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Abstract

In this thesis we will give a review of certain aspects of higher-spin gravity theories
on AdS3 and W-algebras in two-dimensional conformal field theories. Recently the
CPN Kazama-Suzuki models with the non-linear chiral algebra SW∞[λ] have been
conjectured to be dual to the fully supersymmetric Prokushkin-Vasiliev theory of
higher spin gauge fields coupled to two massiveN = 2 multiplets on AdS3. We perform
a non-trivial check of this duality by computing three-point functions containing one
higher spin gauge field for arbitrary spin s and deformation parameter λ from the bulk
theory. We also consider this problem from the CFT where we show that the three-
point functions can be calculated using a free ghost system based on the linear sw∞[λ]
algebra. This is the same ghost system known from BRST quantization of perturbative
superstring theories. We find an exact match between the two computations. In the ’t
Hooft limit, the three-point functions only depend on the wedge subalgebra shs[λ] and
the results are equivalent for any theory with such a subalgebra. In the process we
also find the emergence of N = 2 superconformal symmetry near the AdS3 boundary
by computing holographic OPE’s, consistently with a recent analysis of asymptotic
symmetries of higher-spin supergravity.
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Chapter 1
Introduction

The holographic principle [2, 3] is one of the core concepts of quantum gravity. It was
originally inspired by black hole thermodynamics and was proposed to solve the informa-
tion loss paradox of Hawking [4]. The number of degrees of freedom in a region in a local
theory must scale as the volume of the region. According to the holographic principle
however, gravity is non-local in the sense that the number of degrees of freedom inside a
volume scale as the surrounding area.1 This very bizarre feature of gravity rely on general
arguments and thought experiments based on combining the laws of quantum mechanics,
such as unitary time evolutions, and classical black hole thermodynamics, and must there-
fore be realized in any consistent theory of quantum gravity. Holography was however not
taken seriously until Maldacena proposed a concrete realization in the context of string
theory, called AdS/CFT correspondence [6]. Loosely speaking, Maldacena conjectured
that type IIB superstring theory on AdS5 × S5, with N five-form fluxes on S5, is dual to
N = 4 super(conformal) SU(N) Yang-Mills theory on the asymptotic AdS5 boundary.
Many highly non-trivial tests of this duality have been performed and the conjecture has
so far passed in an astonishingly impressive way. Furthermore, many generalizations have
been proposed during the years, and recently it has become popular to apply holography
to QCD or condensed matter systems as a tool to understand non-perturbative aspects of
strongly coupled systems.

There are however many conceptual and technical problems left which are not well-
understood, not to mention that a proof of this conjecture remains elusive. A better
understanding of these problems are important since holography seems to be a funda-
mental concept of gravity, but also because of its potential applicability in other areas
of physics. It is therefore of great interest to search for simpler realizations of AdS/CFT
correspondence, which at the same time is complex enough to capture important features
of more realistic theories.

The simplest class of theories are without any doubt free field theories, and it is natural
to ask what kind of theories are dual to a CFT of free fields. It is however clear that the
dual theory cannot be anything conventional. Free field CFT’s are integrable and clearly
posses an infinite number of higher-spin conserved currents, the dual bulk theory must
therefore contains an infinite number of higher-spin gauge fields.

A particular interesting class of models are the higher-spin theories of Vasiliev on
1For an interesting review of the holographic principle and covariant entropy bounds, see [5].

1



Introduction 2

anti-de Sitter space. These theories can evade the usual no-go theorems by containing an
infinite tower of massless higher-spin fields. It is widely believed that these theories are
a certain tensionless limit of superstring theory, but however not exactly understood how
in detail. Vasiliev theory, despite being highly non-linear, is much simpler than full string
theory and thereby perfect candidate for toy models of AdS/CFT correspondence.

Based on such reasoning, Klebanov and Polyakov [7], inspired by earlier work of for
example Sezgin and Sundell [8], considered the 3D O(N) model of N massless scalars φa

with interactions of the form (φaφa)2. Besides the trivial fixed point, being the free theory,
this theory has a non-trivial fixed point. It was conjectured that the two critical points of
the 3D O(N) model are dual to Vasiliev theory on AdS4 in the large N limit, depending on
boundary conditions. Note that supersymmetry is not necessary for this duality. Recently
three-point functions functions were calculated in these theories and highly non-trivial
agreements were found [9], this sparked a renewed interest in this duality (see a recent
review in [10]).

It is however possible to find even simpler dualities along these lines. Pure gravity
on AdS3 do not contain dynamical degrees of freedom, in the absence of a boundary, but
contain very interesting black hole solutions similar to Kerr black holes in four dimensions.
Vasiliev theory on AdS3 is similarly much simpler than its higher dimensional counterparts,
where the massless sector is only dynamical through its coupling to massive matter fields.
Furthermore, consistent interacting theories of finite number of massless higher-spin fields
in AdS3 exist and gives a platform of analyzing the massless sector of Vasiliev theory in a
much simpler form. When coupling to matter fields, one is however forced to include an
infinite tower of higher-spin fields. It was recently shown that higher-spin gravity theories
on AdS3, generically lead to asymptotic higher-spin symmetries known as W-algebras
[11, 12].

On the boundary side the situation is even better. Two-dimensional conformal field
theories are possibly among the best well-understood non-trivial theories because of their
infinite number of symmetries. This power is only enhanced when there are additional
higher-spin invariants, not to mention an infinite number of them.

Inspired by the Klebanov-Polyakov conjecture, and the emergence of W-algebras near
the AdS3 boundary of higher-spin theories, Gopakumar and Gaberdiel [13] conjectured
that Wn minimal models are dual to Vasiliev theory on AdS3. This conjecture has been
supported by many non-trivial and detailed checks in the ’t Hooft limit, and impressive
insight into the finite N regime has already been achieved (which has led to slight refine-
ments of the finite N part of the conjecture). It is hoped that one may eventually be
able to prove this duality and thereby gain deep insight into the mechanisms of holog-
raphy. Subsequently, several variations of the Gaberdiel-Gopakumar conjecture has been
proposed an tested.

For example, recently it was conjectured that the CPN Kazama-Suzuki model is dual
to the N = 2 supersymmetric Vasiliev theory on AdS3. In this case there are an infinite
tower of fermionic and bosonic higher-spin fields, coupled to two massive 3d N = 2
hypermultiplets. To be more precise, Vasiliev theory is a one-parameter family of theories
parametrized by λ. There only exist few checks of this conjecture.

In this thesis we will consider this N = 2 higher-spin conjecture. We will calculate
three-point functions containing two massive scalars and one bosonic higher-spin field
from the bulk, for arbitrary spin s and deformation parameter λ. On the boundary side
we argue that the full Kazama-Suzuki model is not necessary for this particular class of
correlation functions. We will in particular show that all these can be calculated using a
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simple ghost system known from BRST quantization of perturbative superstring theory.
From the CFT side we will also calculate three-point functions containing fermionic matter
or higher-spin fields. Let us show two examples of our results

〈
OB∆+

(z1, z̄1)ŌB∆+
(z2, z̄2)W s−(z3)

〉
= (−1)s−1 Γ2(s)

Γ(2s− 1)

Γ(s− 2λ+ 1)

Γ(2− 2λ)

s− 1 + 2λ

2s− 1

(
z12

z13z23

)s
×
〈
OB∆+

(z1, z̄1)ŌB∆+
(z2, z̄2)

〉
,

and 〈
OF∆+

(z1, z̄1)ŌB∆+
(z2, z̄2)Gs+(z3)

〉
= 2(−1)s

Γ2(s)

Γ(2s− 1)

Γ(s− 2λ)

Γ(2− 2λ)

(
z12

z13z23

)s
×
〈
OF∆+

(z1, z̄1)ŌB∆+
(z2, z̄2)

〉
.

Here OB∆+
(z1, z̄1) and OF∆+

(z1, z̄1) are bosonic and fermionic primary fields of the CPN

Kazama-Suzuki coset, respectively. Furthermore W s−(z3) and Qs+(z3) are bosonic and
fermionic holomorphic higher-spin fields, respectively. We find non-trivial agreements
between correlation functions calculated on both sides of the duality.

We also derive operator product expansions of the boundary CFT currents holograph-
ically from the bulk theory. In particular, we show that near the AdS3 boundary the
theory has N = 2 SW∞[λ] symmetry. This is another consistency check. A preprint of
our results was recently published in [1].

The plan of this thesis is as follows. In chapter 2 we will give a basic introduction to
higher-spin (super-) gravity theories on AdS3. It is in particular seen that these theories
can be constructed as Chern-Simons theories based on Lie algebras gk ⊕ g−k. Special
emphasis is laid upon the infinite dimensional one-parameter family of Lie algebras shs[λ],
and their associative extensions SB[µ], since they play a crucial role in our calculations.
Structure constants of these algebras are also derived in a convenient form, not explicitly
found in the literature. Hereafter we will show that the calculation of asymptotic sym-
metries generically lead to classical Drinfeld-Sokolov reduction of Affine Lie algebras, and
thereby toW-algebras. Finally we will discuss the coupling of matter fields to higher-spin
gauge fields, which leads to Vasiliev theory. This theory on AdS3 and a linearization
needed for our calculation is discussed. Most importantly, we will argue that a slight
reformulation of the formalism will lead to tremendous simplifications.

In chapter 3, we will give a brief (and shallow) review of extended symmetries in
two-dimensional conformal field theory. In particular systematically introduce supercon-
formal symmetries and W-algebras. In the end we will discuss Kazama-Suzuki models,
in particular the subset based on hermitian symmetric spaces. The discussion of many
advanced aspects of the topic, such as quantum Drinfeld-Sokolov reduction, is either ne-
glected or very short despite the fact that most of the work on this thesis were based on
these CFT topics. This is partly because the advanced technical details of these topics
are not relevant for our original results, but mainly due to lack of time.

In chapter 4, we will give a ridiculously short and unjustified review of the conjectures
at play, only touching the details necessary (beyond general knowledge about AdS/CFT
correspondence) to understand our original results.

Chapter 5 contain the main parts of the original contributions of this thesis. In par-
ticular we show how to calculate the relevant three-point functions from the bulk and
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boundary point of view. On the way, we give a holographic proof of the emergence of
N = 2 SW∞[λ] algebra near the AdS3 boundary.

Appendix A contain the solution of a recursion relation. Appendix B contain the
structure constants of shs[λ] and SB∞[λ] which we have found in a particular convenient
form, together with certain properties used in our calculations.

Appendix C contains a review of basic aspects of two-dimensional CFT’s, including
modular invariance, RCFT’s, WZW and coset models.

Appendix D contains the structure theory, classification and representation theory of
finite-dimensional semi-simple Lie algebras, together with a discussion of regular embed-
dings and branching rules. Appendix E is about the classification and representation
theory of untwisted affine Lie algebras. Finally appendix F contains a list of finite and
affine (extended) Dynkin diagrams, together with useful information about these.2

2These three appendices were written due to my focus on conformal field theory and quantum Drinfeld-
Sokolov reduction during most parts of this work. Only in the final few month the focus shifted to
three-point functions. We have however chosen to include these anyway.



Chapter 2
2+1D Higher-Spin Gravity

Long before the discovery of the holographic principle [2, 3] and the string theoretical
realization by Maldacena [6], Brown and Henneaux analyzed the asymptotic symmetries
of 2+1-dimensional Einstein gravity with negative cosmological constant [14]. They found
that the asymptotic symmetry algebra was the Virasoro algebra with, quite surprisingly, a
central charge even though the bulk theory is purely classical. Back then, it was of course
unthinkable to believe that the effective conformal theory on the boundary is equivalent
to the bulk theory through a holographic duality.

Three-dimensional gravity is in many ways much simpler than its higher dimensional
counterpart, mainly due to the fact that pure Einstein gravity does not have any (lo-
cal) dynamical degrees of freedom in 2+1 dimensions. One way to see this is by Ricci
decomposition

Rµνργ = Sµνργ + Eµνργ + Cµνργ . (2.1)

The first two terms are given by the Ricci scalar and tensor, respectively, and are fixed
by the Einstein equations. The last term is the Weyl tensor and contains all dynamical
information since it is left undetermined by the equations of motion. But Cµνργ = 0 for
all three dimensional manifolds, thus gravity is non-dynamical.

This implies that the phase space is finite dimensional and that there are only global
degrees of freedom present, which makes the theory topological. At the purely classical
level, it was shown by Achucarro and Townsend [15] and later Witten [16], that Einstein
gravity can be mapped to a Chern-Simons theory with the gauge group SL(2,R)×SL(2,R)

S = SCS[A]− SCS[Ã], (2.2)

where the Chern-Simons action is given by

SCS[A] =
kCS

4π

∫
M

tr
(
A ∧ dA+

2

3
A ∧A ∧A

)
. (2.3)

This can be mapped to the first order formulation of gravity by

e =
l

2

(
A− Ã

)
, ω =

1

2

(
A+ Ã

)
, (2.4)

with the AdS radius l. Here the coefficients of e = eaµJ
adxµ are the vielbein, ω =

ωaµJ
adxµ = 1

2εabc ω
bc
µ J

adxµ is the spin connection, and the commutation relations are

5



2.1. Higher-Spin Generalizations 6

given by
[Ja, Jb] = εabcJ

c.

Since sl(2,R) is not the compact but rather the normal real form of sl2 ≡ sl(2,C), its
Killing form is not euclidean but tr(JaJb) = 1

2ηab. Using this, it can be shown that the
Chern-Simons coupling constant is related to the Newton constant G as

kCS =
l

4G
. (2.5)

The infinitesimal gauge transformations of the gauge theory translate into transformations
of the vielbein and spin connection

δA = dλ+ [A, λ],

δÃ = dλ̃+ [Ã, λ̃],
⇒

δe = dξ + [ω, ξ] + [e,Λ],

δω = dΛ + [ω,Λ] +
1

l2
[e, ξ],

(2.6)

where ξ = l
2(λ− λ̃) corresponds to diffeomorphisms [16], while Λ = 1

2(λ+ λ̃) is the local
Lorentz transformations associated to change of frame of the tangent bundle. Thus it is
necessary to use the first order formalism, in order to have “enough” gauge invariance to
map gravity into a gauge theory.

Although irrelevant for this thesis, we cannot resist briefly mentioning the interesting
topological features of Chern-Simons theories. In the case of compact gauge groups, the
coefficient kCS is quantized due to the fact that π3(G) = Z and the requirement that the
quantum partition function should be invariant under large gauge transformations. The
theory was solved by Witten in [17], where he showed that the Hilbert space is isomor-
phic to the space of conformal blocks of a two-dimensional WZW model (at level k) and
expectation values of Wilson loops are given by knot invariants such as the Jones polyno-
mials. Conformal blocks are not monodromy invariant but transform as representations
of the Braid group,1 as is known from the work of Moore and Seiberg [18]. This makes
them ideal wave functions of exotic particles in 2+1 dimensions, called non-abelian anyons
[19, 20]. It is also possible to axiomatize these topological field theories, similar to the
Moore-Seiberg axioms [21, 22], using braided fusion categories which play important roles
in mathematics and the field of topological quantum computers. We will however not
discuss these extremely interesting topics in detail.

2.1 Higher-Spin Generalizations

Higher-spin theories turn out to be difficult to construct and seem to be forbidden by
several no-go theorems. For example, the so-called Weinberg low energy theorem states
that higher-spin theories cannot mediate long-range interactions. It is however possible to
construct a certain type of theories with an infinite tower of higher-spin fields, such as the
class of theories constructed by Vasiliev [23, 24]. These theories can be seen as some sort
of tensionless limit of string theory, but in full string theory this higher-spin symmetry is
typically dynamically broken. Note that there is no problem with free higher-spin theories,
it is due to interactions that inconsistencies arise. See [25] for a detailed review of these

1To be more precise, one has to consider the mapping class group of, say, the punctured sphere which
contains both the braid group and Dehn twists. In the case of non-abelian statistics, the latter are called
topological spins.
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no-go theorems and how they can be surpassed.2 These theorems, however, only apply
for dimensions d > 3, and therefore it is possible to construct higher-spin theories in three
dimensions without resorting to an infinite tower of higher-spins.

Instead of taking the general approach of [25], let us see a glimpse of some of the
problems associated to higher-spin theories.

2.1.1 Free Theory and Coupling to Gravity

At the linearized level, Fronsdal [27] constructed equations of motion for massless bosonic
higher-spin fields (later generalized to fermions [28]). For example the free propagation of
an integer spin s field on Minkowski space (using the notation of [29, 30]) is

Fµ1... µs ≡ �φµ1... µs − ∂(µ1|∂
λ φ|µ2... µs)λ + ∂(µ1

∂µ2φµ3... µs)λ
λ = 0 , (2.7)

which is invariant under the gauge transformation

δ φµ1... µs = ∂(µ1
ξµ2... µs), ξµ1... µs−3λ

λ = 0 . (2.8)

The parentheses in (2.8) is the complete symmetrization of the indices, with no normaliza-
tion. These gauge transformations make sure the fields in d > 3 have the correct number
of degrees of freedom, while in d = 3 they make the theory non-dynamical. Note that
these equations and gauge transformations reduce to what we already know for s = 1 and
s = 2, in particular Fµν is the linearized Ricci tensor. In order to couple these equations
to gravity, it is natural to consider minimal coupling, ∂ → ∇ and η → g. Consistency
requires that the theory must preserve the same gauge symmetries it has on flat space.
Taking the spin 3 equation, a calculation shows that Fµν transforms as

δFµνρ = − 6 ξλσ∇(µ|Rλ|νρ)σ − 9Rλ(µν|σ∇|ρ) ξ
λσ + 6Rλ(µν|σ∇λ ξ|ρ)

σ

− 6 ξλ(µ|∇λR |νρ) +
3

2
Rλ(µ|∇λ ξ|νρ) − 9Rλ(µ∇ν ξρ)

λ .
(2.9)

This does not vanish on general backgrounds, not even using the vacuum Einstein equa-
tions, i.e. vanishing Ricci tensor. Furthermore, it was shown in [31] that for d > 3 and
spins s > 3

2 , this problem remains, even if one considers non-minimal couplings. The
exception s = 3

2 is crucial for supergravity.
A way out was given by Fradkin and Vasiliev [32], and requires higher-derivative

contributions and a negative cosmological constant Λ to be added. It turns out that the
interactions are non-analytic functions of Λ, and thus do not have an expansion around flat
space [32]. This line of thinking eventually led to the Vasiliev equations, which describe
full non-linear interactions and are manifestly invariant under (2.8) [23, 24].

Next, it is natural to consider d = 3. As mentioned before, the Weyl tensor vanishes
in 2+1 dimensions, so equation (2.9) is proportional to the Ricci tensor. It turns out
that these terms can then always be removed by a ξ-dependent gauge transformation, and
thus there are no problems with massless higher-spin fields coupled to gravity [31]. Note
that the presence of the spin-3 field has extended the diffeomorphisms. We shall use the
term “higher-spin diffeomorphisms” to account for all gauge transformations, including all
spins.

2There is also a very recent review about the no-go theorems in Minkowski space [26].
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2.1.1.1 Spin in 2+1 Dimensions

Before proceeding, let us elaborate on the notion of “spin” in 2+1 dimensions. Bine-
gar [33] found the unitary (projective) irreducible representations of the Poincare group
R3 oO(1, 3) using the usual Mackeys induced representations technique, which essentially
reduces the problem to the stabilizer subgroups (little groups). For massive particles,
representations with continuous spin are found (which is not surprising).3 In the massless
case, choosing a frame p = (1

2 ,
1
2 , 0) for the orbit O+

0 = {p ∈ R3 | p2 = 0, p0 > 0}, one finds
the little group [33, eqn. (25)]

SO+
0
≈ Z2 × R. (2.10)

In [33], the continuous representations are discarded, claiming that they are “unphysical”
and cannot be used in local field theories. Therefore, there are only two inequivalent
representations, {1,−1}. In d = 3 “spin” therefore just reduces to the distinction between
fermions and bosons. What do we then mean by “higher-spin”? When constructing field
theories of massless fields in four dimensions, it is convenient to use spin rather than
helicity and then let gauge invariance kill the unphysical degrees of freedom. Similarly
the tensors φµ1...µs are non-dynamical, due to the gauge transformations (2.8), as noted
before. It is however not all trivial, since tensors of different rank will give rise to different
boundary dynamics, as we will shortly see. This distinction motivates us to regard the
rank of the different tensors as their “spin” [11].4

2.2 Higher-Spin Interactions and Chern-Simons
Formulation

We are interested in constructing a full non-linear theory with spins s ≥ 2, describing
their interactions while preserving the higher-spin diffeomorphisms (2.9). It turns out
that this is much easier to achieve by first moving the linearized theory into the frame-
like formulation (see [34] for some progress using the metric-like formalism). One can
introduce generalized vielbeins and spin connections

ea1,...,as−1
µ , ωa1,...,as−1

µ . (2.11)

The generalized spin connections are auxiliary fields, which are introduced due to a gen-
eralization of local Lorentz invariance (2.6).5 Combining these into a gauge connection,
it turns out that a higher-spin diffeomorphism invariant interacting theory can be con-
structed by various types of Chern-Simons theories [11, 35], just like in (2.2).6

3To see why, recall that we need projective representations according to Wigner and thus must consider
the universal covering. Recall that SU(2) is a two-to-one compact universal covering of the d=4 massive
little group SO(3) = SU(2)/π1(SO(3)) = SU(2)/Z2 which gives rise to integer and half-integer represen-
tations. The universal covering of SO(2) = R/π1(SO(2)) = R/Z is however ∞-to-one and non-compact,
leading to a continuous family of representations. In other words R is a fiber bundle over SO(2) ≈ S1 with
infinite discrete fibers Z, and hence R wraps an infinite number of times around SO(2).

4If the reader thinks the concept of “spin” of massless fields in d=3 is a little bit fishy, the author will
not disagree. Nonetheless, in this section we made an attempt to motivate the idea.

5Doing this in higher dimensions, one is forced to introduce an infinite number of higher-spin vielbeins
and more auxiliary fields. One can then define higher-spin generalizations of the (linearized) curvature
tensors and formulate Fronsdal equations in terms of them. Attempting to formulate interactions will lead
to the Vasiliev theory.

6If one allows the Chern-Simons levels to be different, one obtains topologically massive gravity. See
[36] for a higher-spin construction along these lines.
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Let us however take the opposite route. It is possible to define different types of
higher-spin interactions by a quite general Lie algebra g × g, which can even be infinite-
dimensional. This is however not the full story. In order to map back to the metric
formulation, we need to identify the gravity sector. This entails choosing an embedding
sl(2,R) ↪→ g, with different choices corresponding to reorganization of the field content,
and thereby different theories, or least to different boundary dynamics.

Given this subalgebra we can identify the physical fields as follows. Decompose g into
representation spaces of sl(2,R) under the adjoint action

g = sl(2,R)⊕

(⊕
s,a

g(s,a)

)
, (2.12)

where dim g(s,a) = 2s+1 with 2s ∈ Z+ and the index a accounts for possible multiplicities.
Note there is a subtlety associated with the fact that sl(2,R) is the normal real form of sl2
and the corresponding group is non-compact, such as it has infinite dimensional irreducible
representations. However, for finite dimensional representations, it behaves exactly as the
compact real form su(2). Thus, we restrict g and the choice of embedding, such that
the decomposition (2.12) only contains finite dimensional representations. We will further
assume only integer s ∈ Z representations will arise, in order to avoid certain subtleties
(see [35]). This induces the decomposition of the gauge connection

A = AiµLi dx
µ +

∑
s,a

s∑
m=−s

A[a] s,m
µ (W s

m)[a] dxµ, (2.13)

where Li generate sl(2,R), while (W s
m)[a] generate g(s,a). We have used a basis such that

[L+, L−] = 2L0, [L±, L0] = ±L±, (2.14)

and [
Li, (W

s
m)[a]

]
= (is−m)(W s

i+m)[a],

(W s
m)[a] = (−1)s−m

(s+m)!

(2s)!
ads−mL−

(
(W s

s )[a]

)
.

(2.15)

The last equation follows from the (finite) representation theory of sl(2,R) with highest
weight (W s

s )[a] and the coefficients are just normalizations. Similar to (2.4), we can now
define higher-spin vielbeins and spin connections as

e[a] s
µ =

s∑
m=−s

e[a] s,m
µ (W s

m)[a], ω[a] s
µ =

s∑
m=−s

ω[a] s,m
µ (W s

m)[a], (2.16)

given by

e[a] s,m
µ =

l

2

(
A[a] s,m
µ − Ā[a] s,m

µ

)
, ω[a] s,m

µ =
1

2

(
A[a] s,m
µ + Ā[a] s,m

µ

)
. (2.17)

In the metric formulation, the fields must be invariant under generalized local Lorentz
transformations (2.6) generated by Λ. It turns out that δΛe = [e,Λ] ⇒ δΛtr(en) =
n tr(en−1[e,Λ]) = 0 by the cyclicity of the trace. Thus this fixes the metric and spin-3
field (up to normalization)

gµν ∼ tr (eµ eν) , φµνρ ∼ tr
(
e(µeνeρ)

)
, (2.18)
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where
e =

l

2

(
A− Ã

)
=
∑
s,a

e[a] s
µ dxµ. (2.19)

Note that the metric receives in general contributions from the higher-spin vielbeins (2.17).
Higher-spin fields require more work. For example for spin-four, there are two possibilities,
tr(e4) and tr(e2)2, and the result turns out to be a linear combination. For further details
see [11, 35].

It might seem that the choice of sl(2,R) embedding does not matter at all and (2.12)
is just a random choice of basis, since the map to the conventional formalism (2.18) uses
the whole vielbein and does not make reference to the decompositions (2.12) and (2.17).
As will be seen later, the choice of sl(2,R) is crucial when specifying asymptotic boundary
conditions. Different choices correspond to different embeddings of the gravity sector,
leading to inequivalent theories.

2.2.1 Higher-Spin algebras hs[λ] and the Lone-Star Product

The most studied example with a finite number of spins is g = sl(N,R) with the principal
embedding, where one has spins s = 2, . . . , N with multiplicity one.

Our current aim is a description of the massless sector of Vasiliev theory. For this we
will use the so-called higher-spin algebra hs[λ]. This consists of the elements

V s
n , s ≥ 2, |n| ≥ s− 1,

each of spin s − 1 under the adjoint action of sl(2,R). It can be constructed in various
ways; as an analytic continuation of sl(λ,R) to real λ [37, 38], as an algebra of differential
operators [39, 40], or as quotient of a universal enveloping algebra [41, 38]. For now,
let us consider the last approach. Let U(sl(2,R)) be the universal enveloping algebra of
sl(2,R) and 〈C2 − µ1〉 be the two-sided ideal generated by elements of the form C2 − µ1
(see appendix D), where the second-order Casimir is given as

C2 = L2
0 −

1

2
(L+L− + L−L+) , (2.20)

and set
µ =

1

4
(λ2 − 1). (2.21)

We can now define an associative algebra by the quotient

B[µ] =
U
(
sl(2,R)

)
〈C2 − µ1〉

= hs[λ]⊕ C, (2.22)

where we have identified the higher-spin algebra hs[λ] as a subspace of B[µ] by removing
the one-dimensional complex space along the identity operator 1. This just means that
we are allowed to take formal products of a, b = L0,±, and then identify

X ? (a ? b− b ? a) ? Y ≈ X ? [a, b] ? Y, and C2 ≈ µ,

where X and Y are arbitrary products the sl(2,R) generators. For the associative product
of B[µ] we have used ?, this product is usually called the “lone-star” product. Using the
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notation V 2
0,± ≡ L0,± and V 1

0 ≡ 1, we can construct the rest of the algebra from the
adjoint action of the subalgebra sl(2,R), and simultaneously decompose it as (2.12) [38]

V s
n = (−1)s−1−n (s+ n− 1)!

(2s− 2)!
ads−n−1

L−

(
Ls−1

+

)
. (2.23)

Compare this to (2.15). In order to use this in a Chern-Simons theory, we need an invariant
bilinear form. It turns out one can define a trace as

tr (X ? Y ) = X ? Y
∣∣
Li=0

, (2.24)

or in other words the coefficient proportional to 1. Since the trace is symmetric we
have that tr ([X,Y ]) = 0. Thus, commutators of elements in hs[λ] do not have a term
proportional to 1 and form a closed Lie algebra. As an example, take

V 3
2 = L+ ? L+, V 3

0 =
1

3

(
L− ? L+ + L0 + 2L2

0

)
≈ L2

0 −
1

12
(λ2 − 1),

from which one can calculate the commutator

[V 3
2 , V

3
0 ] = 4V 4

2 .

Luckily, it is possible to write down the full set of commutation relations [41, 38]

[V s
m, V

t
n] =

s+t−1∑
u=2 even

gstu (m,n;λ)V s+t−u
m+n . (2.25)

This can also be done for the whole associative algebra and not just the Lie algebra. It
turns out that for integer λ = N ≥ 2, we have that

tr
(
V s
mV

t
n

)
= 0, s > N. (2.26)

Thus these decouple from the Chern-Simons theory and can consistently be truncated. In
other words, an ideal χN appears, consisting of generators of spin s > N . Factoring over
this ideal, one finds

sl(N,R) = hs[N ]/χN , N ≥ 2. (2.27)

Thus in this sense, hs[λ] is an analytic continuation of sl(λ,R) for λ ∈ R.

2.3 N = 2 Higher-Spin Supergravity theory

Before considering the N = 2 higher-spin SUGRA of our interest, we will make some
general comments about supergravity on AdS3. It turns out that (extended) pure super-
gravity on AdS3 can also be formulated as a Chern-Simons theory associated to a Lie
superalgebra [15, 42]. The classification of finite dimensional Lie superalgebras, in the
same spirit as in appendix D, was solved by Kac [43, 44]7. Not all these algebras will
work for us however. Let us denote the Lie superalgebra with its natural Z2 grading as
g = ge ⊕ go, where ge and go correspond to its even and odd part respectively.

In order to describe SUGRA on AdS3, there are two basic requirements. (i) the
even part of g must contain sl(2,R), we thus demand the even part to take the form

7See [45] for an useful collection of results about Lie superalgebras.
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g G ρ dimG
osp(N |2) so(N) N N(N − 1)/2

su(1, 1|N)N 6=2 su(N)⊕ u(1) N + N̄ N2

su(1, 1|2)/u(1) su(2) 2 + 2̄ 3
osp(4∗|2M) su(2)⊕ usp(2M) (2M ,2) M(2M + 1) + 3
D(2, 1;α) su(2)⊕ su(2) (2,2) 6
G(3) G2 7 14
F (4) spin(7) 8s 21

Table 2.1: List of Lie superalgebras which can be used to formulate supergravity on AdS3

spacetimes. Here g is the Lie superalgebra, G is the internal subalgebra and ρ is the representation
of G in which the spinors of go transform in.

ge = sl(2,R) ⊕ G. (ii) the fermionic generators of go must transform in the 2 (spin 1
2)

representation of sl(2,R) under the adjoint action. It turns out that only seven classes
of algebras in [43, 44] satisfy these requirements [46, 47, 48], see table 2.1. Actually, this
is also the list of Lie superalgebras which give rise to two-dimensional superconformal
algebras with quadratic non-linearities by Drinfeld-Sokolov reduction of their affinization
[49, 50]. As we will see later, this is not a coincidence and Drinfeld-Sokolov reduction
comes out naturally from AdS3, giving a holographic perspective on this two-dimensional
CFT problem. The two algebras osp(1|2) and osp(2|2) correspond to N = 1 and N = 2
supergravity [15] and their Drinfeld-Sokolov reduction give rise to the conventional N = 1
and N = 2 superconformal Virasoro algebras.8 The other algebras generically give rise
to non-linearities after a DS-reduction [49] (similar to W-algebras). We will however not
pursue these types of supergravities in this thesis. Note that we are only talking about
half of the algebra. The full algebra of the Chern-Simons theory must be of the form

gk ⊕ g̃−k,

where the index refers to the CS-level. There might be some restrictions on which g and
g̃ one may combine. We will only be concerned with diagonal combinations.

2.3.1 N = 2 Higher-Spin SUGRA

In order to find higher-spin generalizations, we must allow higher sl(2,R)-spin generators
in the odd sector go. Since we are interested in N = 2 SUGRA, we also modify the
requirement of the even part to ge = osp(2|2)⊕ G. It turns out that the supersymmetric
analogue of sl(N,R) (which gives rise to bosonic higher-spin extension of pure AdS3 grav-
ity), is sl(N |N − 1). Pure N = 2 SUGRA is recovered for N = 2 since sl(2|1) ≈ osp(2|2)
[51, 52]. The sl(2,R) decomposition, analogous to (2.12), takes the form

sl(N |N − 1) = sl(2,R)⊕

(
N⊕
s=3

g(s)

)
⊕

(
N−1⊕
s=1

g(s)

)
⊕ 2×

(
N−1⊕
s=1

g(s+ 1
2

)

)
, (2.28)

8Under the sl(2,R) decomposition of g, sl(2,R) transforms as a spin-1 representation (since its the
adjoint representation). Drinfeld-Sokolov reduction turns this sector into a spin-2 field, which is nothing
but the energy-momentum tensor (and thereby the Virasoro algebra). The generators of go transform as
spin- 1

2
representations and DS-reduction turns them into spin- 3

2
fields. Typically g ends up as a wedge

subalgebra of the resulting algebra of DS-reduction (unless the algebra is non-linear). Thus it is not hard
to see why osp(1|2) and osp(2|2) give rise to N = 1 and N = 2 super Virasoro algebras.
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where g(s) transforms in the spin-(s−1) representation under the adjoint action of sl(2,R)
and the last part corresponds to the generators of the odd sector.9 Note that only for
N = 2 there are only spin-1

2 fermionic generators, which is the osp(2|2) SUGRA. For
N > 2 there are necessarily higher-spin fields. See the recent paper [52] for some results
on this N = 2 higher-spin SUGRA.

Analogous to the non-supersymmetric discussion above, the N = 2 Vasiliev theory is a
one-parameter family of theories with an infinite tower of multiplets containing higher-spin
fields. The massless sector can again be formulated as a pair of Chern-Simons theories
based on the so-called N = 2 higher-spin algebra shs[λ].10 Similar to (2.27), shs[λ] can
be thought of as an analytic continuation of sl(λ|λ − 1) for non-integer λ and it has the
following sl(2,R) decomposition

shs[λ] = sl(2,R)⊕

( ∞⊕
s=3

g(s)

)
⊕

( ∞⊕
s=1

g(s)

)
⊕ 2×

( ∞⊕
s=1

g(s+ 1
2

)

)
. (2.29)

In this decomposition, we have the following set of generators

L(s)+
m (s ∈ Z≥2, |m| ≤ s− 1), L(s)−

m (s ∈ Z≥1, |m| ≤ s− 1),

G(s)+
r (s ∈ Z≥2, |r| ≤ r − 3/2), G(s)−

r (s ∈ Z≥2, |r| ≤ r − 3/2),
(2.30)

where L(s)±
m generate the even part of shs[λ], while G(s)±

r generate the odd part. We will
spend some time discussing this algebra, since it plays a crucial role in this thesis.

The three generators L(2)
m , m = −1, 0, 1, form the sl(2,R) subalgebra describing the

gravity sector
[L(2)+
m , L(2)+

n ] = (m− n)L
(2)+
m+n. (2.31)

In this basis, L(2)+
0 is ad-diagonalized

[L
(2)+
0 , L(s)±

n ] = −nL(s)±
n , [L

(2)+
0 , G(s)±

r ] = −r G(s)±
r , (2.32)

while under the adjoint action of the m = ±1 sl(2,R) generators, the other generators
transform as

[L
(2)+
1 , L(s)±

n ] = (−n+ s− 1)L
(s)±
n+1 , [L

(2)+
1 , G(s)±

r ] = (−r + s− 3/2)G
(s)±
r+1 ,

[L
(2)+
−1 , L(s)±

n ] = (−n− s+ 1)L
(s)±
n−1 , [L

(2)+
−1 , G(s)±

r ] = (−r − s+ 3/2)G
(s)±
r−1 ,

(2.33)

consistent with the sl(2,R) decomposition. There is also a osp(1|2) subalgebra spanned
by {L(2)+

0 , L
(2)+
±1 , G

(2)+
±1/2}. This can be extended to osp(2|2) by adding the generators

{L(1)−
0 , G

(2)−
±1/2}, where L

(1)−
0 is the R-charge and spans a u(1) internal subalgebra. These

9The reason we use s for a spin s− 1 representation, is that these generators naturally relate to a spin
s dual field on the boundary by Drinfeld-Sokolov reduction. Note also that sl(2,R) transforms as spin-1
under the adjoint action of itself (adjoint representation), and is labeled by s = 2.

10See [48] for N = (N,M) extensions of the higher-spin gravity. For extensions above N = (2, 2) it
turns out that there does not exist a one-parameter family of theories parametrized by λ.
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generators act on the rest of the algebra as follows

[G
(2)±
1/2 , L

(s)+
m ] = −1

2
(m− s+ 1)G

(s)±
m+1/2, [G

(2)±
1/2 , L

(s)−
m ] = −G(s+1)∓

m+1/2 ,

[G
(2)±
−1/2, L

(s)+
m ] = −1

2
(m+ s− 1)G

(s)±
m−1/2, [G

(2)±
−1/2, L

(s)−
m ] = −G(s+1)∓

m−1/2 , (2.34)

{G(2)+
1/2 , G

(s)+
r } = 2L

(s)+
r+1/2, {G(2)+

1/2 , G
(s+1)−
r } = (r − s+ 1/2)L

(s)−
r+1/2,

[L
(1)−
0 , L(s)±

m ] = 0, [L
(1)−
0 , G(s)±

r ] = G(s)∓
r .

Note that the osp(1|2) and osp(2|2) supercommutators can be read off these by restricting
to s = 2 and the relevant set of generators. The R-charge maps the G+ generators
to G−, and vice versa, but one can construct generators with definite u(1) R-charge
by superpositions G(s)+

r ± G
(s)−
r . Please observe that if we truncate away all higher-

spin generators (s > 2) and use the above (anti-)commutators for unrestricted m and r,
we find the N = 0, 1, 2 (super)-Virasoro algebras in the Neveu-Schwarz sector with the
central charge c = 0 (the reason for this will become more clear below). (L

(s)+
m , G

(s)+
r )

and (L
(s−1)−
m , G

(s)−
r ) form N = 1 multiplets of osp(1|2), while combining them we get

N = 2 multiplets of osp(2|2). Note that there is no λ dependence in the commutators
involving the osp(1|2) and osp(2|2) subalgebras. This is because by restriction this theory
reduces to pure supergravity and as we classified AdS3 SUGRA, there are no continuous
classes of theories (classification is discrete). The commutators written above are obvious
properties to be expected from an N = 2 higher-spin SUGRA, but commutators between
higher-spin generators will generally have complicated λ dependence. Thus, it is not as
easy to write these down explicitly.

In this thesis we will mainly use a more compact notation. Allowing the superscript
to be half-integer and eliminating the need for the ± superscript, we define

L(s)
m ≡ L(s)+

m , L(s+1/2)
m ≡ L(s)−

m , G(s)
r ≡ G(s)+

r and G(s−1/2)
r ≡ G(s)−

r . (2.35)

Thus, in the following we allow s to be half-integer, but both notations will be used. To-
gether with these definitions, we will use the following notation for the structure constants
of shs[λ]

[
L(s)
m , L(t)

n

]
=

s+t−1
◦
◦

∑
u=1

ĝstu (m,n;λ) L
(s+t−u)
m+n ,

{
G(s)
p , G(t)

q

}
=

s+t−1
◦
◦

∑
u=1

ˆ̃gstu (p, q;λ) L
(s+t−u)
p+q ,

[
L(s)
m , G(t)

q

]
=

s+t−1
◦
◦

∑
u=1

ĥstu (m, q;λ)G
(s+t−u)
m+q ,

[
G(s)
p , L(t)

n

]
=

s+t−1
◦
◦

∑
u=1

ˆ̃
hstu (p, n;λ)G

(s+t−u)
p+n .

Here the notation
∑

◦
◦ means we are summing over half-integer steps. This is the most

convenient form of the algebra for the purposes of this thesis, but as far as we are aware
there do not exist explicit formulas for the shs[λ] structure constants in the literature. It
turns out that shs[λ] is a subalgebra of a (linear) W -algebra, which we will call sw∞[λ].
This is a higher-spin extension of the super Virasoro algebra. The structure constants
of sw∞[λ] have been explicitly calculated in [39, 40] and from these we can extract the
structure constants of shs[λ].11

11Recently, the structure constants of shs[λ] were found in [53] in the same way, but explicit expressions
of these were not given.
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2.3.2 Structure Constants of SB[µ] and shs[λ]

For our calculation of the three-point functions, it will turn out to be crucial to use
a slightly more fundamental structure than shs[λ]: the associative algebra SB[µ]. Let
U(osp(1|2)) be the universal enveloping algebra of osp(1|2), with the second-order Casimir
element [39, 45]

C2 = L2
0 −

1

2
{L1, L−1}+

1

4
[G1/2, G−1/2], (2.36)

where {L0, L±1, G±1/2} generate osp(1|2). Similar to (2.22), it turns out that the following
associative algebra is related to shs[λ] [39]12

SB[µ] =
U(osp(1|2))

〈C2 − µ1〉
= shs[λ]⊕ C, (2.37)

where we have defined
µ = λ

(
λ− 1

2

)
. (2.38)

We will use the notation ? for the product of SB[µ], which we will call the super lone-star
product. Knowing the structure constants of SB[λ], we can directly recover the structure
constants of shs[λ], since X ?Y −Y ?X = [X,Y ]. Using this associative structure, we can
as above define the trace as

tr
(
A ? B

)
=

A ? B
(2λ2 − λ)

∣∣∣∣
J=0

, ∀J 6= 1. (2.39)

The normalization is chosen for later convenience. We will identify L
(2)
m and G

(2)
r with

osp(1|2) and use the notation L(1)
0 ≡ L(1)+

0 ≡ 1 for the identity element of SB[µ]. The other
generators of shs[λ] can be constructed as sums and products of the osp(1|2) generators,
but the analogue of equation (2.23) is not given in the literature as far as we are aware.

We will later show how the SB[µ] generators can be expressed as polynomials of
osp(1|2) generators, which will turn out to be important for us. But first, we will focus
on constructing explicit formulas for the structure constants of SB[µ] and shs[λ].

12Note that although we are using osp(1|2), the algebra ends up being N = 2 supersymmetric, since
another supercharge can be constructed in SB[µ] [39]. This seems to imply that if we had used the more
natural generalization of (2.22) to N = 2, by using osp(2|2) instead of osp(1|2), we would find the same
algebra SB[µ].
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2.3.2.1 sw∞[λ] as an algebra of Super-Operators

In [39, 40], sw∞[λ] is constructed as an algebra of the following set of super-operators:

L(s)+
n =

s−1∑
i=0

(n− s+ 1)s−1−i a
i(s, λ) z−n+i ∂i

+ θ
∂

∂θ

s−1∑
i=0

(n− s+ 1)s−1−i
[
ai(s, λ+ 1

2)− ai(s, λ)
]
z−n+i ∂i,

L(s)−
n = −s− 1 + 2λ

2s− 1

s−1∑
i=0

(n− s+ 1)s−1−i a
i(s, λ) z−n+i ∂i (2.40)

+ θ
∂

∂θ

s−1∑
i=0

(n− s+ 1)s−1−i

[
s− 2λ

2s− 1
ai(s, λ+ 1

2) +
s− 1 + 2λ

2s− 1
ai(s, λ)

]
z−n+i ∂i,

G(s)±
r = θ

s−1∑
i=0

(r − s+ 3
2)s−1−i α

i(s, λ) z−r+i−1/2 ∂i

± ∂

∂θ

s−2∑
i=0

(r − s+ 3
2)s−2−i β

i(s, λ) z−r+i+1/2 ∂i.

Here
(x)n ≡

Γ(x+ n)

Γ(x)
= x(x+ 1)(x+ 2) . . . (x+ n− 1), (x)0 = 1,

is the Pochhammer symbol, ∂ ≡ ∂
∂z , and θ is a Grassmann number. See appendix B for

the definition of the coefficients ai(s, λ), αi(s, λ) and βi(s, λ). One can readily check that
the commutators of L(2)

m give rise to the Witt algebra, and the properties discussed earlier
are satisfied. It turns out that the products of these operators close as an associative
algebra, while the supercommutators give rise to sw∞[λ]. If we restrict n and r to be in
the wedge, |n| ≤ s− 1 and |r| ≤ s− 3

2 , we will recover SB[µ] and shs[λ]. In the following
we will for the sake of generality, let the modes be n ∈ Z and r ∈ Z+ 1

2 which correspond
to sw∞[λ]. However, when we talk about SB[µ] and shs[λ], we just have to truncate to
the Wedge modes.

