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A B S T R A C T

New developments have recently led to an revival of the interest in non-relativistic theo-
ries in theoretical physics. The modern guise of these theories has departed considerably
from their historical roots and now enjoys a field theoretical formulation close to that of
their relativistic cousins. A principal ingredient is the suitable geometrical framework
called Newton-Cartan geometry which allows for a general covariant formulation of
physics. This has led to new insights in both relativistic and non-relativistic theories, of-
ten with the exposure of surprising features of the latter. There are substantial prospects
in employing these methods to diverse areas of physics.

The intention of this thesis is to investigate field theoretic and geometric aspects of
non-relativistic physics separate and together. We will provide all the necessary back-
ground material to understand the modern formulation Newton-Cartan geometry and
field theories and develop powerful methods to find non-relativistic theories from rela-
tivistic ones.

One intriguing feature of Newton-Cartan geometry is that there exists no connection
that can be expressed just in terms of the vielbeins unlike the Levi-Civita connection
of Lorentzian geometry. As a consequence it is not at all clear how to define a minimal
connection and what extra gauge field that comes with it, nor what this should couple to.
The main question we want to address is on the general features of how non-relativistic
fields couples to the background geometry.

An answer is given by applying the well-known Noether procedure to couple a non-
relativistic field to the vielbeins and connection gauge fields of the geometry at linear
level. With this original work we characterize the couplings in full generality and give
a field theoretic argument that identifies the minimal connection that includes a back-
ground field Mµ. We find that the vielbeins couples to energy and momentum currents
like in the Lorentzian case while Mµ couples to either a conserved symmetry current or
a topological current depending on the symmetries of the theory.

The analysis will elucidate the origin of Mµ and its properties which turns out to be
of significant importance in field theories coupled to Newton-Cartan geometry. We shall
illustrate this by studying the properties of two concrete realizations, the Schrödinger
model and Galilean electrodynamics, in detail.

iii





An expert is a person who has found out by his own painful experience
all the mistakes that one can make in a very narrow field.

— Niels Bohr [1]

A C K N O W L E D G M E N T S

First of all I would like thank my supervisors Guido and Niels for their valuable guid-
ance. It has been a great experience learning from them here at the Niels Bohr Institute.
The advise and help I have received in connection with planning my future career has
also been much appreciated. I am certain that this thesis would never had come into ex-
istence if I had not been able to seek their counseling on many different matters. Really.

I am also delighted to thank Cynthia Keeler and Jelle Hartong for their discussions
with me at the institute, per email and at workshops during the year. It is also in place to
thank the NBIA for accommodating a creative, international and vibrant environment
in the spirit of Niels Bohr.

A shout out to MSc and PhD student body at the NBI and NBIA is also appropriate:
Amel, Anders, Asta, Christian B.-H., Christian J., Christine, Emil, Gitte, Isak, Jeppe, Jules,
Laure, Luca, Mikkel - thank you for your company. Besides our academic discussions the
countless tea breaks, coffee breaks, lunch breaks and beer breaks has made this project
an enjoyable process.

Finally I am indebted to Camilla Marie, Maxwell and the rest of my family for putting
up with me over the years. I have never doubted your support.

v





C O N T E N T S

List of Figures ix
List of Tables ix
Acronyms x
Notation and Conventions x
1 introduction 1

1.1 Appetizer and historical introduction 1

1.2 Einstein, geometry and the equivalence principle 2

1.3 Structure of the thesis 4

2 non-relativistic group theory 7

2.1 General overview and the Euclidean group 7

2.2 The Lifshitz group 8

2.3 The Galilean group 9

2.4 The Bargmann group 15

3 newton-cartan geometry 21

3.1 Galilean frame bundles 21

3.2 Galilean spacetime geometry 24

3.3 Galilean connections 26

3.4 Bargmann spacetimes and the graviphoton 35

3.5 Bargmann connections 37

3.6 Parallel transport and geodesics 38

3.7 Flat Newton-Cartan geometry 39

3.8 Linearized Newton-Cartan geometry 41

4 non-relativistic field theory 45

4.1 Field representations 45

4.2 Conserved Galilean symmetry currents 49

4.3 Conserved Bargmann symmetry currents 54

4.4 Field theories on Newton-Cartan backgrounds 55

5 newton-cartan from the noether procedure 61

5.1 The Noether procedure in Galilean field theory 61

5.2 The coupling of the background field Mµ 63

5.3 The coupling of Mµ in Bargmann theories 65

6 dimensional reduction 67

6.1 Null reduction of Lorentzian spacetimes 67

6.2 Null reduction of Minkowski spacetime 71

7 the schrödinger model 73

7.1 Schrödinger model on flat Newton-Cartan spacetime 73

7.2 Null reduction of massive scalar coupled to gravity 74

7.3 Linearization 75

7.4 Correlation functions in flat spacetime 76

8 galilean electrodynamics 79

vii



viii contents

8.1 GED on flat Newton-Cartan spacetime 79

8.2 Null reduction of MED on curved spacetime 85

8.3 Linearization 93

8.4 Correlation functions in flat spacetime 94

8.5 Schrödinger model coupled to electrodynamics 95

9 discussion and conclusion 99

a relativistic theories 101

a.1 Relativistic spacetime symmetry groups 101

a.2 Lorentzian spacetimes 103

a.3 Conserved Poincaré spacetime symmetry currents 105

a.4 Noether procedure for Poincaré theories 107

b the noether theorem and procedure 109

b.1 Noether’s theorem 109

b.2 The Noether procedure 112

c non-relativistic conformal groups 119

c.1 The Schrödinger group 119

c.2 The conformal Galilean group 119

c.3 An infinite dimensional extension 120

d calculations 123

d.2 Chapter 2 123

d.3 Chapter 3 123

d.4 Chapter 4 127

d.5 Chapter 5 132

d.7 Chapter 7 135

d.8 Chapter 8 137

e useful formulas 149

bibliography 151



L I S T O F F I G U R E S

Figure 1 Illustration of the EEP applied to non-relativistic gravity: At any
point in spacetime it is possible to choose a reference frame where
the laws of physics obeys Newtonian mechanics locally. 3

Figure 2 The action of the Galilean boost: The new reference frame S′

moves with velocity −v relative to the old S and the coordin-
ates of the spacetime point (red dot) transforms according to
(2.6). 9

Figure 3 Illustration of the bundle projection π and section map σ for the
fiber bundle FM = F×M. 22

Figure 4 For two curves γ1 and γ2, the proper times Tγ1 , Tγ2 need not be
equal. 25

Figure 5 Geometry of the null reduction: The u = constant null hypersur-
face is the D dimensional Bargmann spacetime. 68

Figure 6 Deformation of the contour of integration for the Fourier trans-
form of the propagator (7.13). Notice that there is only contribu-
tions from a single pole. 76

L I S T O F TA B L E S

Table 1 Spacetime transformations and properties of the relevant non-
relativistic symmetry groups in D = d + 1 dimensions. See ap-
pendix C for a review of the non-relativistic conformal symmetry
groups that will not be discussed in the main text. 7

Table 2 Classification of Newton-Cartan geometries by the properties of
the clock form τ. 26

Table 3 Classification of Newton-Cartan geometries with a connection. 29

Table 4 Spacetime transformations and properties of relativistic symmetry
groups in D spacetime dimensions. 101

Table 5 Improvements of currents and charges of a non-relativistic Galilean
theory. 127

Table 6 Improvements of currents and charges of a non-relativistic Bargmann
theory. 130

ix



A C R O N Y M S

EOM Equation of Motion

EEP Einstein Equivalence Principle

EM Energy-Momentum
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GED Galilean Electrodynamics
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MED Maxwellian Electrodynamics

QFT Quantum Field Theory

QM Quantum Mechanics

SCT Special Conformal Transformation
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N O TAT I O N A N D C O N V E N T I O N S

We will work in natural units unless otherwise stated.
We work generally in D = d + 1 spacetime dimensions, with d spatial directions and

1 temporal direction. We employ the Einstein summation convention unless otherwise
stated. The time component is always the zeroth component. We use a, b, c, . . . for spa-
tial indices and they range from 1, . . . , d, and µ, ν, ρ, . . . and A, B, C, . . . are used for
spacetime indices ranging from 0, . . . , d. If there is a hat on the indices (i.e. Â, â, µ̂), then
this index has one extra range.

We use a “mostly positive” Lorentzian signature. Bold symbols (A, τ, . . . etc.) are co-
ordinate free expression. A bar on objects, i.e. A, means that are linearized versions of
previously defined objects unless otherwise stated. The Riemann curvature tensor R ρ

µνσ

and the torsion tensor T λ
µν are both taken to be antisymmetric in the first two indices.

The Levi-Civita tensor ε of rank D is defined with ε012···d = 1.
(Anti)symmetrization is with weight 1, i.e.
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acronyms xi

A[ij] ≡
1
2!
(

Aij − Aji
)

A(ij) ≡
1
2!
(

Aij + Aji
)

and et cetera for more indices.

If not stated otherwise, the following symbols are used:

id Identity mapping.

I Identity operator.

.
= Equality up to a total derivative

G A Lie group.

g The Lie algebra of G .

n Semi-direct product (of groups).

� Semi-direct sum (of algebras).

' Isomorphic to.

g , gµν General Lorentzian signature metric.

η, ηµν , η AB Flat Minkowski metric.





1
I N T R O D U C T I O N

1.1 appetizer and historical introduction

The non-relativistic spacetime symmetries of Newtonian mechanics have now for over
a hundred years been superseded by the Poincaré symmetry of special relativity as the
best available description of our universe. One may wonder how it is not completely
irrelevant to consider non-relativistic spacetime symmetries given this fact? The answer
is manifold. Let us immediately state some persuasive reasons why the study of non-
relativistic theories is of interest today:

• Many realistic systems are approximately non-relativistic and are often described
well in terms of Newtonian mechanics or old Quantum Mechanics (QM). This in-
cludes many condensed matter systems, hydrodynamics and other non-elementary
particle theories.

• There is often not a very clear-cut distinction in the literature between relativistic
and non-relativistic effects. Working with a symmetry group that is inherently
non-relativistic makes it possible to determine the true relativistic effects.

• It is actually possible to couple non-relativistic theories to gravity in the same
general covariant fashion as general relativity which generalizes the foundations of
Galilean relativity. This framework is called Newton-Cartan geometry and opens
up for the application of differential geometric methods for these theories.

• The holographic boundary duals of some (non-)relativistic bulk geometries can be
described by theories with non-relativistic symmetries, especially certain strongly
coupled condensed matter systems. This gives hope of understanding for example
high-temperature superconductivity using such holographic techniques.

After the formulation of special and general relativity a lot of the research in the last
century has been centred around theories that were covariantly described in these frame-
works. Since the end of the 1920s, the development of relativistic Quantum Field The-
ory (QFT) has led to the class of theories that so far fits experimental data from the
real world the best. The foremost example is the Standard Model which has been very
successful in describing the phenomenology at large particle accelerators since its final-
ization in the 1960s [2].

To get to this point, there has been a huge development in the understanding of
relativistic field theories on the Minkowski manifold and their internal symmetries. The
use of differential geometrical techniques has led to a way of formulating theories that is
radically different from the mechanistic paradigms of the pre-Einstein and pre-QFT era.
In particular the modern development of gauge theories as connections on relativistic
manifold forms a very natural language to use for the aims of theoretical physics. Their
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2 introduction

relevance for particle physics can not be underestimated. As the current generation of
physicists are all educated in this philosophy, it has become a part of the standard
toolbox for solving problems in many different fields of physics.

It is hard to imagine how the modern statement of non-relativistic theories could have
taken place if there have not been the development of their relativistic counterparts. At
some point in the history in the 1960s starting with the work of Lévy-Leblond [3], some
people in the community started to take a new look at the non-relativistic symmetries
armed with the toolbox of differential geometry. This has given new insight to both re-
lativistic and non-relativistic theories. Recently research on non-relativistic holographic
aspects like those found in the works of Son [4], Taylor [5], Kachru et al. [6], Balas-
ubramanian and McGreevy [7] has paved the way for some very exciting directions
for future research. Because of this Newton-Cartan geometry describing non-relativistic
gravity in a diffeomorphic invariant manner has recently experienced a surge in interest.
The modern formulation is much more general than its original inception from 1923 by
Élie Cartan [8] as a diffeomorphic invariant formulation of Newton’s law of universal
gravitation. Torsionless Newton-Cartan, of which Cartan’s formulation of Newtonian
gravitation is a special case, has subsequent been developed by among others Friedrichs
[9], Trautman [10], Ehlers [11], Duval et al. [12]. In a sense this framework is too re-
stricted as a framework for interesting theories because the torsionless condition is very
restrictive for non-relativistic geometries as we shall see in chapter 3. The realization that
in non-relativistic spacetimes torsion is a more natural feature unlike its relativistic cous-
ins is responsible for a great deal of the newly found applications. This was first noticed
by Christensen et al. [13, 14] in a specific holographic setting. Because of the natural
focus on relativistic theories, there are still many questions of fundamental importance
in non-relativistic theories that are left unanswered. Previously there has been discrep-
ancy between various approaches to Newton-Cartan geometry and the interpretation
of it, but they have now begun to converge. Another example is the structure of (non-
abelian) non-relativistic gauge theories that is currently poorly understood (however see
for example [15] for recent developments).

1.2 einstein, geometry and the equivalence principle

The biggest philosophical consequence of introducing special relativity was the unifica-
tion of space and time into a single quantity known as spacetime. These fundamental
quantities are separate in non-relativistic theories, as is deeply rooted in the ideas and
principles of absolute space and time in Galilean relativity. The idea that time might not
be absolute can at least be traced back to Voigt [16] who derived the Voigt transformation
that is very similar in structure to the later by Lorentz formulated transformation [17].
Voigt did however not realize the connection to spacetime symmetries. This connection
was only made when Einstein found that it was necessary to replace the underlying
Galilean spacetime symmetries of Newtonian mechanics with Lorentzian symmetries
and relativistic mechanics, which eventually led to special relativity [18]. Soon after
Minkowski gave a geometric formulation of Einstein’s theory where spacetime is a flat
manifold with a Lorentzian signature metric η [19].
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Figure 1: Illustration of the EEP applied to non-relativistic gravity: At any point in spacetime
it is possible to choose a reference frame where the laws of physics obeys Newtonian
mechanics locally.

A natural development from these ideas was to include gravitation which would later
be known as general relativity. According to the legend, the way Einstein arrived at
his field equations was by experiencing his “happiest thought” that in a nutshell states
special relativity holds in small enough regions of spacetime. In reality not all the honor
should be accredited to Einstein as a number of people including Hilbert was working
on finding the correct formulation along the same lines. Einstein’s reasoning was later
formulated as the Einstein Equivalence Principle (EEP):

The outcome of any local, non-gravitational test experiment is independent
of the experimental apparatus’ velocity relative to the gravitational field and
is independent of where and when in the gravitational field the experiment
is performed [20].

General relativity then arises as the consequence of the EEP where the laws of physics
locally is taken to be special relativity. This led to the formulation of gravitation as a
property of spacetime manifested through a Lorentzian metric g in the correct differen-
tial geometric framework.

A few years later in 1923 Cartan had his own “happiest thought”. He essentially used
the EEP, but assumed that locally the laws of Galilean relativity did hold. As described
earlier, the result was a version of Newtonian gravitation in a completely differential
geometric setting. This formulation did however not use a metric as the fundamental
object. Gravitation did instead manifest itself through a more general affine connection,
which determines the geodesics of point particles similar to in general relativity. To



4 introduction

gain a bit intuition for the structure of such spacetimes, it is instructive to think about
what one would expect from taking the non-relativistic limit of general relativity. This
limit would have to “undo” the unification of space and time, which was one of the
hallmarks of special and general relativities. This split-up means that effectively taking
the non-relativistic limit should lead us to expect that the Lorentzian metric g of general
relativity splits up into a part that “measures” time τ and a part that “measures” space
h, i.e. [21]

g →
NR

(τ, h) . (1.1)

In a covariant fashion τ then is a tensor that gives the local direction of time, while h
is a tensor that locally defines space. This is certainly what we are looking for. We will
give the proper definitions of these objects in later chapters.

1.3 structure of the thesis

The main purpose of this thesis is to investigate various interesting aspects of non-
relativistic field theories and Newton-Cartan geometry - separate and together. It can
roughly be subdivided into two parts: Chapters 1 to 4 and 6 mostly review the existing
literature on non-relativistic field theory and Newton-Cartan geometry while Chapters
5, 7 and 8 will contain independent work within these subjects. Parts of this will appear
in [22].

We start this thesis by a thorough investigation of the relevant non-relativistic sym-
metry groups and their representations in chapter 2. Here we will continuously compare
the Galilean group and its central extension known as the Bargmann group and discuss
their relevance for non-relativistic physics. In chapter 3 we will give the proper defini-
tion of Newton-Cartan geometry taking a frame bundle approach. A major part of this
chapter is concerned with the structure of connections on such spacetimes. Next we
will in chapter 4 develop the relevant field representations and their properties. Again
the difference between the representations of the Galilean and Bargmann group will be
discussed in detail. In this chapter we will also discuss symmetry charges and currents
along with the formulation of field theories on general Newton-Cartan backgrounds.
We will in chapter 5 give an alternative construction of Newton-Cartan geometry at the
linear level using the Noether procedure. This will give new insights to the develop-
ments of the previous chapters and we present a key result of this thesis. In chapter 6

we will review a convenient way to obtain non-relativistic theories from a reduction of
the relativistic versions. Already in the following chapter 7 will we apply those results to
study the Schrödinger model on both flat and curved spacetime as a concrete example.
Here we will also study the various conservation equations, correlation functions and
see how they shed light on the general results we have derived previously. Another ex-
ample is given in the next chapter 8 where we study Galilean Electrodynamics (GED) in
great detail. This will also be the chapter where we obtain the non-relativistic analog of
scalar quantum electrodynamics coupled to gravity.

In parallel with the main text, we will in appendix A review the analog results for
the more familiar relativistic theories and spacetimes. The general Noether theorem and
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the Noether procedure will be proven and discussed in appendix B. A short review of
non-relativistic conformal symmetries can also be found in appendix C. Finally, we will
in appendix D give details about selected calculations in the main text and in appendix
E we list some useful formulas.

This is a thesis in the field of theoretical physics. Mathematical rigour is pursued when
it makes sense, but we will in general refrain from giving formal proofs. The emphasis
is on the development of the mathematical structure of the physical aspects. A special
“feature” of this thesis is that we in the main text will give numerous examples that
support and illustrate the ideas developed. All such examples are found in boxes for
easy reference.

What is assumed to be known and will not be discussed further:

• Basic knowledge of (Lie) groups and algebras including structural theorems.

• Basic knowledge of representation theory and linear algebra.

• Basic knowledge of differential geometry. The structure of connections for fiber
bundles will be reviewed to some extent.





2
N O N - R E L AT I V I S T I C G R O U P T H E O RY

In this chapter we will review the relevant non-relativistic symmetry groups.
The focus is on the structure of the groups, the Lie algebras and their rep-
resentations. Most of our attention will be on the Galilean group and the
Bargmann group, but we will also review the Euclidean and Lifshitz groups
briefly.

2.1 general overview and the euclidean group

Group G Transformations dimG Ref.

Euclidean Spatial rotations + translations
1
2 d (d + 1) + 1

[23]

E (d, 1) t′ = t + a, x′i = Ri
jx

j + bi

Lifshitz Euclidean + Lifshitz scaling 1
2 d (d + 1) + 2 [24]

Lif (d, 1) t′ = λzt, x′i = λxi for d > 1

Galilean Euclidean + boosts
1
2 d (d + 3) + 1

[25]

Gal (d, 1) t′ = t, x′i = xi + vit
[26]

Bargmann Galilean + internal U (1) 1
2 d (d + 3) + 2

[27]

Barg (d, 1) central charge [25]

Schrödinger Bargmann + Lifshitz + 1 SCT
1
2 d (d + 3) + 4

[28]

Schr (d, 1) t′ = t
1−ct , x′i = xi

1−ct (z = 2)
[25]

Conformal Galilean + dilatation + D SCTs
1
2 d (d + 5) + 3

[29]

Galilean
t′ = t, x′i = 1

2 ait2xi (no sum)
[30]

CGal (d, 1)

Table 1: Spacetime transformations and properties of the relevant non-relativistic symmetry
groups in D = d + 1 dimensions. See appendix C for a review of the non-relativistic
conformal symmetry groups that will not be discussed in the main text.

The non-relativistic groups of interest in D = d + 1 spacetime dimensions are shown
in table 1. Their structures are more complicated than relativistic ones considered in
appendix A.1, with more different types of generators, as we let time play a special role
in the spirit of Galilean relativity. Let us now just emphasize some important general

7



8 non-relativistic group theory

remarks and properties about the algebras before going in-depth. The Euclidean group
E (d, 1) is the most simple one which is contained as a subgroup of all the considered
relativistic and non-relativistic symmetry groups. We will keep the presentation of this
and the Lifshitz group a bit short, as they are not the main target of our investigation.
The finite spacetime transformations of E (d, 1) are translation along with spatial rota-
tions

t′ = t + a0 (2.1a)

x′i = Ri
jx

j + ai , (2.1b)

which are rotations parametrized by Ri
j ∈ SO (d), temporal translations a0 ∈ R and

spatial translations ai ∈ Rd [23].
The pure spatial rotations Jij = −Jji form a so (d) subalgebra, under which the mo-

mentum Pi transforms as a vector and the Hamiltonian H as a scalar. The Lie algebra
e (d, 1) spanned by the generators takes the defining commutation relations

[Pi, H] = 0 (2.2a)[
Jij, H

]
= 0 (2.2b)[

Pi, Pj
]

= 0 (2.2c)[
Pk, Jij

]
= δikPj − δjkPi (2.2d)[

Jij, Jkl
]

= δjk Jil − δik Jjl + δjl Jik − δil Jjk . (2.2e)

Notice that the Hamiltonian H in this case actually is a central charge as it does
not enter on the RHS of any of the commutators. The translations forms an abelian
subgroup Rd+1, while the rotations form a non-abelian subgroup SO (d). From the com-
mutation relations we also see that E (d, 1) is the semidirect product of rotations and
translations, and so E (d, 1) has the structure of an affine group and is thus in particular
not semisimple. Hence we can write

E (d, 1) = Rd+1 n SO (d) . (2.3)

2.2 the lifshitz group

A Lifshitz scaling with action

t′ = λzt (2.4a)

x′i = λxi (2.4b)

can be added to the Euclidean transformations (2.1). Here z ∈ R is called the dy-
namical exponent and determines the anisotropy of the scaling. This transformation is
only consistent with relativistic symmetries for z = 1 as time and space must be on
the same footing. For non-relativistic theories general z can be allowed exactly because
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they need not be on the same footing. The additional commutation relations with the
dilatation generator D for the algebra of the resulting Lifshitz group Lif (d, 1) on top of
the Euclidean algebra (2.2) are given by

[D, H] = zH (2.5a)

[D, Pi] = Pi (2.5b)[
D, Jij

]
= 0 . (2.5c)

This is the same as saying in an algebraic language that H has dilatation weight z, Pi
weight 1, and Jij weight zero. The addition of D does not change the affine structure of
the Euclidean group.

Interestingly enough a D = 2 field theory with z = 0 Lifshitz symmetry satisfying
some technical assumptions about unitarity and the scaling spectrum is automatically in-
variant under an infinite dimensional symmetry group, which in the literature is known
as the warped conformal group, first shown by Hofman and Strominger [31]. This group
and its warped conformal field theory realizations are of relevance when using the holo-
graphic principle to calculate the energy of an extremal Kerr black hole, see for example
[32, 33, 34].

2.3 the galilean group

2.3.1 The algebraSpeciale figure 2
28. januar 2016 11:32

   Hurtige noter side 1    

Figure 2: The action of the Galilean boost: The new reference frame S′ moves with velocity −v
relative to the old S and the coordinates of the spacetime point (red dot) transforms
according to (2.6).

On top of the Euclidean transformations (2.1) it is also possible to add the Galilean
boost transformation



10 non-relativistic group theory

t′ = t (2.6a)

x′i = xi + vit . (2.6b)

This corresponds exactly to boosting one inertial to another inertial frame with a
relative velocity −v. When we add the d Galilean boosts to the Euclidean group, we
obtain the Galilean group Gal (d, 1) that describes the symmetries of non-relativistic
theories of relevance in this thesis [35, 36]. The boost generator Bi associated to (2.6)
now adds the following new commutation relations on top of (2.2) given by

[Bi, H] = Pi (2.7a)[
Bk, Jij

]
= δikBj − δjkBi (2.7b)[

Bi, Pj
]

= 0 (2.7c)[
Bi, Bj

]
= 0 . (2.7d)

The first structure to immediately read of from the commutation relations (2.7) is
that the boost again transform as a vector under the spatial rotations. The fact that
[Bi, H] = Pi 6= 0 while

[
Pi, Bj

]
= 0 also means that we have an asymmetry between

space and time. The addition of Bi retains the semidirect sum of the Euclidean algebra,
but now the boosts are also added through a semi-direct sum with rotations. For the
corresponding group we can write its structure as

Gal (d, 1) = Rd+1 n
(

SO (d)n Rd
)

. (2.8)

The boosts forms an abelian subgroup Rd on their own. We see that boosts and rota-
tions combined forms a subgroup called the homogeneous Galilean group HGal (d, 1) ≡
SO (d)n Rd of the Galilean group. In non-relativistic spacetimes this subgroup plays
the role of the Minkowski group that is a subgroup of the Poincaré group in relativistic
spacetimes.

2.3.2 Galilei as a non-relativistic limit of Poincaré

It is instructive to see how one obtains the Galilean group from the non-relativistic limit
of the Poincaré group, which is discussed in appendix A.1. In natural units this is most
easily done by performing an Inönü-Wigner contraction of the Poincaré group [37, 38].
This will leave us with the same number of generators, but a different group structure.
We will motivate the correct contraction by studying the usual representation of the
Poincaré group on spacetime with the generators represented as differential operators
[39] (see also section 4.1). We then require that velocities are much smaller than the
speed of light c, which is equivalent to sending c → ∞. As velocities in some reference
frame is given by vi = dxi

dx0 , we see that we should really take the following rescaling of
coordinates
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x0 7→ αx0 (2.9)

xi 7→ xi (2.10)

and take the scaling parameter α →
NR

∞ to obtain the non-relativistic limit with velocit-

ies vi →
NR

0. Transferring this idea to the corresponding generators Pµ, Jµν of the Poincaré

algebra (A.2), we see that we should really leave Pi = −i∂i and Jij = −ixi∂j + ixj∂i
unchanged, while we must define new operators

H ≡ lim
α→∞

αP0 (2.11a)

Bi ≡ lim
α→∞

1
α

J0i (2.11b)

in order to ensure that they stay finite and non-zero under the non-relativistic limit,
as the rescaling of coordinates for the spacetime differential operators leads to

P0 = i∂0 7→
1
α

i∂0 (2.12a)

J0i = −it∂i − ixi∂0 7→ −αit∂i −
1
α

ixi∂0 . (2.12b)

These are going to be our new Hamiltonian H and Galilean boosts Bi for any repres-
entation of the Poincaré algebra when we take α →

NR
∞, and one sees that the resulting

algebra is exactly the Galilean one.

Example 2.1 (Taking the non-relativistic limit). It is straight-forward to take the non-
relativistic limit using the above. One considers the Poincaré commutation relations
with P0 and J0i, and multiply with α and α−1 appropriately to obtain the commutators
with H and Bi. Doing this we will find it is consistent to take α→ ∞. Four relations will
change in total, for example [

Pi, J0j
]
= η0iPj − ηjiP0 ⇒

[
Pi,

1
α

J0j

]
= −δij

1
α2 (αP0) →

NR

[
Pi, Bj

]
= 0 (2.13)

and [
P0, J0j

]
= η00Pj − ηj0P0 ⇒

[
αP0,

1
α

J0j

]
= −Pj →

NR

[
H, Bj

]
= −Pj . (2.14)

The Galilean boosts Bi can thus be understood as the remnants of the Lorentz boosts
J0i in the non-relativistic limit. The boost transformation is now asymmetric in time and
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space, as we have the commutator (2.13) equal to zero, while (2.14) is non-zero. However,
the time coordinate stays “absolute” and does not transform unlike for Lorentz boosts.
The unification of space and time has been undone, which is just the spirit of Galilean
relativity.

The Casimir invariants of Poincaré C2 and C4 (A.4) are investigated in appendix A.1
and are useful for classifying the representations. Taking the non-relativistic limit of the
momentum squared gives us that one Casimir is

C2 = lim
α→∞

P2 = P2 . (2.15)

One can indeed verify that P2 commutes with all generators of the Galilean algebra
gal (d, 1). For the other Casimir C4 we need to rescale by α−2 to keep it finite (and put a
sign for convenience) and find

C̃4 ≡ lim
α→∞

1
α2

(
1
2

P2 Jµν Jµν − JµρPρ JµσPσ

)
= P2B2 − (B · P)2 . (2.16)

There is no ambiguity in the ordering as Pi, Bj span an abelian subalgebra. In the
special case of d = 3 one sees that this can be written as C̃4 = (P× B)2. Together C2 and
C̃4 span the center of the algebra and can be used to label representations.

2.3.3 On unitary representations and little groups

For a Hilbert space H of quantum mechanical states, spacetime symmetries are repres-
ented by (anti-)unitary operators1. Gal (d, 1) is non-compact because of the boosts and
therefore it does not have any finite dimensional unitary representations just like what
is well-known for representations of the Poincaré group [40, 39]. This is of course expec-
ted as there are infinitely many states with different momentum and one may boost and
rotate the reference frame, with transformed states considered equivalent.

It is possible to use the method of induced representations that classifies all possible
irreducible unitary representations by find various “little groups” of the homogeneous
Galilean group HGal (d, 1) [36]. A little group is here a subgroup of HGal (d, 1) that
leaves a certain standard energy E0 and momentum p0 unchanged, which are dual to
translations. The action of a homogeneous Galilean transformation U (R, v, 0, 0) on a mo-
mentum eignenstate |p, E, σ〉, where σ is the remaining quantum numbers of relevance
can then be written as

U (R, v, 0, 0) |E, p, σ〉 = ∑
σ

Dσσ′ (R, v; E0, p0)
∣∣E′, p′, σ′

〉
. (2.17)

Here Dσσ′ (R, v; E0, p0) is a unitary representation of the little group corresponding
to a standard standard energy E0 and momentum p0 related to E, p by Galilean boosts
and rotations that takes the form2

1 Up to a phase, which is very important for non-relativistic spacetime symmetries as we will discuss in
detail later.

2 The energy and momentum together transforms as a covector under the fundamental representation (2.23).
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E′ = E− vtRp (2.18a)

p′ = Rp . (2.18b)

Since the states are assumed to be momentum eigenstates, translations will just give
a simple phase as

U
(
0, 0, a0, a

)
|E, p, σ〉 = e−ia0E+ia·p |E, p, σ〉 . (2.19)

There are now various choices of little groups relevant for physical representations.
One immediate choice is to pick standard energy and momentum E0 > 0 and p0 = 0
that is left invariant by spatial rotations in (2.18). This corresponds to a representa-
tion with Casimirs C2 = C̃4 = 0. Hence the little group is SO (d) which has the well-
known (2j + 1)× (2j + 1)-dimensional unitary irreducible representations, so states can
be labeled as

∣∣E, p, j, mj
〉

(plus perhaps other quantum numbers). This gives particle
representations of positive energy and spin-j, j = 0, 1

2 , 1, . . .. More representations and
further discussions can be found in [41, 35].

A special feature of Galilean states is that they are not localizable: It turns out that
it is not possible to construct a linear combination of the corresponding wave-functions
〈t, x | E, p, σ〉 which is a δ-function in space and time so no state can be said to have
a definite position at a given time, contrary to what is the case in standard QM. It is
however possible to obtain approximate localizability where the amplitude decays with
some distance. This shows that the Galilean states are not easily interpreted as particle
states, see Inönü and Wigner [36] for further discussions.

2.3.4 Finite dimensional non-unitary representations

It is useful to have concrete finite dimensional matrix representations to work with,
where the group product is represented by the usual matrix product. We will also use
this for constructing the Galilean fiber bundles for our geometry later on. One useful
non-unitary but finite representation is the faithful representation on D + 1 × D + 1
matrices given by

GÂ
B̂ =

 1 0 a0

va Ra
b aa

0 0 1

 , (2.20)

where va ∈ Rd is the (finite) boost parameter and Ra
b ∈ SO (d) is the spatial rotation

matrix and Â, B̂ = 1, 2, . . . , D + 1. Finally a0 ∈ R is the parameter for temporal transla-
tions, and aa ∈ Rd the spatial translation parameter. In this non-unitary representation
the semi-direct product structure of the Galilean group is obvious, as are the various sub-
groups. One also sees that Gal (d, 1) ⊂ GL (D + 1, R). Composing two transformations
G, G′ we have that this results in a transformation G′′ given by
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G′′ÂB̂ ≡
(
GG′

)Â
B̂ =

 1 0 a0 + a′0

va + Ra
bv′b Ra

cR′cb aa + vaa′0 + Ra
ba′b

0 0 1

 . (2.21)

One sees here that the temporal translations add up, while the spatial translation gets
boosted and rotated.

HGal (d, 1) furnishes from the above the fundamental D×D representation ρD (HGal (d, 1))
given by matrices of the following form [42, 12]

GA
B =

(
1 0

va Ra
b

)
. (2.22)

It is trivial to see that ρD (HGal (d, 1)) ⊂ GL (D, R). The inverse transformation is
given by

(
G−1)B

A =

(
1 0

−
(

R−1)b
a va (

R−1)b
a

)
. (2.23)

Notice that because R is an orthogonal matrix R−1 = Rt. The group action on compon-
ents of (Galilean) vectors VB in the vector space RD, and covectors UA in the covector
space RD∗ is then defined by

V ′A = GA
BVB (2.24a)

U′A = UB

(
G−1

)B

A
, (2.24b)

which leaves any scalar VAUA invariant under Galilean transformations as it should.
It is then straight-forward to generalize this to obtain the transformation rules of general
Galilean tensors by multi-linearity [43].

ρD (HGal (d, 1)) has two invariant symbols that are invariant under any Galilean trans-
formation. These are in our representation ρD (HGal (d, 1)) easy to find and given by

τA ≡ (1 0) (2.25a)

hAB ≡ δA
a δBa =

(
0 0

0 δab

)
. (2.25b)
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Example 2.2 (Invariant symbols). Invariance of τA is obvious, but we have to work a
little to show that this is also the case for hAB:

hAB → GA
CGB

DhCD = GA
cGB

dhcd

= δA
a δBbRa

c

(
R−1

)c

b

= hAB X , (2.26)

where we used the orthogonality of the rotation matrix.

In fact, the preservation of these two objects characterizes the fundamental represent-
ation ρD (HGal (d, 1)) = ρD

(
SO (d)o Rd) as a subgroup of GL (D, R) , and we could

equally well have defined the set of Galilean matrices [44]

ρD

(
SO (d)o Rd

)
≡
{

MA
B ∈ GL (D, R) |MA

C MB
DhCD = hAB, τB MB

A = τA

}
. (2.27)

Finally it is also seen that the Levi-Civita tensor εA0 A1···Ad is an invariant symbol of
HGal (d, 1).

2.4 the bargmann group

2.4.1 Algebraic structure

There exists a central extension of the Galilean group, which is called the Bargmann
group Barg (d, 1). Adding a central charge extends the algebra, showing the impossibil-
ity of being the result of a Inönü-Wigner contraction of the Poincaré symmetry group
of D spacetime dimensions Poin (d, 1) as this preserves the number of generators. This
does not mean that the Bargmann group cannot be the result of a reduction of the
higher-dimensional Poincaré group which we consider in section 2.4.4.

Barg (d, 1) is the relevant spacetime symmetry group for the typical non-relativistic
theories considered, namely those with a notion of mass. The central charge corres-
ponds to mass or particle number conservation, which is now non-trivially related to
spacetime in such theories as we shall see demonstrated several times [27]. To see that
this extension of the Galilean group exists and is unique, one can investigate the struc-
ture of the commutation relation: We can make an Ansatz for the central extension of
(2.7) and then see what can be allowed by the Jacobi identities and redefined away. Un-
like for the Poincaré group one finds that the Galilean group allows for a single central
extension with central charge M [39]. In this unique extension we have to replace the[
Pi, Bj

]
commutator (2.7c) with [

Pi, Bj
]
= Mδij . (2.28)

With this replacement in (2.7) we obtain the Bargmann algebra. If we make the action
of M trivial in some representation, then we are back in the Galilean case of section,
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so the Bargmann group can be considered the most general. The commutator (2.28)
shows that on top of the structure of the Galilean group there is now another semi-
direct product with the center R generated by M, which now goes with the translation
subgroup exactly because it is an ideal of the translational subalgebra [42]. Hence the
full group structure is

Barg (d, 1) =
(

Rd+1 n R
)
n
(

O (d)n Rd
)

. (2.29)

2.4.2 Revisiting the unitary representations on states

Because M is a central element it is by definition one of the invariant Casimir operators,
so Bargmann has a total of three. The two Casimirs of the Galilean group (2.15), (2.16)
are no longer Casimirs for the Bargmann group because of the non-zero commutation
relation (2.28). We now need a new basis, which can conveniently be chosen as below
[35]:

M ≡ mI (2.30a)

C̊2 ≡ H − 1
2m

P2 (2.30b)

C̊4 ≡
1
2

J jk Jjk −
1
m

(
J jkBjPk − BjPk J jk

)
+

1
m2 BjPk

(
BjPk − BkPj

)
. (2.30c)

After proper rescaling with m they all reduce to (2.15) and (2.16) when we take the
m → 0 limit. In d = 3 the last Casimir takes the more convenient expression as C̊4 =(
εijk
[ 1

2 J jk − 1
m

(
BjPk)])2

, which we show in appendix D.2. The action of C̊2 on a state∣∣E, p, j, mj
〉

in the spin-j representation of section 2.3.3 is seen to relate the eigenvalue of
the Hamiltonian to that of momenta by the classical formula

E =
p2

2m
+ E0 , (2.31)

where E0 is the rest energy, the value of C̊2 acting on the state. This demonstrates that
we are then led to think of M as being the mass of some representation and shows that
the Bargmann group is the one relevant for Newtonian physics. In particular (2.31) has
no equivalent when the mass is zero. For C̊4 we have with standard momentum p0 = 0
it reduces to

C̊4 =
1
2

J jk Jjk = j (j + 1) (2.32)

which is the invariant of the so (d) algebra, which labels the spin representations. The
states now being those of standard QM are localizable.

