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Abstract

In this thesis we present string theory on magnetized D-branes as a candidate
for semi-realistic physics. By examining the spectrum of open superstring states
that live on the branes, we find that all three generations of Standard Model
particles can be reproduced without the emergence of unphysical extra particles.
Furthermore, we construct a gauge group that contains that of the Standard
Model and where the extra local symmetries can be made global through in-
teractions with RR-sector superstrings. This implies baryon and lepton number
conservation which ensures the stability of the proton.

Before going into the complicated process of reproducing the Standard Model,
we derive the tools needed for this. We start out by quantizing the superstring
and ensuring a stable vacuum through the GSO-projection. Secondly, we explain
the presence of D-branes by using T-duality on closed and open strings in small
compact dimensions and see how this lets us endow the strings with non-abelian
gauge symmetries. Finally, we see how these can be broken in just the right way
by magnetization. We also examine the low-energy limit of string theory and find
that it agrees with the quantum mechanics of point particles.
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Resumé

I dette speciale gennemg̊ar jeg først bosonisk og superstrengteori for derefter
at inføre D-braner og bruge dem til at konstruere en semi-realistisk partikel-
fysisk model. Jeg starter med en kort historisk gennemgang hvorefter jeg ud-
fra Polyakovvirkningen udleder bevægelsesligninger og randbetingelser for b̊ade
bosoniske og fermioniske strenge. Jeg løser bevægelsesligningerne under alle
de relevante randbetingelser og indfører kanoniske (anti-)kommutatorrelationer
hvilket giver en kvanteteori for strenge. Efter indførelsen af lyskeglekoordinater
undersøger jeg de relevante mulige kvantetilstande for åbne og lukkede strenge, og
finder eksistensen af fotoner, gravitoner og masseløse Majoranafermioner. Udover
disse indeholder spektret ogs̊a tachyoner som ved hjælp af GSO projektionen
fjernes fra teorien. Jeg viser ogs̊a at denne projektion sikrer at der ved alle
masseniveauer er lige mange fermioner og bosoner.

Ved hjælp af T-dualitet indfører jeg kompakte dimensioner og D-braner i den
udviklede superstrengteori. Jeg undersøger derefter spektret for strenge der har
endepunkter p̊a to forskellige braner der er separeret i rummet. Derp̊a forklarer
jeg hvordan Chan-Paton indices og D-braner kan give strengteorier symmetri un-
der klassiske gaugegrupper, noget som er nødvendigt for at konstruere en semi-
realistisk partikelfysisk model. Herefter undersøger jeg hvad der sker hvis man i
stedet for braner der er separeret i rummet betragter braner med samme position,
men hvorp̊a der lever forksellige magnetfelter. Det viser sig at denne situation
medfører mange ønskværdige træk. N̊ar der er et p̊atrykt magnetfelt bliver de
bosoniske strenge massive hvilket bryder supersymmetrien, de fermionske strenge
mister chiralitet i de magnetiserede retninger hvilket betyder at jeg kan sikre fire
dimensional chiralitet. Jeg finder desuden at to strenge der er strakt den mod-
satte vej mellem de samme braner er hinandens anti-strenge. Herefter kigger
jeg p̊a en ækvivalent situation fra en punktpartikels synspunkt og finder dens
Hamiltonoperator. Jeg viser derp̊a at lav-energi grænsen af strengteori reproduc-
erer punktpartikel udreningen.

Efter en kort gennemgang af gaugeteorier i almindelighed og Standardmo-
dellen i særdeleshed g̊ar jeg herefter i detaljer med præcis hvad der skal til for
at skabe en semi-realistisk model ud fra strengteori. Ved hjælp af fire stakke af
braner med forskellig magnetisering og deres orientifold spejlbilleder konstruerer
jeg derp̊a en model der har det samme partikelindhold som Standardmodellen.
Dette gør jeg ved at fastsætte udartningen af de Landauniveauer der hører til
hver mulig kombination af braner. For at sikre haletudseudligning viser det sig
at være nødvendigt at indføre højreh̊andede neutrini i teorien. De fire stakke
af braner giver en samlet gaugegruppe som indeholder Standardmodellens, men
ogs̊a har tre yderligere 𝑈(1) symmetrier. Pariklerne associaret med disse bliver
dog massive n̊ar man medregner interaktioner fra lukkede strenge, hvilket gør
symmetrierne globale. De globale symmetrier er baryon- og leptontalsbevarelse
og Peccei-Quinn symmetri. Den første sikrer protonens stabilitet, og den sidste
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hjælper med at løse det stærke CP problem.
Det viser sig alts̊a at være muligt at konstruere en strengteoretisk model som

indeholder de samme partikler og den samme gaugegruppe som Standardmodellen
samt nogle af de vigtigste globale symmetrier. Desuden g̊ar modellen videre og
forudsiger ting som ikke er i den basale Standardmodel.



Contents

1 Introduction 1
1.1 Regge trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Quantum gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 The first superstring revolution . . . . . . . . . . . . . . . . . . . 3
1.4 The second superstring revolution . . . . . . . . . . . . . . . . . . 3
1.5 A semi-realistic model . . . . . . . . . . . . . . . . . . . . . . . . 4

2 The superstring 5
2.1 The bosonic string . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Symmetries of the Polyakov action . . . . . . . . . . . . . 6
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Chapter 1

Introduction

String theory is the theory of one-dimensional vibrating objects; classically these
could be rubber bands or violin strings, not at all what we at first think of as
something that would make a good fundamental theory of physics. However,
another way of viewing a string is as something that can vibrate at an infinite
number of frequencies, corresponding to musical notes in the case of the violin.
This is exactly an infinite set of harmonic oscillators, and in physics, we find
that harmonic oscillators are present everywhere and that they always play a
fundamental role. Let us first take a look at the history of string theory and see
how the theory became what it is today.

1.1 Regge trajectories

The quantum mechanical string entered the world of theoretical physics through
the strong interactions of protons and neutrons, and more generally of all hadrons.
In the 1960s, there was not yet a definite theory of these strong interactions, but
only a lot of different and not yet well understood experimental facts. One of
these facts is known as Regge trajectories (see figure 1.1); it was found that
for several baryons and mesons there is a relation between their mass and their
maximum spin

𝐽 = 𝛼′𝑀2, (1.1)

with the Regge slope 𝛼′ ≈ 1GeV−2. This behaviour led Veneziano to develop the
Dual resonance model for the strong interaction [1] and in particular to calculate
the now famous Veneziano amplitude. It was later suggested independently by
Nambu [2], Nielsen [3] and Susskind [4] that this amplitude came from the scat-
tering of strings with tension 1

2𝜋𝛼′ . However, while strings did have the Regge
behaviour, they also came with a lot of baggage. First and foremost, the string
ground state was found to be a tachyon; a superluminal particle indicating an
inherent instability in the system. Secondly, the theory was found to contain a
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: Regge trajectories of hadrons. Figure taken from [5].

massless spin two particle that was impossible to get rid of. Since no such parti-
cle had ever been seen, this was a prediction that seemed to be in contradiction
with all experiments. Even though this was not, as the tachyon, an inherent
problem with the theory, it was still a very significant issue. These were not the
only problems with string theory. It also demanded 26 dimensions for quantum
level Lorentz invariance and it contained only bosons. When these facts are con-
sidered, it is not hard to see why the idea of string theory as the fundamental
theory of the strong interactions was rejected by the physics community. The
strong interactions were instead understood in terms of the non-abelian gauge
theory of quantum chromodynamics.

1.2 Quantum gravity

After its failure to explain the strong force, most of the few people who were
interested in string theory gave it up and turned their attention elsewhere. But
Schwarz and Scherk [6], and independently Yoneya [7], kept at it and found in
1974 that the persistent massless spin two boson could naturally be the graviton;
the particle responsible for mediating gravity, if the size of 𝛼′ was on the order
of the Planck length squared instead of the Regge slope. Furthermore using the
Kaluza-Klein method of compactifying dimensions, it was possible to construct a
4 dimensional theory of quantum gravity based on string theory. Something that
is impossible using conventional methods of quantizing a classical theory since
these give non-renormalizable divergences. Despite these promising features, only
relatively few people worked on string theory, which only makes the discoveries
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made all the more impressive. Fermions were introduced through world-sheet
supersymmetry and later Gliozzi, Scherk and Olive [8] found a consistent way to
get rid of the tachyon and ensure spacetime supersymmetry.

1.3 The first superstring revolution

These things all lead up to what is now called the first superstring revolution
when in 1984, Green and Schwarz [9] showed that a superstring theory free of
gauge and gravitational anomalies could be constructed by endowing it with the
gauge group 𝑆𝑂(32). They did this using a method developed much earlier by
Chan and Paton [10] for endowing the dual model of Veneziano with any classical
gauge group. During this time, it was quickly shown that the type I 𝑆𝑂(32)
theory of Green and Schwarz was not the only anomaly free string theory, but
four other theories were equally valid. A few years previously, the problem with
superstring theory as a fundamental theory of physics had been that there was
no anomaly free theory, and now the problem was that there were five. Having
too many theories is a problem since we would want our fundamental theory to
follow in a simple way from first principles, and now first principles implied five
different things. This along with the fact that there was no simple way to get the
𝑆𝑈(3)× 𝑆𝑈(2)× 𝑈(1) symmetry of the standard model in an anomaly-free way
caused string theory to once more be put on the shelf as theoretical physicists
everywhere turned to greener pastures.

Even though string theory was no longer as intensely investigated a subject
as it had been, significant advancements were still made. Green and Schwarz
showed that type IIA and type IIB superstring theory are related by a transfor-

mation called T-duality which inverts all lengths such that
√
𝛼′

𝑅
↔ 𝑅√

𝛼′ . Another
transformation called S-duality was found to relate the original type I string to
the 𝑆𝑂(32) heterotic string, and the type IIA string to the 𝐸8 × 𝐸8 heterotic
string. The seeds of the second superstring revolution were sown.

1.4 The second superstring revolution

These seeds came to fruition in 1995 when Edward Witten [11] proposed that all
five known string theories and a hitherto unrelated quantum field theory called 11
dimensional supergravity were merely different limits of the same 11 dimensional
theory. He called this theory M-theory without saying what the ’M’ stands for.
Though Witten could specify very little of this theory, not even its Lagrangian
was known, he kindled the spark of interest in string theory once more. The
second superstring revolution was kicked off when Polchinski showed that T-
duality combined with Kaluza-Klein compactification leads to the existence of
multidimensional D-branes. These were new dynamical objects in their own
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right and when stacked properly, they gave a simple visualization to the gauge
groups introduced by Chan and Paton.

1.5 A semi-realistic model

In this thesis we try to construct a semi-realistic model for describing the world
of particle physics with string theory. Such a model must be an effective four-
dimensional theory, have the 𝑆𝑈(3)×𝑆𝑈(2)×𝑈(1) local symmetry group of the
Standard Model as well as the most important global symmetries, and it must
have the three observed generations of chiral fermions.

To get three generations of chiral fermions, we cannot make do with simple
stacked branes, but in 1995 Bachas [12] showed that if the branes are magne-
tized, these properties of the Standard Model also appear in string theory. An
equivalent model was given in terms of branes intersecting at angles in 1996 by
Berkooz, Douglas and Leigh [13]. When analysed in more detail, it turns out
that this equivalence is not at all surprising since the two models are related by
T-duality [14, pp. 14-16].

With respect to using string theory to reconstruct the Standard Model, this
is largely where we stand today. So without further ado, let us begin!



Chapter 2

The superstring

We wish to build a semi-realistic model for extending the standard model using
string theory. To do this we must first investigate the behaviour of the string
itself. As we have mentioned above in the introduction, there are several differ-
ent anomaly-free string theories, but we will primarily focus on the basic RNS
superstring theory which is not necessarily anomaly-free. However, since even
basic superstring theory is rather involved, we will start by considering the much
simpler bosonic string.

2.1 The bosonic string

As is most often the case in physics, we draw upon our previous knowledge to
get the inspiration required to describe a new system. When considering a point
particle moving through space, it is found that it will follow the shortest possible
path in 𝑑-dimensional spacetime. We call the path travelled by the point particle
its world line (see figure 2.1(a)) and then we find its motion by demanding that
the length of the world line is minimal. This is called the principle of least action,
and generally the action can be any functional that has this property.

In the case of a string moving through space, we say that it traces out a
world-sheet (see figure 2.1(b)). We call the area of the bosonic string world-sheet
the Nambu-Goto action [15, p. 14]:

𝑆𝑁𝐺 = − 1

2𝜋𝛼′

∫︁ √︁
− det �̂�𝛼𝛽 d

2𝜉, (2.1)

where 𝜉𝛼 is the world-sheet coordinate, 𝑋𝜇(𝜉) is the spacetime coordinate and
�̂�𝛼𝛽 = 𝜂𝜇𝜈𝜕𝛼𝑋

𝜇𝜕𝛽𝑋
𝜈 is the induced metric on the world-sheet.

However, while the Nambu-Goto action is intuitive, the presence of the square
root of the spacetime coordinates makes it complicated to use in calculations. It
would therefore be beneficial to find a simpler, but equivalent action. This has
been done for the superstring [16] and [17], and it is a simple matter to remove

5
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(a) A point particle tracing a
worldline in spacetime.

(b) An open and a closed string each tracing
a world-sheet in spacetime.

Figure 2.1: Worldlines and world-sheets.

the fermionic parts and one is then left with the Polyakov action* [15, p. 16]:

𝑆𝑃 = − 1

4𝜋𝛼′

∫︁
d𝜉2
√︀

− det 𝑔 𝑔𝛼𝛽𝜕𝛼𝑋
𝜇𝜕𝛽𝑋

𝜈𝜂𝜇𝜈 , (2.2)

where det 𝑔 = det(𝑔𝛼𝛽) and 𝑔
𝛼𝛽 is an intrinsic metric on the world-sheet which is

independent of the spacetime coordinates.
Since this action is a functional of the world-sheet metric, 𝑔𝛼𝛽, as well as

the spacetime coordinate 𝑋𝜇, the metric must now also obey the Euler-Lagrange
equations. We therefore vary the action with respect to the metric and obtain
the stress tensor

𝑇𝛼𝛽 = − 4𝜋√
− det 𝑔

𝛿𝑆𝑃
𝛿𝑔𝛼𝛽

=
1

𝛼′

[︂
𝜕𝛼𝑋

𝜇𝜕𝛽𝑋𝜇 −
1

2
𝑔𝛼𝛽𝑔

𝛾𝛿𝜕𝛾𝑋
𝜇𝜕𝛿𝑋𝜇

]︂
. (2.3)

The equation of motion for the world-sheet metric is then 𝑇𝛼𝛽 = 0. It is easy to
check that by using this, we can regain the Nambu-Goto action from the Polyakov
action.

2.1.1 Symmetries of the Polyakov action

In physics, we often find that a system is described as much by its symmetries
as by any other traits. The simplest example is perhaps the unit sphere; it can
be defined as a completely rotationally symmetric object with radius 1, and this
alone tells us all there is to know about it. Similarly, the symmetries of an action
tell us a great deal about the object described by it. We therefore consider the
symmetries of the Polyakov action to better understand the bosonic string.

*It would perhaps make more sense to name it the Brink-Di Vecchia-Howe-Deser-Zumino
action after the people who first derived it, but this is a very cumbersome name. The reason it
is named for Polyakov is that he emphasized its virtues for doing path integrals [18].
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Poincaré invariance

Poincaré transformations are combinations of translations and Lorentz transfor-
mations. Since the theory we are considering does not include interactions at
any points in spacetime and since we have constructed it using the squares of
Lorentz vectors, the action is in fact manifestly invariant under both translations
and Lorentz transformations. Also, since we want a theory that can reproduce
the Standard Model, which is Poincaré invariant, we would not consider a string
theory that did not have this symmetry. Formally a Poincaré transformation has
the form [15, p. 17]

𝛿𝑋𝜇 = 𝜔𝜇𝜈𝑋
𝜈 + 𝛼𝜇, 𝛿𝑔𝛼𝛽 = 0, (2.4)

with 𝜔𝜇𝜈 = −𝜔𝜈𝜇.

Local two-dimensional reparametrization invariance

We have chosen to describe the world-sheet by the parameters 𝜉0 and 𝜉1, but we
could equally well have chosen functions of these. The action must therefore be
invariant under reparametrizations of the form [15, p. 17]

𝛿𝑔𝛼𝛽 = 𝜉𝛾𝜕𝛾𝑔𝛼𝛽 + 𝜕𝛼𝜉
𝛾𝑔𝛽𝛾 + 𝜕𝛽𝜉

𝛾𝑔𝛼𝛾, (2.5)

𝛿𝑋𝜇 = 𝜉𝛼𝜕𝛼𝑋
𝜇 (2.6)

𝛿(
√︀

− det 𝑔) = 𝜕𝛼(𝜉
𝛼
√︀
− det 𝑔). (2.7)

Weyl invariance

A Weyl (or conformal) transformation is a local rescaling of the metric. The fact
that we are talking about a local rescaling means that there are many different,
and seemingly unrelated metrics that turn out to be equivalent. It is immediately
clear from the form of the Polyakov action (2.2) that it is invariant under the
transformations,

𝛿𝑋𝜇 = 0, 𝛿𝑔𝛼𝛽 = 2Λ(𝜉𝛼)𝑔𝛼𝛽. (2.8)

We shall later see that this transformation allows us to go to the very convenient
conformal gauge [15, p. 17].

2.1.2 Equations of motion

Before finding the equations of motion by varying the Polyakov action with re-
spect to the spacetime coordinate 𝑋𝜇, we will use the symmetries of the action
to put it on a simpler form. In particular, we would very much like for the world-
sheet metric to be flat, and fortunately it can be shown [15, p. 17] that we can
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always choose a parametrization where the metric is conformally flat, such that:

𝑔𝛼𝛽 = 𝑒2Λ(𝜉)𝜂𝛼𝛽. (2.9)

It is easy to see that using Weyl symmetry, this metric can be further simplified
to that of flat space. This choice is called the conformal gauge.

It is interesting to note that the world-sheet metric had 𝑑(𝑑+1)/2 independent
components, 𝑑 of these were fixed using reparametrization invariance and one
more using Weyl invariance. Since the string world-sheet is two-dimensional, all
the independent components have been fixed, but had we been working with a
higher-dimensional object, we could not so easily have done this.

Using this we can find the Polyakov action in the conformal gauge,

𝑆𝑃 = − 1

4𝜋𝛼′

∫︁
d2𝜉[−𝜕𝜏𝑋𝜇𝜕𝜏𝑋𝜇 + 𝜕𝜎𝑋

𝜇𝜕𝜎𝑋𝜇]. (2.10)

Varying this with respect to 𝑋𝜇 gives

𝛿𝑆𝑃 = − 1

2𝜋𝛼′

∫︁
d2𝜉𝛿𝑋𝜇[𝜕𝜏𝜕𝜏𝑋𝜇 − 𝜕𝜎𝜕𝜎𝑋𝜇]

+
1

2𝜋𝛼′

∫︁ 𝜏 ′

0

d𝜏𝛿𝑋𝜇𝜕𝜎𝑋𝜇|𝜎=0,𝜎′ +
1

2𝜋𝛼′

∫︁ 𝜎′

0

d𝜎𝛿𝑋𝜇𝜕𝜏𝑋𝜇|𝜏=0,𝜏 ′ ,

(2.11)

where 𝜎′ = 𝜋 in the case of an open string and 2𝜋 in the case of a closed one. From
this we can easily read off the equation of motion and two boundary conditions.
We satisfy the latter boundary condition by demanding that 𝛿𝑋𝜇 = 0 at 𝜏 =
0 and 𝜏 = 𝜏 ′. The former boundary condition, however, gives rise to several
distinct and very interesting situations which we will return to at the end of this
subsection.

We have found that the equation of motion is the well-known massless Klein-
Gordon equation

𝜕𝛼𝜕
𝛼𝑋𝜇 = 0, (2.12)

but before we start working more with it, we wish to introduce a more convenient
set of coordinates, namely the world-sheet light-cone coordinates:

𝜉+ = 𝜏 + 𝜎, 𝜉− = 𝜏 − 𝜎. (2.13)

The equation of motion then takes the form

𝜕+𝜕−𝑋
𝜇 = 0. (2.14)

We have now fixed the gauge and chosen convenient coordinates to get the sim-
plest possible equation of motion for the spacetime coordinate, but we still need
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to take into account that the equation of motion for the metric 𝑔𝛼𝛽, which tells
us that stress tensor must vanish

𝑇𝛼𝛽 =
1

𝛼′ [𝜕𝛼𝑋
𝜇𝜕𝛽𝑋𝜇 + 2𝑔𝛼𝛽𝜕+𝑋

𝜇𝜕−𝑋𝜇] = 0. (2.15)

This gives the following additional constraints

𝑇++ =
1

𝛼′𝜕+𝑋
𝜇𝜕+𝑋𝜇 = 0, 𝑇−− =

1

𝛼′𝜕−𝑋
𝜇𝜕−𝑋𝜇 = 0, 𝑇+− = 𝑇−+ = 0.

(2.16)

These constraints are called the Virasoro-constraints and will be very important
later. We will look more closely at them in section 2.1.4.

It is now time to explore in detail the boundary conditions for the string
derived in (2.11).

Neumann boundary conditions

If we set

𝜕𝜎𝑋
𝜇(𝜏, 0) = 𝜕𝜎𝑋

𝜇(𝜏, 𝜋) = 0, (2.17)

we have an open string where momentum cannot flow off the end points (see figure
2.2(a)). This means that the strings cannot normally interact with anything else
since this would involve a momentum transfer of some form. Thus the Neumann
strings are free open strings.

While we say that the strings do not interact, it is of course possible to later
add interactions using perturbation theory.

Dirichlet boundary conditions

If we instead set

𝛿𝑋𝜇(𝜏, 0) = 𝛿𝑋𝜇(𝜏, 𝜋) = 0, (2.18)

or equivalently

𝜕𝜏𝑋
𝜇(𝜏, 0) = 𝜕𝜏𝑋

𝜇(𝜏, 𝜋) = 0, (2.19)

we are demanding that the end points of the open string do not move in space (see
figure 2.2(b)). For the endpoints being stationary to make any kind of sense, they
must be stuck on something, and this begs the question: In a theory of strings,
what could strings be stuck on? It will later become apparent (see section 3) that
multidimensional objects, called D(irichlet)-branes, enter the theory naturally
and it is onto these the strings are stuck.
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The Neumann and Dirichlet boundary conditions can be imposed indepen-
dently on different coordinates, and it is therefore also possible to consider strings
that have some Neumann boundary conditions and some Dirichlet. This is exactly
what we will do when we start exploring how branes let us build a semi-realistic
theory. Even though the final theory proposed (see chapters 5 and 7) will not
use Dirichlet conditions, they are essential components for getting there.

One could also impose the Neumann condition on one end and the Dirichlet
condition on the other, but we will not go into this.

(a) A string with Neumann boundary
conditions in one direction.

(b) A string with Dirichlet boundary
conditions.

(c) A string with periodic
boundary conditions.

Figure 2.2: Strings with different boundary conditions. Figures (a) and (b) taken
from [19].

Periodic boundary conditions

Last, we can set

𝑋𝜇(0) = 𝑋𝜇(2𝜋), (2.20)

such that the string is closed and thus no longer has end points (see figure 2.2(c)).
This means that it can neither be stuck on other objects nor let momentum
flow off its endpoints, but it is free to move around in the entire 𝑑-dimensional
spacetime.
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2.1.3 String motion

The equation of motion (2.14) can be solved in terms of functions of the world-
sheet light-cone coordinates:

𝑋𝜇(𝜏, 𝜎) = 𝑋𝜇
𝐿(𝜏 + 𝜎) +𝑋𝜇

𝑅(𝜏 − 𝜎), (2.21)

this solution can be examined by Fourier-expanding the (arbitrary) functions

𝑋𝜇
𝐿(𝜏 + 𝜎) =

𝑥𝜇

2
+

√︂
𝛼′

2
�̄�𝜇0 (𝜏 + 𝜎) + 𝑖

√︂
𝛼′

2

∑︁
𝑘 ̸=0

�̄�𝜇𝑘
𝑘
𝑒−𝑖𝑘(𝜏+𝜎), (2.22)

𝑋𝜇
𝑅(𝜏 − 𝜎) =

𝑥𝜇

2
+

√︂
𝛼′

2
𝛼𝜇0 (𝜏 − 𝜎) + 𝑖

√︂
𝛼′

2

∑︁
𝑘 ̸=0

𝛼𝜇𝑘
𝑘
𝑒−𝑖𝑘(𝜏−𝜎), (2.23)

where 𝑘 is not necessarily an integer, but runs over integral steps.
To ensure the reality of 𝑋𝜇(𝜏, 𝜎), we must demand that 𝑥𝜇 is real and that

(𝛼𝜇𝑘)
* = 𝛼𝜇−𝑘, (�̄�𝜇𝑘)

* = �̄�𝜇−𝑘. (2.24)

Neumann boundary conditions

As mentioned above, the Neumann conditions (2.17) correspond to open strings
moving freely in space. It seems clear that these will play a major part in any
string theory. When we impose the Neumann conditions on the solution (2.21),
we find that the motion of the string is given by:

𝑋𝜇(𝜏, 𝜎) = 𝑥𝜇 + 2𝛼′𝑝𝜇𝜏 + 𝑖
√
2𝛼′

∑︁
𝑛∈Z∖{0}

𝛼𝜇𝑛
𝑛
𝑒−𝑖𝑛𝜏 cos(𝑛𝜎). (2.25)

Here it is worth noting a few things; first that the bars from (2.22) have disap-
peared, which means that the right and left moving waves on the string are not
independent. This comes from the well known phenomenon from wave theory
that waves are reflected at the endpoints. Second, we have introduced the mo-

mentum 𝑝𝜇 =
𝛼𝜇
0√
2𝛼′ . It can be shown [15, pp. 22–23] that this is the total centre

of mass momentum of the string.

Dirichlet boundary conditions

It seems less obvious to include Dirichlet strings, since these must be attached
to objects that do not appear to be in the free string theory. However, as we
mentioned at the end of the previous section, they are important for building a
semi-realistic model. They give rise to the following motion:

𝑋𝜇(𝜏, 𝜎) = 𝑥𝜇 +
𝑦𝜇

𝜋
𝜎 −

√
2𝛼′

∑︁
𝑛∈Z∖{0}

𝛼𝜇𝑛
𝑛
𝑒−𝑖𝑛𝜏 sin(𝑛𝜎). (2.26)
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We see that the Dirichlet string has no momentum, but instead has a dependence
on the space-like parameter 𝜎 given by the separation 𝑦𝜇 =

√
2𝛼′𝜋𝛼𝜇0 . To under-

stand why this name is natural, we calculate the distance between the endpoints
of the string

𝑋𝜇(𝜏, 𝜋)−𝑋𝜇(𝜏, 0) = 𝑥𝜇 +
𝑦𝜇

𝜋
𝜋 − 𝑥𝜇 = 𝑦𝜇.