Using the notation (2.35), we are interested in the following set of structure constants
of SB[µ]

L(s)
m ? L(t)

n =
s+t−1

◦
◦

∑
u=1

gstu (m,n;λ) L
(s+t−u)
m+n ,

G(s)
p ? G(t)

q =
s+t−1

◦
◦

∑
u=1

g̃stu (p, q;λ) L
(s+t−u)
p+q ,

L(s)
m ? G(t)

q =
s+t−1

◦
◦

∑
u=1

hstu (m, q;λ)G
(s+t−u)
m+q ,

G(s)
p ? L(t)

n =

s+t−1
◦
◦

∑
u=1

h̃stu (p, n;λ)G
(s+t−u)
p+n .

(2.41)

The structure constants calculated in [39, 40] are given in a very compact N = 1 super-
space notation. Since it is very tedious and technical to extract the coefficients above, we
will not go through the details. Instead we will just sketch parts of the calculation.



2.3. N = 2 Higher-Spin Supergravity theory 17

All the operators in equation (2.40) can be expressed in a very compact N = 1 super-
symmetric language as

L(s)
λ

(
Ω(s)

)
=

2s−2∑
i=0

Ai(s, λ)
(
D2s−2−iΩ(s)

)
Di, (2.42)

where

Ω(s)(z) =

{
Λ(s)+(z) + 2θΘ(s)+(z), s = bsc ∈ Z,
Θ(bsc+1)−(z) + θΛ(bsc)−(z), s = bsc+ 1

2 ∈ Z + 1
2 ,

(2.43)

and
Λ(s)±(z) =

∑
n∈Z

Λ(s)±
n zn+s−1, Θ(s)±(z) =

∑
r∈Z+ 1

2

Θ(s)±
r zr+s−

3
2 . (2.44)

Furthermore, D = ∂
∂θ − θ∂ and the relation between Ai(s, λ) and ai(s, λ), αi(s, λ) and

βi(s, λ) is given in appendix B. The coefficients of Λ(s)± are commuting numbers, while
the ones for Θ(s)± are anticommuting. By using relations shown in appendix B, and the
form of the operators (2.40), one can show that

L(s)
λ

(
Ω(s)

)
=


∑

n∈Z Λ
(s)+
n L

(s)+
−n +

∑
r∈Z+ 1

2
Θ

(s)+
r G

(s)+
−r , s = bsc ∈ Z∑

n∈Z Λ
(bsc)−
n L

(bsc)−
−n +

∑
r∈Z+ 1

2
Θ

(dse)−
r G

(dse)−
−r , s = bsc+ 1

2 ∈ Z + 1
2

.

(2.45)
We have used the floor bsc and ceiling dse functions. Note that bsc+ 1 = dse if s ∈ Z+ 1

2 .
This means that we can recover L(s)±

n and G
(s)±
r by replacing Λ

(s′)±
n′ → δm′,−mδs′,s and

Θ
(s′)±
r′ → δr′,−rδs′,s, respectively, and putting everything else to zero. For example, we

have

L(s)
λ

(
z−m+s−1

)
= L(s)

m = L(s)+
m , s = bsc ∈ Z,

L(s)
λ

(
θz−m+bsc−1

)
= L(s)

m = L(bsc)−
m , s = bsc+

1

2
∈ Z +

1

2
.

(2.46)

The product between the operators has been derived in [39, 40] in the form

L(s)
λ

(
Ω(s)

)
? L(t)

λ

(
Ω(t)

)
=

s+t−1
◦
◦

∑
u=1

L(s+t−u)
λ

(
ξ

(s+t−u)
(s)(t)

)
, (2.47)

where the function ξ(s+t−u)
(s)(t) (z) contains all the structure constants of (2.41). As a function

of Ω(s) and Ω(t), it is given as

ξ
(s+t−u)
(s)(t) (z) =

2u−2∑
i=0

F ust(i, λ)
(
DiΩ(s)

)(
D2u−2−iΩ(t)

)
, (2.48)

where F ust(i, λ) is a complicated function given in appendix B. In order to derive explicit
formulas for the coefficients in (2.41), we need to choose the appropriate functions Ω(s) and
Ω(t), and then use (2.48), (2.42) and (2.40) to extract the structure constants. For each of
the structure constants, due to the property (B.22), we need to separate the calculation
into even/odd i and integer/half-integer s. Having found these four pieces, one then has
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to “glue” them together to find an explicit formula for each structure constant. The end
results of these tedious calculations are given in appendix B.

We have explicitly checked that these structure constants satisfy all possible combina-
tions of Z2-graded Jacobi identities for many s and t, which is very non-trivial. Further-
more, we have compared various limits and truncations of this algebra to results known
in the literature, and we find an exact match. The constants given in appendix B are
very complicated, but there are good reasons to believe that they can all be written much
simpler in terms of generalized hypergeometric functions. This is at least possible for
λ = 0 [54] and for the non-supersymmetric higher-spin algebra hs[λ] [41].

Before concluding this section, we have to mention that as long as we constrain the
modes to be inside the wedge, we can safely restrict the sums of (2.41)

1 ≤ u ≤ s+ t− 1 → 1 ≤ u ≤ Min(2s− 1, 2t− 1).

This is because the structure constants for larger u vanish, as can be seen by a careful
analysis of the formulas in appendix B.13 As we will later see, this is very important when
working in our modified formalism of Vasiliev theory, since it will then be manifest that
only a finite number of equations couple to each other.

2.3.2.2 Quotient of Universal Enveloping Algebra

As we discussed above, the associative algebra SB[µ] can be constructed as a quotient
of the universal enveloping algebra of osp(1|2) as seen in equation (2.37). This implies
that all generators (2.37) can be written as polynomials of osp(1|2) generators, which we
will denote with Gα ≡ G

(2)+
α and Lm ≡ L

(2)+
m , modulo the equivalence relation C2 ≈ µ =

λ(λ − 1
2). Actually, due to the anticommutator {Gα, Gβ} = 2Lα+β, we only need the

fermionic generators Gα. While the anti-commutator is fixed, the commutator is not and
corresponds to a new element in the algebra. It is convenient to write it in terms of a new
bosonic element Q as follows

[Gα, Gβ] = (Q+ 1
2)εαβ. (2.49)

Due to the osp(1|2) commutation relations one has the constraint {Q,Gα} = 0 and noth-
ing else [39]. Hence the associative algebra generated by Gα and Q modulo C2 ≈ µ is
isomorphic to SB[µ]. We can however simplify even more. By direct calculation it turns
out that Q is related to the Casimir by14

C2 = L2
0 −

1

2
{L1, L−1}+

1

4
[G 1

2
, G− 1

2
] =

1

4
Q2 − 1

16
. (2.50)

This is very remarkable, since it implies that we can get rid of the C2 ≈ λ(λ− 1
2) constraint

by setting
Q = 2(λ− 1

4)K, (2.51)

where K2 = 1. Thus, we conclude that SB[µ] is isomorphic to the associative algebra
generated Gα and K with the following relations

[Gα, Gβ] = (cK + 1
2)εαβ, {K,Gα} = 0, K2 = 1, (2.52)

13One can actually cut off the sum over u even more, but this will be mode-dependent.
14It seems that it has also been noted in math literature [55] that the Casimir posses a “square root”

related to the commutator of Gα.
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and c = 2(λ − 1
4). By playing around with the (anti-)commutators (2.31),(2.32),(2.33)

and (2.34), it becomes obvious that even (odd) numbers of symmetrized products of
Gα correspond to the elements L(s)+

m (G(s)+
r ), while the same objects multiplied with K

correspond to L(s)−
m and G

(s)−
r . We will return to this later, when we discuss Vasiliev

theory.

2.4 Asymptotic Conditions and Classical Drinfeld-Sokolov
Reduction

We have so far discussed different possibilities for formulating higher-spin (super)gravity
theories on AdS3. Using the Chern-Simons formulation, the input required is a Lie (su-
per)algebra g together with an sl(2,R) ↪→ g embedding which corresponds to the gravity
sector. The higher-spin content can then be found by a decomposition of g under the
adjoint action of this sl(2,R) embedding.

Having gone through detailed discussions about the algebras relevant for us, we will
in this section go back to the Chern-Simons theory, impose boundary conditions and then
find the asymptotic symmetries of AdS3. It is clear that imposing boundary conditions,
we must restrict the allowed gauge transformations such that they leave the boundary
conditions invariant. This means that an infinite number of previously gauge-equivalent
configurations become physically distinct. We will therefore have dynamical (massless)
degrees of freedom near the boundary although the bulk is non-propagating. It is well
known that for a gk Chern-Simons theory on a manifold M with boundary ∂M, the
boundary dynamics is described by a ĝk Wess-Zumino-Witten CFT. This can be seen
either by directly rewriting the action in the holomorphic gauge [56, 20], or from the fact
that the Poisson structure of the phase space of boundary excitations is an untwisted
affine Lie algebra.15

However not all solutions, or equivalently all points in phase space, of this Chern-
Simons theory are admissible classical (higher-spin) gravity configurations. For this we
need to restrict to asymptotically AdS3 configurations, which in turn impose (first class)
constraints on phase space. Turning the first class constraints into second class by gauge-
fixing and reducing to the constrained phase space, the Dirac-bracket algebra will generi-
cally turn ĝk into a classical W algebra.

This way of deriving classicalW algebras by constraining affine Lie algebras is known as
(classical) Drinfeld-Sokolov reduction [58], and generically associates a centrally extended
W algebra to any semi-simple Lie algebra.16 This procedure critically depends on how
sl(2,R) is embedded in g. Alternatively instead of constraining the phase-space, one can
impose these constraints directly on the WZW or Chern-Simons fields, leading to the so-
called Hamiltonian reduction. After a reduction, this leads to a Liouville theory[60, 61]
for pure gravity, or more generally a Toda Field theory [62], which is known to have
higher-spin conserved currents generating W algebras.

In the following sections we briefly discuss the boundary conditions imposed on the
Chern-Simons theory leading to asymptotic AdS3 solutions, including rotating massive
black holes [63]. Then we will see how this induces a classical Drinfeld-Sokolov reduction

15This is actually also known from the fractional quantum Hall effect in which the bulk Chern-Simons
theory gives rise to gapless edge excitations [57] (known as chiral Luttinger liquid), which has been seen
experimentally.

16See [59] (PhD thesis) for a very readable account.
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of the Chern-Simons gauge connection. The form this field takes in the so-called lowest-
weight gauge will be very important for us later in the thesis. Due to lack of time we
are sadly forced to be rather shallow and not too detailed, but we will sketch the general
features.

2.4.1 Boundary Conditions and Gauge fixing

We will here consider Chern-Simons theory with the gauge group G and Lie algebra g, on
a manifold with topologyM = R×Σ and boundary ∂M = R× S1. Let t parametrize R,
while ρ and θ are the radial and polar coordinate for the disc Σ, respectively. The first
thing to note is that the action (2.3) is not well-defined in the presence of a boundary.
Following Regge and Teitelboim [64], we need to impose boundary conditions such that the
functional derivative δSCS [A]/δA exists and is well-defined. Using light-cone coordinates
x± = t±θ, it can be shown that a variation of the action contains a boundary contribution

δSCS = −kCS
4π

∫
∂M

dx+dx− tr(A+δA− −A−δA+), (2.53)

where A± = 1
2(At ± Aθ). This boundary contribution to the variation can be set to zero

by the boundary condition
A−
∣∣
∂M = 0. (2.54)

We will now find the basic variables of the physical phase space, which can be thought of
as the space of classical solutions modulo gauge transformations. Thus, we need to fix the
gauge degrees of freedom. A particularly useful gauge is given by the condition

Aρ = b−1(ρ)∂ρb(ρ), (2.55)

which is always possible to obtain.17 The group-valued function b(ρ) is fixed and depends
only on the radial coordinate. We will here choose

b(ρ) = eρL0 , (2.56)

where L0 and L± are generators of the sl(2,R) subalgebra. This choice of gauge is par-
ticularly useful in the AdS/CFT context, since it naturally leads to a Fefferman-Graham
expansion. Decomposing the connection as A = Atdt+Aidxi, one will find that the action
does not contain a time-derivative of At and is linear in it. Thus, it can be thought as a
Lagrange multiplier. The variation of the action with respect to At yields the constraint

Fρθ = ∂ρAθ +
[
Aρ, Aθ

]
= 0, (2.57)

which is solved by
Aθ(t, ρ, θ) = b−1(ρ)ã(t, θ)b(ρ), (2.58)

where ã(t, θ) is an arbitrary g-valued function of t and θ. The ρ-dependence of the Lan-
grange multiplier At is determined from the equations of motion

∂ρAt + [Aρ, At] = 0, (2.59)
17This is easy to see by starting from an arbitrary A′ρ and solving the equation g−1A′ρg + g−1∂ρg =

b−1∂ρb. This can be shown to have a solution given by a path-ordered exponential for any group-valued
function b(ρ).
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which again have a solution of the form (2.58). Due to the boundary condition (2.54)
we have that At = Aθ on ∂M, but since the ρ-dependence is completely fixed by b(ρ) in
(2.58), this must hold on allM and not only on the boundary

A− =
1

2
(At −Aθ) = 0. (2.60)

From the final equation Ftθ = ∂tAθ−∂θAt+[At, Aθ] = (∂t−∂θ)A+ = 0 and (2.60) we find
that ∂−ã(t, θ) = 0, and hence a must be a function of x+ only. The other sector Ā can
be treated in a similar way, but it turns out that we must impose the boundary condition
Ā+ = 0 instead in order to ensure invertibility of the vielbein [35]. The final results can
be summarized as

A = b−1(ρ)a(x+)b(ρ) + b−1(ρ)db(ρ),

Ā = b(ρ)ā(x−)b−1(ρ) + b(ρ)db−1(ρ),
(2.61)

where a(x+) = ã(x+)dx+ is a g-valued one-form which can be thought of as the connection
for constant ρ-slices. Similar results hold for the other sector.

We have thus found all solutions (2.61) of the equations of motion with the boundary
condition (2.54), and a(x+) and ā(x−) parametrize the (reduced) phase-space of the theory.
So different choices of a(x+) and ā(x−) correspond to exact gauge inequivalent solutions
of the equations of motion. Note that if there were no boundaries present, the general
solution would be of the form A = g−1dg. This can be gauge transformed to the trivial
solution A = 0 and there would be no local degrees of freedom (there might however be
global ones measured by holonomies). When boundaries are present, we have the more
general solution parametrized by a(x+). This solution can also be mapped to the trivial
solution, but by a transformation which is not generated by a first class constraint. Thus
it acts as a global symmetry on the space of solutions and maps inequivalent solutions
into each other [65]. In the following section we will, very shallowly, discuss these points
and find the Poisson bracket of the basic variables of phase space a(x+).

2.4.2 Global Symmetries and Poisson Algebra

It turns out that the gauge fixing condition above completely removes all gauge degrees of
freedom, i.e. those that are generated by a first class constraint. There are however some
residual gauge transformations left, but these do not correspond to first class constraints,
but rather to global symmetries of the space of solutions (or reduced phase space of the
theory).18

The gauge choice (2.55) is preserved by transformations, parametrized by Λ :M→ g,
which satisfy ∂ρΛ + [Aρ,Λ] = 0. This is again of the form (2.57) and the solution is
therefore

Λ(t, ρ, θ) = b−1(ρ)λ(t, θ)b(ρ). (2.62)

The condition that it must preserve the boundary condition δA− = 0 forces the gauge
parameter to only depend on x+, λ = λ(x+). The Lagrange multiplier At gives rise to
first-class constraints which can be used to define the smeared generator

G(Λ) =
KCS

4π

∫
Σ
dxi ∧ dxj tr (ΛFij) +Q(Λ). (2.63)

18We will only sketch the main ideas here, for more details see [66, 65, 11].



2.4. Asymptotic Conditions and Classical Drinfeld-Sokolov Reduction 22

The first term generates gauge transformations, while the second ensures that the variation
of G(Λ) is well-defined and cancels any surface term. If one assumes that Λ is independent
of the fields, one can show that the boundary term is given by

Q(Λ) = −kCS
2π

∫
∂Σ

dxi tr (ΛAi) . (2.64)

Using this, a gauge transformation of any phase-space functional is given by the Poisson
bracket19 δΛF = {G(Λ), F}, in particular δΛA = {G(Λ), A} = dΛ + [A,Λ]. The boundary
term gives rise to a central extension, which can be shown to be

{G(Λ), G(Γ)} = G([Λ,Γ]) +
kCS
2π

∫
∂Σ

dxi tr (Λ∂iΓ) . (2.65)

The crucial point to note is that the charge does not weakly vanish when the constraints
Fij = 0 are imposed, G(Λ) ≈ Q(Λ). This means that Q(Λ) does not correspond to a
gauge transformation, but is a global charge, mapping inequivalent configurations into
each other. This is the origin of the infinite number of degrees of freedom in the presence
of a boundary.

Fixing the gauge as discussed above and going to the reduced (physical) phase-space,
the gauge algebra turns into the algebra of global charges

{Q(Λ), Q(Γ)}? = Q([Λ,Γ]) +
kCS
2π

∫
∂Σ

dxi tr (Λ∂iΓ) , (2.66)

where { · , · }? is the Dirac bracket. In this reduced phase space the basic variables are not
Aai anymore, but rather a(x+) = ã(x+)dx+ as seen in (2.61). Using the form of Aθ given
(2.58) and the allowed transform (2.62) we find the following global charge20

Q(Λ) = −kCS
2π

∫
∂Σ

dθ tr (Λ(θ)Aθ(θ)) = −kCS
2π

∫
∂Σ

dθ tr (λ(θ)ã(θ)) . (2.67)

We can now find the canonical Dirac brackets of the dynamical degrees of freedom. These
can be found from the transformation

δΛã(θ) = {Q(Λ), ã(θ)}? = −kCS
2π

∫
∂Σ
λa(θ′)κab{ãb(θ′), ã(θ)}, (2.68)

where we have used the Killing form κab. We can evaluate the transformation δΛã =
∂θλ + [ã, λ], which is found from δΛAθ = ∂θΛ + [Aθ,Λ]. Expanding in a generic basis of
the Lie algebra ãa = aaTa, this transformation can be shown to be reproduced by the
following bracket

{ãa(θ), ãb(θ′)}? =
2π

kCS

[
κabδ′(θ − θ′)− fabc ãc(θ)δ(θ − θ′)

]
, (2.69)

19The Poisson bracket for two phase-space functionals F [Ai] and H[Ai] is defined as {F,H} =
2π
kCS

∫
Σ
dxi ∧ dxj tr

(
δF

δAi(x)
δH

δAj(x)

)
= 2π

KCS

∫
Σ
d2x εij

δF
δAa

i (x)
κab δH

δAb
j(x)

, where κab is the Killing form de-

fined from the trace of g (we are ignoring possible subleties of non semi-simple and infinite dimensional
algebras). Before gauge-fixing, the basic phase-space variables are Aai (x) and they have the Poisson bracket
{Aai (x), Abj(y)} = 2π

kCS
εijκ

abδ(x − y), which can be derived by calculating the canonical momenta corre-
sponding to Aaj (x).

20We only write the θ-dependence since we are integrating along ∂Σ ≈ S1 and the t-dependence is
completely fixed by θ.
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where fabc are the structure constants of g in the chosen basis. Expanding in terms of
modes

ãa(θ) =
1

kCS

∑
n∈Z

aame
−imθ, (2.70)

we find that this is nothing but a classical untwisted Affine Lie algebra21

− i{ãam, ãbn}? = ifabc ã
c
m+n +mkCSκ

abδm,−n. (2.71)

This is the well-known fact discussed earlier, namely that the boundary dynamics of
a Chern-Simons theory is given by a Wess-Zumino-Witten model, but derived from a
Hamiltonian point-of-view.

2.4.3 Asymptotic AdS3 Solutions and Asymptotic Symmetries

There is a problem with our analysis so far. Not all solutions (2.61) are admissible since
they do not all asymptote to AdS3. In [11] it was proposed to impose the additional
asymptotic fall-off condition22

(A−AAdS)
∣∣
∂M = O(1), (2.72)

which requires the difference between the configuration and AdS3 to be finite at ρ→∞.
There is a similar condition on Ā. Here the gauge configuration corresponding to pure
AdS3 is given by

A = b−1

(
L+ +

1

4
L−

)
b dx+ + L0 dρ,

Ā = −b
(
L− +

1

4
L+

)
b−1 dx− − L0 dρ.

(2.73)

Note that this crucially depends on the embedding sl(2,R) ↪→ g. For inequivalent embed-
dings, one will therefore obtain different theories. In order to see the consequence of this
extra condition on a general Lie (super)algebra g, it is convenient to use the triangular
(Gauss) decomposition (see appendix D)

g = g− ⊕ g0 ⊕ g+. (2.74)

This is just splitting the generators into negative, zero, and positive eigenvalues of adL0 :
g → g. Consider expanding A in the basis (2.13), with appropriate Z2 grading of the
coefficients in the case of Lie superalgebras. From the Baker-Campbell-Hausdorff theorem
we see that any generator with adL0 mode m, goes as emρ, and opposite for the other
sector. Using this, the asymptotic fall-off conditions (2.73) imply that a(x+) − L+ may
not contain components of positive adL0 eigenvalues

a(x+)− L+ ∈ g− ⊕ g0. (2.75)

This constraint essentially corresponds to those of Drinfeld-Sokolov reduction. It turns
out that these are first class constraints23, and they provide enough gauge invariance to

21This can also be derived directly from (2.66)
22See [67] and [68] for a generalization of these boundary conditions to include Schrödinger, Lifshitz

and warped AdS spacetimes, among others.
23Except a few cases which are not important for us.
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put the action into the so-called lowest weight gauge [58, 35]. In this gauge we have that
a(x+) = L+ + a−(x+) where

adL−a−(x+) = [L−, a−(x+)] = 0. (2.76)

Therefore, only generators with lowest possible mode m for each spin-s generator are kept.
It turns out that this completely fixes the gauge. The other sector can again be treated in
a similar way. In the case of g = shs[λ], we will write the connection for constant ρ-slices
as

a(x+) =

(
L

(2)
1 +

2π

kCS
◦
◦

∑
s≥ 3

2

[
1

NB
s

Ls(x+)L
(s)
−bsc+1 +

1

NF
s

ψs(x
+)G

(s)

−dse+ 3
2

])
dx+,

ā(x−) = −

(
L

(2)
−1 +

2π

kCS
◦
◦

∑
s≥ 3

2

[
1

NB
s

L̄s(x−)L
(s)
bsc−1 +

1

NF
s

ψ̄s(x
−)G

(s)

dse− 3
2

])
dx−,

(2.77)

where one has the freedom of choosing a convenient normalization. It turns out that Ls
and ψs can be identified with the bosonic and fermionic currents of the boundary CFT,
respectively, and can be thought of as conserved charges of the solutions. In particular,
L2 is related to the energy-momentum tensor.

Since the phase-space has been reduced even more by the additional constraint (2.72),
the canonical structure of the phase-space (2.71) is constrained. Drinfeld-Sokolov reduc-
tion constrains this affine Lie algebra and turns it into a W-algebra. There are essentially
two ways to proceed. Having turned the first-class constraints into second-class ones by
fixing the gauge to the lowest weight gauge, we can find the canonical Poisson brackets
by computing the Dirac bracket

{f, g}◦ = {f, g}? − {f, χα}?
(
C−1

)αβ {χβ, g}?, (2.78)

where C = {χα, χβ}? and χα denotes the constraints.24 This was for example explicitly
done for the case of g = sl(3,R) in [11], where the result was W3 which is exactly what is
expected from Drinfeld-Sokolov reduction.

Alternatively one can consider the most general gauge transformation Λ which leaves
the structure (2.77) invariant. For example in the case of g = shs[λ],

Λ = ◦
◦

∑
s≥ 3

2

( ∑
|m|≤bsc−1

η(s)
m L(s)

m +
∑

|r|≤dse− 3
2

ε(s)r G(s)
r

)
. (2.79)

From the condition of leaving (2.77) invariant, one finds that the highest mode variables
of (2.79) ηs ≡ η

(s)
bsc−1 and εs ≡ ε

(s)
dse−3/2, are free, and all other variables can be expressed

in terms of these. From this, one finds how the currents transform δLs and δψs, which can
be used to find the Poisson brackets of the algebra. For example, for the spin 2 current
one finds (with appropriate normalization)

δB2 L2 = 2L2 ∂η2 + ∂L2 η2 +
kCS
4π

∂3η2, (2.80)

24Which are just that all positive and negative modes (except the lowest ones) of a(x+) have to vanish.
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where δB2 means that we are only using the gauge transformation w.r.t. L2. If identifying
T = 2πL2 and kCS = 6

c , this is exactly how the energy-momentum tensor transforms,
and this can be used to derive the Virasoro algebra. For this particular algebra, the
analysis was done in25 [53] where the result of this reduction turns out to be the non-
linear SW∞[λ] algebra. This one-parameter family of algebras, parametrized by λ, are
N = 2 supersymmetric extensions of the Virasoro algebra with an infinite tower of higher-
spin fields.

We will not go into any of these details since we will give an alternative proof of
the emergence of N = 2 SW∞[λ] near the AdS3 boundary in section 5.2, using a more
holographic approach. We will in particular use aspects of the AdS/CFT dictionary to
directly derive the OPE’s of the boundary CFT current operators and thereby find higher-
spin extensions of N = 2 supersymmetry.

Before closing this section let us briefly comment on non-principal embeddings. Due
to the condition (2.72), this procedure is highly dependent on the sl(2,R) embedding of
g (which is of course a feature of Drinfeld-Sokolov reduction). For example, in the case
of g = sl(3,R) there are two possible sl(2,R) embeddings. The principal embedding gives
rise to the usual Zamolodchikov W3 algebra [69], while for the other embedding we find
an algebra usually denoted by W(2)

3 . This algebra was found independently by Polyakov
[70] and Bershadsky [71]. Different choices of sl(2,R) embedding correspond to different
AdS3 vacua with different boundary central charges and W-algebras, where the principal
embedding gives the highest central charge. In [72] it was shown that there exists a RG
flow from the W3 vacuum to the W(2)

3 one, and suggested that this is readily generalized
for more general algebras g. See also [73].

2.4.4 Higher-Spin Black Holes And Conical Defects

Having all exact solutions of the equations of motions, we will briefly mention a few
examples. The most famous solution of AdS3 gravity is definitely that for a rotating
massive black hole, called BTZ black hole [63]. We can easily embed this solution in the
shs[λ] gravity by putting all charges, Ls, L̄s, ψs and ψ̄s, to zero in (2.77), except that of
pure gravity (spin-2). Constant solutions of the form

L2 =
M − J

4π
, L̄2 =

M + J

4π
, (2.81)

correspond to BTZ black holes with angular momentum J and ADM mass M .
It is natural to ask what kind of solutions higher-spin theories have, in particular does

there exist a generalization of black holes in these systems? In [74] black holes with spin-3
charges were constructed in g = sl(3,R) gravity, and their thermodynamics analyzed, this
has subsequently been extended to g = sl(N,R) [75, 76] and most importantly g = hs[λ]
black holes [77]. As we will discuss in next section, only in the case of g = hs[λ] (and
supersymmetric extension thereof) it is known how to consistently couple massive matter
fields to the higher-spin theories, these are the Vasiliev theories. Recently the propagation
of scalars on higher-spin black holes in Vasiliev theory were studied in [78].

However, due to the higher-spin extension of diffeomorphisms, many aspects of these
black holes are not well understood. For example the usual notion of curvature known from

25Here we used the normalization given in (5.19) which is different form [53], but leads to more natural
results.
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Riemannian curvature, event horizons and singularities are not gauge invariant. It turns
out that by using higher-spin gauge transformations, one can transform higher-spin black
holes into traversable wormholes and thereby change the causial structure of spacetime
[72]. Therefore, there seems to be many conceptual problems to overcome in higher-spin
gravity theories.26

In the case of N = 2 SUGRA, higher-spin black hole solutions have been constructed
in the g = sl(N + 1|N) theory [52] [79], but not in the theory we are interested in here
based on shs[λ].

In sl(N,R) gravity, solutions with conical defects have also been found [80]. These
solutions might play an important role in solving certain problems with too many “light-
states” in the finite N regime of the higher-spin holographic dualities to be discussed
later.

In most parts of this thesis, we will Wick rotate the coordinates t→ iτ , which implies
that x+ → z, x− → −z̄.

2.5 Prokushkin-Vasiliev Theory on AdS3 and the Unfolded
Formalism

So far we have studied N = 2 higher-spin SUGRA with an infinite tower of fields based on
a shs[λ]k×shs[λ]−k Chern-Simons theory. This theory corresponds to the massless sector of
the N = 2 Vasiliev theory. In order to describe the coupling of massive matter multiplets
to the higher-spin fields, which makes the theory dynamical, one has to go beyond the
Chern-Simons formulation and shs[λ] algebra.27 In this section, we will give a very brief
review of the full non-linear Vasiliev theory on AdS3, as formulated by Prokushkin and
Vasiliev in [82, 83]. Then we will suggest a reformulation of the linearized equation which
will turn out to vastly simplify our calculation of three-point functions later in the thesis.
For more details see [82, 83, 24].28

The full non-linear Vasiliev equations are formulated using an associative algebra A,
constructed using several auxiliary variables and a Moyal ?-product in the following way.
Let yα and zα (α = 1, 2) be two commuting bosonic twistor variables, where their spinor
indices are raised and lowered as

yα = yβεβα, yα = εαβyβ, (2.82)

where εαβ is the anti-symmetric tensor satisfying εαβεβγ = −δαγ . We will use the notation
uv = uαv

α = −vαuα = −vu for contracted spinors. Beside these, we have two separate
sets of Clifford elements ψi (i = 1, 2) and (k, ρ) satisfying the usual relations

{ψi, ψj} = 2δij , {k, ρ} = 0, k2 = ρ2 = 1. (2.83)
26We have done some interesting attempts on defining killing tensor fields and maximal symmetric

spaces in the context of higher-spin geometry. These studies are however not complete and therefore not
included in this thesis.

27So far it is not known how to formulate the coupling of the massive scalar fields from the Chern-
Simons theory point of view. A deeper understanding of this seems to be needed if one wants to derive the
holographic duality studied in this thesis. Some progress in this direction has been achieved in a paper
published very recently [81].

28The so-called unfolded formalism is quite unusual and involves towers of auxiliary fields. We will
however not motivate the formalism due to lack of time, but interested readers can look at the reviews
and original papers cited.
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All auxiliary variables commute with ψ1,2. Furthermore ρ and k commute and anti-
commute with the twistor variables yα, zα, respectively,

{k, yα} = 0, {k, zα} = 0, [ρ, yα] = 0, [ρ, zα] = 0. (2.84)

A generic spacetime function mapping to this algebra has the following form

A(z, y;ψ12, k, ρ|x) =

1∑
B,C,D,E=0

∞∑
m,n=0

1

m!n!
ABCDEα1...αmβ1...βn(x) kBρcψD1 ψ

E
2 z

α1 . . . zαmyβ1 . . . yβn .

(2.85)
For our purposes, we will assume that the space-time functions ABCDEα1...αm β1...βn

(x) are
symmetric in the spinor indices. Furthermore, the Grassmann parity of the coefficients
ABCDEα1...αm β1...βn

(x) is equal to the number of spinor indices mod 2 and they are defined to
commute with all the generating elements yα, zα, k, ρ and ψ1,2. Thus, commutators of
functions of the form (2.85) will automatically turn into supercommutators of polynomials
of yα, zα, k, ρ and ψ1,2.

In order to formulate the theory, we also need the ?-product defined on functions of y
and z given by

(f ? g)(z, y) =
1

(2π)2

∫
d2ud2v exp(iuαv

α) f(z + u, y + u) g(z − v, y + v). (2.86)

This product turns out to be associative and have a regularity property; the product
of two polynomials will also be a polynomial in y and z. Defining the ?-commutator
[V,W ]? = V ? W −W ? V , it turns out that we have the following commutators

[yα, yβ]? = −[zα, zβ]? = 2iεαβ, [yα, zβ]? = 0. (2.87)

One can show that the basic variables yα and zα behave as derivatives, in particular for
a very general class of functions [82] we have [yα, f ]? = 2i ∂f∂yα and [zα, f ]? = −2i ∂f∂zα .
Note that, the star product only operates on the twistor components, but the order of all
auxiliary variables is important due to the relations (2.83) and (2.84).

Vasiliev theory is formulated in terms of three generating functions depending on
spacetime coordinates and the auxiliary variables

W = Wµ(z, y;ψ1,2, k, ρ|x)dxµ,
B = B(z, y;ψ1,2, k, ρ|x),

Sα = Sα(z, y;ψ1,2, k, ρ|x).

(2.88)

The spacetime 1-form W is the generating function of the higher-spin fields, the 0-form
B is the generating function of the massive matter fields, while Sα describes pure gauge
degrees of freedom and is necessary for consistent internal symmetries. The full set of
non-linear Vasiliev equations are then given by

dW −W ? ∧W = 0,

dB + [B,W ]? = 0,

dSα + [Sα,W ]? = 0,

Sα ? S
α + 2i(1 +B ? K) = 0,

[Sα, B]? = 0,

(2.89)
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where K = kezy is the Kleinian. The first equation turns out to be the flatness conditions
for the massless sector, as we saw in last section. The second equation is the coupling
between the matter fields and the higher-spin fields, while the rest are needed due to
consistency. For example the last two constraints guarantee that local Lorentz invariance
remains unbroken to all orders of interaction. It turns out that there exists an involutive
automorphism ρ→ −ρ, Sα → −Sα which can be used to truncate the system such thatW
and B become ρ-independent, while Sα(z, y;ψ1,2, k, ρ|x) = ρ sα(z, y;ψ1,2, k|x). This is the
system studied in this thesis and in [82, 83]. One can readily check that these equations
are invariant under the following set of ρ-independent local higher gauge transformations,
parametrized by ε = ε(z, y;ψ1,2, k|x)

δW = dε+ [ε,W ]?,

δB = [ε, B]?,

δSα = [ε, Sα]?.

(2.90)

Note that the equations of motion and gauge transformations for the higher-spin fields
look very similar to usual Chern-Simons theory. As mentioned earlier, the commutators in
(2.89) and (2.90) are actually supercommutators of polynomials of the generating elements,
yα, zα, k and ψ1,2.

2.5.1 Vacuum Solutions

The full non-linear theory is very difficult to work with. Luckily it turns out that we
only need to consider a particular linearization of the theory for our purposes. First we
consider vacuum solutions of the Vasiliev equations (2.89), in which the matter fields take
a constant value

B(0) = ν = constant. (2.91)

With this ansatz the second and the last equations of (2.89) are trivially satisfied, while
the vacuum solutions of W and Sα have to satisfy the three remaining ones

dW (0) −W (0) ? ∧W (0) = 0,

dS(0)
α + [S(0)

α ,W (0)] = 0,

S(0)
α ? S(0)α + 2i(1 + νK) = 0.

(2.92)

In [82] three different solutions to the third equation are given, but they are all in the
same gauge equivalence class. The simplest is

S(0)
α = ρ z̃α, where z̃α = zα + ν(zα + yα)

∫ 1

0
dt t eit zy k.

Since dS(0)
α = 0, the second equation of (2.92) reduces to [S

(0)
α ,W (0)] = 0. In order to

solve this constraint, one can show that the element

ỹα = yα + ν(zα + yα)

∫ 1

0
dt (t− 1) eit yz k (2.93)

satisfies the following commutation relations

[ỹα, ỹβ]? = 2iεαβ(1 + νk), {ỹ, k} = 0, (2.94)
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and most importantly
[ỹα, S

(0)
β ] = 0. (2.95)

Now the constraint [S
(0)
α ,W (0)] = 0 is solved if W (0) depend only on ψ1,2, k and ỹα (and

not z), since they all commute with S(0)
α . We will call the associative algebra generated

by ỹα, k and ψ1,2, AS .
Note the remarkable feature of (2.94), that the vacuum constant ν is deforming the

oscillators yα (ν = 0) into the so-called deformed oscillators ỹα. This means that ν
is parametrizing a continuous family of inequivalent AdS3 vacua (2.91), in which the
symmetry algebra is continuously deforming. As we will see later, the higher-spin gauge
symmetry is so constraining that even the masses of the matter fields are completely fixed
by ν.

2.5.2 Linearized Dynamics of Matter Fields

Next we will consider linearized fluctuations of the matter fields around their vacuum,
propagating on the higher-spin background W (0)

B(z, y;ψ1,2, k) = ν + C(z, y;ψ1,2, k). (2.96)

In this thesis we will neglect all fluctuations around W (0) and S
(0)
α . Thus we do not

consider higher order effects like backreaction of the matter on the higher-spin fields and
interactions among the matter fields. See [82] for more about this. Inserting (2.96) into
(2.89) we get two non-trivial equations

dC + [C,W (0)]? = 0,

[S(0)
α , C]? = 0.

(2.97)

The second equation is solved by demanding that C is a spacetime function mapping into
the algebra AS . In other words, we have now found that both

C = C(ỹ; k, ψ1,2|x) and W (0) = W (0)(ỹ; k, ψ1,2|x)

are elements of AS in the linearized approximation. We can now get rid of the ψ1,2 Clifford
elements and find the equations of motion of the physical fields. For this we need to define
the projection operators

P± =
1± ψ1

2
, (2.98)

with the following properties

P±P∓ = 0, P2
± = P±. (2.99)

The usual gauge fields known from AdS3 gravity, A and Ā are extracted as [84]

W (0) = −P+A− P−Ā.

One way to understand this, is that if one finds the pure AdS3 solution, then W (0) =
w0 + ψ1e0, where e0 and w0 is the vielbein and spin connection, respectively. Thus the
above decomposition is related to (2.4). Inserting this into the equations of motion for
W (0) (2.92), we find the Chern-Simons flatness conditions

dA+A ? ∧A = 0, dĀ+ Ā ? ∧Ā = 0. (2.100)
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The matter fields can be decomposed as

C(ỹ; k, ψ1,2|x) = Caux(ỹ; k, ψ1|x) + Cdyn(ỹ; k, ψ1|x)ψ2. (2.101)

It turns out that Caux does not describe any propagating degrees of freedom and can
consistently be put to zero. The dynamical part Cdyn can be decomposed as

C(ỹ; k, ψ1,2x) = C(ỹ; k|x)P+ ψ2 + C̃(ỹ; k|x)P− ψ2. (2.102)

By using the identity P±ψ2 = ψ2P∓, equation (2.97) finally reduces to

dC +A ? C − C ? Ā = 0,

dC̃ + Ā ? C̃ − C̃ ? A = 0.
(2.103)

These are the equations we will use in this thesis in the calculation of three-point functions
from the bulk perspective. The associative algebra generated by ỹα and k modulo the
relations (2.94) is known as Aq(2, ν) [85]. The physical fields in this algebra are expanded
as

C(ỹ; k|x) =

1∑
B=0

∞∑
n=0

1

n!
CBα1...αn(x) kB ỹα1 ? · · · ? ỹαn ,

A(ỹ; k|x) =

1∑
B=0

∞∑
n=0

1

n!
ABα1...αn(x) kB ỹα1 ? · · · ? ỹαn ,

(2.104)

and similarly for C̃ and Ā. The element k doubles the spectrum. This is needed in order
to have N = 2 supersymmetry. We can project out two sectors of the generating functions
for the matter content as

C(ỹ; k|x) = Π+C
+(ỹ|x) + Π−C

−(ỹ|x), where Π± =
1± k

2
. (2.105)

There is an analogous decomposition for C̃. The lowest components φ± ≡ C±0 and ψ± ≡
C±α correspond to two complex scalars and two fermions, respectively. The are also four
corresponding fields from C̃±. All these fields form two sets of 3d N = 2 hypermultiplets

(φ+, ψ+, ψ−, φ−) and (φ̃+, ψ̃+, ψ̃−, φ̃−). (2.106)

These are the matter fields of the Vasiliev theory and key elements of higher-spin holog-
raphy. The functions CBα1,...,αn , for n > 1, are auxiliary fields and can all be written as
sums of derivatives of the physical fields, using the equations of motion (2.103).

The algebra Aq(2, ν) contains the bosonic subalgebra of even elements C(ỹ; k|x) =
C(−ỹ; k|x), which can be decomposed as AqE(2, ν) ⊕ AqE(2,−ν) [85] by the projection
operator Π± = 1±k

2 . Here AqE(2, ν) consists of symmetrized products of even number of
ỹ elements, and is isomorphic to the non-supersymmetric higher-spin algebra Aq(2, ν) ≈
hs[1−ν

2 ]. This implies that the bosonic fields of C± and C̃± can be described purely by
using hs[λ], instead of Aq(2, ν). This fact would have made the calculation of three-point
functions much simpler, but unfortunately we discovered this important detail toward the
final stages of this thesis. We will therefore not use the basis obtained from the projection
operators Π±. The upshot of using our more “unnatural” basis is that we can find the full
structure constants of Aq(2, ν) as described below.

From these facts we can conclude that there is a non-supersymmetric truncation by
restriction to even polynomials of ỹα and projecting k = ±1. This was recently used in
[84]. There exists also am N = 1 truncation [82, 83].
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2.5.3 Modified Vasiliev Formalism

The traditional Vasiliev formalism as we have briefly outlined above is very tedious to
work with. Mainly due to the fact that it requires us to multiply symmetrized products
of the deformed oscillators ỹα, then by using the relations (2.94) write the result in terms
of symmetrized products of ỹα. Everything would become much simpler if we had explicit
expressions for the structure constants of Aq(2, ν). We will turn to this issue now.

The canonical infinite-dimensional Lie superalgebra corresponding to Aq(2, ν) is called
hs(2, ν) [83], with the Z2-grading given by the number of spinor indices modulo 2. The
flatness conditions (2.100) involve only (anti-)commutators when written in component
form. So turning off the matter content, the theory will only depend on the Lie algebra
hs(2, ν) ≈ shs[λ] and not the full Aq(2, ν). This is nothing but the shs[λ]kCS × shs[λ]−kCS
Chern-Simons higher-spin SUGRA discussed earlier. Since we know that shs[λ] has an
associative extension, it is natural to conjecture that Aq(2, ν) is isomorphic to SB[µ]. This
is actually trivial to see. Using the following following identifications

Gα =

(
−i
4

)1/2

ỹα and ν = 2c = 4λ− 1, (2.107)

the identities (2.94) and (2.52) are equivalent. Thus we have the isomorphism Aq(2, ν) ≈
SB[µ] and sh(2, ν) ≈ shs[λ] with λ = ν+1

4 . By looking at the (anti-)commutators of the
osp(1|2) and osp(2|2) together with appendix B of [84], it is clear that the shs[λ] generators
are (possibly up to constants) related to the Aq(2, ν) generators by(

−i
4

)t−1

Stm,

(
−i
4

)t−1

Stm k, (2.108)

where Stm is a symmetric product of 2(t − 1) ỹα’s with N± of y± 1
2
and 2m = N+ − N−.

The first set of generators are related to L(s)+
m and G

(s)+
m for integer and half-integer t,

respectively. The second set of generators are similarly related to L(s)−
m and G(s)−

m , however
for the U(1) R-symmetry generator, we have L(1)−

0 = k + ν. We will however not need
the explicit mapping between SB[µ] and Aq(2, ν) in this thesis, only the fact that they
are isomorphic. This is a truly marvelous fact, since we explicitly know the structure
constants of SB[µ].

We will hereby modify the traditional Vasiliev formalism by changing Aq(2, ν) into
SB[µ]. In this formalism the expansions (2.104) of the generating functions are given as

A =
∞
◦
◦

∑
s=1

∑
|m|≤s−1

Asm L(s)
m +

∞
◦
◦

∑
s= 3

2

∑
|r|≤s− 3

2

Asr G
(s)
r ,

C =

∞
◦
◦

∑
s=1

∑
|m|≤s−1

Csm L(s)
m +

∞
◦
◦

∑
s= 3

2

∑
|r|≤s− 3

2

Csr G
(s)
r ,

(2.109)

and similarly for C̃ and Ā. Note that we can easily distinguish the bosonic components Csm
from the fermionic ones Csr , since m is always an integer while r is half of an odd integer.
In this formalism, the physical scalars φ± and fermions ψ±, are given by appropriate

superpositions of the lowest components C1
0 , C

3
2
0 ,
{
C

3
2

+ 1
2

, C
3
2

− 1
2

}
and

{
C2

+ 1
2

, C2
− 1

2

}
. We will

later derive the Klein-Gordon equations for the scalar, find the correct superpositions and
show that this modified formalism gives rise to the correct masses.