2.4.3 Finite dimensional non-unitary representations

Because of the direct product structure we have that Barg (d, 1) has a natural faithful
(D + 2)× (D + 2) matrix representation given by [12, 42]
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BÃ
B̃ =


1 0 0 a0

va Ra
b 0 aa

−v2/2 −vaRa
b 1 f

0 0 0 1

 , (2.33)

where f ∈ R is a parameter corresponding to the central transformation and Ã, B̃ =

0, 1, . . . , D + 1. Notice that Barg (d, 1) is not a subgroup of GL (D + 1, R) like Gal (d, 1),
but it is a subgroup of GL (D + 2, R) because of the different direct product structure.
Composing two transformations B, B′ we have that this results in a transformation B′′ =
BB′ given by

B′′ÃB̃ =



1 0 0 a0 + a′0

va + Ra
bv′b Ra

cR′cb 0 aa + a′0va + Ra
ba′b(

− 1
2

(
v2 + v′2

)
−vaRa

bv′b

)
− (v′c + vaRa

c) R′cb 1

(
f + f ′ − 1

2 a′0v2

−vaRa
ba′b

)
0 0 0 1


.

(2.34)
One sees that the structure of the composition for the Galilean case (2.21) is contained

in this, but in addition to this one observes the rather complicated composition of the
center of the group.

HGal (d, 1) = O (d)n Rd now takes a (D + 1)× (D + 1)-dimensional matrix repres-
entation ρD+1 (HGal (d, 1)) with elements given by

BÂ
B̂ =

 1 0 0

va Ra
b 0

−v2/2 −vaRa
b 1

 (2.35)

(
B−1

)B̂

Â
=

 1 0 0

−
(

R−1)b
a va (

R−1)b
a 0

−v2/2 va 1

 . (2.36)

Notice that this is an indecomposible but not irreducible representation, as it contains
a submatrix with the fundamental representation (2.22). The representation (2.35) now
naturally acts on (Bargmann) vectors V Â of RD+1 and covectors UÂ of RD+1∗. In a sense
we now have (co)vectors with more components than we wished for, as would like to
eventually define D-dimensional vectors on a D-dimensional spacetime.

We may define a projection P : RD+1 → RD by

PA
B̂ =

(
δA

B , 0
)

. (2.37)

Using the projector PA
B̂ we may project contravariant Bargmann tensors of RD+1 to

RD. We can also define a lift of covariant Galilean objects of R∗D to R∗D+1 by contracting
with the upper index of PA

B̂.
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Example 2.3 (Various projections and lift). Using the projector PA
B̂ we may project the

representation of an element of ρD+1 (HGal (d, 1)) given by (2.35) to the one in (2.22).
We have more specifically

PA
ĈBĈ

B̂ = BA
CPC

B̂ = GA
CPC

B̂ , (2.38)

which shows that the projection commutes with action of the ρD+1 (HGal (d, 1)) on vec-
tors in the sense

PA
B̂V ′B̂ = PA

ĈBĈ
B̂V B̂ = GA

CVC = V ′A . (2.39)

The two invariant objects hÂB̂, τÂ of (2.35) are easily seen to be given by

τÂ ≡ (1, 0, 0) (2.40a)

hÂB̂ ≡

 0 0 1

0 δab 0

1 0 0

 . (2.40b)

Notice that hÂB̂ is not degenerate. The relation to the same objects of the homogeneous
Galilean group (2.25) may now be written nicely using PA

B̂ to project or lift:

PA
ÂPB

B̂hÂB̂ = hAB (2.41a)

τÂ = τAPA
Â . (2.41b)

2.4.4 Bargmann as a null reduction of Poincaré

While the Bargmann group Barg (d, 1) cannot be the result of an Inönü-Wigner con-
traction as discussed in section 2.4.1, it is still possible that it may be the result of a
reduction of a higher-dimensional Poincaré group. The D + 1 spacetime dimensions
symmetry group Poin (d + 1, 1) has 1

2 (d + 2) (d + 3) generators which is d + 1 more
than the 1

2 d (d + 3) + 2 generators of Barg (d, 1) for D spacetime dimensions according
to tables 1, 4. This is a hint that a reduction might work if we can remove these extra
generators consistently. It turns out that what we need to do is to perform a so-called
null reduction which we will now explain.

Consider the D + 1-dimensional Minkowski space where we make a change of co-
ordinates to the usual light-cone coordinates

x± ≡ 1
2

(
x0 ± xD

)
, (2.42)

so that the coordinates used are ordered as xµ̂ =
(
x+, xi, x−

)
. The Minkowski metric

in these coordinates is
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ηµ̂ν̂ = ηµ̂ν̂ =

 0 0 1

0 δab 0

1 0 0

 . (2.43)

Notice that this is exactly one of the invariant symbols (2.40b) of the extended homo-
geneous Galilean group. The generators of (A.2) that does not change in this basis are
Pi and Jij while the rest are given by an appropriate change of basis

H ≡ 1
2

(
P0 − PD

)
(2.44a)

M ≡ P0 + PD (2.44b)

Bi ≡ J0i + JDi (2.44c)

Ki ≡ J0i − JDi (2.44d)

K ≡ J0D . (2.44e)

In this basis all generators that commute with M are Pi, H, M, Bi, Jij and they pre-
cisely form a closed subalgebra which is the Bargmann algebra (2.2), (2.7), (2.28) [45, 46].
The commutation relations of M with the d + 1 generators Ki, K are non-zero and all
non-zero commutation relations with Ki, K are given by

[M, Ki] = 2Pi (2.45a)[
Kk, Jij

]
= δikKj − δjkKi (2.45b)[

Pi, Kj
]

= 2Hδij (2.45c)[
Bi, Kj

]
= 2

(
Jij − δijK

)
(2.45d)

[H, K] = −H (2.45e)

[M, K] = M (2.45f)

[Bi, K] = Bi (2.45g)

[Ki, K] = −Ki . (2.45h)

This shows that Barg (d, 1) can be embedded in Poin (d + 1, 1) as a subgroup3. Look-
ing at the corresponding transformations in D+ 1-dimensional Minkowski space, we see
that the Bargmann subalgebra is spanned by the generators that leaves out rotations in
the (x+, x−) and

(
xi, x−

)
planes. An equivalent geometric statement is that we consider

the symmetries of a hypersurface x− = constant orthogonal to the null x−-direction wrt.
the Minkowski metric, which is why we call it a null reduction. t ≡ x+ now acquires the
interpretation as the non-relativistic time coordinate generated by H while the u ≡ x−

translations generated by M are transformations of the center of the Bargmann group.

3 Interestingly enough the commutators involving just Pi, H, Ki, Jij also span a closed subalgebra that can
be identified with the so-called Carrollian algebra, where Ki are called Carrolian boosts and H is now a
central charge [47, 48]. This to be thought of as the ultra-relativistic limit of the Poincaré algebra where we
instead take c → 0 and consider x+ = constant hypersurfaces. If we further include the generator K, this
is seen to furnish an interpretation as some kind of dilatation operator since in this algebra H is no longer
central.





3
N E W T O N - C A RTA N G E O M E T RY

In this chapter we will construct the correct non-relativistic geometric frame-
work. We take the approach of fiber bundles as an easy way of obtaining the
relevant structures, relying heavily of the results of the previous chapter. A
considerable effort is spent on interesting and subtle aspects of Galilean and
Bargmann connections and covariant derivatives. Finally we consider the for-
mulation of Newton-Cartan geometry on flat and linearized spacetimes.

3.1 galilean frame bundles

We now want to regard the entire Galilean group Gal (d, 1) as a frame bundle consisting
of the 2D-dimensional manifold FM and the bundle projection π : FM→ M. Intuitively
what we want to do is to identify the Galilean boost and rotations acting as “internal
transformations” of the vielbeins defined on the manifold M. This construction is natur-
ally a fiber bundle where the D-dimensional base manifold is M and the fiber F consists
of all bases of the (Galilean) vector space RD, i.e. all possible frames or vielbeins [49, 50].
This is a global trivialization FM = F×M, and we can write it as the union

FM =
⋃

p∈M
(p, {eA (p)}) , (3.1)

where {eA (p)} ≡ Fp is the set of all vielbeins at point p ∈ M. The bundle projection
π is now simply

π (p, {eA (p)}) = p (3.2)

and we may naturally define the right-inverse of this map called the section σ : M→ FM
satisfying π (σ (p)) = p, so that we have σ (p) = (p, eA (p)). A particular vielbein
eA (p) ∈ Fp is then a section of FM as we illustrate in figure 3. By construction the
action of the homogeneous Galilean group HGal (d, 1) is to transform the vielbein in
representation (2.23) as

e′A (p) = eB (p)
(

G−1 (p)
)B

A
. (3.3)

HGal (d, 1) is here the structure group of the frame bundle, the group of all pos-
sible Galilean transformations of the frame. This shows that the frame bundle is a prin-
cipal bundle, because the diffeomorphisms of the fiber F are the same as the action of
HGal (d, 1) on it.

Similar reasoning goes for the coframe bundle

F∗M =
⋃

p∈M

(
p,
{

eA (p)
})

(3.4)

21
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Figure 3
28. januar 2016 12:22

   Hurtige noter side 1   

Figure 3: Illustration of the bundle projection π and section map σ for the fiber bundle FM =
F×M.

where coframes or inverse vielbeins
{

eA (p)
}
≡ F∗p transforms under the fundamental

representation (2.22) as

e′A (p) = G (p)A
B eB (p) . (3.5)

This may be extended to tensor bundles by considering tensor products of frames. In
the spirit of non-relativistic physics, we will single out the time and spatial component
and write for a particular choice of (inverse) vielbeins

eA ≡ (τ, ea) (3.6a)

eA ≡ (−v, ea) . (3.6b)

The vielbeins must satisfy the completeness relations

τ (v) = −1 (3.7a)

ea (eb) = δa
b (3.7b)

ea (v) = τ (ea) = 0 (3.7c)

ea ⊗ ea = id + τ ⊗ v , (3.7d)

which defines the vielbeins in terms of the inverse vielbeins or vice versa. In simple
terms, we should think of A = {0, a} as a Galilean (frame) index and objects that are
Galilean scalars and thus spacetime tensors must be fully contracted. These indices trans-
form under the local boosts and rotations of the Galilean structure group, with a “down”
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index transforming oppositely to an “up” index. The local Galilean transformation laws
(3.3), (3.5) of the (inverse) vielbeins can then be written in components as

τ′ = τ (3.8a)

e′a = Ra
beb + vaτ (3.8b)

v′ = v + eb

(
R−1

)b

a
va (3.8c)

e′a = eb

(
R−1

)b

a
, (3.8d)

where Rb
a is a local rotation and va is a local Galilean boost1. τ is called the clock form

because we see from (3.8) it is indeed a spacetime 1-form unlike the other objects that do
transforms under Galilean transformations. This is of course clear since it is related to
one of the two invariant objects of the structure group as described on page 14. The other
Galilean invariant object we can construct is the (inverse) spatial metric constructed from
a tensor product of the “inverse” spatial vielbeins2 ea

h−1 ≡ δabea ⊗ eb . (3.9)

For a vector V ≡ Vµ∂µ given as a particular section of the tangent bundle TM and
a covector U ≡ Uµdxµ of the cotangent bundle T∗M, we can write them as contracted
with their associated Galilean (co)vector components and (inverse) vielbeins as

V ≡ VAeA = −V0v + Vaea (3.10a)

U ≡ UAeA = U0τ + Uaea , (3.10b)

where the components transforms in the representation of HGal (d, 1) discussed in
section 2.3.4 so that V , U are invariant under Galilean transformations. The mappings
are bijective and isomorphisms FM ' TM and F∗M ' T∗M. We can equivalently find
the components of a given (co)tangent vector as

VA = eA (V) = eA
µ Vµ (3.11a)

UA = eA (U) = eµ
AUµ . (3.11b)

This shows that the vielbeins can be thought of objects that maps from a coordinate
frame to a Galilean frame or the other way around. In a local coordinate basis we may
write eA

µ =
(

τµ, ea
µ

)
and eµ

A =
(
−vµ, eµ

a
)
, which can conveniently be used to map from

one to another.

1 We apologize for the possible confusion the use of va for the boost and vµ for the vielbein may cause.
2 We must stress that is not the inverse of anything, it is just poor but conventional terminology.
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Example 3.1 (Contraction). We have that the action V (U) of a vector V on a covector
U (and vice versa) is a scalar by construction. Written in terms of both Galilean and
spacetime components, we have

V (U) = VAUA = −V0U0 + VaUa

= VµUµ , (3.12)

where we in the last equality used (3.7) and (3.11).

3.2 galilean spacetime geometry

We have here taken a specific point of view that highlights the origin of the basic proper-
ties of Newton-Cartan geometries as fiber bundle constructions. To calculate geometric
quantities of interest, we often just need the spacetime tensors τ, h−1 that plays the
role of a metric-like structure in these theories [21, 51]. These alone are sufficient to
characterize what we may call Galilean spacetime or Newton-Cartan geometry:

Definition 3.2 (Galilean spacetime). A Galilean spacetime consists of a triplet
(

M, τ, h−1
)

where M is a D-dimensional manifold on which a non-vanishing 1-form τ and a sym-
metric rank 2 contravariant tensor h−1 that satisfies h−1 (τ, ·) = 0 are defined.

Here we can think of
(
τ, h−1) as a degenerate metric structure, with h−1 having

corank 1. It is of course useful to refer back to the frame bundle construction to interpret
some of the properties of such Galilean spacetime. First of all, we may in this language
then define projective inverses (v, h) as objects that satisfies

vµτµ = −1 (3.13a)

hµλhλν = δν
µ + τµvν . (3.13b)

These are not uniquely determined and we may redefine them as [42]

vµ 7→ vµ + hµνbν (3.14a)

hµν 7→ hµν − 2b(µτν) + hρσbρbστµτν . (3.14b)

These may be identified with the vielbein vµ and hµν ≡ ea
µeνa of the frame bundle

construction. The freedom in choosing the projective inverses can then be traced back
to the transformation of the vielbeins under local boost transformations with bρ ≡ vaea

ρ,
though it is not obvious in this language.

Any vector V that satisfies τ (V) = 0 is called a spatial vector, showing that the com-
ponent V0 = 0 of (3.10a), which is a geometric statement as τ is a tensor. On the other
hand there is no geometric definition of a spatial spacetime one-form U because the
action v (U) is in general not Galilean invariant; e.g. it might be “spatial” in one frame,
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Figure 4: For two curves γ1 and γ2, the proper times Tγ1 , Tγ2 need not be equal.

but we can always boost to a frame where it is “non-spatial”. We may however obviously
define a time-like covector as any covector that satisfies U (ea) = 0 or equivalently can
be written as U = f (x) τ.

With the Levi-Civita symbol εA0 A1···AD of section 2.3.4 being an invariant symbol of
the structure group, it may be used to define natural volume element on M as

ε ≡ 1
D!

εA0 A1···Ad eA0 ∧ eA1 ∧ · · · ∧ eAd . (3.15)

This will allow us to do integration on the manifold. In local coordinates we may
simply write the measure as

ε = det (τ, ea)dDx = edDx . (3.16)

As τ is a one-form it may be integrated along some curve γ from a point A ∈ M to
a point B ∈ M. In Newton-Cartan geometry the integral Tγ ≡

∫
γ τ is interpreted as the

proper time that passes when going along the tangent vector γ̇ of the curve γ. Notice
that the spatial part of γ̇ does not contribute to Tγ, which shows that if we have a spatial
tangent vector, then Tγ = 0. In local coordinates we may write γ̇µ = dxµ(λ)

dλ , and we thus
have

Tγ =
∫

γ
τµ (xµ (λ))

dxµ (λ)

dλ
dλ . (3.17)

Notice that if it happens that if the clock form τ is closed i.e. τ = dt which is gen-
erally not the case, then Tγ is independent of which curve γ connecting A, B ∈ M one
chooses by Stokes’ theorem. In such spacetimes, we really have a notion of absolute
time, which is a hallmark of Newtonian physics. This also shows on the contrary that
general Newton-Cartan geometry is beyond Newtonian physics. We will call spacetimes
with a closed clock form τ and their corresponding constraint on Galilean spacetime Au-
gustinian [44].

The inverse spatial metric h−1 may also be used to perform types of integration with,
given that the Frobenius condition τ ∧ dτ = 0 or in local coordinates τ[ρ∂µτν] = 0 holds.
This is because the Frobenius’ theorem states that there exists locally a nice foiliation
of spacetime by τ if and only if τ ∧ dτ = 0 [49]. In such cases we can really define
absolute space as a spatial hypersurface at a specific time. The pullback ϕ∗ of h to such
a spatial hypersurface defines a Riemannian manifold with non-degenerate metric ϕ∗h.
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Name Clock form Absolute time Absolute space

Leibnizian τ ∧ dτ 6= 0 No No

Aristotelian τ ∧ dτ = 0 No Yes

Augustinian dτ = 0 Yes Yes

Table 2: Classification of Newton-Cartan geometries by the properties of the clock form τ.

Here we may apply all of the theorems about Riemannian manifolds, and we shall call
such spacetimes and their corresponding structure Aristotelian. If there is no constraint
on the clock form and we have the general case τ ∧ dτ 6= 0, then we shall call this class
of spacetimes Leibnizian.

In total we thus see an obvious classification of Newton-Cartan geometry according to
the constraints on τ, which is given in table 2. Now in order to define a proper derivative
we must define a connection, which is the subject of the next section, where we will also
have more to say about this classification.

3.3 galilean connections

3.3.1 Setting up the connection

We now need to define a frame covariant derivative that transforms correctly, i.e. it must
commute with the local Galilean transformations of the vielbeins [49, 52, 43]. We may
define any Galilean frame covariant derivative on the coframe bundle F∗M by the action
on the inverse vielbeins through [42]

DµeA ≡ −ω A
µ BeB (3.18)

where we must have

ω A
µ B ≡

(
0 0

Ω a
µ ω a

µ b

)
(3.19)

as we see from (3.8) that ea transforms under both local boosts and rotations, while τ

is invariant. Ω a
µ ≡ ω a

µ 0 is the component of the connection associated with local boosts
and ω a

µ b is the component of the connection associated with local rotations. We must
take ωµab = −ωµba to have a metric compatible connection analog to the relativistic
case in appendix A.2.2. The connection transforms under local Galilean transformations
(2.22), (2.23) as

ω A′
µ B′ = GA′

Aω A
µ B
(
G−1)B

B′ −
(
G−1)C

B′∂µGA′
C , (3.20)

while it transforms as a 1-form under a General Coordinate Transformation (GCT).
From the completeness relations (3.7) we find the action of the covariant derivative on

the vielbeins from the above definition. Written in terms of the components we have
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Dρτ = 0 (3.21a)

Dρea = −Ω a
ρ τ −ω a

ρ beb (3.21b)

Dρv = −Ω a
ρ ea (3.21c)

Dρea = ω b
µ aeb. (3.21d)

In a local coordinate basis the spacetime covariant derivative∇ρ is defined by its affine
connection through the action on (co)tangent vectors as

∇ρ∂µ ≡ Γλ
ρµ∂λ . (3.22)

One can then derive the transformation law under a GCT similar to (3.20) [53]

Γλ′
ρ′µ′ =

∂xλ′

∂xλ

∂xρ

∂xρ′
∂xµ

∂xµ′
Γλ

ρµ +
∂xλ′

∂xσ

∂2xσ

∂xρ′∂xµ′
. (3.23)

We can then impose the vielbein postulate that identifies the connection of Dρ with
that of ∇ρ through the isomorphisms FM ' TM and F∗M ' T∗M related to (3.10). The
statement is then that (inverse) vielbeins are covariantly constant, i.e.

∇ρτµ = ∂ρτµ − Γλ
ρµτλ ≡ 0 (3.24a)

∇ρea
µ = ∂ρea

µ − Γλ
ρµea

λ −Ω a
ρ τµ −ω a

ρ beb
µ ≡ 0 (3.24b)

∇ρvµ = ∂ρvµ + Γµ
ρλvλ −Ω a

ρ eµ
a ≡ 0 (3.24c)

∇ρeµ
a = ∂ρeµ

a + Γµ
ρλeλ

a + ω b
ρ aeµ

b ≡ 0 . (3.24d)

We then don’t need to distinguish between the two covariant derivatives any more
and we will denote both covariant derivatives by ∇ρ.

The infinitesimal transformations of the vielbeins and connection are very useful and
will be needed later. Performing the linearization of the transformation laws (3.8), (3.20)
and including the transformation of the fields under general coordinate transformations
we find [21, 26]

δτµ = Lξτµ (3.25a)

δea
µ = Lξea

µ + λa
beb

µ + Λaτµ (3.25b)

δvµ = Lξvµ + eµ
a Λa (3.25c)

δeµ
b = Lξeµ

b + λ a
b eµ

a (3.25d)

δΩ a
µ = LξΩ a

µ + ∂µΛa + λa
bΩ b

µ + Λbω a
µb (3.25e)

δω ab
µ = Lξω ab

µ + ∂µλab + 2λ
[a

cω
|c|b]

µ , (3.25f)

where Λa is an infinitesimal boost parameter, λab = −λba parametrizes the rotations
and ξ is a vector that generates an infinitesimal coordinate transformation by following
the flow along its Lie derivative Lξ .
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Example 3.3 (∇ρ and connections). When the frame covariant derivative ∇ρ acts on
spacetime tensors, i.e. Galilean scalars, the action is familiar. It is however instructive to
see how this works using the Leibniz rule when we write it as Galilean tensors contrac-
ted with the vielbeins. If we for example take Uµ = UAeA

µ we see that the Leibniz rule
gives us

∇ρUµ = eA
µ

(
∇ρUA

)
+ UA

(
∇ρeA

µ

)
=

(
∂ρUA + ω B

ρ AUB

)
eA

µ + UA

(
∂ρeA

µ − Γλ
ρµeA

λ −ω A
ρ BeB

µ

)
= ∂ρ

(
UAeA

µ

)
− Γλ

ρµeA
λ UA

= ∂ρUµ − Γλ
ρµUλ X . (3.26)

We could also have used ∇ρeA
µ = 0 directly to write

∇ρUµ = eA
µ∇ρUA

= eA
µ

(
∂ρUA + ω B

ρ AUB

)
, (3.27)

which would then give the relation between Γλ
ρµ and ω B

ρ A so that both expressions are
identical.

3.3.2 General results about curvatures

We may solve the vielbein postulates (3.24) for the affine connection in terms of the
vielbeins and the gauge connections. One finds

Γλ
µν = −vλ∂µτν + eλ

a

(
∂µea

ν −Ωa
µτν −ω a

µ beb
ν

)
. (3.28)

We give the details of the calculation in appendix D.3.1. The torsion tensor T λ
µν is

defined as usual as the antisymmetric part of the affine connection

T λ
µν ≡ 2Γλ

[µν] . (3.29)

As this is the difference of two connections it is indeed a true tensor. We may split
this into a spatial and a temporal torsion in the spirit of Galilean relativity by projecting
with the vielbeins as

T λ
µν = −vλRµν (H) + eλ

a R a
µν (P) , (3.30a)

Rµν (H) ≡ τλT λ
µν = 2∂[µτν] (3.30b)

R a
µν (P) ≡ ea

λT λ
µν = 2∂[µea

ν] − 2Ω a
[µ τν] − 2ω a

[µ |b|e
b
ν] . (3.30c)
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Name Clock form Abs. time Abs. space Torsion

TNC τ ∧ dτ 6= 0 No No Yes

TTNC τ ∧ dτ = 0 No Yes Yes

TLNC dτ = 0 Yes Yes No

Table 3: Classification of Newton-Cartan geometries with a connection.

These are identical to the first Cartan structure equation discussed in appendix A.2.2,
which for a given connection is an equivalent definition of the torsion tensor. Finally
Rµν (H) and R a

µν (P) are equal to the field strengths of the vielbeins in the Galilean
gauge theory considered by Andringa et al. [21], Hartong et al. [54]. Notice that Rµν (H)
is indeed a spacetime tensor which is just the exterior derivative of τ.

If we want an entirely torsionless geometry a necessary but not sufficient condition is
that ∂[µτν] = 0, i.e. the clock form must be closed and the spacetime Augustinian. This
is a constraint on the vielbeins equivalent to the curvature constraint

Rµν (H) = 0 . (3.31)

Such a relation that does not have an analog in the case of Riemannian/Lorentzian
geometry: Here taking zero torsion does not imply anything on the vielbein. Notice also
that unless we take zero temporal torsion ∂[µτν] = 0, then vanishing spatial torsion is
not a geometric statement as one can just boost to another local Galilean frame where
in (3.30a) can see that there will be a new non-zero spatial torsion component.

This property allows us to extend table 2 with information about the connection we
may have on such spacetimes, which we have done in table 3. We have here also in-
cluded the standard nomenclature used in the literature when we have a connection
defined. The most general case is also called “Torsional Newton-Cartan” (TNC), the Ar-
istotelian case is also called “Twistless Torsional Newton-Cartan” (TTNC), and finally
the Augustinian case is called “Torsionless Newton-Cartan” (TLNC).

The components of the Riemann curvature tensor may be defined conveniently through
the usual relation [55] as the failure of two covariant derivatives to commute, i.e.[

∇µ,∇ν

]
Xρ = R ρ

µνσ Xσ − T λ
µν ∇λXρ (3.32a)

R ρ
µνσ ≡ −2∂[µΓρ

ν]σ
− 2Γρ

[µ|λ|Γ
λ
ν]σ . (3.32b)

We may split this into a boost curvature a spatial rotation curvature by projecting with
the vielbeins as

R a
µν (B) ≡ −ea

ρvσR ρ
µνσ = 2∂[µΩ a

ν] − 2ω ab
[µ Ων]b (3.33a)

R a
µν b (J) ≡ ea

ρeσ
b R ρ

µνσ = 2∂[µω a
ν] b − 2ω ac

[µ ων]cb . (3.33b)

These are identical to the second Cartan structure equation that gives an equivalent
definition of the Riemann curvature tensor as discussed in appendix A.2.2. Finally they
are equal to the field strengths in the Galilean gauge theory.
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We have already seen that if we take the entire torsion (3.29) to be zero, then we must
have the surprising necessary constraint dτ = 0. The next question is of course whether
we actually can impose other curvature constraints that allows us to solve for ω a

µ b, Ωµa

in terms of the vielbeins like in the Lorentzian case.
Example 3.4 (Levi-Civita connection in Lorentzian spacetimes). For the Lorentzian mani-
fold of appendix A.2.2 we impose that the connection should be torsionless (i.e. T λ

µν = 0)
which together with the metric compatibility gives the Levi-Civita connection with
Christoffel symbols expressed entirely in terms of the metric as the unique solution
[52, 53].

We find in our Galilean case the somewhat surprising result that when we try to solve
Ω a

µ , ω a
µ b from the torsionless condition Rµν (H) = R a

µν (P) = 0, it is not possible to
write a solution in terms of the vielbeins alone. We will thus not be able to realize the
geometry on just the vielbeins even in a torsionless geometry unlike for Lorentzian man-
ifolds as in the example above [44, 56]. This can be traced back to the degenerate metric
structure. As the connection and its covariant derivative is an additional structure on top
of the Galilean manifold, it most be stressed that this does not imply any inconsistency,
but it is an aspect that is unfamiliar from the relativistic point of view.

Example 3.5 (Newtonian spacetime). It is of course possible to impose constraints on the
Riemann curvature tensor also. One possibility in a torsionless geometry the so-called
Duval-Künzle condition [12] given by

hλ[µR ρ]
λ(νσ)

= 0 , (3.34)

which is the relevant condition to impose if one wants a covariantized version of New-
tonian gravitation. Here we still need to bring in new fields, as this condition is not
enough to realize the geometry on the vielbeins alone [44].

3.3.3 Hartong-Obers parameterization

One way to illuminate the degrees of freedom that are in the connection (3.28) is to solve
the analog of metric compatibility, i.e.

∇ρτµ = ∇ρhµν = 0 . (3.35)

These are equivalent to the vielbeins postulates. The most general connection that
solves this is easily found to have an expression for the affine connection given by [26]

Γλ
µν = −vλ∂µτν +

1
2

hλσ
(
∂µhνσ + ∂νhµσ − ∂σhµν

)
+ Wλ

µν , (3.36)

and the object Wλ
µν must satisfy some constraints

τλWλ
µν = 0 (3.37a)

hν(ρWλ)
µν = 0 . (3.37b)
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We shall denote “the affine (natural) pseudo-connection” Γ̂λ
µν defined by the first terms

in (3.36)

Γ̂λ
µν ≡ −vλ∂µτν +

1
2

hλσ
(
∂µhνσ + ∂νhµσ − ∂σhµν

)
. (3.38)

This is because it does not define a good connection on its own exactly because it
transforms under boosts, while the whole connection Γλ

µν = Γ̂λ
µν + Wλ

µν must be boost
invariant. This equivalent to stating that the covariant derivative must be independent of
the chosen frame or a geometric object, which is a fundamental property of connections.
We must thus require

δBΓλ
µν = δBΓ̂λ

µν + δBWλ
µν = 0 , (3.39)

This shows that Wλ
µν is not a tensor3 and must be non-zero even when the connection

is torsionless, which in another way proves that the geometry cannot be realized on the
vielbeins alone. Γ̂λ

µν and its associated pseudo-gauge fields Ω̂ a
µ , ω̂ a

µ b are however useful
quantities. Hartong and Obers [26] displays the structure of Wλ

µν by writing it in terms
of invariant non-tensorial objects Yσµν, Kµν and Lσµν defined as

Wλ
µν =

1
2

hλσYσµν (3.40a)

Yσµν ≡ τνKσµ + τµKσν + Lσµν (3.40b)

Kµν = −Kνµ , Lσρλ = −Lλρσ . (3.40c)

Kµν, Lσρλ parametrizes all the possible “metric compatible” connections we may define
on our Galilean manifold. Under an infinitesimal local boost with parameter Λσ ≡ Λaea

σ

we find

δBΓρ
µν =

1
2

hρστµ (δBKσν + ∂νΛσ − ∂σΛv) +
1
2

hρστν

(
δBKσµ + ∂µΛσ − ∂σΛµ

)
+

1
2

hρσ
(
δBLσµν −Λσ

(
∂µτν − ∂ντµ

)
+ Λµ (∂ντσ − ∂στν) + Λν

(
∂µτσ − ∂στµ

))
, (3.41)

and thus to ensure δBΓλ
µν = 0 we see that they must have the transformation property

under boosts:

δBKσν = ∂σΛv − ∂νΛσ (3.42a)

δBLσµν = Λσ

(
∂µτν − ∂ντµ

)
−Λµ (∂ντσ − ∂στν)−Λν

(
∂µτσ − ∂στµ

)
. (3.42b)

Equating (3.28) and (3.36) we may derive expressions for the boost and rotation gauge
fields given by

3 It still transforms correctly under GCTs, but it has additional local Galilean transformations.
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Ωµa = Ω̂µa + Cµa (3.43a)

ωµab = ω̂µab + Cµab , (3.43b)

where Ω̂µa and ω̂µab are the pseudo-gauge fields of the pseudo-connection (3.38) de-
rived by using the linearity in the gauge fields of the affine connection (3.28)

Ω̂µa ≡ vν∂[νe a
µ] + vνeσaeµb∂[νe b

σ] (3.44a)

ω̂µac ≡ eλ
[a|∂λeµ|c] − eλ

[a|∂µeλ|c] − eµbeσ
[aeλ

c]∂λe b
σ , (3.44b)

and we have defined

Cµa ≡ −vνeλaWλ
µν (3.45a)

Cµac ≡ eν
ceλaWλ

µν . (3.45b)

These objects are like the contortion tensor in Lorentzian manifolds, where it is well-
known that any connection may be written as the sum of the Levi-Civita connection
plus the contortion tensor as is reviewed in appendix A.2.2. For this reason we shall call
Cµa, Cµac pseudo-contortions, which by their transformation properties derived from
Wλ

µν are not tensors, but yet play a similar role yielding any connection when added
to the natural pseudo-connection. As Wλ

µν may not vanish, neither may the pseudo-
contortions.

3.3.3.1 Connections linear in a background field Mµ

There is a whole class of solutions for Kµν, Lσρλ expressed in terms of a background
field Mµ that is defined to transform under Galilean transformations as

M′µ = Mµ + vaRa
beb

µ +
1
2

vavaτµ . (3.46)

Mµ is sometimes called the graviphoton field in the literature because of some of its
properties [57]. At this stage it might seem a bit arbitrary to introduce such a field to
the geometry but we will see that it is relevant in many situations as we will see in
section 3.4 and chapter 6. The infinitesimal version of this transformation law including
diffeomorphisms on top of those of the vielbeins and gauge fields (3.25) is given by

δMµ = Lξ Mµ + ea
µΛa . (3.47)

From this transformation we see that its spacetime derivative must include the boost
connection and be given by

∇ρ Mµ = ∂ρ Mµ − Γλ
ρµ Mλ −Ωρbeb

µ . (3.48)

If we take
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Kσρ = 2∂[σ Mρ] (3.49a)

Lσµν = 2Mσ∂[µτν] − 2Mµ∂[ντσ] + 2Mν∂[στµ] , (3.49b)

then this is seen to define a good boost invariant connection [58, 59]. This choice actu-
ally corresponds to the unique connection linear in Mµ [54]. We will later see how this
connection in the sense of being the physical relevant connection can be claimed to be
the closest thing to a “Levi-Civita”-like connection we may have for general (torsionful)
Newton-Cartan geometry.

We may construct some new boost invariant objects using Mµ:

v̂µ ≡ vµ − hµλ Mλ (3.50a)

êa
µ ≡ ea

µ −Mµeµaτµ (3.50b)

hµν ≡ hµν + 2τ(µ Mν) . (3.50c)

hµν is non-degenerate now but still not the inverse of hµν and the new vielbeins-like
objects still satisfy completeness relations analog to (3.7). We should not regard them
as true vielbeins as they do not have the correct transformation properties under boosts
any longer, but they are indeed useful objects in many ways as we shall see. As an aside
we could also imagine breaking boost covariance in some way, which would reduce
the symmetries of a given theory to that of the Lifshitz group or the Euclidean group
studied in chapter 2 and make these objects good vielbeins and tensors.

The new tensorial quantities are useful to build connections with the required proper-
ties from, and one may see that the choice corresponding to (3.49) can be written as

Γ̊λ
µν = −v̂λ∂µτν +

1
2

hλσ
(

∂µhνσ + ∂νhµσ − ∂σhµν

)
. (3.51)

We shall call this connection4 the “graviphotonic (Galilean) connection“. Its torsion is
given by

T λ
µν = −2v̂λ∂[µτν] , (3.52)

and from this we see that the spatial torsion is given by

R a
µν (P) = 2eλa Mλ∂[µτν] . (3.53)

The expression for Wλ
µν and the pseudo-contortions (3.43) may be used to write the

gauge fields (3.43) in terms of only Mµ and the vielbeins.

4 This connection, despite being well-known in the literature, has not been given a name. Calling it the
“graviphotonic connection” is hence not standard terminology, but is motivated by the fact that it has a
U(1) gauge transformation, while still being a non-trivial part of the geometry as we shall see.
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3.3.3.2 More general connections involving Mµ

There are also more general choices, which however all are not linear in Mµ [26]. To see
this, let us define two other useful objects as

Φ̃ ≡ −vµ Mµ +
1
2

hµν Mµ Mν (3.54a)

Ma ≡ Mµeµ
a (3.54b)

where Φ̃ is indeed a true spacetime scalar, while Ma transforms under both rotations
and boosts. It is easy to see that we may write

Mµ = Maea
µ −

1
2

Ma Maτµ + Φ̃τµ . (3.55)

We can define a whole class of Hartong-Obers connections parametrized by α ∈ R by
taking

Γλ
µν ≡ −v̂λ∂µτν +

1
2

hλσ
(
∂µHνσ (α) + ∂νHµσ (α)− ∂σ Hµν (α)

)
(3.56a)

Hµν (α) ≡ hµν + αΦ̃τµτν (3.56b)

Notice that Γλ
µν is boost and rotation invariant no matter how we choose α as it is

build from tensorial quantities. If we take α = 0, we obtain the connection (3.51), while
other choices gives connections non-linear in Mµ. Another interesting choice is α = 2,
which is equivalent to taking Hµν (2) = ĥµν ≡ êa

µ êνa.
This class certainly does not span all of the possible Galilean connections, as we may

always add a tensor to the affine connection to obtain a new one.

3.3.4 The Newton-Coriolis two-form

There is also another way of presenting the degrees of freedom in the connection which
is due to Geracie et al. [42]. This is equivalent to to the Hartong-Obers classification, and
we may go from one formulation to another using some formulas given later. Starting
again from the vielbein postulate (3.24), we may write the affine connection as

Γλ
µν = −vλ∂(µτν) +

1
2

hλσ
(
∂µhνσ + ∂νhµσ − ∂σhµν

)
+

1
2

(
T λ

µν − T λ
µ ν − T λ

ν µ

)
+ τ(µC λ

ν) , (3.57)

where one has the torsion tensor T λ
µν defined in (3.30a) and versions of it where the

last two indices are raised by5 hµν and lowered by hµν as

T σ
µ ρ ≡ hρλhσνT λ

µν . (3.58)

5 We remind the reader that this is not a bijective mapping.
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The other new object is the so-called Newton-Coriolis two-form Cµν given by

Cµν ≡ 2Ω a
[µ eν]a (3.59a)

C λ
ν ≡ Cνµhµλ . (3.59b)

The Newton-Coriolis two-form is not really a two-form as it transforms under finite
local Galilean boosts parametrized by va in a non-trivial way:

C′µν = −∂[µ

(
vaeν]a +

1
2

v2τν]

)
+

1
2

v2∂[µτν] − vaT a
µν , (3.60)

where T a
µν is the spatial torsion (3.30c). The connection (3.57) is invariant under boosts,

but each term (except for the torsion tensor) will transform in exactly such a way that all
non-invariances cancel as they should. The freedom in choosing the connection is para-
metrized by the Newton-Coriolis two-form Cµν and the torsion. In this form it is easier
to see what the various choices one can make do to the connection. Especially when the
connection is torsionless, all of the ambiguity in the connection is parametrized by Cµν.
For example, the Duval-Künzle condition (3.34) for a torsionless spacetime implies that
dC = 0.

We may translate these results to those of section 3.3.3. Equating the two affine con-
nections (3.57) and (3.36), and solving for Wλ

µν gives after some work

Wλ
µν = vλ∂[µτν] +

1
2

(
Tλ

µν − T λ
µν − T λ

νµ

)
+ τ(µC λ

ν) . (3.61)

On the other hand we may also revert the formulas and write the Newton-Coriolis
form in terms of Kµν, Lµνλ as

Cµν = −vλe[µ|a∂λe a
|ν] + ∂[µvλeν]ae a

λ + vλL[µν]λ − Kµν , (3.62)

so we may translate between the two classifications at will. For our special gravi-
photonic connection (3.51), one sees in particular that the Newton-Coriolis 2-form is not
closed, but neither does it have any simple expression, which underlines that the two
classifications are not easily related.