When we later consider situations where the separation of the string end points
is significant, either because of winding around compact dimensions or distance
between branes, 𝑦𝜇 is exactly this distance.

Periodic boundary conditions

Like the Neumann strings, free closed strings seem likely to be essential parts
of any string theory, and as we will later see this is indeed the case, so we also
consider these. The motion of the closed string is given by:

𝑋𝜇(𝜏, 𝜎) = 𝑥𝜇 + 𝛼′𝑝𝜇𝜏 +
𝑖
√
𝛼′

√
2

∑︁
𝑛∈Z∖{0}

�̄�𝜇𝑛
𝑛
𝑒−𝑖𝑛(𝜏+𝜎) +

𝑖
√
𝛼′

√
2

∑︁
𝑛∈Z∖{0}

𝛼𝜇𝑛
𝑛
𝑒−𝑖𝑛(𝜏−𝜎).

(2.27)

We immediately see that closed strings are very different from the open strings
in that the left and right moving oscillations are independent. When we impose
quantization conditions, we will see that it is exactly this property that naturally
introduces gravitation in string theory (see section 2.1.7). The momentum 𝑝𝜇 =√︁

2
𝛼′𝛼

𝜇
0 is again the centre of mass momentum [15, p. 21].

2.1.4 Virasoro constraints

In section 2.1.2, we found the Virasoro constraints

𝑇−− =
1

𝛼′ (𝜕−𝑋)2 = 0, 𝑇++ =
1

𝛼′ (𝜕+𝑋)2 = 0. (2.28)

It is convenient to consider the Fourier modes of the constraints, called the
Virasoro operators. They are

𝐿𝑚 ∝
∫︁ 𝜋

0

d𝜎[𝑇−−𝑒
𝑖𝑚(𝜏−𝜎) + 𝑇++𝑒

𝑖𝑚(𝜏+𝜎)] (2.29)

for open strings and

𝐿𝑚 ∝
∫︁ 2𝜋

0

d𝜎𝑇−−𝑒
𝑖𝑚(𝜏−𝜎), �̄�𝑚 ∝

∫︁ 2𝜋

0

d𝜎𝑇++𝑒
𝑖𝑚(𝜏+𝜎) (2.30)
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for closed strings.
Since these will be sat equal to zero, we can choose whatever prefactor we

wish. Using equations (2.25)-(2.27), it is a simple matter to calculate the Virasoro
constraints 𝐿𝑚 and �̄�𝑚 and, with the conventional choice of prefactor, they take
the form

𝐿𝑚 =
1

2

∑︁
𝑛∈Z

𝛼𝜇𝑚−𝑛𝛼𝜇𝑛 = 0, �̄�𝑚 =
1

2

∑︁
𝑛∈Z

�̄�𝜇𝑚−𝑛�̄�𝜇𝑛 = 0. (2.31)

The zeroth Virasoro operator is particularly interesting since it contains an
𝛼2
0-term. As seen above, this is related to the string centre of mass momentum,

and using the mass-shell equation,

−𝑝2 =𝑀2, (2.32)

we can get an expression for the string mass in terms of the oscillator modes. For
the Neumann string it is:

𝐿0 =
1

2
𝛼2
0 +

∞∑︁
𝑛=1

𝛼−𝑛𝛼𝑛 = 𝛼′𝑝2 +
∞∑︁
𝑛=1

𝛼−𝑛𝛼𝑛 = 0 (2.33)

𝑀2 =
1

𝛼′

∞∑︁
𝑛=1

𝛼−𝑛𝛼𝑛, (2.34)

and for the closed string:

𝐿0 + �̄�0 = 𝛼2
0 +

∞∑︁
𝑛=1

𝛼−𝑛𝛼𝑛 +
∞∑︁
𝑛=1

�̄�−𝑛�̄�𝑛 = 0 (2.35)

𝑀2 =
2

𝛼′

[︃
∞∑︁
𝑛=1

𝛼−𝑛𝛼𝑛 +
∞∑︁
𝑛=1

�̄�−𝑛�̄�𝑛

]︃
. (2.36)

Since both 𝐿0 and �̄�0 must also be zero individually, we can deduce that

4

𝛼′

∞∑︁
𝑛=1

𝛼−𝑛𝛼𝑛 =
4

𝛼′

∞∑︁
𝑛=1

�̄�−𝑛�̄�𝑛, (2.37)

which is known as the level-matching condition.

2.1.5 Quantization

We quantize the string by promoting position, momentum and vibration modes
to operators. To determine the behaviour of these operators, we impose the
canonical equal-time commutation relation:

[𝑋𝜇(𝜏, 𝜎), 𝑃 𝜈(𝜏, 𝜎′)] = 𝑖𝜂𝜇𝜈𝛿(𝜎 − 𝜎′), (2.38)
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where we have introduced

𝑃 𝜇 =
𝜕ℒ

𝜕(𝜕𝜏𝑋𝜇)
=
𝜕𝜏𝑋

𝜇

2𝜋𝛼′ . (2.39)

Using (2.25)-(2.27), it is relatively simple to show that this leads to the following
commutation relations for the fundamental operators:

[𝑥𝜇, 𝑝𝜈 ] = 𝑖𝜂𝜇𝜈 , [𝛼𝜇𝑚, 𝛼
𝜈
𝑛] = 𝑚𝛿𝑚,−𝑛𝜂

𝜇𝜈 , [�̄�𝜇𝑚, �̄�
𝜈
𝑛] = 𝑚𝛿𝑚,−𝑛𝜂

𝜇𝜈 , (2.40)

where the barred relation of course only is relevant in the closed string case.
Classically, we had to demand that the string coordinate 𝑋𝜇 was a real-valued

function, but quantum mechanically we have to demand that it is a hermitian
operator. The reality condition on the vibrational modes (2.24) therefore becomes
a hermiticity condition.

(𝛼𝜇𝑘)
† = 𝛼𝜇−𝑘, (�̄�𝜇𝑘)

† = �̄�𝜇−𝑘. (2.41)

It is interesting to note that if we furthermore define 𝑎𝜇𝑛 = 𝛼𝜇
𝑛√
𝑛
, we see that

[𝑎𝜇𝑚, 𝑎
𝜈†
𝑛 ] = 𝛿𝑚,𝑛𝜂

𝜇𝜈 , 𝑚, 𝑛 > 0, (2.42)

which is just the well-known harmonic oscillator commutation relation for an
infinite set of oscillators.

We can now use our lowering operators to define a normalized vacuum state

𝛼𝜇𝑛|𝑝⟩ = 0 ∀ 𝑛 > 0, and ⟨𝑝|𝑝⟩ = 1 (2.43)

and our raising operators to define a Fock space of other states such as

𝛼𝜇−1|𝑝⟩, 𝛼
𝜇
−2𝛼

𝜈
−5|𝑝⟩ and 𝛼

𝜇
−3𝛼𝜇,−3|𝑝⟩. (2.44)

There is, however, a problem with our newly defined Fock space; it contains
ghosts, states with a negative norm. We see this explicitly by considering expec-
tation value of the state

|𝛼0
−1|𝑝⟩|2 = ⟨𝑝|𝛼0

1𝛼
0
−1|𝑝⟩ = ⟨𝑝|(𝜂00 + 𝛼0

−1𝛼
0
1)|𝑝⟩ = −1. (2.45)

Fortunately, we have not yet imposed the classical constraints 𝐿𝑚 = 0 (see section
2.1.4), and these take care of the unphysical states [20, pp. 79–86]. Before we can
impose the constraints, we must rewrite them as quantum operators. We define
the quantum mechanical Virasoro operators as the normal-ordered version of the
originals (2.31):

𝐿𝑚 =
1

2

∑︁
𝑛∈Z

: 𝛼𝜇𝑚−𝑛𝛼𝜇𝑛 :, (2.46)
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and since the commutator contains 𝛿𝑚,−𝑛, the only operator that is affected by
this is

𝐿0 =
1

2

[︃
𝛼2
0 +

∞∑︁
𝑛=1

𝛼𝜇−𝑛𝛼𝜇𝑛 +
∞∑︁
𝑛=1

𝛼𝜇𝑛𝛼𝜇−𝑛

]︃
(2.47)

=
1

2
𝛼2
0 +

∞∑︁
𝑛=1

𝛼𝜇−𝑛𝛼𝜇𝑛, (2.48)

where we have suppressed the normal ordering constant, 𝑎. We will instead
include it in the condition on the physical states (see equation (2.49)). We will
consider 𝑎 in detail in section 2.1.7.

The Virasoro constraints on the physical states are

𝐿𝑚>0|phys⟩ = 0, (𝐿0 − 𝑎)|phys⟩ = 0, (2.49)

and we can find the quantum mechanical mass-shell condition

1

2
𝛼2
0 +

∞∑︁
𝑛=1

𝛼𝜇−𝑛𝛼𝜇𝑛 − 𝑎 = 0 (2.50)

𝑀2 =
1

𝛼′

(︃
∞∑︁
𝑛=1

𝛼𝜇−𝑛𝛼𝜇𝑛 − 𝑎

)︃
. (2.51)

Let us pause for a moment and consider how this is changed from the classical
expression (2.34). The new expression is quantized, meaning that in units of 1/𝛼′

it is always an integer minus 𝑎 as opposed to the continuum of possible classical
masses. Another very important difference is that if 𝑎 is a positive integer, the
quantum string can have non-trivial solutions with negative or zero mass squared,
whereas the classical string has manifestly non-negative mass and can only be
massless in the trivial case 𝛼𝜇𝑛 = 0 for all 𝑛.

2.1.6 Light-cone quantization

We have previously had great success using world-sheet light-cone coordinates,
𝜉±, and we will now see that spacetime light-cone coordinates can also be very
useful. We define them as

𝑋± = 𝑋0 ±𝑋1. (2.52)

When we went to the conformal gauge in section 2.1.2, we did not use up all of
our gauge symmetries. In particular, if we choose a new parametrization of the
form

𝜉
′+ = 𝑓(𝜉+), 𝜉

′− = 𝑔(𝜉−), (2.53)
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the only change in the metric will be a rescaling that can be taken care of with
Weyl symmetry. It is therefore possible to make sure the metric remains that of
flat space. Using this residual invariance, we can set [15, p. 31]

𝑋+ = 𝑥+ + 𝛼′𝑝+𝜏. (2.54)

Inserting this in the classical Virasoro constraints, we can calculate

𝜕±𝑋
− =

2

𝛼′𝑝+
𝜕±𝑋

𝑖𝜕±𝑋
𝑖. (2.55)

Equations (2.25) and (2.55) give us the 𝛼−
𝑛 -operators in terms of the transverse

oscillations and 𝑝+

𝛼−
𝑛 =

2

𝑝+

√︂
2

𝛼′

[︃∑︁
𝑚∈Z

: 𝛼𝑖𝑛−𝑚𝛼
𝑖
𝑚 : −2𝑎𝛿𝑛,0

]︃
, 𝑖 = 2, . . . , 𝑑− 1, (2.56)

where we have added the normal ordering constant introduced in equation (2.49).
The 𝛼+

𝑛 ’s are obviously zero for 𝑛 ̸= 0, but it is convenient to express them
generally:

𝛼+
𝑛 =

√︂
𝛼′

2
𝑝+𝛿𝑛,0. (2.57)

We have now expressed the vibrations in the light-cone directions entirely in
terms of vibrations in the (𝑑− 2) transverse directions.

A great advantage of the light-cone coordinates is that they make the theory
explicitly ghost-free. It is obvious that norms like |𝛼+

−𝑛|𝑝⟩|2 equal zero because
of (2.57), and it is equally obvious that ⟨𝑝|𝛼−

𝑛𝛼
+
−𝑛|𝑝⟩ and ⟨𝑝|𝛼+

𝑛𝛼
−
−𝑛|𝑝⟩ also equal

zero. That |𝛼−
−𝑛|𝑝⟩|2 vanishes comes from the fact that [𝛼−

𝑚, 𝛼
−
𝑛 ] = 0.

It should be noted that though we in this and the previous subsection have
treated the Neumann string, entirely analogous calculations hold for the Dirichlet
and closed strings.

2.1.7 Spectrum

We now return to the quantum mechanical mass-shell condition for the Neumann
string

𝑀2 =
1

𝛼′

(︃
∞∑︁
𝑛=1

𝛼𝑖−𝑛𝛼
𝑖
𝑛 − 𝑎

)︃
. (2.58)

By imposing light-cone coordinates before normal ordering, it is easy to see that
only the transverse oscillations contribute to the mass.
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Before going into detail with the spectrum, we wish to fix the normal ordering
constant, 𝑎. It is not obvious how we should do this, but it turns out that
demanding that the commutators of the Lorentz transformations vanish gives us
an equation in which we can simply read off 𝑎. However, this is a very long and
tedious calculation which is done rigorously elsewhere [21, pp. 59–63] and we will
therefore merely state the end result,

[𝐽 𝑖−, 𝐽 𝑗−] =
1

2(𝑝+)2

∞∑︁
𝑛=1

(︂[︂
𝑑− 2

12
− 2

]︂
𝑛+

1

𝑛

[︂
2𝑎− 𝑑− 2

12

]︂)︂
(𝛼

[𝑖
−𝑛𝛼

𝑗]
𝑛 + �̄�

[𝑖
−𝑛�̄�

𝑗]
𝑛 ) = 0,

(2.59)

where 𝛼
[𝑖
−𝑛𝛼

𝑗]
𝑛 = 𝛼𝑖−𝑛𝛼

𝑗
𝑛− 𝛼𝑗−𝑛𝛼

𝑖
𝑛 and 𝑑 is the number of dimensions. It is easy to

see that this leaves only one possible choice of 𝑎 and 𝑑, namely

𝑎 = 1, 𝑑 = 26. (2.60)

For this reason we call 𝑑 = 26 the critical dimension of bosonic string theory. It
is by no means impossible to do string theory in another number of dimensions,
but if we do so, we lose Lorentz invariance and thus gain a gravitational anomaly.

Instead of going through the above-mentioned calculation, we will do another,
much simpler, but less rigorous, calculation that gives the same result. We first
recall that 𝑎 comes from the commutator of 𝛼−𝑛 and 𝛼𝑛 and symbolically has the
value

𝑎 = −1

2

∞∑︁
𝑛=1

[𝛼𝑖𝑛, 𝛼
𝑖
−𝑛] = −1

2

∞∑︁
𝑛=1

𝑛𝜂𝑖𝑖 (2.61)

which is clearly infinite. To give meaning to this quantity, we consider the Rie-
mann 𝜁-function,

𝜁(𝑠) =
∞∑︁
𝑛=1

𝑛−𝑠. (2.62)

This function is only well defined for ℜ(𝑠) > 1, but it has a unique analytical
continuation that allows us to assign meaning to it for other values, and for
𝑠 = −1 it is [22, p. 50]

∞∑︁
𝑛=1

𝑛 ≡ 𝜁(−1) = − 1

12
. (2.63)

This method of giving meaning to otherwise divergent series is called Riemann
𝜁-function regularization, and by using it, we can find

𝑎 = −1

2

∞∑︁
𝑛=1

𝑛𝜂𝑖𝑖 = −1

2
(− 1

12
)(𝑑− 2) =

𝑑− 2

24
. (2.64)
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The problem with this expression is that we have merely traded one unknown
constant for another, but if we consider the first excited state

𝛼𝑖−1|𝑝⟩, (2.65)

we can get the value of 𝑎 and thus also fix the dimension.
The state (2.65) has 𝑑 − 2 independent vector components since the light-

cone oscillators are completely given in terms of the transverse oscillators. This
is exactly the property we, from group theory, expect of a massless spacetime
vector particle.

It is therefore clear that the mass of the state (2.65) must be zero, and (2.51)
then tells us that

𝑎 = 1 (2.66)

and thus by (2.64) that

𝑑 = 26, (2.67)

exactly as found in the result from the rigorous calculation.
To see, without using group theory, that a massless vector particle will only

have 𝑑− 2 independent components, consider the momentum of such a particle.
It will a priori be a vector with 𝑑 components, and the mass-shell condition tells
us that

𝑝𝜇𝑝𝜇 = −𝑀2 = 0, (2.68)

𝑝𝜇𝑝𝜇 = −𝑝0𝑝0 + 𝑝1𝑝1 + 𝑝𝑖𝑝𝑖 = 0. (2.69)

Since each of the squares must be non-negative, we can never apply a Lorentz-
transformation that sets more than 𝑑 − 2 of them to zero. Therefore, for any
non-trivial momentum, only 𝑑− 2 of the components are truly independent.

Neumann string states

The mass-shell condition for the Neumann string is then

𝑀2 =
1

𝛼′

(︃
∞∑︁
𝑛=1

𝛼𝑖−𝑛𝛼
𝑖
𝑛 − 1

)︃
, (2.70)

and we can begin to consider the different states.
First there is the ground state

|𝑝⟩, (2.71)
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with mass

𝑀2 = − 1

𝛼′ . (2.72)

We term states with negative 𝑀2 tachyons and they will naturally move faster
than the speed of light. Though superluminal velocities are unfamiliar and unlike
anything we have observed in nature, there is another reason we should be worried
about the presence of tachyons. In the language of quantum field theory [23,
p. 40], we can consider the tachyons as excitations of a field, 𝑇 (𝑋), and the mass-
squared would be found as the second derivative of the corresponding potential

𝑀2 =
𝜕2𝑉 (𝑇 )

𝜕𝑇 2

⃒⃒⃒⃒
⃒
𝑇=0

< 0. (2.73)

In this case, the negative mass-squared tells us that we are expanding around a
maximum of the potential, and thus that our theory is unstable. Attempts have
been made to fix this problem by giving the tachyon a Higgs-like potential with
a minimum away from 𝑇 = 0, but they have so far been unsuccessful [23, p. 41].
When considering the corresponding state of the superstring, we will see that
there exists a natural way of getting rid of the tachyon (section 2.3.3).

Secondly, we have the singly excited state

𝛼𝑖−1|𝑝⟩, (2.74)

which, as has already been established, is a massless vector boson. This single
fact is enough for us to conclude that this state is in fact a photon. While the
presence of the tachyon above was disheartening, the natural occurrence of a
photon-like particle encourages us to carry on with string theory.

Thirdly, there are higher excited states in general, and

𝛼𝑖−2|𝑝⟩, 𝛼𝑖−1𝛼
𝑗
−1|𝑝⟩, (2.75)

in particular. These states are tensors of 𝑆𝑂(24), but can be combined to give
a symmetric, traceless, massive 𝑆𝑂(25) rank 2 tensor [15, p. 33]. Higher excited
states will be tensors of rank 𝑛 and since the maximal spin of a tensor particle
is 𝐽 = 𝑛 (for information on why this is so, see the following discussion of the
closed string states), we see that we can express this in terms of the mass

𝐽 = 𝑛 = 𝛼′𝑀2 + 1, (2.76)

where, for historical reasons (see section 1.1), the string parameter 𝛼′ is often
called the Regge slope. This behaviour is part of what made string theory seem
an attractive theory of the strong interaction [15, p. 33]. In modern string theory,
𝛼′ is interpreted as the square of the string length, ℓ𝑠, which is closely related to
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the Planck length. In 10 dimensions (the critical dimension of superstring theory,
see section 2.2.6) it can be shown (see [24, pp. 150 & 344] and [25]) that

1

2
(2𝜋)7𝑔2𝑠ℓ

8
𝑠 =

9𝜋10ℓ8𝑃
210

(2.77)

ℓ𝑠 =
1

4
8

√︃
9𝜋3

𝑔2𝑠
ℓ𝑃 ≈ 0.5

ℓ𝑃
4
√
𝑔𝑠

(2.78)

We do not know the string coupling constant 𝑔𝑠, and thus cannot hope to give
an exact result, but it is reasonable to assume a naive calculation of the mass
of the second excited Neumann string state will not be far off. Using the four
dimensional Planck length, such a calculation gives

𝑀 =
1√
𝛼′

∝ ℓ−1
𝑃 =𝑀𝑃 =

√︂
~𝑐
𝐺

= 1.22× 1019GeV/𝑐2. (2.79)

To get a better feeling of this number, we consider that the heaviest known
elementary particle, the top quark, has a mass of 𝑀𝑡 = 173.1GeV/𝑐2, that the
LHC (as of October 1, 2010) has a center-of-mass energy of 7×103GeV and that
even the most energetic particles we know of, the ultra-high-energy cosmic rays,
have a kinetic energy of only 1011GeV [26]. It is thus clear that the massive string
states are far more massive than anything we can expect to see in experiments.

Closed string states

We now move on to consider the closed string. It is similar to the open Neumann
string in that the ground state is a tachyon and the massive states are far heavier
than anything we have encountered in nature. We will therefore only consider
the first excited states. Fortunately these have a very rich and exciting structure.

Imposing the level-matching condition (2.37), we see that the first excited
state is

𝛼𝑖−1�̄�
𝑗
−1|𝑝⟩. (2.80)

Since 𝛼𝑖−1�̄�
𝑗
−1 is a general 24× 24 two-tensor, it transforms in the 24⊗ 24 repre-

sentation of 𝑆𝑂(24). However this representation is not irreducible, and thus we
will not consider it a single fundamental particle. Instead, we decompose it into
three parts that transform in irreducible representations:

1

24
𝛿𝑖𝑗𝛼𝑘−1�̄�

𝑘
−1|𝑝⟩ Φ The dilaton (2.81)

𝛼
[𝑖
−1�̄�

𝑗]
−1|𝑝⟩ 𝐵𝑖𝑗 The Kalb-Ramond field (2.82)[︁

𝛼
{𝑖
−1�̄�

𝑗}
−1 −

1

24
𝛿𝑖𝑗𝛼𝑘−1�̄�

𝑘
−1

]︁
|𝑝⟩ 𝐺𝑖𝑗 The graviton. (2.83)
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It may seem somewhat bold to claim that we have found the long sought-after
graviton, and that it comes out naturally in our simple bosonic string theory, so
let us take a moment to consider this. The fact that gravity in four dimensions
goes as 1

𝑟2
over long distances and is always attractive means that its carrier

particle must be a massless spin 2 particle. Furthermore, it can be shown that
any massless spin 2 particle will give rise to gravity (see [27, 2-3 and 3-1] and [23,
pp. 43–44]). To see that our proposed graviton is in fact spin 2, we must consider
what we, from the point of view of a theoretical physicist, mean by spin 2.

We say that an object has spin 𝑛 if it transforms under Lorentz transforma-
tions as an irreducible tensor of rank 𝑛 [28]. As already stated, all the proposed
particles are written as irreducible representations of 𝑆𝑂(24). It is clear that
since the dilaton only has a single component, it is a rank 0 tensor. Since the
Kalb-Ramond field is anti-symmetric, it has fewer independent components than
the graviton and therefore cannot be a tensor of higher rank than it. Further-
more since we started out with a rank 2 tensor, we cannot possibly have a rank 3
tensor. In 5 (3 transverse) dimensions, the Kalb-Ramond field has 3 independent
components, the same number as a rank 1 tensor would have, in higher dimen-
sions (such as the 26 of bosonic string theory), it has far more. It is therefore
also clear that the proposed graviton is a spin 2 particle and thus able to play
the role of the graviton.

A simpler way of seeing that a symmetric two-tensor field gives rise to gravity
is to observe that the metric is a symmetric two-tensor. Any such field would then
perturb the metric away from that of flat space, effectively curving spacetime and
thus giving rise to gravitational effects.

The dilaton and the Kalb-Ramond field are very interesting objects in their
own rights, but since we are mainly interested in using string theory to recreate
the Standard Model, we will not consider them in any detail here. When we
construct the beginnings of a semi-realistic model in chapter 5, we will include
the Kalb-Ramond field as a background.

2.2 The superstring action

We have now quantized the simple bosonic string and examined its spectrum in
detail. To move on, we need to examine what happens when we introduce a
fermionic contribution. To do this we consider the superstring Lagrangian first
derived by Brink, di Vecchia and Howe [16], and independently by Deser and
Zumino [17]. In our notation, the action is:

𝑆 = − 1

4𝜋𝛼′

∫︁
d𝜉2
√︀

− det 𝑔 𝜂𝜇𝜈

[︁
𝑔𝛼𝛽𝜕𝛼𝑋

𝜇𝜕𝛽𝑋
𝜈 + 𝑖𝑒𝛼𝑎𝜓

𝜇𝜌𝑎𝜕𝛼𝜓
𝜈

− 𝑖�̄�𝛼𝜌
𝛽𝜌𝛼𝜓𝜇(𝜕𝛽𝑋

𝜈 − 𝑖

4
�̄�𝛽𝜓

𝜈)
]︁
. (2.84)
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Here 𝑒𝛼𝑎 is the two-dimensional vielbein which translates curved coordinates 𝛼
to flat coordinates 𝑎, 𝜌𝑎 is a two-dimensional Dirac matrix, 𝜌𝛼 = 𝑒𝛼𝑎𝜌

𝑎, 𝜓𝜇 is
the world-sheet fermion field, 𝜓𝜇 = 𝜓𝜇𝜌0 and 𝜒𝛼 is the supersymmetric partner
of 𝑔𝛼𝛽 called the gravitino. It should be noted that both the gravitino 𝜒𝛼 and
the fermion 𝜓𝜇 are anti-commuting Grassman variables to ensure that the Pauli
principle is obeyed.

2.2.1 Symmetries of the action

Just as in the bosonic case, we wish to consider the symmetries of the action.
Since the Polyakov action (2.2) is just a simplification of (2.84), they share
Poincaré and reparametrization invariance, but the Weyl symmetry has been
extended to super-Weyl symmetry [22, p. 118] and, as the name implies, the
superstring exhibits world-sheet supersymmetry.

Supersymmetry

That the action (2.84) is world-sheet supersymmetric means that it is invariant
under a transformation that turns fermionic coordinates into bosonic ones and
vice-versa. This is a new kind of symmetry, and it has a lot of very appealing
effects that we will see later. Formally, the world-sheet supersymmetry transfor-
mations are:

𝛿𝑔𝛼𝛽 = 𝑖𝜀(𝜌𝛼𝜒𝛽 + 𝜌𝛽𝜒𝛼), 𝛿𝑒𝑎𝛼 = 𝑖𝜀𝜌𝑎𝜒𝛼, 𝛿𝜒𝛼 = 2∇𝛼𝜀

𝛿𝑋𝜇 = 𝑖𝜀𝜓𝜇, 𝛿𝜓𝜇 = 𝜌𝛼
(︀
𝜕𝛼𝑋

𝜇 − 𝑖

2
�̄�𝛼𝜓

𝜇
)︀
𝜀,

where 𝜀 is an arbitrary Majorana world-sheet spinor and 𝜀 = 𝜀𝜌0.