Chapter 3
Extended Symmetries and

W-Algebras

Two dimensional conformal field theories enjoy a vast extension of their symmetry algebra
compared to their higher-dimensional counterparts. The energy-momentum tensor splits
into holomorphic and anti-holomorphic parts T (z, z̄) = T (z) + T̄ (z̄), and there are an
infinite number of conserved currents in the theory given by J (2)(z) = ω(z)T (z) and
J̄ (2)(z̄) = ω̄(z̄) T̄ (z̄). These satisfy

∂̄J (2)(z) = 0 and ∂J̄ (2)(z̄) = 0, (3.1)

for arbitrary holomorphic and anti-holomorphic functions, ω(z) and ω̄(z̄), respectively.
These conserved currents give rise to the infinite-dimensional Virasoro algebra

[Ln, Lm] = (n−m)Lm+n +
c

12
n(n2 − 1)δm+n,0, (3.2)

where Ln are the Laurent modes of the energy-momentum tensor T =
∑

n z
−n−2Ln. Here

c is a central element and acts as a constant value on irreducible representations due to
Schur’s lemma, called the central charge. There is also a copy of the Virasoro algebra
for the anti-holomorphic sector. Since the holomorphic and anti-holomorphic sectors of a
CFT are completely decoupled on the sphere, we will restrict the discussion to one sector
only.

As discussed in appendix C, two-dimensional CFT’s essentially reduce to representa-
tion theory of the Virasoro algebra. One amazing result is that all unitary representations
of the Virasoro algebra for 0 < c < 1 form a discrete sequence, known as the Virasoro
minimal models. At these particular values of c, the Verma modules are not irreducible
(nor fully reducible) due to null-states forming orthogonal sub-modules which have to be
projected out. Due to these null-states, these theories are extremely constrained. One
can even, at least in principle, find all correlation functions in these theories purely based
on symmetries. The special feature of these minimal models is that the spectrum can be
organized into a finite number of irreducible representations, also called Virasoro primary
fields or states. All CFT’s with c > 1 will always contain an infinite number of Virasoro
primary fields. For a review of two-dimensional conformal field theories, see appendix C.

There is however, a way to extend the success of Virasoro minimal models. Conformal
field theories with primary fields Q(s)(z) of dimension (h, h̄) = (s, 0), where s is an integer

32
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or half-integer, will have additional conserved currents J (s)(z) = ω(z)Q(s)(z) satisfying

∂̄J (s)(z) = 0. (3.3)

These extra conserved currents will extend the Virasoro algebra with an infinite set of ad-
ditional generators. CFT’s in which the spectrum can be organized into a finite number of
families, w.r.t. an extended symmetry algebra, are called rational conformal field theories
(RCFT). These theories have a lot of amazing structure which opens up the possibility
of axiomatic formulation, see more details in appendix C or in the works of Moore and
Seiberg [18, 21, 22].

In this chapter we will very briefly discuss supersymmetric and higher-spin extensions
of the Virasoro algebra. Hereafter we will introduce a large class of N = 2 superconformal
field theories based on the N = 1 WZW coset construction, called the Kazama-Suzuki
models. These models originally played an important role in compactification of super-
string theory on Calabi-Yau manifolds which are, surprisingly, related to N = 2 super-
conformal theories.1 Unlike another famous construction, the so-called Gepner models,2

Kazama-Suzuki models do not lead to extra U(1) factors which are generally anomalous
and cause problems at string loop level. Our interest in these models is however different.
A subclass of these models have higher-spin symmetries and are conjectured to be dual
to the Vasiliev theory discussed earlier.

3.1 Higher-Spin Currents and W-algebras

As discussed above, extensions of the Virasoro algebra are possible if the CFT contains
holomorphic primary fields of spin s. The most famous and important example is when
s = 1 currents are present in addition to the Virasoro algebra. In this case the chiral
algebra will be a semi-direct product of an untwisted affine Lie algebra ĝk and the Virasoro
algebra. These type of currents are generally present in Wess-Zumino-Witten models. The
Virasoro algebra is actually contained in the universal enveloping algebra of ĝk, where
it can be identified with the second order Casimir, and therefore the full CFT can be
formulated without the need for an action. This is called the Sugawara construction and
is reviewed in appendix C.

The first systematic analysis of higher-spin symmetries was done by Zamolodchikov
[69]. Assume that there is one additional holomorphic spin-s field Q(s) in addition to
the energy-momentum tensor. In the absence of other fields, the fusion rules must be of
the form Q(s) × Q(s) = 1 + Q(s), or written schematically in terms of operator product
expansions

Q(s)(z)Q(s)(w) ∼ a [1] + b [Q(s)]. (3.4)

The full expression is given in equation (C.46), where the sum over p only include the
identity operator and Q(s). The notation [φ] denotes the contribution of the conformal
family corresponding to φ, i.e.

[φ] = x−2s+hφ
(
1 + xβφ,{1}s,s L−1 + x2 βφ,{1,1}s,s L2

−1 + x2 βφ,{2}s,s L−2 + . . .
)
φ, (3.5)

1For an introduction of Calabi-Yau compactification and their relation to N = 2 superconformal
theories see for example [86].

2These models are constructed by tensoring several Virasoro minimal models such that c = 9. The
“reducibility” of these models leads to extra U(1) factors, when used in the context of compactification.
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where x = z − w. Note that the energy-momentum tensor is contained in [1] since
L−21 = T , it is actually the lowest non-zero term. All the coefficients above are completely
fixed by the Virasoro algebra and can be determined as a function of s, hφ and the central
charge c, see for example equation (C.48). The value of a depends on the normalization of
Q(s) and is conventionally chosen such that a = c/s. The OPE (3.4) is therefore completely
fixed by conformal invariance except for two free parameters, the central charge c and the
coefficient b. By calculating the β coefficients, Lm−n1 and Lm−nQ

(s) for low m and n as
described in appendix C and references, one will find the following general OPE

Q(s)(z)Q(s)(w) ∼ c/s

(z − w)2s
+

2T (w)

(z − w)2s−2
+

∂T (w)

(z − w)2s−3
+

3
10 ∂

2T (w) + 2γ Λ(w)

(z − w)2s−4

+
1
15 ∂

3T (w) + γ ∂Λ(w)

(z − w)2s−5
+ · · ·+ bQ(s)

(z − w)s
+

b/2 ∂Q(s)

(z − w)s−1
+ . . . ,

(3.6)

where γ = (5s+ 1)/(22 + 5c) and Λ(w) = N (TT )(w)− 3
10∂

3T (w). Note that if Q(s) is a
fermion then b = 0.

There is one problem remaining. In order for the complete operator algebra TT , TQ(s)

and Q(s)Q(s) to be associative, we need to check that the crossing symmetries of the four-
point functions are satisfied (see for example equation (C.53)). It turns out that it is not
always possible to satisfy the associativity conditions for all values of b and c, we will take
a few examples below. Before we proceed, let us mention an alternative route to take. It is
possible to write down general commutation relations of Laurent modes of quasi-primary
fields [87], which can be used to systematically look for extended symmetry algebras. In
this approach the consistency constraints on the four-point functions is replaced by Jacobi
identities [88, 89].

3.1.1 Spin-1
2
Fermions and ŝo(N)1 Current Algebra

We will start by considering N real fermions ψi, 1, . . . , N . For appropriate normalization
of the currents, the currents will have the OPE’s

ψi(z)ψj(w) ∼ δij

z − w
. (3.7)

Thus we find the usual free fermion OPE’s, but no interesting extension of the Virasoro
algebra. However, due to its importance in connection with Kazama-Suzuki coset models
consider the following set of currents

ja(z) =
1

2
N
(
ψi taij ψ

j
)
, (3.8)

where ta, a = 1, . . . , N(N−1)
2 , are the generators of so(N) in the vector representation. The

OPE between spin-1 currents ja(z), is of the form (C.78) with k = 1 and the structure
constants are those of so(N). This implies that N real spin-1

2 fermions generate the ŝo(N)1

affine Lie algebra with the central charge c = N
2 .

3.1.2 Spin-1 Currents and Affine Lie Algebras

For s = 1, if Q(1) is a multicomponent field of (c/k)1/2Ja, a = 1, . . . , d, then the general
OPE will be of the form (C.78). Here κab and fabc are forced to be symmetric and anti-
symmetric in their indices, respectively. Furthermore the crossing symmetries of the four-
point functions

〈
Ja1(z1) . . . Ja4(z4)

〉
translate into Jacobi identities for fabc . Taking into
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account the TT and TJa OPE’s, we conclude that for this case the algebra is a semi-direct
product of an affine Lie algebra and the Virasoro algebra. See section C.2 and C.3 for
more discussion about this class of theories, and appendix E for more details about affine
Lie algebras.

By the addition of a spin-1
2 current, one can construct affine Lie superalgebras. This

we will return to.

3.1.3 Spin-3
2
Currents and Superconformal Algebras

Now assume that Q( 3
2

) ≡ G is a spin s = 3
2 holomorphic primary field, then from (3.6) it

is clear that it has the OPE

G(z)G(w) ∼ 2c/3

(z − w)3
+

2T (w)

z − w
. (3.9)

Translating the above OPE and T (z)G(w), which just states that G is a primary with
h = 3

2 , into (anti-)commutators of their modes we find[
Lm, Gr

]
=
(m

2
− r
)
Gm+r,

{
Gr, Gs

}
= 2Lr+s +

c

3

(
r2 − 1

4

)
δr+s,0. (3.10)

This, together with the commutators [Lm, Ln], form the N = 1 Virasoro algebra in the
Ramond-sector, if r, s ∈ Z, or the Neveu-Schwarz sector, if r, s ∈ Z + 1

2 . We will only
consider the Neveu-Schwarz sector in this thesis. The set of generators {L0, L±1, G± 1

2
}

form a global osp(1|2) subalgebra, extending the definition of quasi-primary fields. We
thus conclude that adding one spin s = 3

2 field, one finds the supersymmetric extension of
the Virasoro algebra, and G is the supercharge.

One can now readily define the notion of N = 1 superconformal primary fields in
an obvious way. Extending the discussion of Verma modules and null-states given in
appendix C, one can show that for 0 < c < 3

2 , unitary highest weight representations are
only possible at the following discrete values of the central charge

c =
3

2

(
1− 8

(m+ 2)(m+ 4)

)
. (3.11)

This clearly demonstrate the power of extended symmetries. One can find a new class of
minimal models for c > 1 by introducing supersymmetry. For m = 1 we have c = 7

10 .
This is the only CFT in this sequence which is also a Virasoro minimal model. This is
nothing but the tri-critical Ising model, and it is quite surprising to find supersymmetry
in this model.

3.1.4 N = 2 Superconformal Algebra

In order to construct extended superconformal theories, we need to add several spin-3
2

fields Gi, i = 1, 2, . . . ,N , and several spin-1 currents which transform these supercharges
into each other. The spin-1 currents correspond to internal R-symmetry and span by
themselves an affine Lie algebra. By an obvious generalization of the equation (3.4), and
thereby (3.6), one can allow for multiple fields and thereby derive the most general OPE’s
for this model.

In this thesis we are however only interested in N = 2 superconformal symmetry and
will give the results without further details. Here we need two spin-3

2 supercharges G±
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and a SO(2) ≈ U(1) spin-1 current j. Using a basis such that G± have a definite U(1)
charge, we find the following set of OPE’s [90, 91]

G±(z)G∓ ∼ 2c/3

(z − w)3
± 2j(w)

(z − w)2
+

1

z − w

(
2T (w)± ∂j(w)

)
,

j(z)G±(w) ∼ ±G
±(w)

z − w
,

j(z)j(w) ∼ c/3

(z − w)2
,

G±(z)G±(w) ∼ 0,

(3.12)

together with a set of obvious OPE’s Tj and TG±. Most importantly, the N = 2 super-
conformal algebra exists for all values of c. One can again show that the extra symmetry
extends the set of RCFT’s, in fact all N = 2 minimal models exist for a discrete sequence
of central charges in the range 1 ≤ c < 3 [92, 93].

One can readily construct algebras with SO(N) or U(N) internal symmetry (leading
to ŝo(N) affine Lie subalgebras), but for high enough N these turn out not to form Lie
algebras due to non-linear terms. These, so-called Knizhnik-Bershadsky algebras, can
be vastly extended [50], see [49] for their construction using quantum Drinfeld-Sokolov
reduction. We will return to these aspects momentarily.

3.1.5 Spin-5
2
Currents

It turns out that adding only a spin-5
2 current, does not lead to any interesting conformal

field theories. The associativity of the operator algebra (materialized in the crossing
symmetry), restricts the central charge to c = −13

14 . Not only is this just one particular
value, its also a non-unitary CFT due to its negativeness.

3.1.6 Spin-3 Currents and the W3 Algebra

The most interesting thing, for the purposes of this thesis, happens when adding a spin-3
Q(3) ≡W 3 current. Note that a term (z−w)−3W 3 is not allowed in aW 3(z)W 3(w) OPE,
since they have contradicting symmetry properties under the transformation z → w. Thus
the constant b in (3.6) is zero, and we can directly write down the OPE

W 3(z)W 3(w) ∼ c/3

(z − w)6
+

2T (w)

(z − w)4
+

∂T (w)

(z − w)3
+

3
10 ∂

2T (w) + 2γ3 Λ(w)

(z − w)2

+
1
15 ∂

3T (w) + γ3 ∂Λ(w)

z − w
,

(3.13)

where γ3 = 16
22+5c . Calculating the four-point function 〈W

3(z1)W 3(z2)W 3(z3)W 3(z4)〉, one
finds that the crossing symmetry conditions are fulfilled for any c. Using the techniques
of appendix C, we find the following commutation relations for the W 3 Laurent modes

[W 3
m,W

3
n ] =

16

22 + 5c
(m− n)Λm+n + (n−m)

[ 1

15
(m+ n+ 2)(m+ n+ 3)− 1

6
(m+ 2)(n+ 2)

]
Lm+n

+
c

360
(m2 − 4)(m2 − 1)mδm+n,0,

(3.14)
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where
Λm =

∑
n∈Z

Lm−nLn −
3

10
(m+ 3)(m+ 2)Lm. (3.15)

The important thing to notice is that this is not a Lie algebra due to the non-linear terms
Λm, a Lie algebra is however obtained in the limit c→∞. This non-linear algebra, is the
unique algebra obtained by adding a spin-3 current to the Virasoro sector and is called
the W3 algebra. In the c→∞ limit, the wedge3 elements form sl(3) and this is a feature
that generalizes for more generalW algebras, and will play a crucial role in our arguments
in section (5.4).

This enhancement of symmetry again allows for an extension of RCFT’s. The W3

algebra has degenerate representations which lead to minimal models at the following
values of the central charge

c = 2

(
1− 12

m(m+ 1)

)
, m = 4, 5, . . . . (3.16)

The only CFT among these which is also a Virasoro minimal model is for m = 4, with
the central charge c = 4

5 . This is 3-state Potts model (see equation (C.112)), which we
analyze from the WZW coset construction in section C.3.1.1.

3.2 W-algebras

TheW3 algebra discussed above can be generalized vastly, by adding various combinations
of higher-spin currents. There are in general two classes of W-algebras; (i) “generic” W
algebras which exist for any central charge c, or (ii) “exotic” W-algebras which only exist
for special values of c. We will only be interested in generic W algebras here.

There are several different ways to construct W algebras. Above we used the direct
construction, which entails adding a higher spin current, finding the general OPE’s by
conformal symmetry, closing the algebra and checking that the associativity conditions
are fulfilled. The last step is the most difficult one. The direct construction has been
systematized in various ways and many new algebras have been found by adapting the
algorithms to a computer.

Beside this, we will highlight two different methods. The first entails constructing
higher-spin currents in a WZW coset model by a natural generalization of the Sugawara
construction. The second is called quantum Drinfeld-Sokolov reduction and is a quantum
version of the classical construction discussed in the previous chapter. Quantum DS-
reduction is the most systematic and powerful technique available to constructW algebras,
and even gives rise to a functor between the representation categories of Affine Lie algebras
and W algebras.

Due to lack of time, we will (to the regret of the author) review these beautiful con-
structions in an unjustifiable, short and crude way.4

3Here by wedge elements we mean the subset of generators of the chiral algebra, such that the modes
of a spin-s element W s

m is restricted to |m| ≤ s − 1. For example the wedge elements of the Virasoro
algebra are L0 and L±1, and they form the wedge subalgebra sl(2).

4For a general review of W-algebras see [58]. For a particularly readable account of classical and
quantum Drinfeld-Sokolov reduction see the PhD thesis of Tjin Tjark [59]. In this thesis the concept of
finite W-algebras is also defined. This has grown into an interesting topic in mathematics, however any
physical applications are not known to the author.
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3.2.1 Generalized Sugawara Construction and Casimir Algebras

In appendix C, we saw that for any untwisted Affine Lie algebra ĝk (see figure F.2), one can
define a CFT by the Sugawara Construction. In this approach the Energy-Momentum
tensor is given by the second-order Casimir5 of ĝk with an appropriate normalization
constant.

A natural extension to higher-spin symmetries involves Casimir algebras. For any
simple finite dimensional Lie algebra g of rank r, the center of the universal enveloping
algebra U(g) is r dimensional and spanned by the set of (higher-order) Casimirs of g.
To any of the Casimirs of g, we can associate an operator belonging to the universal
eneloping algebra U(ĝk), corresponding to the affinization of g. In [94] a generalization of
the Sugawara construction was proposed using these operators

Qs(z) =
∑

a1a2...as

da1a2...asN (Ja1Ja2 . . . Jas) (z), (3.17)

where da1a2...as is some completely symmetric traceless tensor. It turns out that Qs(z)
is a primary field with conformal weight h = s, except for s = 2 which is the Sugawara
energy-momentum tensor.

Except for specific values of c, the Casimir algebras do not close. Let us consider the
simplest example ĝ = A

(1)
2 = ŝu(3), in which there are a second-order and a third-order

Casimir operator. The OPE between the spin-3 operator can be shown to be of the form
[94]

Q3(z)Q3(w) ∼ c/3

(z − w)6
+

2T (w)

(z − w)4
+

∂T (w)

(z − w)3
+

3
10 ∂

2T (w) + 2γ3 Λ(w) +R4(w)

(z − w)2

+
1
15 ∂

3T (w) + γ3 ∂Λ(w) + 1
2∂R

4(w)

z − w
, (3.18)

where R4(z) is a new spin-4 primary field which cannot be written purely in terms of the
Casimirs Q2 ≡ T and Q3. Since dim su(3) = 8 and the dual Coxeter number is g∨ = 3,
from the equation (C.82) we find the central charge c = 8k

k+3 . A careful analysis show that
the spin-4 field become a null-field for k = 1 and decouple from the algebra [94]. Thus
the Casimir algebra only close for c = 2, in which it is equivalent to the Zamolodchikov
W3 algebra (3.13).

A clue of how to close the Casimir algebra comes from equation (3.16), which is actually
the central charge of the WZW coset ŝu(3)k⊕ŝu(3)1

ŝu(3)k+1
withm = k+3. This actually turn out to

be right idea to pursue. In [95] a spin-3 primary was constructed in the universal enveloping
algebra U(ŝu(3)k ⊕ ŝu(3)1) which commutes with the diagonal subalgebra ŝu(3)k+1, and
hence is a primary of the coset. This Casimir algebra indeed close for all c in (3.16), and
give a realization of W3 minimal models.6

5Note that these “Casimirs” are not part of the center of U(ĝk), since they do not commute with all the
affine Lie algebra elements. Their zero-modes are however Casimirs of the finite Lie algebra’s g and they
naturally extend to elements of U(ĝk). We will therefore talk about Casimirs of ĝk by abuse of language.

6By straightforward calculations, one can show that the Casimir algebra does not close for cosets
ŝu(N)k⊕ŝu(N)l

ŝu(N)k+l
where l ≥ 2 and other fields are needed. This is actually not surprising at all. For example

in the simplest case when N = 2 and l = 2, we find the coset (C.103), which is a realization the N = 1
minimal models. The chiral algebra thus contain a spin- 3

2
field, which cannot be realized by a Casimir.
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These conclusions can actually be generalized. The cosets

ŝu(N)k ⊕ ŝu(N)1

ŝu(N)k+1
, (3.19)

give rise to WN minimal models with the central charges (using equation (C.100))

c = (N − 1)

[
1− N(N + 1)

p(p+ 1)

]
≤ N − 1, (3.20)

with the parameter p given by p = k + N ≥ N + 1. The WN algebra is generated
by Casimir elements of ŝu(N)k ⊕ ŝu(N)1 which commute with the diagonal subalgebra
ŝu(N)k+1. Note that for N = 2 we just recover the Virasoro minimal models. This
is a beautiful illustration of the powers of the coset construction, the generalization is
extremely natural.

In the limit k → ∞ we have that c = N − 1 and the symmetry algebra is equivalent
to the Casimir algebra of ŝu(N)1 (since the other factors can be “divided out”). This is in
agreement with the N = 3 discussion above. This algebra at level k = 1 can actually be
constructed purely from free bosons.

The above results play a central role in non-supersymmetric higher-spin holography.

3.2.2 Quantum Drinfeld-Sokolov Reduction

Quantum Drinfeld-Sokolov reduction is the most systematic and general approach to con-
struct W-algebras and their representations. The basic idea is as follows. Starting from
an affine Lie algebra ĝ at level k, we will impose a set of constraints by using a BRST
operator approach. The reduced algebra, W[g, k], is a W-algebra associated to ĝk and
given from the zeroth BRST cohomology class.

It pains the author that due to lack of time we have to skip the details of this beautiful
topic. The reader might want to start from the review [58]. Drinfeld-Sokolov reduction
of ŝl(N)k gives rise to the WN algebra and was first done by Feigin and Frenkel [96]. In
cohomology calculation (using spectral sequences) is done in a much smarter and simpler
way by switching the role of the double complex in the thesis [59].

3.3 N = 2 Kazama-Suzuki models and Super W-algebras

We have so far briefly discussed some aspects of W-algebras and WN minimal models,
which play a central role in non-supersymmetric higher-spin holography. In this thesis we
are mainly interested in N = 2 higher-spin holography which is based on the so-called
CPN Kazama-Suzuki model. The chiral algebra of this CFT is related to Drinfeld-Sokolov
reduction of the affine Lie superalgera A(N,N − 1)(1) = ŝl(N + 1, N), which after BRST
gauge fixing leads to a N = 2 SWn algebra.

The starting point of Kazama-Suzuki models [97, 98] are N = 1 WZW cosets. One
then investigates under which conditions the coset actually has N = 2 superconformal
symmetry. Let us for the supercoset ĝ1

k/ĥ
1
k′ associate the coset G/H, where G and H

are the Lie groups corresponding to the finite and bosonic subalgebras of the affine Lie
superalgebras ĝ1

k and ĥ1
k′ , respectively.

7 It turns out that the coset ĝ1
k/ĥ

1
k′ is N = 2 if

7In most parts of the literature known to the author, for example the original Kazama-Suzuki papers
[97, 98], the WZW supercosets are exclusively written in terms of the Lie group cosets G/H. This is very
confusing, so here we will be slightly more precise.
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G/H is a Hermitian symmetric space. This means it has to be a both a Kähler mani-
fold and a Riemannian symmetric space. This implies that this class of unitary N = 2
superconformal models has a rich geometrical structure.

3.3.1 The N = 1 Supersymmetric Coset Models

The N = 1 supersymmetric extension of the WZW was systematically considered in su-
perspace formalism in [99]. Amazingly it turns out that it takes a very simple form in
component formalism. One simply has to add two free Weyl fermions ψ± in (a com-
plexification of) the adjoint representation of the group in consideration G, and add the
following term to the bosonic WZW action (C.73)

SWZW
N=1 [g, ψ] = SWZW[g] +

i

4π

∫
S2

d2x
(
ψ+∂̄ψ+ + ψ−∂ψ−

)
. (3.21)

One can obtain cosets and thereby Kazama-Suzuki models by gauging the above action
appropriately, see the discussion by Witten [100]. Our starting point, however, will be at
the level of current operators.

Let JA be spin-1 current generating the affine Lie algebra ĝk in an orthogonal hermitian
basis8

JA(z)JB(w) ∼ k/2 δAB
(z − w)2

+
ifABC
z − w

Jc(w). (3.22)

Now add spin-1
2 fermic operators ja transforming in the adjoint representation of g

jA(z)jB(w) ∼ k/2 δAB
z − w

, (3.23)

JA(z)jB(w) ∼ jA(z)JB(w) ∼ ifABC
z − w

jC(w). (3.24)

Note that in this basis fABC is completely anti-symmetric. Together these form an N = 1
affine Lie superalgebra which we will denote by ĝ1

k. An N = 1 superconformal algebra can
be constructed in the universal enveloping algebra of ĝ1

k by an extension of the Sugawara
construction. This is most convenient to write down if we decouple JA and jA. This can
be done by the redefinitions

ĴA(z) = JA(z)− JAf (z), where JAf (z) = − i
k
fABCN

(
jBjC

)
(z). (3.25)

One can directly show that ĴA and jA are independent since Ĵa(z)jb(w) ∼ 0. Furthermore
ĴA and JAf generate two separate affine Lie algebras with the levels k̂ = k − g∨ and
kf = g∨,respectively. Here g∨ is the dual Coxeter number of g and is equal to the second-
order Casimir of the adjoint representation fACDfBCD = C2(θ)δAB.9 The supersymmetric
Sugawara currents can be written as

Tg(z) =
1

k

[
N
(
ĴAĴA

)
(z)−N

(
jA∂jA

)
(z)

]
,

Gg(z) =
2

k

[
N
(
jAĴA

)
(z)− i

3k
fABC N

(
jAjBjC

)
(z)

]
.

(3.26)

8We are using the conventions of [97].
9Note that there is a factor of two difference from the discussion in section D.2.3, due to differing

conventions.
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It can be shown that these two operators satisfy the OPE’s (C.17) and (3.9), with the
central charge

cg =
1

2
dim g +

k̂ dim g

k̂ + g∨
=

1

2
dim g +

(k − g∨)dim g

k
= dim g

(
1

2
+
k − g∨

k

)
. (3.27)

Having covered the N = 1 WZW model, we now turn to the coset construction. Let
h be a semi-simple Lie subalgbra of g with the corresponding Lie subgroup H of G. We
will use the indices (a, b, . . . ) and (ā, b̄, . . . ) for the generators of h and g/h, respectively.
The capital letters (A,B, . . . ) will still denote generators of g.

Restricting JA to the subalgbra h, the decomposition (3.25) becomes

Ja = Ĵa − i

k
faBC N

(
jBjC

)
(z) = J̃a − i

k
fabcN

(
jbjc

)
(z), (3.28)

where the last equation yields the appropriate decomposition for g and J̃a = Ĵa −
i
k fab̄c̄N

(
j b̄j c̄

)
(z). We can now, from equation (3.26), find Th andGh by replacing ĴA → J̃a

and jA → ja. The current J̃a generates an affine Lie algebra with level k̃ = k−h∨, where
h∨ is the dual Coxeter number of h. We can now define the N = 1 superalgebra of the
coset in the usual way

Gĝk/ĥk′
= Gg −Gh, and Tĝk/ĥk′

= Tg − Th. (3.29)

One can by direct calculation show that Tĝk/ĥk′ and Gĝk/ĥk′
decouple from ja, Ja, J̃a, Th

and Gh. The central charge of the cosets are

cĝk/ĥk′
= cg − ch. (3.30)

3.3.2 N = 2 Superconformal Symmetry and Kazama-Suzuki Models

Having given a lightning review of the N = 1 supersymmetric coset models, we turn to
the Kazama-Suzuki models. As we discussed in section 3.1.4, in order to obtain N = 2
superconformal symmetry, we need to add another spin-3

2 generator together with a U(1)
spin-1 R-symmetry current. The idea of Kazama and Suzuki was to write down the most
general spin-1 and -3

2 generators and demand that the full operator algebra has N = 2
superconformal symmetry.

It turns out that the basis (3.12) is not the most convenient for this purpose. We will
instead use the following set of superconformal generators

G0(z) ≡ 1√
2

[
G+(z) +G−(z)

]
, G1(z) ≡ 1√

2 i

[
G+(z)−G−(z)

]
, (3.31)

which have the following OPE

Gi(z)Gj(w) ∼ 2c/3 δij

(z − w)3
+

2 J ij(w)

(z − w)2
+

2T (w) δij + ∂J ij

z − w
, (3.32)

where J ij = i j(z)

(
0 1
−1 0

)
is the R-symmetry current in SO(2) form. We will set

G0 ≡ Gĝk/ĥk′
. The most general spin-3

2 generator one can construct out of the coset fields

jā and Ĵ ā is

G1(z) =
2

k

[
hāb̄N

(
jāĴ b̄

)
(z)− i

3k
Sāb̄c̄N

(
jāj b̄j c̄

)
(z)

]
, (3.33)
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where hāb̄ is symmetric while Sāb̄c̄ is completely anti-symmetric. Note that it reduces to
G0 for hāb̄ = δāb̄ and Sāb̄c̄ = fāb̄c̄. Demanding that the these operators satisfy the OPE’s
of N = 2 superconformal symmetry, one finds the following constraints

hāb̄ = −hb̄ā, hāp̄hp̄b̄ = −δāb̄,
hād̄fd̄b̄e = fād̄ehd̄b̄,

fāb̄c̄ = hāp̄hb̄q̄fp̄q̄c̄ + hb̄p̄hc̄q̄fp̄q̄ā + hc̄p̄hāq̄fp̄q̄b̄,

Sāb̄c̄ = hāp̄hb̄q̄hc̄r̄fp̄q̄r̄.

(3.34)

These equations simply constrains the geometry of the coset space G/H of the corre-
sponding Lie groups. For example the equation h2 = −1, where (h)āb̄ = hāb̄, simply
states that G/H must have an almost complex structure and hence there is a notion of
holomorphic/anti-holomorphic vector fields. The second line implies that the almost com-
plex structure is H invariant. The third line is a consistency condition, while the last
equation fixes Sāb̄c̄. For a detailed geometric analysis of these constraints see [98]. Among
other things, it is found that when rankG = rankH then these spaces are precisely Kähler
manifolds.

Schweigert [101] has shown that the above Kazama-Suzuki models completely classify
all N = 2 superconformal coset models.

3.3.3 Classification of Hermitian Symmetric Spaces

For our purposes, it is enough to restrict attention to the subset of N = 2 Kazama-Suzuki
models solved by setting

fāb̄c̄ = Sāb̄c̄ = 0, (3.35)

which implies that the cosets G/H are a special kind of Kähler manifolds, called Hermitian
symmetric spaces. Being a symmetric space, locally, means that we have the following
decomposition of g = h⊕m with the properties

[h, h] ⊂ h, [h,m] ⊂ m, [m,m] ⊂ h. (3.36)

Here m is the part corresponding to the indices (ā, b̄, . . . ). These symmetric spaces can
be classified by classifying involutive automorphisms s : g → g, s2 = 1, which was done
by Cartan.10 One can show that due to the almost complex structure hāb̄, then one can
decompose m = m+ ⊕m− such that m± are closed subalgebras individually [98].

The Hermitian symmetric spaces are just a subset of symmetric spaces and there
classification can thus be obtain from it. Due to lack of time we will only mention the fact
that complex Grassmann manifolds

CG(m,n) =
SU(m+ n)

SU(m)× SU(n)× U(1)
, (3.37)

are among these manifolds.
10Symmetric spaces have important applications in random matrix theory, where they are random

matrix ensembles corresponding to discrete symmetries s.
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3.3.4 Complex Grassmannians, Primary States and Level-Rank
Duality

The supersymmetric cosets can be written in terms of ordinary cosets. For example the
coset corresponding to the complex Grassmann manifold (3.37) is given by

G(m,n, k) =
su(m+ n)k ⊕ so(2mn)1

su(m)n+k ⊕ su(n)m+k ⊕ u(1)mn(m+n)(m+n+k)
, (3.38)

with the central charge

c =
3mnk

m+ n+ k
. (3.39)

The so(2mn)1 factor arises due to the adjoint fermions of the affine Lie superalgebra,
see section 3.1.1. The upshot of using ordinary cosets is that we can use the techniques
discussed in appendices C, D and E to analyze the details of the model. For example the
spectrum of primary fields (selection rules, field identifications, fix-point resolution), mod-
ular properties, fusion rules and so on. Most of the relevant data is quite straightforward
to extract, similar to the examples given in the appendices, but due to time constraints
the reader is referred to [102] and [103] for details. See also [51] (published version) for
more precise details on how the different factors are embedded in the coset.

We will just make a quick comment. Note that besides the trivial permutation m↔ n,
the central charge is also invariant under m,n↔ k. It turns out that this can be extended
to a full level-rank duality

G(m,n, k) ≈ G(m, k, n) ≈ G(k,m, n). (3.40)

For more details about this see [102]. The model used in the supersymmetric higher-spin
duality is based on the CPN = CG(N, 1) manifold , which is given by the coset G(N, 1, k).

3.3.5 Drinfeld-Sokolov Reduction of A(N,N − 1) and the CPN Models

In a series of beautiful papers [104, 105, 106], Ito has applied the Drinfeld-Sokolov re-
duction to the affine Lie superalgebra A(N,N − 1)(1) = ŝl(N + 1, N) and found that
after the BRST gauge-fixing, the chiral algebra of these models is the SWN algebra. The
ŝl(N+1, N)kDS WZW theory turns out to be a topological CFT with central charge c = 0,
but after DS-reduction the central charge is non-zero

c =
3kN

N + k + 1
. (3.41)

Here the coset level k and the level stemming form DS-reduction kDS are related to each
other by

kDS = −1 +
1

1 + k +N
. (3.42)

This is nothing but the central charge of the CPN Kazama-Suzuki models. This means
that the CPN Kazama-Suzuki models are CFT’s with N = 2 W-algebras. This is exactly
why they will play an important role in N = 2 higher-spin holography. Again due to
time constraints we cannot go through the details involved, the reader is referred to
[104, 105, 106] for more details.



Chapter 4
Higher-Spin AdS3/CFT2 Conjectures

In chapter 2 we discussed in generality how to construct interacting theories on AdS3 of
massless fields with spin s ≥ 2, respecting the enhancement of diffeomorphism by higher-
spin gauge symmetries. This can be done by a gkCS×g−kCS Chern-Simons theory together
with a choice of embedding sl(2,R) ↪→ g which specifies the gravitational sector. Different
embeddings give rise to different boundary dynamics due to the asymptotic AdS3 fall-
off conditions (2.72) and to a different spectrum of massless fields given by the sl(2,R)
adjoint-action decomposition (2.12). The asymptotic symmetries of such a theory translate
into classical Drinfeld-Sokolov reduction of g wrt. to the given sl(2,R) embedding (and
similarly for the other chiral sector). These generically lead to W-algebras for higher-spin
theories. For example when g = sl(3,R) the boundary chiral algebra isW3 for the principal
embedding (see quantum version in equation (3.14)), or the Polyakov-Bershadsky algebra
W(2)

3 for a non-principal embedding.1

Although in 2+1-dimensions it is possible to construct interacting higher-spin theories
on AdS3 with a finite number of higher-spin fields, it is not known how to consistently
couple these theories to massive matter fields. As we discussed, there is a one-parameter
family of (Vasiliev) theories which is able to achieve this at the cost of having an infinite
tower of higher-spin fields. This in turn completely constraints the theory where even the
masses of the matter fields are fixed by higher-spin symmetries.

1There might be a potential confusion with this notation. In section 3.1.6 we showed that W3 is
the unique algebra containing only the energy-momentum tensor and a spin-3 field, so what do we mean
by W(2)

3 ? This notation comes from the Drinfeld-Sokolov reduction approach to W-algebras. The DS-
reduction of sl(N,R) is called W(n)

N , where n labels the different types of embeddings sl(2,R) ↪→ sl(N,R).
For the principal embedding (where the notationWN is used), the algebra contains all integer spin currents
s = 2, . . . N which can be seen from the sl(2,R) decomposition. TheW(2)

3 turn out to contain a spin-2, two
(bosonic) spin- 3

2
and a U(1) spin-1 currents, but no spin-3 fields. SoW(2)

3 is actually more like a non-linear
bosonic version of the N = 2 superconformal algebra, than like the W3 algebra. See for example [73].

44
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4.1 The Gaberdiel-Gopakumar Conjecture

In [107] quadratic fluctuations of higher-spin fields around the thermal AdS3 vacuum2 was
calculated3 and it was shown that the partition function can be written in terms of the
modular parameter of thermal AdS3 boundary.

Zbulk = (qq̄)−c/24ZhsZscal(h+)2Zscal(h−)2, (4.1)

where

Zhs =
∞∏
s=2

∞∏
n=s

1

|1− qn|2
and Zscal =

∞∏
j,j′=0

1

1− qh+j q̄h+j′
. (4.2)

Here (qq̄)−c/24 is the contribution of the AdS3 background. Zscal(h±) is the contribution of
the two scalars with h± = 1

2(1± λ) (see below), its squared since the scalars are complex.
Remarkably, the contributions of different spin-s fields organize themselves into vacuum
characters of WN . This implies that the W-symmetry is (at least perturbatively) realized
in the quantum theory of the bulk.

Inspired by these facts, Gaberdiel and Gopakumar proposed the following conjecture.
The bosonic truncation of Vasiliev theory, in which the massless sector is based on hs[λ]
Chern-Simons theory, coupled to two complex scalars is dual to the following coset CFT

ŝu(N)k ⊕ ŝu(N)1

ŝu(N)k+1
, (4.3)

in the ’t Hooft limit defined as

N, k →∞ : 0 ≤ λ =
N

k +N
≤ 1 fixed. (4.4)

As discussed earlier, this coset corresponds to theWN minimal models. From the formula
(3.20) we see that in the ’t Hooft limit there is a continuous one-parameter family of
CFT’s with central charge c = N(1− λ2). Note that this behavior is different than gauge
theories where the number of degrees of freedom go as N2 [109], this is one indication of
why this duality is simpler than the original Maldacena conjecture.

The scalars of Vasiliev theory both have the mass4

M2 = −(1− λ2). (4.5)

The limit on the range of λ (4.4) implies that the scalar masses squared lie in the window
−1 ≤M2 ≤ 0. It is well-known that in this range there are two possible ways of quantizing
scalars [110], from M2 = ∆(∆− 2) we find the two possibilities

∆ = 1± λ. (4.6)
2Thermal AdS3 has a compactified time dimension and therefore the topology of a solid torus. Its

boundary is just the torus surface and its complex structure is parametrized by the modular parameter τ ,
as discussed in section C.1.5.

3See also the famous paper by Gibbons and Hawking [108].
4Note that these scalars are not tachyonic even though they have negative mass-squared. On AdS3 par-

ticles must transform under irreducible representations of AdS3 isometry group, rather than the Poincare
group. It turns out that due to the negative curvature of AdS3, there is a (negative) lower bound in which
scalars are stable.
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In order to match the spectrum in the ’t Hooft limit, Gaberdiel and Gopakumar chose
opposite quantizations for the two scalars.

Although we, by far, spend the majority of our time studying this duality, we eventually
ended up working on the newer N = 2 version discussed below. For this reason we will
not go into details, since even the most basic aspects would require too much space and
time, but largely be irrelevant to understand our contribution [1]. There are also already
a huge amount of very interesting results and subtle refinements of the conjecture, which
by itself would require a thesis to review appropriately. For this reason we will directly
go to the N = 2 conjecture.

4.2 The Creutzig-Hikida-Rønne Conjecture

The next natural step is to consider the untruncated N = 2 Vasiliev theory of section 2.5,
of which the asymptotic symmetry algebra is the Drinfeld-Sokolov reduction of shs[λ], also
called SW∞[λ] [53]. The question is what should the dual theory be.

Recall that the WN algebra follows from DS-reduction of ŝl(N), the minimal models
of which is the key element of Gaberdiel-Gopakumar conjecture. The natural N = 2
supersymmetric extension is to consider DS-reduction of ŝl(N + 1, N). As discussed in
section 3.3.5, Ito has done this analysis and found the SWN algebra and that the minimal
models of this algebra is just given by the CPN Kazama-Suzuki model.

Inspired by the non-supersymmetric case and the results above, Creutzig, Hikida and
Rønne conjectured the following. The full Vasiliev theory of section 2.5 is dual to the
CPN Kazama-Suzuki models given by the coset

ŝu(N + 1)k × ŝo(2N)1

ŝu(N)k+1 × û(1)N(N+1)(k+N+1)
, (4.7)

with the identification λ = N
2(N+k) , in the ’t Hooft limit

0 ≤ lim
N,k→∞

λ ≤ 1

2
fixed. (4.8)

The restriction of the range of the parameter 0 ≤ λ ≤ 1
2 again leads to scalar masses

with −1 ≤ (MB)2 ≤ 0 and for this mass range one can choose two different boundary
conditions, with the “usual” quantization being the one with the largest value of the
conformal dimension. From the usual AdS/CFT dictionary we have the following relation
between masses and conformal weights of dual fields

(MB)2 = ∆(∆− 2), (MF )2 = (∆− 1)2, (4.9)

for massive scalars and spin 1/2 fermions, respectively. The dual conformal weights are
then given by [51](

∆B
+, ∆F

±, ∆B
−
)

=
(
2− 2λ, 3

2 − 2λ, 1− 2λ
)
,

(
∆̃B

+, ∆̃F
±, ∆̃B

−
)

=
(
2λ, 1

2 + 2λ, 1 + 2λ
)
.

(4.10)

The bosonic operators in the first multiplet correspond to the φ+ scalar with the usual
quantization and the φ− scalar with the alternative quantization, while the quantizations
are opposite in the second multiplet.
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Let (ρ, s; ν,m) label the states of the coset (4.7) up to field identifications due to outer
automorphisms of the different factors in the coset. Here ρ and ν are highest weights of
su(N + 1) and su(N), respectively, while m ∈ ZN(N+1)(k+N+1). In the NS sector we have
s = 0, 2. In [51], it was proposed that the following holomorphic coset primary fields with
chiral conformal weights

h(f, 0; 0, N) = λ, h(0, 2; f,−N − 1) =
1

2
− λ,

h(f, 2; 0, N) = λ+
1

2
, h(0, 0; f,−N − 1) = 1− λ,

(4.11)

where f is the fundamental representation, can be used to construct the dual fields (4.10)
by gluing holomorphic and anti-holomorphic states as follows

OB∆+
= (0, 0; f,−N − 1)⊗ (0, 0; f,−N − 1), OF∆+

= (0, 2; f,−N − 1)⊗ (0, 0; f,−N − 1),

OB∆− = (0, 2; f,−N − 1)⊗ (0, 2; f,−N − 1), OF∆− = (0, 0; f,−N − 1)⊗ (0, 2; f,−N − 1),

(4.12)

and for the other multiplet

ÕB∆+
= (f, 0; 0, N)⊗ (f, 0; 0, N), ÕF∆+

(z, z̄) = (f, 0; 0, N)⊗ (f, 2; 0, N),

ÕB∆− = (f, 2; 0, N)⊗ (f, 2; 0, N), ÕF∆−(z, z̄) = (f, 2; 0, N)⊗ (f, 0; 0, N).
(4.13)

In the ’t Hooft limit, the correlation functions we will be considering only depend on
the higher-spin algebra shs[λ]. Thus, in section 5.4 we will generate the corresponding
highest-weight representations using a free-field CFT having shs[λ] as a subalgebra. Our
highest-weight representations will then be constructed in terms of free fields such that
they match the above coset primary fields.



Chapter 5
Three-Point Functions

In this chapter our main task is to calculate three-point functions containing two bulk
scalars and one bosonic higher-spin current, for any spin s, both from the bulk and bound-
ary. There are however many difficulties which make the calculation quite difficult. For
example in the original formulation of Vasiliev theory one is constantly forced to rewrite
products of deformed oscillators in terms of their symmetrizations, which is a very tedious
task especially since we are interested in doing the calculations for arbitrary spin. Even
if we were able to derive the Klein-Gordon equations in the background of higher-spin
fields, we would have to derive bulk-to-boundary propagators for arbitrary higher-spin
deformation of AdS3. It is however possible to simplify the calculations considerably by
making use of a few tricks. Let us sketch our strategy.

The first problem is the manipulations of deformed oscillators. We have already dis-
cussed this issue in section 2.5.3. The idea was to take advantage of the isomorphism
between the infinite dimensional associative superalgebras Aq(2, ν) and SB[µ] by using
the latter instead of the former to formulate the theory. Since we have explicit expressions
for the structure constants of SB[µ], see appendix B, this will prove to be an enormous
simplification of the original Vasiliev formalism. In the following section we will show how
the Klein-Gordon equations on AdS3 with the correct masses are derived in our formalism.

Next step is to generalize the boundary conditions of the higher-spin fields and estab-
lish precisely the holographic dictionary. Recall that near boundary expansions of fields
(suppressing internal indices) are of the form [111]

F(x, r) = rm
(
f(0)(x) + f(1)(x) r + · · ·+ rn

[
f(n)(x) + log r f̃(n)(x)

]
+ . . .

)
, (5.1)

where the values of m and n are determined by the equations of motion and in these
coordinates r → 0 is the boundary. This correspond to two linearly independent solutions,
one with a near boundary behavior as rm and the other as rm+n. The most dominant
term near the boundary f(0)(x) can be thought of as the Dirichlet boundary condition
and correspond to the source term of the dual operator on the boundary. The equations
of motion can be used to iteratively solve f(k)(x), k < n, as local functions of f(0)(x).