3.4 bargmann spacetimes and the graviphoton

3.4.1 Extended Bargmann frame bundles

We want to perform a fiber bundle construction for the Bargmann group (2.4) similar to
what we did for the Galilean group in section 3.1. The relevant fiber bundle F̊M will now
be constructed as a 2D + 1-dimensional manifold because translations and the central
transformation are given by the left coset Rd+1 n R ' Barg (d, 1) /HGal (d, 1) [42, 60].
One can then identify a set of D + 1-dimensional “extended vielbeins” living on a D-
dimensional manifold M again transforming under local Galilean boosts and rotations.
There is a natural fiber bundle construction that is obviously going to be different from
the Galilean case, but we will see that they are closely related.
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The fiber F̊p =
{

e̊Â (p)
}

now consists of all bases of the (Bargmann) vector space RD+1

that we discussed on page 17. A certain section is then a particular extended vielbein

at a point p ∈ M, i.e. σ̊ (p) =
(

p, e̊Â (p)
)

. We can then write the extended fiber bundle

F̊M as a global trivialization

F̊M =
⋃

p∈M
(p, {e̊Â (p)}) . (3.63)

This construction is a principal bundle because the diffeomorphisms of the fiber are
exactly given by the structure group HGal (d, 1), albeit in the non-fundamental repres-
entation (2.35):

e̊Â (p) = e̊B̂ (p)
(

B−1 (p)
)B̂

Â
. (3.64)

A similar construction can be performed for the extended cofiber bundle F̊∗M of
extended inverse vielbeins:

F̊∗M =
⋃

p∈M

(
p,
{

e̊Â (p)
})

, (3.65)

e̊′Â (p) = B (p)Â
B̂ e̊B̂ (p) . (3.66)

3.4.2 The relation to the background field Mµ

The extended (inverse) vielbeins does not constitute a frame because there are D + 1
components of e̊Â (p) and e̊Â (p), which does not match with the D dimensions of M
and its (co)tangent space. We may however consistently identify the first D components
of the extended inverse vielbein with the true inverse vielbeins eA = (τ, ea) of section
3.1. This is because the projector PA

Â
defined in (2.37) may be used to give eA as the

projection

eA = PA
Â e̊Â , (3.67)

and we showed in example 2.3 that this projection commutes with the local Galilean
transformations. We can therefore write a particular section as

e̊Â ≡ (τ, ea,−M) . (3.68)

The extra field M is a part of the extended coframe but not the true frame. We can
interpret it as a background field on the manifold M that is a non-trivial part of the
geometry. Using (2.35) it can be seen to transform under local Galilean transformations
as

M ′ = M +
1
2

v2τ + vaRa
beb . (3.69)

This is identical to the transformation background field Mµ (3.46), and we may thus
regard this construction identical to the one in section 3.3.3.1. This explains the origin
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of Mµ, which was not clear at that point. From the gauging of the Bargmann group
studied by Hartong and Obers [26] Mµ has a natural interpretation as the gauge field
corresponding to the central charge, which we shall also see the equivalent of in our
framework later. It is however not yet clear how they might result in the same gravi-
photonic connection (3.51), which will be the subject of the next section.

For e̊Â a projection that would allow it to serve as a true vielbeins does not exist
because PA

Â
is not a bijective mapping. We can instead define the vielbeins eA =

(−v, ea) as its inverse of a particular section eA through the completeness relations (3.7).
eA may now be lifted to the extended frame as

eÂ ≡ eAPA
Â = (−v, ea, 0) . (3.70)

This is clearly not a section of the extended frame bundle because it has a zero basis
element.

We may then proceed as in section 3.1 and define the inverse spatial metric as h =

δABeAeB and together with the clock form τ this is by definition 3.2 a Galilean manifold.

3.5 bargmann connections

3.5.1 Relation to the graviphotonic connection

We may again define a covariant derivative on the fiber bundle similar to how we did
in the Galilean case of section 3.3. We define a connection through its action on the
extended vielbeins:

D̂µeÂ ≡ ω Â
µ B̂eB̂ (3.71)

and see that we must have

ω Â
µ B̂ ≡


0 0 0

Ω a
µ ω a

µ b 0

0 −Ωµb 0

 , (3.72)

because the extra component M of the extended frame transforms under boosts as it
is seen from (2.35). Written explicitly, the additional covariant derivative in addition to
(3.21) is

D̂µ M = Ωµbeb . (3.73)

This will lead to the same spacetime covariant derivative of Mµ as given in (3.48), and
it is in particular not related to any vielbein postulate in this case.

There is a related “graviphotonic torsion” defined from the extra component of the
Cartan structure equation (A.10) for the extended vielbeins as

Rµν (M) ≡ 2∂[µ Mν] − 2Ω a
[µ eν]a , (3.74)

which is also the field strength in the Bargmann gauge theory extra to (3.30). Notice also
that this can be written in terms of the Newton-Coriolis 2-form Cµν defined in (3.62) as
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Rµν (M) = 2∂[µ Mν] + Cµν . (3.75)

The spacetime torsion is independent of what the graviphotonic torsion is, but Rµν (M)
does transform under boosts, unless the spacetime torsion vanishes. Hence it is not a
geometric statement to set Rµν (M) = 0 unless there is no torsion as we may always
boost to another frame where it is non-zero.

We can certainly make curvature constraints, but they need to be boost covariant wrt.
the transformation of Rµν (M). An example of such curvature constraints are given by
fixing the spatial and graviphotonic torsions as

R a
µν (P) = 2eλa Mλ∂[µτν] (3.76a)

Rµν (M) = 2vλ Mλ∂[µτν] . (3.76b)

Temporal torsion is already fixed by the general result (3.30b), the spatial torsion con-
straint is just (3.53) and thus we have fixed all of the torsions. The connection correspond-
ing to this choice is exactly the graviphotonic connection (3.51). This shows that it is pos-
sible to realize the local Galilean symmetry on the extended vielbeins êÂ = (τ, ea,−M)
and eÂ = (v, ea, 0) that are natural objects of the extended Bargmann frames. With the
simple curvature constraints (3.76) this shows that the origin of the graviphotonic con-
nection and the field Mµ introduced there have natural interpretations. This also allows
us to substitute the complicated expression for Cµν (3.62) with the more simple one

Cµν = 2vλ Mλ∂[µτν] − 2∂[µ Mν] . (3.77)

In particular this shows that Cµν is only closed when dτ = 0.

3.6 parallel transport and geodesics

The parallel transport equation for any rank (p, q) spacetime tensor T with components
Tµ1...µp

ν1...νq is simply the requirement that it stays covariantly constant when moved
along a curve γ parametrized by λ:

DT
dλ

= 0 ⇔ dxµ (λ)

dλ
∇µTµ1 ...µp

ν1 ...νq = 0 . (3.78)

For a general parallel transport the effect of torsion is measurable. The clock form and
inverse spatial metric are always parallel transported along any curve as we see from
(3.24) that

∇ρτµ = ∇ρhµν = 0 . (3.79)

The geodesic equation is found by considering autoparallel curves, i.e.

Dγ̇

dλ
= 0 ⇔ d2xµ (λ)

dλ2 + Γµ
ρσ

dxρ (λ)

dλ

dxσ (λ)

dλ
= 0 . (3.80)

Here torsion does not play a role. The major difference compared to the Lorentzian
case is that solutions of the geodesic equation no longer in general can be identified with
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the stationary point of some spacetime length functional as we do not have the analog
of a Levi-Civita connection. In some cases special connections may be associated with
the geodesic equation [61, 62].

3.7 flat newton-cartan geometry

Flat Newton-Cartan geometry is an interesting and relevant special case of the theory
derived so far. By a flat connection we mean one where there exists a (usually globally
defined) set of vielbeins where the boost and rotation gauge fields in (3.18) vanishes, i.e.
[49]

ω A
µ B = 0 . (3.81)

In this case the Riemann curvature R ρ
µνσ = 0 and the covariant derivatives of the

vielbeins (3.24) becomes

∇ρτµ = ∂ρτµ − Γλ
ρµτλ = 0 (3.82a)

∇ρe a
µ = ∂ρe a

µ − Γλ
ρµe a

λ = 0 (3.82b)

∇ρvµ = ∂ρvµ + Γµ
ρλvλ = 0 (3.82c)

∇ρeµ
a = ∂ρeµ

a + Γµ
ρλeλ

a = 0 . (3.82d)

In such a geometry this has the consequence that there is no change of vectors as they
are parallel transported along any closed curve and for geodesics initially parallel, they
will stay so. There could in principle still be non-zero torsion (3.29). Taking this to zero
is seen from (3.82) to imply that ∂[µeA

ν] = 0. A Galilean connection with no torsion and
curvature is what we will define as a flat Newton-Cartan geometry.

Let us further assume that the flat frame has the property that the symmetric part of
the affine connection is zero so we have Γλ

ρµ = 0 globally. Such a frame is a global inertial
frame where the covariant derivatives (3.82) implies

∂µeA
ν (x) = 0 ⇔ eA

µ (x) = eA
µ . (3.83)

It is now possible to do global Galilean transformations so that we may always choose
the vielbeins as

τµ ≡ δ0
µ (3.84a)

vµ ≡ −δ
µ
0 (3.84b)

e a
µ ≡ δa

µ (3.84c)

eµ
a ≡ δ

µ
a . (3.84d)

This is a global inertial (co)frame where the associated global inertial coordinates
xµ =

(
t, xi) are natural to use for non-relativistic field theories [63]. The spatial metric

and its inverse then take the simple expressions
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hµν = δabδa
µδb

ν (3.85a)

hµν = δabδ
µ
a δν

b , (3.85b)

which as we would expect for a Aristotelian connection gives a good Euclidean metric
on spatial hypersurfaces.

For the graviphotonic connection (3.51) this does not imply that Mµ = 0. Rather we
see from the choice Kσρ = 2∂[σ Mρ] in the general Hartong-Obers classification of section
3.3.3 that for a flat geometry we can only say that

Mµ = ∂µ M , (3.86)

where M is an arbitrary scalar. The minimal choice of M = 0 is certainly valid in a
particular global inertial frame. However, if we perform a local Galilean transformation
that preserves global inertial observers (3.84) and (3.86) this may in principle transform
M 6= 0 in some other frame. The various possibilities are called the orbits of M and are
studied further in [54].

Example 3.6 (Uniformly accelerated frames). The geometric framework makes it easy
to formulate physics in arbitrary coordinates by the general covariant structure. Say
we start in a flat Newton-Cartan in a global inertial frame (3.84) where the geodesic
equation (3.80) is d2xi

dt2 = 0, and now want to go to a uniformly accelerated frame, which
is just the coordinate transformation

t′ = t (3.87a)

x′i = xi +
1
2

ait2 . (3.87b)

The affine connection transforms non-tensorially as (3.23) which here is simply Γλ′
µ′ν′ =

− ∂xµ

∂xµ′
∂xν

∂xν′
∂2xλ′

∂xµ∂xν . The only non-zero components are

Γi
00 = −ai . (3.88)

The geodesic equation with time as the parameter now becomes

d2xi

dt2 = ai . (3.89)

This shows that we have a fictitious force in an accelerated frame, completely equivalent
to what we find in Newtonian mechanics.
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3.8 linearized newton-cartan geometry

3.8.1 Linearizing the vielbeins

It is useful to have a linearized version of the results derived above as the full non-
linear theory can be rather complicated for some applications. We will consider small
perturbations to global inertial frames of the flat geometry considered in the former
section and keep everything at first order. We take

τµ ≡ δ0
µ + τµ (3.90a)

vµ ≡ −δ
µ
0 − vµ (3.90b)

e a
µ ≡ δa

µ + e a
µ (3.90c)

eµ
a ≡ δ

µ
a − eµ

a (3.90d)

where e a
µ , eµ

a, τµ, vµ are the perturbations. The completeness relations 3.7 must still
hold at first order, which implies some relations between the vielbeins and their inverses:

τ0 = −v0 (3.91a)

ea
b = e a

b (3.91b)

e0
a = τa (3.91c)

e a
0 = −va . (3.91d)

This shows that the linearized inverse vielbeins are completely determined in terms
of the linearized vielbeins themselves. The spatial metric can then be expressed in terms
of the vielbeins up to first order as

hµν = δabδa
µδb

ν + sµν =

(
0 −vb

−va δab + sab

)
(3.92a)

h
µν

= δabδ
µ
a δν

b − sµν =

(
0 −τb

−τa δab − sab

)
, (3.92b)

where we have defined the perturbations of the spatial metrics as

sµν ≡ e a
µ δνa + δa

µeνa = 2δa
(µeν)a (3.93a)

sµν ≡ eµ
aδνa + δ

µ
a eνa = 2δ

(µ
a eν)a . (3.93b)

Because of the constraint (3.91b) we have that spatial components satisfy sab = sab,
and all spatial indices may be raised or lowered by the flat spatial metrics (3.85).
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3.8.2 Linearizing the Connections

The affine pseudo-connection (3.38) is straight-forward to linearize using (3.90) and we
find:

Γ̂
λ

µν = δλ
0 ∂µτν +

1
2

δλaδσ
b
(
∂µsνσ + ∂νsµσ − ∂σsµν

)
. (3.94)

We can then write the linearized Hartong-Obers connection (3.36):

Γλ
µν = Γ̂

λ

µν + Wλ
µν (3.95a)

Wλ
µν =

1
2

δλa
(

δ0
µKaν + δ0

νKaµ + Laµν

)
, (3.95b)

where Kρν, Lρµν are the linearized versions of the objects introduced in the Hartong-
Obers parameterization in section 3.3.3.

For the boost and rotation gauge fields we linearize the pseudo-gauge fields (3.44),
which after a small calculation gives

Ω̂µa =

(
Ω̂0a

Ω̂ba

)
=

(
0

− 1
2 ∂0sba − ∂(avb)

)
(3.96a)

ω̂µac =

(
ω̂0ac

ω̂bac

)
=

(
−∂0e[ac] − ∂[avc]

−∂be[ac] + ∂[asc]b

)
. (3.96b)

The details of the calculation can be found in appendix D.3.2. The full boost and
rotations gauge fields (3.43) may then be written in their linearized forms as

Ωµa = Ω̂µa + Cµa (3.97a)

ωµac = ω̂µac + Cµac , (3.97b)

where we here have the two linearized pseudo-contortions (3.45) given by

Cµa = δλaWλ
µ0 (3.98a)

Cµac = δλaWλ
µc . (3.98b)

3.8.2.1 Transformation of gauge fields

The non-linear transformations (3.25) were somewhat complicated. At linear order, this
is going to simplify a great deal. The zeroth order part (the global inertial frame) does
not transform under an infinitesimal local Galilean transformation, as the transforma-
tions must be considered a part of the linear order pieces. We find by substituting our
linearization into the transformation laws that the perturbations at lowest order trans-
forms as
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δτµ = ∂µξ0 , (3.99a)

δe a
µ = ∂µξa + λa

bδb
µ + Λaδ0

µ (3.99b)

δΩ
i

µ = ∂µΛi (3.99c)

δω
ij

µ = ∂µλij , (3.99d)

where all of the parameters are the same as those stated on page 27.

3.8.3 Linearization of the graviphotonic connection

The background field Mµ of the graviphotonic connection of section 3.3.3.1 in a flat
geometry as discussed in section 3.7 is not necessarily zero but Mµ = ∂µ M, and M is an
arbitrary function. Up to a linear order piece we can therefore write

Mµ = ∂µ M + Mµ . (3.100)

For the graviphotonic connection (3.51), we had that the particular choice of Kσρ, Lσµν

(3.49) at linear order becomes

Kσρ = 2∂[σ Mρ] (3.101a)

Lσµν = 2∂σ M∂[µτν] − 2∂µ M∂[ντσ] + 2∂ν M∂[στµ] . (3.101b)

Any two choices of M should be equivalent for the geometry in the end even though
it is not obvious at this point. If we choose M = 0, then we have Lσµν = 0 so it is entirely
higher-order, while Kσρ is independent of how we choose M, so this is the simplest
choice.

Wλ
µν = δλa

(
δ0

µ∂[a Mν] + δ0
ν∂[a Mµ]

)
. (3.102)

The corresponding linearized pseudo-contortions Cµa, Cµac (3.98) take the expressions

Cµa = −
(

2∂[0Ma]

∂[j Ma]

)
(3.103a)

Cµij =

(
∂[i Mj]

0

)
. (3.103b)

These results of the linearization will be very useful in the following chapters, espe-
cially 7, 8.





4
N O N - R E L AT I V I S T I C F I E L D T H E O RY

In this chapter we shall study non-relativistic field theories on both flat and
curved Newton-Cartan geometry. We begin with the development of field
representations and discuss some concrete models that can be realized. Next
we will study the conserved spacetime symmetry currents of Galilean and
Bargmann theories and how the currents may be improved. Finally the min-
imal coupling of field theories to Newton-Cartan geometry will be discussed.

4.1 field representations

4.1.1 Galilean theories

Assume that we have a field theory covariant under global Galilean transformations.
We assume further that it contains a field ϕ` (x), where the index ` is belongs to some
representation of the homogeneous Galilean group HGal (d, 1) = O (d)n Rd, and the
spacetime transforms as described (2.1), (2.6). We are especially interested in finite ir-
reducible and indecomposable representations of the field components, which do not
need to be unitary contrary to the states discussed in section 2.3.3. If we assume that
the representations are linear, then we may represent the action of the Galilean group
on the fields by the operator on field space U`` (ξ, Λ, λ), where parameters are contrac-
ted with the generators, ξµ =

(
ξ0, ξ i) for translations, Λi for boosts and λij = −λji

rotations respectively [28]. We take the representation U`` (ξ, Λ, λ) to be written as the
direct product [3]

U`` (ξ, Λ, λ) = S`` (Λ, λ)× T (ξ, Λ, λ) , (4.1)

where S`` (Λ, λ) is the representation matrix of HGal (d, 1) that the field carries para-
metrized by the boost and rotation only, and the action on the spacetime is represented
by a differential operator T (ξ, Λ, λ). For the generators this product implies that they
are represented by a commuting sum of a part that acts on the spacetime as differential
operators, and a part that only acts on the field components. T (ξ, Λ, λ) is an infinite
dimensional and unitary representation of the form

T (ξ, Λ, λ) ≡ exp
(
−iξ0Ĥ + iξ i P̂i + iΛi B̂i + i

1
2

λij Ĵij

)
= exp

(
ξµ∂µ + tΛi∂i +

1
2

λij (xi∂j − xj∂i
))

(4.2)

where the generators are represented as differential operators Ĥ = i∂0, P̂i = −i∂i,
B̂i = −it∂i and Ĵij = −ixi∂j + ixj∂i that are hermitian wrt. the standard L2 (RD) inner
product. The representation of S`` (Λ, λ) may also be written as an exponentiated form

45
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with the generally non-anti-hermitian generators (Bi)`` and
(

Jij
)
``

of the HGal (d, 1)
representation as

S`` (Λ, λ) = exp
(

ΛiBi +
1
2

λij Jij

)
``

. (4.3)

We then require the passive transformation law that the new field at the new space-
time point is equal to the old field at the old spacetime point, i.e.

ϕ′`
(
t′, x′

)
≡ ϕ` (t, x) , (4.4)

where at the infinitesimal level t′ ≡ t+ ξ0, x′i ≡ 1
2 λi

jx
j +Λit+ ξ i and ϕ′` ≡ S`` (Λ, λ) ϕ`,

which can also be written as the action of U`` (ξ, Λ, λ) on the field as

ϕ′`
(
t′, x′

)
= U`` (ξ, Λ, λ) ϕ` (t, x) , (4.5)

which is verified to be correct with the definition of the operators S`` (Λ, λ), T (ξ, Λ, λ)
we have given. Two subsequent transformations must of course satisfy the group multi-
plication law of the Galilean group, which constrains the possible realizations.

4.1.2 Bargmann theories and mass

If we instead consider the Bargmann group the discussion above will be nearly identical
except that we need to include the transformation of the field under the central charge
M. The homogeneous Galilean group representations are the same as before and thus
we can still use the same S`` (Λ, λ) for Bargmann theories. The central charge is related
to the spacetime part and not the homogeneous Galilean group as we have seen in
section 2.4. As it is commutes with all generators, it may be introduced as another factor
in (4.1) so we have

Ů`` (ξ, Λ, λ) ≡ S`` (Λ, λ)× e−i f (t,x)M × T (ξ, Λ, λ) , (4.6)

where f (t, x) a priori is undetermined but constrained by the Galilean group struc-
ture, especially group closure under compositions [27]. It turns out that there is a unique
and non-trivial solution given in terms of finite transformation parameters as

f (t, x) =
1
2

v2t + vtRx− σ . (4.7)

These linear Bargmann representations are equivalent to the projective representation
of the Galilean group we may study [39]. We have included a parameter σ ∈ R here,
because we can see that doing first a boost with velocity v, then a translation a, then
doing the inverse boost and finally the inverse translation is just a constant phase e−iv·a

leaving the spacetime and components unchanged, so the theory automatically has a
U (1) symmetry, which is conveniently parametrized by σ. Following the discussion of
section 2.4.2 we should here think of (M)`` = mI`` as the of mass of the field, with the
field ϕ` being an eigenvector of the mass generator. It is then clear that massless fields
with m = 0 are exactly the Galilean theories considered in the former section.
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4.1.3 Realizations

The spacetime part T (ξ, Λ, λ) is the same for all Galilean or Bargmann theories, and
only the representations S`` (Λ, λ) may take different realizations. Besides this there
is the question of whether the central charge M acts trivially on the fields. If it does
(massless theories) we are to consider the linear Galilean representations, if the action
is non-trivial (massive theories) we are to consider the linear Bargmann representations
[64]. There are thus several possibilities and we will discuss some of them below.

4.1.3.1 Massless (Galilean) scalar

The simplest representation is the scalar representation where we simply take S`` (Λ, λ) =

1 and take the mass of the field ϕ (t, x) to be zero. The field will then only have Galilean
spacetime transformations under which it transforms linearly.

Example 4.1 (Massless free scalar). The simplest lagrangian density we can construct is

L = −1
2

∂i ϕ∂i ϕ . (4.8)

The Equation of Motion (EOM) is just the Poisson equation with no sources. This theory
is a bit degenerate, as it does not involve time derivatives and thus there are no waves.

4.1.3.2 Massive (Bargmann) scalar

If we instead take S`` (Λ, λ) = 1 as before but now take non-zero mass m of the theory,
we are considering a scalar under the Bargmann group. The field is necessarily complex
because it gets a phase under the transformation (4.7) and it has a global U (1) symmetry
corresponding to the central transformation.

Example 4.2 (Schrödinger scalar model). A Lagrangian density

L = (imϕ∗∂t ϕ− imϕ∂t ϕ∗)− ∂i ϕ
∗∂i ϕ (4.9)

can be obtained from a null reduction of a free massless complex Klein-Gordan field,
which we will show explicitly in chapter 7. The EOM is just the Schrödinger equation
with no potential, but it is easy to add a Bargmann invariant potential of the form V (|ϕ|)
to the theory to make it interacting. Notice also that the massless scalar of example 4.1
can be obtained from the m→ 0 limit of this theory directly.

4.1.3.3 Spinor fields

HGal (d, 1) contains a SO (d) subgroup, so we may identify the standard irreducible
representations with various spin representations. Let us now restrict ourselves to D = 4.
We may first take the representation of the boost to be trivial so that S`` (Λ, λ) = S`` (λ)
can be taken to be the usual (2j + 1) × (2j + 1) dimensional unitary and irreducible
matrix representation of the SO (3). These are however not faithful representations of
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the homogeneous Galilean group. If we consider the defining spin-½ representation of
SU (2) in terms of Pauli matrices [64], then the fields are 2-spinors ψ` (t, x) that simply
transforms with a (4.3) here given by

S½
``
(λ) ≡ exp

(
i
2

εijkσiλjk

)
``

. (4.10)

On the other hand, if we do not take (4.3) to be trivial in boosts, we find the only
possible indecomposable but not irreducible spin-½ representation acts on 4-spinors
ψ (t, x) = (ψ+ (t, x) , ψ− (t, x)) with transformations of the form [3]

S (Λ, λ) =

(
S½ (λ) 0

− 1
2 σiΛiS½ (λ) S½ (λ)

)
. (4.11)

Example 4.3 (Free massive Fermi spinor). It is possible to do a null reduction [65] of the
massless Dirac Lagrangian density with Dirac 4-spinor Ψ = (ψ+, ψ−), which results in

L =
1
2

[
∂iψ

†
−σiψ+ − ψ†

−σi∂iψ+ + ∂iψ
†
+σiψ− − ψ†

+σi∂iψ−

−
√

2
(

ψ†
+∂0ψ+ − ∂0ψ†

+ψ+ + i2mψ†
−ψ−

)]
. (4.12)

This Lagrangian density describes a non-relativistic free spin-½ 4-spinor, which we may
call the Fermi 4-spinor, that transforms under (4.11). The EOMs are easily derived from
this and one sees that ψ− enters without derivaties for the Euler-Lagrange equations
wrt. ψ†

−. One may substitute this EOM into the other and the result is an equation for
ψ+ which is just the Schrödinger equation.
Interestingly enough the EOMs may be obtained by a similar line of reasoning as origin-
ally led Dirac to his equation by “taking the square root” of the Klein-Gordon equation.
In the non-relativistic case we would try to “take the square root” of the Schrödinger
equation by introducing a Clifford algebra which will eventually led us to (4.12) [3].

4.1.3.4 Vector fields

For the vector representations there are several ones of interest to be considered. It is
of course possible to take the representation HGal (d, 1) be the fundamental irreducible
representation (2.22)

SA
B (v, R) =

(
1 0

va Ra
b

)
(4.13)

which will act on Galilean D-vector fields. The Galilean D-covector fields can be con-
structed as fields that transform in the inverse transformation (2.23).

Besides this, there is also a D + 1 vector representation, which will be relevant for
Galilean electrodynamics that we will consider later. Here the D + 1 components trans-
forms under the representation (2.35), the extended representation of the homogeneous
Galilean group, i.e.
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SÂ
B̂ (v, R) =

 1 0 0

va Ra
b 0

−v2/2 −vaRa
b 1

 . (4.14)

In this representation there is an extra component of the vector compared to the fun-
damental representation of before and it is indecomposable but not irreducible. On top
of this comes also the D + 1 covector representation that transforms under the inverse
of (4.14).

Example 4.4 (Incompressible Euler fluid). An example of a theory that furnishes the
vector representation (4.13) is the incompressible Euler fluid [29, 66]. The EOM is

∂0ui (t, x) + uj (t, x) ∂jui (t, x) + ∂i p (t, x) = 0 , (4.15)

where the Galilean 4-vector is (p (t, x) , ui (t, x)).

4.2 conserved galilean symmetry currents

4.2.1 Canonical conserved Noether currents

Noether’s theorem states that every differentiable symmetry transformation of an action
S [ϕ] =

∫
M dDxL (ϕ, ∂ϕ) can be associated with a conserved symmetry current. We give

the proof of the most general case for the field theoretical version in appendix B.
For Galilean spacetime symmetries the infinitesimal versions of the coordinate and

field transformations (4.3), (4.5) are given by

x′µ = xµ + δxµ (4.16a)

ϕ′`
(

x′
)

= ϕ` (x) + δϕ` (x) (4.16b)

δt = ξ0 ≡ ε0 (4.16c)

δxi = ξi ≡ εi + Λit + λijxj (4.16d)

δϕ` (x) = Λi (Bi)`` ϕ` (x) +
1
2

λij (Jij
)
``

ϕ` (x) , (4.16e)

where λij = −λji are just infinitesimal spatial rotation parameters, Λi boost paramet-
ers and ε0, εi infinitesimal global translations that together are all of the parameters of
the Galilean spacetime transformation.

Specializing to our case, the conserved canonical Noether currents (B.9) takes the
expression
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Eµ
can ≡ ∂L

∂
[
∂µ ϕ`

]∂0ϕ` − δ
µ
0L (4.17a)

Tµi
can ≡ ∂L

∂
[
∂µ ϕ`

]∂i ϕ` − δµiL (4.17b)

bµi
can ≡ tTµi

can + wµi (4.17c)

jµij
can ≡ xiTµj

can − xjTµi
can + sµij (4.17d)

wµi ≡ − ∂L
∂
[
∂µ ϕ`

] (Bi
)
``

ϕ` (4.17e)

sµij ≡ − ∂L
∂
[
∂µ ϕ`

] (Jij
)
``

ϕ` (4.17f)

which are the canonical energy current Eµ
can and momentum current Tµi

can, the total
spatial angular momentum current jµij

can, and the boost current bµi
can. We call the non-

conserved current wµi the lift-current and sµij the spatial spin-current, which are related
to the transformation of the field components under boosts and rotations. Notice from
the above that in a non-relativistic theory, the would-be energy-momentum tensor of re-
lativistic theories splits up into two independent currents. This demonstrates the general
hallmark of non-relativistic theories with time and space not being on the same footing.

The conservation laws for the boost and rotation current implies the relations

T0i
can = −∂µwµi (4.18a)

2T[ij]
can = −∂µsµij . (4.18b)

Hence the canonical stress tensor Tij
can is only symmetric automatically if sµij vanishes

and T0i
can is a total derivative with implications we shall study in the next section.

It is useful to write a variation of the action in terms of general local parameters.
These corresponds to local translations, boosts and rotations at lowest possible order in
the geometry and in this case (B.11) becomes

δS [ϕ] = −
∫

M
dDx ∂µξ0Eµ

can + ∂µξ0Tµi
can + ∂µΛiwµi +

1
2

∂µλijsµij . (4.19)

This variation is non-zero for general transformations. We recover the on-shell conser-
vation laws when we take the parameters to correspond to the global variations

ξ0 (x) = ε0 (4.20a)

ξi (x) = εi + Λit + λijxj (4.20b)

Λi (x) = Λi (4.20c)

λij (x) = λij . (4.20d)

In this way one recovers the symmetry currents (4.17) by grouping together in the
same parameter.
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4.2.2 Generators of the Poisson algebra and wµi

The conserved Noether currents lead to conserved symmetry charges as described in
appendix B. These charges are defined by an integration of the charge densities of the
spacetime currents over a spatial hypersurface S:

H =
∫

S
ddx E0

can (4.21a)

Pi =
∫

S
ddx T0i

can (4.21b)

Bi =
∫

S
ddx tT0i

can + w0i (4.21c)

Jij =
∫

S
ddx xiT0j

can − xjT0i
can + s0ij . (4.21d)

These generators are the representation of the Galilean symmetry on the field theory.
They furnish a representation of the Galilean algebra with the Poisson bracket defined
as [67, 68]

{F, G} ≡
∫

S
ddx

[
δF

δΠ`

δG
δϕ`
− δG

δΠ`

δF
δϕ`

]
, (4.22)

where Π` ≡ ∂L
∂[∂t ϕ`]

is the conjugate field momentum transforming oppositely to the
field.

If we now use the constraint from the conservation law of the boost and rotation
currents (4.18), we see that this implies that we can write the corresponding momentum
generator as

Pi = −
∫

S
ddx∂µwµi

= −∂0

∫
S

ddxw0i , (4.23)

where we in the last step used Stokes’ theorem and assumed that the boundary terms
vanished. In the case that wµi = 0, we see that this implies on the field generators (4.21)
that

Pi = 0 (4.24a)

Bi = 0 (4.24b)

Jij =
∫

S
dxd s0ij . (4.24c)

In such theories the fields the total momentum is zero and the fields transforms trivi-
ally under translations and boosts. This happens for several Galilean theories of rel-
evance, namely all representations of HGal (d, 1) that have S`` (Λ, λ) = S`` (λ). These
theories have no interesting dynamics, in particular no any wave solutions. If further
sµij = 0, then the theory does not carry any angular momentum.
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Example 4.5 (Galilean scalar). For massless Galilean scalars studied in section 4.1.3.1,
we have that S`` (Λ, λ) = 1, which means that the boost and rotations generators are
trivially represented. Therefore wµi = sµij = 0, and (4.18) implies that the momentum,
boost and rotation charges charges are zero and that the stress tensor is symmetric.

4.2.3 Improvement of the currents

There is an ambiguity with defining the currents whose charges generate the symmetries
on the fields as discussed in appendix B. They can be allowed to differ up to a total
derivative, which can be used to get versions of the currents with simpler properties.
We may define improved versions of the currents as

Eµ
imp = Eµ

can + ∂ρ Aρµ (4.25a)

Tµi
imp = Tµi

can + ∂ρBρµi (4.25b)

jµij
imp = jµij

can + ∂ρDρµij (4.25c)

bµi
imp = bµi

can + ∂ρEρµi (4.25d)

where the improvement terms all are antisymmetric in µ, ρ. The choice of improve-
ments does not change the physics (i.e. the symmetry generators (4.21)) if there are no
boundary terms, which we will always assume is the case. This is well-known in the case
of relativistic theories, where for the Energy-Momentum (EM) tensor it is known as the
Belinfante procedure for obtaining the symmetric EM tensor as discussed in appendix
A.3 [69]. It is also worth noting that this discussion holds even for theories that does not
have a Lagrangian formulation.

4.2.3.1 Choosing the simplest improvements

In our case we want to do something similar and put the currents in the simplest possible
form. This is the same as saying that we want to make the constraints on the energy and
momentum currents coming from the conservation equations ∂µ jµij

imp = ∂µbµi
imp = 0 as

trivial as possible by removing as much of the lift- and spin-currents as possible. One
can analyze how to maximally exploit the ambiguity to remove as much of them as
possible, with an essentially unique answer. We give details of how to perform such an
analysis in appendix D.4.1. The result one finds is

Bρµi = δ
[µ
k δ

ρ]
0

[
2w(ki) + s0ik

]
+

1
2

δ
µ
j δ

ρ
k

[
skij + sikj + sjki

]
(4.26a)

Dρµij = xiBρµj − xjBρµi (4.26b)

Eρµi = tBρµi (4.26c)
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which gives the improved spatial angular momentum and boost currents given by

bµi
imp = tTµi

imp + ψµi (4.27a)

jµij
imp ≡ xiTµj

imp − xjTµi
imp (4.27b)

where we have defined the non-conserved current that we have not succeeded in
removing by improvements as

ψµi ≡ δ
µ
0

[
w0i
]
+ δ

µ
j

[
w[ji] − 1

2
s0ij
]

. (4.28)

This current is non-conserved and as we see a combination of the lift and spin currents,
and it is antisymmetric in the spatial indices ψij = −ψji. It will turn out to be of great
significance later when we want to couple Galilean theories to Newton-Cartan geometry,
but right now its interpretation is not clear. The new improved symmetry currents now
give the following constraints from the conservation of the rotation and boost currents:

T0i
imp = −∂µψµi (4.29a)

2T[ij]
imp = 0 . (4.29b)

The stress tensor can thus always be made symmetric, but T0i
imp can in general only be

made the total derivative of the object ψµi.

4.2.3.2 Further improvements of the momentum current

If we want to keep the stress current symmetric, there are still some improvements that
can be done. We may write a new current as

T̃µi
imp = Tµi

imp + ∂ρB̃ρµi . (4.30)

Now, to still satisfy the properties (4.29), we must therefore have that ∂ρB̃ρij is sym-
metric but otherwise arbitrary.

4.2.3.3 The improvements of the energy current

The decoupling of time and space in a Galilean theory has the subtle consequence that
energy and momentum are decoupled. In fact, contrary to the Poincaré case in appendix
A.3 we have not specified the improvements of the energy current and they didn’t have
any influence on the analysis above. This is the reason why we couldn’t define currents
independent of the lift- and spin-current like in the relativistic case, as we simply didn’t
have enough improvements at our disposal because of the decoupling.

There might be other constraints that would determine the improvements uniquely.
In gauge theories we can require it to be gauge invariant, which will lead to a unique
choice of improvements.
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4.3 conserved bargmann symmetry currents

4.3.1 Canonical conserved Noether currents

Take a theory with Bargmann symmetry described by an action S [ϕ] =
∫

M dDxL (ϕ, ∂ϕ)
where the fields carries some representation of the Bargmann group. The only difference
to the Galilean case of section 4.2.1 is now that there are two extra terms in δϕ` due to
the representation of the central charge M on the field components. The infinitesimal
versions of the coordinate and field transformations (4.7) and (4.6) are given by

x′µ = xµ + δxµ (4.31a)

ϕ′`
(
x′
)

= ϕ` (x) + δϕ` (x) (4.31b)

δt = ξ0 ≡ ε0 (4.31c)

δxi = ξi ≡ εi + Λit + λijxj (4.31d)

δϕ` (x) = +iσ (M)`` ϕ` − iΛixi (M)`` ϕ`

+Λi (Bi)`` ϕ` (x) +
1
2

λij (Jij
)
``

ϕ`′ (x) . (4.31e)

The extra parameter compared to the Galilean case (4.16) is σ ∈ R corresponding to
the global U (1) symmetry of the field. The corresponding conserved current is what we
will call the mass current Jµ

can. There is an additional piece with a boost parameter from
the linearization of the projective factor exp (−i f (t, x) M) and this will change the boost
current, but otherwise the rest is as in section 4.2.1. The two conserved canonical Noether
currents that change compared to the Galilean currents (4.17) take the expression

Jµ
can ≡ −i

∂L
∂
[
∂µ ϕ`

] (M)`` ϕ` (4.32a)

bµi
can ≡ tTµi

can − xi Jµ
can + wµi . (4.32b)

We see that while the conservation law for the rotation current does not change, the
one for the boost current now implies a new relation so that we have

T0i
can = Ji

can − ∂µwµi (4.33a)

2T[ij]
can = −∂µsµij . (4.33b)

There is now a relation between the momentum density and the mass flux, which we
will exploit very soon to simplify the equation. It is again useful to write a variation of
the action in terms of general local parameters which is done as

δS [ϕ] = −
∫

M
dDx ∂µξ0Eµ

can + ∂µξ0Tµi
can + ∂µσJµ

var + ∂µλiwµi +
1
2

∂µλijsµij . (4.34)

where we recover the on-shell conservation when we take σ constant and the rest as
in (4.20).
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4.3.2 Improvement of the currents

The new mass current brings in new improvements besides (4.25). It can be improved as

Jµ
imp = Jµ

can + ∂ρCρµ . (4.35)

We may now choose the extra improvement Cρµ of the mass current in a useful way
to simplify the currents (4.33) as much as possible. The improvement Eρµi for the boost
current bµi must be chosen in a different way than in the Galilean case (4.26), but the
remaining improvements are identical. The currents are maximally simplified when we
chose

Cρµ = 2δ
[ρ
i δ

µ]
0 w0i + δ

ρ
i δ

µ
j w[ij] (4.36)

Eρµi = tBρµi − xiCρµ . (4.37)

We give the details of the argument in appendix D.4.2. With this choice we have for
the boost currents that this leads to a complete cancellation of the lift current and we
find

bµi
imp = tTµi

imp − xi Jµ
imp . (4.38)

The conservation of this now implies that we have

T0i
imp = Ji

imp , (4.39)

which is to say that momentum density is the same as the mass flux. In a massive
Newtonian theory this relation is to be expected.