2.2.2 Equations of motion

As before, we want to find the equations of motion. To do this, we go to the su-
perstring equivalent of the conformal gauge, naturally called the superconformal
gauge

𝑔𝛼𝛽 = 𝑒𝜑𝜂𝛼𝛽, 𝜒𝛼 = 𝜌𝛼𝜁, (2.85)

where 𝜁 is a constant Majorana spinor.
Using the identity 𝜌𝛼𝜌

𝛽𝜌𝛼 = 0 it is easy to show that this gauge, the action
takes the much simpler form

𝑆 = − 1

4𝜋𝛼′

∫︁
d𝜉2𝜂𝜇𝜈

[︁
𝜕𝛼𝑋𝜇𝜕𝛼𝑋

𝜈 + 𝑖𝜓𝜇𝜌𝛼𝜕𝛼𝜓
𝜈
]︁
, (2.86)
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and we see that the bosonic and fermionic parts decouple completely. Since the
bosonic string has already been treated in detail, we will now only consider the
fermionic string.

Using variational calculus gives us, unsurprisingly, the Dirac equation

𝜌𝛼𝜕𝛼𝜓
𝜇 = 0, (2.87)

and the boundary condition

(𝜂𝜇𝜈𝛿𝜓
𝜇𝜌1𝜓

𝜈)|𝜎=𝜋𝜎=0 = 0. (2.88)

As in the bosonic case, it is very convenient to introduce the light-cone co-
ordinates (2.13) and their derivatives. The equations are further simplified if we
consider left and right-handed world-sheet spinors

𝜓𝜇± =
1∓ 𝜌3

2
𝜓𝜇, 𝜌3 = 𝜌0𝜌1. (2.89)

The Dirac equation then splits up into the Weyl equations:

𝜕−𝜓
𝜇
+ = 𝜕+𝜓

𝜇
− = 0, (2.90)

and we can rewrite the boundary condition in terms of the Weyl coordinates:

(𝜓+𝛿𝜓+ − 𝜓−𝛿𝜓−)|𝜎=𝜋𝜎=0 = 0. (2.91)

Though we have found the equations of motion for both the bosonic and
fermionic fields, we are not finished since the addition of fermions complicates
the stress tensor and we have introduced another new field, the gravitino. This
new stress tensor can be calculated using the same method as before [22, p. 119],

𝑇𝛼𝛽 = − 4𝜋√
− det 𝑔

𝛿𝑆𝑃
𝛿𝑔𝛼𝛽

=
1

𝛼′

[︂
𝜕𝛼𝑋

𝜇𝜕𝛽𝑋𝜇 +
1

4
𝜓𝜇𝜌𝛼𝜕𝛽𝜓𝜇 +

1

4
𝜓𝜇𝜌𝛽𝜕𝛼𝜓𝜇 − (trace)

]︂
,

(2.92)

which using light-cone coordinates can be rewritten in a simpler form

𝑇++ =
1

𝛼′𝜕+𝑋
𝜇𝜕+𝑋𝜇 +

𝑖

2𝛼′𝜓
𝜇
+𝜕+𝜓+𝜇, (2.93)

𝑇−− =
1

𝛼′𝜕−𝑋
𝜇𝜕−𝑋𝜇 +

𝑖

2𝛼′𝜓
𝜇
−𝜕−𝜓−𝜇. (2.94)

From performing a variation of the gravitino field, we get the supercurrent
[20, p. 231]:

𝐽𝛼 = − 𝜋

2
√
− det 𝑔

𝛿𝑆

𝛿𝜒𝛼
=

1

2𝛼′𝜌
𝛽𝜌𝛼𝜓

𝜇𝜕𝛽𝑋𝜇, (2.95)
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and again we can use the light-cone coordinates to write them more conveniently.

𝐽+ =
1

𝛼′𝜓
𝜇
+𝜕+𝑋𝜇, 𝐽− =

1

𝛼′𝜓
𝜇
−𝜕−𝑋𝜇. (2.96)

Since both the stress tensor and the supercurrent were found from a variation
of the action, the principle of least action tells us that they must be zero, so it is
easy to see that the super-Virasoro constraints are

𝑇++ = 𝑇−− = 𝐽+ = 𝐽− = 0. (2.97)

An alternate way of deriving the supercurrent is to use Noether’s first theorem.
This states that for every symmetry of the action there is a related conserved
current which can be found by applying the symmetry transformations (see [22,
pp. 37–38]). Had we done this, the supercurrent would have come from world-
sheet supersymmetry.

Fermionic boundary conditions

With the equations of motion well in hand, we will return to the boundary condi-
tion found above. In the open string case, we see that the left and right-moving
vibrational modes are dependent on each other since the conditions (2.91) are
satisfied when {︂

𝜓−(𝜏, 0) = 𝜂1𝜓+(𝜏, 0),
𝜓−(𝜏, 𝜋) = 𝜂2𝜓+(𝜏, 𝜋),

(2.98)

where the 𝜂’s can take the values ±1. The overall sign is insignificant, and we
therefore have two distinct cases. First, the Ramond (R) sector when 𝜂1 = 𝜂2
and secondly, the Neveu-Schwarz (NS) sector when 𝜂1 = −𝜂2.

When considering the closed string we are delighted to find that the basic
structure from the bosonic case reappears, since the left and right-moving func-
tions are independent

𝜓−(𝜏, 0) = 𝜂3𝜓−(𝜏, 2𝜋), 𝜓+(𝜏, 0) = 𝜂4𝜓+(𝜏, 2𝜋). (2.99)

Because the vibrations are independent, the overall sign matters and we are left
with four distinct sectors ⎧⎪⎪⎨⎪⎪⎩

𝜂3 = 𝜂4 = 1 R-R,
𝜂3 = −𝜂4 = 1 R-NS,
𝜂3 = −𝜂4 = −1 NS-R,
𝜂3 = 𝜂4 = −1 NS-NS.

(2.100)
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2.2.3 Superstring motion

We once again use that the bosonic and fermionic parts of the action are inde-
pendent and therefore only consider the fermionic motion here. As in the bosonic
case, we consider the left and right-moving parts separately, but here it is very
important to realise that while the total bosonic motion was given by the sum of
the parts, the fermionic is given by the spinor composed of the different parts

𝜓𝜇 =

(︂
𝜓𝜇+
𝜓𝜇−

)︂
. (2.101)

To get expressions for the left- and right-moving components, we will once
again consider an oscillator expansion, this time with anti-commuting coefficients
𝑏𝜇𝑘 :

𝜓𝜇+(𝜏, 𝜎) =

√︂
𝛼′

2

∑︁
𝑘

�̄�𝜇𝑘𝑒
−𝑖𝑘(𝜏+𝜎) (2.102)

𝜓𝜇−(𝜏, 𝜎) =

√︂
𝛼′

2

∑︁
𝑘

𝑏𝜇𝑘𝑒
−𝑖𝑘(𝜏−𝜎). (2.103)

Open fermionic strings

We will first consider the open string case, where the boundary conditions are
given by equation (2.98). As mentioned above, the overall sign is unimportant,
and we will therefore start by imposing

𝜓−(𝜏, 0) = 𝜓+(𝜏, 0), (2.104)

from which we immediately see that the left- and right-moving oscillation modes
𝑏𝜇𝑘 and �̄�𝜇𝑘 are identical.

When imposing the Ramond condition,

𝜓−(𝜏, 𝜋) = 𝜓+(𝜏, 𝜋), (2.105)

we furthermore see that the summation index must be an integer, and thus the
motion of the Ramond string is given by:

𝜓± =

√︂
𝛼′

2

∑︁
𝑛∈Z

𝑏𝜇𝑛𝑒
−𝑖𝑛(𝜏±𝜎). (2.106)

Conversely, the Neveu-Schwarz condition,

𝜓−(𝜏, 0) = −𝜓+(𝜏, 0), (2.107)

gives a half-integer summation index such that

𝜓± =

√︂
𝛼′

2

∑︁
𝑟∈Z+ 1

2

𝑏𝜇𝑟 𝑒
−𝑖𝑟(𝜏±𝜎). (2.108)
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Closed fermionic strings

The calculations for the closed string are almost identical to the ones for the open
string. The only real difference between the boundary conditions are that the
open strings have one set of independent oscillator modes while the closed string
has two. The closed string motion can thus be written as

𝜓+(𝜏, 𝜋) =

√︂
𝛼′

2

∑︁
𝑘∈Z+𝑥

2

�̄�𝜇𝑘𝑒
−2𝑖𝑘(𝜏+𝜎) (2.109)

𝜓−(𝜏, 𝜋) =

√︂
𝛼′

2

∑︁
𝑘∈Z+ 𝑦

2

𝑏𝜇𝑘𝑒
−2𝑖𝑘(𝜏−𝜎), (2.110)

with 𝑥 = 0 (𝑦 = 0) if the left-moving (right-moving) oscillations are in the
Ramond sector, and 𝑥 = 1 (𝑦 = 1) if they are in the Neveu-Schwarz sector†.

2.2.4 Super-Virasoro constraints

As in the bosonic case, we now wish to consider the Fourier-modes of the super-
Virasoro constraints found at the end of section 2.2.2. For the open superstring,
the super-Virasoro operators are defined as [20, p. 199]

𝐿𝑚 ∝
∫︁ 𝜋

0

d𝜎[𝑒𝑖𝑚𝜎𝑇++ + 𝑒−𝑖𝑚𝜎𝑇−−] (2.111)

𝐺𝑘 ∝
∫︁ 𝜋

0

d𝜎[𝑒𝑖𝑘𝜎𝐽+ + 𝑒−𝑖𝑘𝜎𝐽−], (2.112)

where we have also included the Fourier modes of the supercurrent since they
can be used in a completely analogous way. For the closed superstring, there are
completely equivalent expressions for the right-moving oscillation modes.

It is straightforward to calculate the super-Virasoro and supercurrent modes
using the expressions for 𝑋𝜇, (2.25), and 𝜓𝜇, (2.106) and (2.108), as well as
standard techniques for integrating exponentials and sums. The results are

𝐿𝑚 =
1

2

∑︁
𝑛∈Z

𝛼𝜇−𝑛𝛼𝑚+𝑛𝜇 +
1

2

∑︁
𝑘∈Z+𝑥

2

(︁
𝑘 +

𝑚

2

)︁
𝑏𝜇−𝑘𝑏𝑚+𝑘 𝜇, 𝑚 ∈ Z (2.113)

𝐺𝑘 =
∑︁
𝑛∈Z

𝛼𝜇−𝑛𝑏𝑘+𝑛𝜇, 𝑘 ∈ Z+
𝑥

2
, (2.114)

where 𝑥 = 0 in the Ramond sector and 𝑥 = 1 in the Neveu Schwarz sector.

†Note that for fermionic oscillators, we use index 𝑘 if its value is undetermined, 𝑛 if it is an
integer and 𝑟 if it is a half-integer.
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2.2.5 Quantization

We have already quantized the bosonic string by imposing the canonical equal-
time commutation relation,

[𝑋𝜇(𝜏, 𝜎), 𝑃 𝜈(𝜏, 𝜎′)] = 𝑖𝜂𝜇𝜈𝛿(𝜎 − 𝜎′). (2.115)

Using this we were able to calculate the commutation relations for the position,
momentum and vibrational modes of the string

[𝑥𝜇, 𝑝𝜈 ] = 𝑖𝜂𝜇𝜈 , [𝛼𝜇𝑚, 𝛼
𝜇
𝑛] = 𝑚𝜂𝜇𝜈𝛿𝑚,−𝑛. (2.116)

The procedure for quantizing the fermionic part of the superstring is completely
analogous, we impose the canonical anti-commutation relation

{𝜓𝜇𝐴(𝜏, 𝜎), 𝜓
𝜈
𝐵(𝜏, 𝜎

′)} = 𝜋𝜂𝜇𝜈𝛿(𝜎 − 𝜎′)𝛿𝐴,𝐵, (2.117)

where 𝐴 and 𝐵 are the spinor indices. They can take the values + and −, and
we define the 𝛿-function of them to be 𝛿++ = 𝛿−− = 1 and 𝛿+− = 𝛿−+ = 0.

Imposing this condition and using equations (2.106) and (2.108), it is simple
to show that the anti-commutators for the oscillation modes are just those of the
a infinite number of fermionic oscillators,

{𝑏𝜇𝑘 , 𝑏
𝜇
𝑙 } = 𝜂𝜇𝜈𝛿𝑘,−𝑙, 𝑘, 𝑙 ∈ Z+

𝑥

2
, (2.118)

where 𝑥 = 0 (𝑥 = 1) in the Ramond (Neveu-Schwaz) sector. An equivalent
relation of course holds for the barred modes in case of the closed string.

It is interesting to consider a particular case of these, namely the Ramond
sector zero-mode operator, 𝑏𝜇0 . It has the anti-commutator {𝑏𝜇0 , 𝑏𝜈0} = 𝜂𝜇𝜈 , which
is proportional to that of the spacetime Dirac matrices. We can therefore write

𝑏𝜇0 =
1√
2
Γ𝜇. (2.119)

The Fock space vacuum we must introduce in this quantum theory is one that
is annihilated by both the bosonic and fermionic modes,

𝛼𝜇𝑛|𝑝⟩ = 𝑏𝜇𝑘 |𝑝⟩ = 0, 𝑛, 𝑘 > 0. (2.120)

Excited modes can be created by acting with the creation operators 𝛼𝜇−𝑛 and 𝑏𝜇−𝑘.
Let us start by checking if the superstring Fock space contains ghosts in the

same way as the bosonic string did by calculating

|𝑏0−1|𝑝⟩|2 = ⟨𝑝|𝑏01𝑏0−1|𝑝⟩ = ⟨𝑝|(𝜂00 − 𝑏0−1𝑏
0
1)|𝑝⟩ = −1, (2.121)
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and to our chagrin, they are present. Since the bosonic string theory also included
ghosts, we now have two sets of such unphysical states. To make sure they are
not part of our final spectrum, we must use two different symmetries to eliminate
them. Fortunately, we have two such symmetries at our disposal since we have
added supersymmetry to our system, so by imposing both the super-Virasoro
constraint and that the supercurrent must vanish, we are left with a spectrum of
non-negative norm states [20, pp. 202–205].

We now return to the super-Virasoro condition, and impose normal ordering
on the super-Virasoro operators.

𝐿𝑚 =
1

2

∑︁
𝑛∈Z

: 𝛼𝜇−𝑛𝛼𝑚+𝑛𝜇 : +
1

2

∑︁
𝑘∈Z+𝑥

2

𝑘 : 𝑏𝜇−𝑘𝑏𝑚+𝑘 𝜇 :, 𝑚 ∈ Z (2.122)

𝐺𝑘 =
∑︁
𝑛∈Z

𝛼𝜇−𝑛𝑏𝑘+𝑛𝜇, 𝑘 ∈ Z+
𝑥

2
, (2.123)

where we have restated the supercurrent operators for completeness even though
they are unchanged by normal ordering.

As in the bosonic case, it is easy to see that this is only important for 𝐿0

which gains a normal ordering constant. The quantum super-Virasoro constraints
are thus formally unchanged by supersymmetry, but we must remember to also
include the supercurrent modes

𝐺𝑘≥0|phys⟩ = 0, 𝐿𝑚>0|phys⟩ = 0, (𝐿0 − 𝑎)|phys⟩ = 0. (2.124)

The mass formula is easily found from the last condition,

𝑀2 =
1

𝛼′

(︃
∞∑︁
𝑛=1

𝛼𝜇−𝑛𝛼𝑛𝜇 +
∑︁
𝑘>0

𝑘𝑏𝜇−𝑘𝑏𝑘 𝜇 − 𝑎

)︃
, 𝑘 ∈ Z+

𝑥

2
. (2.125)

It should be noted that we expect that 𝑎 will have different values in the Ramond
and Neveu-Schwarz sectors.

2.2.6 Light-cone quantization

We have already seen how we can use leftover gauge symmetry to gauge away
superfluous degrees of freedom in the motion of the bosonic string (section 2.1.6).
When we do this, the light-cone coordinates, 𝑋+ and 𝑋−, are given completely
in terms of the transverse motion 𝑋 𝑖. We naturally want to do the same for the
fermionic coordinates, therefore introduce‡

𝜓± = 𝜓0 ± 𝜓1. (2.126)

‡It should be noted that 𝜓± have nothing to do with 𝜓±, the first are spacetime vector
components and the second spinor components.
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With this choice of coordinates, we can gauge away all the oscillation modes such
that [20, p. 211]

𝜓+ = 0, (2.127)

which is a consistent choice since the supersymmetry transformation 𝛿𝑋+ =
𝜀𝜓+ = 0 tells us that it does not change the bosonic light-cone coordinates.

It is now easy to solve the other light-cone coordinate in terms the transverse
oscillations. Equations (2.93) and (2.96) tell us that

𝜕+𝑋
− =

1

𝛼′𝑝+
(𝜕+𝑋

𝑖𝜕+𝑋
𝑖 +

𝑖

2
𝜓𝑖𝜕+𝜓

𝑖) (2.128)

𝜓− =
2

𝛼′𝑝+
𝜓𝑖𝜕+𝑋

𝑖. (2.129)

From these equations it is now a simple, but bothersome, matter to extract
expressions for the oscillation modes 𝛼−

𝑛 and 𝑏−𝑘 . They take the form

𝛼−
𝑛 =

1

2𝑝+

(︃∑︁
𝑚∈Z

: 𝛼𝑖𝑛−𝑚𝛼
𝑖
𝑚 : +

∑︁
𝑘

(𝑟 − 𝑛

2
) : 𝑏𝑖𝑛−𝑘𝑏

𝑖
𝑘 : −𝑎𝛿𝑛,0

)︃
, 𝑘 ∈ Z+

𝑥

2

(2.130)

𝑏−𝑘 =
1

𝑝+

∑︁
𝑙

𝛼𝑖𝑘−𝑙𝑏
𝑖
𝑙, 𝑘, 𝑙 ∈ Z+

𝑥

2
.

(2.131)

From this it is possible to construct the commutators of the Lorentz transfor-
mations, and by demanding that they vanish one can derive a result equivalent
to equation (2.59). Using this one can show that the critical dimension of the su-
perstring theory is 𝑑 = 10 and that the Neveu-Schwarz normal ordering constant
is 𝑎𝑁𝑆 = 1

2
[20, pp. 212–213]. The Ramond sector normal ordering constant is in

fact much simpler to find and we will do so in section 2.3.2.

2.3 Superstring spectrum

We now come to the culmination of this chapter, the superstring spectrum is what
all the previous calculations have prepared us to find so that we may answer the
question: Which states does superstring theory predict?

2.3.1 The Neveu-Schwarz sector

To answer this question, we first consider the Neveu-Schwarz sector. We recall
the mass formula and normal ordering constant found above;

𝑀2 =
1

𝛼′

⎛⎝ ∞∑︁
𝑛=1

𝛼𝑖−𝑛𝛼
𝑖
𝑛 +

∞∑︁
𝑟= 1

2

𝑟𝑏𝑖−𝑟𝑏
𝑖
𝑟 −

1

2

⎞⎠ . (2.132)
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The ground state is the one annihilated by all positive oscillation modes,

𝛼𝑖𝑛|𝑝⟩𝑁𝑆 = 𝑏𝑖𝑟|𝑝⟩𝑁𝑆 = 0, 𝑛, 𝑟 > 0. (2.133)

This makes it very easy to calculate its mass, since this is simply the normal
ordering constant

𝑀2 = − 1

2𝛼′ . (2.134)

Just like in the bosonic case, we find that the ground state is a scalar tachyon.
We have already dealt with why this is a very bad thing for our theory (see
section 2.1.7) and will not do so again, but merely say that we will later see that
spacetime supersymmetry saves us from the tachyon and ensures a stable vacuum
(section 2.3.3).

To create the first excited state we have to choose between the two kinds of
operators we have at our disposal. Looking at the mass formula, it is clear that
acting with 𝛼𝑖−1 will produce a state of mass 𝑀2 = 1

2𝛼′ and 𝑏𝑖−1/2 one of mass

𝑀2 = 0. We therefore consider

𝑏𝑖−1/2|𝑝⟩𝑁𝑆 (2.135)

and find it to be a spacetime vector, since the ground state was a scalar. Since we
are in the light-cone gauge, we know that it has only 𝑑− 2 independent degrees
of freedom, which is consistent with what we expect of a massless vector.

In complete analogy with section 2.1.7, we could have used this argument to
determine the Neveu-Schwarz normal ordering constant, and then by the same
logic found that the critical dimension was 𝑑 = 10.

2.3.2 The Ramond sector

Before going into detail with the Ramond sector, we must determine its normal
ordering constant. To do this we recall heuristic calculation of the bosonic normal
ordering constant (see section 2.1.7) and realise that

𝑎𝑅 = −1

2

∞∑︁
𝑛=1

(︀
[𝛼𝑖𝑛, 𝛼

𝑖
−𝑛]− 𝑛{𝑏𝑖𝑛, 𝑏𝑖−𝑛}

)︀
= −1

2

∞∑︁
𝑛=1

(𝑛− 𝑛)𝜂𝑖𝑖 = 0. (2.136)

Note that this expression is sufficiently rigorous. Since we get the zero before
taking the sum, we need not worry about how valid 𝜁-function regularization is.

The Ramond sector mass formula is therefore

𝑀2 =
1

𝛼′

(︃
∞∑︁
𝑛=1

𝛼𝑖−𝑛𝛼
𝑖
𝑛 +

∞∑︁
𝑛=1

𝑛𝑏𝑖−𝑛𝑏
𝑖
𝑛

)︃
. (2.137)
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Again we consider a ground state annihilated by any annihilation operator

𝛼𝑖𝑛|𝑝⟩𝑅 = 𝑏𝑖𝑛|𝑝⟩𝑅 = 0, 𝑛 > 0. (2.138)

However, we cannot be sure that such a state obeys 𝐺0|𝑝⟩𝑅 = 0 and we must
therefore also impose this,

∑︁
𝑛∈Z

𝛼𝜇−𝑛𝑏𝑛 𝜇|𝑝⟩𝑅 =

[︃
∞∑︁
𝑛=1

(𝛼𝜇−𝑛𝑏𝑛 𝜇 + 𝑏𝜇−𝑛𝑢𝛼𝑛 𝜇) + 𝛼𝜇0𝑏0 𝜇

]︃
|𝑝⟩𝑅 = 0 (2.139)

Γ𝜇𝑝𝜇|𝑝⟩𝑅 = 0. (2.140)

which is just the 10-dimensional Dirac equation.
Since the normal ordering constant was zero, it is easy to see that the Ramond

sector ground state is a massless spacetime spinor. A priori, such a spinor has
2𝑑/2 = 32 complex components corresponding to 64 physical degrees of freedom,
but we will return to this number in section 2.3.4 and see how it is reduced to 8.

2.3.3 The GSO projection

We have now found the ground states in both the Neveu-Schwarz and Ramond
sectors, but there are still significant issues with our theory. First and foremost
is the presence of a tachyonic state. We therefore wish to truncate the spectrum
by projecting out the tachyon. A second issue is that we have anti-commuting
operators, 𝑏𝑖−𝑛/2 that can act on a bosonic state such as 𝑏𝑖−1/2|𝑝⟩𝑁𝑆 and produce
a new bosonic state. This is contrary to our physical intuition since we associate
bosons with commuting operators. A third cause for worry is that the state
𝛼𝑖−1|𝑝⟩𝑁𝑆 is clearly massive, but has only 8 independent vector components.

Fortunately, there exists a way of removing these problems simultaneously.
This is called the GSO projection [8] and to use it, we introduce the G-parity
operators defined as

𝐺𝑁𝑆 = (−1)𝐹+1 = (−1)
∑︀∞

𝑟=1/2 𝑏
𝑖
−𝑟𝑏

𝑖
𝑟+1 (2.141)

𝐺𝑅 = Γ11(−1)
∑︀∞

𝑛=1 𝑏
𝑖
−𝑛𝑏

𝑖
𝑛 , (2.142)

where

Γ11 = Γ0Γ1 . . .Γ9 (2.143)

is just the ten-dimensional equivalent of the fifth Dirac matrix 𝛾5 known from
four-dimensional relativistic quantum mechanics.

If we now project out NS states that do not have even G-parity,

𝐺𝑁𝑆|𝜑⟩𝑁𝑆 = |𝜑⟩𝑁𝑆, (2.144)
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we have made a truncation of the spectrum since all states without an odd number
of 𝑏𝑖−𝑛/2 operators are projected out. It is easy to check that since the tachyonic

ground state contains no 𝑏𝑖−𝑟-operators,

𝐺𝑁𝑆|𝑝⟩𝑁𝑆 = (−1)|𝑝⟩𝑁𝑆 = −|𝑝⟩𝑁𝑆, (2.145)

it is projected out. Furthermore, we see that if we act on an NS state with even
G-parity, such as the first excited state, with an anti-commuting operator 𝑏𝑖−𝑛/2,
it too is projected out

𝐺𝑁𝑆𝑏
𝑖
−𝑛/2𝑏

𝑗
−1/2|𝑝⟩𝑁𝑆 = (−1)3|𝑝⟩𝑁𝑆 = −|𝑝⟩𝑁𝑆. (2.146)

In the Ramond sector, it is a matter of convention if one chooses to project
out the positive or negative states as both projections can be shown to give a
consistent spectrum [22, pp. 135–136].

2.3.4 Space-time supersymmetry

With the GSO-projection, the Neveu-Schwarz and Ramond sectors only contain
states of exactly the same masses since all states with half-integer masses are
projected out. This, together with the fact that our Lagrangian (2.84) exhibits
world-sheet supersymmetry, leads us to suspect that we may also find spacetime
supersymmetry.

To look for spacetime supersymmetry, we consider again the number of inde-
pendent degrees of freedom in the Ramond ground state. As mentioned above,
the a priori number is 2𝐷/2 = 32 complex components, but when we impose the
Majorana condition that these must be real, we have already removed half of
them [20, pp. 218–220]. Furthermore, since demanding

𝐺𝑅|𝑝⟩𝑅 = |𝑝⟩𝑅 or 𝐺𝑅|𝑝⟩𝑅 = −|𝑝⟩𝑅, (2.147)

is equivalent with

Γ11|𝑝⟩𝑅 = |𝑝⟩𝑅 or Γ11|𝑝⟩𝑅 = −|𝑝⟩𝑅, (2.148)

which is the Weyl condition of only accepting states with either positive or neg-
ative chirality, the GSO projection removes another half.