The function f(n)(x) can be thought of as the Dirichlet boundary condition for the
linearly independent solution [111] and is a non-local function of f(0)(x), it is actually
proportional to the one-point function of the dual field in the presence of source terms.1

1The term f̃(n)(x) is related to conformal anomalies but will not be relevant for our discussion.
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It turns out that the bulk constraint equations give rise to Ward identities [112, 113] of
these one-point functions. Our strategy is to use these Ward identities to identify which
terms in the Chern-Simons gauge connection correspond to the source term of which
higher-spin field, with the correct normalization. This will fix the holographic dictionary
needed for our calculation.

Finally in order to calculate the three-point functions from the bulk, our strategy is to
look at one-point functions of the dual operator in the presence of higher-spin source terms.
For this an insight first discussed in [84] will be crucial, starting from solutions on AdS3

one can generate new solutions with higher-spin deformation by gauge transformations.
Thus we will calculate one-point functions of the scalars on AdS3 using the usual bulk-
to-boundary propagator, then use a gauge transformation to include higher-spin sources.
This will prove to be an efficient way to derive general formulas for three-point functions.

5.1 Scalars From Modified Vasiliev Formalism

We will start with considering matter coupled to higher-spin fields using our modified
Vasiliev formalism. The Vasiliev equations for the higher-spin fields reduce to

dA+A ∧ ?A = 0,

dÃ+ Ã ∧ ?Ã = 0,
(5.2)

while for the matter fields, linearized around its vacuum, we have

dC +A ? C − C ? Ā = 0,

dC̃ + Ā ? C̃ − C̃ ? A = 0.
(5.3)

Using our formalism, the gauge and matter fields are given by

A =

∞
◦
◦

∑
s=1

∑
|m|≤s−1

Asm L(s)
m +

∞
◦
◦

∑
s= 3

2

∑
|r|≤s− 3

2

Asr G
(s)
r ,

C =
∞
◦
◦

∑
s=1

∑
|m|≤s−1

Csm L(s)
m +

∞
◦
◦

∑
s= 3

2

∑
|r|≤s− 3

2

Csr G
(s)
r ,

(5.4)

and similarly for C̃ and Ā. Note that we can easily distinguish the bosonic components
Csm from the fermionic ones Csr , since m is always an integer while r is half of an odd
integer. Recall that we use the following notation

L(s)
m = L(s)+

m , L(s+1/2)
m = L(s)−

m , G(s)
r = G(s)+

r and G(s−1/2)
r = G(s)−

r

for s ∈ Z. Furthermore L(1)
0 = 1 is the identity element of the associative algebra SB[µ] =

shs[λ]⊕C, while L
3
2
0 corresponds to the U(1) R-symmetry of the higher-spin (Lie) algebra

shs[λ]. The true matter fields correspond to superpositions of the lowest components C1
0 ,

C
3
2
0 , {C

3
2

+ 1
2

, C
3
2

− 1
2

} and {C2
+ 1

2

, C2
− 1

2

}. The rest of the tower of fields in C are auxiliary fields,
which can be written as sums and derivatives of the physical fields.

Let us consider AdS3, which is given by the connection

A = eρ L
(2)
1 dz + L

(2)
0 dρ

Ā = eρ L
(2)
−1 dz̄ − L

(2)
0 dρ

⇒ ds2 = dρ2 + e2ρ dzdz̄, (5.5)
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where we have used gµν = 1
2tr(eµeν), e = 1

2

(
A− Ā

)
. Turning on other modes, such

that (5.2) and appropriate boundary conditions are satisfied, correspond to higher-spin
deformations of AdS3. We will for now only consider the scalar fields propagating on
AdS3, so we will set Csr = 0. Plugging (5.4) into Vasiliev equation (5.3) we find,

∞
◦
◦

∑
s=1

∑
|m|≤s−1

(
dCsm L

(2)
m + eρCsm L

(2)
1 ? L(s)

m dz − eρCsm L(s)
m ? L

(2)
−1 dz̄

+ Csm

{
L

(2)
0 ? L(s)

m + L(s)
m ? L

(2)
0

}
dρ
)

= 0.

(5.6)

The coefficients of linearly independent terms should be set to zero individually, which
leads to the following set of equations

∂ρC
s
m +

3
◦
◦

∑
u=1

χ[−(s+u−3),s+u−3](m)Cs+u−2
m

[
g2(s+u−2)
u (0,m) + g(s+u−2)2

u (m, 0)
]

= 0, (5.7)

∂Csm + eρ
3
◦
◦

∑
u=1

χ[−(s+u−4),s+u−2](m)Cs+u−2
m−1 g2(s+u−2)

u (1,m− 1) = 0, (5.8)

∂̄ Csm − eρ
3
◦
◦

∑
u=1

χ[−(s+u−2),s+u−4](m)Cs+u−2
m+1 g(s+u−2)2

u (m+ 1,−1) = 0, (5.9)

which are the coefficients of L(s)
m dρ, L(s)

m dz and L(s)
m dz̄ respectively, and the step function

is given by

χA(m) =

{
1, m ∈ A,
0, m 6∈ A.

(5.10)

The functions χA(m) make sure only generators inside the wedge |m| ≤ s− 1 contribute.
For later convenience we will use certain properties of the structure constants given in
appendix B, to write these equations as

∂ρC
s
m + 2

[
Cs−1
m + Cs+1

m gs+1,2
3 (m, 0) + C

s− 1
2

m g
s− 1

2
,2

3
2

(m, 0) + C
s+ 1

2
m g

s+ 1
2
,2

5
2

(m, 0)

]
= 0,

∂Csm + eρ
[
Cs−1
m−1 + g2,s

2 (1,m− 1)Csm−1 + g2,s+1
3 (1,m− 1)Cs+1

m−1

+g
2,s− 1

2
3
2

(1,m− 1)C
s− 1

2
m−1 + g

2,s+ 1
2

5
2

(1,m− 1)C
s+ 1

2
m−1

]
= 0,

∂̄Csm − eρ
[
Cs−1
m+1 + gs,22 (m+ 1,−1)Csm+1 + gs+1,2

3 (m+ 1,−1)Cs+1
m+1

+g
s− 1

2
,2

3
2

(m+ 1,−1)C
s− 1

2
m+1 + g

s+ 1
2
,2

5
3

(m+ 1,−1)C
s+ 1

2
m+1

]
= 0.

(5.11)

We have removed the step functions χA(m) since one can show that they do not play any
role as long as we define Csm = 0 for modes outside of the wedge |m| > s − 1. These
equations can be solved recursively in order to express the auxiliary fields in terms of C1

0

and C
3
2
0 , and find the equations of motion of these scalars. By a careful analysis, we find
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the following minimal set of equations needed

L
(1)
0,ρ : ∂ρC

1
0 + λ(2λ− 1)C2

0 = 0,

L
( 3

2
)

0,ρ : ∂ρC
3
2
0 +

1

9
(2λ2 − λ− 1)C

5
2
0 +

1

6
(4λ− 1)C2

0 = 0,

L
(2)
0,ρ : ∂ρC

2
0 + 2C1

0 +
2

3
(1− 4λ)C

3
2
0 +

4

9
(2λ2 − λ− 1)C3

0 = 0,

L
( 5

2
)

0,ρ : ∂ρC
5
2
0 + 2C

3
2
0 +

2

15
(4λ− 1)C3

0 +
4

25
(2λ2 − λ− 3)C

7
2
0 = 0,

L
(1)
0,z̄ : ∂̄ C1

0 − eρ(1− 2λ)λC2
1 = 0,

L
( 3

2
)

0,z̄ : ∂̄ C
3
2
0 − e

ρ

[
1

6
(1− 4λ)C2

1 −
1

9
(1 + λ− 2λ2)C

5
2
0

]
= 0,

L
(2)
1,z : ∂C2

1 + eρ
[
C1

0 +
1

2
C2

0 +
1

9
(1 + λ− 2λ2)C3

0 +
1

3
(1− 4λ)C

3
2
0

]
= 0,

L
( 5

2
)

1,z : ∂C
5
2
1 + eρ

[
C

3
2
0 +

1

2
C

5
2
0 +

1

25
(3 + λ− 2λ2)C

7
2
0 +

1

30
(1− 4λ)C3

0

]
= 0.

Solving these recursively we can eliminate all the auxiliary fields and reduce to two coupled
equations

�C1
0 + 6λ (1− 2λ)C1

0 + 2λ (1− 6λ+ 8λ2)C
3/2
0 = 0,

�C3/2
0 − 1− 4λ

6λ(1− 2λ)
�C1

0 +
2

3
(1 + λ− 2λ2)C

3/2
0 = 0,

(5.12)

with the Laplacian of AdS3 in the coordinates (5.5) given by

� = ∂2
ρ + 2 ∂ρ + 4 e−2ρ ∂∂̄. (5.13)

This is not the standard form of these equations, we can remove the �C1
0 term of the

second equation by subtracting these two equations with an appropriate weight. This
leads to the coupled Klein-Gordon equations

�C +

[
6λ(1− 2λ) 2λ(1− 6λ+ 8λ2)

1− 4λ 1− 2λ+ 4λ2

]
C = 0, (5.14)

where

C =

(
C1

0

C
3
2
0

)
.

The fields C1
0 and C

3
2
0 are clearly not “mass-eigenstates”, but their superpositions must be.

Diagonalizing the mass matrix we find[
�− 4

(
λ2 − λ

) ]
φ+ = 0,

[
�−

(
4λ2 − 1

) ]
φ− = 0. (5.15)

Thus the masses of the two scalars are given by

(MB
+ )2 = 4(λ2 − λ) and (MB

− )2 = 4λ2 − 1, (5.16)

and from the eigenvectors of the mass matrix we read off the correct superpositions

C1
0 = (2λ− 1) φ+ + 2 λ φ−, C

3
2
0 = φ+ + φ−. (5.17)



5.2. Holographic Ward Identities and the AdS/CFT dictionary 52

By rescaling λ = 1
2 λ̃, the masses (MB

− )2 = λ̃2 − 1 and (MB
+ )2 = λ̃2 − 2λ̃, exactly match

the results known from Vasiliev theory [51, 82, 83].
This confirms that our formulation works as it should, it reproduces the correct masses

of the scalars without very tedious manipulations of deformed oscillators. But it has the
disadvantage that the physical fields come out in a little unnatural fashion (5.17) which will
complicate our calculations slightly, however the advantages are still enormous compared
to the formalism of section 2.5, which would make the calculation of the three-point
functions extremely tedious.

If one deforms the AdS3 background by introducing higher-spin deformations, one can
show that the Klein-Gordon equation get higher derivative corrections and thus make life
more difficult. We will however not need any of these in the calculation of the three-point
functions.

5.2 Holographic Ward Identities and the AdS/CFT
dictionary

From the classical Drinfeld-Sokolov reduction in the lowest weight gauge, we know that
the gauge connection of a constant ρ-slice must be of the form (see section 2.4)

a(z) =

(
L

(2)
1 +

2π

k
◦
◦

∑
s≥ 3

2

[
1

NB
s

Ls L(s)
−bsc+1 +

1

NF
s

ψsG
(s)

−dse+ 3
2

])
dz,

ā(z̄) =

(
L

(2)
−1 +

2π

k
◦
◦

∑
s≥ 3

2

[
1

NB
s

L̄s L(s)
bsc−1 +

1

NF
s

ψ̄sG
(s)

dse− 3
2

])
dz̄,

(5.18)

where we have used the following normalizations which will be very useful later on

NB
s = −tr

(
L

(s)
−bsc+1L

(s)
bsc−1

)
, NF

s = tr
(
G

(s)

dse− 3
2

G
(s)

−dse+ 3
2

)
. (5.19)

According to the rules of AdS/CFT correspondence, in order to calculate correlation
functions we have to modify the boundary conditions [114, 115] such that the different
higher-spin fields have a boundary value. Using the first-order formalism, all higher-spin
fields are packed into the gauge fields A(z) and Ā(z̄), but we need to identify which
terms correspond to their boundary values. Inspired by [74, 72] for the pure spin 3 non-
supersymmetric case, we will consider the more general ansatz

a =

(
L

(2)
1 +

2π

k
◦
◦

∑
s≥ 3

2

[
1

NB
s

Ls L(s)
−bsc+1 +

1

NF
s

ψsG
(s)

−dse+ 3
2

])
dz

+

(
◦
◦

∑
s≤ 3

2

∑
|m|≤bsc−1

µsm L
(s)
m + ◦

◦
∑
s≤ 3

2

∑
|r|≤dse− 3

2

νsr G
(s)
r

)
dz̄,

(5.20)

where the functions µsm = µsm(z, z̄) and νsr = νsr (z, z̄) are non-chiral functions. We will
show that evaluating the bulk equations of motion to this ansatz, will yield the Ward
identities of the dual CFT in the presence of higher-spin sources. We can in particular
show the emergence of N = 2 SW∞[λ] symmetry near the boundary using holographic
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ideas in contrast to the asymptotic symmetry analysis of [53], by deriving the OPE’s of
the conserved currents in the dual CFT holographically using the bulk theory. Being able
to directly identify source terms of the Lagrangian of the dual theory with components of
the bulk gauge connection, will be crucial to us when calculating three-point functions.

In order to get an idea of which of these extra terms could correspond to the source
terms, recall that the full gauge field is given as

A = b−1ab+ b−1db,

Ā = bāb−1 + bdb−1,
where b = eρL

(2)
0 . (5.21)

Using the Baker-Campbell-Hausdorff formula (Hadamard lemma)

eXY e−X = eadXY = Y + [X,Y ] +
1

2!
[X, [X,Y ]] +

1

3!
[X, [X, [X,Y ]]] + · · · ,

and the commutation relations

[L
(2)
0 , L(s)

m ] = −mL(s)
m , [L

(2)
0 , G(s)

r ] = −r G(s)
r ,

we find that

e−ρL
(2)
0 L(s)

m eρL
(2)
0 = L(s)

m emρ, e−ρL
(2)
0 G(s)

r eρL
(2)
0 = G(s)

r erρ. (5.22)

This implies that terms with highest possible modes, µsbsc−1 and νsdse− 3
2

, are the most
dominating near the boundary and can thus be regarded as source terms. Note that this
is nothing but a Fefferman-Graham expansion of A, which happens to be finite.

We want to identify these terms with source terms on the boundary of the dual fields
Os

S∂ → S∂ −
∫

d2z µsOs. (5.23)

Note that the spin s field Os is irrelevant in the renormalization group sense and will
therefore change the UV-structure of the dual CFT, which from the bulk perspective
corresponds to that the geometry will no longer asymptote to the same AdS3 geometry
[74].

In order to establish the holographic dictionary we need to check that the normalization
chosen in (5.19) is the correct normalization that makes sure that µsbsc−1 and νsdse− 3

2

can

be directly identified with the sources (5.23). One way to do this, is to calculate the
holographic Ward identities as first discussed in [112, 116, 117] and in particular make use
of ideas developed in [113]. This will enable us to develop a powerful way of deriving OPE’s
of dual fields from the bulk. Not only will this help us fix the holographic dictionary, it
will also provide us with an alternative insight into which symmetries emerge near the
AdS3 boundary given our higher-spin fields and boundary conditions.

Using the ansatz (5.20) and the equations of motion we can collect all the terms into
coefficients of the Lie algebra generators

∂az̄ − ∂̄az + [az, az̄] = ◦
◦

∑
s≥ 3

2

[ ∑
|m|≤bsc−1

cBs,m L
s
m +

∑
|r|≤dse− 3

2

cFs,rG
s
r

]
= 0 (5.24)
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which give rise to the equations

cBs,m = 0,

cFs,r = 0.
(5.25)

The coefficients for the bosonic generators are found to be

cBs,m = ∂µsm −
2π

k

1

NB
s

∂̄Ls δm,-bsc+1 +
(
bsc −m

)
µsm−1

(
1− δm,-bsc+1

)
+

2π

k
◦
◦

∑
t≥ 3

2

{
1

NB
t

Lt ◦
◦

∑
s̃≥ 3

2

χ[
−bs̃c−btc+2,bs̃c−btc

](m)µs̃m+btc−1

s̃+t−|s̃−t|−1

◦
◦

∑
u=1

δs̃+t−u,s

× gt,s̃u
(

-btc+ 1,m+ btc − 1;λ
)

+
1

NF
t

ψt
◦
◦

∑
s̃≥ 3

2

χ[
−ds̃e−dte+3,ds̃e−dte

](m) ν s̃
m+dte− 3

2

s̃+t−|s̃−t|−1

◦
◦

∑
u=1

δs̃+t−u,s

× g̃t,s̃u
(

-dte+
3

2
,m+ dte − 3

2
;λ
)}

,

(5.26)

and for the fermionic generators we have

cFs,r = ∂νsr −
2π

k

1

NF
s

∂̄ψs δr,-dse+ 3
2

+
(
dse − 1

2
− r
)
νsr−1

(
1− δr,-dse+ 3

2

)
+

2π

k
◦
◦

∑
t≥ 3

2

{
1

NB
t

Lt ◦
◦

∑
s̃≥ 3

2

χ[
−ds̃e−btc+ 5

2
,ds̃e−btc− 1

2

](r) ν s̃r+btc−1

s̃+t−|s̃−t|−1

◦
◦

∑
u=1

δs̃+t−u,s

× ht,s̃u
(

-btc+ 1, r + btc − 1;λ
)

+
1

NF
t

ψt
◦
◦

∑
s̃≥ 3

2

χ[
−bs̃c−dte+ 5

2
,bs̃c−dte+ 1

2

](r) ν s̃
r+dte− 3

2

s̃+t−|s̃−t|−1

◦
◦

∑
u=1

δs̃+t−u,s

× h̃t,s̃u
(

-dte+
3

2
, r + dte − 3

2
;λ
)}

,

(5.27)

where we have used the following

g2s
u (1,m;λ) =

{
bsc − 1−m, u = 2

0, u = 1, 3
2 ,

5
2 , 3

,

h2s
u (1, r;λ) =

{
dse − 3

2 − r, u = 2

0, u = 1, 3
2 ,

5
2 , 3

.

(5.28)

Looking at the form of the equations given by cBs,m and cFs,r one can see that by starting
from the highest modes, m = bsc − 1 and r = dse − 3

2 , we can recursively solve µsm
and νsr in terms of the the highest modes µsbsc−1 and νsdse− 3

2

, respectively. Finally at the
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lowest modes, m = −bsc + 1 and r = −dse + 3
2 , the equations of motion are reduced

to relations containing only Ls, ψs, µsbsc−1 and νsdse− 3
2

. These equations can be regarded
as Ward identities in the presence of sources, and from these we can identify the correct
normalization for the sources by deriving the corresponding OPE’s of the dual CFT.

Before we proceed, we will present a general result which will be very useful for us
later.

5.2.1 General Formula for Ward Identities from CFT

We will here derive a general formula for the Ward identities in the presence of source
terms. Consider two chiral quasi-primary fields W (z) and X(z) of conformal weights hW
and hX , respectively, and the following general OPE

W (z)X(w) ∼
∞∑
i=1

σi
(z − w)i

Zi(w) =

∞∑
i=1

σi
(i− 1)!

∂i−1
w

(
1

z − w

)
Zi(w), (5.29)

where Zi(w) is are chiral quasi-primary fields of weight hi = hW + hX − i and we have
used the compact notation σiZi =

∑
j(σi)j(Zi)j in case there are several fields with the

same conformal weight. We have chosen the form of the second equation out of later
convenience. We are interested in expectation values of W (z), but with insertions of X(z)
source terms 〈

W
〉
µ

=
〈
W e−

∫
µX
〉
, (5.30)

where µ(w, w̄) is a non-chiral source. Due to the insertion of µ(w, w̄), the vacuum expec-
tation value

〈
W
〉
µ
will gain z̄ dependence. We can directly derive the following result

∂̄
〈
W (z)

〉
µ

= −∂̄
〈∫

d2wµ(w, w̄)W (z)X(w)

〉
µ

,

= −∂̄
〈∫

d2wµ(w, w̄)

∞∑
i=1

σi
(i− 1)!

∂i−1
w

(
1

z − w

)
Zi(w)

〉
µ

,

= ∂̄

〈∫
d2w

1

z − w

[ ∞∑
i=2

(−1)i σi
(i− 1)!

∂i−1
w

{
Zi(w)µ(w, w̄)

}
− σ1 Z1(w)µ(w, w̄)

]〉
µ

,

= 2π

〈 ∞∑
i=2

(−1)i σi
(i− 1)!

∂i−1
z

{
Zi(z)µ(z, z̄)

}
− σ1 Z1(z)µ(z, z̄)

〉
µ

,

= 2π

〈(
σ2 [∂Z2 µ+ Z2 ∂µ]− σ1 Z1 µ

)
+
∞∑
i=3

(−1)i σi
(i− 1)!

i−1∑
q=0

(
i− 1
q

)
∂i−1−qZi ∂

qµ

〉
µ

,

(5.31)

where we have used the identity ∂̄
(

1
z−w

)
= 2π δ(2)(z − w) between the third and fourth

line and in the last step used

∂n
(
Z µ
)

=
n∑
q=0

(
n
q

)
∂n−qZ ∂qµ. (5.32)

For illustrative reasons, let us take two simple examples. Let W = T be the energy-
momentum tensor and X a primary field, we then have the following coefficients and
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fields from their OPE

σ1 = 1, σ2 = hX ,

Z1 = ∂X, Z2 = X,
(5.33)

and all other coefficients are zero. This leads to the identity

1

2π
∂̄
〈
T (z)

〉
µX

=
〈
hX X ∂µX + (hX − 1) ∂XµX

〉
µX
. (5.34)

As our second example let us choose both fields to be the energy-momentum tensor W =
X = T . For this case we have the following OPE coefficients

σ1 = 1, σ2 = 2, σ4 =
c

2
,

Z1 = ∂T, Z2 = T, Z4 = 1,
(5.35)

giving us the identity

1

2π
∂̄
〈
T (z)

〉
µT

=
〈
2T ∂µT + ∂TµT +

c

12
∂3µT

〉
µT
. (5.36)

As expected, this is just like the above result up to the central charge term. In the
following we shall mainly use our result (5.31) in the other way around, we will from the
bulk derive the Ward identities then use (5.31) to find the OPE coefficients.

5.2.2 Holographic Operator Product Expansions and Superconformal
Symmetries

As discussed above, the terms with highest mode µsbsc−1 and νsdse− 3
2

are the most domi-
nating near the boundary and can thus be identified with sources of the dual field up to
normalization. The conserved currents on the boundary can be organized into (holomor-
phic) N = 2 multiplets(

W s−, G(s+ 1
2

)−, G(s+ 1
2

)+,W (s+1)+
)
, s ∈ Z≥1, (5.37)

where W s± are bosonic fields of spin s and and G(s+ 1
2

)± are fermionic fields of spin s+ 1
2 .

The modes of these fields should form the N = 2 SW∞[λ] algebra, which generates the
spectrum of the dual CFT. To begin with we will focus on the lowest multiplet s = 1,(

j,G
3
2
−, G

3
2

+, T,
)
, (5.38)

where we for this special multiplet use the notation j ≡W 1− and T ≡W 2+ as is standard
in the literature. This multiplet is the most important one and generates the N = 2
superconformal algebra in two-dimensions.

In order to find the Ward identities of this multiplet we only need to turn on boundary
terms corresponding to these fields

(
µ1

0, ν
3
2

± 1
2

, ν2
± 1

2

, µ2
±1

)
, thus all other source terms are

turned off. For reasons which will become more clear momentarily, we will rename L2 →
L̃2. We can now recursively solve the equations (5.25) in order to express all near boundary
terms in terms of the highest modes. We will not show the details of these slightly tedious
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calculations, but the final equations for the lowest modes cB3
2
,0

= 0, cB2,−1 = 0, cF
s,− 1

2

= 0

(where s = 3
2 , 2) can be expressed in the following compact form

∂̄L 3
2

= −ψ2 ν
3
2
1
2

− ψ 3
2
ν2

1
2

+
k

2π
2 ∂µ

3
2
0 ,

∂̄L̃2 = 2 L̃2 ∂µ
2
1 + ∂L̃2 µ

2
1 +

k

2π

1

2
∂3µ2

1 +
2
◦
◦

∑
s= 3

2

(
3

2
ψs ∂ν

s
1
2

+
1

2
∂ψs ν

s
1
2

+
2π

k

1

2
L 3

2
ψs̄ ν

s
1
2

)
,

∂̄ψs =

(
3

2
ψs ∂µ

2
1 + ∂ψs µ

2
1 −

2π

k

1

2
L 3

2
ψs̄ µ

2
1

)
+

(
ψs̄ µ

3
2
0

)
+ (−1)2s

(
∂L 3

2
ν s̄1

2

+ 2L 3
2
∂ν s̄1

2

)
,

+ (−1)2s

(
k

2π
2 ∂2νs1

2

+ 2 L̃2 ν
s
1
2

+
2π

k

1

2

[
L 3

2

]2
νs1

2

)
,

(5.39)

where s̄ = 3
2 if s = 2 and s̄ = 2 if s = 3

2 . If we make the following identifications of the
currents

2π L̃2 → T̃ , 2πL 3
2
→ j, 2π ψ 3

2
→ G

3
2
−, 2π ψ2 → G

3
2

+, (5.40)

and of the sources

µ2
−1 → 2π µT̃ , µ

3
2
0 → 2π µj , ν

3
2

− 1
2

→ 2π ν
G

3
2−
, ν2

− 1
2

→ 2π ν
G

3
2 + , (5.41)

we can use equation (5.31) to derive the following OPE coefficients of the dual currents.
The OPE’s are given by

j(z)j(w) ∼ 2k

(z − w)2
, j(z)G

3
2
±(w) ∼ 1

z − w
G

3
2
∓(w),

T̃ (z)T̃ (w) ∼ 3k

(z − w)4
+

2

(z − w)2
T̃ (w) +

1

z − w
∂T̃ (w),

T̃ (z)G
3
2
±(w) ∼ 3/2

(z − w)2
G

3
2
±(w) +

1

z − w

(
∂G

3
2
±(w)− 1

2k
[jG

3
2
∓](w)

)
,

G
3
2
±(z)G

3
2
±(w) ∼ ∓ 4k

(z − w)3
+
∓ 2

z − w

(
T̃ (w) +

1

4k
[jj](w)

)
,

G
3
2
±(z)G

3
2
∓(w) ∼ ± 2

(z − w)2
j(w) +

±1

z − w
∂j(w),

T̃ (z)j(w) ∼ 0.

(5.42)

These OPE’s look somewhat similar to the N = 2 superconformal CFT, however j(z)
does not look like a primary field since it decouples completely from T̃ (z). The same
problem we encounter for G

3
2
± due to non-linear terms. This seems to indicate that there

is something wrong with our identifications between bulk/boundary terms, but which field
needs to be modified? One clue comes from the fact that the j(z)j(w) OPE scales as if j(z)
is an primary field of conformal weight h = 1, while the singular part of T̃ (z)j(w) vanish.
This indicates that T̃ (z) might not be the correct energy-momentum tensor. Furthermore
note that [jj](z) form an energy-momentum tensor by the usual Sugawara construction,
giving rise to a U(1) affine Lie algebra. Given these facts and the form of the OPE’s, it is
natural to consider the following field

T (z) = T̃ (z) +
1

4k
[jj](z). (5.43)
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There is an subtle but important thing to note. We are currently looking at the large N
limit of the duality, which means that the central charge is very big c → ∞. This is the
“classical” limit in which we do not have any information about normal ordering of the
products of fields, this means that the OPE’s we are working with are “classical” OPE’s.
We will therefore in the following ignore double (and higher order) contractions when
calculating OPE’s since we do not have any notion of normal ordering [118], there are
however O(1

c ) corrections when moving to finite N due to quantum effects. See [119, 120]
for some interesting analysis of the O(1

c ) corrections.
Now by the following classical OPE’s

1

(4k)2
[jj](z)[jj](w] ∼ 1

4k

( 2

(z − w)2
[jj](w) +

1

z − w
∂[jj](w)

)
,

1

4k
[jj](z)G

3
2
±(w) ∼ 1

2k

1

z − w
[jG

3
2
∓](w),

(5.44)

and setting the Chern-Simons level to

k =
c

6
, (5.45)

we find the OPE’s of the N = 2 superconformal algebra

j(z)j(w) ∼ c/3

(z − w)2
, j(z)G

3
2
±(w) ∼ 1

z − w
G

3
2
∓(w),

T (z)T (w) ∼ c/2

(z − w)4
+

2

(z − w)2
T (w) +

1

z − w
∂T (w),

T (z)G
3
2
±(w) ∼ 3/2

(z − w)2
G

3
2
±(w) +

1

z − w
∂G

3
2
±(w),

G
3
2
±(z)G

3
2
±(w) ∼ ∓ 2c/3

(z − w)3
+
∓ 2

z − w
T (w),

G
3
2
±(z)G

3
2
∓(w) ∼ ± 2

(z − w)2
j(w) +

±1

z − w
∂j(w),

T (z)j(w) ∼ 1

(z − w)2
j(w) +

1

z − w
∂j(w).

(5.46)

Here T (z) in the energy-momentum tensor and generate the Virasoro algebra, j(z) is the
U(1) R-symmetry and generates an affine Lie algebra while G

3
2
± are the two conformal

supercharges. In the literature the supercharges are chosen such that they have definite
U(1) charge under R-symmetry, this can be recovered from the superpositions G̃± =
i√
2
(G

3
2

+ ±G
3
2
−)

j(z)G̃±(w) ∼ ±1

z − w
G̃±(w),

G̃±(z)G̃±(w) ∼ 0

G̃±(z)G̃∓(w) ∼ 2/3c

(z − w)3
± 2

(z − w)2
j(w) +

1

z − w

(
2T (w)± ∂j(w)

)
.

(5.47)

Note that combining equation (5.45) with (2.5), we find the celebrated Brown-Henneaux
[14] central charge

c =
3l

2G
. (5.48)
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This is in agreement with results obtained using different techniques [11, 35, 53, 12]. Fi-
nally we note that even though the modification of the energy-momentum tensor (5.43)
looks strange, it seems to have appeared in the literature from a different point of view
[46, 48, 53]. In [46] all possible AdS3 extended supergravity theories (without higher-spin
fields) have been systematically investigated in the Chern-Simons formulation and asymp-
totic symmetry algebras calculated. It is here seen that the energy-momentum tensor is
generically shifted by the affine Lie algebra generated by the internal R-symmetries in
agreement with our N = 2 higher-spin case.

Let us now consider the second multiplet consisting of the fields(
W 2−, G

5
2
−, G

5
2

+,W 3+
)
. (5.49)

Just as above, we can turn off all source terms except the ones corresponding to this
multiplet and then proceed recursively. Shifting the energy momentum-tensor as discussed
above

L2 = L̃2 +
π

2k
[L 3

2
]2, (5.50)

we find the following two Ward identities corresponding to the energy-momentum tensor
and R-symmetry current

∂̄L2 = ∂̄L̃2 +
π

k
∂̄L 3

2
L 3

2
,

= 3L3 ∂µ
3
2 + 2 ∂L3 µ

3
2 +

3
◦
◦

∑
s= 5

2

(
5

2
ψs ∂ν

s
3
2

+
3

2
∂ψs ν

s
3
2

)
+ 2L 5

2
∂µ

5
2
1 + ∂L 5

2
µ

5
2
1 .

∂̄L 3
2

= −ψ3 ν
5
2
3
2

− ψ 5
2
ν3

3
2

.

(5.51)

Again identifying the currents and sources as

2πL 5
2
→W 2−, 2πL3 →W 3+, 2π ψ 5

2
→ G

5
2
−, 2π ψ3 → G

5
2

+,

µ
5
2
1 → 2π µW 2− , µ3

2 → 2π µW 3+ , ν
5
2
3
2

→ 2π ν
G

5
2−
, ν3

3
2

→ 2π µ
G

5
2 + ,

(5.52)

we find the following OPE’s

T (z)W 2−(w) ∼ 2

(z − w)2
W 2−(w) +

1

z − w
∂W 2−(w),

T (z)W 3+(w) ∼ 3

(z − w)2
W 3+(w) +

1

z − w
∂W 3+(w),

T (z)G
5
2
±(w) ∼ 5/2

(z − w)2
G

5
2
±(w) +

1

z − w
∂G

5
2
±(w),

j(z)G
5
2
± ∼ 1

z − w
G

5
2
∓(w).

(5.53)

We see that the higher-spin fields in the second multiplet are primary fields as expected,
and this is also the case for higher multiplets. Thus it seems that the holographic dictionary
works consistently given the identifications we have made. It is possible to derive OPE’s
between higher-spin fields and thereby derive the structure constants of the (classical)
N = 2 SW∞[λ]. These interesting results will not be presented here in detail since they
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are not completely finished and they are peripheral to our main objective, which is to
establish the holographic dictionary in order to calculate three-point functions.

Let us however show one last general result which is useful for us later, the leading
order singularity of the OPE of higher-spin bosonic currents is found from the term

∂̄Ls = −
k

2π N
B
s(

2bsc − 2
)
!
(−∂)2bsc−1µsbsc−1 + . . . , (5.54)

which leads to the following leading order term

Ws(z)Ws(w) ∼
−kNB

s

(
2bsc − 1

)
(z − w)2bsc + . . . , (5.55)

where for simplicity we use the notation that for integer s ∈ Z we have the fields Ws =
W s+, while for half-integers s = bsc + 1

2 ∈ Z + 1
2 we have Wbsc+ 1

2
= W bsc−. As a quick

check of our results, we can use this to calculate the leading order term of W 2−W 2−. Up
to a sign due to different normalizations, this exactly matches the results of [53].

In this section we have established the precise AdS/CFT dictionary for the higher-spin
fields. We have in particular shown that using the normalizations given in (5.19), we can
identify the bulk terms 1

2πµ
s
bsc−1 and 1

2πν
s
dse− 3

2

with source terms of the boundary CFT

(5.23).

5.3 Three-Point Functions From Bulk

We have so far found that our formalism reproduces the correct masses of the scalars in
Vasiliev theory and established which terms in the bulk gauge connection correspond to
source terms of which dual higher-spin current, and along the way given an alternative
proof of the emergence of superconformal N = 2 SW∞[λ] symmetry near the AdS3

boundary. In this section we will use this information to calculate certain classes of three-
point functions containing two scalars and one (holomorphic) bosonic higher-spin current.

For our needs we can turn off all higher-spin fields in the bulk, except one of fixed spin
s. The gauge connection will take the form

A =

(
eρ L

(2)
1 +

1

Bs
e−(bsc−1)ρLs L(s)

−bsc+1

)
dz +

∑
|m|≤bsc−1

emρ µsm L
(s)
m dz̄ + L0 dρ, (5.56)

where out of convenience we will in the following use the notation

1

Bs
≡ 2π

k

1

NB
s

,
1

Fs
≡ 2π

k

1

NF
s

. (5.57)

Using the standard methods of AdS/CFT correspondence to calculate correlation func-
tions is too cumbersome and does not take full advantage of the higher-spin gauge symme-
tries. Our strategy for calculating three-point functions of the form

〈
O(z1, z̄1)Ō(z2, z̄2)Js(z3)

〉
is based on the observation made in [84]. Starting from the solution of a free scalar field
on AdS3 we can generate new solutions by performing higher-spin gauge transformations.2

2The gauge transformations we are using are non-vanishing at the boundary and therefore are not real
gauge transformations. In other words, they act like global symmetries since they map a configuration to
a physically distinct one.
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We can therefore start from scalars on AdS3, then by a gauge transformation introduce
higher-spin source terms. From the near boundary expansion of the scalars we can then
find the corresponding three-point functions. This means we can reduce the whole calcu-
lation into studying how the scalars transform under higher-spin gauge symmetries. We
will now find the relevant gauge transformation.

As discussed in the previous section, we can express all functions µsm in eq. (5.56) in
terms of the boundary source µsbsc−1 using the equations of motion (5.2), which for (5.56)
reads

Fz̄z = ∂Az̄ − ∂̄Az + [Az, Az̄]

=
∑

|m|≤bsc−1

emρ ∂µsm L
(s)
m −

1

Bs
∂̄Ls e−(bsc−1)ρ L

(s)
−bsc+1 +

∑
|m|≤bsc−1

e(m+1)ρ µsm

[
L

(2)
1 , L(s)

m

]
+

1

Bs
Ls

∑
|m|≤bsc−1

e(m−bsc+1)ρ µsm

[
L

(s)
−bsc+1, L

(s)
m

]
,

=
∑

|m|≤bsc−1

emρ ∂µsm L
(s)
m −

1

Bs
∂̄Ls e−(bsc−1)ρ L

(s)
−bsc+1 +

bsc∑
m′=−bsc+2

em
′ρ µsm′−1 (bsc −m′)L(s)

m′

+
1

Bs
Ls

∑
|m|≤bsc−1

e(m−bsc+1)ρ µsm

2s−1
◦
◦

∑
u=1

gssu
(
-bsc+ 1,m;λ

)
L

(2s−u)
m−bsc+1.

(5.58)

We need to set the coefficients of linearly independent terms equal to zero separately. It
is clear that for u = s in the last term we get all terms proportional to Ls, the coefficients
are

emρ ∂µsm −
1

Bs
∂̄Ls e−(bsc−1)ρ δm,-bsc+1 + emρ µsm−1

(
bsc −m

)(
1− δm,-bsc+1

)
+

1

Bs
Ls emρ µsm+bsc−1 g

ss
s

(
-bsc+ 1,m+ bsc − 1;λ

)
χ[-bsc+1,0](m) = 0.

(5.59)

There are also other independent equations for u 6= s

1

Bs
Ls e(m−bsc+1)ρ µsm g

ss
u

(
-bsc+ 1,m;λ

)
= 0, u = 1, . . . , 2s− 1, u 6= s,

we will however ignore these since these equations will have corrections due to other
higher-spin fields (which we have put to zero out of convenience).3

For m > 0, equation (5.59) reduce to the following recursion relation and solution

∂µsm = −
(
bsc −m

)
µsm−1 ⇒ µsm =

(
-∂
)bsc−m−1(

bsc −m− 1
)
!
µsbsc−1, m ≥ 0. (5.60)

The solution for m < 0 is slightly more complicated, the general solution is of the form

µsm =

(
-∂
)bsc−m−1(

bsc −m− 1
)
!
µsbsc−1 + gsm

(
Ls, µsbsc−1

)
,

3These equations were necessary when we derived the holomorphic OPE’s in previous section.
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where
gsm
(
Ls, µsbsc−1

)
=
∑
a,b

αs,ma,b ∂
aµsbsc−1 ∂

bLs,

with the condition αs,ma,b = 0 for m ≥ 0. This implies that the equation for the lowest
mode is given by

1

Bs
∂̄Ls =

−1

(2bsc − 2)!
(-∂)2bsc−1µsbsc−1 + g(Ls, µsbsc−1), (5.61)

where
g(Ls, µsbsc−1) =

∑
a,b

αa,b ∂
aµsbsc−1 ∂

bLs. (5.62)

Note that this is nothing but equation (5.54) with only the spin s field turned on, which
is the reason the non-linear terms of SW∞[λ] are not present.

We can write any gauge transformation as Λ(ρ, z, z̄) =
∑
|m|≥bsc−1 F̃

s
m e

ρm L
(s)
m . The

gauge transformation which maps the AdS3 connection into chiral higher-spin background
with spin s and its boundary source term (5.56) is of the following form

Λ(ρ, z, z̄) =

bsc−1∑
m=0

1(
bsc −m− 1

)
!

(
-∂
)bsc−m−1

Λs emρ L(s)
m +

bsc−1∑
m=0

F̃ s−m e
−mρ L

(s)
−m, (5.63)

and Λ̄(ρ, z, z̄) = 0, with the following identifications µsbsc−1 = ∂̄Λ and Ls = − Bs
(2bsc−2)!(-∂)2bsc−1Λ

which is imposed by the equations of motion (5.61). Note that F̃ s−m can be explicitly found
by using the equations of motion. But as we will briefly see, the negative mode contribu-
tions to the connection do not contribute to the three-point functions.

Under infinitesimal gauge transformations, the matter fields transform as

Ĉ = C + δsC, δsC = C ? Λ̄− Λ ? C = −Λ ? C. (5.64)

Putting the fermions Csr to zero in (5.4) we find that the generating function transforms
as

δsC = −
∞
◦
◦

∑
t=1

∑
|n|≤btc−1

bsc−1∑
m=0

(
-∂
)bsc−m−1

Λs(
bsc −m− 1

)
!
Ctn e

mρ L(s)
m ? L(t)

n + . . .︸︷︷︸
m<0

= δsC
1
0 L

(1)
0 + δsC

3
2
0 L

( 3
2

)

0 + . . .

(5.65)

In order to isolate how the scalars transform, recall that

L(s)
m ? L(t)

n =

Min(2s−1,2t−1)

◦
◦

∑
u=1

gstu (m,n;λ)L
(s+t−u)
m+n .

In order to isolate the lowest two scalars, we have the following conditions

m+ n = 0 ⇒ m = −n,
s+ t− uq = q ⇒ uq = s+ t− q,

where q = 1, 3
2 . Now for q = 1, if t > s or s > t we have that u1 > Min(2s − 1, 2t − 1)

which implies that gstuq(. . . ) = 0. This implies that only the term with s = t contributes.
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For q = 3
2 , besides the t = s terms also the t = s ± 1

2 terms contribute. Thus the scalars
transform as

δsC
1
0 = −

bsc−1∑
m=0

(
-∂
)bsc−m−1

Λs(
bsc −m− 1

)
!
Cs−m g

ss
2s−1

(
m, -m;λ

)
emρ +

terms which

vanish as ρ→∞
, (5.66)

and

δsC
3
2
0 = −

bsc−1∑
m=0

(
-∂
)bsc−m−1

Λs(
bsc −m− 1

)
!

[
Cs−m g

ss
2s− 3

2

(
m, -m;λ

)
(5.67)

+ C
s−1/2
−m g

ss−1/2
2s−2

(
m, -m;λ

)
χ[

0,bs−1/2c−1
](m) + C

s+1/2
−m g

ss+1/2
2s−1

(
m, -m;λ

)]
emρ.

The step function in the second term is put in to ensure we do not go beyond the wedge
algebra, which is shs[λ]. Using this we can readily find the transformation of the mass-
eigenstates φ̂i = φi + δφi

δsφi = ãi δsC
1
0 + b̃i δsC

3
2
0 ,

= −
bsc−1∑
m=0

(
-∂
)bsc−m−1

Λs(
bsc −m− 1

)
!
emρ

(
ãiC

s
−m g

ss
2s−1

(
m, -m;λ

)
+ b̃i

[
Cs−m g

ss
2s− 3

2

(
m, -m;λ

)
+ C

s−1/2
−m g

ss−1/2
2s−2

(
m, -m;λ

)
χ[

0,bs−1/2c−1
](m) + C

s+1/2
−m g

ss+1/2
2s−1

(
m, -m;λ

)])
,

≡
bsc−1∑
m=0

[
fs,im
(
λ, ∂ρ

)
∂mφi

]
∂bsc−m−1Λs, (5.68)

≡ D(s,i)(z)φi.

This expression requires solving the recursion relations (5.11) in order to express the

auxiliary fields Cs−m as sums and derivatives of C1
0 and C

3
2
0 , which in turn can be expressed

as functions of φ±. As will be seen later, it turns out that these will have the form
Cs−m ∼ e−|m|ρA

(
λ, ∂ρ

)
∂mφi,4 which means that emρ is canceled for m > 0 and enhanced

for m < 0. For this reason the terms with m < 0 have been neglected in (5.68), since they
are vanishing near the AdS3 boundary. The coefficients are given as

ãi =

{
−1, i = +,

1, i = −,
, b̃i =

{
2λ, i = +

−2λ+ 1 i = −
, (5.69)

which are found by inverting the equations (5.17).The function in the third line of (5.68)
contains all the information about the higher-spin deformation and is given as

f s,im
(
λ, ∂ρ

)
=

(−1)bsc−m(
bsc −m− 1

)
!

(
ãi Gs,im gss2s−1

(
m, -m;λ

)
+ b̃i

[
Gs,im gss

2s− 3
2

(
m, -m;λ

)
(5.70)

+ Gs−1/2,i
m g

ss−1/2
2s−2

(
m, -m;λ

)
χ[

0,bs−1/2c−1
](m) + Gs+1/2,i

m g
ss+1/2
2s−1

(
m, -m;λ

)])
,

4Note that for our calculation of three-point functions we only need to turn on the boundary source
of the relevant scalar. Thus in calculating δsφ+ we set φ− = 0 and vice versa.
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where Gs,im is defined as

e−|m|ρ Gs,im
(
λ, ∂ρ

)
∂mφi = Cs−m(λ, ∂ρ)

∣∣
φī=0

,

where i = ± and the index ī refers to the opposite sign. Thus we find Gs,im by removing a
factor of e−|m|ρ ∂mφi from Cs−m and set the other scalar to zero.