Example 4.6 (Fluid). To illustrate the physical relevance of (4.39), we consider a fluid
with velocity field u (t, x) with mass density ρ (t, x). The mass flux is then simply Ji =

ρui. On the other hand the momentum of the fluid is found by summing all contributions
of the fluid particles, i.e.

Pi =
∫

S
ddx ρui =

∫
S

ddx T0i . (4.40)

From this we see that T0i = Ji, confirming the equation (4.39).

4.4 field theories on newton-cartan backgrounds

4.4.1 (Minimal) coupling to gravity

So far we have been considering theories on flat space. The Lagrangian densities we have
discussed have all of the required spacetime symmetries, albeit only in global versions.
In order to obtain a general covariant theory, we must replace the partial derivatives,
expressions etc. with covariantized ones. It is relatively straight-forward to do this for
known theories using the “minimal coupling principle” the same way we do it in general
relativity. More precisely, we should substitute time derivatives of a field ϕ` with
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∂0ϕ` 7→ −vµ∇µ ϕ` . (4.41)

Spatial derivatives may be written contracted with eµ
i along the lines of

∂i ϕ` 7→ eµ
i ∇µ ϕ` . (4.42)

The covariant derivatives here contains the appropriate boost, rotation and affine con-
nections that is required by the representation that ϕ` furnish. In principle any connec-
tion may be used as we do not have a notion of a Levi-Civita-like connection as discussed
in section 3.3, which makes the minimal coupling principle more arbitrary here than in
the relativistic case. The covariantized derivatives must be combined so that the action
is invariant under local Galilean transformations. This is not as obvious as one would
have wished for, as for example vµ transforms under boosts, while hµν does not.

The graviphotonic connection of section 3.3.3.1 is of relevance here as it is particu-
lar simple, but it is not immediately clear what Mµ can be interpreted as or what it
couples to. This connection is good for both Galilean and Bargmann theories, but in
the Bargmann case Mµ has a natural interpretation as we will show soon. If we use the
graviphotonic connection, then one may use v̂µ and êµ

i defined in (3.50) as they are boost
invariant.

We will in the following use this connection exclusively. Let us suppose that we now
have a theory that is properly coupled to some Newton-Cartan background with the
“graviphotonic Galilean connection“. The action is then in general expressed in terms of
the (inverse) vielbeins and Mµ like

S [ϕ, τ, e, M] =
∫

M
dDx eL (ϕ, ∂ϕ, τ, e, M) , (4.43)

where e = det (τ, ea) so the Lagrangian density indeed is a real scalar. Varying with
respect to the field will give us the EOMs through the Euler-Lagrange equations.

4.4.2 Enhancement of Mµ to mass gauge field

Consider a local transformation of the background defined by

δσ Mµ ≡ ∂µσ (x) (4.44)

together with leaving all vielbeins invariant, i.e. δσeµ
b = 0 et cetera. This is effectively a

U (1) gauge transformation of Mµ. Such a transformation is actually the result of diffeo-
morphisms and local Galilean transformations in a special combination. To see this, we
can write the δσ-transformation as defined above in terms of the general (infinitesimal)
transformation rules for the vielbeins and Mµ given by (3.25), (3.47). We see that the
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kind of diffeomorphisms generated by the vector ξ (σ), local boost Λa (σ) and rotations
λa

b (σ) that produces such a transformation are of the kind

Lξ(σ)Mµ = −e a
µ Λa (σ) + ∂µσ (4.45a)

Lξ(σ)τµ = 0 (4.45b)

Lξ(σ)e
a

µ = −λa
b (σ) e b

µ −Λa (σ) τµ (4.45c)

Lξ(σ)v
µ = −eµ

aΛa (σ) (4.45d)

Lξ(σ)e
µ
b = −λ a

b (σ) eµ
a . (4.45e)

We can actually find a solution that only involves a diffeomorphism and local boost
[54]. This is completely analogous to the situation of section 4.1.2 where we saw that one
can always make translations and boosts to effectively get a (global) U (1) transformation
of Bargmann fields. For the geometry this shows that the δσ-transformation is always
a local symmetry of the action (4.43) being just a particular diffeomorphism and boost,
but it does in general not give rise to a conserved current since it is not necessarily a
global symmetry to which the conserved currents are associated. This can only happen
in certain special cases, namely those where Mµ can be enhanced to the gauge field
associated with a local U (1) transformation. As Bargmann theories automatically have
a global U (1) symmetry generated by the central charge it is always enhanced to a
local U (1) symmetry with Mµ as a gauge field. We shall in this case often call it the
mass gauge field because it is associated with the conserved mass current J ρ to which
it couples. It is not a usual gauge field since it is a non-trivial part of the geometry, in
particular as it transforms under local Galilean boosts.

What Mµ couples to in Galilean theories is one of the main results of the thesis which
we will give the answer to in section 5.2.

4.4.3 Energy, momentum and the coupling of Mµ

When coupling a field theory to a Newton-Cartan background, the background fields
are now sources for energy, momentum et cetera of the theory [57, 54, 63]. We may write
the variation of the action (4.43) wrt. the background in terms of the vielbeins and Mµ

in a way that defines some currents:

δbgdS [ϕ, τ, e, M] ≡
∫

M
dDx e

(
Eµδτµ + T µ

aδea
µ + J µδMµ

)
. (4.46)

In general curved space this leads us to think of Eµ as some kind of energy current,
as it is the response of variation wrt. the local time direction τ. This current is invariant
under local Galilean transformations because τ is. This is not the case for the current
T µ

a, which should be thought of as some kind of momentum current, because it is
the response to variation of the local spatial directions. The current J µ that couples
to Mµ is likewise not invariant under local Galilean transformations and its physical
interpretation is not clear in general. However when Mµ can be enhanced to the mass
gauge field, we have by our previous analysis shown that this current should be thought
of as the covariantized version of the mass current.
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Notice that we may write the above variation in a way where the behavior under
local Galilean transformations is more clear. We can identify the expression above as a
contraction of the current

T µ

Â
≡
(
Eµ, T µ

a, −J µ
)

(4.47)

with the extended (Bargmann) frame e̊Â = (τ, ea,−M) of section 3.4. T µ

Â
can be calcu-

lated from the functional derivative

T µ

Â
=

δS [ϕ, τ, e, M]

δe̊Â
µ

, (4.48)

where the functional derivative is taken at some point at some particular section of
the extended coframe bundle. We will in chapter 5 verify that if we expand around flat
Newton-Cartan geometry, then the currents we obtain are exactly the improved ones
of sections 4.2.3 and 4.3.2. This is similar to the relationship between the Belinfante-
Rosenfeld EM tensor and the Hilbert EM tensor discussed in appendix A.3.2.

The transformation of T µ

Â
is clear as it must leave the action invariant: It transforms

under local inverse extended homogeneous Galilean group representation (2.36) as

T ′µ
Â
= T µ

B̂

(
B−1

)B̂

Â
. (4.49)

The subcurrent T µ
A =

(
Eµ, T µ

a
)

is Galilean covariant transforming under the homo-
geneous Galilean group representation (2.22) and the coupling T µ

A δeA
µ is Galilean invari-

ant on its own, while J µ will mix with the other components of the current, but J µδMµ

stays invariant. As the action is invariant when we do GCTs and local Galilean trans-
formations of (3.25), (3.47), there are now various off-shell Ward identities that relate the
currents and state the covariant conservation equations [13, 54]. If we do diffeomorphic
variations, i.e. δe̊Â

µ = Lξ e̊Â
µ , we obtain the covariantized version of the currents (4.17) and

their covariant conservation equations:

1
e

∂µ

(
eT µ

Â
e̊Â

λ

)
= T µ

Â
∂λ e̊Â

µ . (4.50)

We can also perform the transformation (4.44) which then implies

1
e

∂µ (eJ µ) = 0 . (4.51)

Notice that this shows that we in general only have D conserved currents, but T µ

Â
has D + 1 Galilean components. This is a reminiscence of the fact that J µ only is a
symmetry current when there is a local U (1) symmetry of the field theory. If this is the
case, then the conservation (4.51) is non-trivial, which we see an example of in section
7.2.1. If there is no local U (1) symmetry of the field theory, then (4.51) is going to be
trivial in one way or another as it cannot correspond to a symmetry current. This we see
an example of in section 8.2.5.

If we instead do a Galilean boost (3.25), (3.47) we obtain:

J µeµa = −T µ
aτµ . (4.52)
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When J µ is a true symmetry current because of the local U (1) symmetry enhance-
ment, then this is the covariant version of the statement that momentum density is equal
to mass flux (4.39) that was found by considering improvements of the flat currents. Oth-
erwise this is just relation that must be built into the theory.

If we do a spatial rotation (3.25) we obtain:

0 = eµ[aT
µ

b] . (4.53)

This is the covariant version of the flat case version (4.29) where we showed that we
can always make improvements so that the stress tensor is symmetric.

There is nothing stopping us from defining other energy and momentum current-like
objects that encode the same information. Having such quantities in terms of spacetime
tensors is particular useful. This is for example obtained by defining the variation of the
action in terms of (3.50) like Hartong et al. [54] do it:

δbgdS
[

ϕ, v̂, h−1, Φ̃
]
≡
∫

M
dDx e

(
−τµTµ

νδv̂ν − êa
µv̂νTµ

ν êσaτρδhρσ

+
1
2

êb
µeνaTµ

ν êσb êρaδhρσ + τµJ µδΦ̃
)

, (4.54)

where we see that Tµ
ν encodes information about both energy and momentum, so it

may also claim to be a notion of an EM tensor for theories on Newton-Cartan geometry.
There is also yet another definition of an energy-momentum tensor-like object [70].

This one is one most convenient to use for the theories we consider in chapters 7 and
8, but it does of course encode the same information. We here define the variation wrt.
vµ, hµν and Mµ as

δbgdS
[

ϕ, v, h−1, M
]
≡
∫

M
dDx e

(
−Sµδvµ + Tµνδhµν + J µδMµ

)
. (4.55)

The current Tµν is here symmetric and invariant under local Galilean transformations,
while this is not the case for Sµ, Jµ. We may solve for Tµ

ν, J µ or Sµ, Tµν, J µ in terms
of T µ

Â
or vice versa equating (4.46) and (4.54) or (4.55). We find the relevant formulas

to be:

Tµ
ν = −vµSν + hµρTρν −J µ Mν (4.56a)

Eµ = 2hµρvσTρσ − vµSρvρ (4.56b)

T µ
a = vµSρeρ

a − 2hµρTρσeσ
a . (4.56c)
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N E W T O N - C A RTA N F R O M T H E N O E T H E R P R O C E D U R E

In this chapter we see how we from the starting point of globally invariant
non-relativistic field theories can construct Newton-Cartan geometry at the
linear level. This is done following the Noether procedure for both Galilean
and Bargmann field theories. The analysis will make the coupling to geo-
metry clear so that we can see what the vielbeins and gauge fields couple to.
We shall give an argument showing that the graviphotonic connection is the
minimal connection of Newton-Cartan geometry and determine its coupling
for both Galilean and Bargmann theories.

5.1 the noether procedure in galilean field theory

The way we obtained Newton-Cartan geometry in chapter 3 was more-or-less simply
figuring out how to define a geometry that had the correct properties imposed by a non-
relativistic theory of gravitation. In a sense this was a very constructive procedure with
little regard for the field theories that we want to live on these manifolds, as they entered
at the last stage of our analysis. Only after coupling the field theories to Newton-Cartan
geometry was it possible to figure out what could be inferred about the field theory
from the geometric framework.

One might wonder whether it is possible to turn this whole thing around and take the
field theories as the starting point and see what they would imply about the geometry.
This is indeed possible and is well-known in the literature as the Noether procedure
[71, 72]. The goal of the Noether procedure is to obtain an action S [ϕ, A] invariant under
local symmetries starting from an action S(0) [ϕ] invariant only under global symmetries.
This is done by adding gauge fields Aµ to the theory and modifying the action by
adding coupling of the gauge fields to matter currents and modifying transformation
laws. There is a systematic way of doing this iteratively which we review in the general
case in appendix B.2.

In our case the global symmetries are the Galilean transformations (4.16) of some field
theory with action S(0) [ϕ] =

∫
M dDxL (ϕ, ∂ϕ). The relevance of the Noether procedure

in coupling the theory to gravity stems from the observation that at lowest order this
is equivalent to having the theory invariant under local Galilean transformations. Fol-
lowing the Noether procedure, we will obtain just that. We are not aware of a complete
treatment applying this to theories with non-relativistic spacetime symmetries. The ad-
vantage of doing this is that it is easy to see what degrees of freedom couple to what
and how to obtain a minimal geometric structure that realizes the coupling to gravity.

At lowest order the general results of the Noether procedure (B.15) are universal
for any theory. We simply add the coupling of the flat conserved spacetime Noether
currents coupled to gauge fields to the action, which will then provide the lowest order
local invariance of the action. In our case that the gauge fields are going to be inverse
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vielbeins τµ, eµi coupling to the energy and momentum currents which gives us the local
translations, and gauge fields Ωµi, ωµij that couples to the non-conserved lift- and spin-
current to provide local boosts and rotations. The action up to first order is then given
by

S
[
ϕ, e, τ, Ω, ω

]
≡ S(0) [ϕ] + S(1) [ϕ, e, τ, Ω, ω

]
, (5.1a)

S(1) ≡
∫

M
dDx

[
τµEµ

can + eµiT
iµ
can −Ωµiwµi +

1
2

ωµijsµij
]

(5.1b)

where we assign the local (first order) transformation law to the gauge fields that
according to the general theory should be

δ(1)τµ = ∂µε0 (5.2a)

δ(1)eµi = ∂µεi + λijδ
j
µ + Λiδ

0
µ (5.2b)

δ(1)Ωµi = ∂µΛi (5.2c)

δ(1)ωµij = ∂µλij . (5.2d)

In our case the vielbeins τµ, eµi must couple to Eµ
can, Tµi

can, while the boost and rota-
tion gauge fields Ωµi, ωµij must couple to the non-conserved wµi, sµij. This is in contrast
with a general internal gauge theory where all gauge fields would couple to conserved
currents and only tensors can couple to non-conserved currents. The coupling of gauge
fields to non-conserved currents is a special feature of gauging spacetime symmetries
and can be traced back to the fact that the background changes under the local trans-
formations [73]. For instance one sees from (4.16) that a boost comes with an infinites-
imal translation and only the total variation is proportional to a conserved current as
described on page 50. In principle one could go to next order in the iteration as outlined
in appendix B.2, but lowest order will be sufficient to study aspects of the coupling to
Newton-Cartan geometry.

The gauge fields Ωµi, ωµij can in principle be chosen arbitrarily, but we would like to
see what the “minimal choice” is. This is where the improvements (4.25), (4.26) that sim-
plify the conservation equations maximally enter the picture. Because we have chosen
the improvements so they were written entirely in terms of wµi, sµij, we can do straight-
forward integration by parts to find new objects Cµa, Cµab that couple to these currents:

S(1) =
∫

M
dDx

[
τµEµ

can + e0iTi0
imp +

1
2

sijT
ij
imp − Cµiwµi +

1
2

Cµijsµij
]

, (5.3)

where we write va = −e0a and have defined the perturbation of the spatial metric
sij ≡ 2e(ij) in agreement with section 3.8 and define

Cµa ≡ Ωµa − Ω̂µa (5.4a)

Cµab ≡ ωµab − ω̂µab (5.4b)
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Ω̂µa ≡ −δc
µ

(
1
2

∂0sca + ∂(cva)

)
(5.4c)

ω̂µab ≡ −δ0
µ

(
∂0e[ab] + ∂[avb]

)
+ δ0

µ

(
∂[asb]c − ∂ce[ab]

)
. (5.4d)

The details of the calculation is given in appendix D.5.1. We give a demonstration
of the above for Galilean electrodynamics in section 8.3. The objects Ω̂µa, ω̂µab arise
from the integration by parts are not actual connections on their own, as one can check
that their transformation properties under local Galilean transformations are not ex-
actly those of gauge fields at lowest order given by (3.99). However, these objects are
nonetheless well-known. They are identical to the linearized pseudo-gauge fields of the
pseudo-connection (3.96).

The reason why it is expected that we obtain just this is that the improvements of the
currents we chose simplifies them maximally. As it is the canonical currents that the viel-
beins couple to and we simply substitute the improved currents and the improvements
that simplified the conservation equations the most, we “extract” as much of a connec-
tion that can be expressed in terms of the vielbeins as possible. Contrary to the Noether
procedure for field theories with global Poincaré symmetry studied in appendix A.4
where the same line of reasoning gave the linearized Levi-Civita connection, we here
do not exactly get a connection, but only the well-known linearized pseudo-connection
(3.96). It might be profitable to review how this works in a more familiar setting, where
we also explain why it is expected that we in that case obtains a connection from the
improvements.

This proves at the linear level the previous result that the Galilean algebra cannot be
realized on the vielbeins alone that we discussed in section 3.3.2. The objects Cµa, Cµab
have the exact same structure as the pseudo-contortions, being the difference between a
true connection and the pseudo-connection that was introduced in section 3.3.3.

Hence the above shows that the Noether procedure reproduces a large part of the
Newton-Cartan geometry studied in chapter 3. We still need to determine a connection
in this language. To obtain a good connection, we thus need to add something (i.e.
choose Cµa, Cµab), and the big question is what must minimally be added.

5.2 the coupling of the background field Mµ

Let us now investigate what the minimal connection is that we can construct. To realize
a connection in this field theoretical approach, we need to be able to build it from
the coupling of some field to currents of the theory that are not coupled to anything,
because otherwise they will modify the conserved currents of the theory. The only such
current we have left after improvements is the current ψµ i defined in (4.28). A coupling
to ψµ i directly will obviously not work as it does not have the right index structure to
give pseudo-contortions. Also it cannot appear as a combination that gives a non-trivial
conserved current, because then there is an additional symmetry generator which would
enhance the theory. The unique choice that satisfies all of these requirements is given by
defining the current Φρ expressed in terms of ψµ i as
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Φρ ≡ −
(

∂0 ψ0 j + ∂ i ψ
i j
)

δ
ρ
j + ∂ j ψ

0 j δ
ρ
0 . (5.5)

Notice that Φρ as defined is automatically conserved by the antisymmetry of ψij and
thus is a topological current. In section 8.1.3 we shall investigate an example that sheds
some light on what the origin of the topological current is.

Given the structure of Φρ it is then obvious that we need to introduce a background
field Mµ, with linear order piece Mµ that is defined to transforms under boosts as

δ(1)Mµ = δa
µΛa . (5.6)

This is of course the linearized version of our graviphoton of section 3.3.3.1 as it have
the same linearized transformation. By adding the coupling MρΦρ to the action S(1) we
have

S(1) =
∫

M
dDx

[
τµEµ

can + e0iTi0
imp +

1
2

sijT
ij
imp + MρΦρ

]
. (5.7)

The coupling MρΦρ can actually be rewritten as pseudo-contortions by doing some
integration by parts and using the definition of ψµj in terms of lift- and spin-currents.
One finds

Cµi = −2δ0
µ∂[0Mi] − δ

j
µ∂[j Mi] (5.8a)

Cµij = δ0
µ∂[i Mj] (5.8b)

and one may check that this defines a good connection by adding these to Ω̂µa, ω̂µab
as

Ωµa ≡ Ω̂µa + Cµa (5.9a)

ωµab ≡ ω̂µab + Cµab . (5.9b)

These are exactly the gauge fields of the graviphotonic connection (3.51) at the linear
level discussed in section 3.8.3. This shows that the graviphotonic connection should be
thought of as the closest to a “Levi-Civita”-like connection we can have in a torsional
Newton-Cartan geometry in the sense that it realizes the geometry minimally.

Since (5.9) defines a connection, we can obtain any other Galilean connection by
adding “contortion”-like tensors to it after restoring the proper tensorial index structure.
This will evidently result in connections that couple non-minimally to the lift- and spin-
currents wµi, sµij similar to the extension of general relativity to Einstein–Cartan–Sciama–
Kibble theory with torsionful connections.

We can now also present the main contribution to Newton-Cartan geometry of this
thesis from the analysis that solves the mystery about the field theoretic interpretation
of Mµ when it does not become the mass gauge field:

When Mµ is not enhanced to a U (1) gauge field coupling to the mass current, it
remains a background field that couples to the topological current Φρ.
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By integrating over a spatial hypersurface we obtain the corresponding charge is Q =∫
S ddx ∂jψ

0j = 0 using Stokes’ theorem as expected. This does not imply that the current
is completely trivial. In particular it might have interesting correlation functions with
other currents of the theory. This would imply that it in principle is measureable.

5.3 the coupling of Mµ in bargmann theories

We have in the last section solved the mystery of what the background Mµ couples to
in Galilean theories with no central charge. We can understand more about the current
Φρ by examining the relationship to theories with Bargmann symmetries. Again we
will use the Noether procedure starting with some globally invariant field theory that
furnishes some representation of the Bargmann group. The extra global U (1) symmetry
generated by M in the Bargmann transformations (4.31) introduces an extra coupling in
the S (1) action of a new gauge field mµ that couples to the mass current J µ

can that we
determined in (4.32). The action now becomes

S
[

ϕ , e , τ , Ω , ω , m
]
≡ S (0) [ϕ ] + S (1) [ϕ , e , τ , Ω , ω , m

]
, (5.10a)

S (1) ≡
∫

M
dD x

[
τ µ Eµ

can + eµ i T
iµ
can − mµ J µ

can +
1
2

ω µ i j sµ i j − Ωµ i wµ i
]

(5.10b)

where, according to the general theory, we should give mµ the first order transforma-
tion

δ (1)mµ = ∂µ σ + δ a
µ Λ a , (5.11)

and the remaining fields the same transformations as in the Galilean case (5.2).
Using the improvements of the boost and mass currents discussed in section 4.3.2 that

simplified the conservation equations maximally, we may again express the canonical
currents in terms of the improved ones together with their improvements. Comparing
to the Galilean case it is only the extra improvements of the mass current that needs to
be introduced. Doing integration by parts on this, we eventually find

S (1) =
∫

M
dD x

[
τ µ Eµ

can + e0 i T i0
imp +

1
2

s i j T
i j
imp − mµ J µ

imp +
1
2

Cµ i j sµ i j − Cµ i wµ i
]

,

(5.12a)

Cµa ≡ Ωµa − Ω̊µa (5.12b)

Cµab ≡ ω µab − ω̊ µab (5.12c)

Ω̊µa ≡ −δ c
µ

(
1
2

∂0 s ca + ∂ (c v a)

)
− 2δ0

µ ∂ [0 m a ] − δb
µ ∂ [b m a ] (5.12d)

ω̊ µab ≡ −δ0
µ

(
∂0 e [ab ] + ∂ [a vb ]

)
+ δ0

µ

(
∂ [a sb ]c − ∂ c e [ab ]

)
+ δ0

µ ∂ [a mb ] .
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The connection we obtain now is exactly the linearized version of the graviphotonic
connection of section 3.8.3. We give the details of the calculation in appendix D.5.2.
The difference compared to what we did for Galilean theories in section 5.1 is now
that mµ immediately has the interpretation as the linearized mass gauge field while
the linearized background field Mµ of the previous section does not a priori couple
to a symmetry current. Assigning to Mµ the transformation δσ Mµ = ∂µ σ (x) as the
result of a local translation and boost discussed in section 4.4.2 effectively makes them
identical. This proves at the linear level that in Bargmann theories this enhancement of
Mµ to a U (1) gauge field is automatic.

The topological current Φρ is exactly the same as those improvements of the mass
current we choose above in order to simplify the conservation equations as much as
possible. In general we can therefore write

Jµ
imp = Jµ

can + Φµ , (5.13)

which Mµ then couples to. A Galilean theory then has a zero canonical mass current
Jµ
can as is familiar from the analysis of chapter 4.
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D I M E N S I O N A L R E D U C T I O N

In this chapter we see how to obtain non-relativistic theories from relativ-
istic ones by performing a null reduction. Both theories on curved Lorent-
zian manifold and flat Minkowski spacetime will be considered. We will
also discuss how to null reduce the higher-dimensional energy-momentum
tensor and see how the improvements can shed light on the currents of non-
relativistic theories.

6.1 null reduction of lorentzian spacetimes

6.1.1 Frames and metric

In section 2.4.4 we analyzed how Barg (d, 1) can be embedded in Poin (d + 1, 1) through
a null reduction of the algebra. This can be carried over to the vielbeins eµ̂

Â
, eÂ

µ̂ and
Lorentzian metric gµ̂ν̂ of a D + 1 dimensional spacetime that allows a null Killing
vector. Null reductions are a very efficient way of obtaining non-relativistic theories
coupled to Newton-Cartan geometry from higher dimensional relativistic ones coupled
to Lorentzian geometry as we shall demonstrate this in several examples in the following
chapters.

For a given D + 1-dimensional Lorentzian manifold we take the coordinates to be
xµ̂ =

(
x+, xi, x−

)
= (xµ, u) so that the null coordinate is u ≡ x− with null vector ∂u. The

u = constant null hypersurface as illustrated in figure 5 is then a Bargmann spacetime of
dimension D to which ∂u is the normal vector [12, 47]. For general Lorentzian covariant
tensors we can perform a pullback to the null hypersurface to define covariant tensors
on Bargmann spacetime immediately. On the other hand, general contravariation Lorent-
zian tensors can only be consistently be pulled back to the null hypersurface if they are
invariant in the u-direction.

To find the correct null reduction of the vielbeins, we first recall the analysis of sec-
tion 2.4.4 that showed that we must require that the null reduction leaves out (Lorentz)
rotations in (xµ, u)-hyperplanes. This breaks the higher-dimensional structure group
SO (d + 1, 1) to HGal (d, 1) = SO (d) n Rd. A convenient (co)frame for the reduction
of the (inverse) vielbeins is found by choosing the sections of the higher-dimensional
(co)frame bundles as [74]

e Â
µ̂ =

(
τµ e a

µ −Mµ

0 0 1

)
(6.1a)

eµ̂

Â
=

(
−vµ eµ

a 0

−Mµvµ Mµeµ
a 1

)
. (6.1b)
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Figure 5
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Figure 5: Geometry of the null reduction: The u = constant null hypersurface is the D dimen-
sional Bargmann spacetime.

The naming of the various components is of course not arbitrary: They are in one-
to-one correspondence with the objects we defined in chapter 3. It is then obvious that
the vielbeins transform nicely under the reduction of SO (d + 1, 1) to HGal (d, 1) with
their usual transformation rules. This choice can be verified to satisfy eÂ

µ̂ eν̂
Â
= δν̂

µ̂ and

eÂ
µ̂ eµ̂

B̂
= δÂ

B̂ as they must being proper vielbeins, which makes it clear that a subset of

the higher-dimensional vielbeins includes both the Galilean coframe e A
µ =

(
τµ, e a

µ

)
of

section 3.1 and the extended Bargmann coframe e̊ Â
µ =

(
τµ, e a

µ , −Mµ

)
of section 3.5. In

particular the null reduction gives a natural interpretation of the extended Bargmann
frame bundle approach of section 3.4.1.

If we now write the Lorentzian metric gµ̂ν̂ = ηÂB̂e Â
µ̂ e B̂

ν̂ and its inverse gµ̂ν̂ = η ÂB̂eµ̂

Â
eν̂

B̂
in terms of the vielbeins (6.1), we obtain [70]

gµ̂ν̂ =

(
gµν gµu

guν guu

)
=

(
hµν τµ

τν 0

)
(6.2a)

gµ̂ν̂ =

(
gµν gµu

guν guu

)
=

(
hµν −v̂µ

−v̂ν 2Φ̃

)
(6.2b)

hµν ≡ hµν − 2τ(µ Mν) (6.2c)

Φ̃ ≡ −vµ Mµ +
1
2

hµν Mµ Mν (6.2d)

v̂µ ≡ vµ − hµν Mν , (6.2e)

ê a
ν ≡ e a

ν − eµa Mµτν . (6.2f)
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We see that all of these quantities are known as we defined the exact same ones
when considering the graviphotonic connection in section 3.3.3.1. Notice that ∂u is a
Killing vector of the metric in these coordinates. Had we done the simplest Kaluza-
Klein reduction of a metric with such a null Killing vector ∂u, we would have obtained
the exact same result [75]. The difference compared to the usual reduction along a spatial
Killing vector is that the nullness of ∂u implies that the would-be dilaton scalar is zero
as guu = g (∂u, ∂u) = 0. We can write the higher-dimensional metric in a component free
form in some coordinate system as

gµ̂ν̂dxµ̂dxν̂ = 2τµdxµ ⊗ (du−Mνdxν) + hµνdxµ ⊗ dxν . (6.3)

Here it is easy to see that the most general transformation that preserves the form of
the null Killing vector ∂u is given by

u′ = u + σ (x) (6.4a)

M′µ = Mµ + ∂µσ (x) , (6.4b)

where we see that the graviphoton Mµ transforms as a U (1) gauge field under such a
coordinate transformation and u gets a local xµ-dependent translation. This corresponds
to a particular local translation along the null direction u , so it is the equivalent of the
transformation (4.44) and what we discussed in section 4.4.2.

In the particular choice of frame (6.1) the measure reduces to√
|g| = e = det (τ, ea) , (6.5)

which is the same as the measure of D-dimensional Galilean spacetimes introduced
in (3.16). When we write higher-dimensional actions, we will then be able to pull out
the D-dimensional non-relativistic action with the correct measure.

6.1.2 Dimensional reduction of the Hilbert EM tensor

Assume now that we have an action Ŝ [ϕ, g] =
∫

dxD+1
√
|g|L (ϕ,∇ϕ) for a D + 1 di-

mensional field theory coupled to Lorentzian geometry. The response of the variation
of the action wrt. the metric gµ̂ν̂ is by definition the Hilbert energy-momentum tensor
(A.23):

δŜ [ϕ, g] =
1
2

∫
dxD+1

√
|g|Tµ̂ν̂

Hilδgµ̂ν̂ . (6.6)

The covariant conservation law for the current follows from the diffeomorphic Ward
identity where we take δgµ̂ν̂ = Lξ gµ̂ν̂ and the result is:

0 = Tµ̂ν̂
Hil∂ρ̂gµ̂ν̂ − 2

1√
|g|

∂µ̂

(√
|g|Tµ̂ν̂

Hilgν̂ρ̂

)
. (6.7)

In terms of the higher-dimensional Levi-Civita connection, which is only a part of
the full connection we choose, this is equivalent to ∇̂µ̂Tµ̂ν̂

Hil = 0. We can also write the
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components of the variation in terms of the reduced vielbeins using the variation of δgµ̂ν̂

expressed in terms of the reduction (6.2a) [70]. For this we find

1
2

Tµ̂ν̂
Hilδgµ̂ν̂ =

1
2

Tµν
Hilδhµν + Tµu

Hilδτµ

=
1
2

Tµν
Hil

(
δhµν − 2δτ(µ Mν) − 2τ(µδMν)

)
+ Tµu

Hilδτµ . (6.8)

This can easily be expressed in terms of the variations in section 4.4.3 where we gave
three different definitions of objects that encoded the information about the EM tensor.
In particular we can most easily convert the above to a variation of e̊Â

µ which defined the
current T µ

Â
and using δhµν = 2ea

(µδea
ν) we find

Eµ = Tµu
Hil − Tµν

HilMν (6.9a)

T µ
a = Tµν

Hileµa (6.9b)

J µ = −Tµν
Hilτν . (6.9c)

The other currents defined in section can be found by converting the above ones using
(4.56).

6.1.3 Reduction of the Levi-Civita connection

Using the formulas of the reduction we can null reduce the Levi-Civita connection as it
is expressed entirely in terms of the vielbeine. For the Christoffel symbols we find using
the formulas of (6.2)

Γ̂λ
µν =

1
2

gλσ̂
(
∂µgνσ̂ + ∂νgµσ̂ − ∂σ̂gµν

)
= −v̂λ∂(µτν) +

1
2

hλσ
(

∂µhνσ + ∂νhµσ − ∂σhµν

)
. (6.10)

We see that the result is the graviphotonic connection (3.51) with no torsion. As we
have not constrained τ to be closed in the null reduction, this shows that doing the direct
reduction of Γ̂λ̂

µ̂ν̂ will only give a good connection for the Newton-Cartan hypersurface
if we afterwards by hand enforce dτ = 0.

It is actually possible to obtain a more general Galilean connection from the higher-
dimensional Levi-Civita connection with τ satisfying only the Frobenius condition τ ∧
dτ = 0 and thus the spacetime being of the TTNC kind discussed in section 3.3.2. This
is obtained through a different reduction of the Levi-Civita connection that preserves
∇ρτµ = ∇ρhµν = 0, which is discussed in more details by Hartong [47]. In particular
this shows that one can obtain a torsionful Galilean connection by null reduction of
the Levi-Civita connection, but it is not possible to obtain completely general torsionful
connections.
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6.2 null reduction of minkowski spacetime

In the special case of flat Minkowski spacetime the null reduction is very simple and we
can give general formulas for derivatives etc. [65]. The higher-dimensional vielbeins be-
come identity matrices so the metric becomes (2.43) and the general action is of the form
Ŝ [ϕ] =

∫
dxD+1L (ϕ, ∂ϕ). The higher-dimensional partial derivative ∂µ̂ decomposes to(

∂µ, ∂u
)
. We can assume that the fields are mass eigenvectors satisfying (M)`` ϕ` = mϕ`

as discussed in section 4.1.2. Since mass is the momentum in u-direction this implies
that they can always be written as

ϕ` (t, x, u) = e+imuφ` (t, x) . (6.11)

If the corresponding non-relativistic fields are massless, then the higher-dimensional
can have no dependence on u. The representation of the higher-dimensional Minkowski
group that the field components carry reduce to one of the representations of HGal (d, 1)
like those considered in section 4.1.

Example 6.1 (Vector representation). When null reducing the defining D + 1-vector rep-
resentation of the Minkowski group, the representation becomes the extended Galilean
vector representation (4.14).

With the higher-dimensional canonical energy-momentum tensor T̂µ̂ν̂
can and its im-

provements given in appendix A.3 there is now a short-cut to finding the corresponding
non-relativistic symmetry currents. Specializing the equations (6.9) to flat space, we find

T̂µu
can = Eµ

can (6.12a)

T̂µi
can = Tµi

can (6.12b)

T̂µ0
can = Jµ

can . (6.12c)

If it happens that the higher-dimensional field has no dependence on u, then this im-
plies that there is no U (1) symmetry current and Jµ

can is zero. The symmetric (Belinfante-
Rosenfeld) EM tensor T̂µ̂ν̂

can is obtained by choosing the improvements as (A.21). For the
reduction this leads to improvements for all currents given by

Eµ
imp = Eµ

can + ∂λ Aλµ0u (6.13a)

Tµi
imp = Tµi

can + ∂λ Aλµi (6.13b)

Jµ
imp = Jµ

can + ∂λ Aλµ0 . (6.13c)

The dimensional reduction is a good route to choosing the improvements of the en-
ergy current, that were otherwise completely undetermined by the analysis of section
4.2.1. Notice also that even if it happens that there is no conserved mass current, then it
does still receive improvements. The current Jµ

imp contains in this case only total deriv-
atives and in fact as we discussed in section 5.3 exactly the current Φµ. We will see an
example of the relevance of this in section 8.1.3.
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In this chapter we will study the Schrödinger model on both flat and curved
Newton-Cartan spacetime. We will see how it can be obtained from a null
reduction of a relativistic theory. Its conserved currents are derived, and we
will see how it fits into the general theory developed so far.

7.1 schrödinger model on flat newton-cartan spacetime

The D-dimensional free Schrödinger model is defined by the action on a flat Newton-
Cartan spacetime as

S(0) =
∫

M
dxDL(0) =

∫
M

dxD (imφ∗∂0φ− imφ∂0φ∗)− ∂iφ
∗∂iφ . (7.1)

The EOMs are given by the Euler-Lagrange equations

i∂0φ = − 1
2m

∂i∂
iφ . (7.2)

This is of course the well-known free Schrödinger equation, which in quantum me-
chanics is interpreted as describing the time-evolution of the wave-function φ (t, x) for a
single particle [76]. As a classical field theory it is a scalar Bargmann field that we also
considered briefly in example 4.2. Besides the Galilean spacetime symmetries, it also
has a global U (1) symmetry φ′ = e+imσφ and the corresponding conserved currents are
given by (4.17), (4.32):

Tij = 2∂(iφ∗∂j)φ + δijL(0) (7.3a)

T0i = imφ∂iφ∗ − imφ∗∂iφ (7.3b)

Jµ =
[
2m2φφ∗

]
δ

µ
0 + [imφ∂iφ

∗ − imφ∗∂iφ] δµi (7.3c)

Eµ =
[
imφ∂0φ∗ − imφ∗∂0φ + L(0)

]
δ

µ
0 +

[
∂0φ∗∂iφ + ∂iφ∗∂0φ

]
δµi . (7.3d)

There are no improvements like those of section 4.3.2 to be done because sµij = wµi =

0. The mass current Jµ is in QM known as the probability current and the conservation
of it guaranties the interpretation of |φ (t, x)|2 ∝ J0 as probability density.

Besides these symmetries, the action is also invariant under a Lifshitz scaling with z =

2 and a so-called temporal special conformation transformation. The maximal symmetry
group of the free Schrödinger model is the Schrödinger group which we consider in
appendix C, which is one of the non-relativistic conformal groups [28, 77].
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7.2 null reduction of massive scalar coupled to gravity

We now want to employ the methods of chapter 6 to obtain the Schrödinger model on
a general Newton-Cartan background. Our stating point is the complex Klein-Gordon
scalar field Ψ (t, x, u) with potential V (|Ψ|) coupled to Lorentzian geometry as

ŜKG [Ψ, g] =
∫

dD+1x
√
−g
(
−gµ̂ν̂∂µ̂Ψ∗∂ν̂Ψ−V (|Ψ|)

)
. (7.4)

Since we want a Bargmann scalar of mass m, the higher-dimensional field must be of
the form

Ψ (t, x, u) = e+imuφ (t, x) . (7.5)

Using the results (6.2) we can easily perform the null reduction decomposing the
metric and taking derivatives of the scalar field. The result is

SSch

[
φ, v, h−1, M

]
=

∫
dDxe

[
imvνφ∗Dνφ− imvµφDµφ∗

−hµνDµφ∗Dνφ−V (|Ψ|)
]

, (7.6)

where we have defined the covariant derivative

Dµφ ≡ ∂µφ− imMµφ . (7.7)

We give the details of this reduction in appendix D.7.1. This action thus describes
the Schrödinger model coupled to Newton-Cartan geometry, which in flat space has the
Schrödinger equation of quantum mechanics as EOM. This action would be the relevant
one to use if we wanted to study the minimal coupling of quantum mechanics to non-
relativistic gravity and is now completely covariantized [78]. Each term is not invariant
under boosts etc. on their own as for example vµ transforms under boosts, but the whole
action is. The Bargmann scalar φ now transforms under the covariant generalization of
the projective transformation (4.6).

