1 : (x1, y1︸ ︷︷ ︸
U(1)

, x2, y2︸ ︷︷ ︸
U(1)

,· · · , xN , yN︸ ︷︷ ︸
U(1)

, xn) ∈ Sm ⊂ Rm+1 (A.1)

We will now exploit the U(1) symmetry on each of the N two-planes span(xi, yi).
Equip each of the planes with “polar coordinates”

zi = xi + iyi = µie
iφi , i = 1,· · · , N (A.2)

where 0 ≤ µi < ∞ and 0 ≤ φi < 2π. In the case where ǫ = 1 set zn ≡ xn ≡ µn
(n = N + 1) where −∞ < µn < ∞. We have now equipped Rm+1 with a new set
of coordinates. The points on Sm are now exactly those that fulfill

N+ǫ∑
i=1

ziz
∗
i =

N+ǫ∑
i=1

µ2
i = 1 (A.3)

In this way we have equipped Sm with 2N + ǫ coordinates. These coordinates
are, however, not independent due to the constraint (A.3). The constraint leaves
2N + ǫ− 1 = m (= the dimension of Sm) independent coordinates. Computing the
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metric on Sm in these coordinates is straight forward

dΩ2
m =

N+ǫ∑
i=1

dz∗i dzi =
N+ǫ∑
i=1

dµ2
i +

N∑
i=1

µ2
idφ

2
i (A.4)

where one of the µi’s has to be expressed in terms of the rest through (A.3). This
is essential if we want to e.g. integrate on the sphere. As an example let us
calculate the volume of the m-sphere (that is, the volume of the space Sm, not
to be confused with the volume contained in Sm as an embedding of Rm+1). We
choose the variables µ1,· · · , µN+ǫ−1 and φ1,· · · , φN as the coordinates on Sm while
µN+ǫ is expressed completely in terms of µ1,· · · , µN+ǫ−1. We start by computing
the form of the metric (A.4) in terms of the genuine independent coordinates. To
this end notice that the constraint (A.3) implies

dµ2
N+ǫ =

1
µ2
N+ǫ

[
N+ǫ−1∑
i=1

µidµi

]2

(A.5)

We therefore obtain the following expression for the metric

dΩ2
m =

N+ǫ−1∑
i,j=1

(
δij +

µiµj
µ2
N+ǫ

)
dµidµj +

N∑
i=1

µ2
idφ

2
i (A.6)

The expression for the volume of the m-sphere is then given by

Vol(Sm) =
∫
Sm

dV =
∫
Sm

N+ǫ−1∏
i=1

dµi
N∏
i=1

dφi
√

Ω (A.7)

where dV is the volume element on Sm which has been expressed in terms of the
determinant Ω of the metric and the coordinate one-forms in the usual way. The
determinant of the metric is given by

Ω = det(M)
N∏
i=1

µ2
i with M = 1 +

~µ⊗ ~µ
µ2
N+ǫ

(A.8)

where ~µ denotes the (N + ǫ− 1)-component vector ~µi ≡ µi. Having identified M as
the identity plus a dyadic product, it is straight forward to compute det(M).1 We
have

det(M) = 1 +
1

µ2
N+ǫ

N+ǫ−1∑
i=1

µ2
i =

1
µ2
N+ǫ

(A.9)

where we used the defining relation
∑N+ǫ
i=1 µ2

i = 1. We therefore have

√
Ω =

∏N
i=1 µi
µN+ǫ

(A.10)

Let us record the result for the volume of the m-sphere. It holds that

Vol(Sm) =
2π(m+1)/2

Γ
(
(m+ 1)/2

) (A.11)

which can be showed using (A.7) and the expression for the volume element (how-
ever, this computation is easier in standard “angular coordinates”, see below).