5.3.1 Three-Point Functions

Recall that putting a scalar source on the boundary of AdS3 at z′, we can express the
bulk solution using the bulk-to-boundary propagator

φi(ρ, z) =

∫
d2z′Gb∂(ρ, z; z′)φ∂i (z′), (5.71)

which in our coordinates is given as [114, 121]

Gb∂(ρ, z; z′) = c±

(
e−ρ

e−2ρ + |z − z′|2

)∆±

. (5.72)

Here the conformal weights are determined from the scalar mass m2 = ∆±(∆± − d),
where ∆+ ≥ ∆−, ∆± = 2 − ∆∓ and d = 2 here. In this section we will also use the
conventional coordinates r = e−ρ, in which the metric takes the form ds2 = dr2+dzdz̄

r2

and the boundary is at r → 0. The constant in (5.72) is determined by the requirement
that near the boundary we have the behavior φi(ρ, z) ∼ rd−∆± φ∂i (z), which implies that
Gb∂(ρ, z, z′) = c± r

d−∆± r2∆±−d

(r2+|z−z′|2)∆± → rd−∆± δ(2)(z−z′). Using a change of coordinates

y = (z−z′)
r [122], the constant is given by [110, 114]

c± =

[∫
d2y

1

(1 + y2)∆±

]−1

=
Γ(∆±)

π Γ(∆± − 1)
=

∆± − 1

π
. (5.73)

The near-boundary expansion of the bulk field is of the form [110, 123]

φi(ρ, z) −→ rd−∆±
(
φ∂i (z) + o(r)

)
+ r∆±

(
1

B±φ

〈
O∆±(z)

〉
+ o(r)

)
, (5.74)

where O∆± is the dual field with conformal weight ∆± and B±φ = 2∆±−d is necessary for
a consistent dictionary [121, 110]. The idea is to generate the solution on a background
containing a spin s source by a gauge transformation

φi(ρ, z) −→ φ̂i(ρ, z) = φi(ρ, z) + δsφi(ρ, z),

=
(
1 +D(s,i)

)
φi(ρ, z),

(5.75)

which gives the near boundary expansion

φ̂i(ρ, z) −→ rd−∆±
(
φ̂∂i (z) + o(r)

)
+ r∆±

(
1

B±φ

〈
O∆±(z)

〉
µ

+ o(r)

)
. (5.76)
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By the notation 〈. . .〉µ, we mean the vacuum expectation value with a higher-spin source
insertion. We will put a scalar point-source at z2 and a chiral spin s source at z3 on the
AdS3 boundary

φ̂∂i (z, z̄) = µφ δ
(2)(z − z2), µsbsc−1(z, z̄) = µs δ

(2)(z − z3). (5.77)

The two and three-point functions can then be read off from the one-point function near
the boundary〈

O∆±(z1, z̄1)
〉
µ

=µφ
〈
O∆±(z1, z̄1) Ō∆±(z2, z̄2)

〉
+ µφ µs

〈
O∆±(z1, z̄1) Ō∆±(z2, z̄2) Js(z3)

〉
+ . . . .

(5.78)

We will now find a general expression for the three-point functions as a function of fs,im
given in equation (5.70), which characterize the higher-spin deformation the scalars ex-
perience. The steps are clear; we need to write down how the scalars transform (5.75)
and use (5.71), which requires knowing φ∂i as a function of φ̂∂i . Next we need to find the
vacuum expectation value of the dual field from the asymptotics of φ̂i (5.76), then isolate
the µφ µs order contribution, which gives us the three-point functions as seen in (5.78).

The boundary sources of φi and φ̂i are related by a gauge transformation

φ̂∂i (z) e−∆∓ρ =
(
1 +D(s,i)

)
e−∆∓ρ φ∂i (z) = e−∆∓ρ

(
1 +D

(s,i)
∓
)
φ∂i (z),

where we have defined
D

(s,i)
± = D(s,i)

(
∂ρ → −∆±

)
. (5.79)

Inverting this up to first order and using the boundary condition (5.77) we find

φ∂i (z, z̄) = µφ
(
1−D(s,i)

∓
)
δ(2)(z − z2). (5.80)

Using this, the gauge transformed scalar field is

φ̂(ρ, z) = µφ
(
1 +D(s,i)(z)

) ∫
d2z′Gb∂(ρ, z; z′)

(
1−D(s,i)

∓ (z′)
)
δ(2)(z′ − z). (5.81)

Going near the boundary ρ→∞ and keeping only the e−∆±ρ contribution we have

φ̂i(ρ, z) ≈ µφ
(

1 +D(s,i)(z)
) ∫

d2z′
c± e

−∆±ρ

|z − z′|2∆±

(
1−D(s,i)

∓ (z′)
)
δ(2)(z′ − z),

= e−∆±ρ µφ c±

∫
d2z′

(
1 +D

(i,s)
± (z)

) 1

|z − z′|2∆±

(
1−D(s,i)

∓ (z′)
)
δ(2)(z′ − z),

= e−∆±ρ

〈
O(z)

〉
µ

B±φ
, ρ→∞.

(5.82)

The two-point function is readily given as

〈
O∆±(z1, z̄1) Ō∆±(z2, z̄2)

〉
=

B±φ c±

|z1 − z2|2∆±
. (5.83)
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Next we will look at the µφD(s,i) contribution of the one-point function given in (5.82),
since D(s,i) is proportional to µs. Neglecting the other terms, we have

〈
O∆±(z1)

〉
µ

= µφB
±
φ c±

[
D

(s,i)
± (z1)

1

|z1 − z2|2∆±
−
∫

d2z′
D

(s,i)
∓ (z′) δ(2)(z′ − z2)

|z1 − z′|2∆±

]
.

(5.84)

Recall that the differential operators describing the infinitesimal gauge transformations
take the form

D
(s,i)
± (z) =

bsc−1∑
m=0

[
fs,im
(
λ,−∆±

)
∂bsc−m−1Λs

]
∂m + terms vanishing as ρ→∞. (5.85)

Using this and the following identity

∂n2
1

|z1 − z2|2∆±
= (−1)n∂n1

1

|z1 − z2|2∆±
=

Γ(∆± + n)

Γ(∆±)

1

(z1 − z2)n
1

|z1 − z2|2∆±
, (5.86)

we can write the first term of (5.84) as

D
(s,i)
± (z1)

1

|z12|2∆±
=

bsc−1∑
m=0

(−1)m
Γ(∆± +m)

Γ(∆±)
f s,im
(
λ,−∆±

) [
∂
bsc−m−1
1 Λ(s)(z1)

] 1

zm12 |z12|2∆±
.

(5.87)
For the second term we need to integrate by parts, until there are no derivatives on the
delta function∫

d2 z′
D

(s,i)
∓ (z′) δ(2)(z′ − z2)

|z1 − z′|2∆±
=

bsc−1∑
m=0

fs,im
(
λ,−∆∓

) ∫
d2z′

∂
bsc−m−1
z′ Λ(s)(z′) ∂mz′ δ(z

′ − z2)

|z1 − z′|2∆±
,

=

bsc−1∑
m=0

fs,im
(
λ,−∆∓

) ∫
d2z′ (−1)m ∂mz′

[
∂
bsc−m−1
z′ Λ(s)(z′)

|z1 − z′|2∆±

]
δ(z′ − z2),

=

bsc−1∑
m=0

(−1)m fs,im
(
λ,−∆∓

)
∂m2

[
∂
bsc−m−1
2 Λ(s)(z2)

|z12|2∆±

]
,

=

bsc−1∑
m=0

(−1)m fs,im
(
λ,−∆∓

) m∑
j=0

(
m
j

)[
∂
bsc−m−1+j
2 Λ(s)(z2)

]
∂m−j2

[
1

|z12|2∆±

]
,

=

bsc−1∑
m=0

m∑
j=0

(−1)m
Γ(∆± +m− j)

Γ(∆±)
fs,im (λ,−∆∓)

(
m
j

)[
∂
bsc−m−1+j
2 Λ(s)(z2)

] 1

zm−j12 |z12|2∆±
,

(5.88)

where in the last line we have used the formula (5.86). In order to get the correct boundary
condition for the higher-spin field (5.77), we have to set the gauge parameter to

Λ(s)(z) =
µs
2π

1

z − z3
. (5.89)
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We can now make use of the identities

∂
bsc−m−1
1 Λ(s)(z1) =

µs
2π

(
bsc −m− 1

)
!

z
bsc−m
13

(−1)bsc−m−1,

∂
bsc−m−1+j
2 Λ(s)(z2) =

µs
2π

(
bsc −m− 1 + j

)
!

z
bsc−m+j
13

(−1)bsc−m−1+j ,

(5.90)

and write the one-point function as

〈
O∆±(z1)

〉
µ

=
µφ µsB

±
m c± (−1)bsc−1

2π |z12|2∆±

bsc−1∑
m=0

1

zm12

{
fs,is
(
λ,−∆±

) Γ(∆± +m)

Γ(∆±)

(
bsc −m− 1

)
!

z
bsc−m
13

− fs,im
(
λ,−∆∓

) 1

z
bsc−m
23

m∑
j=0

(−1)j
(
m
j

)
Γ(∆± +m− j)

Γ(∆±)

(
bsc −m− 1 + j

)
!

(
z12

z23

)j }
(5.91)

We have now shown that the three-point functions are known as soon as we know the
functions fs,im (λ,∆±). This expression, however, looks very complicated and it is not
manifestly conformal invariant. Conformal symmetry constrains the three-point functions
to take the form 5

〈
O∆±(z1, z̄1)Ō∆±(z2, z̄2)J (s)(z3)

〉
= A±(s) d±

(
z12

z13z23

)bsc 1

z
2h±
12 z̄

2h̄±
12

, (5.92)

= A±(s)

(
z12

z13z23

)bsc 〈
O∆±(z1, z̄1)Ō∆±(z2, z̄2)

〉
.

Note that this, among other things, demands the following relation〈
O∆±(z1, z̄1)Ō∆±(z2, z̄2)J (s)(z3)

〉
= (−1)bsc

〈
O∆±(z2, z̄2)Ō∆±(z1, z̄1)J (s)(z3)

〉
. (5.93)

Although the full conformal invariance is not manifest in (5.91), we can make the above
symmetry manifest in order to simplify (5.91). This implies that the three-point function
must be of the form〈

O∆±(z)
〉
µ

= µφB
±
φ C±

[
D

(s,i)
± (z1) + (−1)bscD

(s,i)
± (z2)

] 1

|z12|2∆±
,

=
µφ µsB

±
φ C± (−1)bsc−1

2π |z12|2 ∆±

bsc−1∑
m=0

fs,im (λ,−∆±)

zm12

Γ(∆± +m)

Γ(∆±)

(
bsc −m− 1

)
!

×

(
1

z
bsc−m
13

+
(−1)bsc−m

z
bsc−m
23

)
.

(5.94)

Note that the second term is acting on z2, thus the factor (−1)bsc−m comes from using
the formula (5.86). Furthermore note that making the symmetry (5.93) manifest imposes

5Note that in general z2hz̄2h̄ = |z|2∆ei(h−h̄)θ. For scalars we have that h − h̄ = 0, while for spin 1
2

fermions we have h− h̄ = ± 1
2
.
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a constraint on fs,im (λ,∆±), which comes from equating (5.91) with (5.94) and isolating
terms of equal powers of z12

fs,ibsc−j̃

(
λ,−∆±

)
= −

bsc−1∑
m=0

(−1)bsc−m fs,im
(
λ,−∆∓

)( m

j̃ − bsc+m

)
, (5.95)

where j̃ = bsc −m, . . . , bsc.
This is quite a non-trivial and non-obvious constraint on fs,im (λ,−∆±) which will be

useful as a check of our calculations. Equation (5.94) is one of our main results and gives
us the three-point functions when removing6 1

2πµφµs

5.3.2 Solution of the Vasilev Recursion Relations

According to equation (5.94), the calculation of the three-point functions is reduced to
solving the Vasiliev equations (5.11) recursively in order to express the auxiliary fields
Cs−m in terms of φ±. This task is most easily solved by splitting it into two steps. We

will first express the minimal components Cm+1
−m and C

m+ 3
2

−m in terms of C1
0 and C

3
2
0 , af-

terwards express the non-minimal components C
s6=m+1,m+ 3

2
−m in terms of Cm+1

−m and C
m+ 3

2
−m .

Combining these two solutions, we can express Cs−m in terms of the physical scalars φ±
which is what we need in equation (5.94).

For the first step we need to use the z-equations of (5.11) for the negative mode
minimal components

L
(m+1)
−m,z : ∂Cm+1

−m + eρ g2,m+2
3 (1,−m− 1)Cm+2

−m−1 = 0,

L
(m+ 3

2
)

−m,z : ∂C
m+ 3

2
−m + eρ g

2,m+ 5
2

3 (1,−m− 1)C
m+ 5

2
−m−1 + eρ g2,m+2

5
2

(1,−m− 1)Cm+2
−m−1 = 0.

The first of these equations are readily solved

Cm+1
−m =

(
m∏
i=1

g2,i+1
3 (1,−i)

)−1 (
−e−ρ∂

)m
C1

0 . (5.96)

The second equation is easier to solve if one considers the more general recursion relation

αmC
m+ 3

2 + Cm+ 5
2 + βmC

m+2 = 0, (5.97)

which have the solution

Cm+ 5
2 =

m∏
i=0

(−αi)C
3
2 +

m+1∑
p=1

 m∏
j=p

(−αj)

 (−βp−1)Cp+1. (5.98)

Putting the coefficients to

αm = e−ρ
(
g

2,m+ 5
2

3 (1,−m− 1)

)−1

∂, βm =
g2,m+2

5
2

(1,−m− 1)

g
2,m+ 5

2
3 (1,−m− 1)

, (5.99)

6Recall our analysis of holographic Ward identities, where we found out that µs
2π

correspond to the
correct normalized source of the dual field operator and not µs.
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and using the other solution (5.96), one can write down the solution of the second equation
as

C
m+ 3

2
−m =

(
m∏
i=1

g
2,i+ 3

2
3 (1,−i)

)−1

(−eρ∂)mC
3
2
0 +

m∑
p=1

 m∏
j=p+1

g
2,j+ 3

2
3 (1,−j)

−1

×

(
p∏

k=1

g2,k+1
3 (1,−k)

)−1
−g2,p+1

5
2

(1,−p)

g
2,p+ 3

2
3 (1,−p)

(−e−ρ∂)mC1
0 .

(5.100)

One can find very similar expressions for the auxiliary fields with positive mode using the
z̄ equations of (5.11), these are given by

Cm+1
m =

(
m∏
i=1

gi+1,2
3 (i,−1)

)−1 (
e−ρ∂̄

)m
C1

0 , (5.101)

and

C
m+ 3

2
m =

(
m∏
i=1

g
i+ 3

2
,2

3 (i,−1)

)−1 (
e−ρ∂̄

)m
C

3
2
0 +

m∑
p=1

 m∏
j=p+1

g
j+ 3

2
,2

3 (j,−1)

−1

×

−gp+1,2
5
2

(p,−1)

g
p+ 3

2
,2

3 (p,−1)

(e−ρ∂̄)m−pCp+1
p .

(5.102)

Now for the second step we need to use the ρ-equations of (5.11) given by

∂ρC
s
m + 2Cs−1

m + κsC
s+1
m + ωs−1/2C

s− 1
2

m + σs+ 1
2
C
s+ 1

2
m = 0, (5.103)

where out of convenience we have defined the quantities

κs ≡ 2gs+1,2
3 (m, 0),

ωs− 1
2
≡ 2g

s− 1
2
,2

3
2

(m, 0),

σs+ 1
2
≡ 2g

s+ 1
2
,2

5
2

(m, 0).

(5.104)

Note that we have suppressed the m dependence since we need to solve the above equation
for fixed m. According to the properties of the structure constants listed in appendix B,
ωs− 1

2
= 0 for s ∈ Z+ 1

2 and σs+ 1
2

= 0 for s ∈ Z, thus we can split (5.103) into two slightly
simpler equations7

∂ρC
s
m + 2Cs−1

m + κsC
s+1
m + ωs− 1

2
C
s− 1

2
m = 0,

∂ρC
s+ 1

2
m + 2C

s− 1
2

m + κs+ 1
2
C
s+ 3

2
m + σs+1C

s+1
m = 0,

s ∈ Z≥1. (5.105)

7Note the exceptions ω 3
2
− 1

2
∝ m and σ1+ 1

2
∝ m, which lead to terms of the form mC1

m and mC
3
2
m.

Only for m = 0 are these terms inside the wedge and thus they vanish (for m > 0, C1
m = C

3
2
m = 0).
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Due to the σ and ω terms these two recursion relations are coupled to each other and
this makes the equations difficult to solve. In appendix A we show how to solve these
equations in the case of σs = 0, the general solution can possibly be obtained by similar
techniques. For our needs we can simply solve these equations recursively on a computer,
for example using Mathematica, to any arbitrary order we would like and then evaluate
the expression (5.94). Let us however make a few general and important comments. Note
that the general solution will be of the form

Csm = Os (∂ρ)C
m+1
m + Ps (∂ρ)C

m+ 3
2

m ,

C
s+ 1

2
m = Õs (∂ρ)C

m+1
m + P̃s (∂ρ)C

m+ 3
2

m ,
(5.106)

where the differential operators clearly do not explicitly depend on ρ but only on ∂ρ. In
order to find the functions Gs,im (λ, ∂ρ) of equation (5.70), we need to move the exponential
factors of (5.96), (5.100), (5.101), (5.102), outside in equation (5.106). Since the operators
Os, Ps, Õs and P̃s are polynomials of ∂ρ (see appendix A), consider the following short
calculation

∂nρ
(
e−mρ φ

)
=

n∑
q=0

(
n
q

)
∂n−qρ

(
e−m

)
∂qρ φ,

=
n∑
q=0

(
n
q

)
(−m)n−q ∂qρφ e

−mρ,

=
[

(∂ρ −m)n φ
]
e−mρ,

(5.107)

where we have used the binomial theorem for the differential operator in the last line.
Thus if we remove by hand the exponential factors of (5.96), (5.100), (5.101), (5.102), and
then shift the operators of equation (5.106) by

∂ρ → ∂ρ −m,

we will find the functions Gs,im (λ, ∂ρ). This is an important detail to remember when
implementing these recursion relations (5.105) in a mathematical software.

As a final remark, let us note that the ρ and ∂ dependence of the auxiliary fields are
of the form8 Cs−m ∼ e−|m|ρA

(
λ, ∂ρ

)
∂mφi as claimed and used earlier.

5.3.3 Final Results for Three-Point Functions

We can finally calculate the three-point functions by using equation (5.94), removing the
1

2πµφµs factor, together with the solution of the above recursion relations. It is however
difficult to proceed analytically partly because we do not have a general closed formula
for the recursion relations, but mainly because the structure constants (B.2) are very
complicated expressions and it is hard to rewrite the whole thing as simple functions of λ.
We will therefore proceed by explicitly calculating the different three-point functions for
low spin s, then extrapolate the result to arbitrary s. These closed expressions can then
be checked on a computer for many spins s.

Let us briefly comment on some consistency checks. We have checked that the con-
straints (5.95) are satisfied for wide range of values s. Remarkably if we modify the

8Recall that we always put one of the scalars φ± to zero.
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expression (5.70), even slightly, then the constraint (5.95) will no longer be satisfied. Fur-
thermore it turns out that the expression (5.94) for the three-point functions exactly end
up having the correct (z1, z2, z3)-dependence which is required by conformal symmetry
(5.92), but not manifest from (5.94) at all. Here we also observe that even the smallest
changes of the equations (5.70) or (5.94), will result in “three-point functions” with com-
plicated (z1, z2, z3)-dependence and the result will not respect conformal symmetry (5.92)!
There are many other similar checks which seem quit remarkable that things work out.
These tests are highly non-trivial and its very encouraging that our results seem to be
quit consistent and “robust”.

Since all three-point functions we are considering are of the form

〈
O∆(z1, z̄1)Ō∆(z2, z̄2)J (s)(z3)

〉
=
〈
O∆Ō∆J

(s)
〉( z12

z13z23

)s 〈
O∆(z1, z̄1)Ō∆(z2, z̄2)

〉
,

we will use the notation
〈
O∆Ō∆J

(s)
〉
to denote the coefficients. Let us take the dual

operator of φ+ with conformal weight ∆+ = 2(1− λ). By solving the recursion relations
above and following the detailed procedure developed in this chapter, equation (5.94) give
us the following coefficients for low spin〈

OB∆+
ŌB∆+

W 2+
〉

= −(λ− 1),〈
OB∆+

ŌB∆+
W 3+

〉
= −1

3
(λ− 1) (2λ− 3),〈

OB∆+
ŌB∆+

W 4+
〉

= −1

5
(λ− 2) (λ− 1) (2λ− 3),〈

OB∆+
ŌB∆+

W 5+
〉

= − 2

35
(λ− 2) (λ− 1) (2λ− 5) (2λ− 3),〈

OB∆+
ŌB∆+

W 6+
〉

= − 2

63
(λ− 3) (λ− 2) (λ− 1) (2λ− 5) (2λ− 3).

(5.108)

Note that W 2+(z) is the holographic part of the energy-momentum tensor and therefore
the coefficient of the three-point function must be the holomorphic conformal weight of
OB∆+

which is h+ = 1− λ (see equations (4.11) and (4.12)). Encouragingly this is exactly
what we find. Let us also show a few low-spin results of three-point functions with the
same scalar but with the other bosonic higher-spin current〈

OB∆+
ŌB∆+

W 2−〉 = −1

3
(λ− 1) (2λ+ 1),〈

OB∆+
ŌB∆+

W 3−〉 = − 2

15
(λ− 1) (λ+ 1) (2λ− 3),〈

OB∆+
ŌB∆+

W 4−〉 = − 1

35
(λ− 2) (λ− 1) (2λ− 3) (2λ+ 3),〈

OB∆+
ŌB∆+

W 5−〉 = − 4

315
(λ− 2) (λ− 1) (λ+ 2) (2λ− 5) (2λ− 3),〈

OB∆+
ŌB∆+

W 6−〉 = − 2

693
(λ− 3) (λ− 2) (λ− 1) (2λ− 5) (2λ− 3) (2λ+ 5).

(5.109)

Amazingly it turns out that all three-point functions factorize as the above examples and
thus make it easy for us to guess the correct closed form expression for all spin. For the
CFT dual fields corresponding to φ̃±, we need to multiply by a factor of (−1)s due to the
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different coupling to the higher-spin fields (5.3). The general expressions are given by

〈
OB∆+

ŌB∆+
W s+

〉
= (−1)s

Γ2(s)

Γ(2s− 1)

Γ(s− 2λ+ 1)

Γ(2− 2λ)
,

〈
OB∆−Ō

B
∆−W

s+
〉

= (−1)s
Γ2(s)

Γ(2s− 1)

Γ(s− 2λ)

Γ(1− 2λ)
,

〈
ÕB∆+

¯̃OB∆+
W s+

〉
= (−1)s−1 Γ2(s)

Γ(2s− 1)

Γ(−2λ+ 1)

Γ(−2λ− s+ 2)
,

〈
ÕB∆−

¯̃OB∆−W
s+
〉

= (−1)s−1 Γ2(s)

Γ(2s− 1)

Γ(−2λ)

Γ(−2λ− s+ 1)
,

(5.110)

We have checked these closed-form expressions with our actual calculation for many spins
and find perfect match. It is possible to combine these results into more unified formulas
which depend only on s, the holomorphic conformal weights and the type of the fields
involved, as

〈
OBh ŌBhW s+

〉
= (−1)s

Γ2(s)

Γ(2s− 1)

Γ(s+ 2h− 1)

Γ(2h)
,

〈
ÕBh

¯̃OBhW s+
〉

=
Γ2(s)

Γ(2s− 1)

Γ(s+ 2h− 1)

Γ(2h)
.

(5.111)

Comparing these general formulas with the non-supersymmetric results of [84], and ac-
counting for the different conformal weights in that case (h± = 1

2(1± λ)), we find perfect
agreement (up to a normalization-dependent factor of −1/(2π)).

We can follow the same procedure to find the three-point functions containing the
other bosonic higher spin fields, which are not present in the non-supersymmetric case:

〈
OB∆+

ŌB∆+
W s−〉 = (−1)s−1 Γ2(s)

Γ(2s− 1)

Γ(s− 2λ+ 1)

Γ(2− 2λ)

s− 1 + 2λ

2s− 1
,

〈
OB∆−Ō

B
∆−W

s−〉 = (−1)s
Γ2(s)

Γ(2s− 1)

Γ(s− 2λ)

Γ(1− 2λ)

s− 2λ

2s− 1
,

〈
ÕB∆+

¯̃OB∆+
W s−〉 = (−1)s

Γ2(s)

Γ(2s− 1)

Γ(−2λ+ 1)

Γ(−2λ− s+ 2)

s− 1 + 2λ

2s− 1
,

〈
ÕB∆−

¯̃OB∆−W
s−〉 = (−1)s−1 Γ2(s)

Γ(2s− 1)

Γ(−2λ)

Γ(−2λ− s+ 1)

s− 2λ

2s− 1
.

(5.112)

The coefficients (5.110) and (5.112) are our main results from the bulk calculation.
We notice that the coefficients of the same primaries with the W s+ and W s− currents

are very closely related. Although the reason for this similarity is not very clear from the
bulk calculation, it is obvious from the boundary theory perspective, as we will see in the
following section.

It is straightforward to generalize the above in order to obtain correlation functions
containing fermions. For fermionic matter, one would need to set the scalar fields to zero
in 5.4 while keeping the fermionic ones. In order to include a fermionic higher-spin current,
one would need to keep only a particular fermionic higher-spin generator in 5.20. Then
the procedure in this section can be repeated with minor modifications.
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5.4 Three-Point Functions from Boundary

Now we want to switch gears and consider the problem from the point of view of the dual
CFT. Initially this problem seems to be quite difficult. Recall that the conjectured dual
theory is the N = 2 CPN Kazama-Suzuki model given by the following bosonic coset

ŝu(N + 1)k × ŝo(2N)1

ŝu(N)k+1 × û(1)N(N+1)(k+N+1)
, (5.113)

where it should be dual to the classical Vasiliev theory with the parameter identification
λ = 1

2
N

N+k in the ’t Hooft limit
lim

N,k→∞
λ = fixed. (5.114)

Since the dual CFT is defined by a double scaling limit, one has to calculate the three-
point functions for arbitrary N and k then take the ’t Hooft limit. One way to do this is
to consider a Feigin-Fuchs type free-field realization, as first done for the c < 1 minimal
models [124, 125].9 This involves calculating conformal blocks of screened Vertex operators
and then solve the monodromy problem to find the four-point function, from which one
can extract the coefficient of the three-point function. This was done for the N = 0 case in
[127]. In order to construct such a free-field realization of the Kazama-Suzuki models, one
can with benefit start from the constructions given in [105, 128, 129]. It is however not the
best way to proceed for several reasons. Although the calculation is definitely doable, it is
not so simple to perform for arbitrary N and k and it involves working with complicated
contour integrals. Furthermore in this approach the solution of a harder problem has to
be calculated in order to extract the results of the simpler ’t Hooft limit, it would be much
smarter to go directly to the ’t Hooft limit.10

We will here take a much simpler and smarter route to solve this problem, our calcu-
lation will be based purely on the symmetry SW∞[λ].11 First note that all three-point
functions take the form (5.92), where the coefficient is just given by the leading order pole
of the OPE12

J (s)(z)O∆(w, w̄) ∼ A(s)

(z − w)s
O∆(w, w̄) + . . . . (5.115)

If we use a standard Laurent expansion J (s)(z) =
∑

n J
(s)
n z−n−s, we can turn this into

J
(s)
0 (z)|O∆〉 = A(s)|O∆〉. (5.116)

Thus the three-point functions can found by calculating the higher spin charges of O∆,
which is a problem in representation theory of SW∞[λ]. This is in general not such a
simple problem due to non-linearities of the algebra, especially for arbitrary central charge
c. There are however certain simplifications which makes this much more straightforward.

As we discussed earlier, the super higher-spin algebra shs[λ] give rise to SW∞[λ] by
a quantum Drinfeld-Sokolov reduction but shs[λ] is not a subalgebra due to non-linear

9This is a BRST construction [126] in which the relevant model is constructed by constraining a certain
model of free-fields and primary fields are identified with (screened) Vertex operators.

10But on the other hand knowing the full finite N and k results will be useful in the future when one
calculates O(1/N) quantum corrections of the Vasiliev theory.

11Note that this relies on the assumption that the Kazama-Suzuki model has SW∞[λ] as symmetry
algebra, which is not a priory clear at all. For certain strong arguments in favor of this, see the recent
paper [120].

12Here J(s)(z) represents a general higher spin current, both the bosonic and fermionic ones.
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term. In [38] the non-supersymmetric hs[λ] andW∞[λ] were analyzed. It was argued that
all the non-linear terms appearing in the commutator of elements in the wedge

[W s
m,W

t
n], |m| < s, |t| < t,

vanish in the limit of large central charge c→∞.13 This has been shown recently to also
hold in the N = 2 case in [120], so we have that14

shs[λ]
Drinfeld-Sokolov−−−−−−−−−−→ SW∞[λ]

c→∞, |n|<s−−−−−−−→ shs[λ].

Since in the ’t Hooft limit, and the bulk calculation we want to compare to, we have
c→∞, we can assume that shs[λ] is a closed subalgebra of SW∞[λ].

Now assume that O∆ is a highest weight representation of SW∞[λ] with conformal
weight ∆ = h + h̄, then this must also be a representation of shs[λ] by restriction since
it is a closed subalgebra in the limit we are interested in. Conversely any representation
of shs[λ], with the highest weight state O∆, gives rise to a representation of SW∞[λ]
by the usual procedure know from pure Virasoso algebra; we just have to assume O∆ is
annihilated by all positive modes and construct a Verma module by the action of negative
modes. This is in general a irreducible representation of SW∞[λ] except for very specific
values of c, in which there are null-states generating submodules making the full module
degenerate (this is what happens for the minimal models). To summarize, in the c→∞
limit we expect the spectrum of primary fields to fall into representations of shs[λ].

We have thus reduced the calculation of three-point functions of the Kazama-Suzuki
models in the ’Hooft limit, to studying representations of shs[λ] which is a much simpler
task even though it is an infinite dimensional Lie algebra.

As we discussed earlier, shs[λ] can be constructed as a the quotient of U(osp(1|2)) with
some ideal and all generators of the higher spin algebra can be expressed as products of
osp(1|2) generators. In particular if we specify the spin-two zero mode we can calculate
the eigenvalues the all higher-spin zero modes

L
(2)
0 O∆ = hO∆, ⇒ L

(s)
0 O∆ = A(s)O∆, (5.117)

thus the osp(1|2) representation, specified by h, gives rise to a shs[λ] representation. This
is not such a difficult problem, but it requires us to express the generators of shs[λ] in
terms of those of osp(1|2), similar to (2.23), with the correct normalizations. We will
however take another route.

5.4.1 Field Theoretic Approach

Instead of working directly with representation theory, we will use a more field theoretic
approach to generate the necessary representation theory data we need. We have argued
that the calculation of the three-point functions reduce to symmetry and therefore we are
allowed to pick any CFT, simpler than the CPN Kazama-Suzuki model, with the correct
symmetry algebra. Our arguments are actually much stronger than that, we can use any
CFT we like as long as it contains hs[λ] as a closed subalgebra. The simplest class of

13This was shown in the case of finite dimensional Lie algebras g and the Drinfeld-Sokolov reduction of
their affinization ĝ in [130].

14This was a conjecture we were assuming during this work, until [120] recently appeared.
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CFT’s of them all are the free CFT’s, in which there are an infinite number of (higher
spin) conserved currents.15

The possibly simplest CFT realization of the shs[λ] algebra is given by the ghost CFT
as known from superstring theory [131]

S =
1

π

∫
d2z

(
b∂̄c+ β∂̄γ + b̃∂c̃+ β̃∂γ̃

)
. (5.118)

which has the free field OPE’s:

γ(z)β(w) ∼ 1

z − w
, and c(z)b(w) ∼ 1

z − w
(5.119)

and similarly for the tilded fields. Here b, c, b̃ and c̃ are anti-commuting fermions while
β, γ, β̃ and γ̃ are bosons. It was shown in [39] that this free CFT has an infinite number
of conserved currents which together form the N = 2 linear sw∞[λ] ⊕ sw∞[λ] algebra.
Although this is not equivalent to the CPN Kazama-Suzuki model or even have the non-
linear SW∞[λ] ⊕ SW∞[λ] algebra in common, they both have an shs[λ] ⊕ shs[λ] closed
subalgebra. This implies that if we can construct primary fields with the correct conformal
weights in this free theory, then the coefficients in the leading order pole (5.115) would
exactly correspond to the higher-spin zero mode and thereby the coefficients of three-point
function of the Kazama-Suzuki CFT in the ’t Hooft limit.

The conformal weights of the fields are given by

b c β γ b̃ c̃ β̃ γ̃

h λ+ 1
2

1
2 − λ λ 1− λ 0 0 0 0

h̄ 0 0 0 0 λ+ 1
2

1
2 − λ λ 1− λ

Remarkably, this is exactly the same as the coset primaries discussed in section 4.2.
We will use these fields to construct CFT operators that are dual to the bulk fields

φ±, φ̃±, ψ±, ψ̃±. Recall that [82, 83, 51] the bulk fields are arranged in multiplets of N = 2
supersymmetry: (

φ+, ψ±, φ−
)

and
(
φ̃+, ψ̃±, φ̃−

)
, (5.120)

where the scalars appearing in each multiplet have different masses, (MB
+ )2 = (M̃B

+ )2 =

−4λ(1 − λ) and (MB
− )2 = (M̃B

− )2 = −1 + 4λ2, but are oppositely quantized (φ+ and φ̃−
have the normal quantization, φ− and φ̃+ the alternative one).

Identifying these fields with the coset fields, we can construct the dual fields as dis-
cussed in section 4.2 (see equations (4.12) and (4.13) )

OB∆+
(z, z̄) = γ(z)⊗ γ̃(z̄), OF∆+

(z, z̄) = c(z)⊗ γ̃(z̄),

OB∆−(z, z̄) = c(z)⊗ c̃(z̄), OF∆−(z, z̄) = γ(z)⊗ c̃(z̄),
(5.121)

and

ÕB∆+
(z, z̄) = β(z)⊗ β̃(z̄), ÕF∆+

(z, z̄) = b(z)⊗ β̃(z̄),

ÕB∆−(z, z̄) = b(z)⊗ b̃(z̄), ÕF∆−(z, z̄) = β(z)⊗ b̃(z̄).
(5.122)

15Note that this is not a free CFT realization of the full Kamaza-Suzuki models, like in the Feigin-Fuchs
type constructions. In that case the CFT is not really free and a BRST procedure has to be used to project
out unwanted states. We are looking for truly free models since we are only interested in shs[λ] and not
the full CFT.
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The scaling dimensions of these fields ∆ = h + h̄ precisely match the dimensions corre-
sponding to the bulk fields with the appropriate quantization, as discussed earlier.

The higher spin currents corresponding to the linear sw∞[λ]⊕sw∞[λ] algebra are given
by [39]:

V
(s)+
λ (z) =

s−1∑
i=0

ai(s, λ)∂s−1−i {(∂iβ)γ
}

+
s−1∑
i=0

ai(s, λ+ 1
2)∂s−1−i {(∂ib)c

}
, (5.123)

V
(s)−
λ (z) = −s− 1 + 2λ

2s− 1

s−1∑
i=0

ai(s, λ)∂s−1−i {(∂iβ)γ
}

+
s− 2λ

2s− 1

s−1∑
i=0

ai(s, λ+ 1
2)∂s−1−i {(∂ib)c

}
,

(5.124)
and

Q
(s)±
λ (z) =

s−1∑
i=0

αi(s, λ)∂s−1−i {(∂iβ)c
}
∓

s−2∑
i=0

βi(s, λ)∂s−2−i {(∂ib)
}
γ, (5.125)

and similarly for the anti-holomorphic sector. The coefficients are given in equation (B.18).
These currents are normalized such that their Laurent modes (when restricting to the

wedge) correspond to the shs[λ] generators (2.30) in the exactly same basis [39]. Thus
the higher-spin zero modes of the dual fields (5.116), and thereby three-point functions
should be directly comparable to the bulk calculation.

5.4.2 Operator Product Expansions

In order to compute three-point funtions involving the higher spin currents we need to
compute the coefficient of the leading order pole of the OPE between higher spin currents
and the primaries (5.121) and (5.122). It is straightforward to do this using (5.119) and
the form of the higher spin currents given in (5.123), (5.124) and (5.125), we will list the
result here. For V (s)+

λ we have

V
(s)+
λ (z)β(w) ∼ a0(s, λ)

(−1)s−1(s− 1)!

(z − w)s
β(w) + · · · ,

V
(s)+
λ (z)b(w) ∼ a0(s, λ+ 1

2)
(−1)s−1(s− 1)!

(z − w)s
b(w) + · · · ,

V
(s)+
λ (z)γ(w) ∼

(
s−1∑
i=0

ai(s, λ)

)
(−1)s(s− 1)!

(z − w)s
γ(w) + · · · ,

V
(s)+
λ (z)c(w) ∼

(
s−1∑
i=0

ai(s, λ+ 1
2)

)
(−1)s(s− 1)!

(z − w)s
c(w) + · · · .

(5.126)
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In a similar manner we find the OPE’s involving the V (s)−
λ currents are given by

V
(s)−
λ (z)β(w) ∼ s− 1 + 2λ

2s− 1
a0(s, λ)

(−1)s(s− 1)!

(z − w)s
β(w) + · · · ,

V
(s)−
λ (z)b(w) ∼ s− 2λ

2s− 1
a0(s, λ+ 1

2)
(−1)s−1(s− 1)!

(z − w)s
b(w) + · · · ,

V
(s)−
λ (z)γ(w) ∼ s− 1 + 2λ

2s− 1

(
s−1∑
i=0

ai(s, λ)

)
(−1)s−1(s− 1)!

(z − w)s
γ(w) + · · · ,

V
(s)−
λ (z)c(w) ∼ s− 2λ

2s− 1

(
s−1∑
i=0

ai(s, λ+ 1
2)

)
(−1)s(s− 1)!

(z − w)s
c(w) + · · · .

(5.127)

Finally for the fermionic higher-spin currents Q(s)±
λ we find

Q
(s)±
λ (z)β(w) ∼ ∓β0(s, λ)

(−1)s(s− 2)!

(z − w)s−1
b(w) + · · · ,

Q
(s)±
λ (z)b(w) ∼ α0(s, λ)

(−1)s−1(s− 1)!

(z − w)s
β(w) + · · · ,

Q
(s)±
λ (z)γ(w) ∼

(
s−1∑
i=0

αs(s, λ)

)
(−1)s(s− 1)!

(z − w)s
c(w) + · · · ,

Q
(s)±
λ (z)c(w) ∼ ∓

(
s−2∑
i=0

βi(s, λ)

)
(−1)s(s− 2)!

(z − w)s−1
γ(w) + · · · .

(5.128)

In order to be able to compare the CFT three-point functions with the bulk results (5.110)
and (5.112), we will write the coefficients in the following form

a0(s, λ)(s− 1)! =
Γ(s)2

Γ(2s− 1)

Γ(−2λ+ 1)

Γ(−2λ− s+ 2)
,

β0(s, λ)(s− 2)! =
Γ(s− 1)Γ(s)

Γ(2s− 2)

Γ(−2λ)

Γ(−2λ− s+ 2)
,

α0(s, λ)(s− 1)! =
Γ(s)Γ(s− 1)

Γ(2s− 2)

Γ(−2λ+ 1)

Γ(−2λ− s+ 2)
.

(5.129)

Furthermore it is straightforward to perform the necessary sums over the coefficients,
which results in

s−1∑
i=0

ai(s, λ) =
41−s√π Γ(1 + s− 2λ)

Γ(s− 1
2)Γ(2− 2λ)

=
Γ(s)

Γ(2s− 1)

Γ(1 + s− 2λ)

Γ(2− 2λ)
,

s−2∑
i=0

βi(s, λ) =
23−2s√π (s− 1) Γ(s− 2λ)

Γ(s− 1
2)Γ(2− 2λ)

= 2
Γ(s)(s− 1)

Γ(2s− 1)

Γ(s− 2λ)

Γ(2− 2λ)
,

s−1∑
i=0

αi(s, λ) =
(−1)s−123−2s√π Γ(2λ)

Γ(s− 1
2)Γ(1− s+ 2λ)

= (−1)s−12
Γ(s)

Γ(2s− 1)

Γ(2λ)

Γ(1− s+ 2λ)
,

(5.130)

for s > 1.
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5.4.3 Bosonic Three-Point Correlators from the CFT

We now have all the necessary ingredients to compute all three-point correlators of two
bosonic or fermionic operators with a spin-s current. In this section we list all the bosonic
three-point functions, using the notation used in section 5.3.3.

First Multiplet with V
(s)+
λ〈

OB∆+
ŌB∆+

V
(s)+
λ

〉
= (−1)s

Γ2(s)

Γ(2s− 1)

Γ(s− 2λ+ 1)

Γ(2− 2λ)
,

〈
OB∆−Ō

B
∆−V

(s)+
λ

〉
= (−1)s

Γ2(s)

Γ(2s− 1)

Γ(s− 2λ)

Γ(1− 2λ)
.

(5.131)

Second multiplet with V
(s)+
λ〈

ÕB∆+

¯̃OB∆+
V

(s)+
λ

〉
= (−1)s−1 Γ2(s)

Γ(2s− 1)

Γ(−2λ+ 1)

Γ(−2λ− s+ 2)
,

〈
ÕB∆−

¯̃OB∆−V
(s)+
λ

〉
= (−1)s−1 Γ2(s)

Γ(2s− 1)

Γ(−2λ)

Γ(−2λ− s+ 1)
.

(5.132)

First multiplet with V
(s)−
λ〈

OB∆+
ŌB∆+

V
(s)−
λ

〉
= (−1)s−1 Γ2(s)

Γ(2s− 1)

Γ(s− 2λ+ 1)

Γ(2− 2λ)

s− 1 + 2λ

2s− 1
,

〈
OB∆−Ō

B
∆−V

(s)−
λ

〉
= (−1)s

Γ2(s)

Γ(2s− 1)

Γ(s− 2λ)

Γ(1− 2λ)

s− 2λ

2s− 1
.

(5.133)

Second multiplet with V
(s)−
λ〈

ÕB∆+

¯̃OB∆+
V

(s)−
λ

〉
= (−1)s

Γ2(s)

Γ(2s− 1)

Γ(−2λ+ 1)

Γ(−2λ− s+ 2)

s− 1 + 2λ

2s− 1
,

〈
ÕB∆−

¯̃OB∆−V
(s)−
λ

〉
= (−1)s−1 Γ2(s)

Γ(2s− 1)

Γ(−2λ)

Γ(−2λ− s+ 1)

s− 2λ

2s− 1
.

(5.134)

Comparing with the bulk computation of the same quantities we find precise agreement.
This provides a non-trivial check of the N = 2 proposal of [51].

5.4.4 Fermionic Three-Point Correlators from the CFT

The above methods can also be used to compute boundary three-point functions involving
fermions. It is immediately clear that the coefficients of correlators involving two fermionic
operators and one holomorphic bosonic higher-spin current will be the same as those of
the bosonic correlators of operators that share the same chiral part. More precisely this
class of fermionic three-point functions are given by〈
OF∆±Ō

F
∆±V

(s)p
λ

〉
=
〈
OB∆∓Ō

F
∆∓V

(s)p
λ

〉
,

〈
ÕF∆±

¯̃OF∆±V
(s)p
λ

〉
=
〈
ÕB∆∓

¯̃OF∆∓V
(s)p
λ

〉
, (5.135)
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for p = ±. On the other hand, the coefficients of the three-point functions involving
one bosonic primary, one fermionic primary and a fermionic higher-spin current will be
different. As as example, we find

〈
OF∆+

ŌB∆+
Q

(s)±
λ

〉
= ±2(−1)s

Γ(s)2

Γ(2s− 1)

Γ(s− 2λ)

Γ(2− 2λ)
. (5.136)

It would clearly be interesting to compute the above fermionic coefficients from the bulk
side of the duality. This computation will require a straighforward generalisation of the
discussion in section 5.



Chapter 6
Conclusion

In this thesis we considered the resent conjectures about holographic duality between
Prokushkin-Vasiliev theory on AdS3 and W-algebraic minimal models. We gave an intro-
duction to some aspects of higher-spin gravity on AdS3 and toW-algebras. Unfortunately
we did not have time to discuss the details of the conjectures and the interesting results
there are known about them.