We see that Mµ is the U (1) mass gauge field associated with the transformation (6.4a),
which here gives a local U (1) transformation of the scalar field as

φ (x) → e+imσ(x)φ (x) (7.8a)

Mµ → Mµ + ∂µσ (x) . (7.8b)
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7.2.1 Energy, momentum, mass and Ward identities

To determine the objects that encode information about energy, momentum and the
mass current, we vary the background wrt. the fields vµ, hµν and Mµ. This leads us
directly to obtaining the currents Sµ, Tµν, J µ defined in (4.55)

Sµ = −Lτµ − imφ∗Dµφ + imφDµφ∗ (7.9a)

Tµν = −1
2
Lhµν − D(µφ∗Dν)φ (7.9b)

J µ = −2m2φφ∗vµ + imhµν (φ∗Dνφ− φDνφ∗) . (7.9c)

We give details of the calculation in appendix D.7.2. Here the current J µ satisfies the
covariant conservation equation (4.51) non-trivially using the EOM. We can calculate the
other components of the current T µ

Â
=
(
Eµ, T µ

a, −J µ
)

using (4.56) and find

Eµ = vµ
(
imφDρφ∗ − imφ∗Dρφ

)
vρ

−hµρvσD(ρφ∗Dσ)φ−Lvµ (7.10a)

T µ
a = vµ

(
imφDρφ∗ − imφ∗Dρφ

)
eρ

a

+hµρ
(
Lhρσ + 2D(ρφ∗Dσ)φ

)
eσ

a . (7.10b)

It is instructive to check that with this more elaborate framework can obtain correct
flat versions of the currents (7.3) using the results of section 3.7. With this we should
also take Dµ → ∂µ and after a small simplification we reproduce (7.3) with T µ

a = Tµ
a,

Eµ = Eµ and J µ = Jµ as expected.

7.3 linearization

It is illuminating to see how this specific example reproduces the results predicted by
the general theory of section 5.3. We use the general results of section 3.8 for how to
linearize Newton-Cartan geometry. Keeping only zeroth and first-order terms, we then
find that the action (7.6) (with V (|φ|) = 0 for simplicity) linearizes as expected and we
can read off the flat space currents in agreement with the correct flat currents (7.3). We
can therefore write the linearized coupling as

S =
∫

dd+1x
[
L(0) + τρEρ +

1
2

sijTij + ei0T0i −Mρ Jρ

]
. (7.11)

One sees here that Mρ couples to a conserved non-zero mass current as was predicted
by the Noether procedure of section 5.3.
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7.4 correlation functions in flat spacetime

7.4.1 Dimensional reduction of relativistic propagator
Figure 6
28. januar 2016 13:39

   Hurtige noter side 1    

Figure 6: Deformation of the contour of integration for the Fourier transform of the propagator
(7.13). Notice that there is only contributions from a single pole.

Propagators are essential to understand the dynamics of the theory. Moreover, they gives
a simple way to solve inhomogeneous EOMs with sources being Green’s functions. It
would be useful if we could obtain the propagators of the non-relativistic theory by a
null reduction of their relativistic cousins, which we will see is the case. The higher-
dimensional momentum in the chosen null coordinates is given by

p2 = −2p+p− + p2 = −2Em + p2 . (7.12)

The massless Feynman propagator for the Klein-Gordon equation in D+ 1 dimensions
in momentum space in the light-cone coordinates of the null reduction is given by

G (E, p) =
1

−2Em + p2 − iε
. (7.13)

The mass m 6= 0 is fixed by the corresponding mass of the field and hence it is not a
variable of the propagator [79]. Unlike the relativistic case we see that here there is only
a single pole at E = p2/2m for ε → 0, which is exactly the on-shell Newtonian relation
between energy, momentum and mass.
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To obtain the position space propagator we have to perform a Fourier transformation
as well. We can then perform the E integral using the residue theorem for t > 0 and t < 0
using the contours shown in figure 6, only the first one will give something non-zero.
After performing the p-integral, the result is

〈φ (t, x) φ∗ (0, 0)〉 =
∫

RD

dd pdE

(2π)D
−i

−2Em + p2 − iε
eiEt−ip·x

= θ (t)
1

2m

(
− im

2πt

)d/2

e−
imx2

2t . (7.14)

This is indeed the well-known free Schrödinger propagator which solves the Schrödinger
equation (7.2) [80]. As the time-ordered massless relativistic propagators of theories
with a standard kinetic term ∼ ∂µ ϕ`∂µ ϕ` are proportional to the Feynman propagator
this verifies that a null reduction will give the corresponding non-relativistic versions
which is very useful. The appearance of the Heaviside step-function θ (t) shows that the
non-relativistic propagator is causal in the sense that there is no correlation in the past
direction t < 0.

Example 7.1 (Sources and potentials). Given a source J (t, x) in the free Schrödinger
equation (7.2)

i∂0φ +
1

2m
∂i∂

iφ = J , (7.15)

the inhomogeneous solution is given by the integral with the free Schrödinger propaga-
tor as the kernel:

φ (t, x) =
∫

RD
dDx′

〈
φ (t, x) φ∗

(
t′, x′

)〉
J
(
t′, x′

)
. (7.16)

This kind of interaction is not of relevance if we want to consider couplings to a potential
V (t, x) where the relevant EOM is

i∂0φ +
1

2m
∂i∂

iφ = Vφ . (7.17)

We can solve for the full propagator G (t, x|t′, x′) of this equation in terms of the free
Schrödinger propagator, which has the well-known Born series as a formal solution [81]

G
(
t, x|t′, x′

)
=
〈
φ (t, x) φ∗

(
t′, x′

)〉
+
∫

RD
dDx′′

〈
φ (t, x) φ∗

(
t′′, x′′

)〉
×V

(
t′′, x′′

) 〈
φ
(
t′′, x′′

)
φ∗
(
t′, x′

)〉
+
∫

RD

∫
RD

. . . . (7.18)

One could also be more general and add self-interactions of cubic, quartic etc. order,
which we would have to study perturbatively as they make the EOMs non-linear in φ.
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7.4.2 Massless limit of correlator

If we now take the m = 0 limit in the momentum space propagator (7.13), we will
instead obtain

G (p) =
1

p2 − iε
. (7.19)

Performing the Fourier transformation to go to position space, the p-integral can be
done directly using the formula (E.2). For the E-integral we obtain a δ-function in time
because only the complex phase eiEt now depends on E, and in total we thus find

〈ϕ (t, x) ϕ∗ (0, 0)〉 =
∫

RD

dd pdE

(2π)D
−i

p2 − iε
eiEt−ip·x

= δ (t)
Γ
(

d−2
2

)
4πd/2

1

‖x‖d−2 . (7.20)

The appearance of δ (t) is thus a feature of non-relativistic massless theories as we
shall also verify for Galilean electrodynamics in the next chapter. It can be interpreted
as the fact that in such theories interactions are instantaneous and there are no wave-
phenomena that can propagate, which agrees with the intuition behind taking c → ∞.
We can also obtain the same from taking m→ 0 limit of the free Schrödinger propagator
(7.14) directly, but it is more cumbersome to take this route.
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In this chapter we shall study Galilean electrodynamics as another interest-
ing example of a non-relativistic theory. We will derive its action from a
null reduction of the relativistic Maxwell electrodynamics in both flat and
curved spacetime. The conserved currents are derived and we see how these
and their couplings to the geometry fit with the general results derived for
Galilean theories. Finally we shall study an interesting extension where we
couple it to the Schrödinger model to obtain the non-relativistic analog of
scalar QED on curved space.

8.1 ged on flat newton-cartan spacetime

8.1.1 The non-relativistic limit of Le Bellac and Lévy-Leblond

Galilean electrodynamics was first obtained by Le Bellac and Lévy-Leblond [82] as the
non-relativistic limit(s) of Maxwellian Electrodynamics (MED) in D = 4 [83]. As dis-
cussed in section 1.2 it was realized before the appearance of special relativity that
Maxwellian electrodynamics was not compatible with non-relativistic physics. It has
thus taken more than 70 years to find a theory that in some respect was the theory
physicists of the 19th century could reasonably have been expected to formulate.

Let us investigate how to take c → ∞ in Maxwell’s equations consistently following
[82]. It turns out there are two limits to take, either the “electric” or the “magnetic”,
loosely corresponding to what type of phenomena are dominant. To see this intuitively,
one realizes that the 4-current Jµ = (ρ, J) of MED can be said to be either “mostly
electric” if |ρ| � ‖J‖ or “mostly magnetic” if ‖J‖ � |ρ|. For the corresponding field
strengths, this is then equivalent to having either electric or magnetic effects dominating,
so our definition of the electric and magnetic limits may be taken more precisely to
mean:

Electric limit: ‖E‖ � c ‖B‖ (8.1a)

Magnetic limit: ‖E‖ � c ‖B‖ . (8.1b)
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Fixing a particular gauge of the 4-potential Aµ =
(

A0, A
)
, we see that performing a

Lorentz boost with velocity v/c� 1 gives in either limits the transformations:

Electric limit: A0′ = A0 (8.2a)

A′ = A + A0v (8.2b)

Magnetic limit: A0′ = A0 − v · A (8.2c)

A′ = A (8.2d)

Notice that these transformations are Galilean (co)vector transformations, with 4-
potential being a Galilean vector in the electric limit transforming as (2.22) and as a
covector in the magnetic limit transforming as (2.23). This shows that electric and mag-
netic limits are really both non-relativistic limits. Taking the electric limit of Maxwell’s
equations gives

∂iBi = 0 (8.3a)

∂iEi
e =

1
ε0

ρ (8.3b)

εi
jk∂jBk = µ0 Ji + µ0ε0∂tEi (8.3c)

εi
jk∂jEk = 0 , (8.3d)

and for the magnetic limit

∂iBi = 0 (8.4a)

∂iẼi =
1
ε0

ρ̃ (8.4b)

εi
jk∂jBk = µ0 Ji (8.4c)

εi
jk∂jẼk = −∂tBi , (8.4d)

with fields defined as

cBi ≡ εi
jk∂j Ak (8.5a)

Ei ≡ −∂i ϕ (8.5b)

Ẽi ≡ −∂i ϕ̃− 1
c

∂t Ai . (8.5c)

Here we put a tilde on electric fields in the magnetic limit to separate them from those
in the electric limit, while the magnetic field is unchanged. However, the electric limit
does not have the Faraday term that gives rise to electromagnetic induction in MED
from a time-varying magnetic field. On the contrary in the magnetic limit we do not
have the displacement current due to a time-varying electric field in Ampère’s law with
Maxwell’s addition and there is only global charge conservation. This shows that in
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both limits electromagnetic waves are absent, and we essentially have electrostatics and
magnetostatics respectively.

The Lorentz force law reduce in either limits to

Electric limit: F =
∫

d3x ρE (8.6a)

Magnetic limit: F̃ =
∫

d3x J × B , (8.6b)

which agrees with the initial definition of the limits.

8.1.2 GED from null reduction

We may also obtain GED in D spacetime dimensions from considering a flat null reduc-
tion of MED in D + 1 spacetime dimensions in an elegant way [65]. All fields depends
only on (t, x) and we take c = ε0 = µ0 = 1 for simplicity. The starting point is to write
the D + 1-dimensional gauge field as

Aµ̂ = (−ϕ̃, A, ϕ) , (8.7)

or with upper indices raising the indices with (2.43)

Aµ̂ = (ϕ, A,−ϕ̃) . (8.8)

Writing the higher-dimensional current Jµ̂ = (ρ, J,−ρ̃) we find that the flat Maxwell
Lagrangian density

L̂(0)
MED = −1

4
Fµ̂ν̂Fµ̂ν̂ + Aµ̂ Jµ̂ (8.9)

using the method of null reduction from section 6.2 can be written as

L(0)
GED = −1

2
B · B + E · Ẽ +

1
2

a2 − ρϕ̃ + J · A− ρ̃ϕ . (8.10)

The field strengths are defined by (8.5) plus the scalar

a ≡ −∂0ϕe , (8.11)

and they may conveniently be written as the components of the higher-dimensional
field strength tensor as

Fµ̂ν̂ =



0 −Ẽ1 −Ẽ2 −Ẽ3 −a

Ẽ1 0 B3 −B2 −E1

Ẽ2 −B3 0 B1 −E2

Ẽ3 B2 −B1 0 −E3

a E1 E2 E3 0


(8.12a)
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Fµν =



0 E1 E2 E3 a

−E1 0 B3 −B2 Ẽ1

−E2 −B3 0 B1 Ẽ2

−E3 B2 −B1 0 Ẽ3

−a −Ẽ1 −Ẽ2 −Ẽ3 0


. (8.12b)

The Bianchi identities are trivially satisfied for the field strength, as it is the exterior
derivative of a one-form and gives the homogeneous equations. The null reduction of
the higher-dimensional gauge transformation Aµ̂ → Aµ̂ + ∂µ̂Λ (t, x) is now equivalent
to

δGT Ai = ∂iΛ (8.13a)

δGT ϕ̃ = −∂0Λ (8.13b)

δGT ϕ = 0 . (8.13c)

The EOMs in terms of the potentials are now found to be

−∂i

(
∂i ϕ̃ + ∂0Ai

)
= ρ̃ + ∂2

0ϕ (8.14a)

−∂i∂
i ϕ = ρ (8.14b)

∂i∂k Ak − ∂k∂k Ai = Ji − ∂0∂i ϕ . (8.14c)

There is no problem working with the theory without taking any of the limits, but it
is instructive to see how they arise. To obtain the limits, we must set some of the sources
equal to zero. We see that if we first choose ρ̃ = 0 and then imposes the Lorenz-like
gauge condition ∂i Ai + ∂t ϕ = 0, we should take ϕ̃ = 0 to solve the EOMs trivially. The
result obtained is exactly the electric limit of the MED EOMs (8.3). Had we chosen a
different gauge we would still obtain the correct EOMs but we would now have to take
ϕ̃ 6= 0, so the Lorentz gauge is the most simple to work in.

On the other hand, if we impose ρ = 0, then we see that we must take ϕ = 0 to solve
the EOMs trivially. This leads to the magnetic limit of the MED EOMs (8.4).

8.1.3 Symmetry transformations and conserved currents

It is obvious that the boost and rotation generators do not act trivially on the field
components unlike for the Schrödinger model. Under a global Galilean transformation
Aµ̂ = (ϕ, A,−ϕ̃) transforms as a vector under the extended homogeneous Galilean
transformation (2.35), since it is the null reduction of the relativistic gauge potential as
we discussed in example 6.1. The finite transformation rules of the components can thus
be written as
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ϕ′ = ϕ (8.15a)

A′ = RA + vϕ (8.15b)

ϕ̃′ = ϕ̃ +
1
2

v2ϕ + vtRA . (8.15c)

We see that the magnetic vector A transforms as a vector under rotations, but is
shifted under boosts. While ϕ is a true scalar, the transformation of ϕ̃ is very non-trivial
and assymmetric at the finite level. Infinitesimally the symmetry variations of the field
components become

δϕ = 0 (8.16a)

δAi = Λi ϕe + 2λjkδi[j Ak] (8.16b)

δϕ̃ = Λi Ai . (8.16c)

With this we can then calculate the conserved canonical Noether currents using the
results of section 4.2.1 in a straight-forward manner. We find

E0
can =

1
2

∂0ϕ∂0ϕ− ∂i ϕ̃∂i ϕ + ∂j Ak∂[j Ak] (8.17a)

Ej
can = ∂j ϕ∂0 ϕ̃ + ∂j ϕ̃∂0ϕ + ∂0Aj∂0ϕ

−∂j Ak∂0Ak + ∂k Aj∂0Ak (8.17b)

T0i
can = ∂0ϕ∂i ϕ + ∂k ϕ∂i Ak (8.17c)

T ji
can = ∂j ϕ∂i ϕ̃ +

(
∂j ϕ̃ + ∂0Aj

)
∂i ϕ

+
(

∂i Ak∂k Aj − ∂i Ak∂j Ak
)
−L(0)δij (8.17d)

bµi = tTµi + wµi (8.17e)

w0i = −ϕ∂i ϕ (8.17f)

wji = −Ai∂j ϕ + 2ϕ∂[j Ai] (8.17g)

jµij
can = xiTµj

can − xjTµi
can + sµij (8.17h)

s0ij = −2A[i∂j]ϕ (8.17i)

skij = 2A[i∂|k|Aj] − 2A[i∂j]Ak . (8.17j)

One can check that these currents are not invariant under the gauge transformation
(8.13). The constraints (4.18) from the conservation equation for the boost and rotation
current that we found for the general theory in section 4.2.1 is verified to be satisfied.
Using the improvements that simplify the conservation equations the most as described
in section 4.2.3 now leads to a set of improved currents given by:
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T0i
imp = ∂0ϕ∂i ϕ + 2∂k ϕ∂[i Ak] (8.18a)

T ji
imp = 2∂(i ϕ∂j) ϕ̃ + 2∂0A(i∂j)ϕ + 2∂k A(i∂j)Ak (8.18b)

−∂(i Ak∂j)Ak − ∂k A(i∂k Aj) −Lδij (8.18c)

bµi
imp = tTµi

imp + ψµi (8.18d)

ψ0i = −ϕ∂i ϕ (8.18e)

ψki = 2ϕ∂[k Ai] (8.18f)

jµij
imp = xiTµj

imp − xjTµi
imp . (8.18g)

This confirms what we derived for general theories in section 4.2.3. In particular the
symmetry of the stress tensor and T0i

imp = −∂µψµi given (4.29) can be verified to hold
using the EOMs. The energy current Eµ

can has still not received any improvements from
our analysis, but they can be fixed uniquely by requiring gauge invariance as we do
soon. One should also consider what happens in the two limits of GED. In the electric
limit all currents are still non-trivial, but in the magnetic limit ψµi = 0, which then
implies that T0i

imp = 0 in agreement with the discussion in section 4.2.2.
An alternative is to use the formulas of section 6.2 for the null reduction of the well-

known relativistic canonical Noether Maxwell EM tensor

T̂µ̂ν̂
can = −Fµ̂ρ̂∂ν̂ Aρ̂ − ηµ̂ν̂LMED . (8.19)

The reduction (6.12) can be seen to reproduce all of the currents (8.17). In addition we
also have the would-have-been mass current Jµ

can = T̂µ0
can is here zero as expected since

there is no U (1) symmetry.
From the higher-dimensional Lagrangian we can easily calculate the spin-current of

MED using (A.16) and we find

sρµν = −2Fρ[µ Aν] . (8.20)

Choosing the improvements for the higher-dimensional EM tensor as (A.21) is seen
to yield the required improvements to make the energy current gauge invariant, while
the other components reproduce the improved currents above. The improved energy
current is given by

E0
imp = L− ∂0ϕ∂0ϕ− ∂i ϕ (∂0Ai + ∂i ϕ̃) (8.21a)

Ei
imp = 2

(
∂0Aj + ∂j ϕ̃

)
∂[i Aj] − ∂0ϕ

(
∂0Ai + ∂i ϕ̃

)
. (8.21b)

In addition to this, notice also that the zero would-be mass current receives improve-
ments. We find that it is identical to the current defined in (5.5):

Jµ
imp = Φµ . (8.22)
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This demonstrates the origin of the topological current that we discussed in section 6.2:
It is the improvements of the would-be mass current in the higher-dimensional theory
to make the conservation equations as simple as possible.

8.2 null reduction of med on curved spacetime

8.2.1 Reduction of the gauge field

The goal is to couple GED to an arbitrary torsionful Newton-Cartan background. This
is conveniently done using the null reduction formalism developed in chapter 6. We can
use the reduction of the vielbeins (6.1) to figure out how to properly reduce the D + 1-
dimensional U(1) gauge field Aµ̂ on an arbitrary Lorentzian spacetime. To do this, we
first define the gauge field with flat frame indices inspired analog to the flat version (8.7)
as

AÂ ≡ (−ϕ̃, A, ϕ) . (8.23)

The spacetime gauge field is then obtained by contracting with the inverse vielbeins:

Aµ̂ =

(
aµ − ϕ̃τµ − ϕMµ

ϕ

)
, (8.24)

where we have defined

aµ ≡ Aaea
µ . (8.25)

In the flat limit Aµ̂ agrees with the definition given in (8.7). Notice that aµ is spatial
in the sense that it satisfies 0 = vµaµ in any frame as it is contracted with the spatial
vielbein, so boosting to another frame does not destroy this property unlike if it had been
a spacetime 1-form as discussed in section 3.2. The fields aµ, ϕ̃, ϕ are invariant under
transformations that preserves the null Killing vector ∂u as they must not be charged
under the U (1) central charge. They can thus be claimed to be the correct covariantized
fields of GED. Their covariantized gauge transformations under the D + 1-dimensional
gauge transformation Aµ̂ → Aµ̂ + ∂µ̂Λ (x) are found to be

ϕ′ = ϕ (8.26a)

ϕ̃′ = ϕ̃ + vµ∂µΛ (8.26b)

a′µ = aµ + ∂µΛ + τµvλ∂λΛ . (8.26c)

We see that the gauge transformation is essentially a covariant way of projecting along
the time and spatial directions in agreement with what happens in the flat case. Under
local Galilean transformations AÂ transforms as (8.15) and along with the transforma-
tion of the vielbeins (3.8), we find that aµ, ϕ̃, ϕ transforms like
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ϕ′ = ϕ (8.27a)

a′µ = aµ + aνeν
b

(
R−1

)b

a
vaτµ + ϕ

(
vaRa

beb
µ + vavaτµ

)
(8.27b)

ϕ̃′ = ϕ̃ +
1
2

vava ϕ + vaRa
b Abeµbaµ . (8.27c)

The transformation law for aµ = Aaea
µ is in particular complicated because both Aa

and ea
µ transform.

8.2.2 Reduction of the 2-form field

Taking the exterior derivative of the gauge field (8.24) defines the field strength tensor:

Fµ̂ν̂ = ∂µ̂ Aν̂ − ∂ν̂ Aµ̂

=

(
f̃µν + 2τ[µ∂ν] ϕ̃ + 2M[µ∂ν]ϕ ∂µ ϕ

−∂ν ϕ 0

)
, (8.28)

where we find it useful to define

fµν ≡ 2∂[µaν] (8.29a)

f̃µν ≡ fµν − 2ϕ̃∂[µτν] − 2ϕ∂[µ Mν] . (8.29b)

However because of the non-linearity of the null reduction, this does not immediately
give useable field strengths of dimensionally reduced theory. The “field strength” f̃µν

includes besides what is the naive generalization of the magnetic field strength fµν also
couplings of the fields to the curls of τµ and Mµ. It is obviously neither boost or gauge
invariant, transforming under the gauge transformations (8.26) as

f̃ ′µν = f̃µν − 2τ[µ∂ν]

(
vλ∂λΛ

)
. (8.30)

To properly reduce the field strengths we identify the various fields of GED with
the components of the Galilean field strength tensor (8.12) and then convert them to
spacetime objects using the vielbeins (6.1). In general a D + 1-dimensional 2-form can
be written in Lorentzian frame indices as

FÂB̂ =

 0 F+a F+−
Fb+ Fab Fb−

F−+ F−b 0

 . (8.31)

Contracting with the inverse vielbeins (3.6) we see that it is convenient to define com-
ponents of the proper dimensional reduced field strengths as

Fµ̂ν̂ =

(
Bµν + 2Ẽ[µτν] + 2E[µ Mν] + 2aτ[µ Mν] −Eµ − aτµ

Eν + aτν 0

)
, (8.32)
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where we have the properly covariantized components of the field strength tensor as

Bµν ≡ Fabe a
µ e b

ν = f̃µν − 2τ[µvρ f̃ν]ρ (8.33a)

Ẽµ ≡ Fa+e a
µ = vρ f̃ρµ − ∂µ ϕ̃− τµvν∂ν ϕ̃ (8.33b)

Eµ ≡ F−ae a
µ = −∂µ ϕ− τµvλ∂λ ϕ (8.33c)

a ≡ F−+ = vµ∂µ ϕ . (8.33d)

These are the covariantized generalizations of the fields we have in the theory without
taking the electric or magnetic limits. Their interpretations and relations to the original
flat space field strengths can be confirmed by restricting to a flat Newton-Cartan ge-
ometry. The relation between the field strengths and the gauge fields is found from
converting (8.28) to frame indices and then identifying the components of (8.31). This
calculation is straight-forward but tedious. The field strengths are all spatial in the sense
that they in any frame satisfy

vµBµν = vµẼµ = vµEµ = 0 . (8.34)

We can therefore define fields with indices raised using the inverse spatial metric hµν

without loosing any information.

Example 8.1 (Raised indices). The fields with lowered indices can be obtained from
those with higher indices, showing that neither is more fundamental than the other. For
example for Eµ ≡ hµνEν we see that the completeness relations (3.7) implies

hµνEν = hµνhνλEλ

= δλ
µ Eλ +

��
��τµvλEλ

= Eµ (8.35)

which is only true because of (8.34).

The higher-dimensional field strength with upper indices is then found to be given by

Fµ̂ν̂ =

(
Bµν + 2E[µhν]λ Mλ −MσBσµ + Ẽµ − avµ + 2MλE[µvλ]

MσBσν − Ẽν + avν − 2MλE[νvλ] 0

)
. (8.36)

The non-gauge invariant “field-strength” f̃µν is seen to enter in many of the equations,
but the field strengths Bµν, Ẽµ, Eµ, a are as expected invariant under the gauge transfor-
mation (8.26) as one may check explicitly. It is also easy to see due to their definitions
(8.33) that neither of the fields are tensors, but transform under local Galilean transfor-
mations in quite a complicated manner. One could simply use the transformation of
the gauge fields (8.27) to derive the transformation laws directly, but they are not very
enlightening and very complicated. Instead one can notice from the structure of (8.32)
and (8.36) that certain combinations are indeed tensors as Fµ̂ν̂ and Fµ̂ν̂ are true spacetime
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tensors. We see for example directly that Eν + aτν is a tensor and thus in particular Eµ,
when raising with hµν. As the sum of a tensor with another tensor is still a tensor, we
can also find some more tensorial objects that are convenient in the following.

Example 8.2 (Tensorial objects). It is important to notice that Eµv̂ν is a tensor. We could
then have added 2E[µv̂ν] to Bµν + 2E[µhν]λ Mλ that is read directly from (8.36), which then
gives another tensorial object

Bµν + 2E[µhν]λ Mλ + 2v̂µEρ = Bµν + 2E[µ
(

hν]λ Mλ + v̂ν]
)

= Bµν + 2E[µvν] . (8.37)

The list of tensorial objects relevant for the construction below is found in this way by
doing projections with hµν, τν and adding other tensorial objects:

Eν + aτν (8.38a)

Bµν + 2Ẽ[µτν] + 2E[µ Mν] + 2aτ[µ Mν] (8.38b)

MλEλ + a (8.38c)

Bµν + 2E[µhν]λ Mλ (8.38d)

Bµν + 2E[µvν] (8.38e)

Ẽν − avν −Mσ

(
Bσν + 2E[σvν]

)
. (8.38f)

Using the definitions of the field strengths (8.33) and the form of a general Bargmann
connection defined in (3.72) and the covariant constance of the vielbeins (3.18), we can
use the Leibniz rule to derive the expression of the covariant derivatives as

∇ρBµν =
(

∂ρ

(
eλ

a eσ
b Bλσ

)
+ ω c

ρ aeλ
c eσ

b Bλσ + ω c
ρ beλ

a eσ
c Bλσ

)
ea

µeb
ν (8.39a)

∇ρẼµ =
(

∂ρ

(
eλ

a Ẽλ

)
+ ω b

ρ aeλ
b Ẽλ + Ω b

ρ eλ
a eσ

b Bλσ

)
ea

µ (8.39b)

∇ρEµ =
(

∂ρ

(
eλ

a Eλ

)
+ ω b

ρ aeλ
b Eλ −Ω b

ρ eλ
a eσ

b Bλσ

)
ea

µ (8.39c)

∇ρa =
(

∂ρ∂µ ϕ− Γλ
ρµ∂λ ϕ

)
vµ . (8.39d)

The expressions for the covariant derivatives are evidently not very simple for a gen-
eral connection just like their transformation laws, but we see that they reduce to the
correct flat derivatives. It is much more convenient to write covariant derivatives of the
tensorial objects of (8.38) since the covariant derivative then only contains the affine
connection as usual.
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Example 8.3 (Eµ in flat spacetime). When we take the geometry to be flat and restrict to
global inertial frames, we find using the results of section 3.7 that Eµ reduces

Eµ = −∂µ ϕ− δ0
µ

(
−δλ

0

)
∂λ ϕ

= −δi
µ∂i ϕ (8.40)

which agrees with the flat definition given in (8.5). The covariant derivative of flat space-
time with ω b

ρ a = Ω b
ρ = 0 then becomes

∇ρEµ =
(

∂ρ

(
δλ

a Eλ

)
+ 0− 0

)
δa

µ

= ∂ρ (Ea) δa
µ . (8.41)

8.2.3 Reduction of the action

We are now ready to perform the null reduction of the action after defining all physically
relevant fields in a consistent manner. The D + 1 dimensional Lagrangian density for
Maxwellian electrodynamics on a general Lorentzian spacetime is

ŜMED ≡ −1
4

∫
dD+1x

√
−g Fµ̂ν̂Fµ̂ν̂

= −1
4

∫
dD+1x

√
−g gµ̂ρ̂gν̂σ̂Fµ̂ν̂Fρ̂σ̂ . (8.42)

It is now straight-forward to find the null reduced action using the formulas for the
inverse metric (6.2) together with the proper decomposition of the field strength tensor
(8.28) or (8.32). Depending on which version of the field strength tensor one chooses, the
action will be written more-or-less convenient for some purposes, but they are of course
equivalent. After pulling out the integral over the null coordinate u, the resulting action
will be GED coupled to an arbitrary Newton-Cartan background.

We find, using either (8.28) or (8.32) to write the field strength tensor, that the action
becomes:

SGED =
∫

dDxe
[
−1

4
hµρhνσ f̃µν f̃ρσ + hµρvν∂ρ ϕ f̃µν

+hµρ∂µ ϕ∂ρ ϕ̃ +
1
2

vµvν∂µ ϕ∂ν ϕ

]
(8.43a)

SGED =
∫

dDxe
[
−1

4
hµρhνσ

(
Bµν + 2E[µ Mν]

) (
Bρσ + 2E[ρ Mσ]

)
+v̂ρhνσEν

(
Bρσ + 2E[ρ Mσ]

)
+ hνσEν

(
Ẽσ − aMσ

)
−Φ̃hνσEνEσ −

1
2
(
v̂νv̂σEνEσ − 2av̂νEν + a2)] . (8.43b)
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These two actions are another of the main results of the thesis. The details of the
calculation can be found in appendix D.8.1. One can check explicitly that the action has
all of the required Galilean and gauge symmetries defined previously. The action (8.43a)
is more convenient when we do variations of the action, but boost and gauge invariance
is not obvious unlike for (8.43b). Restricting to flat Newton-Cartan geometry one can
verify to reproduce the correct Lagrangian density (8.10).

8.2.4 Equations of motion

If we vary the action (8.43a) wrt. the fields ϕ, ϕ̃, aµ we determine the EOMs to be

0 = hµρhνσ∂[µ Mν] f̃ρσ − 2hµρvν∂ρ ϕ∂[µ Mν]

−1
e

∂ρ

(
ehµρvν f̃µν

)
− 1

e
∂µ

(
ehµρ∂ρ ϕ̃ + evµvρ∂ρ ϕ

)
(8.44a)

0 = hµρhνσ∂[µτν] f̃ρσ − 2hµρvν∂ρ ϕ∂[µτν] −
1
e

∂ρ

(
ehµρ∂µ ϕ

)
(8.44b)

0 =
1
e

∂λ

[
ehρ[λhµ]σ f̃ρσ − 2ehρ[λvµ]∂ρ ϕ

]
. (8.44c)

They are the covariant generalized versions of the flat spacetime EOMs (8.14) pre-
sented in the same order as one can see by taking the flat limit. Expressed in terms
of the gauge invariant field strengths with raised indices we can write the EOMs in a
particular nice way:

0 = ∂[µ Mν] (Bµν + 2Eµvν) +
1
e

∂ρ

(
eẼρ − evρa

)
(8.45a)

0 = ∂[µτν] (Bµν + 2Eµvν) +
1
e

∂ρ (eEρ) (8.45b)

0 =
1
e

∂λ

[
eBλµ + 2eE[λvµ]

]
. (8.45c)

We see that now it is not obvious in general how one would impose the covariant
generalization of the electric/magnetic limits on the EOMs because neither Eµ = 0 or
Ẽµ = 0 solves the EOMs. It is convenient to have EOMs that are written in terms of
covariant derivatives. In order to do this, the easiest way is to rewrite (8.45) in terms of
the tensorial objects of (8.38) and then identify the affine connection from the derivative
of the measure e so that a covariant derivative may be formed. If we define the tensors

Eµ ≡ hµνEν (8.46a)

Wλµ ≡ Bλµ + 2E[λvµ] (8.46b)

Zρ ≡ Ẽρ − vρa−MσWσρ , (8.46c)

we find that the EOMs can be written as
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∇̊ρZρ = −Mµ∇̊ρWµρ + ∂[µτν]

(
2Mλv̂λWµν −Mλv̂µWνλ − 2v̂µZν

)
(8.47a)

∇̊ρEρ = −∂[µτν]W
µν (8.47b)

∇̊λWλρ = ∂[µτν] (2v̂µWνρ − v̂ρWµν) , (8.47c)

where the covariant derivative here is wrt. the graviphotonic connection (3.51). The
analysis leading to this result can be found in appendix D.8.2. Notice that (8.47a) is not
written in tensorial combinations because of Mµ appearing. We see that many terms
on the RHS are proportional to dτ so when there is no temporal torsion they simplify
substantially. Finally we can use the definition of Zρ (8.46c) to write the first EOM (8.47a)
in a nicer albeit only Galilean covariant fashion by canceling the Mµ∇̊ρWµρ coming from
its definition:

∇̊ρ

(
Ẽρ − vρa

)
= ∇̊[ρ Mµ]W

µρ + ∂[µτν]

(
2Mλv̂λWµν −Mλv̂µWνλ − 2v̂µZν

)
= −2∂[µ Mρ]W

µρ + hλσ Mλ Mσ∂[µτρ]W
µρ

+∂[µτν]

(
2Mλv̂λWµν −Mλv̂µWνλ − 2v̂µZν

)
(8.48)

where we in the equation used (3.48), (3.59a) and (3.77) to rewrite ∇̊[ρ Mµ].

8.2.5 Energy, momentum and Φµ current

If we vary the action (8.43a) wrt. the background fields e̊Â = (τ, ea,−M) we can de-
termine the currents T µ

Â
≡
(
Eµ, T µ

a, −J µ
)

defined in (4.46). We do the variation in
appendix D.8.3 and find

Eλ = −Lvλ + hνσhλµvρ f̃ν(µ f̃ρ)σ + 2vνvρhλµ∂(ρ ϕ f̃µ)ν

+vνvλhµρ∂ρ ϕ f̃µν + 2hλµvρ∂(µ ϕ∂ρ) ϕ̃ + vλvµvν∂µ ϕ∂ν ϕ

+
1
e

∂ρ

(
ehµ[ρvλ] ϕ̃∂µ ϕ− ehµ[ρhλ]ν ϕ̃ f̃µν

)
(8.49a)

T λ
c = Leλ

c − hνσ f̃ν(µ f̃ρ)σhλµeρ
c − hµ[ρhλ]ν f̃µν∂ρ

(
a|σ|e

σ
c
)

−2vν∂(ρ ϕ f̃µ)νhλµeρ
c − hµρvλeν

c f̃µν∂ρ ϕ

+2hρ[µvλ]∂ρ ϕ∂µ (aσeσ
c )− 2∂(µ ϕ∂ρ) ϕ̃hλµeρ

c

−vν∂µ ϕ∂ν ϕvλeµ
c +

1
e

∂ρ

(
ehµ[ρhλ]ν f̃µνaσeσ

c

)
−1

e
∂ρ

(
e2hµ[ρvλ]aσeσ

c ∂µ ϕ
)

(8.49b)

J λ =
1
e

∂ρ

(
e2hµ[ρvλ]ϕ∂µ ϕ− ehµ[ρhλ]ν ϕ f̃µν

)
. (8.49c)

These expressions might be simplified further, but we leave it like this for the future.
What is of interest here is of course J µ, which does not correspond to a symmetry
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current. It is the total derivative of something, and as it couples to Mµ, we see because of
the antisymmetrization in the current that under the higher-dimensional transformation
that preserves the null Killing vector (6.4), the variation of the action is trivial:

δσS =
∫

M
dDx eJ λδσ Mλ

.
= −

∫
M

dDx ∂ρ∂λ

(
e2hµ[ρvλ]ϕ∂µ ϕ− ehµ[ρhλ]ν ϕ f̃µν

)
σ

= 0 . (8.50)

This verifies the general analysis of section 4.4.3 that also on general Newton-Cartan
backgrounds J µ is automatically conserved when there is no U (1) symmetry. It is also
not hard to check that in the flat limit it is identical to the topological current Φλ as
expected.

8.2.6 Electric and magnetic limits for dτ = 0 and comparison with other work

GED on Newton-Cartan geometry was studied for the first time by Künzle [51], albeit
restricted to Newtonian spacetime where the connection satisfies the Duval-Künzle con-
dition (3.34). Bergshoeff et al. [84] has a slightly more general formulation but is still
restricting to torsionless Newton-Cartan geometries with dM = dτ = 0. Finally in the
paper by van den Bleeken and Yunus [85] they generalize to torsionless spacetimes with
just dτ = 0 and closed Newton-Coriolis 2-form for the magnetic limit, but not in an
entirely covariant fashion.