We have also seen how the Ramond sector ground state must obey the ten-
dimensional massless Dirac equation (2.140) which relates half the remaining
components with the other half [20, p. 221]. We are thus left with 8 independent
degrees of freedom which is exactly the same number as we found in the Neveu-
Schwarz sector. Further indication of spacetime supersymmetry is that it can
be shown that the closed string sector contains a gravitino, the quantum of local
supersymmetry [22, p. 134]. A theory that contains a gravitino is only consistent,
if it exhibits spacetime supersymmetry.
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Higher mass levels

We have thus far only shown that the number of bosons and fermions are equal
at the lowest mass level, and to have a chance of supersymmetry, we must also
do so generally. It is clear that in the Ramond sector we will see states of mass
𝛼′𝑀2 = 𝑛 for all integer 𝑛 since both 𝛼𝑛 and 𝑏𝑛 raise the mass of the state by one.
In the Neveu-Schwarz sector, the same holds true because the GSO projection
removes any state with an even number of 𝑏𝑟 operators. We begin by considering
the Neveu-Schwarz sector and call the number of degrees of freedom at each mass
level 𝑑𝑁𝑆(𝑛). We can now construct a function [20, p. 223]

𝑓𝑁𝑆(𝑤) =
∞∑︁
𝑛=0

𝑑𝑁𝑆(𝑛)𝑤
𝑛 (2.149)

=
1√
𝑤
Tr

[︂
1

2
(1 +𝐺𝑁𝑆𝑤

𝑁)

]︂
, 𝑁 =

∞∑︁
𝑛=1

𝛼𝑖−𝑛𝛼
𝑖
𝑛 +

∞∑︁
𝑟=1/2

𝑟𝑏𝑖−𝑟𝑏
𝑖
𝑟. (2.150)

This function has the convenient property that when written as a polynomial,
we can easily read off the number of states at each mass level. The trace can be
evaluated, and is

𝑓𝑁𝑆(𝑤) =
1

2
√
𝑤

[︃
∞∏︁
𝑚=1

(︂
1 + 𝑤𝑚−1/2

1− 𝑤𝑚

)︂8

−
∞∏︁
𝑚=1

(︂
1− 𝑤𝑚−1/2

1− 𝑤𝑚

)︂8
]︃
. (2.151)

The Ramond sector degeneracy function has a simpler form, namely [20, p. 224],

𝑓𝑅(𝑤) =
∞∑︁
𝑛=0

𝑑𝑅(𝑛)𝑤
𝑛 (2.152)

= Tr

[︂
1

2
(1 +𝐺𝑅)𝑤

𝑁

]︂
= 8Tr𝑤𝑁 , 𝑁 =

∞∑︁
𝑛=1

(𝛼𝑖−𝑛𝛼
𝑖
𝑛 + 𝑛𝑑𝑖−𝑛𝑑

𝑖
𝑛). (2.153)

This trace too can be evaluated and gives

𝑓𝑅(𝑤) = 8
∞∏︁
𝑚=1

(︂
1 + 𝑤𝑚

1− 𝑤𝑚

)︂8

. (2.154)

Now we have two expressions that at first glance do not seem likely to be equal,
and furthermore look horribly complicated to evaluate exactly. Fortunately, one
of the greatest coincidences in the history of string theory is that in 1829, Jacobi
actually proved that these two products are equal, and that

𝐹 (𝑤) = 𝑓𝑁𝑆(𝑤) = 𝑓𝑅(𝑤) = 8(1 + 16𝑤 + 144𝑤2 + . . .). (2.155)

While this in itself is not enough to prove spacetime supersymmetry at all levels,
it is a necessary condition.
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It turns out to be extremely involved to prove spacetime supersymmetry in
this formulation of the superstring [24, pp. 25–29]. To have manifest spacetime
supersymmetry, it is necessary to use the Green-Schwarz formulation of the su-
perstring [20, Chapter 5], however, this formulation is very unwieldy to work with
[24, p. 29].

2.3.5 The closed superstring

When working with the closed string, we have to consider both left- and right
moving oscillators, each of which can satisfy either Ramond or Neveu-Schwarz
conditions. It thus follows naturally that the closed string ground state is the
tensor product of two open string ground states. The GSO projection in the NS
sector removed the tachyon and left us with a massless ground state, and in the
R sector it forced us to choose between positive and negative G-parity. In the
case of the open string this choice was insignificant, but when we have to choose
two such ground states, it matters if they are equal or opposite. We denote the
Ramond state with positive G-parity |+⟩𝑅 and the other |−⟩𝑅, and see that the
ground states of type IIA superstring theory are

|+⟩𝑅 ⊗ |−⟩𝑅 (2.156)

|+⟩𝑅 ⊗ �̄�𝑗−1/2|𝑝⟩𝑁𝑆 (2.157)

𝑏𝑖−1/2|𝑝⟩𝑁𝑆 ⊗ |−⟩𝑅 (2.158)

𝑏𝑖−1/2|𝑝⟩𝑁𝑆 ⊗ �̄�𝑗−1/2|𝑝⟩𝑁𝑆. (2.159)

Since each of the open string states have 8 independent degrees of freedom, each
of the closed string states will have 64. In particular, the R-R and NS-NS sectors
gives us 128 bosonic degrees of freedom and the R-NS and NS-R sectors give us
128 fermionic degrees of freedom.

If we instead choose the R sector ground states to have equal G-parity, we get
type IIB superstring theory with ground states

|+⟩𝑅 ⊗ |+⟩𝑅 (2.160)

|+⟩𝑅 ⊗ �̄�𝑗−1/2|𝑝⟩𝑁𝑆 (2.161)

𝑏𝑖−1/2|𝑝⟩𝑁𝑆 ⊗ |+⟩𝑅 (2.162)

𝑏𝑖−1/2|𝑝⟩𝑁𝑆 ⊗ �̄�𝑗−1/2|𝑝⟩𝑁𝑆. (2.163)

Superficially, these states look very similar to those of type IIA theory, but it
is very important to realise that the IIA theory is parity invariant and the IIB
theory is not. Furthermore, they have different field content in the RR-sector
which we will discuss below.

When the spectrum is analysed in detail [22, pp. 137–138], we find that the
dilaton, Kalb-Ramond field and graviton from the bosonic theory appear in the



2.3. SUPERSTRING SPECTRUM 35

NS-NS sector and that their supersymmetric partners, the dilatino and the grav-
itino appear in the R-NS and NS-R sectors. However, in Type IIA theory, the
gravitinos have opposite chirality due to the different chiralities of their Ramond
sectors.

The R-R sector contains several bosonic 𝑝-form gauge potentials 𝐶𝜇𝑎...𝜇𝑝 . And
here the greatest difference between type IIA and type IIB shows up. In type IIA
these fields are 𝐶𝜇 and 𝐶𝜇𝜈𝜌 whereas type IIB has the fields 𝐶, 𝐶𝜇𝜈 and 𝐶𝜇𝜈𝜌𝜎,
where the field-strength of the last field must be self-dual.

These fields are of great significance in string theory, particularly when con-
sidering branes in their own right. When constructing a semi-realistic model,
they do not play the part of any Standard Model particles, but 𝐶𝜇𝜈 turns out to
be crucial for getting an anomaly-free theory and ensuring that we end up with
only the gauge group 𝑆𝑈(3)× 𝑆𝑈(2)× 𝑈(1) (see sections 7.2.2 and 7.3.2).



Chapter 3

D-branes

We have seen in the previous chapter that superstring theory is only Lorentz
invariant in 10 dimensions. If we are to construct an even remotely realistic
theory from this, we need an effective theory that lives in only 4 dimensions.
There are two obvious ways of doing that. First, suppose we do not live in the
entire universe, but merely on a 3-dimensional surface within it. Second, suppose
that the surplus dimensions are small and compact. That a dimension is compact
means that it is possible to move a finite distance in one of these dimensions, and
return to one’s origin.

A useful image to visualize small compact dimensions is to consider a ball
moving on a plane. It is free to move in both horizontal directions. If we fold the
plane, we turn it into a pipe and the ball now moves on its inside surface. If the
diameter of the ball is much smaller than the diameter of the pipe, it can move
forward and around the circumference and we call the dimension compact. But
if we now reduce the pipe’s diameter until it exactly matches the diameter of the
ball, it can only move forwards and backwards, the compact dimension no longer
seems to be there, and we have confined the ball to move in only one dimension.
We call this process compactification.

The first way of reducing the number of dimensions requires us to add some
3-dimensional surface to the theory. It seems rather ad-hoc to just introduce new
objects in the theory to make it match our expectations. We would much prefer
it if we could get a 4-dimensional effective theory with what is already there.
This is why the second way is better, since we do not need to introduce new
things in the theory. Compactification is merely manipulation of the dimensions
that are already there. Surprisingly, it turns out that small compact dimensions
naturally give rise to lower-dimensional surfaces within string theory through a
mechanism called T-duality.

Though the model we wish to construct in the end will be based on superstring
theory, we will first consider how branes occur in bosonic string theory. This is to
keep the emphasis on T-duality, the mechanism that gives rise to branes, and not
on the complications superstring theory causes. Furthermore, in the following we

36



3.1. T-DUALITY 37

will not consider large compact dimensions, so whenever compact dimensions are
mentioned they are assumed to be small.

3.1 T-duality

3.1.1 Closed strings

We will first consider how compactified dimensions change the closed string. Since
the compactified dimensions change the boundary conditions, we will use the
general solution of the equation of motion given by equations (2.21)-(2.23) and
impose that the summation index must be an integer.

We can then write

𝑋𝜇(𝜏, 𝜎) = 𝑥𝜇 + �̄�𝜇 +

√︂
𝛼′

2
(𝛼𝜇0 + �̄�𝜇0 )𝜏 +

√︂
𝛼′

2
(𝛼𝜇0 − �̄�𝜇0 )𝜎

+ 𝑖

√︂
𝛼′

2

∑︁
𝑛∈Z∖{0}

[︂
𝛼𝜇𝑛
𝑛
𝑒−𝑖𝑛(𝜏−𝜎) +

�̄�𝜇𝑛
𝑛
𝑒−𝑖𝑛(𝜏+𝜎)

]︂
, (3.1)

and define the physical centre of mass momentum

𝑝𝜇 =
1√
2𝛼′

(𝛼𝜇0 + �̄�𝜇0 ). (3.2)

If we now compactify one or more dimension on circles, we have a periodicity
condition for some of the spacetime coordinates:

𝑋𝑎 = 𝑋𝑎 + 2𝜋𝑅𝑎. (3.3)

This changes two things in relation to the non-compact case. First, we recall that
the momentum is the generator of translations, and thus that

𝑒𝑖𝑝𝑏𝑞
𝑏

𝑋𝑎𝑒−𝑖𝑝𝑏𝑞
𝑏

= 𝑋𝑎 + 𝑞𝑎, (3.4)

if we now set 𝑞𝑎 = 2𝜋𝑅𝑎, the exponentials must equal unity and we see that

𝑝𝑎 =
𝑛

𝑅𝑎
, 𝑛 ∈ Z, (3.5)

these quantized momentum modes are called Kaluza-Klein modes [29, p. 19].
Secondly, since we now demand that 𝑋𝑎(𝜏, 𝜎 + 2𝜋) = 𝑋𝑎(𝜏, 𝜎) + 2𝑤𝜋𝑅𝑎, we

see that the requirement on the 𝜎-prefactor is

2𝜋

√︂
𝛼′

2
(𝛼𝑎0 − �̄�𝑎0) = 2𝜋𝑤𝑅𝑎, 𝑤 ∈ Z, (3.6)
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where 𝑤 is the number of times the closed string is wound around the compact
direction.

We can now write the 𝛼0’s in terms of the quantized momentum and the
winding number

𝛼𝑎0 =

√︂
𝛼′

2

(︂
𝑛

𝑅𝑎

+
𝑤𝑅𝑎

𝛼′

)︂
, �̄�𝑎0 =

√︂
𝛼′

2

(︂
𝑛

𝑅𝑎

− 𝑤𝑅𝑎

𝛼′

)︂
. (3.7)

If we have only one compact dimension, this gives the new Virasoro operators

𝐿0 =
𝛼′

4
𝑝2 +

𝛼′

4

(︂
𝑛

𝑅
+
𝑤𝑅

𝛼′

)︂2

+
∞∑︁
𝑛=1

𝛼𝜇−𝑛𝛼−𝑛𝜇 (3.8)

�̄�0 =
𝛼′

4
𝑝2 +

𝛼′

4

(︂
𝑛

𝑅
− 𝑤𝑅

𝛼′

)︂2

+
∞∑︁
𝑛=1

�̄�𝜇−𝑛�̄�−𝑛𝜇, (3.9)

where the 𝑝2 only includes the non-compact dimensions. The mass operator then
becomes

𝑀2 =
4

𝛼′

⎡⎣ ∞∑︁
𝑛=1

(𝛼𝜇−𝑛𝛼−𝑛𝜇 + �̄�𝜇−𝑛�̄�−𝑛𝜇) +

(︃
𝑛
√
𝛼′

𝑅

)︃2

+

(︂
𝑤𝑅√
𝛼′

)︂2
⎤⎦ . (3.10)

In this mass operator, there are two new terms. The first of these, (𝑛
√
𝛼′/𝑅)2,

comes from higher Kaluza-Klein modes and simply corresponds to a higher mo-
mentum. The second is less intuitive, it comes from the winding of the string.
The reason this gives a mass contribution is that the string has a non-zero tension
𝑇 = 1

2𝜋𝛼′ , and so it takes energy, and thus mass, to stretch it.
We now see the appearance of T-duality, if we exchange the momentum mode

with the winding number and invert the radius of compactification

𝑤 ↔ 𝑛 and
𝑅√
𝛼′

↔
√
𝛼′

𝑅
=

�̂�√
𝛼′
, (3.11)

the spectrum is invariant. It can also be shown that also the partition function
and the correlators are invariant under T-duality [29, p. 22].

We will now show the transformations of the string coordinates implied by
the transformations of the oscillation modes.

Using (3.7), the action of T-duality on the zero modes is easily seen to be

𝛼𝑎0 ↔ 𝛼𝑎0, �̄�𝑎0 ↔ −�̄�𝑎0, (3.12)

however, since this changes the �̄�𝑚-operators for 𝑛 ̸= 0 (see (2.31)), we must also
insist on the more general transformation

𝛼𝑎𝑛 ↔ 𝛼𝑎𝑛, �̄�𝑎𝑛 ↔ −�̄�𝑎𝑛, 𝑛 ∈ Z, (3.13)
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it is easy to see that both the 𝐿𝑛’s and �̄�𝑛’s are invariant under this.
T-duality works only on the compact coordinates, we therefore consider

𝑋𝑎(𝜏, 𝜎) = 𝑋𝑎
𝐿 +𝑋𝑎

𝑅, (3.14)

where

𝑋𝑎
𝐿 = �̄�𝑎 +

√︂
𝛼′

2
�̄�𝑎0(𝜏 + 𝜎) + 𝑖

√︂
𝛼′

2

∑︁
𝑛∈Z∖{0}

�̄�𝑎𝑛
𝑛
𝑒−𝑖𝑛(𝜏+𝜎) (3.15)

𝑋𝑎
𝑅 = 𝑥𝑎 +

√︂
𝛼′

2
𝛼𝑎0(𝜏 − 𝜎) + 𝑖

√︂
𝛼′

2

∑︁
𝑛∈Z∖{0}

𝛼𝑎𝑛
𝑛
𝑒−𝑖𝑛(𝜏−𝜎). (3.16)

We calculate

𝜕𝜏𝑋
𝑎 =

√︂
𝛼′

2
(�̄�𝑎0 + 𝛼𝑎0) +

√︂
𝛼′

2

∑︁
𝑛∈Z∖{0}

(�̄�𝑎𝑛𝑒
−𝑖𝑛(𝜏+𝜎) + 𝛼𝑎𝑛𝑒

−𝑖𝑛(𝜏−𝜎)) (3.17)

𝜕𝜎𝑋
𝑎 =

√︂
𝛼′

2
(�̄�𝑎0 − 𝛼𝑎0) +

√︂
𝛼′

2

∑︁
𝑛∈Z∖{0}

(�̄�𝑎𝑛𝑒
−𝑖𝑛(𝜏+𝜎) − 𝛼𝑎𝑛𝑒

−𝑖𝑛(𝜏−𝜎)). (3.18)

It is easy to see that the T-duality transformations are equivalent with

𝜕𝜏𝑋
𝑎 ↔ 𝜕𝜎�̂�

𝑎, 𝜕𝜎𝑋
𝑎 ↔ 𝜕𝜏�̂�

𝑎, (3.19)

which in turn is equivalent with

�̂�𝑎 = 𝑋𝑎
𝐿 −𝑋𝑎

𝑅. (3.20)

This means that T-duality only affects right moving part of the string motion.
We could also have used this as the definition of T-duality. Doing so would have
been less intuitive, but a lot simpler to work with, particularly if we have several
compact dimensions.

3.1.2 Open strings

We saw above that T-duality worked by swapping the prefactor of the time-like
coordinate 𝜏 with that of the space-like coordinate 𝜎. However, Neumann strings
do not have the periodicity condition that allowed the existence of winding, so at
first glance it does not look like T-duality will be a symmetry of the open string.
Though the Dirichlet string has a separation parameter, it needs to be stuck to
some object, and we are still working in a free theory that only contains strings,
and it is therefore not yet relevant to our discussion.

We first consider Neumann strings living in a 𝑑-dimensional space. We now
compactify 𝑑 − 𝑝 − 1 of them on circles with radii 𝑅𝑎. This means that the
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continuous momentum variable will be replaced by Kaluza-Klein modes. When
we then take the limit

𝑅𝑎 → 0, 𝑎 ∈ [𝑝+ 1, 𝑝+ 2, . . . , 𝑑− 1], (3.21)

we see from (3.5) that the K-K modes become infinitely heavy. Since it is also
impossible for the string to oscillate in directions of zero radius, these directions
will decouple completely from the spectrum. The Neumann string is effectively
living on a 𝑝+ 1-dimensional subspace.

Second, we consider the closed string in the same limit. Again the K-K modes
become infinitely massive, but the winding modes become a continuum of states.
This means that using T-duality, we can go back to the case where momentum
is continuous and there is no winding, which is exactly the non-compact case.
This is a major discrepancy between the open and closed cases and it is very
unsatisfactory to have a theory that is so contradictory.

The solution to this problem is to demand that the T-dual of a Neumann
string in a compact dimension is a Dirichlet string. In this picture, the endpoints
of the strings can only move in the 𝑝 + 1 non-compact dimensions, but they
can oscillate in all 𝑑. It does not require much reflection to realize that this is
exactly the first case mentioned at the start of this chapter, strings living on a
𝑝-dimensional brane within the 𝑑-dimensional space. This lets the strings obey
Dirichlet boundary conditions and is the reason we call these objects D𝑝-branes.

It is actually very natural to define the T-dual of a Neumann string to be a
Dirichlet if we regard the T-dual of the string coordinate,

𝑋𝑚 = 𝑋𝑚
𝐿 +𝑋𝑚

𝑅 , �̂�𝑎 = 𝑋𝑎
𝐿 −𝑋𝑎

𝑅. (3.22)

Using the definitions (3.15) and (3.16) with �̄�𝑎𝑛 = 𝛼𝑎𝑛, this gives

𝑋𝑚 = 𝑥𝑚 + �̄�𝑎 +
√
2𝛼′𝛼𝑚0 𝜏 + 𝑖

√
2𝛼′

∑︁
𝑛∈Z∖{0}

𝛼𝑚𝑛
𝑛
𝑒−𝑖𝑛𝜏 cos(𝑛𝜎), 𝑚 ∈ [0, 𝑝] (3.23)

�̂�𝑎 = 𝑥𝑎 − �̄�𝑎 +
√
2𝛼′𝛼𝑎0𝜎 −

√
2𝛼′

∑︁
𝑛∈Z∖{0}

𝛼𝑎𝑛
𝑛
𝑒−𝑖𝑛𝜏 sin(𝑛𝜎), 𝑎 ∈ [𝑝+ 1, 𝑑− 1]

(3.24)

which are exactly the same as (2.25) and (2.26).

3.1.3 The superstring coordinates

In the beginning of this chapter, we said that we would only consider the bosonic
string. However, we will need to know how the fermionic coordinates behave
for later calculations. We therefore state them here. Supersymmetry tells us
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that fermionic coordinates must, in analogy with (3.20), transform as 𝜓± = ±𝜓±
under T-duality. We therefore get the following motion [30]

𝜓𝑚± (𝜏, 𝜎) =

√︂
𝛼′

2

∑︁
𝑘∈Z+𝑥

2

𝑏𝑚𝑘 𝑒
−𝑖(𝜏±𝜎), 𝑚 ∈ [0, 𝑝], (3.25)

𝜓𝑎±(𝜏, 𝜎) = ±
√︂
𝛼′

2

∑︁
𝑘∈Z+𝑥

2

𝑏𝑎𝑘𝑒
−𝑖(𝜏±𝜎), 𝑎 ∈ [𝑝+ 1, 𝑑− 1], (3.26)

where 𝑥 = 0 (𝑥 = 1) in the Ramond (Neveu-Schwarz) sector.



Chapter 4

Strings on parallel D𝑝-branes

In the previous chapter, we established that string theory naturally contains D𝑝-
branes; multi-dimensional objects on which open strings can be attached, that
give rise to Dirichlet boundary conditions. We will now move on to consider a very
simple brane configuration in detail. We will consider two parallel 𝑝-dimensional
D-branes, go through the quantization procedure, find the spectrum and see how
this setup is different from the free strings we considered in chapter 2.

4.1 String motion on D𝑝-branes

We consider the brane configuration mentioned above (see figure 4.1) and the
different kinds of boundary conditions this give rise to for open strings. Like when
we had small compact dimensions and realised that it was equivalent with a single
brane (see section 3.1.2), the string moves freely in some directions (Neumann
conditions) and is bound in others (Dirichlet conditions). What is different is
that it is now possible for the string to start on one brane and end on the other.
Since the strings are oriented, we cannot be sure that a string going from brane 1
to brane 2 will behave exactly like one going from brane 2 to brane 1. Therefore,
using equations (2.25) and (2.26), we consider the motion of a string going from
brane 𝑖 to brane 𝑗

𝑋𝑚(𝜏, 𝜎) = 𝑥𝑚 + 2𝛼′𝑝𝑚𝜏 + 𝑖
√
2𝛼′

∑︁
𝑛∈Z∖{0}

𝛼𝑚𝑛
𝑛
𝑒−𝑖𝑛𝜏 cos(𝑛𝜎), 𝑚 ∈ [0, 𝑝], (4.1)

𝑋𝑎(𝜏, 𝜎) = 𝑦𝑎𝑖 +
𝑦𝑎𝑗 − 𝑦𝑎𝑖
𝜋

𝜎 −
√
2𝛼′

∑︁
𝑛∈Z∖{0}

𝛼𝑎𝑛
𝑛
𝑒−𝑖𝑛𝜏 sin(𝑛𝜎), 𝑎 ∈ [𝑝+ 1, 𝑑− 1],

(4.2)

where 𝑦𝑎𝑖 is the coordinate of 𝑖’th brane. Note that we have inserted the distance
between the two branes as the separation.

The fermionic coordinates are unaffected by the presence of multiple branes
and are therefore simply given by equations (3.25) and (3.26).

42
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Figure 4.1: Two parallel D2-branes with examples of strings in all four sectors.
Figure taken from [19].

When we go through the quantization procedure in this case, we find that it
is almost identical to the one we did for the free particles in sections 2.1.5 and
2.2.5. The commutators are the same and we find the same ghosts, but we do get
slightly different Virasoro operators. This is due to the fact that we now have a
term in the string coordinate that is proportional to 𝜎.

As we saw in sections 2.1.6 and 2.2.6, it is convenient to use the leftover
gauge symmetry to go to the light-cone gauge. When dealing with strings on D𝑝-
branes, we can only do this if 𝑝 > 0, since we need at least one spatial Neumann
coordinate to form the light-cone coordinates. This does, of course, not mean
that branes with 𝑝 = 0 do not exist, they merely need separate treatment and
are of little interest to us, since they do not play a role in constructing a semi-
realistic model. When we impose light-cone quantization, we can again express
𝛼+
𝑛 and 𝛼−

𝑛 completely in terms of the transverse oscillations, but the different
form of the string coordinate of course also affects these.

4.2 Neveu-Schwarz sector spectrum on D𝑝-branes

We want to examine how the presence of parallel D𝑝-branes changes the super-
string spectrum and first consider the revised Neveu-Schwarz sector mass formula

𝑀2 =
1

𝛼′

⎛⎝ ∞∑︁
𝑛=1

[︀
𝛼𝑖−𝑛𝛼

𝑖
𝑛 + 𝛼𝑎−𝑛𝛼

𝑎
𝑛

]︀
+

∞∑︁
𝑟= 1

2

𝑟
[︀
𝑏𝑖−𝑟𝑏

𝑖
𝑟 + 𝑏𝑎−𝑟𝑏

𝑎
𝑟

]︀
− 1

2

⎞⎠
+

(︂
𝑦𝑎𝑖 − 𝑦𝑎𝑗
2𝜋𝛼′

)︂2

, 𝑖 ∈ [2, 𝑝]. (4.3)
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We immediately see that we have a new and very different term, namely the
square of the distance between the branes. Mathematically, this appears in place
of momentum in the directions subject to Dirichlet boundary conditions. Physi-
cally, it comes from the energy required to stretch a string with non-zero tension,
just like the winding described in section 3.1.1.

Since strings with both endpoints on the same brane behave almost entirely
like free strings restricted to move in fewer dimensions, we will not go into detail
with them here, but instead only consider strings stretching between the two
branes.

It is immediately seen that the ground state mass is no longer given by the nor-
mal ordering constant alone. Indeed the state need not necessarily be a tachyon
if the separation of the branes is |𝑦𝑎𝑖 − 𝑦𝑎𝑗 | ≥

√
2𝛼′𝜋. However, while this is an

interesting fact, we know that the GSO-projection will remove the ground state
from the spectrum, and we are therefore much more interested in what happens
to the first excited state.