1It holds that for any invertible matrix A and any two vectors ~v and ~q that det(A + ~u⊗ ~v) =
(1 + ~vTA−1~u) det(A). For a proof, see for example [63].
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Finally it is possible to directly equip Sm with m independent coordinates by
parameterizing the equation (A.3) in the following way

µj =
( i−1∏
i=1

cos θi
)

sin θj , j = 1, . . . , (N + ǫ)− 1

µN+ǫ =
N+ǫ−1∏
i=1

cos θi

(A.12)

That this indeed is a parametrization of (A.3) is straight forward to check. Notice
that if m is odd then (on Sm) all the µi’s fulfill 0 ≤ µi ≤ 1 and therefore θi ∈ [0, π/2]
for all i while if m is even then 0 ≤ µi ≤ 1, i = 1, . . . , N and −1 ≤ µN+1 ≤ 1 so
θi ∈ [0, π/2] for i = 1, . . . , N and θN+1 ∈ [0, π]. A quick computation reveals that

N+ǫ∑
i=1

dµ2
i =

N+ǫ−1∑
a=1

( a−1∏
b=1

cos2 θb
)
dθ2a (A.13)

This means that the metric on the even dimensional sphere S2N in the coordinates
(θ1,· · · , θN , φ1,· · · , φN ) is given by

dΩ2
2q =

N∑
a=1

( a−1∏
b=1

cos2 θb
)
dθ2a +

N∑
a=1

( a−1∏
b=1

cos2 θb
)

sin2 θadφ2
a (A.14)

In order to obtain the metric on the odd dimensional sphere S2N−1, we simply set
the last coordinate constant to θN = π/2.

A.2 Pure AdS metric in spheroidal form

In this subappendix we derive the expression for the pure anti de-Sitter metric
expressed in the spheroidal Kerr-Schild coordinates introduced in §6.1.2. In ordinary
D dimensional ’spherical’ coordinates anti-de Sitter takes the form

dŝ2 = −(1− λr2)dt2 +
dr2

1− λr2 + r2

(
N+ǫ∑
i=1

dµ2
i +

N∑
i=1

µ2
idφ

2
i

)
(A.15)

where the directional cosines µi are subject to the constraint
∑N+ǫ
i=1 µi = 1. We

now introduce a new set of ’spheroidal’ coordinates (Boyer-Lindquist coordinates
in the zero mass limit M = 0) by the following two equations

(1 + λa2
i )r

2µ2
i = (y2 + a2

i )ν
2
i ,

N+ǫ∑
i=1

ν2
i = 1 ⇒ r2 =

N+ǫ∑
i=1

{
y2 + a2

i

1 + λa2
i

}
ν2
i (A.16)

We see that

1− λr2 =
N+ǫ∑
i=1

(
1− λ

{
y2 + a2

i

1 + λa2
i

})
ν2
i

= W (1− λy2)

(A.17)

where we defined W by the equation

W =
N+ǫ∑
i=1

ν2
i

1 + λa2
i

(A.18)
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Now using the relations
∑N+ǫ
i=1 µ2

i =
∑N+ǫ
i=1 ν2

i = 1,
∑N+ǫ
i=1 µidµi =

∑N+ǫ
i=1 νidνi = 0,

it is straight forward to show

r2dr2 =

[
N+ǫ∑
i=1

y2 + a2
i

1 + λa2
i

νidνi

]2

+W 2y2dy2 +2W

(
N+ǫ∑
i=1

(y2 + a2
i )νidνi

1 + λa2
i

)
ydy (A.19)

and

r2
N+ǫ∑
i=1

dµ2
i = −dr2 +

(
N+ǫ∑
i=1

ν2
i

(y2 + a2
i )(1 + λa2

i )

)
y2dy2

+
N+ǫ∑
i=1

(
y2 + a2

i

1 + λa2
i

)
dν2
i + 2

(
N+ǫ∑
i=1

νidνi
1− λa2

i

)
ydy (A.20)

Using these two expressions and the form of the metric in the original coordinates,
we obtain

dŝ2 = −W (1− λy2)dt2 +
λ

W (1− λy2)

[
N+ǫ∑
i=1

y2 + a2
i

1 + λa2
i

νidνi

]2

+
y2

1− λy2

{
λW + (1− λy2)

N+ǫ∑
i=1

ν2
i

(y2 + a2
i )(1 + λa2

i )

}
dy2

+
2y

1− λy2

{
N+ǫ∑
i=1

(
λ(y2 + a2

i )νidµi
1 + λa2

i

+ (1− λy2)
νidνi

1 + λa2
i

)}
dy

+
N+ǫ∑
i=1

(
y2 + a2

i

1 + λa2
i

)
dνi +

N∑
i=1

(
y2 + a2

i

1 + λa2
i

)
ν2
i dφ

2
i (A.21)