To the best of our knowledge, this is first time GED has been formulated on a com-
pletely general Newton-Cartan background. It is interesting to see how our results may
reproduce the previous work when dτ = 0. As noted on page 90 it is not obvious
what the electric and magnetic limits are. However when dτ = 0 the situation improves
drastically. Imposing this on the EOMs (8.47), we simply obtain

∇̊ρZρ = Mµ∇̊ρWµρ (8.51a)

∇̊ρEρ = 0 (8.51b)

∇̊λWλµ = 0 . (8.51c)

In particular (8.48) now simply becomes

∇̊ρ

(
Ẽρ − vρa

)
= −2∂[µ Mρ]W

µρ . (8.52)

And using the expression for the Newton-Coriolis 2-form (3.77) we see that we can
write this as

∇̊ρ

(
Ẽρ − vρa

)
= CµρWµρ . (8.53)

Using (8.46) we can then write all the EOMs (8.51) in terms of the non-tensorial field
strengths (8.33) in a particular frame where we have
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∇̊ρẼρ = Cµρ

(
Bµρ + 2E[µvρ]

)
+ vρ∇̊ρa (8.54a)

∇̊ρEρ = 0 (8.54b)

∇̊λBλµ = vλ∇̊λEµ . (8.54c)

Notice that the first and last equation transforms covariantly under local Galilean
transformations as we have split up the tensorial invariant expressions. The electric and
magnetic limits are more clear now. We can set Eρ = a = 0 corresponding to ϕ = 0,
which gives the magnetic limit as one can verify by restricting to flat spacetime:

∇̊ρẼρ = CµρBµρ (8.55a)

∇̊λBλµ = 0 . (8.55b)

This agrees with van den Bleeken and Yunus [85]. On the other hand the correct
electric limit is imposed by choosing Ẽρ = a = 0. In terms of the potentials on flat
Newton-Cartan spacetime it reproduces the electric limit when imposing the Lorentz
gauge and taking ϕ̃ = 0 in some frame as discussed on page 82. If the connection
is taken to satisfy the Duval-Künzle condition (3.34), then there exists a frame where
Cρσ = 0 [42]. In this frame we obtain that the EOMs (8.51) simplifies to

∇̊ρEρ = 0 (8.56a)

∇̊λBλµ = vλ∇̊λEµ , (8.56b)

which agrees with the result of Künzle [51].

8.3 linearization

We have seen that the non-linear theory is very complicated in part due to the non-linear
definitions of the field strengths. This simplifies drastically when we only keep first or-
der terms. Using the general results of section 3.8 of linearized Newton-Cartan geometry
we can write the action as couplings to conserved currents. The definitions of the fields
we have used make the linearization a bit more involved than for the Schrödinger model
of chapter 7. The definition of the aµ (8.25) linearizes as

aµ = Ai

(
δi

µ + e i
µ

)
≡ a(0)µ + a(1)µ , (8.57)

while f̃µν now becomes

f̃µν = 2∂[µa(0)
ν]

+ 2∂[µa(1)
ν]
− 2ϕ̃∂[µτν] − 2ϕ∂[µ Mν] , (8.58)

After some straight-forward but tedious calculations, one finds that the linearized
action can indeed be written as

S =
∫

dd+1x
[
L(0) + τρEρ

imp +
1
2

sijT
ij
imp + ei0T0i

imp + MρΦρ

]
, (8.59)
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where all of the currents that one can read of are identical to the improved flat space-
time currents given by (8.18), (8.21), (8.22). One sees here that Mρ couples to the topo-
logical current Φρ as predicted by the Noether procedure of section 5.1.

8.4 correlation functions in flat spacetime

8.4.1 Dimensional reduction of relativistic propagator

It is well-known that the photon propagator in Lorenz gauge for MED in D+ 1-dimensions
in momentum space is given by [39]

〈
Aµ (p) Aν (−p)

〉
=
−iηµν

p2 − iε
. (8.60)

From this one can derive that the (gauge-invariant) propagator for the field strength
tensor in momentum space is given by

〈
Fµ̂ν̂ (p) Fρ̂σ̂ (−p)

〉
=

−i
p2 − iε

(
ην̂σ̂ pµ̂ pρ̂ − ην̂ρ̂ pµ̂ pσ̂ − ηµ̂σ̂ pν̂ pρ̂ + ηµ̂ρ̂ pν̂ pσ̂

)
. (8.61)

We can obtain the propagators of the field strengths (8.5) of GED by performing a
null-reduction of the above, taking the various components like in (8.12). In momentum
space in D = 4 we find

〈
Ẽi (p) Ẽj (−p)

〉
= δij

−iE2

p2 − iε
(8.62a)

〈
Ẽi (p) Ej (−p)

〉
=

ipi pj

p2 − iε
(8.62b)〈

Ei (p) Ej (−p)
〉

= 0 (8.62c)〈
Bi (p) Bj (−p)

〉
=

−i
p2 − iε

(
δij p2 − pi pj

)
(8.62d)

〈
Bi (p) Ẽj (−p)

〉
= εijk

ipkE
p2 − iε

(8.62e)〈
Bi (p) Ej (−p)

〉
= 0 (8.62f)〈

a (p) Ẽi (−p)
〉

=
−iEpi

p2 − iε
(8.62g)

〈a (p) Ei (−p)〉 = 0 (8.62h)

〈a (p) Bi (−p)〉 = 0 (8.62i)

〈a (p) a (−p)〉 = 0 . (8.62j)

Notice that because of the mass m = 0, the energy E only enters in the numerator and
never in the denominator because p2 = p2. Since many of these are zero and the energy
drops out of several, it witnesses that the dynamics of the theory is quite limited.
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Performing the Fourier transform of these propagators using (E.2) we will find deriva-
tives of δ (t− t′)-functions that will be the result when we have E in the nominator. In
D = 4 the result one easily obtains is

〈
Ẽi (t, x) Ẽj

(
t′, x′

)〉
=

i
4π

δij∂
2
t δ
(
t− t′

) 1
‖x− x′‖ (8.63a)

〈
Ẽi (t, x) Ej

(
t′, x′

)〉
=

i
4π

δ
(
t− t′

) (4π

3
δijδ

d (x− x′
)

+
δij

‖x− x′‖3 − 3
(xi − x′i)

(
xj − x′j

)
‖x− x′‖5

)
(8.63b)〈

Ei (t, x) Ej
(
t′, x′

)〉
= 0 (8.63c)

〈
Bi (t, x) Bj

(
t′, x′

)〉
=

i
4π

δ
(
t− t′

) (
−8π

3
δijδ

d (x− x′
)

+
δij

‖x− x′‖3 − 3
(xi − x′i)

(
xj − x′j

)
‖x− x′‖5

)
(8.63d)

〈
Bi (t, x) Ẽj

(
t′, x′

)〉
= − i

4π
εijk∂tδ

(
t− t′

) xk − x′k
‖x− x′‖3 (8.63e)〈

Bi (t, x) Ej
(
t′, x′

)〉
= 0 (8.63f)

〈
a (t, x) Ẽi

(
t′, x′

)〉
=

i
4π

∂tδ
(
t− t′

) xi − x′i
‖x− x′‖3 (8.63g)〈

a (t, x) Ei
(
t′, x′

)〉
= 0 (8.63h)〈

a (t, x) Bi
(
t′, x′

)〉
= 0 (8.63i)〈

a (t, x) a
(
t′, x′

)〉
= 0 . (8.63j)

One can check that these satisfy the EOMs (8.14b) of the free theory at separated points
and that they transform correctly under Galilean transformations. We notice again the
feature that all propagators are proportional to δ (t− t′) (and derivatives) which we also
saw considering the massless limit of the free Schrödinger propagator in section 7.4.2.

8.5 schrödinger model coupled to electrodynamics

8.5.1 Reduction of the action

We now have all tools ready to write an interesting and interacting theory: The Schrödinger
model coupled to Galilean electrodynamics. This theory will in particular have non-zero
sources for the fields of GED unlike what we have studied so far. Again we obtain the
non-relativistic action from a null reduction, this time of Klein-Gordon coupled to a U(1)
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gauge field to make the U(1) symmetry local like what we study in appendix B.2.2. The
action coupled to Lorentzian geometry is given by

Ŝ = ŜKG + ŜMED + Ŝint

=
∫

M
dD+1x

√
|g|
[
−gµ̂ν̂Dµ̂Ψ∗Dν̂Ψ− 1

4
gµ̂ρ̂gν̂σ̂Fµ̂ν̂Fρ̂σ̂

]
. (8.64)

We have already studied the null reduction of ŜKG (7.4) in chapter 7 and ŜMED (8.42) in
this chapter. We thus only need to study the interaction term Ŝint which can be written
as

Ŝint =
∫

M
dD+1x

√
|g|
[
gµ̂ν̂
(
iΨ∂µ̂Ψ∗ − iΨ∗∂µ̂Ψ

)
Aν̂ −Ψ∗Ψgµ̂ν̂ Aµ̂ Aν̂

]
. (8.65)

This can then be null-reduced using the methods of chapter 6 as we have done many
times now. The result is

Sint =
∫

M
dDx e

[
ihµν

(
φaµ∂νφ∗ − φ∗aµ∂νφ

)
−φ∗φhµν

(
aµaν + 2maµ Mν

)
−iφ

(
ϕvµ∂µφ∗

)
+ iφ∗

(
ϕvµ∂µφ

)
+φ∗φ

(
2 (ϕ + m) ϕ̃ + 2vµ Mµmϕ

)]
. (8.66)

The details of the reduction can be found in appendix D.8.4. In our theory the total
action and its fields is given by

S
[
φ, ϕ, ϕ̃, a, v, h−1, M

]
= SGED

[
ϕ, ϕ̃, a, v, h−1, M

]
+ SSch

[
φ, v, h−1, M

]
+ Sint

[
φ, ϕ, ϕ̃, a, v, h−1, M

]
, (8.67)

where SGED is given by (8.43a) and SSch is given by (7.6). The fields of GED will
now be dynamical and sourced by the Schrödinger field and themselves, which makes
the EOMs rather complex and we shall refrain from writing them down while it is in
principle straight-forward. We can write SSch + Sint in a bit nicer way, which makes the
structure more obvious:

SSch + Sint =
∫

M
dDx e

[
ivν (m + ϕ) φ∗ (∂ν − iAν − iMν (m + ϕ)) φ

− ivµ (m + ϕ) φ
(
∂µ + iAµ + iMµ (m + ϕ)

)
φ∗

− hµν
(
∂µ + iAµ + iMµ (m + ϕ)

)
φ∗ (∂ν − iAν − iMν (m + ϕ)) φ

]
. (8.68)

The calculation is done in appendix D.8.5. The above invites us to define a new covari-
ant derivative
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Dµφ ≡
(
∂µ − iAµ − iMµ (m + ϕ)

)
φ

=
(
∂µ − i

(
aµ − ϕ̃τµ −���ϕMµ

)
− iMµ (m +��ϕ)

)
φ

=
(
∂µ − iaµ − imMµ + iϕ̃τµ

)
φ (8.69)

which allows us to write the action in a simple way

SSch + Sint =
∫

M
dD+1x e

[
ivµ (m + ϕ) φ∗Dµφ

− ivµ (m + ϕ) φDµφ∗ − hµνDµφ∗Dνφ

]
. (8.70)

This covariant derivative commutes with both the electromagnetic U(1) gauge trans-
formation and the U(1) transformation of the background. Under a local Galilean trans-
formation Aµ = aµ − ϕ̃τµ − ϕMµ is invariant, but Mµ (m + ϕ) transform to keep the
entire action boost invariant like for the pure Schrödinger model.

It would now be straight-forward to derive the covariantly conserved currents T µ

Â
for the entire theory by varying (8.66) wrt. the background and adding the contribution
from the free GED currents (8.49) and the free Schrödinger currents (7.10). In particular
J µ will now be a non-trivially conserved mass current that includes contributions from
both the topological current Φµ of GED and the interaction.

8.5.2 Flat spacetime

The action on a general Newton-Cartan background is quite complicated, and it will be
sufficent to understand more about the currents and the interaction on flat spacetime. It
is also interesting to see how this compares with the usual coupling of the Schrödinger
equation to the electromagnetic field [49]. Using the results of section 3.7, we find that
(8.70) on a flat spacetime can be written as

SSch + Sint =
∫

M
dD+1x e

[
−i (m + ϕ) φ∗D0φ + i (m + ϕ) φD0φ∗ − δijDiφ

∗Djφ

]
, (8.71)

where the covariant derivative now is

Dµφ =
(

∂µ − iAiδ
i
µ + iϕ̃δ0

µ

)
φ . (8.72)

We can then write SSch + Sint more simple as

SSch + Sint =
∫

M
dD+1x e

[
−i (m + ϕ) φ∗ (∂0 + iϕ̃) φ

+ i (m + ϕ) φ (∂0 − iϕ̃) φ∗ − (∂i + iAi) φ∗
(

∂i − iAi
)

φ

]
. (8.73)
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The EOM for the Schrödinger scalar field is found to be

2i (m + ϕ) (∂0 + iϕ̃) φ + i∂0ϕφ = (∂i − iAi)
(

∂i − iAi
)

φ . (8.74)

That ϕ always appears in together with the mass as m + ϕ is a special feature of
coupling to GED also seen when the Fermi model of example 4.3 is coupled to GED [65].
In a sense this is expected as ϕ is a scalar and such a coupling is the only possibility in
the Schrödinger action.

We see that we reproduce the usual Schrödinger coupling to the electromagnetic field
in the EOM if we take ϕ = 0. However, it is now not a clear cut case what the electric
or magnetic limits of the theory are because there are sources for all fields of GED. By
rewriting (8.73) we determine the linear currents ρ, ρ̃, Ji that sources ϕ̃, ϕ, Ai respectively
as in (8.10) and find

ρ = −2mφ∗φ (8.75a)

ρ̃ = iφ∗∂0φ− iφ∂0φ∗ (8.75b)

Ji = iφ∂iφ∗ − iφ∗∂iφ . (8.75c)

On top of these comes self-interactions of the GED fields that arises from the “Seagull
term” in the dimensional reduction. One can here identify

(
ρ, Ji) as being proportional

the mass current (7.3c) of the free Schrödinger theory of section 7.1, which is no longer
conserved. The full currents are covariantly conserved wrt. the derivative (8.72).



9
D I S C U S S I O N A N D C O N C L U S I O N

In this thesis we have developed Newton-Cartan geometry and the field theories that
lives on these manifolds. Using a great deal of differential geometry, group and repre-
sentation theory we have accomplished formulating non-relativistic physics on a natural
general covariant framework. The main challenge has been to understand the structure
of Galilean connections. We have succeeded in elucidating their properties and found
that there is a natural connection to use on these manifolds, namely the graviphotonic
connection defined in section 3.3.3.1. The Schrödinger model and Galilean electrody-
namics we have studied have served well to give concrete realizations of the general
theory.

The main new contribution to this research area of this thesis has been to understand
the coupling of Mµ in both Galilean and Bargmann theories. This has previously not
been well-understood, but the Noether procedure approach we employed has cleared
this up completely. We have showed that it couples to a topological current in Galilean
theories and the conserved mass current in Bargmann theories. While the Schrödinger
model has been studied extensively in the literature, we are as far as we know the first
to study Galilean electrodynamics on a general Newton-Cartan background and give
covariant equations of motion. The non-relativistic version of scalar QED on a Newton-
Cartan background is a further contribution to the field, being an interesting example of
an interacting theory.

The latter is one of the points where there is future work to be done. Another aspect is
to understand the correlators of the Galilean theories, especially the δ-function in time
that appears so that one can give meaning to correlators between currents which will
tell us more about non-relativistic theories. In relation to this, it would be interesting to
calculate correlators with the current Φµ to understand more about it properties. Finally,
since the framework of non-relativistic theories is more-or-less understood, it would be
interesting to see where the results of this thesis could be applied in holography. There
are hints that for certain bulk geometries the theory on the holographic boundary is
expected to be something along the lines of Galilean electrodynamics. This thesis has
provided the tools that would help understand this better.
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A
R E L AT I V I S T I C T H E O R I E S

a.1 relativistic spacetime symmetry groups

a.1.1 Minkowski and Poincaré groups

Group G Transformations dimG Ref.

Minkowski Rotations + boosts
1
2 D (D− 1)

[86]

SO (d, 1) x′µ = Λµ
νxν

Poincaré Minkowski + translations
1
2 D (D + 1)

[86]

Poin (d, 1) x′µ = xµ + aµ

Conformal
Poincaré + dilation + SCT

1
2 (D + 2) (D + 1) [87]

C (d, 1)
in D > 2

x′µ = λxµ, x′µ = xµ−bµx2

1−2b·x+b2x2

Table 4: Spacetime transformations and properties of relativistic symmetry groups in D space-
time dimensions.

Even though the main focus of this thesis is non-relativistic groups and their realizations,
it will be useful to review the most important aspects of relativistic symmetry groups
and compare them. There are 3 prominent relativistic symmetry groups of interest to
theoretical physics as shown in table 4, but to these can of course be added various
extensions which they are subgroups of.

All of the groups are provides rotational and boost invariance with the antisymmetric
generator Jµν, which also spans the entire Minkowski Lie algebra through the commuta-
tion relations [

Jµν, Jρσ

]
= ηνρ Jµσ − ηµρ Jνσ + ησν Jρµ − ησµ Jρν . (A.1)

The Minkowski group can be defined as the group of matrix similarity transforma-
tions that leaves the Minkowski metric ηµν unchanged, which is exactly SO (d, 1). This
is also the defining representation of SO (d, 1).

One obtains the Poincaré group Poin (d, 1) from the Minkowski group by adding trans-
lations generated by Pµ through a semi-direct product, where the momentum transforms
as a vector under rotations and boosts. The corresponding new extra commutation rela-
tions of the algebra are [39]

101
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[
Pµ, Pν

]
= 0 (A.2a)[

Pρ, Jµν

]
= ηµρPν − ηνρPµ . (A.2b)

As it is a semi-direct product of Minkowski with the momentum generators, the struc-
ture is

Poin (d, 1) = RD o SO (d, 1) , (A.3)

which makes it obvious that Poin (d, 1) is an affine group. Its homogeneous subgrup
is exactly the Minkowski group.

Neither the Minkowski or the Poincaré groups are compact. The algebraic structure
of the Poincaré group is due to the semi-direct product decomposition not semisimple
and so its representation theory is rather complicated, as is well-known due to Wigner
[40]. Poincaré has two Casimir invariants given by [88]

C2 ≡ P2 = PµPµ (A.4a)

C4 ≡ −1
2

P2 Jµν Jµν + JµρPρ JµσPσ . (A.4b)

In D = 4 we have that it is possible to write C4 = WµWµ, where Wµ ≡ 1
2 εµνρσ JνρPσ is

the famous Pauli–Lubanski pseudovector. These labels the representations of interest.

a.1.2 The conformal group

If we do not require that the metric must stay invariant, but allow it to transform up to
an overall scale η → Λ (x)2 η, then the group of symmetries is of course larger and we
obtain the conformal group C (d, 1). In D > 2 one obtains after an analysis like that one
found in [87], that the resulting group is finite dimensional with the extra generators
compared to Poincaré being the dilatation D and the conformal boost Kµ. The dilatation
generates scale transformations, while the conformal boosts generates the Special Con-
formal Transformation (SCT); an inversion of spacetime followed by a translation and yet
another inversion. One finds that the new extra commutation relations of the algebra are

[
D, Pµ

]
= Pµ (A.5a)[

D, Jµν

]
= 0 (A.5b)[

D, Kµ

]
= −Kµ (A.5c)[

Pµ, Kν

]
= 2

(
ηµνD− Jµν

)
(A.5d)[

Jµν, Kρ

]
= ηµρKν − ηνρKµ (A.5e)[

Kµ, Kν

]
= 0 . (A.5f)

One should notice that Jµν has zero weight under dilatations, while the boost and
momentum have weights ±1, and Kµ transforms as a vector under rotations. The in-
troduction of the extra generators also simplifies the group structure, so it is now a
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semisimple Lie algebra due to (A.5d), which shows that there are now just the trivial
ideals remaining.

In D = 2, one finds immediately doing the same analysis, yet still rather surprising,
that the symmetry group is automatically infinite dimensional, and can be written as
the direct product of two Witt algebras, a left one with generators Ln and a right one
with generators Ln, satisfying the algebra

[Lm, Ln] = (m− n) Lm+n (A.6a)[
Lm, Ln

]
= 0 (A.6b)[

Lm, Ln
]

= (m− n) Lm+n . (A.6c)

The finite dimensional subgroup of this is the six-dimensional SL(2, C), which gen-
erates the dilation, SCT, translations and rotation. 2D conformal invariant theories are
strongly constrained by the infinite number of symmetries and as a result have many
nice properties. Further it is also true by an analysis first done by Polchinski [89], that
any 2D scale- and Poincaré invariant theory under some very reasonable technical as-
sumptions, automatically is conformally invariant.

One of the most interesting extensions that one can do of the above groups, is to add
N fermionic supercharges to Poincaré or the conformal group, which is more-or-less the
unique physical relevant extension of these groups. The result is that one gets Z2-graded
Lie algebras, described in the framework of Lie superalgebras. These extensions can then
be named Supersymmetry (SUSY) extensions of Poincaré or the conformal group, and
they have a nice mathematical structure, that make them very interesting to study in
their own right. Especially there is a non-trivial internal symmetry that can maximally
be U (N ) that the supercharges transform under some representation of along with
some new central charges.

a.2 lorentzian spacetimes

a.2.1 Vielbein formalism and frame bundles

The usual way to introduce vielbeins eA
µ in a Lorentzian geometry with a metric gµν is

as the “square-root” of the metric, i.e.

gµν = ηABeA
µ eB

ν . (A.7)

There are some computations that becomes significantly easier in this formalism, but
in particular it also highlights the gauge theory aspect of Lorentzian geometry [55].
The (inverse) vielbein eA

µ , eν
B are in this sense gauge fields transforming under the local

Lorentz transformations ΛA
B ∈ SO (d, 1) in the (flat) Lorentz index of the vielbein. The

metric gµν is invariant under these transformations because ηAB is the invariant symbol
of SO (d, 1).

This construction is quite naturally that of (co)frame bundles like those considered
in the chapter 3 with SO (d, 1) as the structure group. Contracting the (inverse) vielbein
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with a Lorentz vector or covector then defines a particular section of the (co)tangent
bundles, and the mapping is bijective.

a.2.2 Connections

We can define a (frame) covariant derivative Dµ for any connection on a Lorentzian
geometry by its action on the inverse vielbein as1

DµeA ≡ −ω A
µ BeB . (A.8)

The coefficients ω A
µ B are called the spin-connection and transforms non-tensorial as

(3.20). The associated spacetime derivative of the vielbein that satisfy the vielbein postu-
late is given by

∇ρeA
µ = ∂ρeA

µ − Γλ
ρµeA

λ −ω A
ρ BeB

µ = 0 . (A.9)

Given a connection, the Cartan structure equations defines the torsion T A
µν and Rie-

mann curvature R A
µνB two-forms as

∂[µeA
ν] = −ω AB

[µ eν]B +
1
2

T A
µν (A.10a)

∂[µω A
ν] B = −ω AC

[µ ων]CB +
1
2

R A
µνB . (A.10b)

The usual spacetime versions T λ
µν , R ρ

µνσ are obtained contracting with the vielbeins.
Taking the exterior derivative of the structure equations (A.10) and converting to space-
time tensors we obtain the usual Bianchi identities R ρ

[µνσ]
= 0 and ∇[λR ρ

µν]σ
= 0. Until

now this discussion has actually been completely general and in particular it also applies
to the Galilean connections of section 3.3.2.

If we want a Lorentzian metric compatible connection, then we see that the connection
must satisfy

ωρAB = −ωρBA . (A.11)

The above procedure is equivalent to the gauge theory of the Poincaré group inves-
tigated in the appendix of the paper by Hartong and Obers [26]. Here we identify the
inverse vielbein e A

µ as the gauge field associated with the momentum generator PA
and the spin-connection ωµAB as the gauge field associated with the rotation generator
JAB = −JBA. The antisymmetry of the rotation generator JAB implies that the spin-
connection ωµAB is also antisymmetric which again implies metric compatibility. After
a deformation of the algebra one may also identify local translation gauge transforma-
tions with diffeomorphisms on the manifold M. The field strengths of Poincaré gauge
theory are then seen to be the torsion and Riemann curvature tensors.

In Lorentzian spacetimes an important class of connections are the torsionless ones.
If we also require metric compatibility, then we may solve the first Cartan structure

1 We here take opposite sign convention compared to what is usually chosen.
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equation (A.10a) which yields a unique solution, the famous Levi-Civita connection
[53, 52]

ω̂ AB
µ ≡ eνA∂[µeB

ν] − eνB∂[µeA
ν] − eν[AeB]σeµC∂νeC

σ . (A.12)

Notice the similarity with the pseudo-rotation gauge field (3.44b).
It may also be proven that given any metric compatible connection ωµAB, we may

write it as

ωµAB = ω̂µAB + CµAB , (A.13)

where CµAB is called the contortion. Contracting with vielbeins, the corresponding
contortion tensor Cµνρ = −Cµvν transforms tensorial, and takes an expression in terms
of torsion tensors

Cµνρ = −1
2
(
Tµνρ − Tνρµ + Tρµν

)
. (A.14)

a.3 conserved poincaré spacetime symmetry currents

a.3.1 Canonical conserved Noether currents

It is enlightening to see how one may use the Noether theorem investigated in appendix
B works in the more familiar case of theories with Poincaré spacetime symmetries. We
assume a Lagrangian description with action S [ϕ] =

∫
M dDxL (ϕ, ∂ϕ) and infinitesimal

transformations given by

x′µ = xµ + δxµ (A.15a)

ϕ′`
(
x′
)

= ϕ` (x) + δϕ` (x) (A.15b)

δxµ ≡ ξµ = εµ + λ
µ
νxν (A.15c)

δϕ` (x) ≡ 1
2

λµν (Jµν)`` ϕ` (x) (A.15d)

where λµν = −λνµ is just an infinitesimal Lorentz transformation and εµ an infinites-
imal translation that together are all of the parameters of the transformation. The gen-
erators of rotations (Jµν)`` is in a suitable representation realized of the fields ϕ`. The
corresponding conserved Noether currents are given by

Tρµ
can ≡ ∂L

∂
[
∂ρ ϕ`

]∂µ ϕ` − ηρµL (A.16a)

jρµν
can ≡ xµTρν − xνTρµ + sρµν (A.16b)

sρµν ≡ − ∂L
∂
[
∂ρ ϕ`

] (Jµν)`` ϕ` (A.16c)
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where Tρµ
can is the canonical energy-momentum tensor and jρµν

can the total angular mo-
mentum with the non-conserved spin-current sρµν. The conservation ∂ρ jρµν

can = 0 implies

2T[µν] = −∂ρsρµν , (A.17)

so in general Tµν
can 6= Tνµ

can. We can write a variation of the action in terms of arbitrary
local parameters ξµ (x) , λµν (x) as

δS [ϕ] = −
∫

M
dDx

[
∂ρξµTρµ +

1
2

∂ρλµνsρµν

]
, (A.18)

where we recover the conserved currents proportional to the parameters when we
take

ξµ (x) = εµ + λµνxν (A.19a)

λµν (x) = λµν . (A.19b)

a.3.2 Improvements of currents

The improvements of the EM tensor and angular momentum current takes the form

Tµν
imp = Tµν

can + ∂λ Aλµν , (A.20a)

Jρµν
imp = xµTρν

can − xνTρµ
can + sρµν + ∂λBλρµν (A.20b)

where Aλµν = −Aµλν and Bλρµν = −Bρλµν are the improvement terms. If we choose

Aλµν =
1
2

(
sµνλ + sνµλ − sλµν

)
(A.21a)

Bλρµν = xµ Aλρν − xν Aλρµ , (A.21b)

the improved angular momentum current becomes

Jρµν
imp = xµTρν

imp − xνTρµ
imp . (A.22)

From this the conservation law for angular momentum implies that Tµν
imp = Tνµ

imp. This
improved EM tensor is also known in the literature as the Belinfante-Rosenfeld EM
tensor, and it is identical to the Hilbert EM tensor of general relativity

Tµν
Hil ≡

2√
|g|

δS
δgµν

(A.23)

when we vary around flat space [90, 91].
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a.4 noether procedure for poincaré theories

If we want local Poincaré invariance of our theory at lowest order in the geometry, we
need a first-order term in the action that cancels the non-invariance of (A.18) as de-
scribed in general in section B.2. We define two gauge fields that couples to the currents
in S(1) as

S(1) =
∫

M
dDx

[
eµνTµν

can +
1
2

ωρµνsρµν

]
(A.24)

which are the linearization of the vielbein eµν and the spin-connection ωρµν that ac-
cording to the general Noether procedure should be taken to transforms at first order
under infinitesimal local translations and rotations as

δ(1)eµν = ∂µξµ + λµν (A.25a)

δ(1)ωρµν = ∂ρλµν , (A.25b)

where λµν is an infinitesimal Local Lorentz Transformation (LLT) and ξµ an infinites-
imal local translation. Writing Tµν

can in terms of the improved current (A.20) gives after
some integration by parts that we may write the action as

S(1) =
∫

M
dDx

[
1
2

hµνTµν
imp +

1
2

Cρµνsρµν

]
, (A.26)

where we have defined

Cρµν ≡ ωρµν − ω̂ρµν (A.27a)

ω̂µνρ ≡ ∂[ρhν]µ + ∂µe[νρ] . (A.27b)

hµν ≡ 2e(µν) is here the perturbation of the Minkowski metric, and one may check that
ω̂ρµν as defined is exactly the linearization of the Levi-Civita connection (A.12). What
one should appreciate here is that contrary to the Galilean case of section 5.1, is that
the calculation shows that it is possible to realize the geometry on the vielbeins alone
(or equivalently the metric gµν = ηµν + hµν), with the Levi-Civita connection ωρµν =

ω̂ρµν as the “minimal choice” connection implied by the improvements. Cρµν is here the
contortion tensor, which may be set to zero if we do not want a torsionful spacetime.

An explanation to why this is expected is based on the observation that connec-
tions must end up coupling to a conserved current. Here initially ωρµν couple to a
non-conserved current because the vielbeins transforms under a LLT. After using the
improvements of the EM tensor the linearized metric occurs and this does not trans-
form under LLTs. Therefore what is left of the spin connection must also be a tensor
that couples to the non-conserved current to keep the action invariant under. Knowing
that this only happens when the spin current sρµν couples to the difference of two con-
nections, this implies that whatever comes from the improvements of the EM tensor
must be a connection itself. As this connection then by the structure of the EM tensor
coupling must be build from the vielbein explains why we get the linearized Levi-Civita
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connection and nothing else, as this is the unique connection build from the vielbein
alone.



B
T H E N O E T H E R T H E O R E M A N D P R O C E D U R E

b.1 noether’s theorem

b.1.1 Statement and proof

Theorem B.1 (Noether’s theorem for fields). Let an action S =
∫

M dDxL (ϕ, ∂ϕ, x) for a set
of field(s) ϕ` (x) with at most first order derivatives1 and perhaps explicit spacetime dependence
be given. If the action is invariant under differentiable symmetry transformations, then there
exists a corresponding conserved current for each independent transformation [73, 92].

Proof. Take the action S =
∫

M dDxL (ϕ, ∂ϕ, x) and let us restrict ourselves to infinites-
imal symmetry transformations. We may without loss of generality assume that the
possible symmetry transformations are described by (constant) infinitesimal indepen-
dent parameters ξA = {εα, λa}, A = 1, . . . , N, where λa are the subset of parameters
that includes the variation of just the field ϕ`, while the parameters εα parametrizes
just spacetime transformations. Both may give rise to infinitesimal spacetime variations
Xµ

A (x) =
{

X̂µ
α (x) , X̃µ

a (x)
}

, and we may then write the infinitesimal transformation of
spacetime and the field as the passive transformation

x′µ = xµ + δxµ (B.1a)

ϕ′`
(
x′
)

= ϕ` (x) + δϕ` (x) (B.1b)

δxµ = ξAXµ
A (x) = εαX̂µ

α (x) + λaX̃µ
a (x) (B.1c)

δϕ` (x) = λaUa
``

ϕ` (x) , (B.1d)

where Ua
``

is a matrix that is a representation of the part of the infinitesimal symmetry
transformation that acts on the field components. The structure of the type of symmetry
transformations described is generally given by a Lie algebra g and hence if dim g = N
then there are going to be N conserved Noether currents as we will see.

As the Lagrangian density contains derivatives of the fields, we need to figure out
what the symmetry variation of these are. Using the Leibniz and chain rules we find

δ
(
∂µ ϕ` (x)

)
= ∂µδϕ` (x)− ∂µ (δxν) ∂ν ϕ` (x) . (B.2)

The variation (B.1d) of δϕ` (x) consists of an internal transformation of the compo-
nents given by λaUa

``
together with a spacetime variation from changing the coordinates.

From this we can more conveniently define a transformation δϕ` (x) that singles out
the internal transformation part by calculating the difference of the transformed and
original field at the old spacetime point, i.e.

1 It is not hard to generalize to more general cases.
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δϕ` (x) ≡ ϕ′` (x)− ϕ` (x)

= ϕ′`
(

x′ − δx
)
− ϕ` (x)

=
(

ϕ`

(
x′ − δx

)
+ δϕ`

(
x′ − δx

))
− ϕ` (x)

=
(
���

�ϕ` (x)− δxµ∂µ ϕ` (x) + δϕ`

(
x′ − δx

))
−����ϕ` (x)

= δϕ` (x)− δxµ∂µ ϕ` (x) . (B.3)

This is useful, as we see that we may now write

δϕ` (x) = δϕ` (x) + δxµ∂µ ϕ` (x) , (B.4)

and from the definition of δϕ` (x) (B.3) we see that it commutes with the derivative:

δ
(
∂µ ϕ` (x)

)
= δ

(
∂µ ϕ` (x)

)
− δxν∂ν

(
∂µ ϕ` (x)

)
= ∂µδϕ` (x)−

(
∂µδxν

)
∂ν ϕ` (x)− δxν∂ν

(
∂µ ϕ` (x)

)
= ∂µδϕ` (x)− ∂µ (δxν∂ν ϕ` (x))

= ∂µ

(
δϕ` (x)

)
. (B.5)

We are now ready to consider the variation of the action δS ≡
∫

M′ d
Dx′ L′−

∫
M dDxL,

which in general transforms both the integration measure and the Lagrangian density.
We may perform several useful manipulations and expansions, keeping only first order
terms in ξA:

δS =
∫

M′
dDx′ L

(
ϕ′
(
x′
)

, ∂ϕ′
(
x′
)

, x′
)
−
∫

M
dDxL (ϕ (x) , ∂ϕ (x) , x)

(i) =
∫

M′
dDx′ L

(
ϕ′ (x) , ∂ϕ′ (x) , x

)
−
∫

M
dDxL (ϕ (x) , ∂ϕ (x) , x)

+δxλ∂λL (ϕ (x) , ∂ϕ (x) , x) +O
(
ξ2)

(ii) =
∫

M
dDxL

(
ϕ′ (x) , ∂ϕ′ (x) , x

)
−L (ϕ (x) , ∂ϕ (x) , x)

+∂λ

(
δxλL (ϕ (x) , ∂ϕ (x) , x)

)
+O

(
ξ2)

(iii) =
∫

M
dDx

∂L (ϕ, ∂ϕ, x)
∂ϕ`

δϕ` +
∂L (ϕ, ∂ϕ, x)

∂ [∂λ ϕ`]
∂λ

(
δϕ`

)
+∂λ

(
δxλL (ϕ (x) , ∂ϕ (x) , x)

)
+O

(
ξ2)

(iv) =
∫

M
dDx ∂λ

∂L
∂ [∂λ ϕ`]

δϕ` +
∂L

∂ [∂λ ϕ`]
∂λ

(
δϕ`

)
+∂λ

(
δxλL

)
+O

(
ξ2)

=
∫

M
dDx ∂λ

[
∂L

∂ [∂λ ϕ`]
δϕ` + Lδxλ

]
+O

(
ξ2) . (B.6)
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(i): We expand the transformed Lagrangian density at xµ: L (ϕ′ (x′) , ∂ϕ′ (x′) , x′) =

δxλ∂λL (ϕ (x) , ∂ϕ (x) , x) +O
(
ξ2).

(ii): We change of coordinates from x′µ to xµ through x′µ = xµ + δxµ and using
dDx′ = ∂x′

∂x dDx = det
(

ID + ∂δxµ

∂xν

)
dDx =

(
1 + ∂λ

(
δxλ
))

dDx +O
(
ξ2). This extra piece

∂λ

(
δxλ
)
L (ϕ (x) , ∂ϕ (x) , x) may be combined with the term of the expansion of the

previous line to give ∂λ

[
δxλL (ϕ (x) , ∂ϕ (x) , x)

]
.

(iii): We use that ϕ′` (x) = ϕ` (x) + δϕ` (x) from the definition of δϕ` (x) and expands
L around (ϕ (x) , ∂ϕ (x) , x), which kills of the zeroth order term and leaves the first
order term in the variation.

(iv): Using Euler-Lagrange equation ∂L
∂ϕ`

= ∂λ
∂L

∂[∂λ ϕ`]
we can write a total derivative.

Now by the assumption of this variation with ξ A = {εα, λa} corresponding to a global
symmetry transformation we have δS = 0 which implies that

Jµ
can (ξ) ≡

∂L
∂
[
∂µ ϕ`

]δϕ` + Lδxµ (B.7)

is a conserved current when we use the EOMs of the theory, as we used the Euler-
Lagrange equations in the derivation. We can write Jλ (ξ) in a more useful way using
(B.1) and (B.3):

Jµ
can (ξ) ≡

∂L
∂
[
∂µ ϕ`

] (δϕ` − δxλ∂λ ϕ`

)
+ Lδxµ

=
∂L

∂
[
∂µ ϕ`

] (λaUa
``

ϕ` −
(

εαX̂λ
α + λaX̃λ

a

)
∂λ ϕ`

)
+ L

(
εαX̂µ

α + λaX̃µ
a
)

= −λa

(
∂L

∂
[
∂µ ϕ`

] (X̃λa∂λ ϕ` −Ua
``

ϕ`

)
−LX̃λa

)

−εα

(
∂L

∂
[
∂µ ϕ`

] X̂λα∂λ ϕ` −LX̂µα

)
. (B.8)

This defines two sets of conserved currents which together gives N conserved (canon-
ical) Noether currents corresponding to the N independent variations by

Jµa
can ≡ ∂L

∂
[
∂µ ϕ`

] (X̃λa∂λ ϕ` −Ua
``

ϕ`

)
−LX̃λa (B.9a)

Jµα
can ≡ ∂L

∂
[
∂µ ϕ`

] X̂λα∂λ ϕ` −LX̂µα . (B.9b)

Notice that Jµα
can is the only current that contains the internal variation of the field,

but both of them contains terms from the variation of spacetime. The internal part of
Jµα
can does in general not define a conserved current on its own unless the symmetry

transformation is purely internal, i.e. X̃λa = 0.
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We may define conserved symmetry charges by in some frame where µ = 0 corre-
sponds to the time coordinate integrating over a d-dimensional spatial hypersurface S
as

Qα ≡
∫

S
dxd Jµα

can (B.10a)

Qa ≡
∫

S
dxd Jµa

can . (B.10b)

These charges are then seen to furnish an representation of the Lie algebra g of the
symmetry group with the Poisson brackets representing the commutator as discussed
in the main text.