Our main focus was on the proposal of [51] that the N = 2 Prokushkin-Vasiliev theory
on AdS3 is dual to the CPN Kazama-Suzuki model with the non-linear chiral algebra
SW∞[λ]. In the ’t Hooft limit, we showed exact matching between three-point functions
involving two bulk scalars and one bosonic higher-spin field as computed from the bulk
and the same quantities computed in the dual CFT. Since the correlation functions in this
class only depend on the linear shs[λ] algebra, they can be computed in any CFT that
shares this symmetry. We chose to compute them in a free-field ghost CFT. This greatly
simplified the boundary side of the computation. These results were recently published in
[1].

In [51], a specific gluing of coset chiral states was proposed as dual to the bulk fields
(see (4.12) and (4.13)). Our bulk calculation only has information about the full con-
formal weight ∆ = h + h̄ of the coset primaries, but the results correctly capture the
dependence on the chiral conformal weights separately. This provides further evidence for
the identification of states in [51].

Using the CFT, we have also obtained results for three-point functions involving
fermionic operators, and it would clearly be of interest to compare those with the corre-
sponding bulk quantities. This will require a slight generalization of our bulk techniques,
in particular in order to isolate the physical fermionic fields from the Vasiliev equations.

Of course, our approach of using a surrogate free-field CFT instead of the full-fledged
Kazama-Suzuki model has severe limitations. It would be interesting to check whether
other types of three-point functions (for instance, those involving three scalar fields) match
between the bulk and the boundary theory. But it is unlikely that the free-field CFT can
correctly capture those correlation functions, so any mismatch would be likely to be an
artifact of this. Even if one could reproduce all three-point functions, the simple fact
that the spectrum of the free theory is not the same as that of the CPN model indicates
that four-point functions will differ and matching those would require a more intricate
boundary computation. Such checks would be essential in order to better establish the
N = 2 correspondence beyond the level of symmetries.
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The correspondence is currently formulated by taking a double scaling limit of the
CPN Kazama-Suzuki models. In order to go beyond the quantities captured by the free
CFT one would have to perform a computation at finite N and k, then take the ’t Hooft
limit at the end. One might instead imagine a procedure by which one could obtain the
nonlinear SW∞[λ] symmetry and the Kazama-Suzuki models directly in the ’t Hooft limit.
A natural idea is to impose certain constraints on the current algebra of the linear sw∞[λ]
or the free ghost CFT, by a BRST procedure and thereby deform the theory to become
non-linear. Or just directly perform quantum Drinfeld-Sokolov reduction on shs[λ], but
there might be many subtleties since shs[λ] is infinite dimensional. If the dual CFT could
be obtained directly in the ’t Hooft limit, it would probably provide a much more efficient
way to check the duality at large N, k.

Recently, an N = 1 version of the higher-spin/minimal model correspondence was
proposed [132]. We expect the techniques used in this paper to transfer to that case with
minor modifications, allowing the comparison of three-point functions in that model as
well.



Appendix A
Solution to a Recursion Relation

In this appendix we will sketch how to solve the two coupled recursion relations

∂ρC
s
m + 2Cs−1

m + κsC
s+1
m + ωs− 1

2
C
s− 1

2
m = 0,

∂ρC
s+ 1

2
m + 2C

s− 1
2

m + κs+ 1
2
C
s+ 3

2
m = 0,

s ∈ Z≥1, (A.1)

which are nothing but (5.103) for σs = 0. The second equation is now not coupled to the
first one, and can thus be solved separately. It is actually just a slight generalization of a
recursion relation in [84]. The solution can be expressed as

Cs+
1
2 = Os+ 1

2
Cm+ 3

2 , (A.2)

where the differential operator is of the form

Os = (−1)bsc−1−m

 bsc∏
p=2+m

κp+s−bsc−1

−1

⌊
bsc−1−m

2

⌋∑
α=0

Aα(s,m) ∂bsc−2α−m−1
ρ

 , (A.3)

with

Aα(s,m) = (−2)α
∑

i1,...,iα

α∏
k=1

κik+s−bsc−1, (A.4)

and the limits of the sums are given by

2k +m ≤ ik ≤ 2k + bsc − 1− 2α,

ik ≥ ik−1 + 2, ∀k ≥ 2.
(A.5)

The trick is now to exploit what we know to find a simpler recursion relations that the
first equation of (A.1). Looking at the form of (A.1), it is clear that an ansatz of the
following form will work

Cs = OsCm+1 + PsCm+ 3
2 , (A.6)

for some differential operator Ps. Since Os satisfy the operator equation and boundary
condition

Os ∂ρ + 2Os−1 + κsOs+1 = 0, Om+1 = 1,
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we find the following recursion relation for Ps

Ps ∂ρ + 2Ps−1 + κs Ps+1 + ωs− 1
2
Os− 1

2
= 0, (A.7)

with the important boundary condition

Pm+1 = 0. (A.8)

This means that we can express Ps in terms of Os which is known, this greatly simplifies
the original problem which otherwise would have been more difficult so solve. Using the
notation Õs ≡ ωsOs, one can show that the solution is given by

Ps = κ−1
s−1

s−m−1∑
i=0

(−1)s−m−iÃi ∂
s−m−1−i
ρ ,

Ãi =

b i
2
c∑

α=1−h̃( i2)

(−2)b
i
2
c−αai,α Õm− 1

2
+2α+h̃( i2),

ai,α =

 s−m−2∏
β=2α+h̃( i2)

κ−1
β+m

 ∑
γ1,...γb i2 c−α

b i
2
c−α∏
ω=1

κγω+m

b i
2
c−α−1∏
ω̄=1

(
1− δγω̄+1−γω̄ ,1

)
,

(A.9)

with the following intervals

2α+ h̃

(
i

2

)
+ 1 ≤ γ1 < γ2 < · · · < γb i

2
c−α−1 < γb i

2
c−α ≤ s−m− 2. (A.10)

Notice that these expressions are quite complicated since one has to insert (A.3), we will
however refrain from showing the full expression containing the structure constants.



Appendix B
The SB[µ] and shs[λ] Algebras

This appendix contains information and definitions of functions related to the algebras
SB[µ] and shs[λ], together with several properties used in the thesis.

B.1 Structure Constants of SB[µ]
In this section we will list explicit formulas for the structure constants of the infinite
dimensional associative algebra, SB[µ]. See section 2.3.2 for a sketch of how these are
derived from the results of [39, 40]. We will use the following notation for the SB[µ]
products

L(s)
m ? L(t)

n =
s+t−1

◦
◦

∑
u=1

gstu (m,n;λ) L
(s+t−u)
m+n ,

G(s)
p ? G(t)

q =

s+t−1
◦
◦

∑
u=1

g̃stu (p, q;λ) L
(s+t−u)
p+q ,

L(s)
m ? G(t)

q =
s+t−1

◦
◦

∑
u=1

hstu (m, q;λ)G
(s+t−u)
m+q ,

G(s)
p ? L(t)

n =

s+t−1
◦
◦

∑
u=1

h̃stu (p, n;λ)G
(s+t−u)
p+n .

(B.1)

If one does not put any constraints on the modes, this then corresponds to an associative
algebra related to sw∞[λ]. If one restricts to the wedge subalgebra, one can show that it
is safe to restrict the sums to 1 ≤ u ≤ Min(2s− 1, 2t− 1) since the structure constants for
higher u vanish (this is not the case for modes outside the wedge).

The L ? L structure constant is given as

gstu (m,n;λ) =
∑
i

F ust

[
h
(
u+ 1

2 h̃
(
s+ t+ 1

2

))
i+ h̃(s)h̃

(
u+ 1

2 h̃
(
s+ t+ 1

2

))
;λ
]

× (m− bsc+ 1)di,u,s,te1
(n− btc+ 1)

buc−1+h̃
(
s+

1
2

)
h̃
(
t+

1
2

)
−h̃
(
u+

1
2

)
h̃
(
s+t+

1
2

)
−di,u,s,te1

,

(B.2)

where the range of the sum is

0 ≤ i ≤ h
(
u+ 1

2 h̃(s+ t)
)

(buc − 1)+h̃(u)h̃
(
s+ t+ 1

2

)
−h̃(s)h̃

(
u+ 1

2 h̃
(
s+ t+ 1

2

))
h̃
(
u+ 1

2

)
.
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Similarly we have for the G ? G

g̃stu (p, q;λ) = −h
(
s+ 1

2

)
h
(
t+ 1

2

)∑
i

(−1)
[i+h̃(s)]h̃

(
u+

1
2 h̃(s+t)

)

× F ust
[
h
(
u+ 1

2 h̃
(
s+ t+ 1

2

))
i+ h̃

(
s+ 1

2

)
h̃
(
u+ 1

2 h̃
(
s+ t+ 1

2

))
;λ
]

×
(
p− dse+ 3

2

)
di,u,s,te2

(
q − dte+ 3

2

)
buc−h̃

(
s+

1
2

)
−h̃(s+t)h̃(s)−h̃

(
s+t+

1
2

)
h̃
(
u+

1
2

)
−di,u,s,te2

,

(B.3)

where,

0 ≤ i ≤ h
(
u+ 1

2 h̃(s+ t)
)

(u− 1)−
[
h̃
(
s+ 1

2

)
+ h̃(s+ t)h̃(s)

]
h̃
(
u+ 1

2 h̃
(
s+ t+ 1

2

))
×
(
h̃
(
u+ 1

2

)
+ 1

2 h̃(s+ t)
)
. (B.4)

And for L ? G

hstu (m, q;λ) = h(−1)h̃(t)
(
u+ 1

2 h̃(s)
)∑

i

F ust

[
h
(
u+ 1

2 h̃
(
s+ 1

2 h̃(t)
))
i+ h̃(s)

× h̃
(
u+ 1

2 h̃
(
t+ 1

2

))
;λ
]

× (m− bsc+ 1)di,u,s,te3

(
q − dte+ 3

2

)
buc−h̃

(
t+

1
2

)
−h̃(t)h̃(s)−h̃

(
s+

1
2 h̃(u)

)
h̃
(
u+

1
2

)
−di,u,s,te3

,

(B.5)

where,

0 ≤ i ≤ h
(
u+ 1

2 h̃
(
s+ 1

2 h̃
(
t+ 1

2

)))
(u− 1)− h̃(s)h̃

(
u+ 1

2 h̃
(
t+ 1

2

))
h̃
(
u+ 1

2

)
− 1

2 h̃
(
s+ 1

2 h̃
(
t+ 1

2

))
h̃(u). (B.6)

And finally for the G ? L product

h̃stu (p, n;λ) = h(−1)h̃(s)
(
u+ 1

2 h̃(t)
)∑

i

(−1)
[i+h̃(s)]h̃

(
u+

1
2 h̃
(
t+

1
2 h̃
(
s+

1
2

)))

F ust

[
h
(
u+ 1

2 h̃
(
t+ 1

2 h̃(s)
))
i+ h̃

(
s+ 1

2

)
h̃
(
u+ 1

2 h̃(t)
)

;λ
]

×
(
p− dse+ 3

2

)
di,u,s,te4

(n− btc+ 1)
buc−h̃

(
s+

1
2

)
−h̃(s)h̃(t)−h̃

(
t+

1
2 h̃(s)

)
h̃
(
u+

1
2

)
−di,u,s,te4

,

(B.7)

where,

0 ≤ i ≤ h
(
u+ 1

2 h̃
(
t+ 1

2 h̃
(
s+ 1

2

)))
(u− 1)− h̃

(
s+ 1

2

)
h̃
(
u+ 1

2 h̃(t)
)
h̃
(
u+ 1

2

)
− 1

2 h̃
(
t+ 1

2 h̃
(
s+ 1

2

))
h̃
(
u+ 1

2 h̃
(
s+ 1

2

)
h̃(t)

)
. (B.8)
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The functions used in the above structure constants are

di, u, se =

⌈
h(u)

[
i+ h̃

(
u+ 1

2

)
h̃(s)

]
2

⌉
di, u, s, te1 =

⌈
i, u+ 1

2 h̃
(
s+ t+ 1

2

)
, s
⌉

(B.9)

di, u, s, te2 =
⌈
i, u+ 1

2 h̃
(
s+ t+ 1

2

)
, s+ 1

2 h̃
(
s+ t+ 1

2

)
+ 1

2 h̃(s+ t)
{
h̃
(
s+ 1

2

)
+ h̃(s)h̃

(
u+ 1

2

)}⌉
di, u, s, te3 =

⌈
i, u+ 1

2 h̃
(
s+ 1

2 h̃(t)
)
, s+ 1

2 h̃(t)h̃(s)h̃(u)
⌉

di, u, s, te4 =
⌈
i, u+ 1

2 h̃
(
t+ 1

2 h̃(s)
)
, s+ 1

2

⌉
h(u) =

⌈
u− buc+ 1

⌉
h̃(u) =

⌈
u− buc

⌉ (B.10)

|n|2 = n− 2bn/2c, (B.11)
(a)n = a(a+ 1)(a+ 2) . . . (a+ n− 1), (a)0 = 1, (B.12)[
a
b

]
=

bac!
bbc!ba− bc!

(B.13)

F ust(λ) = (−1)bs+t−u−1c (2s+ 2t− 2u− 2)!

(2s+ 2t− buc − 3)!

2s−2∑
i=0

2t−2∑
j=0

δ(i+ j − 2s− 2t+ 2u+ 2) (B.14)

×Ai(s, 1
2 − λ)Aj(t, λ)(−1)2s+2i(s+t−u),

Ai(s, λ) = (−1)bsc+1+2s(i+1)

[
s− 1
i/2

]
([(i+ 1)/2] + 2λ))bs−1/2c−b(i+1)/2c

(bs+ i/2c)2s−1−bs+i/2c
. (B.15)

F ust(i, λ) = F ust(λ)(−1)bi/2c+2i(s+u)

[
u− 1
i/2

]
(b2s− uc)bu−1−i/2c+|2u|2|2u−2−i|2 (B.16)

× (b2t− uc)bi/2c+|2u|2|i|2

B.2 Structure Constants of shs[λ]

Similar to above, we can write the commutation relations of the infinite dimensional Lie
algebra shs[λ] as[
L(s)
m , L(t)

n

]
=

s+t−1
◦
◦

∑
u=1

ĝstu (m,n;λ) L
(s+t−u)
m+n ,

{
G(s)
p , G(t)

q

}
=

s+t−1
◦
◦

∑
u=1

ˆ̃gstu (p, q;λ) L
(s+t−u)
p+q ,

[
L(s)
m , G(t)

q

]
=

s+t−1
◦
◦

∑
u=1

ĥstu (m, q;λ)G
(s+t−u)
m+q ,

[
G(s)
p , L(t)

n

]
=

s+t−1
◦
◦

∑
u=1

ˆ̃
hstu (p, n;λ)G

(s+t−u)
p+n .

These structure constants are directly given by the formulas for the SB[µ] structure con-
stants, but the constants F ust(λ) has to be replaced by

fust(λ) = F ust(λ) + (−1)b−uc+4(s+u)(t+u) F ust(
1

2
− λ). (B.17)
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B.3 Some Definitions and Useful Relations

In this section we will give the definition of few other functions and some of their properties
which is used in the thesis. The functions used in the definition of the operators (2.40)
are

ai(s, λ) =

(
s− 1
i

)
(−2λ− s+ 2)s−1−i

(s+ i)s−1−i
, 0 ≤ i ≤ s− 1,

αi(s, λ) =

(
s− 1
i

)
(−2λ− s+ 2)s−1−i

(s+ i− 1)s−1−i
, 0 ≤ i ≤ s− 1,

βi(s, λ) =

(
s− 2
i

)
(−2λ− s+ 2)s−2−i

(s+ i)s−2−i
, 0 ≤ i ≤ s− 2.

(B.18)

For showing the relation (2.45), one has to use the following identities

−β
i(s, λ)

2
= ai(s, λ+ 1

2)− ai(s, λ),

αi(s, λ) = 2ai(s, λ)− βi−1(s, λ).

(B.19)

Furthermore one has to know the relation between Ai(s, λ) (see (B.15) and (2.42)) and
the ai(s, λ), αi(s, λ) and βi(s, λ) (see (B.18) and (2.40)). This is given by

A2i(s, λ) = (−1)ia(s, λ), A2i+1(s, λ) = −1

2
(−1)iβi(s, λ), s = bsc ∈ Z,

A2i(s, λ) =
bsc − 1 + 2λ

2bsc − 1
ai(bsc, λ) A2i+1(s, λ) = (−1)iβi(bsc+ 1, λ), s = bsc+

1

2
∈ Z +

1

2
.

(B.20)

Remember that for s ∈ Z + 1
2 we have that bsc+ 1 = dse. Another useful fact to know is

that the operator

D =
∂

∂θ
− θ ∂

∂z
, (B.21)

satisfies the following relations

D2q = (−∂)q, D2q+1 = (−∂)qD, q ∈ Z. (B.22)

Another very useful relation is

(−∂)mzk = (−1)m (k −m+ 1)m z
k−m,

= (−k)m z
k−m,

(B.23)

where in the second line we have used the property of the Pochhammer symbol (−x)n =
(x− n+ 1)n (−1)n.
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B.4 Properties of The Structure Constants

For reference, we will in this section list a few properties of some of the SB[µ] structure
constants which are quite useful for our calculations.

gstu (m,n;λ) =


(−1)buc+1 gtsu (n,m;λ)

{
u ∈ Z,

(
s, t ∈ Z or s+ t ∈ Z + 1

2

)
u ∈ Z + 1

2 ,
(
s, t ∈ Z + 1

2 or s+ t ∈ Z + 1
2

)
(−1)buc gtsu (n,m;λ)

{
u ∈ Z, s, t ∈ Z + 1

2

u ∈ Z + 1
2 , s, t ∈ Z

(B.24)

gst1 (m,n;λ) =

{
1

(
s, t ∈ Z or s+ t ∈ Z + 1

2

)
0 s, t ∈ Z + 1

2

gst3
2

(m,n;λ) =


m/2 or n/2

(
s = 1, t ∈ Z

)
or

(
s ∈ Z, t = 1

)
0 s, t ∈ Z and s, t 6= 1

gst3
2

(0, 0;λ)
(
s, t ∈ Z + 1

2

)
or

(
s+ t ∈ Z + 1

2

)
(B.25)

ĝ2s
u (1,m;λ) =

{
bsc − 1−m, u = 2

0, u = 1, 3
2 ,

5
2 , 3

,

ĥ2s
u (1, r;λ) =

{
dse − 3

2 − r, u = 2

0, u = 1, 3
2 ,

5
2 , 3

.

(B.26)



Appendix C
Introduction to Conformal Field

theory

In this appendix we will give a quick introduction to certain basic aspects of two-dimensional
conformal field theory which are necessary to understand the more advanced topics used
in the thesis. For more details see [133, 134, 135, 136, 137].

C.1 Basic Concepts

Given a (pseudo-)Riemannian Manifold (M, g), a conformal transformation is a diffeo-
morphism f : M → M (possibly only defined on a open set U ⊂ M) which preserves the
metric up to a local scaling

f∗gf(x) = ω(x) gx, x ∈M, (C.1)

where ω ∈ F(M) is a smooth map and f∗ is the pull-back. Acting on a set of tangent
vectors X,Y ∈ TxM we can write the definition as gf(x)(f∗X, f∗Y ) = ω(x)gx(X,Y ) where
f∗ is the push forward. For this thesis we shall mainly choose local charts and consider
the components, in which the definition takes the following form

gαβ(y)
∂yα

∂xµ
∂yβ

∂xν
= Ω(x)gµν(x), (C.2)

with y = f(x). Note that while scales are not preserved, local angles between tangent vec-
tors cos2 θx = g2

x(X,Y )
gx(X,X)gx(Y,Y ) are invariant. In this thesis we shall only consider conformal

field theories on flat (Minkowskian or Euclidean) spaces with the topology M = R × S1

or (Euclidean) M = S1 × S1 = T 2. Consider the metric g = dx0 ⊗ dx0 + dx1 ⊗ dx1 =
δµνdx

µ⊗ dxν . An infinitesimal diffeomorphism yα(x) = xα + εα(x) +O(ε2) preserving the
metric up to a local scaling

δαβ
∂yα

∂xµ
∂yβ

∂xν
= δµν +

(
∂εµ
∂xν

+
∂εν
∂xµ

+O(ε2)

)
!

= δµν + ω(x)δµν +O(ε2)
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must satisfy the constraint

∂µεν + ∂νεµ = ω(x)δµν = ∂ρε
ρδµν , (C.3)

where ω(x) = ∂ρε
ρ is found by tracing. We can see that εµ∂µ defines a conformal Killing

vector. Amazingly this is nothing but the Cauchy-Riemann equations

∂0ε0 = ∂1ε1, ∂0ε1 = −∂1ε0,

which implies that any holomorphic1 transformation is allowed and thus the symmetry is
infinite dimensional. It is convenient to switch to complex coordinates

z = x0 + ix1, ε = ε0 + iε1, ∂ =
1

2
(∂0 − i∂1),

z̄ = x0 − ix1, ε̄ = ε0 − iε1, ∂̄ =
1

2
(∂0 + i∂1),

in which the metric tensor takes the simple form2

g =
1

2
dz ⊗ dz̄ +

1

2
dz̄ ⊗ dz ≡ dzdz̄,

with the inverse gzz̄ = gz̄z = 2, gzz = gz̄z̄ = 0. We have used the notation convenient
notation ∂z = ∂ and ∂z̄ = ∂̄. Thus under a holomorphic transformation f(z) = 1 + ε(z),
the metric transforms as

g = dzdz̄ → ∂f

∂z

∂f̄

∂z̄
dzdz̄ =

∣∣∣∣∂f∂z
∣∣∣∣2 dzdz̄.

In the following we shall extend x0 and x1 to C so that z and z̄ become independent, but
in the end we can restrict to the physics surface z̄ = (z)∗. Using a Laurent expansion
around z = 0, ε(z) =

∑
n∈Z εnz

n+1 and similarly for ε̄, we see that to linear order

δφ(z, z̄) = φ(z − ε(z), z̄ − ε̄)− φ(z, z̄)

= −ε(z)∂φ− ε̄(z̄)∂̄φ

=
∑
n∈Z

(
εnln + ε̄n l̄n

)
φ(z, z̄),

l = −zn+1∂ and l̄ = −z̄n+1∂̄ generate the transformations. These generators satisfy the
Witt algebra

[lm, ln] = (m− n)lm+n, (C.4)

and similarly for l̄n. The separation of holomorphic and anti-holomorphic degrees of
freedom can be regarded as the essence of Conformal Field Theories. It turns out that
it is necessary to work with the one-point compactification of C, the Riemann Sphere
S2 ' C ∪ ∞. However only the subset {l±1, l0} is globally well-defined on the Riemann
sphere (due to ambiguities at z = ∞) and forms a Lie subalgebra. Here l−1 generates
translations z → z + a while l1 generates special conformal transformations z → z

cz+1 .
1We will be rather sloppy and use the term holomorphic also for meromorphic functions.
2Here we, as is conventional, abuse the notation due to the symmetry property of the metric.
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The geometric meaning of l0 is most clearly seen if we use polar coordinates z = reiθ,
l0 = −1

2r∂r + i
2∂θ, and combine with the anti-holomorphic part

l0 + l̄0 = −r∂r, and i(l0 − l̄0) = −∂θ, (C.5)

or in other words l0 + l̄0 generates dilations while i(l0 − l̄0) generates rotations. So this
global part, called the conformal group, generates the Möbius group SL(2,C)/Z2 on the
Riemann Sphere S2

z → az + b

cz + d
, a, b, c, d ∈ C, ad− bc = 1. (C.6)

Quantum mechanics however introduces an extremely important subtlety. According to
Wigner’s theorem, symmetries are realized projectively on the Hilbert space so we can
either consider projective representations of the Witt algebra or linear representations of
its central extension. A central extension of g is a short exact sequence

0 // C
i // g̃

π // g // 0,

such that C is in the center of g̃. By the properties of exact sequences, i is injective, π
is surjective and thereby g̃ = g ⊕ C. More concretely we can start from the vector space
g̃ = g⊕C c and give it a Lie bracket by finding a anti-symmetric bilinear form ω : g×g→ C
that satisfies

ω([x, y], z) + ω([y, z], x) + ω([z, x], y) = 0. (C.7)

This will give a central extension with the Lie bracket

[x+ αc, y + βc] = [x, y] + ω(x, y)c, x, y ∈ g, α, β ∈ C.

There is some ambiguity however, two bilinear forms give rise to isomorphic Lie algebra
structures on ḡ if there exists a linear map µ : g → C, such that ω(x, y) = ω′(x, y) +
µ([x, y]). It turns out that isomorphism classes of central extensions are in one-to-one
correspondence with elements of the second Lie algebra cohomology group of g, H2(g,C).
Actually (C.7) is the statement that ω is a 2-cycle, ie. a two-chain with zero boundary
dω = 0. See more details in [138, 139] and especially chapter 6 of [140]. It turns out that
there is a unique, up to isomorphism, central extension of the Witt algebra

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn,−m, (C.8)

known as the Virasoro algebra. There is an analog algebra with L̄n but the same cen-
tral element. According to Schur’s lemma, the central element c acts as a constant on
irreducible representations. This number is known as the central charge and plays an im-
portant role in the representation theory of the Virasoro algebra, and thereby conformal
field theory.

If a field transforms under conformal transformations z → f(z) according to

φ(z, z̄)→ φ′(z, z̄) =

(
∂f

∂z

)h(∂f̄
∂z̄

)h̄
φ(f(z), f̄(z̄)), (C.9)

it is called a primary field with conformal weight (h, h̄). If it only transforms like this
under SL(2,C)/Z2, it is called a quasi-primary field. We shall also define the scaling
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dimension ∆ = h+ h̄ and spin s = h− h̄ since under a rotation and scaling f(z) = zλeiθ

and f̄(z̄) = z̄λe−iθ we have that

φ(z, z̄)→ φ′(z, z̄) = λ∆eisθ φ(zλeiθ, z̄λe−iθ), (C.10)

Associated to a conformal transformation xµ → xµ + εµ(x), there is a conserved Noether
current jµ = Tµνε

ν . From translation symmetry it gives a conserved energy-momentum
tensor, for rotations it implies that it is symmetric Tµν = T νµ and most importantly
conformal symmetry implies

Tµµ = 0.

Using this information, in complex coordinates the energy-momentum tensor has the
structure Tzz̄ = Tz̄z = 0, Tzz(z, z̄) ≡ T (z) and Tz̄z̄(z, z̄) = T̄ (z̄) with the infinite number
of conserved currents

∂̄(ε(z)T (z)) = 0, ∂(ε̄(z̄)T̄ (z̄)) = 0. (C.11)

Later we shall see that conserved currents of this type with higher spin will lead to exten-
sions of the Virasoro algebra.

C.1.1 Ward Identities and Operator Product Expansions

We can translate much of these statements about symmetries and conserved currents into
quantum mechanics. Consider the expectation value of local fields〈

O1(z1, z̄1) . . .On(zn, z̄n)
〉

=

∫
Dφ e−S[φ]O1(z1, z̄1) . . .On(zn, z̄n)

and assume that under a holomorphic transformation z → z + ε(z), the fields transform
as Oi → Oi + δεOi. Then one can derive the identity
n∑
i=1

〈
O1(z1, z̄1) . . . δεOi(zi, z̄i) . . .On(zn, z̄n)

〉
=

∫
C

dz
2πi

〈
T (z)ε(z)O1(z1, z̄1) . . .On(zn, z̄n)

〉
,

(C.12)
which can be regarded as alternative definition of a primary field. Here C is a contour
enclosing the points zi. There is a similar expression for anti-holomorphic transformations.
Using the transformation properties of a primary field in eq. (C.9), we find the operator
product expansions

T (z)Oi(w, w̄) ∼ hi
(z − w)2

Oi(w, w̄) +
1

z − w
∂Oi(w, w̄),

T̄ (z̄)Oi(w, w̄) ∼ h̄i
(z̄ − w̄)2

Oi(w, w̄) +
1

z̄ − w̄
∂̄Oi(w, w̄),

(C.13)

where ∼ means equal up to regular terms. Notice that this expression is valid under
correlation functions and the time-ordering in the RHS in implicit. These OPE’s are
convergent up to the nearest insertion, see [141] for a detailed account on convergence
issues. We shall mainly be working in radial quantization, mapping coordinates from the
cylinder w to the complex plane z by z = e−iw. Time-ordering is then changed into radial
ordering

R(A(z)B(w)) =

{
A(z)B(w) for |z| > |w|,
B(w)A(z) for |w| > |z|.

(C.14)
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Operator product expansions can be equivalently expressed through commutation rela-
tions between their modes using

∮
[A(z), B(w)] =

∮
|z|>|w|

dz A(z)B(w)−
∮
|z|<|w|

dz B(w)A(z)

=

∮
C(w)

dz R(A(z)B(w)).

(C.15)

A primary field will generally have the Laurent expansion

φ(z, z̄) =
∑
n,m̄∈Z

z−n−hz̄−m̄−h̄φn,m̄. (C.16)

T (z) is a quasi-primary field with the conformal weight (2, 0) with the OPE

T (z)T (w) ∼ c/2

(z − w)4
+

2

(z − w)2
T (w) +

1

z − w
∂T (w), (C.17)

the extra singular term is the reason the energy-momentum tensor is not primary. Using
the expansion

T (z) =
∑
n∈Z

z−n−2Ln, Ln =

∮
C(0)

dz
2πi

zn+1T (z),

one can show that [Ln, Lm] gives rise to the Virasoro algebra in eq. (C.8).
Two dimensional conformal field theories are essentially given by representation theory

of the Virasoro algebra, and we have just seen that the energy-momentum tensor encodes
this information. Thus one can actually define conformal field theories just by specifying
the T (z) and T̄ (z̄), without thinking about the action. This fact will be very important
for us. Also note that the Virasoro algebra is best considered as a spectrum generating
algebra, since not all elements commute with the Hamiltonian as usual quantum symme-
tries.

C.1.1.1 Normal Ordering and Generalized Wick Contractions

In CFT’s the spectrum of local operators plays an extremely important role due to the
one-to-one correspondence between local operators and states in the Verma module. Local
operators will correspond to derivatives and products of operators at the same space-time
point and thus we need a way to regularize these products. In this section we will define
a more general form of normal ordering of quantum operators and develop a generalized
version of a weak form of Wick’s theorem. This will enable us to work with interacting
conformal field theories and their OPE’s.

In general we can decompose an operator product into singular and regular parts,

A(z)B(w) = A(z)B(w) +N (A(z)B(w)) (C.18)

where the regular part is the normal ordering

N (A(z)B(w)) =

∞∑
n=0

(z − w)n

n!
N (∂nAB) (w), (C.19)
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while the singular part

A(z)B(w) =
N∑
n=1

{AB}n(w)

(z − w)n
, (C.20)

is called the (Wick) contraction. Here we have assumed that the largest singular pole is
of order N and used a Taylor expansion in (C.19) since it is regular. The z independent
term of (C.19) is exactly what we need to define a regular product of local operators, this
is given as

N (AB)(w) =

∮
C(w)

dz
2πi

A(z)B(w)

z − w
= lim

z→w

[
A(z)B(w)−A(z)B(w)

]
. (C.21)

In the case of free field theories, it is customary to use the notation : AB : (z) for normal
ordering. An alternative definition of normal ordering for free field theories is to require
that annihilation operators are always put to the right of creation operators. In order
to connect to this definition, let us look at a Laurent expansion of the normal ordered
product

N (AB)(w) =
∑
m∈Z

w−m−hA−hBN (AB)m, (C.22)

where

N (AB)m =

∮
C(0)

dw
2πi

wm+hA+hB−1N (AB)(w), (C.23)

are the expansion coefficients. What we need to do is to find the relation between
N (AB)m and the coefficients of the expansions A(w) =

∑
m∈Zw

−m−hAAm and B(w) =∑
m∈Zw

−m−hBBm. Using (C.22), (C.21), (C.15) together with the standard deformation
of contours one can show that

N (AB)m =
∑

n≤−hA

AnBm−n +
∑

n>−hA

Bm−nAn, (C.24)

which is analog to the usual normal ordering of modes, with the difference that normal
ordering is not commutative N (AB)(z) 6= N (BA)(z). Next we want a simple calculus for
contracting products of normal ordered fields. This would suggest we need a generalized
version of a weak version of Wick’s theorem that even works for interacting field theories.
3 A generalization sufficient for our needs is

A(z)N (BC)(w) =
1

2πi

∮
C(w)

dw
x− w

{
A(z)B(x)C(w) +B(x)A(z)C(w)

}
.

The integral essentially works as a point splitting regularization of N (BC)(z) in order
to extract the singular terms, which can only come from contracting A with B and C,
respectively. See more details in [133, 58].

3A full version of Wick’s theorem, however, does not exist for interacting field theories.
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C.1.2 Verma Modules and Descendant States

In radial quantization dilations and rotations correspond to time and space translations,
respectively (see (C.10)). This implies that we can identity the Hamiltonian and Momen-
tum operators with

H = L0 + L̄0, P = i(L0 − L̄0). (C.25)

Conformal invariance implies that we can collect the states in our Hilbert space into
representations of the Virasoro algebra4 Vir ⊕ Vir or some extension thereof A ⊕ Ā.
A physical spectrum must be bounded from below, which implies that Highest Weight
modules 5 is what we should study.

In Radial quantization, it is natural to define an asymptotic in-state of the form

|φ〉 = lim
z,z̄→0

φ(z, z̄)|0〉 = φ−h,−h̄|0〉, (C.26)

where in order to keep (C.26) regular, we have required (see (C.16))

φn,m̄|0〉 = 0, for n > −h, m̄ > −h̄. (C.27)

The hermitian conjugate of φ will be defined as

φ†(z, z̄) = z̄−2h z−2h̄ φ

(
1

z̄
,

1

z

)
, (C.28)

this strange form is related to radial quantization. The mode expansion of φ† as obtained
from (C.16) and (C.28)

φ† =
∑
n,m̄∈Z

z̄h−hzm̄−h̄φn,m̄,

reveals that the hermitian conjugate of the Laurent modes are given as

(φn,m̄)† = φ−n,−m̄.

In particular, the modes of the energy-momentum tensor satisfy (Ln)† = L−n and we can
start talking about unitary representations. For completeness, let us mention that these
definitions lead to the asymptotic out-states

〈φ| = lim
z,z̄→0

〈0|φ†(z, z̄) = lim
w,w̄→∞

w2hw̄2h̄〈0|φ(w, w̄) = 〈0|φh,h̄, (C.29)

and
〈0|φn,m̄ = 0 for n < h, m̄ < h̄.

Now using the energy momentum tensor in equation (C.27) implies that

Ln|0〉 = 0

L̄n|0〉 = 0
, n ≥ −1, (C.30)

meaning that the vacuum is invariant under the global conformal group. A highest weight
module of the Virasoro algebra is characterized by a central charge c and highest weights

4We shall use a sloppy language and call both Vir⊕ Vir or its chiral parts the Virasoro algebra.
5Although it would be better terminology to call it lowest weight modules.
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(h, h̄). Under the operator-state correspondence of eq. (C.26), any primary field φ gives
rise to a highest weight state |φ〉 = |h, h̄〉 = φ−h,−h̄|0〉 satisfying

L0 |h, h̄〉 = h |h, h̄〉, L−n |h, h̄〉 = 0

L̄0 |h, h̄〉 = h̄ |h, h̄〉, L̄−n |h, h̄〉 = 0
, n > 0, (C.31)

which is seen from the commutator relations

[Lm, φn] = ((h− 1)m− n)φm+n, (C.32)

and similarly for the anti-holomorphic part. Since everything works in parallel, we shall
mainly be concerned with the holomorphic part in the following. The module consisting
of finite linear combinations of the states

Vh,c = spanC

{
L−k1L−k2 . . . L−kn |h, c〉

∣∣∣ k1, . . . , kn > 0
}
,

is called a Verma module. From the Virasoro algebra we know that [L0, L−m] = mL−m,
which on combination with eq. (C.31) means that that L−m increases the eigenvalue of
L0. The Verma module thus admits a L0-eigenspace decomposition of the form

Vh,c =
⊕
m≥0

V
(m)
h,c , V

(m)
h,c =

{
|v〉 ∈ Vh,c

∣∣∣L0|v〉 = (h+m)|v〉
}
, (C.33)

where V (m)
h,c is spanned by

Lk1 . . . Lkr |h, c〉,
r∑
i=1

ki = m, k1 ≥ · · · ≥ kr > 0.

The numberm is called the level. The number of states at levelm is the number of positive
integer partition of m and is given by the Euler partition function p(m). A well-known
generating function of p(m) is given by

1

φ(q)
=

∞∏
n=1

1

1− qn
=

∞∑
n=0

p(n)qn.

States in the Verma module for m 6= 0 are called descendant states of φ. Using the
1-1 correspondence of operators and states in the Verma module, we can find operator
representations for the descendant states by L−k1 . . . L−knφ(z). For example by using eq.
(C.18)

L−nφ(0) =

∮
C(0)

dz
2πi

z−n+1T (z)φ(0)

=

∮
C(0)

dz
2πi

z−n+1

(
A(z)B(w) +

∞∑
n=0

zn

n!
N (∂nTφ)(0)

)
, n ≥ 2

=
1

(n− 2)!
N (∂n−2Tφ)(0),

and by the same way one can also show that

L−1 . . . L−1︸ ︷︷ ︸
n

φ(0) = ∂nφ(0), n ≥ 0.
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This motivates the concept of a conformal family of a primary field φ

[φ] =
{
Lk1 . . . Lknφ

∣∣∣ k1, . . . , kn ≤ −1
}
,

=
{
φ , ∂φ , ∂2φ , . . . , N (Tφ) , N (T∂φ) , . . . , N (∂Tφ) , . . .

}
. (C.34)

One important consequence is

L−21(w) =

∮
C(w)

1

z − w
T (z)1 = T (w), (C.35)

so the energy-momentum tensor is a descendant field of the identity operator, which
explains why it does not have the canonical OPE of primary fields.

C.1.3 Virasoro Minimal Models

The Verma module Vhc is generally not irreducible, nor even fully reducible, i.e. cannot
be written as a direct sum of irreducible modules. This is due to invariant subspaces
generated by null-states6, which are annihilated by all Ln (n > 0) and therefore generate
their own Verma submodules. It can be shown that null-states |χ〉 are orthogonal to the
whole Verma module and in particular have zero norms

〈χ|χ〉 = 0,

and this is also true for all of its descendants. A irreducible representation can be found
by modding out the null submodules

Lh,c = Vh,c/Vχ.

There are however other problems. We are interested in unitary representation of the
Virasoro algebra and we therefore have to avoid negative norm states. This condition
will put certain constrains on the values of h and c. For example take the following
inner-products

〈h, c|L1L−1|h, c〉 = 2h, 〈0|L2L−2|0〉 =
c

2
,

implying that for unitary representations it is necessary to require c ≥ 0 and h ≥ 0.
For a more systematic approach, it is convenient to introduce the unitary Gram matrix
Mab = 〈a|b〉, for all states |a〉 in the Verma module Vh,c. Since the decomposition (C.33)
is orthogonal, the Gram matrix decomposes into a block diagonal form with the blocks
M

(m)
ab for each level m. The condition for |v〉 =

∑
a Λa|a〉 to have vanishing norm

‖v‖2 =
∑
a,b

Λa〈a|b〉Λb = ΛTMΛ = 0,

is that Λ is a eigenvector with eigenvalue λ = 0 of M . Thus following Friedan, Qiu
and Shenker [142], we will consider the determinant det(M − λI) = detM . There is a
general formula for detM (m)(h, c) called the Kac-determinant. A careful analysis gives
the following conclusions about unitary irreducible representations of the Virasoro algebra
[133]:

6Null-states are states which are both primary and secondary.
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• For c > 1 and h ≥ 0 there are no zeros and all eigenvalues ofM (m)(h, c) are positive,
thus there can exist unitary representations but with necessarily infinite number of
primary fields.

• For c = 1, detM (m) = 0 for h = n2

4 where n ∈ Z.

• For c < 1 and h ≥ 0, there are a discrete set of unitary irreducible modules Lh,c for

c(m) = 1− 6

m(m+ 1)
, m = 3, 4, . . . , (C.36)

with only
(
m
2

)
allowed primary states with the conformal weights

hp,q(m) =
((m+ 1)p−mq)2 − 1

4m(m+ 1)
, 1 ≤ p ≤ m− 1, 1 ≤ q ≤ m. (C.37)

The modules given by (C.36) and (C.37) are called Virasoro unitary minimal models
and were first discussed in [143]. It turns out that they cover all unitary irreducible
representations with finite number of primary states and they are much easier to control
since all fields can be ordered into finite number of families. It is however possible to
have conformal field theories with a larger symmetry algebra A ⊕ Ā, where fields can
be organized into finite families of modules of this larger symmetry algebra. Conformal
field theories of this type are usually called Rational Conformal Field Theories (RCFT). It
turns out that RCFT’s have many very interesting properties and admit a useful axiomatic
formulation [18, 144, 21, 22]. Also note that the CFT’s in (C.36) and (C.37) do not give
rise to unique theories, since the holomorphic and anti-holomorphic parts can be combined
in various ways. We will return to this point when we discuss modular invariance.

C.1.4 Correlation Functions, Null States and the Fusion Algebra

In this section we will see one the main powers of conformal invariance in two-dimensions.
In particular, we will investigate how null states in the Virasoro unitary minimal models
for c < 1 put very strong constrains on correlation functions. Many of these methods can
be generalized to more general RCFT’s.

First we note that global conformal invariance SL(2,C)/Z2 restricts the form of two-
and three-point functions of quasi-primary fields

〈
φi(z)φj(w)

〉
=

dij δhi,hj
(z − w)2hi

, (C.38)〈
φ1(z1)φ2(z2)φ3(z3)

〉
=

C123

zh1+h2−h3
12 zh2+h3−h1

23 zh1+h3−h2
13

, (C.39)

where zij = zi − zj . The coefficients in the two-point function dij can be fixed by nor-
malization of the fields, but the three-point coefficients have to be calculated by different
means and play an important role in CFT’s. We will later talk about how the full Virasoro
algebra puts strong constrains on these. Another important feature of the Virasoro alge-
bra is that fields can be organized into conformal families (C.34), which in turn implies
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that correlation functions contaning descendant fields can be calculated using those with
the primary ones. More concretely consider the descendant field

L−nφ(w) =

∮
C(w)

(z − w)−n+1 T (z)φ(w).

Now insert this into a correlation function with primary fields φ1(w1), . . . , φN (wN ), choose
the contour C(w) such that no other w1, . . . , wN are enclosed and then wrap the contour
around the Riemann sphere such that it decomposes into contours C(wi). Being careful
about the orientation of the contours and using (C.13) one ends up with the result〈

L−n φ(w)φ1(w1) . . . φN (wN )
〉

= L−n
〈
φ(w)φ1(w1) . . . φN (wN )

〉
, (C.40)

where

L−n =

N∑
i=1

(
(n− 1)hi
(wi − w)n

− 1

(wi − w)n−1
∂wi

)
. (C.41)

This expression generalizes naturally to more general descendants, such as Lk1 . . . Lknφ(w).
Using these relations with null-fields will provide us with extremely powerful constraints
on correlation functions. For example the null field L−2φ(z) − 3

2(2h+1)L
2
−1φ(z) will give

the constraint[
N∑
i=1

(
hi

(wi − w)2
− 1

wi − w
∂wi

)
− 3

2(2h+ 1)
∂2
w

] 〈
φ(w)φ1(w1) . . . φN (wN )

〉
= 0.

The two-point function (C.38) will trivially satisfy this constraint but for the three-point
function (C.39) we find that C123 = 0 unless

h2 =
1

6
+
h

3
+ h1 ±

2

3

√
h2 + 3hh1 −

1

2
h+

3

2
h1 +

1

16
. (C.42)

In the context of Virasoro unitary minimal models (C.37), using h = h2,1(m) and h1 =
hp,q(m) the two solutions (C.42) are just Z = {hp−1,q(m), hp+1,q(m)}. This implies that
the three-point function 〈φ2,1φp,qφp′,q′〉 vanishes unless hp′,q′ ∈ Z, and this obviously
extends to descendant fields using (C.40). This motivates the concept of fusion rules,
which for this case can be written as

[φ2,1]× [φp,q] = [φp+1,q] + [φp−1,q] .

This can be readily generalized to higher level null states in the case of minimal models,
the general result is [133, 135]

[φp1,q1 ]× [φp2,q2 ] =

min(p1+p2−1,
2m−1−(p1+p2))∑
p3=|p1−p2|+1

min(q1+q2−1,
2m+1−(q1+q2))∑
q3=|q1−q2|+1

[φp3,q3 ] . (C.43)

The simplest, and probably most famous minimal model is for m = 3 which gives the
central charge c(3) = 1

2 . This CFT (when combined with the anti-holomorphic part)
describes the critical point of the 2D Ising model [133] and so-called Ising anyons due to
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their relation to topological field theories [19, 20, 17] among many other applications. It
is customary to use the notation

1 = [φ1,1] or [φ2,3]

σ = [φ2,2] or [φ1,2]

ε = [φ2,1] or [φ1,3] ,

with the fusion rules

σ × σ = 1 + ε, σ × ε = σ, ε× ε = 1. (C.44)

Notice the similarity with decomposition of tensor products of SU(2) representations, if
one identifies 1 with a spin 0, σ with spin 1

2 and ε with spin 1, and cut-off spins larger
than m−1

2 = 1. This is not a coincident, as we will later discuss this is actually related to
the representation theory of the affine Lie algebra ŝu(2)k.