The first curly bracket is evaluated to

λW + (1− λy2)
N+ǫ∑
i=1

ν2
i

(y2 + a2
i )(1 + λa2

i )
=
N+ǫ∑
i=1

ν2
i

y2 + a2
i

(A.22)

while the second curly bracket vanishes since
∑N+ǫ
i=1 νidνi = 0. We therefore obtain

dŝ2 = −W (1− λy2)dt2 + Fdy2 +
N+ǫ∑
i=1

y2 + a2
i

1 + λa2
i

dν2
i +

N∑
i=1

y2 + a2
i

1 + λa2
i

ν2
i dφ

2
i

+
λ

W (1− λy2)

(
N+ǫ∑
i=1

y2 + a2
i

1 + λa2
i

νidνi

)2

(A.23)

where F is given by

F ≡ y2

1− λy2

N+ǫ∑
i=1

ν2
i

y2 + a2
i

(A.24)

A.3 The asymptotic form of the Kerr metric

Here we derive the asymptotic form of the Kerr metric (6.23) (relevant for computing
the boundary stress tensor) in the coordinates (t, r, µi, φj), so that the metric takes
the form (6.22). To this end consider the Kerr-Schild form of the metric (6.17)
and simply perform the transformation (y, νi) → (r, µi). We know that dŝ2 takes
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the desired form under such a coordinate transformation. We see that near the
boundary

y2 = γ−2r2
(
1 +O(r−2)

)
, γ−2 = 1−

N∑
i=1

a2
iµ

2
i (A.25)

So all we now have to determine is the asymptotic form of the functions V, F and
W in the coordinates (t, r, µi, φj). We find

V = y2N+ε(1 +O(1/y2) = γ−(D−1)rD−1
(
1 +O(1/r2)

)
F = y−2(1 +O(1/y2)) = γ2r−2

(
1 +O(1/r2)

)
W = γ2

(
1 +O(1/r2)

) (A.26)

Using these relations it is straight forward to show that the metric takes the form
(6.23). Here it is important to note that we only retain terms that are subleading
up to order O(1/rD−1) compared to the pure AdS metric.

A.4 The Christoffel symbols of the asymptotic Kerr
metric

Here we compute the (relevant) Christoffel symbols of the asymptotic metric (6.23).
As we have explained, the relevant Christoffel symbols are those of the type Γµνr.
In general the Christoffel symbols are given by the usual expression

ΓABC =
1
2
GAD

{
∂BGCD + ∂CGBD − ∂DGBC

}
(A.27)

here GAB denotes the Kerr metric in the (t, r, µi, φj) coordinates. Near the bound-
ary we write

GAB = ĜAB + δGAB (A.28)

where ĜAB is pure AdS metric (6.4) and δGAB is the small perturbation due to the
rotating black hole. From (6.23) we have

δGtt =
2M
rd−2

γd+2 δGrr =
2M
rd+2

γd (A.29)

δGtφi
= −2Maiµ

2
i

rd−2
γd+2 δGφiφj

=
2Maiajµ

2
iµ

2
j

rd−2
γd+2 (A.30)

Now to leading order in 1/r, the inverse metric is given by

G̃AB = GAB − δGAB (A.31)

Since the unperturbed metric GAB is diagonal, the non-vanishing components of
δGAB are exactly the same as those of δGAB . To leading order we find

δGtt =
2M

(1 + r2)rd
γd+2 δGrr =

2M(1 + r2)
rd

γd (A.32)

δGtφi =
2Mai
rd+2

γd+2 δGφiφj =
2Maiaj
r̃d+2

γd+2 (A.33)

We can now compute the Christoffel symbols using (A.27). We find (retaining only
terms that are at most of order O(1/rd+1) as higher order terms will be irrelevant
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for computing the boundary stress tensor)

Γttr =
1
2
Gtt∂rGtt +

1
2
Gtt∂rδGtt − 1

2
δGtt∂rGtt

=
r

1 + r2

[
1 +

dM

rd
γd+2

]
Γtφir =

1
2
g̃tt∂rδGφit −

1
2
δGtφi∂r̃Gφiφi

= −dMaiµ
2
i

rd+1
γd+2

Γφi

tr =
1
2
Gφiφi∂rδGtφi

− 1
2
δGφit∂rGtt

=
dMai
rd+1

γd+2

Γφi

φjr
=

1
2
Gφiφj∂rGφiφj

+
1
2
Gφiφi∂rδGφiφj

− 1
2
δGφiφj∂rGφjφj

=
1
r

[
δij −

dMaiajµ
2
j

rd
γd+2

]

Γθi

θjr
=

1
2
δijG

θiθi∂rGθiθi

=
δij
r̃

(A.34)

The Christoffel symbols Γttr, Γφi

φjr
, and Γθi

θir
contain terms which are non-zero even

when M = 0 (pure AdS), these terms are important when computing the boundary
stress tensor.