We can take the parameters ξA to be local, i.e. ξA = ξ A (x) which then by assumption
no longer corresponds to a symmetry of the action. Because ξ A constant corresponds to
a symmetry of the action, the variation of the action may be written proportional to the
corresponding conserved canonical Noether current JµA as

δS [ϕ] = −
∫

M
dDx ∂µξA (x) JµA

can , (B.11)

which is seen to vanish when we again impose ξA = ξ A (x) .

b.1.2 Improvements

The canonical Noether currents Jµα
can, Jµa

can are fixed uniquely by the calculation above,
but they do not give rise to uniquely defined symmetry currents. From the conservation
equations ∂µ Jµα

can = ∂µ Jµa
can = 0 we see that we may define new currents by

Jµα
imp ≡ Jµα

can + ∂λ Aλµα , Aλµα = −Aµλα (B.12a)

Jµa
imp ≡ Jµa

can + ∂λBλµa , Bλµa = −Bµλa (B.12b)

that are still obviously conserved because of the antisymmetry of the improvement
terms Aλµα, Bλµa. These improved currents does not change the charges (B.10) exactly
because the improvement term is a total derivative. This shows that there are some
freedom left in the symmetry currents that may be exploited to give more simple conser-
vation equations. They may for example be used to make the currents gauge invariant,
symmetric in some indices etc.

b.2 the noether procedure

b.2.1 Generalities and setup

The Noether procedure is a systematic way of making global symmetries of some action
local by adding gauge fields to the theory [93, 94]. The starting point is a completely
general action S(0) [ϕ] globally invariant under some representation of a symmetry Lie
group G. The goal of the procedure is to obtain a modified action
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S [ϕ, A] = S(0) [ϕ] + S(1) [ϕ, A] + S(2) [ϕ, A] + . . . (B.13)

that is invariant under local symmetry transformations of G. We want to obtain this
by defining a set of gauge fields gAµN , N = 1, . . . , dimG, in a systematic way by adding
couplings with higher and higher orders of AµN until local symmetry is manifest. We
find it useful to define a constant g so that all variations δ ∝ g. While this is usually
absorbed into the generators, we prefer to write it explicitly in the following to keep
track of orders in our procedure.

The big question is then how to construct the terms S(1) [ϕ, A], S(2) [ϕ, A] , . . . in a
systematic manner. The central observation made in section B.1 is that if we have a global
symmetry of any action S(0) [ϕ] but take the transformation parameter ξN (x) to be
local, then the variation of the action may be written proportional to the corresponding
conserved canonical Noether current J(0)µN as

δS [ϕ] = −g
∫

M
dDx ∂µξN (x) J(0)µN . (B.14)

The non-invariance of the variation (B.14) may be canceled by defining and adding to
the action the coupling of a gauge field AµN to the current J(0)µN and define the gauge
field to transform (at first order) as

S(1) [ϕ, A] ≡ g
∫

M
dDx A(1)

µN J(0)µN (B.15a)

SΣ(1) [ϕ, A] ≡ S(0) [ϕ] + S(1) [ϕ, A] (B.15b)

AµN → AµN + δAµN (B.15c)

δAµN = δ(1)AµN ≡ ∂µξN . (B.15d)

The variation of the new action is now easily seen to be

δSΣ(1) [ϕ, A] = g
∫

M
dDx AµNδJ(0)µN = O

(
g2) , (B.16)

so unless δJ(0)µn = 0 under the local symmetry transformation, the higher-order action
SΣ(1) [ϕ, A] is only invariant under local transformations to zeroth order in g. We have
then not achieved full local invariance of the action. However as we see that δSΣ(1) is of
order O

(
g2), as δJ(0)µN ∝ g. The action SΣ(1) [ϕ, A] has a new set of conserved Noether

currents that we can write as

J∑(1)µN = J(0)µN + gJ(1)µN . (B.17)

The current J∑(1)µN now depends on AµN , and the EOMs for the field ϕ` have also
changed because of the new term.

To go to next order in (B.13), we proceed as above and thus must add a term to
the action that we call S(2) [ϕ, A] which must be chosen so it has the property under a
variation that it cancels δSΣ(1) [ϕ, A]. Thus:

δS(2) [ϕ, A] + δSΣ(1) [ϕ, A] = g2
∫

M
dDx AµNδJ(1)µN = O

(
g3) . (B.18)
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It is now obvious how to perform the Noether procedure: For n ∈ N and a given
SΣ(n) [ϕ, A], find a S(n+1) [ϕ, A] such that

δS(n+1) [ϕ, A] + δSΣ(n) [ϕ, A] = O
(

gn+2) (B.19a)

SΣ(n+1) [ϕ, A] ≡ SΣ(n) [ϕ, A] + S(n+1) [ϕ, A] , (B.19b)

and continue until δSΣ(K+1) = 0 for some K ∈N or K = ∞. To determine S(n+1) [ϕ, A],
we must not only figure out exactly what to couple to the product of n gauge fields AµN ,
but also define higher order transformation laws. In general the representation of the
symmetry group G on the coordinates of spacetime and the field ϕ` must be modified as
we go higher order to make the iteration consistent. The transformation laws (B.1) when
the symmetry is global along with that of the gauge field (B.15c) will each need to be
corrected by additional terms of higher order in g in (B.1) in order to keep invariance to
order O

(
gn+1). We can write the generalization of (B.1) for the new local transformation

law as

x′µ = xµ + δxµ (B.20a)

ϕ′`
(

x′
)

= ϕ` (x) + δϕ` (x) (B.20b)

A′µN
(

x′
)

= AµN (x) + δAµN

δxµ (x) = ξN (x)
(

X(0)µ
N (x) + gX(1)µ

N (x) + . . .
)

(B.20c)

δϕ` (x) = ξN (x)
(

U(0)N
``

+ gU(1)N
``

(x) + . . .
)

ϕ` (x) (B.20d)

δAµN (x) = ∂µξN + ξM (x)
(

gW(1)M
NN

+ . . .
)

AµN (x) . (B.20e)

For AµN (x) the lowest order is an abelian gauge transformation, while higher order
terms in general are non-abelian. This choice of how to define the higher order correc-
tions to the transformation laws is generally not unique, as is neither the choice of the
next order action S(n+1) [ϕ, A]. We must require that the Poisson algebra of the genera-
tors closes at each order, which helps determine the transformation laws.

Assuming that we are able find the terms we need to add, define the local transfor-
mation laws and the series (B.13) converges, then we have obtained an action S [ϕ, A]
that is invariant under local G-transformations. The result will be the same as if we
had covarantized the theory by replacing partial derivatives with covariant derivatives
associated with the connection of some fiber bundle. Depending on what choice of trans-
formation laws and what terms we add to the action we will obtain different connections
and there is typically a choice that corresponds to “minimal coupling”.

If G is an internal symmetry group the series (B.13) will only contain terms up to
S(4) [ϕ, A] corresponding to a general 4-gluon vertex with the gauge field AµN (x) being
in the adjoint representation of G. On the other hand, if G is a spacetime symmetry
group the series will never terminate. This is because the local translations will exactly
be general coordinate transformations on the manifold. The covariant derivative here
will be that of some connection corresponding to curvature and torsion of the spacetime.
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The procedure is straight-forward to follow, but in practice the calculations are too
complicated because there is no systematic way to determine S(n) [ϕ, A]. Further more,
this will never be a practical way to obtain the full diffeomorphic invariance when G is
a spacetime symmetry group.

However, even with spacetime symmetries we saw that the lowest order local invari-
ance (B.15) is essentially unique and universal, up to rescaling of fields and currents. This
is very useful as SΣ(1) [ϕ, A] = S(0) [ϕ] + S(1) [ϕ, A] then will be the coupling of the field
theory described by S(0) [ϕ] to lowest order in the geometry, which should be enough to
study the effects of coupling the theory to gravity. That is indeed the motivation for us
to pursue this direction.

b.2.2 Example: Noether Procedure for the complex relativistic scalar

It is illustrative to see how the Noether procedure work in the case of a free massless
complex scalar. We have L = −∂µ ϕ∗∂µ ϕ, which is invariant under the purely internal
U(1) transformation with parameter ε

ϕ→ eiε ϕ , ϕ∗ → e−iε ϕ∗ , (B.21)

δϕ = iεϕ , δϕ∗ = −iεϕ∗ (B.22)

The globally conserved U(1) current is

Jµ =
∂L

∂ [∂λ ϕ`]
Ua

``′ϕ`′

= − ∂L
∂ [∂λ ϕ∗]

(−i) ϕ∗ +
∂L

∂ [∂λ ϕ]
(+i) ϕ

= iϕ∂µ ϕ∗ − iϕ∗∂µ ϕ . (B.23)

According to the Noether procedure we should then take

S(1) =
∫

M
dDx

[
(iϕ∂µ ϕ∗ − iϕ∗∂µ ϕ) Aµ

]
(B.24)

δAµ = ∂µε + (perhaps higher order terms) (B.25)

so

SΣ(1) = S(0) + S(1)

=
∫

M
dDx

[
−∂µ ϕ∗∂µ ϕ + (iϕ∂µ ϕ∗ − iϕ∗∂µ ϕ) Aµ

]
=

∫
M

dDx
[
−∂µ ϕ∗∂µ ϕ + ∂µ ϕ∗

(
iϕAµ

)
− ∂µ ϕ (iϕ∗Aµ)

]
=

∫
M

dDx
[
−Dµ ϕ∗Dµ ϕ + |ϕ|2 Aµ Aµ

]
, (B.26)

where we identified the covariant derivative as
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Dµ ϕ ≡ ∂µ ϕ− iAµ ϕ , (B.27)

Let us check δJ(0)µ (using [δ, ∂] =
[
δ, ∂
]
= 0) under a local U(1) transformation:

δJ(0)µ = iδϕ∂µ ϕ∗ + iϕ∂µδϕ∗

−iδϕ∗∂µ ϕ− iϕ∗∂µδϕ

= i [iεϕ] ∂µ ϕ∗ + iϕ∂µ [−iεϕ∗]

−i [−iεϕ∗] ∂µ ϕ− iϕ∗∂µ [iεϕ]

= ϕϕ∗∂µε + ϕ∗ϕ∂µε

= 2ϕϕ∗∂µε 6= 0 . (B.28)

We thus have

δSΣ(1) = δS(0) + δS(1)

=
∫

M
dDx δJ(0)µ Aµ

=
∫

M
dDx 2ϕϕ∗Aµ∂µε , (B.29)

which shows that we indeed have to add another term to the action, namely one of
order O

(
A2), but we do not need to put additional terms into the transformation law

of δAµ. The S(2) piece we guess from the above should be given by the “Seagull term”:

S(2) = −
∫

M
dDx ϕ∗ϕAµ Aµ , (B.30)

because we then have

δS(2) = −δ
∫

M
dDx ϕϕ∗Aµ Aµ

= −
∫

M
dDx

[
δϕϕ∗Aµ Aµ + ϕδϕ∗Aµ Aµ + 2ϕϕ∗AµδAµ

]
= −

∫
M

dDx
[
((((

((((iεϕ) ϕ∗Aµ Aµ +((((
((((

(
ϕ (−iεϕ∗) Aµ Aµ + 2ϕϕ∗Aµ (∂

µε)
]

= −
∫

M
dDx

[
2ϕ∗ϕAµ∂µε

]
, (B.31)

which then shows that

δSΣ(2) = δS(0) + δS(1) + δS(2)

=
∫

M
dDx 2ϕϕ∗Aµ∂µε−

∫
M

dDx
[
2ϕϕ∗Aµ∂µε

]
= 0 , (B.32)

Thus the sequence in A terminates at order 2. We see that this can be assembled into
the following local invariant action:
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S = S(0) + S(1) + S(2)

=
∫

M
dDx

[
−Dµ ϕ∗Dµ ϕ +���

���|ϕ|2 Aµ Aµ −����
�

ϕ∗ϕAµ Aµ

]
=

∫
M

dDx
[
−Dµ ϕ∗Dµ ϕ

]
. (B.33)

Hence the morale is: Making the theory locally U(1) invariant is equivalent to just
taking ∂µ → Dµ in the global invariant Lagrangian density. The original global U(1)
current Jµ = iϕ∂µ ϕ∗ − iϕ∗∂µ ϕ is no longer conserved. The new conserved current is the
covariantized version of this

Jµ = JΣ(2)µ = iϕDµ ϕ∗ − iϕ∗Dµ ϕ . (B.34)

We can write the interaction term as

Sint =
∫

M
dDx

[
(iϕ∂µ ϕ∗ − iϕ∗∂µ ϕ) Aµ − ϕ∗ϕAµ Aµ

]
. (B.35)





C
N O N - R E L AT I V I S T I C C O N F O R M A L G R O U P S

c.1 the schrödinger group

There are now various ways to define the analog of the relativistic conformal group. In
any case we must add the Lifshitz scaling of section 2.2 to the Galilean or Bargmann
groups, but the number of extra generators we need to add to make the algebra close
depends strongly on the value of z. Adding the Lifshitz scaling with generator D to
Bargmann for z = 2 leads to the necessity of adding a “temporal SCT” with generator
C to the algebra for closure, which gives us the Schrödinger group Schr (d, 1). The new
extra non-zero commutation relations [4] compared to Bargmann are given by

[D, H] = 2H (C.1a)

[D, Pi] = Pi (C.1b)

[D, Bi] = −Bi (C.1c)

[D, C] = −2C (C.1d)

[C, H] = D (C.1e)

The corresponding symmetry group is the maximal symmetry group of the free
Schrödinger equation of section 7.1, hence the name [28, 77]. The structure of the group
is now a lot different than for Bargmann, but it is still a subgroup. In particular there is
a sl (2, R) subalgebra spanned by {D, H, C}.

c.2 the conformal galilean group

If we instead for z = 1 add the Lifshitz scaling (dilatation) to the Galilean group, we see
that we need to add the same temporal SCT generator C along with d spatial SCTs Ki
for closure. The resulting group is the conformal Galilean group CGal (d, 1), which in
many regards is the one that is closest to the relativistic conformal group, as space and
time scale symmetrically. The resulting non-zero commutators [29] of the algebra are

[D, H] = H (C.2a)

[D, Pi] = Pi (C.2b)

[D, Bi] = −Bi (C.2c)

[D, C] = −C (C.2d)

[D, Ki] = −Ki (C.2e)
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[C, H] = 2D (C.2f)

[C, Pi] = 2Bi (C.2g)

[C, Bi] = Ki (C.2h)

[Ki, H] = 2Bi (C.2i)[
Ki, Pj

]
= 2Jij + 2δijD (C.2j)[

Kk, Jij
]

= δikKj − δjkKi (C.2k)

Interestingly enough, it is easy to see from the Jacobi identity that it is not possible
to add the previous central charge M. Again we have an sl (2, R) subalgebra spanned
by {D, H, C}. CGal (d, 1) can also be obtained from an Inönü-Wigner contraction of the
relativistic conformal group C (d, 1) of appendix A.1.2 [29].

c.3 an infinite dimensional extension

It is not too hard to guess how to generalize the two above algebras to more general
values of z, given that we have a sl (2, R) subalgebra in both cases: One could then
try to extend it to a Witt algebra with generators Ln. It is then also natural to give the
rotations and rotations a wight under this Witt algebra, which can be used to define two
sets of generators Tn

i for generalized translations and Jn
ij for generalized rotations. After

some work along these lines, which is straight-forward, one finds an infinite dimensional
algebra that contains all of the non-relativistic algebras without central extension of table
1 exists and is given by

[Lm, Ln] = (m− n) Lm+n (C.3a)[
Mm

ij , Mn
kl

]
= δjk Mm+n

il − δik Mm+n
jl − δjl Mm+n

ik + δil Mm+n
jk (C.3b)[

Lm, Mn
ij

]
= −nMm+n

ij (C.3c)[
Tm

i , Tn
j

]
= 0 (C.3d)

[Lm, Tn
i ] =

(
z−1 (m + 1)− n

)
Tm+n

i (C.3e)[
Mm

ij , Tn
k

]
= δkjTm+n

i − δkiTm+n
j (C.3f)

This algebra consists of a Witt algebra spanned by Ln (may be centrally extended
to a Virasoro immediately), a so(d) Kac-Moody algebra spanned by Mm

ij , and Tm
i are

so(d) vectors and Witt primaries. These are known in the literature as the spin- N
2 ex-

tended Galilean algebras when we take z = 2/N, N ∈ N [95, 29]. One can work out
the commutation relations to see that only if z = 2/N do we have an finite dimensional
subalgebra which is spanned by L−1, L0, L1, M0

ij and T0
i , . . . , TN

i . We may centrally ex-
tend this algebra for z = 2, 1

2 , , 1
4 , . . . by a central charge M so that it contains all of the

algebras of table 1 with central charges as well. This is done by taking[
Tm

i , Tn
j

]
= Imnδij M , (C.4)
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where Imn is the invariant symbol of sl (2, R) in the representations the generators Tm
i

carry.
The corresponding finite transformations are obtained by integrating the infinitesimal

spacetime transformations generated by (C.3). We find that the transformations are

t′ = f (t) , (C.5a)

x′i =
(

f ′ (t)
)1/z

(
R j

i (t) xj + λi (t)
)

(C.5b)

A theory with this symmetry would be invariant under arbitrary time redefinitions
and time-dependent rotations and translations. The corresponding transformations of
the finite subgroup are

t′ =
αt + β

γt + δ
, (C.6a)

x′ = (γt + δ)−
2
z

(
R j

i xj +
N

∑
a=0

λa
i ta

)
. (C.6b)





D
C A L C U L AT I O N S

d.2 chapter 2

d.2.1 C̊4 in d = 3 dimensions

We show that C̊4 =
(
εijk
[ 1

2 J jk − 1
m

(
BjPk)])2

in d = 3 by collecting terms in the formula
(2.30c) and using (E.3):

C̊4 =
1
2

J jk Jjk −
1
m

(
J jkBjPk − BjPk J jk

)
+

1
m2 BjPk

(
BjPk − BkPj

)
=

1
2

J jk J jk − 1
2m

J jkBjPk − 1
2m

BjPk J jk +
1

m2 BjPkBjPk

+
1

2m
J jkBkPj − 1

2m
BjPk J jk − 1

m2 BjPkBkPj

=
1
2

J jk
[

1
2

J jk − 1
m

BjPk
]
− 1

m
BjPk

[
1
2

J jk − 1
m

BjPk
]

−1
2

J jk
[
−1

2
J jk − 1

m
BkPj

]
+

1
m

BjPk
[
−1

2
J jk − 1

m
BkPj

]
=

[
1
2

J jk − 1
m

BjPk
] [

1
2

J jk − 1
m

BjPk
]

−
[

1
2

J jk − 1
m

BjPk
] [
−1

2
J jk − 1

m
BkPj

]
=

(
δjnδkm − δjmδkn

) [1
2

J jk − 1
m

(
BjPk

)] [1
2

Jnm − 1
m

(BnPm)

]
=

(
εijk

[
1
2

J jk − 1
m

(
BjPk

)])2

. (D.1)

On the contrary one could also start from C̊4 =
(
εijk
[ 1

2 J jk − 1
m

(
BjPk)])2

and by a
careful analysis revert the calculation above to find the general d-dimensional expression
for it as there is non explicit d-dependence in the expression. This is actually how we
(2.30c) in the thesis generalizing the result of [35].

d.3 chapter 3

d.3.1 Solving for the affine Galilean connection

An expression for the affine connection in terms of the gauge fields of the connection
can be found from the vielbein postulates (3.24). We find using the completeness relation
and the other vielbein postulate
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0 = eλ
a∇µe a

ν

= eλ
a

(
∂µe a

ν − Γρ
µνe a

ρ −Ω a
µ τν −ω a

µ be b
ν

)
= eλ

a

(
∂µe a

ν −Ω a
µ τν −ω a

µ be b
ν

)
− Γρ

µν

(
δλ

ρ + vλτρ

)
= eλ

a

(
∂µe a

ν −Ω a
µ τν −ω a

µ be b
ν

)
− Γλ

µν − vλΓρ
µντρ

= eλ
a

(
∂µe a

ν −Ω a
µ τν −ω a

µ be b
ν

)
− Γλ

µν − vλ∂µτν ⇒

Γλ
µν = −vλ∂µτν + eλ

a

(
∂µe a

ν −Ω a
µ τν −ω a

µ be b
ν

)
. (D.2)

d.3.2 Linearizing the Hartong-Obers connection

We want to linearize the boost and rotation gauge fields (3.43). Starting with the boost
gauge field we find

2Ωµa = 2vν∂[νeµ]a + 2vνeσ
aeµb∂[νe b

σ] + 2Cµa

= −δν
0
(
∂νeµa − ∂µeνa

)
− δν

0 δσ
aδµb

(
∂νe b

σ − ∂σe b
ν

)
+ 2Cµa

= −∂0eµa + ∂µe0a − δµb

(
∂0e b

a − ∂ae b
0

)
+ 2Cµa ,

≡ −∂0eµa + ∂µe0a − δµb

(
∂0e b

a − ∂ae b
0

)
+ 2Cµa (D.3)

We then find that the components become

2Ω0a = −HHH∂0e a
0 +HHH∂0e a

0 −
���

���
���

�
δ0b

(
∂0e b

a − ∂ae b
0

)
= 2C0a (D.4)

2Ωba = −∂0eba + ∂be0a − (∂0eab − ∂ae0b) + 2Cba

= −2∂0e(ba) + ∂be0a + ∂ae0b + 2Cba

= −∂0sba + 2∂(ae|0|b) + 2Cba

= −∂0sba − 2∂(avb) + 2Cba .

In total, after dividing by two, we find

Ωµa =

(
Ω0a

Ωba

)
=

(
C0a

− 1
2 ∂0sba − ∂(bva) + Cba

)
. (D.5)

Linearization of the rotation gauge field gives
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2ωµac = 2eλ
[c|∂µeλ|a] + 2eλ

[a|∂λeµ|c] + 2eµbeσ
[ceλ

a]∂λe b
σ + 2Cµac

= 2δλ
[c|∂µeλ|a] + 2δλ

[a|∂λeµ|c] + 2δµbδσ
[cδλ

a]∂λe b
σ + 2Cµac

=
(

δλ
c ∂µeλa − δλ

a ∂µeλc

)
+
(

δλ
a ∂λeµc − δλ

c ∂λeµa

)
+δµb

(
δσ

c δλ
a − δσ

a δλ
c

)
∂λe b

σ + 2Cµac

=
(
∂µeca − ∂µeac

)
+
(
∂aeµc − ∂ceµa

)
+ δµb

(
∂ae b

c − ∂ce b
a

)
+ 2Cµac

= 2∂µe[ca] + 2∂[ae|µ|c] + 2δµb∂[ae b
c] + 2Cµac

≡ 2∂µe[ca] + 2∂[ae|µ|c] + 2δµb∂[ae b
c] + 2Cµac . (D.6)

In components:

2ω0ac = 2∂0e[ca] + 2∂[ae|0|c] + 2C0ac

= −2∂0e[ac] − 2∂[avc] + 2C0ac , (D.7)

2ωbac = 2∂be[ca] + 2∂[ae|b|c] + δbd∂[ae d
c] + 2Cbac

= 2∂be[ca] + 2∂[ae|b|c] + 2∂[aec]b + 2Kbac

= (∂beca − ∂beac) + (∂aebc − ∂ceba) + (∂aecb − ∂ceab) + 2Cbac

= 2∂be[ca] + 2
(

∂ae(bc) − ∂ce(ba)

)
+ 2Cbac

= 2∂be[ca] + ∂asbc − ∂csba + 2Cbac

= 2∂be[ca] + 2∂[asc]b + 2Cbac

= −2∂be[ac] + 2∂[asc]b + 2Cbac (D.8)

so we can finally write

ωµac =

(
Ω0ac

Ωbac

)
=

(
−∂0e[ac] − ∂[avc] + C0ac

−∂be[ac] + ∂[as|b|c] + Cbac

)
. (D.9)

From this we see that the pseudo-gauge fields (3.44) are linearized as

Ω̂µa =

(
Ω̂0a

Ω̂ba

)
=

(
0

− 1
2 ∂0sba − ∂(avb)

)
, (D.10a)

ω̂µac =

(
ω̂0ac

ω̂bac

)
=

(
−∂0e[ac] − ∂[avc]

−∂be[ac] + ∂[asc]b

)
. (D.10b)

We can then perform the linearization of the pseudo-contortions Cµa and Cµac for the
graviphotonic connection of section 3.3.3.1 in the main text. Let us first consider the
linearization of Wλ

µν, as all pieces multiplied with this must be zeroth order:
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Wλ
µν =

1
2

hλσYσµν

=
1
2

δλaδσ
a Yσµν

=
1
2

δλaYaµν

=
1
2

δλa (τµKaν + τνKaµ +��
�Laµν

)
= δλa

(
δ0

µ∂[a Mν] + δ0
ν∂[a Mµ]

)
(D.11)

Where we used that Lσµν only contains higher-order pieces. The linearization of Mµ

is independent of the orbits. We then find

Cµa = −vνeλaWλ
µν

= δν
0 δλaδλb

(
δ0

µ∂[b Mν] + δ0
ν∂[b Mµ]

)
= δ0

µ∂[a M0] + ∂[a Mµ] ⇒

Cµa = −
(

2∂[0Ma]

∂[j Ma]

)
, (D.12)

and for the other one

Cµac = eν
ceλaWλ

µν

= δν
cδλaδλb

(
δ0

µ∂[b Mν] + δ0
ν∂[b Mµ]

)
= δ0

µ∂[a Mc] +���
��δ0

c ∂[a Mµ] ⇒

Cµij =

(
∂[i Mj]

0

)
. (D.13)
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d.4 chapter 4

d.4.1 Improvements of Galilean spacetime currents

Current Improvement

Time
E0

imp = E0
can + ∂iα

i αi

Ei
imp = Ei

can − ∂0αi + ∂jβ
ji βji = −βij

Translation
T0i

imp = Ti0
can + ∂kγki γki

T ji
imp = T ji

can − ∂0γij + ∂kζkji ζkji = −ζ jki

Rotation
j0ij
imp = xiT0j

can − xjT0i
can + s0ij + ∂kκkij κkij

jkij
imp = xiTkj

can − xjTki
can + skij − ∂0κkij + ∂lλ

lkij λlkij = −λklij

Boost
b0i

imp = tT0i
can + w0i + ∂kξki ξki

bji
imp = tT ji

can + wji − ∂0ξ ji + ∂kρkji ρkji = −ρjki

Table 5: Improvements of currents and charges of a non-relativistic Galilean theory.

There is some freedom left in the currents defined in (4.17) as adding a divergence term
will not change the generating charges. We have the following improvements which
leaves the charges and transformation law unchanged

Eµ
imp = Eµ

can + ∂ρ Aρµ (D.14a)

Tµi
imp = Tiµ

can + ∂ρBρµi (D.14b)

jµij
imp = jµij

can + ∂ρDρµij (D.14c)

bµi
imp = bµi

can + ∂ρEρµi (D.14d)

where all A, B, D, E are antisymmetric in the first two indices. In the spirit of Galilean
relativity we can separate the components of the improvements as in table 5 which is
more convenient for the following. The way to proceed is simply by expressing the
canonical currents in terms of the improved ones of table 5 and substituting the results
into the rotation and boost currents that are expressed in terms of the momentum cur-
rent.

d.4.1.1 Rotation current

We start with the zero component of the rotation current:

j0ij
imp = xiT0j

can − xjT0i
can + s0ij + ∂kκkij

= xi
(

T0j
imp − ∂kγkj

)
− xj

(
T0i

imp − ∂kγki
)
+ ∂kκkij + s0ij

= xiT0j
imp − xjT0i

imp − xi∂kγkj + xj∂kγki + ∂kκkij + s0ij . (D.15)
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What is of interest is

− xi∂kγkj + xj∂kγki + ∂kκkij + s0ij , (D.16)

where we would like to choose γki and κkij so that we can remove as much as s0ij as
possible. We can rewrite this using the product rule of differentiation:

− ∂k

(
xiγkj

)
+
(

∂kxi
)

γkj + ∂k

(
xjγki

)
−
(

∂kxj
)

γki + ∂kκkij + s0ij

= −∂k

(
xiγkj

)
+ ∂k

(
xjγki

)
+ ∂kκkij + γij − γji + s0ij (D.17)

This is useful, because we see that if we choose

γ[ji] =
1
2

s0ij (D.18a)

κkij = xiγkj − xjγki , (D.18b)

then we have a unique solution that removes all of s0ij in the improved current so that

j0ij
imp = xiT0j

imp − xjT0i
imp , (D.19)

like we postulated in the main text. Continuing with the spatial components in the
same way, we have

jkij
imp = xiTkj

can − xjTki
can + skij − ∂0κkij + ∂lλ

lkij

= xi
(

Tkj
imp + ∂0γkj − ∂lζ

lkj
)
− xj

(
Tki

imp + ∂0γki − ∂lζ
lki
)

−∂0κkij + ∂lλ
lkij + skij

= xiTkj
imp − xjTki

imp + xi
(

∂0γkj − ∂lζ
lkj
)

−xj
(

∂0γki − ∂lζ
lki
)
− ∂0κkij + ∂lλ

lkij + skij . (D.20)

Now the terms we focus on are those of the last line. We see that given our previous
choice of κkij in (D.18), we have three of the terms cancels, leaving some terms where we
again use the product rule

− xi∂lζ
lkj + xj∂lζ

lki + ∂lλ
lkij + skij

= −∂l

(
xiζ lkj

)
+
(

∂lxi
)

ζ lkj + ∂l

(
xjζ lki

)
−
(

∂lxj
)

ζ lki + ∂lλ
lkij + skij

= −∂l

(
xiζ lkj

)
+ ∂l

(
xjζ lki

)
+ ζ ikj − ζ jki + ∂lλ

lkij + skij , (D.21)

so we see that we can also make skij disappear in the improved currents by taking the
only solution in terms of the spatial spin-current that satisfies ζ jki = −ζkji
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ζ jik =
1
2

(
sjki + sikj + skij

)
(D.22a)

λlkij = xiζ lkj − xjζ lki . (D.22b)

We can still allow for extra terms that satisfies ζ jik = ζ jki, which are the further im-
provements described in section 4.2.3.2, but this solution is essentially unique.

Notice that while all freedom in κkij, λlkij have been used, we have still not fixed the
symmetric part of γji. The result is that we can always write

jkij
imp = xiTkj

imp − xjTki
imp , (D.23)

as postulated in the main text.

d.4.1.2 Boost current

Let us now continue with the boost current in the same way. When we have no central
charge and no associated mass current there are less freedom in choosing the improve-
ments. We can start with the zero component of the current and see that we find

b0i
imp = tT0i

can + w0i + ∂kξki

= t
(

T0i
imp − ∂kγki

)
+ w0i + ∂kξki

= tT0i
imp − ∂k

(
tγki

)
+ w0i + ∂kξki . (D.24)

Now, we have already fixed the antisymmetric part of γki and have no consistent way
of removing any components of w0i. We can therefore only take

ξki = tγki , (D.25)

which gives

b0i
imp = tT0i

imp + w0i . (D.26)

For the spatial components with the above choice we instead find

bji
imp = tT ji

can + wji − ∂0ξ ji + ∂kρkji

= t
(

T ji
imp + ∂0γji − ∂lζ

l ji
)
+ wji − ∂0ξ ji + ∂kρkji

= tT ji
imp +��

�
��

∂0

(
tγji
)
− γji − ∂l

(
tζ l ji

)
+ wji −���∂0ξ ji + ∂kρkji

= tT ji
imp + wji − γji − ∂l

(
tζ l ji

)
+ ∂kρkji

We now see that since γ[ji] is already fixed, we can only remove the symmetric part of
wji by choosing

γ(ji) = w(ji) (D.27a)

ρkji = tζkji . (D.27b)
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This is a unique solution. The antisymmetric part of wji and γji are left in this expres-
sion and shows in total that we have

b0i
imp = tT0i

imp + ψ0i (D.28a)

bki
imp = tTki

imp + ψki (D.28b)

where we have defined the current ψµi as in (4.28) by

ψµi ≡ δ
µ
0

[
w0i
]
+ δ

µ
j

[
w[ji] − 1

2
s0ij
]

. (D.29)

This proves that the choices of improvements discussed in section 4.2.3.1 are the es-
sentially unique (up to the further improvements of the stress tensor) that simplifies the
Galilean symmetry currents as much as possible. The choice of improvements may then
be converted to the expressions for B, D, E in the main text (4.26).

d.4.2 Improvements of Bargmann spacetime currents

Current Improvement

Time
E0

imp = E0
can + ∂iα

i αi

Ei
imp = Ei

can − ∂0αi + ∂jβ
ji βji = −βij

Translation
T0i

imp = Ti0
can + ∂kγki γki

T ji
imp = T ji

can − ∂0γij + ∂kζkji ζkji = −ζ jki

Mass
J0
imp = J0

can + ∂iη
i ηi

Ji
imp = Ji

can − ∂0ηi + ∂jθ
ji θ ji = −θij

Rotation
j0ij
imp = xiT0j

can − xjT0i
can + s0ij + ∂kκkij κkij

jkij
imp = xiTkj

can − xjTki
can + skij − ∂0κkij + ∂lλ

lkij λlkij = −λklij

Boost
b0i

imp = tT0i
can − xi J0

can + w0i + ∂kξki ξki

bji
imp = tT ji

can − xi J j
can + wji − ∂0ξ ji + ∂kρkji ρkji = −ρjki

Table 6: Improvements of currents and charges of a non-relativistic Bargmann theory.
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Like for the Galilean currents there is some freedom left in the currents defined in (4.17)
and (4.32). We have the following improvements that leaves the charges and transforma-
tion law unchanged

Eµ
imp = Eµ

can + ∂ρ Aρµ (D.30a)

Tµi
imp = Tiµ

can + ∂ρBρµi (D.30b)

Jµ
imp = Jµ

can + ∂ρCρµ (D.30c)

jµij
imp = jµij

can + ∂ρDρµij (D.30d)

bµi
imp = bµi

can + ∂ρEρµi (D.30e)

where all A, B, C, D, E are antisymmetric in the first two indices and we can separate
the components of the improvements as in table 6 which is more convenient for the
following.

Now that we have the mass current, we can use its improvements in the boost current
also. Nothing changes with the rotation if we fix this first in the exactly as for the
Galilean case - starting fixing the freedom in the boost current would not give a different
conclusion.

For the zero component of the boost current we now have improvements of the kind

b0i
imp = tT0i

can − xi J0
can + w0i + ∂kξki

= t
(

T0i
imp − ∂kγki

)
− xi

(
J0
imp − ∂kηk

)
+ w0i + ∂kξki

= tT0i
imp − xi J0

imp − ∂k

(
tγki

)
+ xi∂kηk + w0i + ∂kξki

= tT0i
imp − xi J0

imp − ∂k

(
tγki

)
+ ∂k

(
xiηk

)
−
(

∂kxi
)

ηk + w0i + ∂kξki

= tT0i
imp − xi J0

imp − ∂k

(
tγki

)
+ ∂k

(
xiηk

)
− ηi + w0i + ∂kξki . (D.31)

Contrary to the Galilean case there is now a unique solution that removes w0i com-
pletely. This is done by choosing the improvements as

ξki = tγki − xiηk (D.32a)

ηi = w0i , (D.32b)

which gives what we have postulated in the main text:

b0i
imp = tT0i

imp − xi J0
imp . (D.33)

For the spatial components with the above choice we instead find
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bji
imp = tT ji

can − xi J j
can + wji − ∂0ξ ji + ∂kρkji

= t
(

T ji
imp + ∂0γji − ∂lζ

l ji
)
− xi

(
J j
imp + ∂0η j − ∂kθkj

)
+wji − ∂0ξ ji + ∂kρkji

= tT ji
imp − xi J j

imp +��
�
��

∂0

(
tγji
)
−
��

��
�

∂0

(
xiη j

)
−���∂0ξ ji − γji

−∂k

(
tζkji

)
+ ∂k

(
xiθkj

)
− θij + wji + ∂kρkji

= tT ji
imp − xi J j

imp − γji

−∂k

(
tζkji

)
+ ∂k

(
xiθkj

)
− θij + wji + ∂kρkji

We have already fixed the antisymmetric part of γki, but we see that we can now
remove wji completely by choosing

γ(ji) = w(ji) (D.34a)

θij = w[ji] (D.34b)

ρkji = tζkji − xiθkj . (D.34c)

This is a unique solution that shows we can always choose improvements so that

bji
imp = tT ji

imp − xi J j
imp . (D.35)

The choice of improvements may then be converted to the expressions for B, C, D, E
in the main text section 4.3.2.

d.5 chapter 5

d.5.1 Noether procedure for Galilean theories

The starting point is the expression (5.1b) for S(1) that is universally given by the the
Noether procedure described in section B.2. The improvements of the energy current
can using the notation of section D.4.1 be written as

S(1) 3
∫

M
dDx τµEµ

can

=
∫

M
dDx τ0E0

can + τiEi
can

=
∫

M
dDx τ0

(
E0

imp − ∂iα
i
)
+ τi

(
Ei

imp + ∂0αi − ∂jβ
ji
)

=
∫

M
dDx τµEµ

imp − τ0∂iα
i + τi

(
∂0αi − ∂jβ

ji
)

, (D.36)

which does not give anything useful for our present purposes as we discussed in
section 4.2.3.3 in the main text.
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More interesting is the coupling of the momentum current with the linearized spatial
vielbeins. We now use the improvements of section D.4.1 that was found to maximally
simplify the conserved currents and write the canonical currents in terms of the im-
proved ones. We find

S(1) 3
∫

M
dDx eµaTµa

can

=
∫

M
dDx e0iT0i

can + ejiT
ji
can∫

M
dDx e0i

(
T0i

imp − ∂k

(
w(ki) +

1
2

s0ik
))

+eji

(
T ji

imp + ∂0

(
w(ji) +

1
2

s0ij
)
− 1

2
∂k

(
skji + sijk + sjik

))
=

∫
M

dDx − vi

(
T0i

imp − ∂k

(
w(ki) +

1
2

s0ik
))

+eji

(
T ji

imp + ∂0

(
w(ji) +

1
2

s0ij
)
− 1

2
∂k

(
skji + sijk + sjik

))
=

∫
M

dDx − vi

(
T0i

imp − ∂k

(
w(ki) +

1
2

s0ik
))

+

(
e(ji)T

ji
imp + e(ji)∂0w(ji) +

1
2

e[ji]∂0s0ij − e(ji)∂ks(ij)k − 1
2

e[ji]∂kskji
)

=
∫

M
dDx − viT0i

imp +
1
2

sijT
ij
imp + vi∂k

(
w(ki) +

1
2

s0ik
)

+
1
2

sij∂0wij +
1
2

e[ji]∂0s0ij − sij∂ksijk − 1
2

e[ji]∂kskji . (D.37)

We here wrote e(ji) =
1
2 sji =

1
2 sij and use that e0i = −vi. Let us now collect all terms

in the action by doing integration by parts on terms with derivatives of the lift and spin
current:

S(1) =
∫

M
dDx

[
τµEµ

can − viT0i
imp +

1
2

sijT
ij
imp + vi∂k

(
w(ik) +

1
2

s0ik
)

+
1
2

sij

(
∂0wij − ∂ksijk

)
+

1
2

e[ji]
(

∂0s0ij − ∂kskji
)
+

1
2

ωρabsρab −Ωρawρa
]

=
∫

M
dDx

[
τµEµ

can − viT0i
imp +

1
2

sijT
ij
imp +

1
2

sij∂0wij + v(i∂k)w
ik

−1
2

sij∂ksijk +
1
2

vi∂ks0ik +
1
2

e[ji]∂0s0ij − 1
2

e[ji]∂kskji +
1
2

ωρabsρab −Ωρawρa
]

.
=

∫
M

dDx
[

τµEµ
can − viT0i

imp +
1
2

sijT
ij
imp −

1
2

(
∂0sij + 2∂(jvi)

)
wij

−1
2

∂[isk]js
jik +

1
2

∂[ivk]s
0ik +

1
2

(
∂0e[ij]s

0ij + ∂ke[ij]s
kij
)
+

1
2

ωρabsρab −Ωρawρa
]
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=
∫

M
dDx

[
τµEµ

can − viT0i
imp +

1
2

sijT
ij
imp

+
(

0
)
× w0i +

(
−1

2
∂0sij − ∂(ivj)

)
wij

−1
2

(
−∂[ivj] − ∂0e[ij]

)
s0ij − 1

2

(
−∂ke[ij] + ∂[isj]k

)
skij

+
1
2

ωρabsρab −Ωρawρa
]

=
∫

M
dDx

[
τµEµ

can − viT0i
imp +

1
2

sijT
ij
imp

+Ω̂0iw0i + Ω̂jiwji − 1
2

ω̂0ijs0ij − 1
2

ω̂kijskij

+
1
2

ωρabsρab −Ωρawρa
]

=
∫

M
dDx

[
τµEµ

can − viTi0
imp +

1
2

sijT
ij
imp +

1
2

Cρabsabρ − Cρawaρ

]
.