The first excited state is obviously massive since the separation gives a positive
contribution. It also turns out that there are two distinct groups of states,

𝑏𝑖−1/2|𝑝; 1, 2⟩𝑁𝑆, 𝑖 ∈ [2, 𝑝], 𝑀2 =

(︂
𝑦𝑎2 − 𝑦𝑎1
2𝜋𝛼′

)︂2

(4.4)

𝑏𝑎−1/2|𝑝; 1, 2⟩𝑁𝑆, 𝑎 ∈ [𝑝+ 1, 𝑑− 1], 𝑀2 =

(︂
𝑦𝑎2 − 𝑦𝑎1
2𝜋𝛼′

)︂2

, (4.5)

where |𝑝; 𝑖, 𝑗⟩ is the ground state of a string with momentum 𝑝 stretched between
branes 𝑖 and 𝑗. At a glance, these kinds of states seem identical, but there is
the very important difference that we are no longer working in the whole 𝑑-
dimensional spacetime. By introducing D𝑝-branes we have restricted ourselves
to working in their 𝑝+ 1-dimensional spacetime. This means that 𝑖 is a Lorentz-
index, while 𝑎 is merely a counting label. Therefore, the states 𝑏𝑎−1/2|𝑝; 1, 2⟩𝑁𝑆
are massive scalars and it would seem obvious that 𝑏𝑖−1/2|𝑝; 1, 2⟩𝑁𝑆 is a massive
vector. However, a massive Lorentz-vector in 𝑝 + 1 dimensions has 𝑝 indices,
while 𝑏𝑖−1/2|𝑝; 1, 2⟩𝑁𝑆 only has 𝑝 − 1. To get a Lorentz-vector, we must include
one of the scalar states as well. To answer the question of which scalar field to
use, we consider the system described (see figure 4.1) and look for any preferred
directions. It is clear that there is only one direction that stands out, namely the
direction given by the separation vector (𝑦𝑎2 − 𝑦𝑎1), and the scalar field we add to
𝑏𝑖−1/2|𝑝; 1, 2⟩𝑁𝑆 in order to create a massless vector is therefore [19, p. 286]∑︁

𝑎

(𝑦𝑎2 − 𝑦𝑎1)𝑏
𝑎
−1/2|𝑝; 1, 2⟩𝑁𝑆. (4.6)

Note that since the two parallel branes are the only objects in an otherwise
rotationally symmetric configuration, we can always place our coordinate system
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in such a way that the scalar field that takes the role of the last component in
the Lorentz vector is

𝑏9−1/2|𝑝; 1, 2⟩𝑁𝑆. (4.7)

As usual, higher excited states are so far removed from the (almost-)massless
one that we will not consider them.

4.3 Ramond sector spectrum on D𝑝-branes

We can of course also find the revised mass formula in the Ramond sector

𝑀2 =
1

𝛼′

(︃
∞∑︁
𝑛=1

𝛼𝑖−𝑛𝛼
𝑖
𝑛 + 𝛼𝑎−𝑛𝛼

𝑎
𝑛 + 𝑛𝑏𝑖−𝑛𝑏

𝑖
𝑛 + 𝑛𝑏𝑎−𝑛𝑏

𝑎
𝑛

)︃
+

(︂
𝑦𝑎𝑖 − 𝑦𝑎𝑗
2𝜋𝛼′

)︂2

, 𝑖 ∈ [2, 𝑝].

(4.8)

We immediately see that the Ramond ground state has gained mass,

|𝑝; 1, 2⟩𝑅, 𝑀2 =

(︂
𝑦𝑎2 − 𝑦𝑎1
2𝜋𝛼′

)︂2

, (4.9)

but is otherwise unchanged. However, since massive fermions cannot be chiral,
we have lost chirality. To have a semi-realistic model, we need 4 dimensional
chirality, therefore this simple brane configuration is not clever enough to give
us what we need. We will see in chapter 5 that it actually is possible to have a
brane configuration that allows us to have 4 dimensional chirality.

Since it still holds that there is an equal number of physical degrees of freedom
at each mass level and that all the mass levels match, supersymmetry remains
unbroken.

4.4 Reversing the direction

If we, instead of considering a string stretching from brane 1 to brane 2, consider
one directed from 2 to 1, we may ask; what changes?

Obviously, the (almost-)massless states are now

𝑏𝑖−1/2|𝑝; 2, 1⟩𝑁𝑆, 𝑖 ∈ [2, 𝑑− 1], 𝑀2 =

(︂
𝑦𝑎1 − 𝑦𝑎2
2𝜋𝛼′

)︂2

(4.10)

𝑏𝑎−1/2|𝑝; 2, 1⟩𝑁𝑆, 𝑎 ∈ [𝑝+ 1, 𝑑− 1], 𝑀2 =

(︂
𝑦𝑎1 − 𝑦𝑎2
2𝜋𝛼′

)︂2

, (4.11)

in the Neveu-Schwarz sector and

|𝑝; 2, 1⟩𝑅, 𝑀2 =

(︂
𝑦𝑎1 − 𝑦𝑎2
2𝜋𝛼′

)︂2

, (4.12)
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in the Ramond-sector. We clearly see that the masses remain the same.
In the Neveu-Schwarz sector we can again form a massive 𝑝 + 1-dimensional

Lorentz-vector by combining the longitudinally excited state with a superposition
of the transversely excited modes given by∑︁

𝑎

(𝑦𝑎1 − 𝑦𝑎2)𝑏
𝑎
−1/2|𝑝; 2, 1⟩, (4.13)

and in the Ramond sector, the ground state remains a massive 𝑑-dimensional
Majorana spinor.

We thus see that all known properties of the strings are the same no matter
if the string goes from brane 1 to brane 2 or vice-versa. Therefore it is clear that
the physics of the two strings is exactly the same.

4.5 Chan-Paton indices

We have in the above simply labelled the branes 1 and 2, and used these desig-
nations when we wrote the different states. However, in themselves, these indices
have nothing to do with the branes; one could imagine that the string endpoints
merely had some integer label 𝑖 without reference to anything else. This idea was
examined by Chan and Paton [10] long before anyone had thought of branes in
string theory.

When open strings live on branes, it is obvious that interactions can only
happen when the end points are on the same brane. In the Chan-Paton picture
the situation is the same; interactions can only happen between string endpoints
with the same CP index.

If we consider the case of 𝑁 different branes with zero separation, we have
𝑁2 copies of each string state, described by oscillation modes, momentum and
Chan-Paton indices. The ground state is

|𝑝; 𝑖, 𝑗⟩, (4.14)

and after introducing the generators of the 𝑈(𝑁) Lie algebra, 𝜆𝑎𝑖𝑗,

Tr[𝜆𝑎𝜆𝑏] = 𝛿𝑎𝑏, (4.15)

we can define an alternate basis for the states

|𝑝; 𝑎⟩ =
∑︁
𝑖𝑗

𝜆𝑎𝑖𝑗|𝑝; 𝑖, 𝑗⟩. (4.16)

Since only strings with end-points on the same brane (with the same CP
index) can interact, the string amplitudes will be proportional to the trace of
products of 𝜆-matrices [15, p. 35]. This ensures that they are invariant under
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global 𝑈(𝑁) transformations. We have thus found a way of endowing strings
with unitary gauge symmetries, exactly the kind of symmetry we need in order
to reproduce the standard model!

However, this only holds true for zero separation, if we separate the branes
into a stack of 𝐾 branes and one of 𝐿, the symmetry group is broken into 𝑈(𝐾)×
𝑈(𝐿). This works to our advantage, since we can consider a brane configuration
consisting of one stack of 3 and one of 2 which gives us 𝑈(3) × 𝑈(2) symmetry.
This together with the fact that 𝑈(𝑁) = 𝑆𝑈(𝑁)×𝑈(1) gives us something very
close to the standard model gauge group, namely

𝑆𝑈(3)× 𝑆𝑈(2)× 𝑈(1)× 𝑈(1). (4.17)

To get the general features of the standard model, we just need a way to get rid
of the surplus gauge group and introduce chirality and fermion generations. The
second of these issues, we will address in the next chapter by adding magnetiza-
tion to the branes.

Though 𝑈(𝑁) symmetry is the gauge group that appears in the simplest way,
it is also possible to use this method to instead endow strings with one of the two
other families of classical groups, namely 𝑂(𝑁) and 𝑆𝑝(𝑁). This happens when
we are dealing with unoriented strings. As we have seen above, giving Chan-
Paton indices to a string gives it a non-abelian gauge symmetry, and it makes
sense to associate one end with the fundamental representation of the group and
the other with the anti-fundamental representation [22, p. 196]. However, if the
string is unoriented, these become indistinguishable and therefore the symmetry
group must be one with a real fundamental representation. It can be shown that
if the massless vectors correspond to symmetric states the symmetry group is
𝑆𝑝(𝑁) and if they are anti-symmetric, it is 𝑂(𝑁).



Chapter 5

Superstrings on magnetized
D9-branes

We now wish to consider a case related to the one before, namely that of super-
strings attached to two space-filling D9-branes on a space 𝑀4 ×ℳ6 where 𝑀4 is
our usual 4-dimensional flat spacetime and ℳ6 is some 6-dimensional manifold
with small, compact dimensions. We will furthermore let each of the branes carry
some constant magnetic field given in terms of the field-strength, or Faraday, ten-
sor 𝐹

(𝑒)
𝑚𝑛 on the manifold and in these dimensions also consider the effect of the

background Kalb-Ramond field 𝐵𝑚𝑛. In this configuration, the magnetization
will take on a role similar to that of the distance in the previous chapter. Fur-
thermore, the fact that 6 of the dimensions are compact means that the effective
low-energy theory will live in 4 dimensions.

Since the string will behave almost as if nothing had happened in the four flat
dimensions, we will only consider the 6 dimensions on the manifold. The action
on ℳ6 has the form

𝑆 = 𝑆𝑋 + 𝑆𝜓 = 𝑆𝑋𝑏𝑢𝑙𝑘 + 𝑆𝑋𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 + 𝑆𝜓𝑏𝑢𝑙𝑘 + 𝑆𝜓𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦, (5.1)

and we can once more treat the bosonic and fermionic coordinates independently.

5.1 The bosonic coordinates

We now consider the explicit expression for the bosonic part,

𝑆𝑋 = − 1

4𝜋𝛼′

∫︁
d𝜏

∫︁ 𝜋

0

d𝜎[𝐺𝑚𝑛𝜕𝛼𝑋
𝑚𝜕𝛽𝑋

𝑛𝜂𝛼𝛽 −𝐵𝑚𝑛𝜕𝛼𝑋
𝑚𝜕𝛽𝑋

𝑛𝜀𝛼𝛽]

+
𝑞1
2

∫︁
d𝜏𝐹 (1)

𝑚𝑛𝑋
𝑛𝜕𝜏𝑋𝑚|𝜎=0 −

𝑞2
2

∫︁
d𝜏𝐹 (2)

𝑚𝑛𝑋
𝑛𝜕𝜏𝑋

𝑚|𝜎=𝜋, (5.2)

where we have gone to the gauge 𝐴𝑚 = −1
2
𝐹𝑚𝑛𝑋

𝑛.

48
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5.1.1 Equations of motion

We find the equations of motion and the boundary conditions by performing a
variation with respect to the spacetime coordinates. This is a rather tiresome,
but very straightforward, calculation and the result is:

𝛿𝑆𝑋 =
1

2𝜋𝛼′

∫︁
d𝜏

∫︁ 𝜋

0

d𝜎𝐺𝑚𝑛𝜕𝛼𝜕
𝛼𝑋𝑚𝛿𝑋𝑛

− 1

2𝜋𝛼′

∫︁
d𝜏 [𝐺𝑚𝑛𝜕𝜎𝑋

𝑚𝛿𝑋𝑛 −𝐵𝑚𝑛𝜕𝜏𝑋
𝑚𝛿𝑋𝑛]𝜎=𝜋

+
1

2𝜋𝛼′

∫︁
d𝜏 [𝐺𝑚𝑛𝜕𝜎𝑋

𝑚𝛿𝑋𝑛 −𝐵𝑚𝑛𝜕𝜏𝑋
𝑚𝛿𝑋𝑛]𝜎=0

− 𝑞1

∫︁
d𝜏𝐹 (1)

𝑚𝑛𝜕𝜏𝑋
𝑛𝛿𝑋𝑚|𝜎=0 + 𝑞2

∫︁
d𝜏𝐹 (2)

𝑚𝑛𝜕𝜏𝑋
𝑛𝛿𝑋𝑚|𝜎=𝜋. (5.3)

We now have everything we need; the equations of motion,

𝜕𝛼𝜕
𝛼𝑋𝑚 = 0 (5.4)

and the boundary conditions

[𝐺𝑚𝑛𝜕𝜎 + (𝐵𝑚𝑛 − 2𝜋𝛼′𝑞1𝐹
(1)
𝑚𝑛)𝜕𝜏 ]𝑋

𝑛|𝜎=0 = 0 (5.5)

[𝐺𝑚𝑛𝜕𝜎 + (𝐵𝑚𝑛 − 2𝜋𝛼′𝑞2𝐹
(2)
𝑚𝑛)𝜕𝜏 ]𝑋

𝑛|𝜎=𝜋 = 0. (5.6)

Before solving the equation of motion while taking the boundary conditions
into account, we wish to write them in a simpler fashion. We therefore introduce*

ℬ𝑒 𝑚𝑛 = 𝐵𝑚𝑛 − 2𝜋𝛼′𝑞𝑒𝐹
(𝑒)
𝑚𝑛, , 𝑒 = 1, 2, (5.7)

and use it to rewrite the boundary condition slightly

[𝜕𝜎𝑋
𝑚 + ℬ𝑚1 𝑛𝜕𝜏𝑋

𝑛]𝜎=0 = 0, (5.8)

[𝜕𝜎𝑋
𝑚 + ℬ𝑚2 𝑛𝜕𝜏𝑋

𝑛]𝜎=𝜋 = 0. (5.9)

To solve the equation of motion (5.4), we split up the string coordinate in a
left-moving and a right-moving part,

𝑋𝑚(𝜏, 𝜎) = 𝑋𝑚
𝐿 (𝜏 + 𝜎) +𝑋𝑚

𝑅 (𝜏 − 𝜎). (5.10)

We insert this expression in the 𝜎 = 0 boundary condition (5.8) and after some
simple manipulations find

𝜕𝜏𝑋
𝑝
𝑅(𝜏) = [(1− ℬ1)

−1]𝑝𝑚[1 + ℬ1]
𝑚
𝑛𝜕𝜏𝑋

𝑛
𝐿(𝜏). (5.11)

*It is interesting to note that the Faraday tensor 𝐹𝑚𝑛 is not a gauge invariant quantity in
string theory, but that this quantity ℬ𝑚𝑛 is [19, p. 319].
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To get a simpler expression now and for several calculations later, it is convenient
to define

𝑅𝑚
1 𝑛 = [(1− ℬ1)

−1]𝑚𝑝[1 + ℬ1]
𝑝
𝑛. (5.12)

We can now integrate (5.11) to find

𝑋𝑚
𝑅 (𝜏) = 𝑅𝑚

1 𝑛𝑋
𝑛
𝐿(𝜏) + 𝑥𝑚, (5.13)

where 𝑥𝑚 is some constant.
Having satisfied the first boundary condition, we move on to the second one

where we also use the newly found relation (5.13). Again we have to make some
simple manipulations, but it is quite straightforward to find

𝜕𝜏𝑋
𝑞
𝐿(𝜏 + 𝜋) = [(1 + ℬ2)

−1]𝑞𝑚[1− ℬ2]
𝑚
𝑛𝑅

𝑛
1 𝑝𝜕𝜏𝑋

𝑝
𝐿(𝜏 − 𝜋). (5.14)

It is now natural to introduce

𝑅𝑚
2 𝑛 = [(1− ℬ2)

−1]𝑚𝑝[1 + ℬ2]
𝑝
𝑛, (5.15)

and

𝑅𝑚
𝑛 = 𝑅−1

2
𝑚
𝑝𝑅

𝑝
1𝑛, (5.16)

so that we may write the boundary condition

𝜕𝜏𝑋
𝑞
𝐿(𝜏 + 𝜋) = 𝑅𝑞

𝑝𝜕𝜏𝑋
𝑝
𝐿(𝜏 − 𝜋). (5.17)

The motion of the string in the magnetized dimensions is thus

𝑋𝑚(𝜏, 𝜎) = 𝑥𝑚 +𝑋𝑚
𝐿 (𝜏 + 𝜎) +𝑅𝑚

1 𝑛𝑋
𝑛
𝐿(𝜏 − 𝜎), (5.18)

with the further demand that 𝑋𝑚
𝐿 (𝜏) must satisfy (5.17).

5.1.2 The 𝑅𝑚
𝑛 matrix

Let us now consider the matrix 𝑅𝑚
𝑛. It is quite easy to show that both 𝑅𝑚

1 𝑛

and 𝑅𝑚
2 𝑛 are 6 dimensional, real, orthogonal matrices, and the product of two

orthogonal matrices is a new orthogonal matrix. This has some very important
implications for the eigenvalues and eigenvectors of 𝑅𝑚

𝑛, specifically

𝑅𝑚
𝑛𝐶

𝑛
𝑎 = 𝑐𝑎𝐶

𝑚
𝑎 (5.19)

(𝐶†)𝑎𝑚𝐶
𝑚
𝑏 = 𝛿𝑎𝑏 (5.20)

(𝐶†)𝑎𝑚(𝑅
†)𝑛

𝑚𝑅𝑛
𝑝𝐶

𝑝
𝑎 = |𝑐𝑎|2 = 1. (5.21)
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The first of these relations is just the eigenvalue equation, the second holds be-
cause the eigenvectors of an orthogonal matrix are orthonormal and the last be-
cause the hermitian conjugate of a real, orthogonal matrix is its inverse. The last
of the above equations implies that the eigenvalues of 𝑅𝑚

𝑛 are merely complex
phases. Inspired by this, we consider

(𝑅*)𝑚𝑛(𝐶
*
𝑎)
𝑛 = 𝑐*𝑎(𝐶

*
𝑎)
𝑚 (5.22)

𝑅𝑚
𝑛(𝐶

*
𝑎)
𝑛 = 𝑐*𝑎(𝐶

*
𝑎)
𝑚 (5.23)

Therefore we have

𝑅𝑚
𝑛𝐶

𝑛
𝑎 = 𝑒2𝜋𝑖𝜈𝑎𝐶𝑚

𝑎 ; 𝑅𝑚
𝑛(𝐶

*
𝑎)
𝑛 = 𝑒−2𝜋𝑖𝜈𝑎(𝐶*

𝑎)
𝑚; 𝑎 = 1 . . . 3, (5.24)

where we restrict ourselves to 0 ≤ 𝜈𝑎 ≤ 1
2
.

In order to get the eigenvalue equation in a convenient matrix-form, we define
the matrix (𝐸−1)𝑚𝐴 by joining together 𝐶𝑚

𝑎 and (𝐶*)𝑚𝑎 ,

(ℰ−1)𝑚𝐴 = (𝐶𝑚
𝑎 (𝐶*

𝑎)
𝑚) , 𝐴 = 1, . . . , 6, (5.25)

The uninverted version is somewhat more complicated than this because it de-
pends on the metric, but in flat space it is

ℰ𝐴𝑚 =

(︂
(𝐶*)𝑎𝑚
𝐶𝑎
𝑚

)︂
, 𝐴 = 1, . . . , 6. (5.26)

We can use this to write the eigenvalues in a diagonal matrix

ℰ𝐵𝑚𝑅𝑚
𝑛(ℰ−1)𝑛𝐴 = ℛ𝐵

𝐴 =

(︂
𝑒2𝜋𝑖𝜈𝑎𝛿𝑎𝑏 0

0 𝑒−2𝜋𝑖𝜈𝑎𝛿𝑎𝑏

)︂
. (5.27)

5.1.3 Solving the equations of motion

We can use the results from the previous subsection to solve the equations of
motion. To do this, we first introduce the linear combination

𝒳𝐴 = ℰ𝐴𝑚𝑋𝑚
𝐿 =

(︂
𝒳−
𝑎

𝒳+
𝑎

)︂
=

(︂
𝐶*
𝑎𝑚𝑋

𝑚
𝐿

𝐶𝑎𝑚𝑋
𝑚
𝐿

)︂
(5.28)

𝑋𝑚
𝐿 = (ℰ−1)𝑚𝐴𝒳𝐴 = 𝐶𝑚

𝑎 𝒳−
𝑎 + 𝐶*𝑚

𝑎 𝒳+
𝑎 , (5.29)

and then write the boundary condition (5.17) in the basis of 𝒳𝐴

𝜕𝜏 (ℰ−1)𝑚𝐴𝒳𝐴(𝜏 + 𝜋) = 𝑅𝑚
𝑛𝜕𝜏 (ℰ−1)𝑛𝐴𝒳𝐴(𝜏 − 𝜋) (5.30)

𝜕𝜏𝒳𝐴(𝜏 + 𝜋) = ℰ𝐴𝑚𝑅𝑚
𝑛(ℰ−1)𝑛𝐵𝜕𝜏𝒳𝐵(𝜏 − 𝜋) (5.31)

= ℛ𝐴𝐵𝜕𝜏𝒳𝐵(𝜏 − 𝜋). (5.32)
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This simplifies considerably when we split it up in a plus and a minus part,

𝜕𝜏𝒳±
𝑎 (𝜏 + 𝜋) = 𝑒∓2𝜋𝑖𝜈𝑎𝜕𝜏𝒳±

𝑎 (𝜏 − 𝜋). (5.33)

When using an oscillator expansion of 𝑋𝜇 similar to (2.22) to solve the equations
of motion and recalling the definition of 𝒳± (5.28), the boundary condition is
satisfied by the following expression,

𝒳±
𝑎 (𝜏 + 𝜎) =

𝑖
√
2𝛼′

2

∑︁
𝑛

𝛼𝑎𝑛±𝜈𝑎
𝑛± 𝜈𝑎

𝑒−𝑖(𝜏+𝜎)(𝑛±𝜈𝑎). (5.34)

Inserting this in the definition of 𝑋𝑚
𝐿 , we get

𝑋𝑚
𝐿 (𝜏 + 𝜎) =

𝑖
√
2𝛼′

2

∑︁
𝑛,𝑎

[︂
𝐶𝑚
𝑎

𝛼𝑎𝑛−𝜈𝑎
𝑛− 𝜈𝑎

𝑒−𝑖(𝜏+𝜎)(𝑛−𝜈𝑎) + (𝐶*
𝑎)
𝑚 𝛼𝑎𝑛+𝜈𝑎
𝑛+ 𝜈𝑎

𝑒−𝑖(𝜏+𝜎)(𝑛+𝜈𝑎)
]︂
.

(5.35)

Using this and 𝑧 = 𝑒−𝑖(𝜏+𝜎), 𝑧 = 𝑒𝑖(𝜏+𝜎), we can write the motion as

𝑋𝑚(𝜏, 𝜎) = 𝑥𝑚 +𝑋𝑚(𝑧) + (𝑅1)
𝑚
𝑛𝑋

𝑛(𝑧), (5.36)

where

𝑋𝑚(𝑧) =
𝑖
√
2𝛼′

2

∑︁
𝑛,𝑎

[︂
𝐶𝑚
𝑎

𝛼𝑎𝑛−𝜈𝑎
𝑛− 𝜈𝑎

𝑧−(𝑛−𝜈𝑎) + (𝐶*
𝑎)
𝑚 𝛼𝑎𝑛+𝜈𝑎
𝑛+ 𝜈𝑎

𝑧−(𝑛+𝜈𝑎)

]︂
. (5.37)

Once again, we find it convenient to rewrite

𝑋𝑚(𝑧) = 𝐶𝑚
𝑎 𝒵𝑎 + (𝐶*

𝑎)
𝑚𝒵𝑎

, (5.38)

we get

𝒵𝑎 =
𝑖
√
2𝛼′

2

∑︁
𝑛∈Z

𝑧−(𝑛−𝜈𝑎) 𝛼
𝑎
𝑛−𝜈𝑎

𝑛− 𝜈𝑎
(5.39)

=
𝑖
√
2𝛼′

2

[︃
∞∑︁
𝑛=1

𝑧−(𝑛−𝜈𝑎) 𝛼
𝑎
𝑛−𝜈𝑎

𝑛− 𝜈𝑎
−

∞∑︁
𝑛=0

𝑧(𝑛+𝜈𝑎)
𝛼𝑎−𝑛−𝜈𝑎
𝑛+ 𝜈𝑎

]︃
, (5.40)

and

𝒵𝑎
=
𝑖
√
2𝛼′

2

∑︁
𝑛∈Z

𝑧−(𝑛+𝜈𝑎)
𝛼𝑎𝑛+𝜈𝑎
𝑛+ 𝜈𝑎

(5.41)

=
𝑖
√
2𝛼′

2

[︃
∞∑︁
𝑛=0

𝑧−(𝑛+𝜈𝑎)
𝛼𝑎𝑛+𝜈𝑎
𝑛+ 𝜈𝑎

−
∞∑︁
𝑛=1

𝑧(𝑛−𝜈𝑎)
𝛼𝑎−𝑛+𝜈𝑎
𝑛− 𝜈𝑎

]︃
, (5.42)
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To simplify for later comparison with a point particle in a magnetic field (see
section 6.3), we introduce new harmonic oscillators

𝐴𝑎𝑛+𝜈𝑎 =
𝛼𝑎𝑛+𝜈𝑎√
𝑛+ 𝜈𝑎

; 𝐴†𝑎
𝑛+𝜈𝑎 =

𝛼𝑎−𝑛−𝜈𝑎√
𝑛+ 𝜈𝑎

; 𝑛 = 0, 1, . . . , (5.43)

𝐴𝑎𝑛−𝜈𝑎 =
𝛼𝑎𝑛−𝜈𝑎√
𝑛− 𝜈𝑎

; 𝐴†𝑎
𝑛−𝜈𝑎 =

𝛼𝑎−𝑛+𝜈𝑎√
𝑛− 𝜈𝑎

; 𝑛 = 1, 2, . . . , (5.44)

and for completeness also the oscillators in the non-compact directions

𝐴𝑖𝑛 =
𝛼𝑖𝑛√
𝑛

; 𝐴†𝑖
𝑛 =

𝛼𝑖−𝑛√
𝑛
. (5.45)

These will satisfy the usual harmonic oscillator commutators

[𝐴𝑎𝑛+𝜈𝑎 , 𝐴
†𝑏
𝑚+𝜈𝑏

] = 𝛿𝑚𝑛𝛿𝑎𝑏; [𝐴𝑎𝑛−𝜈𝑎 , 𝐴
†𝑏
𝑚−𝜈𝑏 ] = 𝛿𝑚𝑛𝛿𝑎𝑏. (5.46)

We are now ready to write out the revised mass formula:

𝑀2 =
1

𝛼′

[︃
𝑁𝑋

4 +𝑁𝑋
𝑑 − 𝑑− 2

24
− 1

2

3∑︁
𝑎=1

𝜈𝑎(𝜈𝑎 − 1)

]︃
, (5.47)

where we have used a slightly more general form of 𝜁-function regularization
(based on the Hurwitz 𝜁-function) to obtain the normal ordering constant than
we did in (2.63),

∞∑︁
𝑛=0

(𝑛+ 𝛼) ≡ 1

2

(︂
−1

6
− 𝛼2 + 𝛼

)︂
. (5.48)

The reason we have to do this is that the magnetization introduces a constant
shift ±𝜈𝑎 in the oscillators (see equations (5.43) and (5.44)) which in turn shifts
the normal ordering constant by 1

2

∑︀3
𝑎=1 𝜈𝑎(𝜈𝑎 − 1).