A.5 The Kerr angular momentum

We will now look at the different, equivalent, expressions for the Komar charge
associated with some symmetry J . To this end let JA be the Killing vector cor-
responding to the symmetry J and let J denote the associated Killing 1-form (i.e,
JA = GABJ

B). The Komar charge associated with the symmetry J is then given
by

Q[J ] =
∫
∂M

∗∇J (A.35)

where ∗ denotes the Hodge star operator and ∇J denotes the 2-form ∇AJB =
∂[AJB]. Here ∂M is a timelike surface at spatial infinity of co-dimension 2 (usually
taken to be SD−2). In order to cast this expression into the form of [13], simply
recall that the volume element ǫ is given by

ǫ =
√
g dx1 ∧· · · ∧ dxD (A.36)

or in components ǫA1···AD
=
√
g ǫ̃A1···AD

, where ǫ̃A1···AD
is the totally antisymmetric

symbol. In abstract index notation (as in [13]) we then have ∗(∇J)A1···AD−2 =
ǫA1···AD−2BC∇BJC . The Komar charge can therefore be written as

Q[J ] =
∫
∂M

ǫA1···AD−2BC∇BJC (A.37)

which is obviously the expression from [13] generalized from 4 to D dimensions. In
order to cast this expression into the pure component/coordinate notation as in e.g.
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[14], recall that the volume element of the surface ∂M , ǫ̂, can be written in terms
of ǫ by

ǫ̂A1...AD−2 = nBσCǫBCA1...AD−2 (A.38)

where nA and σA are two (respectively future and outward pointing) unit normal
vectors to ∂M . When restricted to ∂M , ∗∇J is a differential form of full dimen-
sionality since dim(∂M) = D − 2. This implies that on ∂M we have a relation
∗∇J = f ǫ̂, where f is some scalar function. Therefore

∗ ∇J = f ǫ̂ = ∗f (A.39)

It is important to realize that the ∗ on the LHS of this equation denotes the Hodge
star operator on M , where the resulting (D−2)-form is restricted to ∂M , while the
∗ on the RHS denotes the Hodge star operator on the (D−2)-dimensional manifold
∂M . Now applying the Hodge star operator (on ∂M) to this equation, we obtain

f = (−1)s ∗ ∗f
= (−1)s ∗ (∗∇J)

= (−1)s
1

(D − 2)!
ǫ̂A1···AD−2

(
1
2!
ǫA1···AD−2BC∇BJC

)
= (−1)s

1
(D − 2)!

nEσF ǫ
EFA1···AD−2

(
1
2!
ǫA1···AD−2BC∇BJC

)
= (−1)2s(D − 2)!2!

1
(D − 2)!2!

nEσF δ
[E
B δ

F ]
C ∇BJC

= nAσB∇AJB

(A.40)

The Komar charge can therefore be written

Q[J ] =
∫
∂M

ǫ̂ nAσB∇AJB =
∫
∂M

dD−2y
√
γ nAσB∇AJB

=
∫
∂M

dD−2y
√
γ nAσB

[
∂AJB − ΓCABJC

] (A.41)

where y denotes coordinates on ∂M and γ is the induced metric.

Evaluation of the angular momentum: The Killing vector associated with
the angular momentum (in the φi’th direction) is ∂φi

. In pure AdSD, the corre-
sponding Komar integral is therefore given by Li ∼

∫
SD−2 n

tσrΓφi

rtVφi
. Since the

Christoffel symbol Γφi

rt vanishes in pure AdSD, the corresponding angular momen-
tum is zero, just as it should. Now suppose that we consider a rotating Kerr black
hole spacetime (with non-vanishing M parameter) in the ordinary spherical coor-
dinates (t, r, {µi}, {φi}). The asymptotic metric now takes the form (6.23). The
presence of a rotating mass introduces a small perturbation of the Christoffel sym-
bol Γφi

rt which we found in (A.34). It is easy to convince one self that only the
leading order r behavior of √γntσrΓφi

r̃tVφi
will be relevant for computing the Ko-

mar integral, since it is evaluated on a (D − 2)-sphere which is located at r = ∞.
This gives