(D.38)

In the second last equation we see that we can identify the linearized pseudo-gauge
fields that we originally calculated in (3.96) and define pseudo-contortions as in (5.8).

d.5.2 Noether procedure for Bargmann theories

The first order action of the Noether procedure should according to the general theory
of section B.2 be taken as

S(1) =
∫

M
dDx

[
τµEµ

can + eµaTµa
can −mµ Jµ

can +
1
2

ωµijsµij −Ωµiwµi
]

. (D.39)

The linearized mass gauge field mµ is taken to transform at linear order as (5.11).
For Bargmann we now have the improvements of the mass current of our disposal. In
section D.4.2 we saw how to choose them to make the currents maximally simple. Using
these improvements we find that its contribution to S(1) that are extra compared to the
Galilean case in section D.5.1 can be rewritten as
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S(1) 3
∫

M
dDxmµ Jµ

can

=
∫

M
dDxm0

(
J0
imp − ∂iη

i
)
+ mi

(
Ji
imp + ∂0ηi − ∂jθ

ji
)

=
∫

M
dDxm0

(
J0
imp − ∂iw0i

)
+ mi

(
Ji
imp + ∂0w0i − 1

2
∂js0ij + ∂jw[ji]

)
=

∫
M

dDxmµ Jµ
imp −m0∂iw0i + mi∂0w0i −mi∂j

(
1
2

s0ij − w[ji]
)

.
=

∫
M

dDxmµ Jµ
imp + ∂im0w0i − ∂0miw0i + ∂jmi

(
1
2

s0ij − w[ji]
)

=
∫

M
dDxmµ Jµ

imp + 2∂[im0]w
0i − ∂[jmi]w

ji +
1
2

∂[jmi]s
0ij

=
∫

M
dDxmµ Jµ

imp − 2∂[0mi]w
0i − ∂[jmi]w

ji − 1
2

∂[imj]s
0ij

=
∫

M
dDxmµ Jµ

imp + Cµiwµi − 1
2

Cµijsµij . (D.40)

where we in the last line identified the pseudo-contortions of the graviphotonic con-
nection (3.8.3). This proves the claim of the main text.

d.7 chapter 7

d.7.1 Null reduction of Klein-Gordon field

We simply use the methods of chapter 6 in the main text, in particular the expression
for the inverse metric (6.2b). The calculation is then straight-forward:

ŜKG =
∫

dD+1x
√
−g
[
−gµ̂ν̂∂µ̂Ψ∗∂ν̂Ψ−V (|Ψ|)

]
=

∫
dD+1x

√
−g
[
−gµν∂µΨ∗∂νΨ− guν∂uΨ∗∂νΨ

−gµu∂µΨ∗∂uΨ− guu∂uΨ∗∂uΨ−V (|Ψ|)
]

=
∫

dD+1x
√
−g
[
−hµν∂µΨ∗∂νΨ + v̂ν∂uΨ∗∂νΨ

+v̂µ∂µΨ∗∂uΨ− 2Φ̃∂uΨ∗∂uΨ−V (|Ψ|)
]

=
∫

dD+1x
√
−g
[
−hµν∂µφ∗∂νφ + v̂ν (−im) φ∗∂νφ

+v̂µ∂µφ∗ (+im) φ− 2Φ̃ (−im) φ∗ (+im) φ−V (|Ψ|)
]
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=
∫

dD+1x
√
−g
[
−hµν∂µφ∗∂νφ− imv̂νφ∗∂νφ

+imv̂µφ∂µφ∗ − 2m2Φ̃φ∗φ−V (|Ψ|)
]

=
∫

dD+1x
√
−g
[
−hµν∂µφ∗∂νφ− im

(
vν − hµν Mµ

)
φ∗∂νφ

+im (vµ − hµν Mν) φ∂µφ∗

−2m2
(
−vµ Mµ +

1
2

hµν Mµ Mν

)
φ∗φ−V (|Ψ|)

]
=

∫
dD+1x

√
−g
[
−hµν∂µφ∗∂νφ

−hµν
(
imMνφ∂µφ∗ − imMµφ∗∂νφ

)
−imvνφ∗∂νφ + imvµφ∂µφ∗

−2m2
(
−vµ Mµ +

1
2

hµν Mµ Mν

)
φ∗φ−V (|Ψ|)

]
=

∫
dD+1x

√
−g
[
−hµν

(
∂µφ∗ + imMµφ∗

)
(∂νφ− imMνφ)

+hµν
(
imMµ

) (
Z
Z∂νφ−����imMνφ

)
−
hhhhhhhhhhµν

(
imMµφ∗∂νφ

)
+imvνφ∗ (∂ν − imMν) φ− imvµφ

(
∂µ + imMµ

)
φ∗

−(((((
((((m2φ∗φhµν Mµ Mν −V (|Ψ|)

]
=

∫
dD+1x

√
−g
[

imvνφ∗ (∂ν − imMν) φ− imvµφ
(
∂µ + imMµ

)
φ∗

−hµν
(
∂µ + imMµ

)
φ∗ (∂ν − imMν) φ−V (|Ψ|)

]
. (D.41)

We can now define the covariant derivative

Dµφ ≡ ∂µφ− imMµφ , (D.42)

which allows us to write the action as

ŜKG =
∫

dD+1x
√
−g
[

imvνφ∗Dνφ− imvµφDµφ∗

−hµνDµφ∗Dνφ−V (|Ψ|)
]

, (D.43)

which then gives the Schrödinger action used in the main text.

d.7.2 Variation of action wrt. background

The response of the variation of the action S
[
ϕ, v̂µ, hµν, Φ̃

]
wrt. the background fields

vµ, hµν and Mµ is the currents Sµ, Tµν, J µ. We find directly, using (E.1) that
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δS =
∫

dd+1xLδe + eδL

=
∫

dd+1xeL
(

τµδvµ − 1
2

hµνδhµν

)
+δ
(
−imφvµDµφ∗ + imφ∗vµDµφ− hµνDµφ∗Dνφ−����V (|ϕ|)

)
=

∫
dd+1xeL

(
τµδvµ − 1

2
hµνδhµν

)
−imφδvµDµφ∗ + imφ∗δvµDµφ− δhµνDµφ∗Dνφ

−imφvµδDµφ∗ + imφ∗vµδDµφ− hµνδDµφ∗Dν ϕ− hµνDµφ∗δDνφ

=
∫

dd+1xeL
(

τµδvµ − 1
2

hµνδhµν

)
−imφDµφ∗δvµ + imφ∗Dµφδvµ − Dµφ∗Dνφδhµν

−imφvµ
(
−imφ∗δMµ

)
+ imφ∗vµ

(
imφδMµ

)
−hµνDνφ

(
−imφ∗δMµ

)
− hµνDνφ∗

(
imφδMµ

)
=

∫
dd+1xe

(
Lτµ + imφ∗Dµφ− imφDµφ∗

)
δvµ

+

(
−1

2
Lhµν − Dµφ∗Dνφ

)
δhµν

+
(
−2m2φ∗φvµ + imφ∗hµνDνφ− imφhµνDνφ∗

)
δMµ . (D.44)

We use here that the variation of the covariant derivative is

δDµφ = δ
(
∂µφ− imMµφ

)
= −imφδMµ (D.45)

δDµφ∗ = δ
(
∂µφ∗ + imMµφ

)
= +imφ∗δMµ (D.46)

Comparing to (4.55) we find the result given in the main text.

d.8 chapter 8

d.8.1 Null reduction of MED on a Lorentzian manifold

Written in terms of the reduced gauge field Aµ̂ (8.24) and the field strength Fµ̂ν̂ we obtain
directly using the methods of chapter 6 and in particular (6.2) that the reduction of the
action can be performed straight-forwardly:
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ŜMED = −1
4

∫
dD+1x

√
|g| gµ̂ρ̂gν̂σ̂Fµ̂ν̂Fρ̂σ̂

= −1
4

∫
dD+1x

√
|g|
[

gµρgνσFµνFρσ

+4guρgνσFuνFρσ + 2guugνσFuνFuσ

]
= −1

2

∫
dD+1

√
|g|
[

1
2

hµρhνσFµνFρσ

−2hµρv̂σ∂µ ϕFρσ +
(
2hµρΦ̃− v̂µv̂ρ

)
∂µ ϕ∂ρ ϕ

]
(D.47)

Now we use the reduction of the field strength tensor (8.28) to put it in a different
form:

ŜMED = −1
2

∫
dDxe

[
1
2

hµρhνσ
(

f̃µν + 2����τ[µ∂ν] ϕ̃ + 2M[µ∂ν]ϕ
)

×
(

f̃ρσ + 2����τ[ρ∂σ] ϕ̃ + 2M[ρ∂σ]ϕ
)
+
(
2hµρΦ̃− v̂µv̂ρ

)
∂µ ϕ∂ρ ϕ

−2hµρv̂σ∂µ ϕ
(

f̃ρσ + 2τ[ρ∂σ] ϕ̃ + 2M[ρ∂σ]ϕ
)]

= −1
2

∫
dDxe

[
1
2

hµρhνσ
(

f̃µν + 2M[µ∂ν]ϕ
) (

f̃ρσ + 2M[ρ∂σ]ϕ
)

−2hµρv̂σ∂µ ϕ
(

f̃ρσ +��
�τρ∂σ ϕ̃− τσ∂ρ ϕ̃ + 2M[ρ∂σ]ϕ

)
+
(
2hµρΦ̃− v̂µv̂ρ

)
∂µ ϕ∂ρ ϕ

]
= −1

2

∫
dDxe

[
1
2

hµρhνσ f̃µν f̃ρσ − 2(((((
((((hµρhνσ f̃µν Mσ∂ρ ϕ

+2hµρhσν M[µ∂ν]ϕM[ρ∂σ]ϕ

−2hµρ (vν −����hνσ Mσ) ∂ρ ϕ f̃µν − 2hµρ∂µ ϕ∂ρ ϕ̃

−4hµρ
(

vσ − hσλ Mλ

)
∂µ ϕM[ρ∂σ]ϕ

+
(
−2hµρvλ Mλ + hµρhλν Mλ Mν

)
∂µ ϕ∂ρ ϕ

]
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−
(

vµ − hµλ Mλ

) (
vρ − hρλ Mλ

)
∂µ ϕ∂ρ ϕ

]
= −1

2

∫
dDxe

[
1
2

hµρhνσ f̃µν f̃ρσ − 2hµρvν∂ρ ϕ f̃µν

−2hµρ∂µ ϕ∂ρ ϕ̃− 2hµρvσ∂µ ϕ
(
��

��Mσ∂ρ ϕ +XXXXMρ∂σ ϕ−����Mσ∂ρ ϕ
)

+

((((
((((

(((
((((

(((
((((

(hhhhhhhhhhhhhhhhhhhhhhh

2hµρhσν
(

Mµ∂ν ϕ−Mν∂µ ϕ + 2Mν∂µ ϕe
)

M[ρ∂σ]ϕ

+
(

hµρhλν Mλ Mν − vµvρ + 2
XXXXXvµhρλ Mλ − hµνhρσ Mν Mσ

)
∂µ ϕ∂ρ ϕ

]
= −1

2

∫
dDxe

[
1
2

hµρhνσ f̃µν f̃ρσ − 2hµρvν∂ρ ϕ f̃µν

−2hµρ∂µ ϕ∂ρ ϕ̃− vµvρ∂µ ϕ∂ρ ϕ

]
. (D.48)

Here we used that Mµ∂ν ϕ−Mν∂µ ϕ + 2Mν∂µ ϕ = Mµ∂ν ϕ + Mν∂µ ϕ, which contracted
with M[ρ∂σ]ϕe is zero. This action is not obviously gauge invariant.

Alternatively In terms of the gauge invariant field strengths (8.32), we have instead

ŜMED = −1
2

∫
dDe

[
1
2

hµρhνσFµνFρσ

−2hµρv̂σ∂µ ϕFρσ +
(
2hµρΦ̃− v̂µv̂ρ

)
∂µ ϕ∂ρ ϕ

]
=

∫
dDxe

[
−1

4
hµρhνσ

(
Bµν +��

��2Ẽ[µτν] + 2E[µ Mν] +���
��2aτ[µ Mν]

)
×
(

Bρσ +��
��2Ẽ[ρτσ] + 2E[ρ Mσ] +���

��2aτ[ρ Mσ]

)
+v̂ρhνσ (Eν +��aτν)

(
Bρσ + 2Ẽ[ρτσ] + 2E[ρ Mσ] + 2aτ[ρ Mσ]

)
−
(

Φ̃hνσ +
1
2

v̂νv̂σ

)
(Eν + aτν) (Eσ + aτσ)

]
=

∫
dDxe

[
−1

4
hµρhνσ

(
Bµν + 2E[µ Mν]

) (
Bρσ + 2E[ρ Mσ]

)
−v̂ρhνσEν

(
Bρσ + 2E[ρ Mσ]

)
− hνσEν

(
Ẽσ − aMσ

)
−Φ̃hνσEνEσ −

1
2
(
v̂νv̂σEνEσ − 2av̂νEν + a2)] . (D.49)

This is as far as we can go without using some properties of the field strengths. This
action is explicitly gauge invariant.

d.8.2 Determining the EOMs in terms of covariant derivatives

A special property of the graviphotonic connection (3.51) is that it is related to the
derivatives of the measure in a simple way satisfying [26]
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Γ̊λ
ρλ =

1
e

∂ρe = Γ̊λ
λρ − 2v̂λ∂[λτρ] . (D.50)

It is then possible to rewrite the EOMs in terms of the graviphotonic covariant deriva-
tive as we in can identify some of the combinations of the field strengths (8.38) that we
know are spacetime tensors in (8.45). We notice first from (8.45b) that with Eρ being a
tensor, the derivative may be written as

1
e

∂ρ (eEρ) = ∇̊ρEρ + 2v̂λ∂[λτρ]E
ρ . (D.51)

The EOM (8.45b) may then be written as

∇̊ρEρ = −∂[µτν] (Bµν + 2Eµhνσ Mσ) , (D.52)

which we see is written entirely in terms of the tensorial objects of (8.38).
As Bλµ + 2E[λvµ] is a tensor, we can immediately write the EOM (8.45c) as a covariant

derivative, where we find

∇̊ρ

(
Bρµ + 2E[ρvµ]

)
= ∂[ρτλ]

(
2v̂ρ

(
Bλµ + 2E[λvµ]

)
+ v̂µ

(
Bλρ + 2E[λvρ]

))
. (D.53)

The last EOM doesn’t look tensorial because ∂[µ Mν] transforms under a boost, while
we know that Bρµ + 2E[ρvµ] is a tensor. However, it is the EOM that is the result of vari-
ation wrt. the scalar ϕ, so it must be tensorial, which is useful to know in the following.
We see by look at the last object of our list of tensorial objects (8.38f) that if we add
and subtract 1

e ∂ρ

(
eMσ

(
Bσν + 2E[σvν]

))
, which is clearly non-tensorial, then the EOM

(8.45a) can be written as

0 = ∂[µ Mν] (Bµν + 2Eµvν) +
1
e

∂ρ

(
eMσ

(
Bσρ + 2E[σvρ]

))
+

1
e

∂ρ

(
eẼρ − evρa− eMσ

(
Bσρ + 2E[σvρ]

))
(D.54)

The latter combination is then a tensor and we can write its covariant derivative as

1
e

∂ρ

(
eẼρ − evρa−Mσ

(
Bσρ + 2E[σvρ]

))
= ∇̊ρ

(
Ẽρ − vρa−Mσ

(
Bσρ + 2E[σvρ]

))
+ 2v̂λ∂[λτρ]

(
Ẽρ − vρa−Mσ

(
Bσρ + 2E[σvρ]

))
. (D.55)

The first line of (D.54) can be rewritten using
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1
e

∂ρ

(
eMµ

(
Bµρ + 2E[µvρ]

))
= Γ̊λ

ρλ

(
Mµ

(
Bµρ + 2E[σvρ]

))
− ∂[µ Mρ]

(
Bµρ + 2E[µvρ]

)
+ Mµ∂ρ

(
Bµρ + 2E[µvρ]

)
=

(
−v̂λ∂ρτλ +

1
2

hλσ∂ρhλσ

)(
Mµ

(
Bµρ + 2E[µvρ]

))
− ∂[µ Mρ]

(
Bµρ + 2E[µvρ]

)
+ Mµ∂ρ

(
Bµρ + 2E[µvρ]

)
. (D.56)

We see that inserting this into (D.54) it cancels the first term and we obtain that the
EOM becomes

0 =

(
−v̂λ∂ρτλ +

1
2

hλσ∂ρhλσ

)(
Mµ

(
Bµρ + 2E[σvρ]

))
+ Mµ∂ρ

(
Bµρ + 2E[µvρ]

)
+ ∇̊ρ

(
Ẽρ − vρa−Mµ

(
Bµρ + 2E[µvρ]

))
+ 2v̂λ∂[λτρ]

(
Ẽρ − vρa−Mµ

(
Bµρ + 2E[µvρ]

))
= Mµ

[
∂ρ − v̂λ∂ρτλ +

1
2

hλσ∂ρhλσ

] (
Bµρ + 2E[µvρ]

)
+ ∇̊ρ

(
Ẽρ − vρa−Mµ

(
Bµρ + 2E[µvρ]

))
+ 2v̂λ∂[λτρ]

(
Ẽρ − vρa−Mµ

(
Bµρ + 2E[µvρ]

))
= Mµ

[
∂ρ − v̂λ∂(ρτλ) +

1
2

hλσ∂ρhλσ

] (
Bµρ + 2E[µvρ]

)
+ ∇̊ρ

(
Ẽρ − vρa−Mµ

(
Bµρ + 2E[µvρ]

))
+ 2v̂λ∂[λτρ]

(
Ẽρ − vρa

)
. (D.57)

If we define spactime tensors as

Eµ ≡ hµνEν (D.58a)

Wλµ ≡ Bλµ + 2E[λvµ] (D.58b)

Zρ ≡ Ẽρ − vρa−MσWσρ (D.58c)

We see that the EOMs can be written more conveniently as

∇̊ρZρ = Mµ

(
∂ρ − v̂λ∂ρτλ +

1
2

hλσ∂ρhλσ

)
Wρµ

−2v̂λ∂[λτρ]Z
ρ (D.59a)

∇̊ρEρ = −∂[µτν]W
µν (D.59b)

∇̊λWλµ = ∂[λτρ]

(
2v̂λWρµ + v̂µWρλ

)
. (D.59c)

(D.59a) can be rewritten in terms of the covariant derivative of Wρµ.

∇̊ρZρ = −Mµ∇̊ρWµρ + ∂[µτν]

(
2Mλv̂λWµν −Mλv̂µWνλ − 2v̂µZν

)
(D.60a)

∇̊ρEρ = −∂[µτν]W
µν (D.60b)

∇̊λWλµ = ∂[λτρ]

(
2v̂λWρµ + v̂µWρλ

)
. (D.60c)
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d.8.3 Vary action to find current T µ

Â

We first find the variation wrt. the background of the fields

δ f̃µν = δ
(

2∂[µ

(
Aae a

ν]

)
− 2ϕ̃∂[µτν] − 2ϕ∂[µ Mν]

)
= 2∂[µ Aaδe a

ν] + 2Aa∂[µδe a
ν] − 2ϕ̃∂[µδτν] − 2ϕ∂[µδMν]

= 2∂[µ

(
a|λ|e

λ
a

)
δe a

ν] + 2aλeλ
a ∂[µδe a

ν] − 2ϕ̃∂[µδτν] − 2ϕ∂[µδMν] . (D.61)

δhµν = δ
(
eµ

a eνa)
= eνa

(
−eλ

a eµ
c δec

λ + eλ
a vµδτλ

)
+ eµa

(
−eλ

a eν
c δec

λ + eλ
a vνδτλ

)
=

(
−hνλeµ

c δec
λ + hνλvµδτλ

)
+
(
−hµλeν

c δec
λ + hµλvνδτλ

)
= −2hλ(µeν)

c δec
λ + 2hλ(µvν)δτλ . (D.62)

δvµ = −vλeµ
c δec

λ + vµvλδτλ (D.63)

− 1
2

hµνδhµν = eλ
c δec

λ (D.64)

We can then vary the action (8.43a)
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δS =
∫

dd+1xLδe + eδ

[
−1

4
hµρhνσ f̃µν f̃ρσ + hµρvν∂ρ ϕ f̃µν

+hµρ∂µ ϕ∂ρ ϕ̃ +
1
2

vµvν∂µ ϕ∂ν ϕ

]
=

∫
dd+1xL

(
−vµδτµ + eλ

c δec
λ

)
+e
[
−1

2
hνσ f̃µν f̃ρσδhµρ − 1

2
hµρhνσ f̃µνδ f̃ρσ

+vν∂ρ ϕ f̃µνδhµρ + hµρ∂ρ ϕ f̃µνδvν + hµρvν∂ρ ϕδ f̃µν

+∂µ ϕ∂ρ ϕ̃δhµρ + vν∂µ ϕ∂ν ϕδvµ

]
=

∫
dd+1xL

(
−vµδτµ + eλ

c δec
λ

)
+e
[

hνσ f̃µν f̃ρσ

(
hλ(µeρ)

c δec
λ − hλ(µvρ)δτλ

)
−hµρhνσ f̃µν

(
∂[ρ

(
a|λ|e

λ
a

)
δe a

σ] + aλeλ
a ∂[ρδe a

σ]

)
+hµρhνσ f̃µν

(
ϕ̃∂[ρδτσ] + ϕ∂[ρδMσ]

)
+vν∂ρ ϕ f̃µν

(
−2hλ(µeρ)

c δec
λ + 2hλ(µvρ)δτλ

)
+ hµρ∂ρ ϕ f̃µνδvν

+2hµρvν∂ρ ϕ
(

∂[µ

(
a|λ|e

λ
a

)
δe a

ν] + aλeλ
a ∂[µδe a

ν]

)
−2hµρvν∂ρ ϕ

[
ϕ̃∂[µδτν] + ϕ∂[µδMν]

]
+∂µ ϕ∂ρ ϕ̃

(
−2hλ(µeρ)

c δec
λ + 2hλ(µvρ)δτλ

)
+vν∂µ ϕ∂ν ϕδvµ

]
=

∫
dd+1xL

(
−vµδτµ + eλ

c δec
λ

)
+e
[
−hνσ f̃ν(µ f̃ρ)σ

(
hλµeρ

c δec
λ − hλµvρδτλ

)
−hµ[ρhσ]ν f̃µν

(
∂ρ

(
a|λ|e

λ
a

)
δea

σ + aλeλ
a ∂ρδea

σ

)
+hµ[ρhσ]ν f̃µν

(
ϕ̃∂ρδτσ + ϕ∂ρδMσ

)
+vν∂(ρ ϕ f̃µ)ν

(
−2hλµeρ

c δec
λ + 2hλµvρδτλ

)
+hµρ∂ρ ϕ f̃µν

(
−vλeν

c δec
λ + vνvλδτλ

)
+2hρ[µvν]∂ρ ϕ

(
∂µ

(
aλeλ

a

)
δea

ν + aλeλ
a ∂µδea

ν

)
−2hρ[µvν]∂ρ ϕ

[
ϕ̃∂µδτν + ϕ∂µδMν

]
+∂(µ ϕ∂ρ) ϕ̃

(
−2hλµeρ

c δec
λ + 2hλµvρδτλ

)
+vν∂µ ϕ∂ν ϕ

(
−vλeµ

c δec
λ + vµvλδτλ

)]
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=
∫

dd+1xe δτλ

[
−Lvλ + hνσ f̃ν(µ f̃ρ)σhλµvρ − 1

e
∂ρ

(
ehµ[ρhλ]ν f̃µν ϕ̃

)
+2vνvρhλµ∂(ρ ϕ f̃µ)ν + vνvλhµρ∂ρ ϕ f̃µν + 2

1
e

∂µ

(
ehρ[µvλ] ϕ̃∂ρ ϕ

)
+2∂(µ ϕ∂ρ) ϕ̃hλµvρ + vλvµvν∂µ ϕ∂ν ϕ

]
+δec

λ

[
Leλ

c − hνσ f̃ν(µ f̃ρ)σhλµeρ
c − hµ[ρhλ]ν f̃µν∂ρ

(
a|σ|e

σ
c
)

+
1
e

∂ρ

(
ehµ[ρhλ]ν f̃µνaσeσ

c

)
− 2vν∂(ρ ϕ f̃µ)νhλµeρ

c − hµρvλeν
c ∂ρ ϕ f̃µν

+2hρ[µvλ]∂ρ ϕ∂µ (aσeσ
c )− 2

1
e

∂µ

(
ehρ[µvλ]∂ρ ϕaσeσ

c

)
−2∂(µ ϕ∂ρ) ϕ̃hλµeρ

c − vν∂µ ϕ∂ν ϕvλeµ
c

]
+δMλ

[
1
e

∂ρ

(
e2hµ[ρvλ]ϕ∂µ ϕ− ehµ[ρhλ]ν f̃µν ϕ

)]
. (D.65)

From this we read off the currents that we give in (8.49)

d.8.4 Reduction of Ŝint

The null reduction is straight-forward:

Ŝint =
∫

M
dD+1x

√
|g|
[
gµ̂ν̂
(
iΨ∂µ̂Ψ∗ − iΨ∗∂µ̂Ψ

)
Aν̂ −Ψ∗Ψgµ̂ν̂ Aµ̂ Aν̂

]
=

∫
M

dD+1x
√
|g|
[

ihµνφ∂µφ∗Aν − v̂νiφ (−im) φ∗Aν

−v̂µiφ∂µφ∗ϕ + 2Φ̃iφ (−im) φ∗ϕ

−ihµνφ∗∂µφAν + iv̂νφ∗ (+im) φAν + iv̂µφ∗∂µφϕ

−i2Φ̃φ∗ (+im) φϕ− φ∗φ
(
hµν Aµ Aν − 2v̂ν ϕAν + 2Φ̃ϕ2)]

=
∫

M
dD+1x

√
|g|
[

ihµν
(
φAµ∂νφ∗ − φ∗Aµ∂νφ

)
−iφ

(
ϕv̂µ∂µφ∗

)
+ iφ∗

(
ϕv̂µ∂µφ

)
−φ∗φ

(
hµν Aµ Aν − 2v̂ν (ϕ + m) Aν + 2Φ̃ϕ2 + 4Φ̃mϕ

)]
=

∫
M

dD+1x
√
|g|
[

ihµν
(
φAµ∂νφ∗ − φ∗Aµ∂νφ

)
−φ∗φhµν

(
Aµ Aν + 2 (ϕ + m) Mµ Aν + Mµ Mν ϕ2 + 2Mµ Mνmϕ

)
−iφ

(
ϕv̂µ∂µφ∗

)
+ iφ∗

(
ϕv̂µ∂µφ

)
−φ∗φ

(
−2 (ϕ + m) vν Aν − 2vµ Mµ ϕ2 − 4vµ Mµmϕ

)]
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=
∫

M
dD+1x

√
|g|
[

ihµν
(
φ
(
aµ −��ZZϕ̃τµ − ϕMµ

)
∂νφ∗ − φ∗

(
aµ −��ZZϕ̃τµ − ϕMµ

)
∂νφ
)

−φ∗φhµν
((

aµ −��ZZϕ̃τµ − ϕMµ

)
(aν −��HHϕ̃τν − ϕMν)

)
−φ∗φhµν

(
2 (ϕ + m) Mµ (aν −��HHϕ̃τν − ϕMν) + Mµ Mν ϕ2 + 2Mµ Mνmϕ

)
−iφ

(
ϕ (vµ − hµν Mν) ∂µφ∗

)
+ iφ∗

(
ϕ (vµ − hµν Mν) ∂µφ

)
−φ∗φ

(
−2 (ϕ + m) vν (��ZZaν − ϕ̃τν − ϕMν)− 2vµ Mµ ϕ2 − 4vµ Mµmϕ

)]
=

∫
M

dD+1x
√
|g|
[

ihµν
(
φ
(
aµ − ϕMµ

)
∂νφ∗ − φ∗

(
aµ − ϕMµ

)
∂νφ
)

−φ∗φhµν
(
aµaν −�����XXXXX2ϕaµ Mν +���

��ϕ2Mµ Mν

)
−φ∗φhµν

(
2ϕMµ (��ZZaν −���ϕMν) + 2mMµ (aν −HHHϕMν) +���

��Mµ Mν ϕ2 −XXXXXX2Mµ Mνmϕ
)

−iφ
(

ϕ (vµ − hµν Mν) ∂µφ∗
)
+ iφ∗

(
ϕ (vµ − hµν Mν) ∂µφ

)
−φ∗φ

(
−2 (ϕ + m) (ϕ̃− ϕvν Mν)− 2vµ Mµ ϕ2 − 4vµ Mµmϕ

)]
=

∫
M

dD+1x
√
|g|
[

ihµν
(
φ
(
aµ −���ϕMµ

)
∂νφ∗ − φ∗

(
aµ −HHHϕMµ

)
∂νφ
)

−φ∗φhµν
(
aµaν + 2maµ Mν

)
−iφ

(
ϕ (vµ −����hµν Mν) ∂µφ∗

)
+ iφ∗

(
ϕ (vµ −XXXXhµν Mν) ∂µφ

)
−φ∗φ

(
−2ϕ (ϕ̃−����XXXXϕvν Mν)− 2m (ϕ̃− ϕvν Mν)−����

�XXXXX2vµ Mµ ϕ2 − 4vµ Mµmϕ
)]

=
∫

M
dD+1x

√
|g|
[

ihµν
(
φaµ∂νφ∗ − φ∗aµ∂νφ

)
−φ∗φhµν

(
aµaν + 2maµ Mν

)
−iφ

(
ϕvµ∂µφ∗

)
+ iφ∗

(
ϕvµ∂µφ

)
+φ∗φ

(
2 (ϕ + m) ϕ̃ + 2vµ Mµmϕ

)]
=

∫
M

dD+1x
√
|g|
[

ihµν
(
φaµ∂νφ∗ − φ∗aµ∂νφ

)
−φ∗φhµν

(
aµaν + 2maµ Mν

)
−iφ

(
ϕvµ∂µφ∗

)
+ iφ∗

(
ϕvµ∂µφ

)
+φ∗φ

(
2 (ϕ + m) ϕ̃ + 2vµ Mµmϕ

)]
. (D.66)

One can then pull out the D-dimensional integral, which gives the result in the main
text.

d.8.5 Simplification of SSch + Sint

The easiest way to get is to null reduce ŜKG + Ŝint which has a simple expression in
terms of the higher-dimensional gauge covariant derivative
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Dµ̂Ψ = ∂µ̂Ψ− iAµ̂Ψ . (D.67)

We then find directly

ŜKG + Ŝint

=
∫

M
dD+1x

√
|g|
[
−gµ̂ν̂Dµ̂Ψ∗Dν̂Ψ

]
= −

∫
M

dD+1x
√
|g|
[

gµνDµΨ∗DνΨ + guνDuΨ∗DνΨ

+gµuDµΨ∗DuΨ + guuDuΨ∗DuΨ
]

= −
∫

M
dD+1x

√
|g|
[

gµνDµΨ∗DνΨ + guν (∂u + iϕ)Ψ∗DνΨ

+gµuDµΨ∗ (∂u − iϕ)Ψ + guu (∂u + iϕ)Ψ∗ (∂u − iϕ)Ψ
]

= −
∫

M
dD+1x

√
|g|
[

hµν
(
∂µ + iAµ

)
φ∗ (∂ν − iAν) φ

−iv̂ν (m + ϕ) φ∗ (∂ν − iAν) φ

+iv̂µ
(
∂µ + iAµ

)
φ∗ (m + ϕ) φ + 2Φ̃ (m + ϕ)2 φ∗φ

]
= −

∫
M

dD+1x
√
|g|
[

hµν
(
∂µ + iAµ

)
φ∗ (∂ν − iAν) φ

−i
(
vν − hµν Mµ

)
(m + ϕ) φ∗ (∂ν − iAν) φ

+i (vµ − hµν Mν) (m + ϕ) φ
(
∂µ + iAµ

)
φ∗

+
(
−2vµ Mµ + hµν Mµ Mν

)
(m + ϕ)2 φ∗φ

]
= −

∫
M

dD+1x
√
|g|
[

hµν
(
∂µ + iAµ

)
φ∗ (∂ν − iAν) φ

−ivν (m + ϕ) φ∗ (∂ν − iAν) φ + ihµν Mµ (m + ϕ) φ∗ (∂ν − iAν) φ

+ivµ (m + ϕ) φ
(
∂µ + iAµ

)
φ∗ − ihµν Mν (m + ϕ) φ

(
∂µ + iAµ

)
φ∗

+
(
−2vµ Mµ + hµν Mµ Mν

)
(m + ϕ)2 φ∗φ

]
= −

∫
M

dD+1x
√
|g|
[

hµν
(
∂µ + iAµ + iMµ (m + ϕ)

)
φ∗ (∂ν − iAν) φ

−ivν (m + ϕ) φ∗ (∂ν − iAν) φ

+ivµ (m + ϕ) φ
(
∂µ + iAµ

)
φ∗ − ihµν Mν (m + ϕ) φ

(
∂µ + iAµ

)
φ∗

+
(
−2vµ Mµ + hµν Mµ Mν

)
(m + ϕ)2 φ∗φ

]
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= −
∫

M
dD+1x

√
|g|
[

hµν
(
∂µ + iAµ + iMµ (m + ϕ)

)
φ∗

× (∂ν − iAν − iMν (m + ϕ)) φ

+hµν
(
∂µ + iAµ + iMµ (m + ϕ)

)
φ∗ (iMν (m + ϕ)) φ

−ivν (m + ϕ) φ∗ (∂ν − iAν) φ

+ivµ (m + ϕ) φ
(
∂µ + iAµ

)
φ∗ − ihµν Mν (m + ϕ) φ

(
∂µ + iAµ

)
φ∗

+
(
−2vµ Mµ + hµν Mµ Mν

)
(m + ϕ)2 φ∗φ

]
= −

∫
M

dD+1x
√
|g|
[

hµν
(
∂µ + iAµ + iMµ (m + ϕ)

)
φ∗

× (∂ν − iAν − iMν (m + ϕ)) φ

+hµν
(
∂µ + iAµ

)
φ∗ (((((

(((iMν (m + ϕ)) φ− hµν
(hhhhhhhhMµ Mν (m + ϕ)2

)
φ∗φ

−ivν (m + ϕ) φ∗ (∂ν − iAν) φ

+ivµ (m + ϕ) φ
(
∂µ + iAµ

)
φ∗ −

((((
(((

((((
(((

((

ihµν Mν (m + ϕ) φ
(
∂µ + iAµ

)
φ∗

+
(
−2vµ Mµ +

XXXXXhµν Mµ Mν

)
(m + ϕ)2 φ∗φ

]
= −

∫
M

dD+1x
√
|g|
[

hµν
(
∂µ + iAµ + iMµ (m + ϕ)

)
φ∗

× (∂ν − iAν − iMν (m + ϕ)) φ

−ivν (m + ϕ) φ∗ (∂ν − iAν − iMν (m + ϕ)) φ

+ivµ (m + ϕ) φ
(
∂µ + iAµ + iMµ (m + ϕ)

)
φ∗
]

(D.68)

This then leads to the result (8.70) given in the main text.





E
U S E F U L F O R M U L A S

Variation of Newton-Cartan measure wrt. background:

δe = e
(

τµδvµ − 1
2

hµνδhµν

)
. (E.1)

Fourier-transform of 1
p2 :

lim
ε→0

∫
RD

dd p

(2π)d
1

p2 + iε
e−ip·x =

Γ
(

d−2
2

)
4πd/2

1

‖x‖d−2 . (E.2)

Contraction of Levi-Civita symbols in d = 3:

εijkεinm = 2δn
[jδ

m
k] . (E.3)
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