We have also defined

𝑁𝑋
4 =

∞∑︁
𝑛=1

𝑛𝐴†𝑖
𝑛𝐴

𝑖
𝑛 (5.49)

𝑁𝑋
𝑑 =

3∑︁
𝑎=1

[︃
∞∑︁
𝑛=0

(𝑛+ 𝜈𝑎)𝐴
†𝑎
𝑛+𝜈𝑎𝐴

𝑎
𝑛+𝜈𝑎 +

∞∑︁
𝑛=1

(𝑛− 𝜈𝑎)𝐴
†𝑎
𝑛−𝜈𝑎𝐴

𝑎
𝑛−𝜈𝑎

]︃
. (5.50)

5.2 The fermionic coordinates

Having solved the motion and found the mass contribution of the bosonic coordi-
nates, we will now move on to the fermionic one. From supersymmetry, we would
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expect the action to take the form

𝑆𝜓0 = − 1

4𝜋𝛼′

∫︁
d𝜏

∫︁ 𝜋

0

d𝜎[𝑖𝐺𝑚𝑛𝜓
𝑚𝜌𝛼𝜕𝛽𝜓

𝑛𝜂𝛼𝛽 + 𝑖𝜀𝛼𝛽𝐵𝑚𝑛𝜓
𝑚𝜌𝛼𝜕𝛽𝜓

𝑛]

+
𝑞1
4

∫︁
d𝜏𝐹 (1)

𝑚𝑛𝜓
𝑚𝜌0𝜓

𝑛|𝜎=0 −
𝑞2
4

∫︁
d𝜏𝐹 (2)

𝑚𝑛𝜓
𝑚𝜌0𝜓

𝑛|𝜎=𝜋, (5.51)

where 𝜌𝛼 are 2-dimensional Dirac-matrices obeying {𝜌𝛼, 𝜌𝛽} = 2𝜂𝛼𝛽, and 𝜓𝑛 is
a Grassman field with 𝜓𝑚 = 𝜓𝑚𝜌0. However, this turns out to give boundary
conditions that are inconsistent with the ones from the bosonic part of the theory
(see equation (5.8)) [31]. We must therefore add to the action a term

𝑆𝜓1 = − 1

4𝜋𝛼′

∫︁
d𝜏

∫︁ 𝜋

0

d𝜎[𝑖𝜂𝛼𝛽𝐵𝑚𝑛𝜓
𝑚𝜌𝛼𝜕𝛽𝜓

𝑛 − 𝑖𝜀𝛼𝛽𝐵𝑚𝑛𝜓
𝑚𝜌𝛼𝜕𝛽𝜓

𝑛], (5.52)

(5.53)

resulting in a final action [31]

𝑆𝜓 = − 1

4𝜋𝛼′

∫︁
d𝜏

∫︁ 𝜋

0

d𝜎[𝑖(𝐺𝑚𝑛 +𝐵𝑚𝑛)𝜓
𝑚𝜌𝛼𝜕𝛽𝜓

𝑛𝜂𝛼𝛽]

+
𝑞1
4

∫︁
d𝜏𝐹 (1)

𝑚𝑛𝜓
𝑚𝜌0𝜓

𝑛|𝜎=0 −
𝑞2
4

∫︁
d𝜏𝐹 (2)

𝑚𝑛𝜓
𝑚𝜌0𝜓

𝑛|𝜎=𝜋. (5.54)

5.2.1 Equation of motion

We again use the principle of least action to find the equations of motion and the
boundary conditions,

𝛿𝑆𝜓 = − 1

2𝜋𝛼′

∫︁
d𝜏

∫︁ 𝜋

0

d𝜎𝛿𝜓𝑚
[︁
𝐺𝑚𝑛𝜌𝛼𝜕𝛽𝜓

𝑛𝜂𝛼𝛽
]︁

+
1

4𝜋𝛼′

∫︁
d𝜏𝛿𝜓𝑚

[︁
(𝐺𝑚𝑛 +𝐵𝑚𝑛)𝜌𝜎𝜓

𝑛]𝜎=0,𝜋

𝑞1
2

∫︁
d𝜏𝛿𝜓𝑚𝐹 (1)

𝑚𝑛𝜌0𝜓
𝑛|𝜎=0 −

𝑞2
2

∫︁
d𝜏𝛿𝜓𝑚𝐹 (2)

𝑚𝑛𝜌0𝜓
𝑛|𝜎=𝜋. (5.55)

Setting the variation to zero gives us the Dirac equation just like it did in the
un-magnetized case,

𝜌𝛼𝜕𝛼𝜓
𝑛 = 0, (5.56)

but the boundary conditions are new:[︁
𝛿𝜓𝑚𝜌0(𝐺+ ℬ𝑒)𝑚𝑛𝜌1𝜓𝑛

]︁
𝜎=0,𝜋

= 0, 𝑒 = 1, 2, (5.57)
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where ℬ𝑒 is defined in (5.7), just like when we considered the bosonic case.
We saw in section 2.2.2 that it is very convenient to write 𝜓𝑚 in the Weyl

representation. Doing this, we can write[︁
𝛿𝜓𝑚− (𝐺+ ℬ𝑒)𝑚𝑛𝜓𝑛− − 𝛿𝜓𝑚+ (𝐺+ ℬ𝑒)𝑚𝑛𝜓𝑛+

]︁
𝜎=0,𝜋

= 0, (5.58)

with 𝑒 = 1 (𝑒 = 2) for 𝜎 = 0 (𝜎 = 𝜋).
To satisfy this boundary condition, we use the ansatz

𝛿𝜓𝑚− = ±𝑅𝑚
𝑒 𝑛𝛿𝜓

𝑛
+ = ±[(1− ℬ𝑒)−1]𝑚𝑠[1 + ℬ𝑒]𝑠𝑛𝛿𝜓𝑛+, 𝑒 = 1, 2 (5.59)

and find that this implies the revised boundary condition[︁
± (𝐺− ℬ𝑒)𝑚𝑛𝜓𝑛− − (𝐺+ ℬ𝑒)𝑚𝑛𝜓𝑛+

]︁
𝜎=0,𝜋

= 0. (5.60)

This equation is very easy to solve and we get

𝜓𝑚− |𝜎=0,𝜋 = ±[(1− ℬ𝑒)−1]𝑚𝑠[1 + ℬ𝑒]𝑠𝑛𝜓𝑛+|𝜎=0,𝜋 = ±𝑅𝑚
𝑒 𝑛𝜓

𝑛
+|𝜎=0,𝜋, 𝑒 = 1, 2.

(5.61)

Thus the ansatz is consistent and we will use this result in the following.
Since both the plus and minus version of the ansatz is consistent, we have to

take both into account. As we have aready pointed out (see section 2.2.2) the
only distinct sectors are when the signs are different at the end points. These
sectors are

𝜓𝑚− (𝜏) = 𝑅𝑚
1 𝑛𝜓

𝑛
+(𝜏) (5.62)

𝜓𝑚− (𝜏 − 𝜋) = ±𝑅𝑚
2 𝑛𝜓

𝑛
+(𝜏 + 𝜋), (5.63)

which we term Ramond (+) and Neveu-Schwarz (-) in accordance with section
2.2.2. Using these, it is a simple matter to get the periodicity condition for 𝜓𝑚+ ,

𝜓𝑚+ (𝜏 + 𝜋) = ±𝑅𝑚
𝑛𝜓

𝑛
+(𝜏 − 𝜋). (5.64)

As in the bosonic case, we can use (5.26) to introduce

Ψ𝐴
+ = ℰ𝐴𝑚𝜓𝑚+ , (5.65)

and write

Ψ𝐴
+(𝜏 + 𝜋) = ±ℛ𝐴

𝐵Ψ
𝐵
+(𝜏 − 𝜋). (5.66)

Because of the form of ℛ, we can split this up in a plus and a minus part like we
did in the bosonic case (see equation (5.33))

Ψ𝑎
+(𝜏 + 𝜋) = ±𝑒2𝜋𝑖𝜈𝑎Ψ𝑎

+(𝜏 − 𝜋), (5.67)

Ψ̃𝑎
+(𝜏 + 𝜋) = ±𝑒−2𝜋𝑖𝜈𝑎Ψ̃𝑎

+(𝜏 − 𝜋). (5.68)
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The solution to the equation of motion (5.56) under this boundary condition is

Ψ𝑎
+(𝜏 + 𝜎) =

√
2𝛼′

∑︁
𝑘∈Z+𝑥

𝐵𝑎
𝑛−𝜈𝑎𝑒

−𝑖(𝜏+𝜎)(𝑛−𝜈𝑎) (5.69)

Ψ̃𝑎
+(𝜏 + 𝜎) =

√
2𝛼′

∑︁
𝑘∈Z+𝑥

𝐵𝑎
𝑛+𝜈𝑎𝑒

−𝑖(𝜏+𝜎)(𝑛+𝜈𝑎), (5.70)

with 𝑥 = 0 (𝑥 = 1
2
) in the Ramond (Neveu-Schwarz) sector.

We can again introduce the coordinate 𝑧 = 𝑒𝑖(𝜏+𝜎)

Ψ𝑎
+(𝑧) =

√
2𝛼′

∑︁
𝑘∈Z+𝑥

𝐵𝑎
𝑛−𝜈𝑎𝑧

−(𝑛−𝜈𝑎) (5.71)

Ψ̃𝑎
+(𝑧) =

√
2𝛼′

∑︁
𝑘∈Z+𝑥

𝐵𝑎
𝑛+𝜈𝑎𝑧

−(𝑛+𝜈𝑎), (5.72)

and find the final expression for 𝜓𝑚+ and 𝜓𝑚−

𝜓𝑚+ =
√
2𝛼′

∑︁
𝑘∈Z+𝑥

𝐶𝑚
𝑎 𝐵

𝑎
𝑛−𝜈𝑎𝑧

−(𝑛−𝜈𝑎) +
∑︁
𝑘∈Z+𝑥

𝐶*
𝑎
𝑚𝐵𝑎

𝑛+𝜈𝑎𝑧
−(𝑛+𝜈𝑎), (5.73)

𝜓𝑚− = 𝑅𝑚
1 𝑛𝜓

𝑛
+. (5.74)

We now wish to calculate the revised mass formula for the superstring and
therefore need to find the contribution from the fermionic coordinates.

In the Neveu-Schwarz sector it is

𝑀2
𝑁𝑆 =

1

𝛼′

[︃
𝑁𝜓

4 +𝑁𝜓
𝑑 − 𝑑− 2

48
+

1

2

3∑︁
𝑎=1

𝜈2𝑎

]︃
, (5.75)

and in the Ramond sector

𝑀2
𝑅 =

1

𝛼′

[︃
𝑁𝜓

4 +𝑁𝜓
𝑑 +

𝑑− 2

24
+

1

2

3∑︁
𝑎=1

𝜈𝑎(𝜈𝑎 − 1)

]︃
. (5.76)

Here we introduced

𝑁𝜓
4 =

∑︁
𝑘=𝑥

𝑘𝐵†𝑖
𝑘 𝐵

𝑖
𝑘 (5.77)

𝑁𝜓
𝑑 =

3∑︁
𝑎=1

[︃
∞∑︁
𝑘=𝑥

(𝑘 + 𝜈𝑎)𝐵
†𝑎
𝑘+𝜈𝑎

𝐵𝑎
𝑘+𝜈𝑎 +

∞∑︁
𝑘=1−𝑥

(𝑘 − 𝜈𝑎)𝐵
†𝑎
𝑘−𝜈𝑎𝐵

𝑎
𝑘−𝜈𝑎

]︃
, (5.78)

and once again used 𝜁-function regularization (5.48).
Adding these to the bosonic mass formula (5.47), we get

𝑀2 =
1

𝛼′

[︃
𝑁𝑋

4 +𝑁𝜓
4 +𝑁𝑋

𝑑 +𝑁𝜓
𝑑 + 𝑥

(︃
3∑︁

𝑎=1

𝜈𝑎 −
(𝑑− 2)

8

)︃]︃
, (5.79)

with 𝑥 = 0 (𝑥 = 1
2
) in the Ramond (Neveu-Schwarz) sector.
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Figure 5.1: A torus such as this one is compact in two independent directions.
This makes it very suited for compactification.

5.3 Toroidal geometry

We now return to the 6 dimensional manifold on which these magnetized branes
are wrapped. In general this can take almost any form, but not all of them give
realistic models, and not all of them are calculable. One choice that is both
fairly simple to calculate and gives semi-realistic results is a factorizable six torus
ℳ6 = 𝑇 2×𝑇 2×𝑇 2. In this case, we only need to consider the two-torus (see figure
5.1) where the metric 𝐺𝑚𝑛 and the Kalb-Ramond field 𝐵𝑚𝑛 can be expressed as

𝐺𝑚𝑛 =
𝑇2
𝑈2

(︂
1 𝑈1

𝑈1 |𝑈 |2
)︂
; 𝐺𝑚𝑛 1

𝑇2𝑈2

(︂
|𝑈 |2 −𝑈1

−𝑈1 1

)︂
; 𝐵𝑚𝑛 =

(︂
0 −𝑇1
𝑇1 0

)︂
,

(5.80)

in terms of the complex- and Kähler structures

𝑈 = 𝑈1 + 𝑖𝑈2 =
𝐺12

𝐺11

+ 𝑖

√
𝐺

𝐺11

; 𝑇 = 𝑇1 + 𝑖𝑇2 = −𝐵12 + 𝑖
√
𝐺. (5.81)

The changes brought on by introducing magnetized branes and toroidal com-
pactification only affect the motion of the string through the matrix 𝑅𝑚

𝑛, and
through it the shift in the oscillator indices 𝜈𝑎. It is therefore obvious that we
need to calculate this matrix. Using the above expression for the metric and the
well-known form of ℬ𝑒 (see equation (5.7)) it is a simple matter to perform the
calculation. Note that in the following, we have suppressed the index 𝑒 since it
would clutter the expressions significantly.
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𝑅 = (𝐺− ℬ)−1(𝐺+ ℬ) (5.82)

=
1

𝑇 2
2 + ℬ2

12

(︂
𝑇 2
2 − ℬ2

12 + 2𝑈1𝑇2
𝑈2

ℬ12 2|𝑈 |2 𝑇2
𝑈2
ℬ12

−2 𝑇2
𝑈2
ℬ12 𝑇 2

2 − ℬ2
12 − 2𝑈1𝑇2

𝑈2
ℬ12

)︂
. (5.83)

To calculate the shift, we find the eigenvalues

0 = det(𝑅− 𝜆) (5.84)

= 𝜆2 − 2𝜆
𝑇 2
2 − ℬ2

12

𝑇 2
2 + ℬ2

12

+ 1 = 𝜆2 − 𝜆(𝜆1 + 𝜆2) + 𝜆1𝜆2. (5.85)

By identifying the terms with the product and sum of the eigenvalues respectively,
we can easily see that the two eigenvalues are the inverse of each other and that

𝜆1 + 𝜆−1
1 =

𝑇2 + 𝑖ℬ12

𝑇2 − 𝑖ℬ12

+
𝑇2 − 𝑖ℬ12

𝑇2 + 𝑖ℬ12

, (5.86)

thus

𝜆1 = 𝜆−1
2 =

𝑇2 − 𝑖ℬ12

𝑇2 + 𝑖ℬ12

. (5.87)

Since the eigenvalues are complex phases (see section 5.1.2), we relabel them
𝜆1 = 𝜆 and 𝜆2 = 𝜆*

To find the phase, we write

𝑒2𝜋𝑖𝜈 =
𝑇2 − 𝑖ℬ12

𝑇2 + 𝑖ℬ12

=
cos(𝜋𝜈) + 𝑖 sin(𝜋𝜈)

cos(𝜋𝜈)− 𝑖 sin(𝜋𝜈)
, (5.88)

we identify

𝑇2 = cos(𝜋𝜈), ℬ12 = − sin(𝜋𝜈), (5.89)

and upon restoring the index 𝑒, we can now easily find

𝜈𝑒 =
1

𝜋
arctan

(︂
−ℬ𝑒12

𝑇2

)︂
. (5.90)

To find the actual shift, we recall that the total 𝑅𝑚
𝑛 matrix can be put on a

diagonal form (see (5.27)). Since 𝑅𝑚
1 𝑛 and 𝑅𝑚

2 𝑛 have exactly the same form, they
can be diagonalized by the same matrices, and indeed the same matrices as 𝑅𝑚

𝑛.
This means that

ℰ𝐵𝑚𝑅𝑚
𝑛(ℰ−1)𝑛𝐴 = ℰ𝐵𝑚𝑅−1

2
𝑚
𝑛(ℰ−1)𝑛𝐶ℰ𝐶𝑜𝑅1

𝑜
𝑝(ℰ−1)𝑝𝐴 = ℛ−1

2
𝐵
𝐶ℛ1

𝐶
𝐴 = ℛ𝐵

𝐴.
(5.91)



5.3. TOROIDAL GEOMETRY 59

Writing out the matrices of the last equality(︂
𝑒−2𝜋𝑖𝜈2 0

0 𝑒2𝜋𝑖𝜈2

)︂(︂
𝑒2𝜋𝑖𝜈1 0
0 𝑒−2𝜋𝑖𝜈1

)︂
=

(︂
𝑒2𝜋𝑖𝜈 0
0 𝑒−2𝜋𝑖𝜈

)︂
, (5.92)

it is easy to see that

𝜈 = 𝜈1 − 𝜈2. (5.93)

Note that when we introduced the phase 𝜈, in equation (5.27), there were three
of them corresponding to three pairs of compact directions. Now we are dealing
with a two-dimensional subspace of the manifold and thus there is no need to
specify which directions 𝜈 belongs to. The indices on the 𝜈’s instead refer to the
branes they are attached to.

Let us, as an aside, consider the Faraday tensor in our toroidal manifold; it
is expressed in units of

√
𝛼′, a quantity that only has a natural interpretation in

string theory. For later comparison with a point particle, this is impractical. We
would much rather work with a dimensionless number, such as the first Chern
class, which can be calculated if we know the size of the torus. It is convenient
to measure the radius of the torus in the same units as the string, and they are

𝑅𝑚 = 𝑟𝑚
√
𝛼′, 𝑚 ∈ [1, 2], 𝑟𝑚 ∈ R+. (5.94)

The first Chern class is then

𝐼(𝑒) =
𝑞𝑒𝐹

(𝑒)
12

2𝜋

∫︁
d𝑥1 ∧ d𝑥2 = 2𝜋𝑞𝑒𝐹

(𝑒)
12 𝑟

1𝑟2𝛼′. (5.95)

We have now found the shift in the oscillation modes, if the branes live on a
factorizable torus. However, we still need to find the eigenvectors, if we want to
get an explicit expression for the string motion. These can be found using (5.83),
(5.87) and Gaussian elimination

𝜆 =
𝑇 2
2 − ℬ2

12 − 2𝑖𝑇2ℬ12

𝑇 2
2 + ℬ2

12

; (𝑅𝑚
𝑛 − 𝜆𝛿𝑚𝑛)𝐶

𝑛 = 0 (5.96)(︂
𝑈1 + 𝑖𝑈2 |𝑈 |2

0 0

)︂(︂
𝐶1

𝐶2

)︂
=

(︂
0
0

)︂
. (5.97)

The components 𝐶1 and 𝐶2 are now determined by the equations

𝐶1(𝑈1 + 𝑖𝑈2) + 𝐶2|𝑈 |2 = 0 (5.98)

𝐶1

𝐶2
= − |𝑈 |2

𝑈1 + 𝑖𝑈2

= −(𝑈1 − 𝑖𝑈2). (5.99)
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To solve these, we set

𝐶1 = 𝑈* and 𝐶2 = −1 (5.100)

𝐶𝑚 = 𝐴

(︂
𝑈*

−1

)︂
and 𝐶*𝑚 = 𝐴*

(︂
𝑈
−1

)︂
, (5.101)

where 𝐴 is a normalization constant.
To determine 𝐴, we impose that 𝐶𝑚 and 𝐶*𝑚 are orthonormal (see section

5.1.2) with respect to 𝐺𝑚𝑛, the metric on the torus,

𝛿𝑎𝑏 = 𝐶†𝑚
𝑎 𝐺𝑚𝑛𝐶

𝑛
𝑏 (5.102)

1 = |𝐴|2 𝑇2
𝑈2

(𝑈 − 1)

(︂
1 𝑈1

𝑈1 |𝑈 |2
)︂(︂

𝑈*

−1

)︂
(5.103)

= |𝐴|2 𝑇2
𝑈2

(2|𝑈 |2 − 𝑈1(𝑈 + 𝑈*)) = 2|𝐴|2𝑇2𝑈2 (5.104)

|𝐴|2 = 1

2𝑇2𝑈2

(5.105)

𝐴 =
𝑒𝑖𝜑√
2𝑇2𝑈2

. (5.106)

The phase 𝑒𝑖𝜑 is arbitrary, and it is convenient to fix it to 𝜑 = 𝜋
2
. The final

expressions for the eigenvectors are then

𝐶𝑚 =
𝑖√

2𝑇2𝑈2

(︂
𝑈*

−1

)︂
; 𝐶*𝑚 = − 𝑖√

2𝑇2𝑈2

(︂
𝑈
−1

)︂
. (5.107)

We can use this to get explicit expressions for (5.25) and (5.26)

ℰ−1𝑚
𝐴 = (𝐶𝑚

𝑎 𝐶*𝑚
𝑎 ) =

𝑖√
2𝑇2𝑈2

(︂
𝑈* −𝑈
−1 1

)︂
, (5.108)

ℰ𝐴𝑚 =

√︂
𝑇2
2𝑈2

(︂
1 𝑈
1 𝑈*

)︂
. (5.109)

5.4 The Neveu-Schwarz sector

As is our habit, we start by considering the Neveu-Schwarz sector. The ground
state is projected out by the GSO-projection, and we therefore only consider the
first excited state. Since the oscillator indices in the magnetized directions are
shifted, it is no longer obvious which state we should consider. But fortunately,
our guiding light, the prospect of a semi-realistic four dimensional theory, provides
the answer. The relevant state is of course the one that lives in the four flat, non-
magnetic dimensions

𝐵† 𝑖
1
2

|𝑝; 1, 2⟩𝑁𝑆, 𝑖 ∈ [2, 3], 𝑀2 =
1

2𝛼′

3∑︁
𝑎=1

𝜈𝑎, (5.110)
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where |𝑝; 1, 2⟩ just means that we are dealing with a string stretched between
branes 1 and 2, and 𝑖 runs over the flat coordinates transverse to the light-cone.
This state is very similar to the one we found in the simple superstring case (see
section 2.3.1), except for the very important facts that it has gained a mass and
lives only in four dimensions. The fact that it has gained a mass means that it
can no longer have only two degrees of freedom. For it to be a massive Lorentz
vector, we need a third component. In the case of two separated branes (section
4.2) we found that the direction of the separation vector could be included, but
here we are dealing with space-filling branes with zero separation.

To find the missing component, we must consider what happens to the exci-
tations in the other directions. The answer is the same as when we considered
separated branes; they become 6 independent scalars.

𝐵† 𝑎
1
2
−𝜈𝑎

|𝑝; 1, 2⟩𝑁𝑆, 𝑎 ∈ [1, 3], 𝑀2 =
1

𝛼′

[︃
1

2

3∑︁
𝑏=1

𝜈𝑏 − 𝜈𝑎

]︃
, 0 < 𝜈𝑚 <

1

2
, (5.111)

𝐵† 𝑎
1
2
+𝜈𝑎

|𝑝; 1, 2⟩𝑁𝑆, 𝑎 ∈ [1, 3], 𝑀2 =
1

𝛼′

[︃
1

2

3∑︁
𝑏=1

𝜈𝑏 + 𝜈𝑎

]︃
, 0 < 𝜈𝑚 <

1

2
. (5.112)

Generally, none of these states have the same mass as the vector particle, and
thus no superposition of them can be a component of the massive vector. To get
a state with the same mass, we must be clever and recall that the new content in
the mass formula gives us new options. In particular, we can consider the state

3∑︁
𝑎=1

𝐵† 𝑎
1
2
−𝜈𝑎

𝐴† 𝑎
𝜈𝑎 |𝑝; 1, 2⟩𝑁𝑆, 𝑀2 =

1

2𝛼′

3∑︁
𝑎=1

𝜈𝑎. (5.113)

This is a scalar with the correct mass that is not projected out by the GSO-
projection and we can therefore use it as the third component of the massive
Lorentz-vector.

It is also possible to construct a myriad of tensor particles of the form

𝐵† 𝑎
1
2
±𝜈𝑎

𝐼∏︁
𝑖=1

𝐴† 𝑎𝑖
𝜈𝑎𝑖

|𝑝; 1, 2⟩𝑁𝑆, 𝑎, 𝑎𝑖 ∈ [1, 3], (5.114)

but they are generally not very interesting.

5.5 The Ramond sector

Moving on to the Ramond sector, it is a simple matter to find the ground state,

|𝑝; 1, 2⟩𝑅, 𝑀2 = 0 (5.115)
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which is exactly the same result we found in the un-magnetized case. This fact
that the Ramond sector ground state mass is unchanged, but the Neveu-Schwarz
sector is not, means that supersymmetry is broken. This is a very appealing
feature, since, when we construct a semi-realistic model, we want the Ramond
sector ground state degrees of freedom to correspond to the fermions of the Stan-
dard Model and the Neveu-Schwarz sector degrees of freedom to play the role
of gauge bosons. Since these are not supersymmetric partners, a semi-realistic
theory must have broken supersymmetry.

It would, however, be possible to construct a theory with 𝒩 = 1 supersym-
metry, but we are not interested in that.

5.5.1 Chirality

We saw in section 2.2.5 that the Ramond sector zero-mode oscillation operators
obeyed the Clifford algebra

{𝐵𝜇
0 , 𝐵

𝜈
0} = 𝐺𝜇𝜈 (5.116)

However, when we have 6 magnetized directions, the above equation only holds
for 𝜇 = 0, . . . , 3, since there are no 𝐵𝑎

0 -operators in magnetized dimensions. This
means that we only have a 4-dimensional Clifford algebra and thus that the
chirality operator becomes

𝛾5 = 𝛾0𝛾1𝛾2𝛾3 = 4𝐵0
0𝐵

1
0𝐵

2
0𝐵

3
0 . (5.117)

We then lose chirality in 10 dimensions, but gain it in 4, which is precisely
what we were hoping for. It now becomes clear that magnetized branes are
very promising objects indeed for constructing a semi-realistic model from string
theory. However, this also means that we cannot simultaneously impose Majorana
conditions on the effective 4 dimensional theory.