Li ∼
∫
SD−2

√
Ω
∏

dµj
∏

dφkrDgφiφi
Γφi

rt

∼ ai
∫
Sd−1

√
Ω
∏

dµj
∏

dφkµ2
i γ
d+2

(A.42)

Here
√

Ω is the measure of SD−2 in the coordinates ({µi}, {φi}) introduced in §A.1.
We see that the integral is exactly of the type considered in §6.3.4 and the result
(6.40) follows.
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B
Various black brane

computations

B.1 The black brane temperature

Here we compute the temperature of the black brane (5.2) using the usual Euclidean
approach [52]. Consider a QFT in thermal equilibrium living on the spacetime
(5.2). As usual the thermal properties of a field theory is examined by consider
the corresponding Euclidean field theory with the time dimension compactified τ ∼
τ + β. The period β is exactly identified with the inverse temperature of the field
theory. We therefore perform a Wick rotation t → iτ of (5.2). This changes the
signature of the metric to Euclidean and gives

GEAB dxAdxB =
r2

L2

[
f(br)dτ2 +

d−1∑
i=1

(dxi)2
]
+

L2

r2f(br)
dr2 (B.1)

Clearly this metric is singular at r = r+ (again a coordinate singularity). Moreover
we see that it only makes sense to have a thermal theory for r ≥ r+, since inside
the horizon the signature will not be Euclidean anymore. In order to examine the
behavior of the metric near that horizon we introduce a variable ρ by the equation

r − r+ =
dr+
4L2

ρ2 (B.2)

It is straight forward to show that, near the horizon, the metric takes the form

GEAB dxAdxB = dρ2 + ρ2d
[
dr+τ

2L2

]2
+
r2+
L2

d−1∑
i=1

(dxi)2 (B.3)

We will now require that the metric is free of a singularity at ρ = 0 and that the
metric can not be continued inside ρ < 0. The geometry in the (τ, ρ) directions is
recognized as that of an ordinary cone. The above metric is only free of a conical
singularity at ρ = 0 if we make the periodic identification (the cone simply reduces
to E2 - the ordinary two dimensional plane of Euclidean signature, see fig. B.1):

dr+τ

2L2
∼ dr+τ

2L2
+ 2π (B.4)

Moreover, we see that by construction, this metric cannot be continued for ρ < 0.
This means that a consistent thermal field theory living on the metric (5.2) requires
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Figure B.1: The conical singularity is only avoided by choosing the period β for τ .

that the period of the Euclidean time coordinate must be chosen as β = 4πL2

dr+
. It

follows that the temperature of the thermal field theory is given by

T =
dr+
4πL2

=
d

4πL2b
(B.5)

B.2 Dual stress tensor to the D-dimensional black
brane

In this section we compute the stress tensor dual to the metric (5.40) up to first
order in the derivatives.

B.2.1 The 0th order stress tensor

Here we compute the dual stress tensor of the boosted black brane in an arbitrary
number of spacetime dimensions. The D = d+ 1 dimensional boosted black brane
is given by

GAB dxAdxB = r2
[− f(br)uµuνdxµdxν + ∆µνdxµdxν

]
+

1
r2f(br)

dr2 (B.6)

with f(r) = 1−1/rd and ∆µν = ηµν+uµuν . The method for obtaining the boundary
stress tensor dual to a generic bulk metric is explained in §3.4. The first step in this
construction consists of selecting a set of coordinates in which the metric takes the
appropriate asymptotic form. However, the coordinates (r, xµ) already meet this
requirement. Indeed, in a neighborhood of the boundary r = ∞ the metric (B.6)
takes that form

GAB dxAdxB =
1
r2

dr2 + r2ηµνdxµdxν +O(1/r2) (B.7)

Having made sure that we are working in the proper set of coordinates, we can now
compute the boundary stress tensor from the usual formula (cf. equation (3.43) and
the discussion below)