The concept of fusion rules is very useful even for more general RCFT’s, which moti-
vates the definition of a fusion algebra [145] (omitting brackets)

φi × φj =
∑
k

Nk
ijφk, (C.45)

where the sum runs over all primary fields in the theory and is by definition finite for
RCFT’s. The numbers Nk

ij ∈ N0 can be interpret as the number of independent fusion
paths from φi and φj to φk, and is naturally Nk

ij = 0 whenever Cijk = 0. The fusion
algebra is commutative and associative. And a final important fact to mention is the
neutrality condition: a correlator is zero unless there exists a fusion channel such that all
fields can fuse together to get the identity

φ× φ∗ = 1 + . . . .

As our notation silently imply, there always exist a unique “dual” field φ∗ associated to any
other field φ such that they fuse to the identity operator and possibly some more, this is
the unique field in which the two-function is non-zero. As is evident from the Ising model
fusion rules, all fields in that theory are self-dual. The fusion algebra is an important step
towards an axiomatic formulation of RCFT’s, but we first need to consider certain other
important details.

C.1.4.1 Conformal Blocks, Duality and the Bootstrap Approach

In this section we will reintroduce the anti-holomorphic part of the CFT, so for example
the correlators (C.38) and (C.39) have to be multiplied by the z̄ and h̄ dependent part.
We will also assume that the coefficient of the two point function (C.38) is dij = δij ,
which can also be done by normalization [133]. The OPE of two primary fields can be
expressed as a sum over other primary fields and their descendants, due to the decoupling
of holomorphic and anti-holomorphic parts it will take the following general form

φi(z, z̄)φj(w, w̄) =
∑
p

∑
{k,k̄}

Cpij
β
p,{k}
ij β̄

p,{k̄}
ij φ

{k,k̄}
p (w, w̄)

(z − w)hi+hj−hp−K(z̄ − w̄)h̄i+h̄j−h̄p−K̄
, (C.46)
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where p run over all primary fields in the theory, K =
∑

i ki and K̄ =
∑

i k̄i and the
multi-indexed field φ{k,k̄}p label the descendants

L−k1 . . . L−knL̄−k̄1
. . . L̄−k̄mφp, (C.47)

of φp. In particular φ{0,0}p = φp. The z − w and z̄ − w̄ dependence is fixed by conformal
invariance, coefficient Cpij determine whether the conformal family of φp participates, while

the βp,{k}ij and β̄
p,{k̄}
ij are the coefficients of the descendants. If we use the convention

β
p,{0}
ij = β̄

p,{0}
ij = 1, then Cpij will be equal to the coefficient of the three-point function.

It turns out that the β’s are fixed by conformal invariance and depend on the conformal
weights and the central charge. For example a straightforward calculation for the case
h = hi = hj gives [133]

β
p,{1,1}
ij =

c− 12h− 4hp + c hp + 8h2
p

4(c− 10hp + 2c hp + 16h2
p)
. (C.48)

The fact that these can be calculated in such a general setting is related to the fact that
correlation functions of descendants can be obtained from the primaries (C.40).

These observations are quite striking. They imply that given the set of primary fields,
their conformal weights, the central charge and Cpij , one has fully specified the operator
algebra and possibly the whole CFT. This again hints at a possible route to axiomatically
formulate RCFT’s. Before turning to that, let us investigate how we can constrain Cpij
and calculate them. For this, let us consider the four point-function〈

φi(z1, z̄1)φj(z2, z̄2)φl(z3, z̄3)φm(z4, z̄4)
〉
.

It turns out that by the same reasoning leading to (C.38) and (C.39), the four point
function is completely fixed up to an overall function depending only on the so-called
crossing ratios

x =
z12z34

z13z24
, x̄ =

z̄12z̄34

z̄13z̄24
. (C.49)

Although conformal invariance cannot fix this overall function, associativity can constrain
it a lot. It is convenient to use global SL(2,C)/Z2 invariance to map the four points to,
say, z1 =∞, z2 = 1, z3 = x and z4 = 0. Consider the four point-function

Gjilm(x, x̄) = lim
z1,z̄→∞

z2h1
1 z̄2h̄1

1

〈
φi(z1, z̄1)φj(1, 1)φl(x, x̄)φm(0, 0)

〉
,

= 〈i|φj(1, 1)φl(x, x̄)|m〉,
(C.50)

where we have used (C.26) and (C.29). If we now take the OPE φl(x, x̄)φm(0, 0) using
(C.46), we find the following expression

Gjilm(x, x̄) =
∑
p

CplmC
p
ijF

ji
lm(p|x)F̄ jilm(p|x̄), (C.51)

where F jilm(p|x) and F̄ jilm(p|x̄) are called conformal blocks and express the contribution
of the conformal family [φp] to the four-point function. Actually, conformal blocks are
important building blocks where even higher-point functions can be build out of them.
They are given by

F jilm(p|x) = xhp−hl−hm
∑
{k}

β
p,{k}
lm xK

〈i|φj(1, 1)L−k1 . . . L−kN |p〉
〈i|φj(1, 1)|p〉

, (C.52)
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and similarly for F̄ jilm(p|x̄). The denominator of (C.52) is put in, so that there is a factor
of Cpij in (C.51) where we have identified this with the constant in (C.39). In order to
have a consistent theory we will require that we will get the same result if we change the
order (C.50) and use another OPE. Let us then perform the conformal transformation
z → 1 − z, which entails z2 → 0, z4 → 1 and z3 → 1 − x, thus we require the crossing
symmetry (sometimes called duality)

Gjilm(x, x̄) = Gmilj (1− x, 1− x̄). (C.53)

BPZ [143] introduced a useful graphical notation inspired by Feynman diagrams in which
conformal blocks take the form

F jilm(p|x)F̄ jilm(p|x̄) =
p

m

l

j

i

. (C.54)

With this, we can express the condition (C.53) as

∑
p

CplmC
p
ij

p

m

l

j

i

=
∑
q

CpimC
p
lj q

il

jm

. (C.55)

One can derive another condition by z → 1
z which gives rise to the conformal block

p

m

l

j

i

.

Since conformal blocks can, at least in principle, be completely determined by conformal
invariance alone, these conditions can be thought of as constraints on the coefficients Cpij .

C.1.4.2 Rational Conformal Field Theories and Modular Tensor Categories

There are simplifications when considering RCFT’s, since there are only finite number
of conformal families that can propagate as intermediate states. It turns out that the
conformal blocks form a finite-dimensional vector space and crossing symmetries can be
thought of as linear maps relating different choices of basis

p

m

l

j

i

=
∑
q

B

[
m j
l i

]
p,q q

m

l

j

i

, (C.56)



C.1. Basic Concepts 103

p

m

l

j

i

=
∑
q

F

[
m j
l i

]
p,q

q

il

jm

. (C.57)

The matrices B and F are usually called the braid and fusing matrices, respectively. By
considering five-point functions one can show that these matrices have to satisfy two very
important constraints called pentagon and hexagon equations [18, 22, 21]. It turns out that
RCFT’s can be formulated as modular tensor categories and have very deep connections to
three-dimensional topological field theories, knot invariants and exotic particle statistics
in 2+1 dimensions. There are a lot more to say about this extremely interesting topic,
but we will move on due to constraints on time.

C.1.5 Moduli of Algebraic Curves, Modular Invariance and Partition
functions

As we have seen, the essence of 2D conformal field theory is separation of holomorphic and
anti-holomorphic degrees of freedom and so far these have been completely independent.
For example one could in principle construct different variations of minimal models (C.37)
by different combinations of holomorphic and anti-holomorphic sectors. There are however
two arguments for why we cannot keep these completely independent.

One argument relies on the fact that in 2D, scaling invariance implies conformal invari-
ance [146] and thus CFT’s describe fixed points of quantum field theories. The separation
of right and left modes is only a feature of this fixed point and small perturbations away
from it necessarily couple them back again. But not all combinations of right and left
modes necessarily give rise to consistent couplings. Another arguments relies on that a
CFT should be consistent on the torus either because one is interested in string perturba-
tion theory or thermodynamic properties of the CFT. Let us see how this imposes further
constraints on the CFT.

Let us recall that compact Riemann surfaces are one-dimensional complex manifolds,
or complex-algebraic curves in the language of algebraic geometry. Even though these
curves can be classified topologically by their genus g, they can still be inequivalent due
to differing complex structures. Given two non-vanishing complex numbers ω1, ω2 ∈ C,
we can construct a lattice L(ω1, ω2) = {nω1 + mω2|n,m ∈ Z}. We can now construct a
torus by identifying points of the complex plane

Σ1 ≈ C/L(ω1, ω2). (C.58)

The upshot of this approach is that the torus automatically inherits a complex structure
from the complex plane,7 so we have reduced our classification problem to studying dif-
ferent choices of the lattice. We are interested in lattices up to multiplication, so it is
convenient to normalize and define the modular parameter

τ =
ω2

ω1
= τ1 + iτ2 ∈ H = {z ∈ C | Im z > 0} = Teich(Σ1), (C.59)

7It turns out that all complex structures on the torus can be induced in this way.
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where we have assumed that τ ∈ H without loss of generality. In algebraic geometry, in or-
der to solve a classification problem (isomorphism classes of Riemann surfaces in our case)
it is conventional to introduce extra structure, classify that problem and then investigate
consequences of letting the structure go away. The Teichmüller space Teich(Σ1) = H is
the isomorphism classes of elliptic curves, which are genus one Riemann surfaces with a
marked point. If we let this extra structure go, then any two set of complex numbers
ω1, ω2 ∈ Teich(Σ1) related by(

ω′1
ω′2

)
=

(
a b
c d

)(
ω1

ω2

) (
a b
c d

)
∈ SL(2,Z)/Z2, (C.60)

define equivalent complex structures. For the modular parameter this entails a transfor-
mation of the form

τ → aτ + b

cτ + d
. (C.61)

The moduli space of Riemann surfaces of genus 1 is then given as

Moduli(Σ1) =
Teich(Σ1)

MCG(Σ1)
=

H
SL(2,Z)/Z2

. (C.62)

It turn out that Moduli(Σ1) = {τ ∈ H | − 1
2 < Re τ < 1

2 and |τ | ≥ 1}, see [147, page
388], we will however work with H and keep track of equivalent complex structures. The
mapping class group of the torus is MCG(Σ1) = SL(2,Z)/Z2 and can be generated by the
following two transformations

T : τ → τ + 1, or T =

(
1 0
1 1

)
,

S : τ → −1

τ
, or S =

(
0 1
−1 0

)
.

(C.63)

These transformations satisfy the important relations

S2 = 1, (ST )3 = 1. (C.64)

The transformation τ → τ + 1 generates a Dehn twist along the meridian8, while τ → − 1
τ

switches the roles of the meridian and longitude.9 Similarly, the mapping class group of
higher Riemann surfaces are generated by a series of 2π Dehn twists, see figure C.1.

Figure C.1: The mapping class group of genus g Riemann surface is generated by dim MCG(Σg) =
3g − 1 Dehn twists. The figure illustrates this for Σ3. (Courtesy of Wikimedia Commons).

Let us now consider the CFT partition function, which is usually defined by com-
pactifying the time direction and tracing the Boltzmann factor e−βH . Mapping back

8The meridian is the small circle along the torus, while longitude is the other.
9The transformation U : τ → τ

τ+1
is the other Dehn twist. It is however customary to instead use

S = UT −1U .
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on the cylinder the Schwarzian derivative will modify the energy-momentum zero mode
L0 → L0 − c

24 . Next observe that for a non-trivial modular parameter τ = τ1 + iτ2, we
don’t get a closed loop in time10 by translation along τ2, so we need a translation in space
iτ1. Equation (C.25) implies that we may write

Z(τ) = TrH
(
e−2πτ2He2πτ1P

)
,

= TrH
(
qL0− c

24 q̄L̄0− c
24

)
,

=
∑
µ̂,ν̂

χµ̂(τ)Mµ̂ν̂ χν̂(τ̄),

q = e2πτ , (C.65)

where we trace over the Hilbert space H =
⊕

µ̂ν̂Mµ̂ν̂Lµ̂ ⊗ L̄ν̂ decomposed into products
of irreducible representations of some (possibly extended) symmetry algebra and we have
defined the character

χµ̂(τ) = TrLµ̂
(
qL0− c

24

)
. (C.66)

The mass matrixMµ̂ν̂ contains non-negative integers and specifies how the holomorphic
and anti-holomorphic sectors are combined, note that M00 = 1. In order to have a
consistent theory on the torus, we need to require that the partition function is modular
invariant

Z(τ) = Z(τ + 1) = Z(−1/τ). (C.67)

This poses strong constraints on the matrixMµ̂ν̂ . In a RCFT there are a finite number
of conformal families and it turns out that the characters transform into each other under
modular transformations

χµ̂(τ + 1) =
∑
ν̂

Tµ̂ν̂χν̂(τ),

χµ̂(−1/τ) =
∑
ν̂

Sµ̂ν̂χν̂(τ).
(C.68)

The space of characters actually form a unitary representation of the modular group
SL(2,Z)/Z2. Since the transformation τ → τ + 1 is a 2π Dehn twist, it is natural to
speculate that it is represented by a pure phase transformation. This is actually seen to
be correct from the definition (C.66)

Tµ̂ν̂ = δµ̂ν̂e
2πi(hµ̂−c/24). (C.69)

The modular Sµ̂ν̂ turns out to be much more interesting and much harder to calculate,
since it changes the two cycles of the torus it actually transforms into other characters.
See the result for affine Lie algebras in appendix E and references. It is clear that for
a diagonal mass matrix Mµ̂ν̂ = δµ̂ν̂ , the partition function (C.65) is modular invariant.
However, more general mass matrices lead to modular invariance if they satisfy the fol-
lowing conditions

T †MT = S†MS =M. (C.70)

In a beautiful paper [148], Cappelli, Itzykson and Zuber found a complete classification
of modular invariant mass matrices in the case of ŝu(2)k WZW models called the A-D-E

10We have chosen time to be along Imaginary axes, but this doesn’t matter too much since a modular
S transformation changes it into the other axes.
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classification, since all solutions can be labeled using simply-laced Lie algebras.11 As will
be discussed later, the Virasoro unitary minimal models can be realized by a coset WZW
model ŝu(2)k×ŝu(2)1

ŝu(2)k+1
and it turns out that all modular invariant partition functions can

be realized by combining modular invariants of ŝu(2)k and ŝu(2)k+1. Thus the A-D-E
classification also covers all c < 1 unitary CFT’s.

C.1.6 The Verlinde Formula

An extremely powerful and unexpected feature of RCFT’s is the relation between fusion
rules and modular invariance. A priori one would not expect any such relation since
modular invariance is related to non-chiral features of a CFT, while fusion rules are very
holomorphic in nature. However in a beautiful paper [145], Verlinde, then a graduate
student, defined the fusion algebra (C.45) and conjectured that the coefficients are given
by the modular S-matrix as

N ν̂
λ̂µ̂

=
∑
σ̂

Sλ̂σ̂Sµ̂σ̂Sν̂σ̂
S0σ̂

. (C.71)

This was later proved by Moore and Seiberg [18], which in the process described the main
general features of RCFT’s. There is another way to state the formula which is in the
spirit of the original paper by Verlinde. Define the matrix (Nλ̂)µ̂ν̂ = N ν̂

λ̂µ̂
, then it turns

out that the modular S-matrix diagonalizes the fusion rules(
S†Nλ̂S

)
µ̂ν̂

=

(Sλ̂µ̂
S0µ̂

)
δµ̂ν̂ . (C.72)

These eigenvalues for µ̂ = ν̂ = 0 are called quantum dimensions and play an interesting
role in CFT’s and topological field theories.

C.2 Wess-Zumino-Witten Models and Affine Lie Algebras

In this section we will consider one of the most important constructions in 2D CFT,
the Wess-Zumino-Witten model. This will be the first example of a CFT with enhanced
symmetry algebra, which originates from conserved spin one currents besides the spin two
ones which started everything (C.11). This will also allow us to construct unitary RCFT’s
with c > 1, which is not possible without extra symmetry.

Take a compact connected Lie group G with a semi-simple Lie algebra g, a (unitary)
highest weight representation Λ and a group valued function g : S2 → G. The Wess-
Zumino-Witten action is given by

SWZW[g] = − k

8π

∫
S2

d2xKΛ

(
g−1∂µg, g−1∂µg

)
+ k Γ[g] (C.73)

here KΛ(X,Y ) = 1
2xΛ

TrΛ (R(X),R(Y )) is the Killing form in the Highest weight represen-
tation Λ. For the adjoint representation Λ = θ, the Dynkin index is just the dual Coxeter
number xθ = g∨ and we get the usual Killing form (see appendix D). In the following we
will not distinguish between fields valued in the group g or in some representation R(g).

11To my knowledge, there is no deep understanding of why there is this relation to simply-laced Lie
algebras.
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The non-linear σ model is asymptotically free and not conformally invariant. Confor-
mal symmetry can however be restored using arguments of Witten [149]. Since π2(G) = 0
for any compact connected Lie group, we can extend the map g to the interior of the
sphere with no obstruction g̃ : B → G, with ∂B = S2.12 Any compact non-abelian Lie
group has a non-trivial harmonic form ω ∼ Trg−1dg ∧ g−1dg ∧ g−1dg called the Cartan
3-form, this implies that we have a non-trivial de Rahm cohomology group H3(G) 6= 0.
The Wess-Zumino term is defined as the pull-back of this form, with an appropriate nor-
malization

Γ[g̃] = i

∫
B
g̃∗ω. (C.74)

There is however a possible ambiguity, since π3(G) = Z the extension g̃ can belong to any
homotopy class and it turns out that the Wess-Zumino term gets shifted by Γ + 2πiN ,
n ∈ Z, when changing the homotopy class of g̃. This is not a problem since the Euclidean
functional integral e−kΓ[g̃] depends only on g, not the extension and is therefore well-
defined. Expressing the Cartan 3-form using the Killing form, the term in given as

Γ[g] =
−i
24π

∫
B
d3y εαβγ K

(
g̃−1∂αg̃,

[
g̃−1∂β g̃, g̃−1∂γ g̃

])
. (C.75)

This can be put in a more conventional form by using ∂(g−1g) = ∂I = 0,

SWZW[g] =
k

16π

∫
d2x Tr’

(
∂µg−1∂µg

)
− ik

24π

∫
B
d3y εαβγTr’

(
g̃−1∂αg̃g̃−1∂β g̃g̃−1∂γ g̃

)
,

(C.76)
where Tr’(. . . ) = 1

xλ
Tr(. . . ). Witten showed that with this choice of relative coupling

constants, the theory is conformally invariant even quantum mechanically (it describes
an infrared fixed point of the model with more general coupling constants). Turning to
complex coordinates, it turns out that the theory is invariant under

g(z, z̄)→ Ω(z)g(z, z̄)Ω̄−1(z̄),

with the conserved currents

∂̄J(z) = 0, J(z) = −k∂gg−1,

∂J̄(z̄) = 0. J̄(z̄) = kg−1∂̄g.
(C.77)

A similar analysis with Ward identities to what we discussed before, leads to the OPE13

Ja(z)Jb(w) ∼ k κab

(z − w)2
+ ifabc

Jc(w)

z − w
, (C.78)

where we have used the matrix representation of the Killing form κab = K(T a, T b) in a
basis {T a}dimg

a=1 . This indicates that Ja(z) has conformal weights (h, h̄) = (1, 0). A mode
expansion Ja(z) =

∑
n∈Z z

−n−1Jan leads to the commutator relations[
Jan, J

b
m

]
= ifabc J

c
n+m + knκabδn+m,0. (C.79)

This is nothing but the affine Lie algebra ĝk, see appendix E. We have also the OPE
Ja(z)J̄b(z̄) ∼ 0, which means that the two sectors decouple as expected.

12It is easy to construct examples with a manifold π2(M) 6= 0, where is it clear that maps in a non-trivial
homotopy class cannot be extended in such a way.

13Note that we could have found this result purely by assuming h = 1 and using dimensional arguments
together with requiring the Jacobi identity for the commutator of their modes.
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C.2.1 The Sugawara Construction and the WZW Primary Fields

The natural next step is to figure out where the Virasoro algebras is, which means we have
to find the energy-momentum tensor. The energy-momentum tensor turns out to have
the form T (z) = γ

∑
a κabN (JaJb)(z), where the coefficient γ can be fixed by demanding

that Ja(z) has conformal weight 1, either by calculating the OPE14 T (z)Ja(z) or the
commutator of their modes. Using the relation15 Tr(taadt

b
ad) = −

∑
dc f

ac
df

bd
c = C2(θ)δab =

2g∨δab from appendix D we find the energy-momentum tensor16

T (z) =
1

2(k + g∨)

dim g∑
a,b=1

κabN (JaJb)(z). (C.80)

Here κab is the inverse of κab. Note the similarity to the second order Casimir element,
this point will turn out to be important when we talk about W-algebras. The central
charge is calculated similarly by using (C.1.1.1)

T (z)T (w) =
1
2k dim g/(k + g∨)

(z − w)4
+

2

(z − w)2
T (w) +

1

z − w
∂T (w), (C.81)

where we have used κabκab = dim g. The central charge is thus given by

c =
k dim g

k + g∨
. (C.82)

Note that we could have started the whole story from the energy-momentum tensor (C.80),
without ever talking about the WZW Lagrangian. This approach is called the Sugawara
construction and in certain situations allow the construction of more general CFT’s than
the Langragian approach [133]. We can also translate (C.80) into modes using eq. (C.24)
which give us

Ln =
1

2(k + g∨)

dim g∑
a,b=1

κab

∑
m≤1

JamJ
b
n−m +

∑
m≥0

Jbn−mJ
a
m

 ,

=
1

2(k + g∨)

dim g∑
a=1

∑
m∈Z

: JamJ
a
n−m : if κab = δab. (C.83)

In the second line by : · · · : we mean that the lowest mode has to be put to the left, this only
affects the n = 0 mode since in a orthonormal basis κab = δab we only have product with
the same a index and for these the commutator (C.79) reduces to [Jam, J

a
n−m] = kmδn,0.

Note that this means the Virasoro algebra is contained in the universal enveloping algebra
of our affine Lie algebra, Vir ⊂ U(ĝk), which is not surprising given that the Sugawara
energy-momentum tensor is some sort of Casimir operator.

14Note that we have to use the definition (C.1.1.1) since the WZW model is not a free field theory.
15Recall that (taad)bc = −ifabc .
16It is possible to generalize this energy-momentum tensor. A usual extension used in the literature is

to add a term p · ∂H, where Hi are the generators of the Cartan subalgebra.
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C.2.1.1 WZW Primary Fields

There is an important point to note about the central charge (C.82), it satisfies the
inequality r ≤ c ≤ dim g, where r is the rank of g. This means that these WZW models
generically have central charge larger than one and according to our earlier discussions,
they will always contain an infinite number of Virasoro primary fields. However, as we
also discussed earlier, when we have some extended symmetry algebra available we can
organize fields into larger conformal families with respect to this larger symmetry algebra.
Just as Virasoro primary fields gave rise to highest weight modules, we can define WZW
primary fields which will give rise to affine Lie algebra highest weight modules.

A non-chiral field ΦΛ,Ω labeled with the highest weights Λ and Ω of g (for each chirality)
is said to be a WZW primary field if it satisfies the following OPE’s

Ja(z)ΦΛ,Ω(w, w̄) ∼
−taΛ ΦΛ,Ω(w, w̄)

z − w
,

J̄a(z)ΦΛ,Ω(w, w̄) ∼
ΦΛ,Ω(w, w̄) taΩ

z − w
,

(C.84)

where Rλ/µ(T a) = taλ/µ are the representations of the generators of g. We will denote the
holomorphic and anti-holomorphic parts with small letters ΦΛ,Ω(z, z̄) = φΛ(z)φ̄Ω(z̄). On
the level of the Hilbert space, the WZW primary field corresponds to a state satisfying

Ja0 |Λ,Ω〉 = −taΛ|Λ,Ω〉, J̄a0 |Λ,Ω〉 = taΩ|Λ,Ω〉,
Jan|Λ,Ω〉 = 0, J̄an|Λ,Ω〉 = 0, n > 0,

(C.85)

with the definition |Λ,Ω〉 = limz,z̄→0 ΦΛ,Ω(z, z̄)|0〉. The next natural question is how the
Virasoro algebra acts on these states. Using eq. (C.83) and (C.85) it is clear that

Ln|Λ,Ω〉 = L̄n|Λ,Ω〉 = 0, n > 0, (C.86)

and

L0|Λ,Ω〉 =
1

2(k + g∨)

dim g∑
a,b=1

κabJ
a
0J

b
0 |Λ,Ω〉 =

1

2(k + g∨)
C2(Λ)|Λ,Ω〉, (C.87)

and similarly for L̄0. This implies that |Λ,Ω〉 is a primary field of Vir ⊕ Vir with the
conformal weights

hΛ =
(Λ,Λ + 2ρ)

2(k + g∨)
, h̄Ω =

(Ω,Ω + 2ρ)

2(k + g∨)
. (C.88)

There is a small issue we need to resolve. The set of states (C.85) form a multiplet
transforming irreducibly under the horizontal subalgebra g ⊂ ĝk but have the same L0

eigenvalue, and so do not constitute a unique “vacuum“. Using Cartan-Weyl basis, eq.
(C.85) says that these states are annihilated by all positive mode generators H i

n and E±αn
with n > 0. In order to have a true highest weight representation of ĝk we also need to
require these states are annihilated by the positive roots of the zero modes Eα0 for α > 0.
In other words, the true highest weight state, labeled with highest weights Λ̂ and Ω̂, has
to satisfy the relations (C.85) together with these

Eα0 |Λ̂, Ω̂〉 = Ēα0 |Λ̂, Ω̂〉 = 0, ∀α > 0. (C.89)

The rest of the ”vacuum multiplet“ |Λ,Ω〉, can be constructed by acting with E−α0 on
|Λ̂, Ω̂〉. We will now label everything with respect to highest weights of the affine Lie
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algebra, so for example hΛ̂ = hΛ. Descendant fields in the WZW conformal family is
found by successive action of the Virasoro negative modes {Ln, L̄n} and WZW negative
modes and {Ja−n, J̄a−n}. An argument similar to (C.35) shows that the WZW currents
Ja(z) are descendants of the identity operator, thus not WZW primaries although they
are Virasoro primaries.

C.2.2 Knizhnik-Zamolodchikov and Gepner-Witten Equations

All this symmetry puts many constraints of correlation functions on WZW primary fields,
two immediate ones come from the Ward identities

N∑
i=1

taΛi
〈
φΛi(z1) . . . φΛN (zN )

〉
= 0,

N∑
i=1

{
zmi

(
zi∂i + (m+ 1)hΛ̂i

)} 〈
φΛi(z1) . . . φΛN (zN )

〉
= 0,

(C.90)

where the first constraint comes from global G invariance and the second from global
SL(2,C)/Z2 invariance (m = 0,±1). There are however at times much stronger con-
straints stemming from the fact that states in the WZW Verma module generated by the
action of L−n and Ja−n’s, are not all linearly independent although they formally appear
so. The existence of null-vectors, which generate their own Verma module that need to
be modded out, give rise to such constraints. Following Gepner and Witten [150], let us
summarize the three types of null-states

1. From purely Virasoro algebra.

2. Combined Virasoro and current algebra.

3. Purely current algebra.

We have already discussed case 1., where null-vectors exist for certain values of central
charge c < 1 and give rise to the Virasoro unitary minimal models. An important example
of case 2. was discussed by Knizhnik and Zamolodchikov [151]. Due to form of the Virasoro
algebra generators (C.83) we can see that (choosing an orthonormal basis κab = δab)

L−1|Λi〉 =
1

k + g∨

dim g∑
a=1

Ja−1J
a
0 |Λi〉 =

−1

k + g∨

dim g∑
a=1

Ja−1t
a
Λi |Λi〉, (C.91)

which implies that we have the zero null-state

|χ〉 =
[
L−1 +

1

k + g∨

dim g∑
a=1

Ja−1t
a
Λi

]
|Λi〉 = 0. (C.92)

Putting the corresponding field into correlators 〈φΛ1(z1) . . . χ(zi) . . . φΛN (zN )〉 and requir-
ing this has to vanish, leads to the so-called Knizhnik-Zamolodchikov equation∂i +

1

k + g∨

∑
i 6=j

∑dim g
a=1 taΛi ⊗ t

a
Λj

zi − zj

〈φΛ1(z1) . . . φΛN (zN )
〉

= 0. (C.93)
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Knizhnik and Zamolodchikov were able to solve this equation in the case of ĝk = ŝu(N)k
four-point functions with φΛi all in the fundamental representation [151, 133].

One can now turn case 3., as analyzed by Gepner and Witten [150]. Due to lack
of time, we shall not give the details. If one concentrates on the class of integrable
highest weight representations Λ̂ ∈ P k+, one needs to require that these states generate
finite representations with respect to any su(2) subalgebra of ŝu(2), which implies that
they should be annihilated if one applies the negative roots of these subalgebras enough
times. This implies these states are null-states. Putting these states into correlation
functions, one can derive an equation called the Gepner-Witten equation. One important
consequence is that one can see from these equations that all non-integrable representations
decouple from the theory since their correlators vanish with arbitrary fields. This means
we only have to consider integrable highest weight modules which makes WZW models
RCFT’s since the condition

k ≥ (Λ, θ), (C.94)

states that there are only finite number of these representations for finite k. See more
details in appendix E and [150, 133, 136].

C.2.3 Fusion Rules of WZW Models

We will not have enough time and space to go into all these glory details of fusion rules of
WZW models. There is however a few important things to note. Let us write the fusion
rules in the following way

Λ̂× Ω̂ =
⊕

Ξ̂∈Pk+

N
(k)Ξ̂

Λ̂Ω̂
Ξ̂. (C.95)

The actions of outer automorphisms of fusion rules turns out to put a constraint on the
fusion rules, the fusion coefficient is zero unless

Λ + Ω− Ξ ∈ Q, (C.96)

where Q is the root lattice. Another important fact is that in the k →∞ limit, the fusion
rules becomes decomposition of tensor products of the finite Lie algebra g.

C.3 The WZW Coset Construction

So far we have discussed two classes of CFT’s, the minimal models which cover all Unitary
representations of the Virasoro algebra for c < 1 and the WZW models which for each
simple Lie algebra gives a class of RCFT’s for c > 1 with respect to the larger algebra.
The latter can easily be generalized to any semi-simple Lie algebra. In this section we will
discuss a vast generalization of the WZW models called the coset construction and was
introduced by Goddard, Kent and Olive [152, 153]. This class of CFT’s are so general
that it is believed that all RCFT’s can be constructed in this way, we will in particular
discuss the c < 1 minimal models (see also [144] where it is conjectured that all RCFT’s
can be classified by 2+1D Chern-Simons theory).

Recall that any subalgebra h ⊂ g can be embedded in several ways h ↪→ g characterized
by an embedding index xe. This can be lifted to an embedding of affine Lie algebras
ĥk̄ ↪→ ĝk with the level given by k̄ = xek. Assume that the currents Jaĝk and Jb

ĥk̄
generate
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ĝk and ĥk̄ respectively, then in their universal enveloping algebras there are the following
Sugawara energy-momentum tensors

Tĝk(z) =
1

2(k + g∨)

dim g∑
a=1

N
(
JaĝkJ

a
ĝk

)
(z),

Tĥk̄
(z) =

1

2(k + h∨)

dim h∑
b=1

N
(
Jb
ĥk̄
Jb
ĥk̄

)
(z).

(C.97)

Note that the currents Jb
ĥk̄

are h = 1 primary fields of both energy-momentum tensors

Tĝk(z)Jb
ĥk̄

(w) ∼ Tĥk̄(z)Jb
ĥk̄

(w) ∼ 1

(z − w)2
Jb
ĥk̄

(w) +
1

z − w
∂Jb

ĥk̄
(w). (C.98)

We are interested in constructing a theory in this we decouple the sector corresponding
to the subalgebra ĥk̄. This can be achieved by the decomposition

Tĝk = Tĝk/ĥk̄
+ Tĥk̄

⇒ Tĝk/ĥk̄
= Tĝk − Tĥk̄ .

This decomposes the Virasoro algebra into two commuting sectors since we have the
regular OPE’s

Tĝk/ĥk̄
Jb
ĥk̄
∼ Tĝk/ĥk̄Tĥk̄ ∼ 0,

which on the level of modes means that Lĝk/ĥk̄
m = Lĝk

m − L
ĥk̄
m satisfy the commutator

[L
ĝk/ĥk̄
m , L

ĥk̄
n ] = 0. Either by calculating [L

ĝk/ĥk̄
m , L

ĝk/ĥk̄
n ] or observing that Tĝk/ĥk̄Tĝk/ĥk̄ ∼

TĝkTĝk − Tĥk̄Tĥk̄ we find the central charge

c(ĝk/ĥk̄) = c(ĝk)− c(ĥk̄) =
k dim g

k + g∨
− xek dimh

xek + h∨
. (C.99)

As is evident from our notation, these CFT’s are labeled by the coset ĝk/ĥk̄.
A very important example are the diagonal cosets (ĝk1 ⊕ ĝk2)/ĝk, where the algebras

ĝki are generated by Ja(i) and ĝk is generated by Ja = Ja(1) + Ja(2). Since [Ja(1), J
b
(2)] = 0 it

follows that that the level and structure constants of ĝk are just the sum the two others
k = k1 + k2. The central charge is thus given by

c = dim g

(
k1

k1 + g∨
+

k2

k2 + g∨
− k1 + k2

k1 + k2 + g∨

)
. (C.100)

The fact that we subtract the central charge of the subalgebra indicates that one might
be able to construct cosets with central charge c < 1, these must necessarily be identified
with the minimal models if the representations are unitary (which they are for integer
levels). There are thus not a unique way of constructing different minimal models CFT’s
using the coset construction. It was however shows in [153] that all Virasoro minimal
models can be constructed using the diagonal coset

ŝu(2)k ⊕ ŝu(2)1

ŝu(2)k+1
, (C.101)
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which gives rise to the central charge

c =
3k

k + 2
+ 1− 3(k + 1)

k + 3
= 1− 6

(k + 2)(k + 3)
, k ≥ 1, (C.102)

which has to be compared to (C.36) with m = k + 2. A possibly even more surprising
fact is that the coset construction (of ordinary affine Lie algebras) can even given rise to
representations of the super-Virasoro algebra, which was also notices in [153]. In particular
the coset

ŝu(2)k ⊕ ŝu(2)2

ŝu(2)k+2
, (C.103)

gives rise to the N = 1 super-Virasoro minimal models with the central charge

c =
3

2

(
1− 8

(k + 2)(k + 4)

)
. (C.104)

C.3.1 Primary Fields, Fix Points and Field Identifications

Next we need to find the spectrum of primary fields of the coset ĝk/ĥk̄. We will not go
into many details since we did not have time to write too much about the relevant math
in appendix E, but only mention the main aspects. The branching rules gives rise to a
corresponding character identity

Λ̂→
⊕

Ω̂∈P k̄+(ĥ)

bΛ̂Ω̂ Ω̂ ⇒ chPΛ̂ =
∑

Ω̂∈P k̄+(ĥ)

bΛ̂Ω̂ chΩ̂, (C.105)

where P is the projection matrix of the embedding h ↪→ g. Evaluating this on an affine
weight and multiplying with the relevant exponential we can identify the normalized char-
acter of the coset with the branching rules

χ{Λ̂;Ω̂}(τ) = e2πiτ(mΛ̂−mΩ̂)bΛ̂Ω̂(τ), (C.106)

where mΛ̂ is the modular anomaly. One immediate consequence is that in order for the
characters to be non-zero the branching rules must be non-zero as in equation (D.37).
This imposes the requirement

PΛ− Ω ∈ PQ(g). (C.107)

This selection rule requires PΛ and Ω to be in the same congruence class. If there is
nontrivial branching of outer automorphisms A→ Ã there is some over counting we need
to take care of. In the case of no fixed points PΛ̂ = Λ̂ and PΩ̂ = Ω̂, it turns out that we
must make the following the identification

{Λ̂; Ω̂} ∼ {AΛ̂; ÃΩ̂}. (C.108)

These two conditions are actually related. In the case there are fixed points subtleties
arise, we will however not discuss the resolution of fixed points since it is not important
for us and it is not well understood in general.

In order to summarize, primary fields of ĝk/ĥk̄ can be labeled by integral highest
weights Λ̂ ∈ P k+(ĝ) and Ω̂ ∈ P k̄+(ĥ), written {Λ̂; Ω̂}, satisfying the constraints and identifi-
cations discussed above. Finally the conformal weights of the Virasoro primary fields are
given as

h{Λ̂;Ω̂} = hΛ̂ − hΩ̂ + n, (C.109)
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where n is an integer as can be calculated by knowing the details of the branching rules,
which is hard in general.

In the case of diagonal cosets we have that P(Λ,Ξ) = Λ + Ξ, P(Q ⊕ Q) = Q and
A ⊗ A → A. Thus we can label the primary fields by three ĝ integrable highest weights
{Λ̂, Ξ̂; Ω̂} at levels k1, k2 and k1 + k2, respectively, satisfying the selection rule

Λ + Ξ− Ω ∈ Q, (C.110)

and the field identifications

{Λ̂, Ξ̂; Ω̂} = {AΛ̂, AΞ̂;AΩ̂}, ∀A ∈ O(ĝ). (C.111)

C.3.1.1 Three-State Potts Model using the Coset Construction

As a very simple and concrete example let us consider the following diagonal coset, which
is studied in more details in this thesis,

ŝu(3)1 ⊕ ŝu(3)1

ŝu(3)2
. (C.112)

This coset can be shown to have another conserved current in the vacuum sector of spin 3,
extending the Virasoro algebra to the Zamolodchikov W3 algebra [69]. The central charge
is c = 4

5 . Since this is less than one and the CFT is unitary it must correspond to a Virasoro
minimal model, it is actually the 3-state Potts model. The coset can be characterized by
three integrable highest weights17 {ρ̂, µ̂; ν̂}. Using the highest root θ = ω1 + ω2 = (1, 1),
the condition (C.94) gives the constraints

1 ≥ ρ1 + ρ2, 1 ≥ µ1 + µ2, 2 ≥ ν1 + ν2.

The selection rule (C.110) requires that the three weights lie in the same congruence class.
As discussed in appendix D, for A2 we have three congruence classes P/Q = Z3 which can
also be seen in figure D.1. Let us recast the condition ρ+ µ− ν ∈ Q into

(ρ1 + µ1 − ν1) + 2(ρ2 + µ2 − ν2) = 0 mod 3.

With this we can pick ρ = (ρ1, ρ2), ν = (ν1, ν2) and then calculate what µ = (µ1, µ2)
should be. It turns out there are 18 possibilities, 6 of them are listed here:

[ρ0, ρ] [ν0, ν] [µ0, µ]

[1, 0, 0] [2, 0, 0] ⇒ [1, 0, 0]
[1, 0, 0] [1, 1, 0] ⇒ [0, 1, 0]
[1, 0, 0] [1, 0, 1] ⇒ [0, 0, 1]
[1, 0, 0] [0, 1, 1] ⇒ [1, 0, 0]
[1, 0, 0] [0, 2, 0] ⇒ [0, 0, 1]
[1, 0, 0] [0, 0, 2] ⇒ [0, 1, 0]

Finally we must remember the identifications using the outer automorphisms

{ρ̂, µ̂, ν̂} ∼ {Aρ̂,Aµ̂, Aν̂}.
17We will for now use small Greek letters to describe highest weights.
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The structure of the outer automorphism group O(ŝu(3)) is clear from the affine Dynkin
diagram

One can easily show that the other 12 primary fields are the ones one get by using these
outer automorphisms on the primaries written in the table, thus there are only 6 distinct
coset primary fields. This is in agreement with the analysis of the three-state Potts Model
in [133] section 7.4.4, using different techniques.

C.3.2 Fusion Rules and Modular Properties

The fusion coefficients and the modular S and T on the coset can be shown to be products
of the ones from ĝk and ĥk̄.



Appendix D
Semi-simple Lie Algebras

In this appendix we will sketch the relevant aspects of the structure and representation
theory of semi-simple Lie algebras, for more details see [154, 155, 133, 156]. Unless ex-
plicitly stated, we will only consider finite-dimensional Lie algebras over C.

Given a basis {Ja|a = 1, . . . , d} for a d-dimensional Lie Algebra g, the commutator
relations are characterized by the structure constant fabc ,

[Ja, Jb] =
∑
c

ifabc J
c.

A simple Lie algebra is a Lie algebra with no proper ideal, meaning there is no subalgebra
h ⊂ g such that [g, h] ∈ h, other than the trivial ideals 0 and g. A Lie algebra is semi-simple
if it is a direct sum of simple Lie algebras.

D.1 Structure Theory and Classification

D.1.1 Cartan-Weyl basis

Many aspects of semi-simple Lie algebras are best considered after choosing a special
basis, e.g. we would like to write down the structure constants in a canonical way. The
Cartan-Weyl basis will be convenient.

Let g0 := spanC
{
H i|i = 1, 2, . . . , r

}
be a maximal set of linearly independent elements

H i among the ad-diagonalizable elements of g, such that

[H i, Hj ] = 0, for i, j = 1, 2, . . . , r. (D.1)

The rank of g is defined as rank g = dim g0 = r and g0 is called the Cartan subalgebra. We
can find simultaneous eigenvectors for the generators of g0 in the adjoint representation

adHi(Eα) = [H i, Eα] = αiEα = α(H i)Eα. (D.2)

The vector α = (α1, . . . , αr) is called a root (if non-zero) and Eα is the corresponding
ladder operators. The set of roots are called the root system ∆. Note that α : g0 → C can
be extended to a linear functional on g0 and roots can therefore be considered as elements
of the dual space α ∈ g∗0. This leads to the root space decomposition relative to g0

116
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g = g0 ⊕
⊕
α∈∆

gα, gα =
{
x ∈ g

∣∣ [h, x] = α(h)x for all h ∈ g0

}
. (D.3)

Some fundamental properties are

• The roots span g∗0: spanC(∆) = g∗0.

• Roots are non-degenerate, thus root spaces gα are one-dimensional.

• The only multiplets of α ∈ ∆ which are roots are ±α.

• One can choose a basis {H i} of the Cartan subalgebra such that α(H i) are real
(even integers), for all i and each root α ∈ ∆.

Therefore we have |∆| = d − r ∈ 2N number of roots and Eα is uniquely specified up to
normalization. The basis

B = {H i|r = 1, . . . , r} ∪ {Eα|α ∈ ∆},

is called the Cartan-Weyl basis. The commutation relations are given by

[H i, Hj ] = 0

[H i, Eα] = αiEα

[Eα, Eβ] = Nα,βEα+β if α+ β ∈ ∆ (D.4)
= α̃ ·H if α = −β
= 0 otherwise,

where α̃ ·H =
∑r

i=1 α̃
iH i and α̃ are some expansion coefficients to be determined.

D.1.2 The Killing Form

Using the adjoint representation, we can define an inner product K : g × g → C on the
Lie algebra g by

K(X,Y ) ≡ 1

Iad
Tr(adX ◦ adY ) =

1

2g∨
Tr(adX ◦ adY ), (D.5)

where the normalization in the adjoint representation Iad = 2g∨ is given in terms of the
dual Coxeter number g∨ of g, to be defined below. It is obvious that the Killing form is
symmetric and bilinear, furthermore the cyclic property of the trace yield the identity1

K([Z,X], Y ) +K(X, [Z, Y ]) = 0. (D.6)

Actually, it turn out that the Killing form is uniquely characterized by this property. The
standard basis Ja is assumed to be orthonormal K(Ja, Jb) = δa,b, and the same will we
assume for the Cartan subalgebra

K(H i, Hj) = δi,j . (D.7)
1Using that ad[X,Y ] = adx ◦ ady − ady ◦ adx.
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For semi-simple Lie algebras the Killing form is nondegenerate, this can in fact be used
as an alternative definition of semi-simplicity and one of the reasons why our following
construction works for this class of Lie algebras.