5.6 Reversing the direction

We will first see how reversing the string changes the shifts from magnetiza-
tion. This is somewhat complicated because the endpoint charge enters in a very
inconvenient way, namely through ℬ𝑒𝑚𝑛. In the reversed case, we find

ℬ̂1 𝑚𝑛 = 𝐵𝑚𝑛 − 2𝜋𝛼′𝑞2𝐹
(1)
𝑚𝑛, (5.118)

ℬ̂2 𝑚𝑛 = 𝐵𝑚𝑛 − 2𝜋𝛼′𝑞1𝐹
(2)
𝑚𝑛. (5.119)

This means that there will be no simple relation between the 𝑅-matrix and the
reversed version �̂�. However, we do know that 𝑞2 = 𝑛𝑞1 where 𝑛 is an integer
since we know that the first Chern class (5.95) must be an integer. For simplicity,
we will in the following assume that 𝑞1 = 𝑞2.
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It is then clear from the definition of 𝑅, (5.16), that the new 𝑅-matrix is

�̂�𝑚
𝑛 = (𝑅−1

1 )𝑚𝑝𝑅
𝑝
2𝑛, (5.120)

and thus by the same definition that

�̂�𝑚
𝑛 = (𝑅−1)𝑚𝑛. (5.121)

It is therefore easy to see that the eigenvalues can be written in the diagonal
matrix

ℛ̂𝐵
𝐴 = (ℛ−1)𝐵𝐴 =

(︂
𝑒−2𝜋𝑖𝜈𝑎𝛿𝑎𝑏 0

0 𝑒2𝜋𝑖𝜈𝑎𝛿𝑎𝑏

)︂
. (5.122)

When we consider the scalar that formed the last component of our Lorentz-
vector, we see that it can be constructed in exactly the same way as before,
namely as

3∑︁
𝑎=1

𝐵† 𝑎
1
2
−𝜈𝑎

𝐴† 𝑎
𝜈𝑎 |𝑝; 2, 1⟩𝑁𝑆. (5.123)

Note that this linear combination of scalars and the state 𝐵† 𝑖
1
2

|𝑝; 2, 1⟩𝑁𝑆 are in-

dependent of our initial assumption that 𝑞1 = 𝑞2. This means that our effective
4-dimensional theory is independent of whether that assumption was correct.

5.6.1 String charge

In the same way that a point particle couples to a Maxwell field 𝐴𝜇, a string
couples to the Kalb-Ramond field 𝐵𝜇𝜈 . This is reflected by the inclusion of an
interaction term in the Lagrangian (see equations (5.2) and (5.54)). Since point
particles interact with the Maxwell field via a point charge, it is natural to think
that strings interact with the Kalb-Ramond field via a string charge, and this is
indeed the case [19, pp. 307-311]. Where the point charge is a simple number,
the string charge is a vector, and it is at all points tangential to the string. This
means that when we reverse the direction of the string, the string charge changes
sign. Since a string and one that is reversed, but otherwise identical, share all
traits except having opposite charge, they are the anti-strings of the each other
[32, p. 14].



Chapter 6

Point particle on a magnetized
torus

We now consider the case of a supersymmetric point particle in a constant mag-
netic field living on a two-dimensional torus. We do this because we want to
compare string theory to point particle theory, and this is the simplest example
of a low-energy limit of the model we developed in chapter 5 .

It is convenient to start out using the superfield formalism. Here the form of
the initial Lagrangian is exactly what we would expect from our bosonic intu-
ition and it is explicitly supersymmetric so we can be sure of getting the right
expression also for the fermions.

The superfield is

𝑋 𝑖(𝑡, 𝜃) = 𝑥𝑖(𝑡) + 𝑖𝜃𝜓𝑖(𝑡), 𝑖 = 1, 2, (6.1)

where 𝜃 is a Grassman variable, and the covariant derivative is

𝐷𝑋 𝑖(𝑡, 𝜃) = 𝑖𝜃�̇�𝑖(𝑡) + 𝑖𝜓𝑖(𝑡). (6.2)

We can then write the supersymmetric Lagrangian

𝐿 = −𝑖
∫︁

d𝜃

[︂
1

2
𝐷𝑋 𝑖𝐺𝑖𝑗𝜕𝑡𝑋

𝑗 + 𝑞𝐴𝑖(𝑋
𝑗)𝐷𝑋 𝑖

]︂
(6.3)

=
1

2
𝐺𝑖𝑗(�̇�

𝑖�̇�𝑗 − 𝑖𝜓𝑖�̇�𝑗) + 𝑞𝐴𝑖(𝑥𝑗)�̇�𝑖 + 𝑖
𝑞

2
𝐹𝑖𝑗𝜓

𝑖𝜓𝑗 (6.4)

= 𝐿𝐵 + 𝐿𝐹 (6.5)

where we have chosen the gauge 𝐴𝑖(𝑥
𝑗) = −1

2
𝐹𝑖𝑗𝑥

𝑗 and noted that the Lagrangian
splits up into a bosonic and a fermionic part. Since these are completely inde-
pendent, we will consider them one at a time.

64
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6.1 Bosonic part

The bosonic Lagrangian is

𝐿𝐵 =
1

2
�̇�𝑖𝐺𝑖𝑗�̇�

𝑗 + 𝑞𝐴𝑖�̇�
𝑖 (6.6)

=
𝑇2
2𝑈2

(︀
�̇�1 + 𝑈�̇�2

)︀ (︀
�̇�1 + �̄� �̇�2

)︀
+ 𝑞𝐴1�̇�

1 + 𝑞𝐴2�̇�
2, (6.7)

where the metric 𝐺𝑖𝑗 is given in (5.80), and it should be noted that the position
variable 𝑥𝑖 is dimensionless and periodic such that 𝑥𝑖 + 1 = 𝑥𝑖.*

It is convenient to define complex coordinates

𝑧 = 𝑥1 + 𝑈𝑥2, 𝑧 = 𝑥1 + �̄�𝑥2, (6.13)

which are periodic under the translations (𝑧, 𝑧) → (𝑧 + 1, 𝑧 + 1) and (𝑧, 𝑧) →
(𝑧 + 𝑈, 𝑧 + �̄�).

In this basis the metric takes the form

𝐺
(𝑧𝑧)
𝑖𝑗 =

𝑇2
2𝑈2

(︂
0 1
1 0

)︂
, (6.14)

and the Lagrangian can be written as

𝐿 =
𝑇2
2𝑈2

�̇� ˙̄𝑧 + 𝑞𝐴𝑧 �̇� + 𝑞𝐴𝑧 ˙̄𝑧, (6.15)

where

𝐴𝑧 = − �̄�𝐴1 − 𝐴2

𝑈 − �̄�
, 𝐴𝑧 =

𝑈𝐴1 − 𝐴2

𝑈 − �̄�
. (6.16)

*𝑥𝑖 is related to the physical position variable 𝑦𝑖 by

𝑥𝑖 =
𝑦𝑖

2𝜋𝑅𝑖
, (6.8)

where 𝑅𝑖 are the radii of the torus, such that

𝑦𝑖 = 𝑦𝑖 + 2𝜋𝑅𝑖 ⇒ (6.9)

𝑥𝑖 =
𝑦𝑖 + 2𝜋𝑅𝑖

2𝜋𝑅𝑖
= 𝑥𝑖 + 1. (6.10)

One could also define a third position variable 𝑦𝑖 such that

𝑦𝑖 = 𝑦𝑖 + 2𝜋𝑅, (6.11)

where 𝑅 is the same in all directions. This is done by defining

𝑦𝑖 =
𝑅

𝑅𝑖
𝑦𝑖 =

𝑅

𝑅𝑖
(𝑦𝑖 + 2𝜋𝑅𝑖) = 𝑦𝑖 + 2𝜋𝑅. (6.12)

Note that there is no Einstein index summation in these expressions.
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We can easily find the conjugate momenta

𝑝𝑧 =
𝜕𝐿

𝜕�̇�
=

𝑇2
2𝑈2

˙̄𝑧 + 𝑞𝐴𝑧, 𝑝𝑧 =
𝜕𝐿

𝜕 ˙̄𝑧
=

𝑇2
2𝑈2

�̇� + 𝑞𝐴𝑧, (6.17)

and the Hamiltonian

𝐻 = 𝑝𝑧 �̇� + 𝑝𝑧 ˙̄𝑧 − 𝐿 (6.18)

=
2𝑈2

𝑇2
(𝑝𝑧 − 𝑞𝐴𝑧)(𝑝𝑧 − 𝑞𝐴𝑧). (6.19)

Since we want to compare the point particle states with those of string theory,
we would like to express the Hamiltonian in terms of a dimensionless quantity.
We have already introduced such an object in string theory (see equation (5.95)),
and the first Chern class can also be calculated for a point particle,

𝐼 =
𝑞

4𝜋

∫︁
𝐹𝑖𝑗d𝑥

𝑖 ∧ d𝑥𝑗 =
𝑞𝐹12

2𝜋
=
𝑞(𝑈 − �̄�)𝐹𝑧𝑧

2𝜋
, (6.20)

where we have expressed the Faraday tensor in terms of the complex coordiantes.
Using the above expression and 𝐴𝑚 = −1

2
𝐹𝑚𝑛𝑥

𝑛, we can write

𝐴𝑧 =
𝜋𝐼

𝑞(𝑈 − �̄�)
𝑧 𝐴𝑧 = − 𝜋𝐼

𝑞(𝑈 − �̄�)
𝑧. (6.21)

Before moving on to quantization, we should consider what it means that our
system is restricted to a torus. It means that under a translation corresponding to
moving around the torus once, nothing should change. However, we have a gauge
field, 𝐴𝑖, and its physical properties are unchanged under gauge transformations,
we should therefore allow it to transform as

(𝑧, 𝑧) → (𝑧 + 1, 𝑧 + 1) ⇒ 𝐴𝑖 → 𝐴𝑖 +
1

𝑞
𝜕𝑖𝜒1 (6.22)

(𝑧, 𝑧) → (𝑧 + 𝑈, 𝑧 + �̄�) ⇒ 𝐴𝑖 → 𝐴𝑖 +
1

𝑞
𝜕𝑖𝜒𝑈 . (6.23)

It is a simple matter to calculate explicit expressions for these functions and they
are

𝜒1 = 𝜋𝐼
𝑧 − 𝑧

𝑈 − �̄�
𝜒𝑈 = 𝜋𝐼

𝑧�̄� − 𝑧𝑈

𝑈 − �̄�
. (6.24)

With these matters made clear, we will now quantize the classical system. To
do this, we impose the the canonical commutation relations

[𝑥𝑖, 𝑝𝑗] = 𝑖𝛿𝑖𝑗, [𝑥𝑖, 𝑥𝑗] = [𝑝𝑖, 𝑝𝑗] = 0, (6.25)
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which imply

[𝑧, 𝑝𝑧] = [𝑧, 𝑝𝑧] = 𝑖, [𝑧, 𝑧] = [𝑝𝑧, 𝑝𝑧] = 0, (6.26)

where 𝑧 can be thought of as having a superscript index and 𝑝𝑧 as having a
subscript index.

However, we would rather work with creation and annihilation operators sat-
isfying

[𝑎, 𝑎†] = 1. (6.27)

It is quite simple to show that this relation is satisfied by

𝑎 =

√︂
𝑈2

𝜋𝐼
(𝑝𝑧 +

𝜋𝐼

𝑈 − �̄�
𝑧), 𝑎† =

√︂
𝑈2

𝜋𝐼
(𝑝𝑧 −

𝜋𝐼

𝑈 − �̄�
𝑧). (6.28)

In terms of these, the Hamiltonian is

𝐻𝐵 =
2𝑈2

𝑇2

[︂
(𝑝𝑧 − 𝑞𝐴𝑧)(𝑝𝑧 − 𝑞𝐴𝑧) + (𝑝𝑧 − 𝑞𝐴𝑧)(𝑝𝑧 − 𝑞𝐴𝑧)

2

]︂
(6.29)

= 2
𝜋𝐼

𝑇2

[︂
𝑎†𝑎+ 𝑎𝑎†

2

]︂
(6.30)

6.2 Fermionic part

We recall from the beginning of this section that the fermionic part of the La-
grangian is

𝐿𝐹 = −𝑖1
2
𝜓𝑖𝐺𝑖𝑗�̇�

𝑗 + 𝑖
𝑞

2
𝜓𝑖𝐹𝑖𝑗𝜓

𝑗 (6.31)

= −𝑖 𝑇2
4𝑈2

(𝜓𝑧�̇�𝑧 + 𝜓𝑧�̇�𝑧) + 𝑖𝑞𝐹𝑧𝑧𝜓
𝑧𝜓𝑧, (6.32)

where, in analogy with the bosonic case, we have introduced a complex fermionic
coordinate

𝜓𝑧 = 𝜓1 + 𝑈𝜓2 𝜓𝑧 = 𝜓1 + �̄�𝜓2. (6.33)

We wish to proceed by calculating the conjugate momenta and finding the
Hamiltonian. These are easily found

𝜋𝑧 =
𝜕𝐿

𝜕�̇�𝑧
=
𝑇2𝑖

4𝑈2

𝜓𝑧 𝜋𝑧 =
𝜕𝐿

𝜕�̇�𝑧
=
𝑇2𝑖

4𝑈2

𝜓𝑧, (6.34)

and we see that each momentum is proportional to the other fermionic coordinate.
Using this, it is a simple matter to calculate the Hamiltonian

𝐻𝐹 = �̇�𝑧𝜋𝑧 + �̇�𝑧𝜋𝑧 − 𝐿𝐹 (6.35)

= −𝑖𝑞𝐹𝑧𝑧𝜓𝑧𝜓𝑧. (6.36)
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The canonical anti-commutation relation that will let us quantize the system
is

{𝜓𝑖, 𝜓𝑖} = 𝐺𝑖𝑗 (6.37)

{𝜓𝑧, 𝜓𝑧} =
2𝑈2

𝑇2
, (6.38)

where the second expression follows from the inverse of the metric in the complex
basis (6.14). However, like before we really want to deal with a set of raising and
lowering operators with anti-commutator

{𝑏, 𝑏†} = 1. (6.39)

Using the canonical anti-commutator (6.38), it is easy to show that

𝑏 =

√︂
𝑇2
2𝑈2

𝜓𝑧, 𝑏† =

√︂
𝑇2
2𝑈2

𝜓𝑧. (6.40)

We can now find the fermionic Hamiltonian

𝐻𝐹 = −𝑖𝑞𝐹𝑧𝑧
2

[︂
𝜓𝑧𝜓𝑧 − 𝜓𝑧𝜓𝑧

2

]︂
(6.41)

=
2𝜋𝐼

𝑇2

[︂
𝑏†𝑏− 𝑏𝑏†

2

]︂
, (6.42)

and add it to the bosonic Hamiltonian (6.30) to give us the total supersymmetric
Hamiltonian

𝐻 =
𝜋𝐼

𝑇2
(𝑎†𝑎+ 𝑎𝑎† + 𝑏†𝑏− 𝑏𝑏†) (6.43)

=
2𝜋𝐼

𝑇2
(𝑎†𝑎+ 𝑏†𝑏) (6.44)

6.3 Comparison with string theory

We now wish to compare the Hamiltonian we have obtained for the point particle
on a magnetic torus (6.44) to the one for string theory (5.79). We will work in
the so-called field theory limit of string theory 𝛼′ → 0, which means that only
terms of order 𝒪(1) survive.

For simplicity, we will start by considering only the bosonic parts. For the
string this is

−𝛼′𝑝2𝐵,𝑠 =
1

2

∞∑︁
𝑛=1

𝑛(𝑎†𝑛
𝑖𝑎𝑖𝑛 + 𝑎𝑖𝑛𝑎

†
𝑛
𝑖) +

1

2

3∑︁
𝑎=1

∞∑︁
𝑛=0

(𝑛+ 𝜈𝑎)(𝐴
† 𝑎
𝑛+𝜈𝑎𝐴

𝑎
𝑛+𝜈𝑎 + 𝐴𝑎𝑛+𝜈𝑎𝐴

† 𝑎
𝑛+𝜈𝑎)

+
1

2

3∑︁
𝑎=1

∞∑︁
𝑛=1

(𝑛− 𝜈𝑎)(𝐴
† 𝑎
𝑛+𝜈𝑎𝐴

𝑎
𝑛−𝜈𝑎 + 𝐴𝑎𝑛−𝜈𝑎𝐴

† 𝑎
𝑛+𝜈𝑎), 𝑖 = 2, 3 (6.45)
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and for the point particle it is,

𝐻𝐵,𝑝𝑝 =
𝑞𝐹12

𝑇2

[︂
𝑎†𝑎+ 𝑎𝑎†

2

]︂
. (6.46)

Since we have only done the point particle calculation for a single torus, and
since the tori we have compactified on in the string theory case are factorisable,
we only have to consider a single two-dimensional torus when taking the limit
of string theory. Furthermore, we are considering the low energy limit of string
theory, and therefore only consider the lowest excitation modes, that is the ones
with 𝑛 = 0. Before we can take the limit 𝛼′ → 0, we must investigate how 𝜈
behaves for low 𝛼′. We have previously found ((5.90) and (5.7)) that

𝜈 =
1

𝜋
arctan

(︂
−𝐵12 − 2𝜋𝛼′𝑞𝐹12

𝑇2

)︂
, (6.47)

where, for simplicity, we have set 𝜈2 = 0 and only considered 𝜈1 = 𝜈 In the limit
where string theory correctly approximates a point particle, the Kalb-Ramond
field cannot be of any significance, we therefore set 𝐵12 = 0 and Taylor-expand,

𝜈 ≈ 2𝛼′𝑞𝐹12

𝑇2
. (6.48)

Inserting this in the mass formula for the bosonic string (6.45), we find

−𝑝2𝐵,𝑠 ≈
2𝑞𝐹12

𝑇2

(︃
𝐴†

0𝐴0 + 𝐴0𝐴
†
0

2

)︃
, for 𝛼′ → 0. (6.49)

Comparing this to the point particle result, we find

−𝑝2𝐵,𝑠 = 2𝐻𝐵,𝑝𝑝. (6.50)

However, this factor 2 is actually not surprising since the point particle Hamilto-
nian is derived from a Lagrangian of the form

𝐿𝐵,𝑝𝑝 =
1

2
�̇�𝑖𝐺𝑖𝑗�̇�

𝑗 + . . . , (6.51)

and thus it is actually needed if the low-energy limit of string theory is to repro-
duce that of a point particle.

However, there is a subtlety; the point particle calculation is done in dimen-
sionless units, whereas the string calculation is done in dimensionfull units. To
find the relation between these, we consider the dimensionless first Chern class
(see equations (5.95) and (6.20)), where we for convenience have sat the radii of

the string theory torus equal to
√
𝛼′ and 𝐹

(1)
12 = 𝐹12, 𝐹

(2)
12 = 0,

𝐼𝑠 = 2𝜋𝑞𝐹 𝑠
12𝛼

′ (6.52)

𝐼𝑝𝑝 =
𝑞𝐹 𝑝𝑝

12

2𝜋
, (6.53)
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where the indices 𝑠 and 𝑝𝑝 refer to the string and the point particle respectively.
Equating the two Chern classes, we get the relation between the field strengths

𝐼𝑠 = 𝐼𝑝𝑝 = 𝐼 ⇒ (2𝜋
√
𝛼′)2𝐹 𝑠

12 = 𝐹 𝑝𝑝
12 . (6.54)

Recalling the footnote on page 65, we see that since the circumference of the torus
in the point particle calculation is 1 as opposed to 2𝜋

√
𝛼′ in the string theory

case. It is therefore natural to use units where 2𝜋
√
𝛼′ = 1 such that the radius of

compactification is the same in both cases, and when we do so we find that the
bosonic string and the bosonic point particle have the same Hamiltonian in the
field theory limit.

6.3.1 The supersymmetric case

Things get more complicated in the supersymmetric case, since in string theory
we now have two different sectors against only one for the point particle. From
our knowledge of the forms of the Ramond and Neveu-Schwarz sector mass for-
mulas, we do not expect them to have the same low-energy limit. The fact that
the Neveu-Schwarz Hamiltonian never acts on a vacuum state due to the GSO
projection leads us to believe that it is more likely that the Ramond sector low
energy limit matches that of the point particle.

To examine this we use the same approximations as above, and find the low-
energy limit of the Ramond sector mass formula

−𝛼′𝑝2𝑅,𝑠 =
1

2

∞∑︁
𝑛=1

𝑛(𝐵†
𝑛
𝑖𝐵𝑖

𝑛 −𝐵𝑖
𝑛𝐵

†
𝑛
𝑖) +

1

2

3∑︁
𝑎=1

∞∑︁
𝑛=0

(𝑛+ 𝜈𝑎)(𝐵
† 𝑎
𝑛+𝜈𝑎𝐵

𝑎
𝑛+𝜈𝑎 −𝐵𝑎

𝑛+𝜈𝑎𝐵
† 𝑎
𝑛+𝜈𝑎)

+
1

2

3∑︁
𝑎=1

∞∑︁
𝑛=1

(𝑛− 𝜈𝑎)(𝐵
† 𝑎
𝑛−𝜈𝑎𝐵

𝑎
𝑛−𝜈𝑎 −𝐵𝑎

𝑛−𝜈𝑎𝐵
† 𝑎
𝑛−𝜈𝑎) (6.55)

−𝑝2𝑅,𝑠 ≈
2𝑞𝐹12

𝑇2

(︃
𝐵†

0𝐵0 −𝐵0𝐵
†
0

2

)︃
, for 𝛼′ → 0. (6.56)

The fermionic part of the point particle Hamiltonian is (6.42)

𝐻𝐹,𝑝𝑝 =
𝑞𝐹12

𝑇2

[︂
𝑏†𝑏− 𝑏𝑏†

2

]︂
. (6.57)

We see that the Ramond sector Hamiltonian is exactly twice that of the
fermionic point particle, and as mentioned above, this is just what we expect in
the low-energy limit of the fermionic string.

In the Neveu-Schwarz sector, we cannot just take the simple expression for
the Hamiltonian as we have done in the bosonic and Ramond sectors. The pres-
ence of the normal-ordering term arising from a combination of the bosonic and
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fermionic coordinates is an essential part of the Hamiltonian, and we must there-
fore consider the full normal-ordered Neveu-Schwarz sector Hamiltonian (5.79),

−𝛼′𝑝2𝑁𝑆,𝑠 =
∞∑︁
𝑛=1

𝑛𝐴†
𝑛·𝐴𝑛+

3∑︁
𝑎=1

[︃
∞∑︁
𝑛=0

(𝑛+ 𝜈𝑎)𝐴
†𝑎
𝑛+𝜈𝑎𝐴

𝑎
𝑛+𝜈𝑎 +

∞∑︁
𝑛=1

(𝑛− 𝜈𝑎)𝐴
†𝑎
𝑛−𝜈𝑎𝐴

𝑎
𝑛−𝜈𝑎

]︃

+
∑︁
𝑟= 1

2

𝑟𝐵†
𝑟 ·𝐵𝑟 +

3∑︁
𝑎=1

⎡⎣ ∞∑︁
𝑟= 1

2

(𝑟 + 𝜈𝑎)𝐵
†𝑎
𝑟+𝜈𝑎𝐵

𝑎
𝑟+𝜈𝑎 +

∞∑︁
𝑟= 1

2

(𝑟 − 𝜈𝑎)𝐵
†𝑎
𝑟−𝜈𝑎𝐵

𝑎
𝑟−𝜈𝑎

⎤⎦
+

1

2

(︃
3∑︁

𝑎=1

𝜈𝑎 − 1

)︃
. (6.58)

This simplifies considerably when we only consider the lowest excitation modes
and only a single torus for the operators. Note that we must still consider the
full normal ordering constant.

−𝛼′𝑝2𝑁𝑆,𝑠 ≈ 𝜈𝐴†
𝜈𝐴𝜈 +

1

2
𝐵† 𝑖
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2

𝐵𝑖
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+

(︂
1

2
+ 𝜈

)︂
𝐵†

1
2
+𝜈
𝐵 1

2
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1

2
− 𝜈

)︂
𝐵†

1
2
−𝜈𝐵 1

2
−𝜈 +

1

2

(︃
3∑︁

𝑎=1

𝜈𝑎 − 1

)︃
,

(6.59)

=
1

2

(︁
𝐵† 𝑖

1
2

𝐵𝑖
1
2
+𝐵†

1
2
+𝜈
𝐵 1

2
+𝜈 +𝐵†

1
2
−𝜈𝐵 1

2
−𝜈 − 1

)︁
+ 𝜈

(︁
𝐴†
𝜈𝐴𝜈 +𝐵†

1
2
+𝜈
𝐵 1

2
+𝜈 −𝐵†

1
2
−𝜈𝐵 1

2
−𝜈

)︁
+

1

2

3∑︁
𝑎=1

𝜈𝑎. (6.60)

Due to the GSO projection and the fact that we are dealing with the low-energy
limit, this operator will only act on states created from the vacuum by using
exactly one of the operators 𝐵† 𝑖

1
2

, 𝐵†𝑎
1
2
+𝜈

or 𝐵†𝑎
1
2
−𝜈 . The anti-commutation relations

of these operators tell us that the term proportional to 1
2
will vanish for all relevant

states. The final expression for the low-energy limit of the Neveu-Schwarz sector
Hamiltonian is therefore

−𝑝2𝑁𝑆,𝑠 ≈
2𝑞𝐹12

𝑇2

(︁
𝐴†
𝜈𝐴𝜈 +𝐵†

1
2
+𝜈
𝐵 1

2
+𝜈 −𝐵†

1
2
−𝜈𝐵 1

2
−𝜈

)︁
+

3∑︁
𝑎=1

𝑞𝑎𝐹
𝑎
12

𝑇2
, for 𝛼′ → 0.

(6.61)

This Hamiltonian is fundamentally different from the point particle one we saw
above, and we do not currently know of any point particle description that accu-
rately models it.



Chapter 7

A semi-realistic string theory
model

We have now introduced the most important concepts needed for constructing a
semi-realistic string theory model and are ready to put them together and make
one. However, before we can begin comparing any string theory model to the
firmly established Standard Model of particle physics, we need to examine it.

7.1 The Standard Model

The theory that most accurately describes the physics of sub-atomic particles as
we know them today is called the Standard Model. It is a quantum field theory
describing the fundamental particles and their interactions. What we later wish
to do is to create a number of string states that have the same properties as these
particles. To understand how we can identify a string state with a particle, we
need to use the language of gauge theories.

Gauge theories were inspired by the early developments in constructing a
theory of fundamental particles. Quantum electrodynamics (QED) developed
from the theory of relativistic quantum mechanics first formulated by Dirac in
the 1920s. QED was found to have a peculiar symmetry; it is invariant under the
so-called local gauge transformations

𝜓(𝑥) → 𝑒𝑖𝛼(𝑥)𝜓(𝑥), (7.1)

𝐴𝜇(𝑥) → 𝐴𝜇(𝑥)−
1

𝑒
𝜕𝜇𝛼(𝑥), (7.2)

where 𝛼(𝑥) is an arbitrary function. While this was interesting, it changed the
entire field of theoretical physics when it was realised that one can derive the
theory by demanding that the Lagrangian only contains terms that are invariant
under the transformations (7.1) and (7.2) [32, pp. 482–483]. What had seemed
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like a curious symmetry turned out to be an immensely powerful and beautiful
principle.