Tµν = lim
r→∞

Λdr
8πGd+1

Sµν , Sµν = Θµ
ν − δµνΘ (B.8)

where Λr denotes the surface of constant r, Θµ
ν is the extrinsic curvature of the

surface Λr and as usual we use Greek letters µ, ν, ... to denote the boundary (field
theory) directions. We may now proceed to compute the extrinsic curvature of Λr.
The extrinsic curvature is given by

Θµ
ν = −∇νnµ (B.9)
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where nµ is the unit normal vector to Λr. Clearly we have nµ = (nr, 0, 0, ...)
with nr = r

√
f(rb). The extrinsic curvature can now be computed. After some

computation we find

Θµ
ν = K

(
d

2
uµuν −

(
(br)d − 1

)
δµν

)
(B.10)

where the factor K only depends on the radial coordinate r and is given by

K =
1

(br)d
√

1− 1/(br)d
→ 1

(br)d

(
1 +

1
2

1
(br)d

+O((br)−2d
))

(B.11)

where we also recorded the large r asymptotic form of K. The trace of the extrinsic
curvature is easily computed using uµuµ = −1. Contracting the indices gives

Θ = −dK
2

(2(br)d − 1) (B.12)

This gives the following expression for the combination Sµν

Sµν = K

(
d

2
uµuν +

[
(d− 1)(br)d +

2− d
2

]
δµν

)
(B.13)

We can now compute the boundary stress tensor through equation (B.8). Notice
that Sµν contains terms (independent of uµ and b) that will lead to divergences
in the stress tensor when we take the limit Λr → ∞. These terms are removed
through the holographic renormalization procedure and we will therefore simply
ignore such divergent terms, again we refer to the discussion below (3.43) for the
details. Normalizing Sµν appropriately, taking the large r limit, and raising the
indices with the boundary metric ηµν , we finally find

Tµν =
1

16πGd+1

(
4πT
d

)d
[ηµν + duµuν ] (B.14)

where we used the relation 4πT b = d. Comparing this to the expression (4.29) we
see that this is exactly the stress tensor of the a perfect conformal fluid in d = D−1
dimensions.

B.2.2 The 1th order stress tensor

We now compute the first order stress tensor dual to the metric (5.40). We can
now straight forwardly proceed as above and carry out this computation for general
boost velocity uµ, however, as explained in §5.3 we are free to set uµ = δµ0 and b = 1
in any given point. This freedom simplifies the computations significantly. We will
therefore compute the boundary stress tensor of the metric

GAB dxAdxB = −2uµdxµdr − r2f(br)uµuνdxνdxµ + ∆µνdxµdxν

+ ε
(
rGv(r)dv2 + 2rGi(r)dvdxi + 2r2F (r)Sij(r)dxidxj

)
(B.15)

with uµ = δµ0 and b = 1 in xµ = 0 and

Gv(r) = γr +
2

d− 1
∂iβi +

πv
rd−1

Gi(r) = γir + ∂vβi +
πi
rd−1

Sij(r) = (1 + γij/F (r))σij (no sum over i and j)

(B.16)
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The above metric solves Einstein’s equation in a neighborhood of xµ = 0 for all
r. Here the term multiplying γij is included since the function F was in principle
only defined up to a constant for each γij . We start by arguing that the γ- and
π-constants must all be chosen to zero in order for the boundary and normalization
conditions to be fulfilled.

First, we see that the γ terms multiply modes that go like r2. By comparing
these to the original metric (the zeroth order term from the Taylor expansion of
the first line of (B.15)) we see that in order for the metric (B.15) to asymptote
AdSd+1, all the γ factors must be chosen to zero. Moreover non-vanishing γ terms
give rise to uncontrollable infinite terms in the boundary stress tensor. All the γ
terms must therefore be set to zero in order for the metric (B.15) to fit into the
AdS/CFT scheme.