It seems natural that the physicists of the time wanted to generalize this
concept of gauge invariance to more general cases. In particular, Yang and Mills
[33] proposed that since the phase factor 𝑒𝑖𝛼(𝑥) is an element of the simplest
continuous symmetry group, 𝑈(1), more complicated symmetry groups could
give rise to interesting physics. This turned out to be the case. In particular, the
theory of the weak interactions is invariant under 𝑆𝑈(2) transformations* and the
strong force is accurately described by an 𝑆𝑈(3) gauge theory. This is the reason
we throughout this thesis have demanded that our string theory incorporates the
gauge group of the Standard Model

𝑆𝑈(3)× 𝑆𝑈(2)× 𝑈(1). (7.3)

Gauge groups such as the ones described above are abstract mathematical
concepts defined by their Lie algebra. For our purposes we can consider a Lie
algebra to simply be a set of commutation relations. To use the gauge groups
properly in physics, we need to choose a representation of the symmetry group.
This is simply a set of matrices, 𝑇 𝑎, whose commutation relations satisfy the Lie
algebra. The infinitesimal elements of the group are then given by [32, p. 495]

𝑔(𝛼) = 1 + 𝑖𝛼𝑎𝑇 𝑎 +𝒪(𝛼2). (7.4)

In particular we are interested in the fundamental representations of the groups
𝑆𝑈(2) and 𝑆𝑈(3). These are sets of unitary 2 × 2 and 3 × 3 matrices with de-
terminant 1. The fundamental representation of 𝑆𝑈(2) is the well-known set of
Pauli spin matrices [32, p. 486]. For 𝑆𝑈(3), the fundamental representation is a
less well-known set of eight 3× 3 matrices. For this gauge group there also exists
an anti-fundamental representation which is the complex conjugate of the fun-
damental one and is equally important for our purposes. The anti-fundamental
representation of 𝑆𝑈(2) is the same as the fundamental one, since the complex
conjugates of the Pauli matrices are equivalent with the non-conjugated ones
under a group transformation [32, p. 499].

Before we can begin to uniquely classify the particles of the Standard Model
in a way that can be easily reproduced in string theory, we need one last property.
The weak hypercharge is, as the name implies, a generalization of the classical
concept of electric charge. It comes from the fact that in the Standard Model,
the electromagnetic and weak nuclear forces are not actually separate, but parts
of the same electroweak force. Weak hypercharge can be found as a combination
of electrical charge and weak isospin, the weak force equivalent of the spin of
quantum mechanics.

*In the full Standard Model 𝑆𝑈(2) symmetry is broken by the Higgs mechanism, but we are
not interested in that at this stage.
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Electric charge was what gave rise to the 𝑈(1) gauge theory QED, it is there-
fore not surprising that weak hypercharge is what gives rise to the 𝑈(1)𝑌 part
of the Standard Model gauge group. With this in mind we can write out the
fermion content of the Standard Model conveniently in table 7.1.

Name Label Gauge group
representation

𝐵 𝐿 𝑌

Left-handed quark 𝑄𝑖
𝐿 (3,2) 1/3 0 1/3

Right-handed up-like quark 𝑈 𝑖
𝑅 (3̄,1) -1/3 0 -4/3

Right-handed down-like quark 𝐷𝑖
𝑅 (3̄,1) -1/3 0 2/3

Left-handed lepton 𝐿𝑖𝐿 (1,2) 0 1 -1
Right-handed electron-like lepton 𝐸𝑖

𝑅 (1,1) 0 -1 2

Table 7.1: Fermion content of the Standard Model. The Gauge group repre-
sentation in brackets refers to the which representations the particle transforms
under. 𝐵 is baryon number, a conserved quantity associated with quarks and 𝐿
is the equivalent lepton number. 𝑌 is the weak hypercharge, a generalization of
electric charge that is appropriate for the electroweak force. The index 𝑖 refers
to multiple generations.

It is important to point out a few things to properly understand table 7.1.
First that all the particles are massless, since we have not introduced a gauge
symmetry-breaking Higgs-mechanism, which would give masses to the particles.
This means that the handedness referred to is the chirality of the particle which is
a conserved quantity. Related to this fact is that the anti-particle of a left-handed
particle is right-handed. Last, that the particles that transform according to 2,
the fundamental representation of 𝑆𝑈(2), are doublets. This means that though
they share 𝐵,𝐿 and 𝑌 (see the caption of table 7.1), there are two separate
particles for each such doublet. In particular 𝑄1

𝐿 is a doublet containing the left-
handed up and down quarks and 𝐿1

𝐿 is another doublet containing the left-handed
electron and electron neutrino. However, we are not interested in this.

7.2 Brane configuration and complications

The first thing we need to find out in order to construct a model that will repro-
duce the particle content of the Standard Model is the brane configuration. In
section 4.5 we found that the gauge group 𝑆𝑈(3) × 𝑆𝑈(2) × 𝑈(1) × 𝑈(1) could
be constructed using two stacks of branes separated by some distance. However,
in this model the Ramond sector ground state fermions became massive and lost
chirality (see the beginning of chapter 4.3). We want the fermions to be massless
and chiral in four dimensions, a property we found them to have, if we work
with space-filling branes in a space of the form 𝑀4 ×ℳ6 (see section 5), when
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the branes are magnetized on ℳ6. A stack of 𝑁 magnetized branes will still
have the gauge group 𝑈(𝑁), but since we are dealing with space-filling branes we
cannot separate them to create a gauge group 𝑈(𝐴) × 𝑈(𝐵), and further more,
such a separation would again give the fermions mass and thus cause us to lose
four dimensional chirality. The solution then, is to have stacks of branes with
different magnetizations. If we have one stack of three branes with magnetization
𝐹 𝑎
𝑚𝑛 and one of two branes with magnetization 𝐹 𝑏

𝑚𝑛 we can break the symmetry
group 𝑈(5) into 𝑆𝑈(3)× 𝑆𝑈(2)× 𝑈(1)× 𝑈(1).

While this seems very appealing; we have the gauge group with only one
surplus 𝑈(1) symmetry, it turns out that this configuration cannot be used to
reproduce the particle content of the Standard Model [14, p. 66]. In order to get
the proper transformations for the right-handed leptons of the standard model,
we need to have two stacks of a single brane with different magnetizations. This
leads to a total of four stacks of branes that in the notation of [14] can be seen
in table 7.2 (see also figure 7.1). With this our model starts out with the gauge
group

𝑆𝑈(3)𝑎 × 𝑆𝑈(2)𝑏 × 𝑈(1)𝑎 × 𝑈(1)𝑏 × 𝑈(1)𝑐 × 𝑈(1)𝑑. (7.5)

We immediately see that there are three 𝑈(1)’s too many. While this is a problem,
it can be shown [14, pp. 62–64] that it is possible to give masses to the particles
that are associated with up to three of the 𝑈(1) symmetries (see section 7.3.2).
This means that the local gauge symmetries will become global symmetries and
thus that the gauge group is reduced to that of the Standard Model.

Label Multiplicity Gauge group Name

stack 𝑎 𝑁𝑎 = 3 𝑆𝑈(3)𝑎 × 𝑈(1)𝑎 Baryonic brane
stack 𝑏 𝑁𝑏 = 2 𝑆𝑈(2)𝑏 × 𝑈(1)𝑏 Left brane
stack 𝑐 𝑁𝑐 = 1 𝑈(1)𝑐 Right brane
stack 𝑑 𝑁𝑑 = 1 𝑈(1)𝑑 Leptonic brane

Table 7.2: Brane content required to obtain the Standard Model particle content.

In general each of the states corresponding to a string stretched between two
of the stacks described in table 7.2 will be degenerate and have a number of
Landau levels given by their degeneracy numbers [34]

𝐼𝛼𝛽 =
3∏︁
𝑖=1

[︀
𝐼 𝑖𝛽𝑁𝛼 − 𝐼 𝑖𝛼𝑁𝛽

]︀
, (7.6)

where the index 𝑖 refers to the 𝑖’th 2-torus, 𝐼 𝑖𝛼 is the first Chern class introduced
in (5.95) and 𝑁𝛼 is the stack size.
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Figure 7.1: Illustration of the brane configuration. In this figure, the branes
have intersections instead of shared Landau levels, but that picture is completely
equivalent with what we have presented in this thesis. Figure taken from [19].

7.2.1 Orientifolds

As mentioned above, we have almost all the tools we need to turn this brane
configuration into a fully fledged semi-realistic model. One of the things we do
not yet have is an orientifold compactification. This is a slightly more general
form of compactification than the simple toroidal one, we considered in section
5.3. The details of orientifold compactification go beyond the scope of this thesis,
but there are several things from it that we need to take into account. First is
the fact that it introduces mirror-images of our branes denoted 𝑎*, 𝑏*, 𝑐* and 𝑑*.
These turn out to be essential for ensuring an anomaly-free theory (see section
7.2.2). Mirror-branes occur because of the presence of an orientifold plane O9.
O𝑝-planes are similar to the D𝑝-branes already introduced, except that they do
not have strings attached to them and are not dynamical objects in their own
right. For more information on orientifolds, see [14, pp. 17–23].

The degeneracy of a string attached to a brane and a mirror brane is not the
same as that of one attached to two non-mirror branes, it is

𝐼𝛼𝛽* = −
3∏︁
𝑖=1

[︀
𝐼 𝑖𝛽𝑁𝛼 + 𝐼 𝑖𝛼𝑁𝛽

]︀
. (7.7)
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Figure 7.2: Triangular Feynman diagrams causing anomalies

7.2.2 Anomalies

Quantum anomalies occur when a symmetry of the classical Lagrangian does not
hold for the quantum theory. We are most interested in gauge anomalies, which
occur when a Feynman diagram gives a result that violates the gauge invariance
that was the premise of the theory. If we have a theory with gauge anomalies,
we find that it becomes impossible to get rid of ghosts (see equation (2.45)). The
Standard Model is, of course, anomaly-free, and our semi-realistic string theory
model must therefore also be anomaly-free.

Before going into gauge anomalies, we wish to consider tadpole cancellation
conditions. These arise from the equations of motion of the closed string fields
introduced in section 2.3.5 [14, p. 45]. The reason we want to consider these is that
if we have tadpole cancellation, the gauge anomalies are simplified significantly.
In the orientifold theory, the tadpole cancellation condition is†∑︁

𝛽

𝑁𝛽(𝐼𝛼𝛽 + 𝐼𝛼𝛽*)− 32𝐼𝛼,O9 = 0. (7.8)

It also turns out that this condition implies cancellation of non-abelian gauge
anomalies of the type 𝑆𝑈(𝑁𝛼)

3 [14, p. 67] (see figure 7.2(a)).

We must also take care of mixed anomalies that include both abelian and non-
abelian degrees of freedom. When the tadpole condition is satisfied, the mixed
anomalies of the type 𝑈(1)𝛼;𝑆𝑈(𝑁𝛽)

2 (see figure 7.2(b)) are given by [34, p. 12]

𝒜mix
𝛼𝛽 =

1

2
𝑁𝛼(𝐼𝛼𝛽 + 𝐼𝛼𝛽*). (7.9)

The pure abelian anomalies of the type 𝑈(1)𝛼;𝑈(1)
2
𝛽 (see figure 7.2(c)) are almost

†Strictly speaking, this exact expression only holds true for rectangular tori (ones with
𝑈1 = 0 when following the notation of section 5.3). If the tori were skewed, 𝐼𝛼,O9 would
get prefactors reflecting this. However, this is of little importance since, as we will see later,
𝐼𝛼,O9 = 0.
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the same as the mixed ones, namely [34, p. 11]

𝒜𝑈(1)
𝛼𝛽 =

1

2
𝑁𝛼𝑁𝛽(𝐼𝛼𝛽 + 𝐼𝛼𝛽*), (7.10)

again assuming that the tadpole cancellation condition is satisfied.

7.3 Getting the Standard Model within string

theory

In order to identify strings with the fundamental particle fields listed in table 7.1,
we need to know under which gauge group representations they transform. Fortu-
nately, this is very simple. First we need to consider the branes between which the
string is stretched and their degeneracy number (see (7.16)), and secondly, if one
of the branes is a mirror brane. This leads to four different situations, in which
the string will transform according to different bifundamental representations,

𝐼𝛼𝛽 > 0 ⇒ (𝑁𝛼, �̄�𝛽)

𝐼𝛼𝛽 < 0 ⇒ (�̄�𝛼, 𝑁𝛽)

𝐼𝛼𝛽* > 0 ⇒ (𝑁𝛼, 𝑁𝛽)

𝐼𝛼𝛽* < 0 ⇒ (�̄�𝛼, �̄�𝛽).

(7.11)

Before we go into the degeneracy numbers in general, we wish to consider a
certain class of strings that does not fit easily into the above description; strings
stretched between a brane and its mirror. It is easy to see that in this case, the
degeneracy number, (7.7), simplifies to

𝐼𝛼𝛼* = −2
3∏︁
𝑖=1

𝐼 𝑖𝛼𝑁𝛼. (7.12)

This class of strings does not transform according to the scheme (7.11), but
instead according to both the two-index symmetric and two-index antisymmetric
representation of 𝑈(𝑁𝛼). No such particles have ever been observed, and we must
therefore insist that 𝐼𝛼𝛼* = 0 for all 𝛼. Since 𝑁𝛼 is the stack size, the only way
of ensuring this is

3∏︁
𝑖=1

𝐼 𝑖𝛼 = 0. (7.13)

This is a very interesting result, since we also have that [34, p. 9],

𝐼𝛼,O9 = −
3∏︁
𝑖=1

𝐼 𝑖𝛼. (7.14)
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We therefore find that the tadpole cancellation condition (7.8) simplifies to∑︁
𝛽

𝑁𝛽(𝐼𝛼𝛽 + 𝐼𝛼𝛽*) = 0, (7.15)

which is also the final expression for cancellation of non-abelian anomalies.
Using this, and the prescription for which bifundamental representation a

string will transform according to (see (7.11)), it is easy to find the degeneracies
𝐼𝛼𝛽 that will give the particle content of the Standard Model as described in table
7.1. They are [14, p. 67]

𝐼𝑎𝑏 = 1, 𝐼𝑎𝑏* = 2,

𝐼𝑎𝑐 = −3, 𝐼𝑎𝑐* = −3,

𝐼𝑏𝑑 = −3, 𝐼𝑏𝑑* = 0,

𝐼𝑐𝑑 = 3, 𝐼𝑐𝑑* = −3.

(7.16)

Let us see how these degeneracy numbers satisfy the tadpole cancellation
condition, (7.15),

Stack 𝑎: 2(1 + 2) + (−3− 3) + 0 = 0, (7.17)
Stack 𝑏: 3(−1 + 2) + 0 + (−3 + 0) = 0, (7.18)
Stack 𝑐: 3(3− 3) + 0 + (3− 3) = 0, (7.19)
Stack 𝑑: 0 + 2(3 + 0) + (−3− 3) = 0, (7.20)

where we have used that 𝐼𝛼𝛽 = −𝐼𝛽𝛼 and that 𝐼𝛼𝛽* = 𝐼𝛽𝛼* .
Now that we are sure of tadpole cancellation, it is a simple matter to use the

degeneracy numbers to write out the string states our model contains in table
7.3.

Start
stack

End
stack

Label Multi-
plicity

Gauge group
representation

𝑄𝑎 𝑄𝑏 𝑄𝑐 𝑄𝑑 Y

a b 𝑄𝑖
𝐿 1 (3,2) 1 -1 0 0 1/3

a b* 𝑞𝑖𝐿 2 (3,2) 1 1 0 0 1/3
a c 𝑈 𝑖

𝑅 3 (3̄,1) -1 0 1 0 -4/3
a c* 𝐷𝑖

𝑅 3 (3̄,1) -1 0 -1 0 2/3
b d 𝐿𝑖𝐿 3 (1,2) 0 -1 0 1 -1
c d 𝑁 𝑖

𝑅 3 (1,1) 0 0 1 -1 0
c d* 𝐸𝑖

𝑅 3 (1,1) 0 0 -1 -1 2

Table 7.3: String content corresponding to the degeneracy numbers listed in
(7.16). The 𝑄’s are the charges associated with the different stacks. The hy-
percharge has been calculated by defining 𝑌 = 1

3
𝑄𝑎 − 𝑄𝑐 − 𝑄𝑑 [14, p. 67] (see

equation (7.24)). The multiplicity corresponds to the number of fermion genera-
tions, where in the case of 𝑄𝑖

𝐿 and 𝑞𝑖𝐿 the two must be added.
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When considering table 7.3, we immediately notice a new field that was not
there in the Standard Model (see table 7.1). This is the 𝑁 𝑖

𝑅 field corresponding
to three generations of right-handed neutrinos. These have never been observed
in nature, but the experimental evidence for neutrino oscillations [35] implies
that neutrinos have mass and thus that neutrinos of both left- and right-handed
chirality must exist. Therefore, while experimentalists have not seen this particle,
they have strong evidence that suggests that it actually does exist. In our model,
it comes about to ensure that equation (7.15) holds true for stacks 𝑐 and 𝑑.

Another thing that springs to mind when regarding table 7.3 is the fact that
the left-handed quarks are made of two kinds of string. They transform according
to the same bifundamental representation of the gauge group and have the same
hypercharge, but have opposite values of 𝑄𝑏. We have made this distinction
between them to ensure anomaly cancellation just like when we added the right-
handed neutrinos.

Notice that the tadpole cancellation for stack 𝑏 relates the number of gen-
erations to the number of colours, and when we calculate the other anomaly
cancellation conditions, we find the same relation. What we see is that when we
have 3 colours, the number of generations must have 3 as a divisor, otherwise
gauge anomalies will occur. The simplest choice that satisfied this is, of course,
3 which is exactly what is found in experiments.

7.3.1 𝑈(1) charges

Before going into detail with how we get rid of our surplus 𝑈(1) symmetries,
we wish to consider another consequence of their presence, namely their charges.
When comparing table 7.3 to table 7.1, we immediately notice that there are
similarities between some of the charges of the extra 𝑈(1)’s and the quantum
numbers of the fundamental particles. In fact, we can, to an extent, identify
them with each other. We see that

𝑄𝑎 = 3𝐵 (7.21)

𝑄𝑑 = 𝐿, (7.22)

where 𝐵 is baryon number and 𝐿 is lepton number. However, these turn out to be
anomalous when we calculate the mixed and cubic 𝑈(1) anomalies. Fortunately,
it turns out that the combination

𝑄𝑎 − 3𝑄𝑑 = 3(𝐵 − 𝐿) (7.23)

is anomaly-free [14, p. 68], and so is 𝑄𝑐. The physical interpretation of 𝑄𝑐 is
somewhat less obvious, since it is not related to one of the quantum numbers of
the Standard Model, but it is instead twice the third component of the right-
handed isospin, which is a central part of left-right symmetric models [14, p. 68].
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We can ensure an anomaly-free expression for the hypercharge by building it
from these parts, and the following linear combination gives exactly the expected
results;

𝑌 =
1

3
𝑄𝑎 −𝑄𝑐 −𝑄𝑑. (7.24)

The only one of the string charges not yet identified is then 𝑄𝑏. This charge is
something that has no analogue in the Standard Model, it is identified with the
Peccei-Quinn symmetry, proposed in 1977 [36] as a way of ensuring that QCD
does not violate CP-symmetry. This symmetry has a mixed 𝑆𝑈(3) anomaly
which is consistent with the Peccei-Quinn symmetry in QCD.

7.3.2 Massive 𝑈(1) symmetries

We have seen in the above that the surplus 𝑈(1) local gauge symmetries corre-
spond to global symmetries of the Standard Model. We would therefore like to
change these symmetries from local ones to global ones. To do this, we consider
that there will, a priori, be a photon-like particle associated with each of these
symmetry groups. It is this particle that ensures the symmetry locally. It can
do this because it is massless, if it were massive it would propagate slowly and
the symmetry would stop being local and only hold on the global level. Formally
this is very easy to see as a massive particle would introduce terms in the action
that are not gauge invariant.

As we have seen, some of the 𝑈(1) symmetries have anomalies coming from
Feynman diagrams of the types 7.2(b) and 7.2(c), but before we worry about
their presence, we should consider if this is the whole picture. It is not. Since we
are dealing with string theory, we have several new particles and they too give
rise to Feynman diagrams. In particular, one of the fields from the RR-sector of
the closed superstring that we mentioned in the end of section 2.3.5 gives rise to
the Feynman diagrams 7.3(a) and 7.3(b). It can be shown [14, pp. 58–60] that
these diagrams exactly cancel the anomalies from the triangle diagrams.

The field that gives us these interactions is the two-index tensor 𝐶𝜇𝜈 , and it
must therefore be included in the low-energy Lagrangian. It enters both through
its field strength 𝐻𝜇𝜈𝜌 and through a coupling with the 𝑈(1) fields [14, p. 63],

ℒ𝑙𝑒 = − 1

12
𝐻𝜇𝜈𝜌𝐻𝜇𝜈𝜌 −

1

4𝑔2𝑠
𝐹 𝜇𝜈𝐹𝜇𝜈 +

𝑐

4
𝜀𝜇𝜈𝜌𝜎𝐶𝜇𝜈𝐹𝜌𝜎, (7.25)

where 𝑐 is the strength with which the RR-field 𝐶𝜇𝜈 couples to the 𝑈(1) field 𝐴𝜇.
Using the equation of motion for𝐻𝜇𝜈𝜌 and the method of Lagrange multipliers,

(7.25) can be rewritten

ℒ𝐴 = − 1

4𝑔2𝑠
𝐹 𝜇𝜈𝐹𝜇𝜈 −

𝑐2

2
(𝐴𝜎 + 𝜕𝜎𝜂)

2, (7.26)
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Figure 7.3: Feynman diagrams with interactions with RR-sector fields cancelling
the 𝑈(1) anomalies.

where 𝜂 is the Lagrange multiplier. At first, this Lagrangian looks unfamiliar,
but it is actually very similar to one proposed by Proca [37] for a massive spin
1 vector boson. Comparing the above Lagrangian with Proca’s, we see that the
vector field 𝐴𝜇 has gained a mass of 𝑀2 = 𝑐2𝑔2𝑠 .

The 𝑈(1) symmetries corresponding to the massive particle will be broken
and thus decouple from the gauge group to become global symmetries. The only
issue is that of what is left. It turns out that this mechanism only gives mass to
three 𝑈(1) particles [14, p. 64], so the fact that we were forced to choose a brane
configuration with four stacks turns out to be an advantage. We have some choice
in which gauge group that is left, so long as we make sure it is an anomaly-free
one. To get the same physics as the Standard Mode, we choose to let the linear
combination (7.24) remain, so that hypercharge stays a local gauge symmetry.

Since we have given mass to the particles with the charges corresponding to
baryon and lepton number conservation, these are exact global symmetries of the
theory. This means that the stability of the proton is ensured [14, p. 71]. This is
a very appealing feature since proton stability is often hard to ensure.

7.4 Interaction with gravity

So far, this chapter has been all about recreating the Standard Model within
string theory, but we have not really addressed why we want to do so. As men-
tioned in the introduction, the thing that sets string theory apart from quantum
field theories is that it naturally incorporates gravity (see section 2.1.7). We
should therefore ask how this model interacts with gravity, and if it can explain
the apparent weakness of gravity. As seen in section 2.3.5, the graviton is an
NSNS-sector closed string. This means that it is not attached to any of the
D9-branes and can thus move completely freely in all 10 dimensions.

However, since the extra dimensions are compact, we must take contributions
to its mass from winding and Kaluza-Klein modes into account (see section 3.1.1).
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Their presence would mean that if the graviton were to have momentum in the
compact dimensions, it would gain mass, and if it gained mass, gravity would
not go as 1

𝑟2
over long distances [27, 2-3 and 3-1]. Fortunately, this problem

can be solved if the graviton is not wound around the extra dimensions. In
this case, T-duality tells us that the graviton will behave as if the small compact
dimensions were not small at all; it would have a continuum of available momenta
and winding would be practically impossible.

Since the graviton can move in all 10 dimensions, we find that when particles
interact via gravitation, a large number of the gravitons will escape into the extra
dimensions where we cannot detect them. This would to us look as if gravity was
very weak. However, it is important to realise that this is a general feature of
models with extra dimensions, and not something unique to string theory.



Chapter 8

Concluding Remarks

8.1 Conclusions

In this thesis we have developed RNS superstring theory and seen how D-branes
are naturally included in this theory through T-duality. Furthermore, we have
expanded on these and seen how they can be used to construct an effective 4-
dimensional theory. Using space-filling, magnetized branes compactified on a
6-torus, we were also able to break supersymmetry and ensure chirality in four
dimensions. Having done this, we showed that the low-energy limit of such a
Ramond sector superstring was an analogous point particle.

Finally, we have introduced the few remaining concepts necessary for repro-
ducing the Standard model as a semi-realistic string theory using magnetized
D-branes compactified on a 6-torus. This model includes the particle content of
the Standard Model and the proper gauge group as well as several important
global symmetries. It turns out that our model is a minor extension of the Stan-
dard Model, since it also predicts certain things that have not yet been observed.
A new particle that this theory predicts is the right-handed neutrino. It is ex-
pected to exist since neutrino oscillations prove that neutrinos have mass, and
thus that neutrinos do not have definite handedness. The extension proposed
herein also predicts Peccei-Quinn symmetry, something that would help resolve
the strong CP problem in QCD. Most importantly, since this is a string theoret-
ical model, it naturally incorporates gravity through interactions between open
and closed strings.

8.2 Outlook

Though we have put forth string theory as a serious alternative to the ordinary
Standard Mode, in the hope that it might later become a candidate for Beyond
the Standard Model physics, there remains much to be done. Though our model
includes gravity through the NSNS-sector gravitons, the string states correspond-
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ing to fundamental particles remain massless and we have proposed no new ways
of breaking electroweak symmetry and thus endowing them with mass. It is, of
course, possible to construct a Higgs particle within the framework presented in
this thesis [14, p. 74–76], but it would be much more satisfying, if there were a
more natural way in which string theory gave the particles their observed masses.

Furthermore, the presented model needs to be more thoroughly tested. There
could still be gravitational anomalies that are not cancelled in the configuration
we have proposed. Also, the presence of the right particles and gauge groups
mean nothing, if we find that the amplitudes for particle interactions are com-
pletely different from what we observe in nature and can calculate in quantum
field theory. The primary reason we wish to calculate the amplitudes of parti-
cle interactions within this model is that these can be measured in experiments,
and would give us a chance to make string theoretical predictions about particle
physics experiments. This is the crucial test that has been the goal of string
phenomenology for the last forty years.
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