Now computing the extrinsic curvature is easy. First of all, it is not hard to con-
vince oneself that the above method still works in our Gaussian normal coordinates,
simply because they only involve a coordinate transformation of the boundary co-
ordinates. For this computation it is enough to use the asymptotic form of the
function F which was recorded in the expression (5.36). Both the normal vector
nµ and the Christoffel symbols get a small ε-correction. The extrinsic curvature is
therefore modified according to

Θµ
ν = (Θ(0))µν + ε(Θ(1))µν +O(ε2) (B.17)

where (Θ(0))µν is the extrinsic curvature from above, here evaluated for the boost
velocity uµ = δµ0 . Having computed the extrinsic curvature we may now compute
the tensor Sµν as above. If we let (S(0))µν denote the large r zeroth order term of
the combination Sµν , we find for large r

Svv = (S(0))vv −
d− 1

2
επv +O(1/rd) +O(ε2)

Svi = (S(0))vi −
d

2
επi +O(1/r) +O(ε2)

Sij = (S(0))ij +
1
2
επ0δ

i
j − εσij +O(1/r) +O(ε2)

(B.18)

The stress tensor is now given by the usual expression

Tµν =
1

8πGd+1
lim
r→∞Sµν = Tµν(0) + εΠµν

(1) +O(ε2) (B.19)

where T
(0)
µν is the perfect fluid stress tensor (B.14). We therefore see that the

Landau frame condition uνΠµν = 0 (which here evaluates to Πvµ = 0) forces all
the πµ parameters to zero. Taking the large r limit and raising the indices with the
boundary metric, we finally find the following simple expression for the first order
correction for the boundary metric

Πvµ
(1) = 0

Πij
(1) = − 2

16πGd+1
σij

(B.20)

We now re-introduce the length dimension. On dimensional grounds the correction
Πij

(1) is therefore modified to Πij
(1) = − 2b1−d

16πGd+1
σij (setting L ≡ 1 renders Gd+1 a

dimensionless coupling constant in the boundary theory). Moreover, finding the
covariant version of the above equations is easy. We must simply have

Πµν
(1) = − 2

16πGd+1

(
4πT
d

)d−1

σµν (B.21)

This concludes our first order computation of the boundary stress tensor of the
fluctuating black brane.
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B.3 The first order expression for EAB

Here we record the raw first order expressions for the generalized Einstein tensor
EAB evaluated on the metric G(0) + εG(1). All the expressions are valid in a neigh-
borhood of xµ = (0,0). Especially all the derivatives are evaluated in the point p
chosen to be in the origin of R(1,3). As explained in §5.4, most of the equations
below can be re-written as covariant expressions.

B.3.1 Scalar sector

Err = −d− 1
2r

[
(d− 1)

dh(1)

dr
+ r

d2h(1)

dr2

]
ε+O(ε2)

Evr =
d− 1
2rd−1

[
d(d− 1)rd−1h(1) − d

(3
2

+ 2rd
)dh(1)

dr

− rd−1 d2h(1)

dr2
− dk(1)

dr
+ 2

d−1∑
i=1

∂iβ
(0)
i

]
ε+O(ε2)

Evv = − d− 1
2r2d−3

[
d(d− 1)rd−2(rd−1 − 1)h(1)

+
(
2dr2d − 7d

2
rd +

3d
2

)dh(1)

dr
+ r(1− 2rd + r2d)

d2h(1)

dr2
+ (1− rd)dk(1)

dr

+
(
2rd − 3d− 2

d− 1
rd−2

) d−1∑
i=1

∂iβ
(0)
i + drd−2∂vb

(0)

]
ε+O(ε2)

(B.22)

B.3.2 Vector sector

Eri = − 1
2rd−1

[
rd−1(d− 1)∂vβ

(0)
i − (d− 1)

dj(1)i

dr
+ r

d2j
(1)
i

dr2

]
ε+O(ε2)

Evi = − 1
2r2d−3

[
rd−2

(
(d− 1)rd + 1

)
∂v∂i − drd−2∂ib

(0)

+ (d− 2)(1− rd)dj(1)i

dr
+ r(rd − 1)

d2j
(1)
i

dr2

]
ε+O(ε2)

(B.23)

B.3.3 Tensor sector

Eii − 1
d− 1

TrEij = − 1
2rd−3

[
2(d− 2)rd−2∂iβ

(0)
i − 2rd−2

∑
j 6=i

∂jβ
(0)
j

(
(d+ 1)rd − 1

)dα(1)
ii

dr
+ r(rd − 1)

d2α
(1)
ii

dr

]
ε+O(ε2)

Eij = − 1
2rd−3

[
(d− 1)rd−2(∂iβ

(0)
i + ∂jβ

(0)
i )

+
(
(d+ 1)rd − 1

)dα(1)
ij

dr
+ (rd+1 − r)d2α

(1)
ij

dr

]
ε+O(ε2)

(B.24)
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