Actually, the restriction of K to the Cartan subalgebra is nondegenerate as well. Now
any nondegenerate bilinear form on a vector space can be used to identify the vector space
and its dual space. Hence we are led to associate to any root α an element Hα ∈ g0, which
up to normalization is unique, such that

α(h) = cαK(Hα, h), for all h ∈ g0,

where cα are normalization constants. As an important consequence, we can define a
nondegenerate inner product on g∗ by

(α, β) ≡ cαcβK(Hα, Hβ) = cβα(Hβ),

for all root α, β ∈ ∆, and extend by bilinearity to all g∗ × g∗.
Now we need to fix the normalization constants α̃ and cα. Choosing cα = 1, one can

easily show that using (D.7)

γ ∈ g∗0 ⇔ Hγ =
r∑
i=1

γiH i ∈ g0, (D.8)

are the corresponding duals. Furthermore using (D.6) with X = Hγ ∈ g0, Y = Eα and
Z = E−α we find

K(Hγ , [Eα, E−α]) = K([E−α, Hγ ], Eα)

γ([Eα, E−α]) = α(Hγ)K(E−α, Eα)

= K(Hα, Hγ)K(E−α, Eα)

= γ(K(E−α, Eα)Hα),

which implies that
[Eα, E−α] = K(Eα, E−α) α ·H.

We can now fix the normalization by choosing K(Eα, E−α) = 2
|α|2 . Defining the coroots

α∨ = 2 α
|α|2 , we get the commutator2

[Eα, E−α] =
2

|α2|
α ·H = α∨ ·H. (D.9)

D.1.3 Weights and sl2 Subalgebras

So far, we have been dealing with a specific representation, the adjoint representation of
g onto itself. For a general finite-dimensional representation, R : g → V , we can find a
basis {|λ〉} for the representation space such that

R(H i)|λ〉 = λi|λ〉.
2Note that we are following the conventions of [133]. In [154, 155], cα = 1

2
|α|2 so Hβ =

∑r
i=1 β

i∨Hi

and [Eα, E−α] = α ·H.
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The collection λ = (λ1, . . . , λr) is called a weight and clearly live in the dual space of the
Cartan subalgebra λ ∈ g∗0 with λ(H i) = λi. Roots are nothing but weights, for the adjoint
representation. From the commutators (D.4) we see that Eα changes the eigenvalue with
of a state by α

R(H i)R(Eα)|λ〉 = (λi + αi)R(Eα)|λ〉,

so if R(Eα)|λ〉 is nonzero, it must be proportional to |λ+ α〉.
Now, for any state |λ〉 in a finite-dimensional representation, there are necessarily two

positive integers p and q, such that

R(Eα)p+1|λ〉 ∝ R(Eα)|λ+ pα〉 = 0,

R(E−α)q+1|λ〉 ∝ R(E−α)|λ− qα〉 = 0,

for any root α ∈ ∆. Actually the generators J+
α = Eα, J−α = E−α and J3

α = α ·H/|α|2,
form a sl2 subalgebra with the commutation relations

[J+
α , J

−
α ] = 2J3

α, [J3
α, J

±
α ] = ±J±α .

The projection of a finite-dimensional g-module to the sl2 subalgebra associated with the
root α must also be finite-dimensional. Let the dimension of the latter be 2j + 1, then
from the state |λ〉, the state with highest J3

α = α ·H/|α|2 projection (m=j) can be reached
by pα,λ applications of J+

α = Eα, whereas qα,λ applications of J− = E−α leads to the
state with m = −j:

jα,λ =
(α, λ)

|α|2
+ pα,λ, −jα,λ =

(α, λ)

|α|2
− qα,λ.

This leads to the important result

2
(α, λ)

|α|2
= (α∨, λ) = −(pα,λ − qα,λ) ∈ Z. (D.10)

D.1.4 Simple Roots and the Cartan Matrix

We noted above that for a root α ∈ ∆, we have that nα ∈ ∆ iff n ∈ {±1}. This
implies that we can separate the root system into positive/negative subsets. Fix a basis
{β1, β2, . . . , βr} in g∗0 such that any root can be expanded as

α =

r∑
i=1

niβi, ni ∈ Z. (D.11)

In this basis we call α ∈ ∆ a positive root iff the first non-zero component in the sequence
(n1, . . . , nr) is positive, otherwise we call α a negative root. If α is positive (negative), we
write α > 0 (α < 0). Furthermore, for roots α, β we use the notation α > β iff α− β > 0,
this defines a partial order of the root system. Denote the set of positive, respectively
negative roots, by

∆± ≡ {α ∈ ∆ | ± α > 0}, (D.12)

clearly ∆− = ∆\∆+. As a consequence, one has ∆+ = −∆−, i.e. α ∈ ∆+ ⇔ (−α) ∈ ∆−.
The step operators Eα and E−α for α ∈ ∆+ are called raising and lowering operators,
respectively. This shows that

{Eα|α ∈ ∆} = {Eα|α > 0} ∪ {E−α|α > 0},
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and the number of elements |∆+| = |∆−| = 1
2(d − r) ∈ N. The raising and lowering

operators span each a subspace of g denoted by

g± = spanC{E±α|α > 0},

thus g can be decomposed as3

g = g− ⊕ g0 ⊕ g+. (D.13)

This is the triangular or Gauss decomposition of g and will be important in constructing
the highest weight modules.

A simple root αi is defined to be a positive root that cannot be written as a linear
combination of other positive roots with positive coefficients.4 Two consequences are (i)
αi−αj 6∈ ∆ and (ii) any positive root is a linear combination of simple roots with positive
integral coefficients. It turns out, independently of the chosen basis, there are exactly
r = rank g simple roots. Hence the set of simple roots is

∆s ≡ {αi|r = 1, . . . , r}.

It can be shown that spanC∆s = spanC∆ = g∗0 (so simple roots are linearly independent).
Generically this basis is not orthonormal and the non-orthonormality is encoded in the
Cartan matrix

Aij =
2(αi, αj)

|αj |2
= (αi, α

∨
j ) ∈ Z,

where it is seen from (D.10) that all entries are integers. Diagonal entries are all equal to
2 and its not generally symmetric. Using the Schwarz inequality for the inner product,
we find the condition AijAji = 4 cos2 φαiαj < 4 for i 6= j. Since αi − αj is not a root,
R(E−αj )|αi〉 = 0, thus qαjαi = 0 in (D.10), hence

(αi, α
∨
j ) = −pαjαi ≤ 0, i 6= j.

Thus all off-diagonal elements of Aij are nonnegative integers. In the view of the above
inequality we find Aij ∈ {0,−1,−2,−3} for i 6= j. One can also easily see that

(αi, αi)

(αj , αj)
=
Aij
Aji

.

It can be shown that in the root system ∆, at most two different lengths (long and short)
are possible. When all the roots have the same length, the algebra is said to be simply
laced. These results are summarized in the table below.

Aij Aji φαiαj
(αi,αi)
(αj ,αj)

-1 -1 120◦ 1
-2 -1 135◦ 2
-3 -1 150◦ 3
0 0 90◦ arbitrary

3We are being imprecise here. The direct sum refers to direct sum as vector spaces, not Lie algebras
since none of the subalgebras are ideals of g.

4Note that the subindex is a labeling index and does not refer to a root component.
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Note that we can expand any weight λ ∈ g∗0 as

λ =

r∑
i=1

biαi =

r∑
i=1

b∨i α
∨
i ,

we call the coefficients bi and b∨i for Kac and dual Kac labes, respectively. The hight is
defined as the sum of the Kac labels ht(λ) =

∑r
i=1 bi. Since root are just special examples

of weights, this introduce a natural Z-grading of g, the so-called root space gradation (for
each ht(α) = j). It turns out that there exist a unique highest root characterized by
ht(θ) > ht(α) for all α ∈ ∆\{θ}

θ =
r∑
i=1

aiαi =
r∑
i=1

a∨i α
∨
i , ai, a

∨
i ∈ N,

where we use the special names mark and comark for the Kac and dual Kac labels of
θ. Any other element of ∆ can be obtained by repeated subtraction of simple root from
θ. Marks and comarks are related by ai = a∨i

2
|αi|2 . Another important property of the

highest root is
(θ, θ) ≥ (α, α) for all α ∈ ∆.

The Coxeter and dual Coxeter number are defined by

g =
r∑
i=1

ai + 1 and g∨ =
r∑
i=1

a∨i + 1. (D.14)

D.1.5 The Chevalley Basis and Dynkin Diagrams

Given a Cartan matrix we can reconstruct the set of simple roots, which then provides
us with all roots and thereby the whole algebra. The point that the Cartan matrix is
sufficient to characterize the algebra is fully manifest in the Chevalley basis where to each
simple root αi there corresponds the three generator

ei = Eαi f i = E−αi hi =
2αi ·H
|αi|2

= α∨i ·H,

with the commutator relations

[hi, hj ] = 0,

[hi, ej ] = Ajie
j ,

[hi, f j ] = −Ajif j ,
[ei, f j ] = δijh

j .

One can show that the remaining step operators are obtained by the so-called Serre
relations

(adei)
1−Ajiej = 0,

(adf i)
1−Ajif j = 0,

for i 6= j. So clearly the Lie algebra can be reconstructed from the Cartan matrix alone.
An important fact is that Cartan matrices related by relabeling of the rows and columns
will give rise to isomorphic Lie algebras, thus semi-simple Lie algebras and Cartan matrices
(up to this ambiguity) are one-to-one. This means that the classification of semi-simple
Lie algebras over C can be solved by classifying matrices with the following properties



D.1. Structure Theory and Classification 122

1. Aii = 2,

2. Aij = 0⇔ Aji = 0,

3. Aij ∈ Z≤0 for i 6= j,

4. detA > 0,

5. A is not equivalent to a block diagonal matrix.

We have shown the first three points above. Number five means that we are restricting
to simple Lie algebras, since this automatically classifies semi-simple Lie algebras. To
understand number 4, recall that we can choose a basis {H i} such that α(H i) ∈ R.
Therefore it makes sense to consider the vector space of the real spanR(H i), and the dual
space spanR(∆) contains all roots (called the root space). The inner product induced by
the Killing form is also real; it follows that for any real linear combination λ of the roots
one has (λ, λ) ≥ 0, zero iff λ is zero. Thus the root space is euclidean and isomorphic to
Rr, this leads to the very important condition detA > 0.

We shall not go through the lengthy procedure of finding all solutions to the above
problem, just state the result. The information in the Cartan matrix can be encapsulated
in a simple diagram: the Dynkin diagram. To every simple root αi, we associate a node
and join the node i and j with AijAji lines. Two disconnected simple roots means Aij =
Aji = 0 and hence they are orthogonal. Those with relative angles of 120, 135 and 150
degrees are linked by one, two or three lines, respectively. Finally an arrowhead ´>´ is
added to the lines from the ith and jth node if |Aij | > |Aji|. Instead of the arrows, some
books use open and full dots to denote long and short roots respectively, since the analysis
shows that only two different length (and thereby angles) will be present.

The result can be seen in figure F.1. There are four infinite families

Ar ' slr+1 = su(r + 1,R)C, Br ' so2r+1 = so(2r + 1,R)C,

Cr ' spr = sp(r,R)C, Dr ' so2r = so(2r,R)C,

where we have also written the corresponding classical Lie algebra and their compact real
forms. In addition there are five isolated cases E6, E7, E8, F4 and G2, called exceptional
Lie algebras. A, D and E are simply-laced since all roots have the same length. In the
case of Br Cr and F4 the long root are

√
2 time longer than short roots, while

√
3 for

G2. The dual root system ∆∨(g) = {α∨|α ∈ ∆(g)} is isomorphic to the root system of
another simple Lie algebra, which is called the dual Lie algebra g∨ of g, ∆∨(g) ' ∆(g∨).
Simply laced algebras are self-dual g = g∨, but this is also true for C2, G2 and F4, while
(Br)

∨ = Cr and vice versa.

D.1.6 Fundamental Weights

As pointed out above, weights and roots live in the same real r-dimensional euclidean
space and weights can therefore be expanded in the basis of simple root. There exists,
however, a more convenient basis for the weight space for which the coefficient are always
integers for weights. The fundamental weights {ωi} are defined to be dual to the simple
coroot basis

(ωi, α
∨
j ) = δij .
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We can expand any weight in some representation as

λ =
r∑
i=1

λiωi ⇔ λi = (λ, α∨i ) ∈ Z.

The expansion coefficients λi of a weight λ, in the fundamental weight basis are called
Dynkin labels, and these are always integers as seen from equation (D.10). Any weight
written in component form λ = (λ1, . . . , λr) in understood to refer to Dynkin labels. In
other words Dynkin labels (lower index) are eigenvalues of the Chevalley generators of the
Cartan subalgebra

hi|λ〉 = λ(hi)|λ〉 = (λ, α∨i )|λ〉 = λi|λ〉,

while the upper index notation λi refers to λ(H i), the eigenvalue of H i. Note that the
elements of the Cartan matrix are the Dynkin labels of the simple roots

αi =

r∑
j=1

Aijωj , (D.15)

as seen by the definition of Aij .
A weight of special importance is the one for which all Dynkin label are unity

ρ =
∑
i

ωi = (1, 1, . . . , 1), (D.16)

called the Weyl vector and has also the alternative expression (which one can prove using
the Weyl group)

ρ =
1

2

∑
α∈∆+

α. (D.17)

The inner product of weights can be expressed in terms of a symmetric quadratic form
matrix Fij

(ωi, ωj) = Fij .

Clearly this can be used to change basis from {ωi} to {α∨i }

ωi =
∑
j

Fijα
∨
j ,

conversely using (D.15) we have that

α∨i =
∑
j

2

|αi|2
Aijωj .

This leads to the following relation

Fij = (A−1)ij
α2
j

2
.

This provides us with a metric in the fundamental weight basis; the scalar product of two
weights λ =

∑
i λiωi and µ =

∑
i µiωi reads

(λ, µ) =
∑
ij

λiµj(ωi, ωj) =
∑
ij

λiµjFij .
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D.1.7 Lattices

Given a basis of the d-dimensional Euclidean space Rd, a lattice is the Z-span of this basis
(so its a basis dependent notion). There are three important lattices for Lie Algebras, the
weight lattice

P = Zω1 + · · ·+ Zωr,

the root lattice
Q = Zα1 + · · ·+ Zαr,

and the coroot lattice
Q∨ = Zα∨1 + · · ·+ Zα∨r .

We will show that states in finite dimensional representations of g are labeled by points in
the weight lattice, thus Q ⊂ P since Q since roots are weights in the adjoint representation.
The integers specifying the position in P are eigenvalues of the Chevalley generator hi

and the step operators shifts the eigenvalues by a root lattice element Q. Define dominant
weights as elements in the set

P+ = Z+ω1 + · · ·+ Z+ωr.

The coset P/Q is a finite group and the elements are called congruence classes (the identity
element is the root lattice Q), and its order |P/Q| is equal to the determinant of the Cartan
matrix. For G2, F4 and E8 it turns out that Q = P (and thus P/Q = {1}), while in all
other cases Q is a proper subset of P . Any weight λ lie in exactly one congruence class
(since starting from the highest weight, we move with elements of Q and thus from one
class to another class).

For sl3 we have three classes [(0, 0)], [(1, 0)], [(0, 1)] as can be seen in figure D.1. Here
we use the notation

[(λ1, . . . , λr)] = (λ1, . . . , λr) ? Q =
{

(λ1, . . . , λ2) +
r∑
i=1

niαi | ni ∈ Z
}
.

Alternatively one can characterize the three classes as: λ1 + 2λ2 mod 3. This generalizes
to slN as

λ1 + 2λ2 + · · ·+ (N − 1)λN−1 mod N.

For any Lie algebra g, the congruence classes take the form

λ · ν =
r∑
i=1

λiνi mod |P/Q| (mod Z2 for g = D2l),

where the vector (ν1, . . . , νr) = (1, 2, . . . , N − 1) for slN and called the congruence vector.

D.1.8 The Weyl Group

Consider the sl2-subalgebra corresponding to the root α and the J3
α = α ·H/|α|2 eigenvalue

in the adjoint representation of g

adJ3
α
(Eβ) = mEβ

=
1

2
α∨ · [H,Eβ] =

1

2
(α∨, β)Eβ,
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α1

α2

λ1

λ2

s2

s1

s1s2

s1s2s1 = s2s1s2 s2s1

Figure D.1: Root system of sl3 and the corresponding Weyl chambers. The circles correspond
to the weight lattice P , restricting to the filled red circles we have the root lattice Q, while the
different circles represent the three congruence classes P/Q.

thus
2m = (α∨, β) ∈ Z.

If m is non-zero, there should be another vector with the eigenvalue −m. This is given by

sαβ = β − (α∨, β)α,

as seen by

adJ3
α
(Esαβ) =

1

2
(α∨, sαβ)Esαβ

=
1

2

(
(α∨, β)− (α∨, β)(α∨, α)

)
Esαβ

= −mEsαβ,

since m = 1
2(α∨, β) and (α∨, α) = 2. The operation sα is a reflection with respect to the

hyperplane perpendicular to α. The set of all such reflections with respect to roots forms
the Weyl group of the algebra, denoted W . It is generated by the r elements si ≡ sαi , the
simple Weyl reflections, in the sense that any w ∈W can be decomposed as

w = sisj . . . sk. (D.18)

Its can be presented as a Coxeter group, meaning that it is freely generated by the simple
Weyl reflection modulo the relations

(sisj)
mij = 1. (D.19)

Clearly mii = 1 for all i, and it turns out that all mij ∈ {2, 3, 4, 6}, when i 6= j. This
Coxeter presentation can be encoded in a Coxeter diagram: nodes are drawn for each



D.1. Structure Theory and Classification 126

primitive reflection, and {0, 1, 2, 3} lines between nodes for mij = {2, 3, 4, 6}, respectively.
For simple g, we find that the Coxeter diagrams are just the corresponding Dynkin dia-
grams (with the arrows omitted). Alternatively we can write mij = π

π−θij for i 6= j, where
θij is the angle between the simple roots αi and αj . On the simple roots we have that
siαj = αj − Aijαi, in particular siαi = −αi. Note that W maps ∆ into itself, i fact it
provides a way to generate the complete set ∆ from the simple roots

∆ = {wα1, . . . , wαr|w ∈W}.

Recall that in order to define simple roots we needed to choose a basis, this construction
shows that any set {w′αi} for fixed w′ ∈W could serve as basis of simple roots.

The action of the Weyl group can be readily extended to weights

sαλ = λ− (α∨, λ)α, (D.20)

and one can easily show it leaves the inner product invariant

(sαλ, sαµ) = (λ, µ). (D.21)

So the Weyl group is the isometry group on the weight space. Thinking of the weight
Lattice P as a infinite crystal, its point group is isomorphic to the Weyl group (which
explains the restriction mij ∈ {2, 3, 4, 6}, familiar from crystallography).

The Weyl group induces a natural splitting of the r-dimensional weight space into
Weyl Chambers, whose number equal the order of W . These are simplicial cones defined
as

Cw =
{
λ ∈ g∗0

∣∣∣ (wλ, αi) ≥ 0, i = 1, . . . , r
}
, w ∈W, (D.22)

where g∗0 is the weight space (considered as a real space, as discussed earlier). The chamber
corresponding to the identity element of W is called the fundamental chamber, and it will
be denoted by C0. Note that the orbit of any weight λ, {wλ| w ∈ W}, has exactly one
point in C0. In other words, for any λ 6∈ C0 there exist a w ∈W such that wλ ∈ C0.

We will define some notations used later on. The shifted Weyl reflection is

w ·λ ≡ w(λ+ ρ)− ρ.

As a consequence one can show that

w · (w′ ·λ) = (ww′) ·λ.

The length of w, denoted l(w), in the minimum number of si among all possible decom-
positions of w =

∏
i si. The signature of w is defined as

ε(w) = (−1)l(w).

One can show that in a linear representation of the Weyl group, the signature is simply
given by det(w). Finally the longest element of W will be denoted as w0 and is the unique
element mapping ∆+ to ∆−.

In the following we will use the following normalization of long roots

|θ|2 = 2.



D.2. Representation Theory 127

D.2 Representation Theory

D.2.1 Highest-Weight Representations

It turns out that all irreducible representations of finite-dimensional semi-simple are so-
called highest weight representations. The highest weight state |Λ〉 is unique and thus
completely specified by its eigenvalues Λ(hi) = Λi (so ht(Λ) is maximal). We can choose
a basis such that the Cartan subalgebra acts diagonally and this naturally introduces the
decomposition

VΛ =
⊕
λ∈ΩΛ

V(λ), V(λ) =
{
|λ〉
∣∣R(hi)|λ〉 = λi|λ〉

}
, (D.23)

where ΩΛ is the weight system, the set of all weights in the representation. Since ht(Λ) >
ht(λ) for any λ ∈ ΩΛ\{Λ}, for any root α > 0, Λ + α cannot be a weight in ΩΛ, so we
require

R(Eα)|λ〉 = 0, ∀α ∈ ∆+. (D.24)

For the highest weight Λ =
∑r

i=1 Λiωi it is clear from equation (D.10) that (since p = 0)

Λi = (α∨i ,Λ) ∈ Z+, for i = 1, . . . , r, (D.25)

thus Λ is a dominant weight. Conversely for any dominant Weight, we have a irreducible
representation. Note that is the Highest weight is not unique, the representation is neces-
sarily reducible. For the adjoint representation, θ is the highest weight.

The elements of VΛ can be obtained by applying step operators for negative roots to
|Λ〉, i.e. any |λ〉 ∈ VΛ is of the form R(x)|Λ〉 for some x in the universal enveloping algebra
of g−,

R(E−β1E−β2 . . . E−βm)|Λ〉 for β1, . . . , βm ∈ ∆+.

Making use of commutator relations between step operators, we may assume without loss
of generality that these roots obey βp > βq if p > q and if βp − βq is a root.

We can find all elements in the weight system using the sl2 subalgebras for simple
roots. Equation (D.10) gives us

(α∨i , λ) = λi = −(pi − qi),

in particular Λi = qi. All weights are of the form λ = Λ−
∑

i niαi = Λ− µ, with ni ∈ Z.
The depth of Λ is defined as dp(λ) = ht(µ) =

∑
i ni, clearly Λ is the unique weight

with zero depth. Starting from the highest weight Λ, for each positive Dynkin label Λi
we construct the following sequence of weights Λ − αi, λ − 2αi, . . . ,Λ − Λiαi, which all
belong to ΩΛ. The process is then repeated with all the other weights until there are no
more weights with positive Dynkin label. Figure D.2 shows two examples with highest
weights Λ = θ = (1, 1) and Λ = (0, 2). However, this procedure does not keep track of
multiplicities

multΛ(λ) ≡ dimV(λ).

For this we can use the Freudenthal recursion formula

multΛ(λ) = 2
[
|Λ + ρ|2 − |λ+ ρ|2

]−1
∑
α∈∆+

∞∑
k=1

(λ+ kα, α)multΛ(λ+ kα) (D.26)
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(1, 1)

(−1, 2) (2,−1)

(0, 0)

(−2, 1) (1,−2)

(−1,−1)

−α1 −α2

(a)

(0, 2)

(1, 0)

(−1, 2) (2,−2)

(0, 0)

(−2, 2) (1,−2)

(−1, 0)

(0,−2)

−α2

−α1 −α2

(b)

Figure D.2: Weight systems for A2 = sl3.

Using this we can show that all states in the adjoint representation has multiplicity 1
except multθ(0, 0) = 2.

Every irreducible module can be made unitary with (H i)† = H i and (Eα)† = E−α,
the norm of any state is positive definite

|λ〉 = E−β . . . E−γ |Λ〉 → 〈λ|λ〉 > 0,

and also for any linear combination.
The lowest state (highest depth) is unique and can be used to define conjugate repre-

sentations. It lies in theW orbit, in the exactly opposite chamber to the fundamental one.
Thus we can find the lowest state by applying the longest element w0 ∈ W , λmin = w0Λ.
Turning the representation upside down we find the conjugate representation with the
highest weight

Λ∗ = −(w0Λ) = −λmin. (D.27)

Representations that satisfy Λ∗ = Λ are called self-conjugate. All the weights in Ωλ∗ are
the negatives of Ωλ. For slN we have the longest element

w0 = s1s2 . . . sN−1s1s2 . . . sN−2 . . . s1s2s1,

in particular for N = 3
Λ∗ = (−w0)(Λ1,Λ2) = (Λ2,Λ1).
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These properties can be actually be extracted from the symmetries of the Dynkin dia-
grams.

D.2.2 Universal Enveloping Algebra

Let T (g) denote the tensor algebra generated by the Lie algebra g

T (g) =

∞⊕
n=0

Tn(g) =

∞⊕
n=0

(
n⊗
i=0

g

)
.

Now let J be the two-sided ideal generated by elements of the form

X ⊗ Y − Y ⊗X − [X,Y ],

for X,Y ∈ g. Then the universal enveloping algebra of g is defined as

U(g) = T (g)/J.

According to the Poincaré-Birkhoff-Witt theorem, one can regard elements of U(g) as
formal products of elements in g modulo the commutator relations. In other words, this
construction gives an associative algebra U(g) to any Lie algebra, with usual commutation
relationsX⊗Y −Y ⊗X = [X,Y ]. This construction has a universal property, which can be
used as the definition: for a finite-dimensional irreducible representation φ : g→ End(V ),
there exists a unique map φ̃ : U(g)→ End(V ) such that the following diagram commutes

g U(g)

End(V )

i

φ
φ̃

where i : g→ U(g) is the natural embedding of g in U(g) (injective Lie algebra homomor-
phism).

D.2.3 Quadratic Casimir Element and Index of a Representation

So far we have seen how to construct highest-weight representations of semi-simple Lie
algebras by diagonalizing the Cartan subalgebra. It is however sometimes useful to label
representations according to certain central elements, as is well-known from non semi-
simple algebras like the Poincare algebra in which central elements have direct physical
interpretation. Semi-simple Lie algebras do not have such central elements and by calcu-
lating their second Lie algebra cohomology group H2(g,C), one can see that they do not
even admit central extensions. What we are looking for actually exist in the center of the
universal enveloping algebra U(g) and is called the quadratic, or second-order, Casimir
element

C2 =

dim g∑
a,b=1

K(Ja, Jb)−1JaJb.
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Given the universal property of U(g), this is what we need for representation theory. One
can by show C2 commutes with all generators and is thus part of the center. Using the
Cartan-Weyl basis

C2 =

r∑
i=1

H iH i +
∑
α∈∆+

|α|2

2

(
EαE−α + E−αEα

)
, (D.28)

and acting on a vector with highest weight Λ, we find

C2|Λ〉 =
[
|Λ|2 + 2(Λ, ρ)

]
|Λ〉. (D.29)

The first part comes from
∑

iH
iH i|Λ〉 = (Λ,Λ)|Λ〉, while the second part comes from

[
Eα, E−α

]
|Λ〉 =

2

|α|2
α ·H |Λ〉 =

2

|α|2
(α,Λ) |Λ〉,

then using (D.17). Since the Casimir element commutes with the other generators, the
number

C2(Λ) = (Λ,Λ + 2ρ), (D.30)

is the same for the whole irreducible module and can be used to characterized these
representations. It is however not unique, for example it does not distinguish between
a representation and its conjugate C2(Λ) = C2(Λ∗). There can also exist higher order
Casimir elements, their degrees minus one is usually called the exponents of the algebra.
As one application of the Casimir, let us mention that one can show that the invariant
bilinear form is given by

TrΛ
(
R(Ja)R(Jb)

)
= |θ|2xΛK(Ja, Jb) = 2xΛK(Ja, Jb), (D.31)

with the index for the representation Λ given by

xΛ =
dimVΛ

2 dim g
(Λ,Λ + 2ρ). (D.32)

For the adjoint representation Λ = θ one can show that C2(θ) = 2g∨ ⇒ xθ = g∨, which
matches with (D.5).

D.2.4 Characters

A character of the representation with highest weight Λ is formally defined as

χΛ =
∑
λ∈ΩΛ

multΛ(λ)eλ (D.33)

where eλ denotes a formal exponential satisfying

eλeµ = eλ+µ,

eλ(ξ) = e(λ,ξ),
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here ξ is an arbitrary weight and the r.h.s. of the second equation is a genuine exponential.
For example for sl2 we have multΛ(λ) = 1 and ΩΛ = {−Λ,−Λ− 2, . . . ,Λ− 2,Λ}, so using
the formula for geometric series we find

χΛ(ξ) = e−Λξ
(

1 + e2ξ + e4ξ + · · ·+ e2Λξ
)

= e−Λξ 1− e2(Λ+1)ξ

1− e2ξ
=

sinh ([Λ + 1]ξ)

sinh (ξ)
.

For ξ = 0 we should find the dimension of the irreducible module, but the expression
is ill-defined. A Taylor expansion shows that χΛ(ξ) = Λ + 1 + O(ξ) and as expected
dimVΛ = Λ + 1.

One can show that the character can also be expressed as

χΛ =

∑
w∈W ε(w)ew(Λ+ρ)∑
w∈W ε(w)wwρ

,

called the Weyl’s Character Formula. Evaluated at the weight ξ we find

χΛ(ξ) =

∑
w∈W ε(w)e(w(λ+ρ),ξ)∑
w∈W ε(w)e(wρ,ξ)

. (D.34)

One can easily verify that this formula agrees with the former calculation in the case of
sl2. Note that we can alternatively define the character in the highest weight module VΛ

by the map
χΛ : g∗0 → C, ξ 7→ χΛ(ξ) = tr exp

(
Rλ(Hξ)

)
,

where Rλ(Hξ) is the representation of the Cartan subalgebra element dual to ξ. Since the
generator Hξ acts as Rλ(Hξ)|λ〉 = (λ, ξ)|λ〉, its clearly equivalent to the former definition.

Evaluating the character at ξ = 0, the find the dimension of the module dimVΛ. But∑
ε(w) = 0 since the number of even and odd elements are the same, thus setting ξ = 0

in (D.34) gives zero divided by zero which isn’t well-defined. Therefore we need a limiting
procedure to evaluate this, first we set ξ = tρ and then consider the limit t→ 0. One can
show that

χΛ(tρ) =
∏
α∈∆+

sinh (α, (λ+ ρ)t/2)

sinh (α, ρt/2)
,

and the zeroth-order term in a Taylor expansion gives the Weyl dimension formula

dimVΛ = lim
t→0

χΛ(tρ) =
∏
α>0

(λ+ ρ, α)

(ρ, α)
. (D.35)

Again, this is in agreement for sl2. For sl3 we find dimVΛ = 1
2(Λ1 +1)(Λ2 +1)(Λ1 +Λ2 +2)

and for sp4, dimVΛ = 1
6(Λ1 + 1)(Λ2 + 1)(Λ1 + 2Λ2 + 3)(Λ1 + Λ2 + 2). By using Taylor

expansions and few simple tricks, the Freudenthal-de Vries strange formula can be derived

|ρ|2 =
g∨

12
dimg.

Other useful relations for characters are

χ⊕iΛi =
∑
i

χΛi χΛ⊗Λ′ = χV χΛ′ .
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D.3 Branching Rules and Embeddings

It is often important to consider subalgebras p ⊂ g of semi-simple Lie algebras, but the
same algebra p can be embedded in several different ways in g. Thus we will consider
embeddings i : p→ g where i is an injective Lie algebra homomorphism and write p ↪→ g
instead of p ⊂ g. In this section we will be concerned with the classification of these
embeddings.

D.3.1 Embedding Index

There are several ways of characterizing an embedding p ↪→ g, some important for rep-
resentation theory and some to distinguish inequivalent embedding of the same subalgebra.

(i) Branching rules:
Restricting a irreducible highest weight module VΛ of g, to p the representation decom-
poses in general into several irreducible representation of p. Such decompositions are
called branching rules and are denoted as

Λ 7→
⊕

Λ′∈P+(p)

bΛΛ′Λ
′,

where Λ ∈ P+(g). Note that we use the highest weight to denote the corresponding
module. The branching coefficients bΛΛ′ gives the multiplicity of Λ′ ∈ P+(p) in the de-
composition of Λ ∈ P+(g), when restricted to p. It turns out that the decomposition of
the lowest-dimensional nontrivial module is sufficient to characterize an embedding. To
each of its inequivalent branching rules correspond a distinct embedding p ↪→ g.
(ii) Projection matrix:
It can be shown that the embedding respects the triangular decomposition for simple g,
in the sense that i(p0) ⊆ g0 and i(p±) ⊆ g±. Restricting the embedding to the Cartan
subalgebra i : p0 ↪→ g0, gives rise to a dual map i∗ : g∗0 → p∗0 of the weight spaces. The map
i∗ is surjective and a projection of the weight space of g to the weight space of p. Thus
the weights of p can be regarded as projections of weights of g, i.e. there is a projection
matrix P of size rank p× rank g, such that for any g-weight λ, the associated p-weight is
given by

i∗(λ) = Pλ ∈ P (p).

Note that we need to choose a basis in the weight space in order to get a matrix repre-
sentation of i∗, thus the projection matrices are not unique: a Weyl reflection of the root
diagram modifies them without affecting the embedding.
(iii) Embedding index: The embedding index xe is defined as the ratio of the square length
of the projection of θ, the highest root of g, to the square length of the highest root of p,
which is denoted by ϑ:

xe =
|Pθ|2

|ϑ|2
.

Given the branching rule, the embedding index can also be calculated from

xe =
∑

Λ′∈P+(p)

bΛΛ′
xΛ′

xΛ
,

where xΛ index of the representation with highest weight Λ.
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D.3.2 Classification of Regular Embeddings

Clearly there are usually many subalgebras embedded into a simple Lie algebra g. We
will only consider proper maximal subalgebras p, i.e. subalgebras such that there does
not exist any intermediate algebra h obeying p ↪→ h ↪→ g. Non-maximal subalgebras can
then be treated in a step-wise procedure, first considering maximal subalgebras p, then in
turn the maximal subalgebras of p, and so on.

Regular embeddings are those for which there exists a basis of g in which a subset of
generators form generators of p. Thus if the we have that {Ẽα} ⊂ {Eα} and {H̃ i} ⊂ {H i},
where tilde denotes generators of p. More generally, subalgebras which are contained in
some regular subalgebra are called R-subalgebras.

The root system and simple root system of the embedding p ↪→ g will be denoted by
∆̃ and ∆̃s. According to one of the main properties of simple roots, α̃, β̃ ∈ ∆̃s implies
α̃ − β̃ 6∈ ∆̃s. If p ↪→ g is a regular embedding, this also means that α̃ − β̃ 6∈ ∆s, because
otherwise Eα̃−β̃ ∝ [Eα̃, E−β̃] would lie in p, in contraction to α̃ − β̃ 6∈ ∆̃s. Thus regular
embeddings are in one to one correspondence to the subsets ∆̃s ⊂ ∆, which obey

α̃, β̃ ∈ ∆̃s ⊂ ∆ ⇒ α̃− β̃ 6∈ ∆.

There exist a simple algorithm due to Dynkin to find all such sets. All maximal regular
embeddings can be obtained by choosing

∆̃s ∈ ∆s ∪ {−θ}.

Note that promoting a −θ to a "simple root" preserves the characteristic property that
the difference between two simple roots is not a root (i.e., αi+θ cannot be a root since θ is
the highest root). However the roots are not linearly independent and we must remove at
least one αi in order to restore linear independence. This is most easily done using Dynkin
diagrams; construct extended Dynkin diagrams by adding the node −θ. For example for Ar
the Dynkin labels of the highest root is θ = (1, 0, . . . , 0, 1), and the node should therefore
be connected to α1 and αr. Figure F.2 contains all extended Dynkin diagrams.

For g 6= Ar, there are no other maximal regular semi-simple subalgebras besides the
ones with simple root systems

∆̃s = ∆s ∪ {−θ}\{αi}, for some i = 1, . . . , r,

and conversely, with very few exceptions each such choice does yield such a subalgebra.
In contrast for g = Ar, such prescription will just return Ar itself. As a consequence, for
Ar the relevant semi-simple subalgebras are precisely the ones which have a simple root
system

∆̃s = ∆s ∪ {−θ}\{αi, αj}, with i, j = 1, . . . , r, i 6= j.

Maximal subalgebras that are not semi-simple are constructed from removal of two nodes
with mark ai = 1 and the addition of a u(1) factor (thus the maximal non-semi-simple
subalgebras of a semi-simple algebra are reductive).

The exceptions just mentioned are only encountered when removing a simple root
with a non-prime number mark, and thus only for exceptional algebras. The chains of
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embeddings are

F4, ∆s ∪ {−θ}\{α3} : A3 ⊕A1 ↪→ B4 ↪→ F4,

E7, ∆s ∪ {−θ}\{α3} : A3 ⊕A3 ⊕A1 ↪→ D6 ⊕A1 ↪→ E7,

E8, ∆s ∪ {−θ}\{α3} : A3 ⊕D5 ↪→ D8 ↪→ E8,

E8, ∆s ∪ {−θ}\{α5} : A5 ⊕A2 ⊕A1 ↪→ E6 ⊕A2 ↪→ E8,

E8, ∆s ∪ {−θ}\{α6} : A7 ⊕A1 ↪→ E7 ⊕A1 ↪→ E8.

Note that E8 is the only algebra without any nodes with ai = 1, and thus all maximal
subalgebras are semi-simple.

D.3.3 Branching Rules

One can also go further and calculate the branching rules. We first add to all the weights
in the representation VΛ an extra Dynkin label, associated with the extra simple root −θ.
Since the decomposition if θ in terms of the simple coroots is known, this extra Dynkin
label is simply

λ−θ = −
r∑
i=1

a∨i λi. (D.36)

If the regular subalgebra p is obtained by deleting the simple root αi, we simply delete the
Dynkin label λi from all weights. The resulting weights are exactly the projected weights,
and they can be reorganized into irreducible representations of p. The same procedure
works for the semi-simple algebra obtained from the removal of two nodes.

As an example, using these techniques one can easily calculate the branching rules for
the embedding A2 ↪→ G2

0 1 2
⇒

From (D.15) and the Dynkin diagram of G2, figure F.1, we find the simple roots α1 =
(2,−3) and α2 = (−1, 2). The weight system of (0, 1)G2 contains the weights

(0, 1)

(1,−1) (−1, 2)

(0, 0) (1,−2)

(−1, 1) (0,−1)

−α2

−α1

−α2

−α2

−α1

−α2

where one can check there is no degeneracy, so dimV(0,1) = 7. Using (D.36) we can map
(λ1, λ2)G2 into weights of A2, (λ−θ, λ1)A2 :

{ (−1, 0)A2 , (−1, 1)A2 , (0,−1)A2 , (0, 0)A2 , (0, 1)A2 , (1,−1)A2 , (1, 0)A2 } .

The last step is to reorganize these into A2 irreducible representations. It is clear that only
three of the weights can be highest weights, thus we find the three sectors { (1, 0), (−1, 1), (0,−1) },
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{ (0, 1), (1,−1), (−1, 0) } and { (0, 0) }. Thus we find the following branching rules for the
embedding A2 ↪→ G2

(0, 1) → (1, 0)⊕ (0, 1)⊕ (0, 0)

7 → 3⊕ 3̄⊕ 1,

with the projection matrix

P =

(
2 1
−1 0

)
.

Note that there is an necessary condition for the branching coefficient bΛΛ′ to be non-zero

PΛ− Λ′ ∈ PQ(g) (D.37)

which just says that the integrable wight Λ′ must lie somewhere in the integrable repre-
sentation of Λ after projection. There also exist other types of embeddings called spe-
cial embedding, which we will not discuss too much here. For more information see
[133, 154, 155].



Appendix E
Kac-Moody Algebras

Recall that there is a one-to-one correspondence between finite-dimensional simple Lie
algebras and (r + 1)× (r + 1) matrices satisfying

Âii = 2,

Âij = 0 ⇔ Âji = 0,

Âij ∈ Z≤0 for i 6= j, (E.1)

Â is not equivalent to a block diagonal matrix,

together with the important condition

det Â > 0. (E.2)

In particular the rank of Â is r + 1. It turns out that one can obtain a particular class of
infinite dimensional Lie algebras by removing the condition (E.2), this lead to the general
class of Kac-Moody algebras. We will, however, only consider the most important subclass
of Kac-Moody algebras obtained by relaxing (E.2) to

det Â{i} > 0 for all i = 0, . . . , r, (E.3)

where Â{i} are the matrices obtained from Â by deleting the ith row and column (det Â{i}
are called principal minors of Â). Thus for general Kac-Moody algebras the rank of Â
is arbitrary, but the sub-class satisfying (E.3) has at least rank r. Matrices satisfying
only (E.1) are called generalized Cartan matrices. If they also satisfy (E.3) then they are
called affine Cartan matrices and the corresponding algebra generated by the Cartan-
Serre relations, affine Lie algebras. Note that for rank Â = r+ 1 we will recover the usual
finite-dimensional Lie algebras, thus in the following we will only have rank Â = r in mind
when discussing affine Lie algebras.

We will not go through this classification in detail, but note that the condition (E.3)
implies that when we remove any node from a affine Dynkin diagram we must recover
diagrams for finite-dimensional semi-simple Lie algebras, and that one of the simple roots
must the linearly dependent of the rest r simple roots. It turns out that the corresponding
affine Dynkin diagrams are just the extended Dynkin diagrams in figure F.2, together
with a few others not shown. The diagrams shown in figure F.2 correspond to so-called

136
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untwisted affine Lie algebras and the ones not shown are twisted affine Lie algebras.1. We
will only consider the former in what follows.

E.1 Loop Algebras and Central Extensions

Rather than pursuing the approach discussed in the last section, we will turn to a more
explicit construction of untwisted affine Lie algebras from a finite-dimensional semi-simple
Lie algebra.

Let C[t, t−1] correspond to the set of Laurent polynomials in t, then the loop algebra
g̃ is defined as

g̃ = g⊗ C[t, t−1],

with generators Ja⊗ tn, where g is a simple Lie algebra. The Lie bracket can be extended
from g to g̃ in a natural way

[Ja ⊗ tn, Jb ⊗ tm] =
∑
c

ifabc J
c ⊗ tn+m.

We will use the notation Jan ≡ Ja ⊗ tn. There turns out to be a unique central extension
of the loop algebra of the form

[Jan, J
b
m] =

∑
c

ifabc J
c
n+m + k̂nK(Ja, Jb)δn+m,0, (E.4)

augmented with the commutation relation

[Jan, k̂] = 0.

For a orthonormal basis we of course have K(Ja, Jb) = δab. By applying this procedure
to the Cartan-Weyl basis and recalling that K(H i, H i) = δij and K(Eα, E−α) = 2

|α|2 , we
end up with the affine Cartan-Weyl basis

[H i
n, H

j
m] = k̂nδijδn+m,0

[H i
n, E

α
m] = αiEαn+m

[Eαn , E
β
m] =

2

|α|2
(
α ·Hn+m + k̂nδn+m,0

)
if α = −β

= Nα,βEα+β
n+m if α+ β ∈ ∆

= 0 otherwise

The set of generators {H1
0 , . . . ,H

r
0 , k̂} is manifestly abelian, but their eigenvalues in the

adjoint representation, {α1, . . . , αr, 0}, are infinitely degenerate (since they are the same
for all the Eαm). Hence {H1

0 , . . . ,H
r
0 , k̂} is not a maximal abelian subalgebra and must be

augmented by the addition of the grading operator L0, whose eigenvalues in the adjoint
representation depend on n; it is defined as

L0 = −t d
dt
,

1The removal of the zeroth root of both untwisted and twisted Dynkin diagrams produces the correct
finite-dimensional Lie algebra, but only in the former case will the (dual) Coxeter labels coincide with the
finite-dimensional case.
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with
[L0, J

a
n] = −nJan.

Thus the maximal Cartan subalgebra is generated by {H1
0 , . . . ,H

r
0 , k̂, L0} and operators

Eαm for any n and H i
n for n 6= 0 play the role of ladder operators. The algebra

ĝ = g̃⊕ Ck̂ ⊕ CL0

turns out to be an affine Lie algebra. Actually, one can formulate this algebra in terms of
its affine Cartan matrix Â (by adding the affine simple root) in the Chevalley basis, but
then the infinite-dimensionality will be hidden in the Serre-relations.

E.2 Affine Roots

Now we need to extend several structures from semi-simple Lie algebras to their corre-
sponding (untwisted) affine Lie algebra. First we need a affine Killing form. Recall that
the Killing form is uniquely characterized by the identity

K([Z,X], Y ) +K(X, [Z, Y ]) = 0,

for X,Y, Z ∈ ĝ. Choosing different combinations of X,Y, Z ∈ {Jan, k̂, L0} one finds the
following relations

K(Jan, J
b
m) = δabδn+m,0, K(Jan, k̂) = 0, K(k̂, k̂) = 0,

K(Jan, L0) = 0, K(L0, k̂) = −1, K(L0, L0) = 0.

The last relation is actually not fixed by invariance of the Killing form, but is fixed by
convention to yield zero. The arbitrariness stems from that any redefinition L0 → L′0 =
L0 + ak̂, where a is some constant, doesn’t affect the Lie algebra and it shift the Killing
form by −2a.

Just like before, the Killing form leads to an isomorphism between the elements in
the Cartan subalgebra and its dual. Let the components of the (dual) vector λ̂ be the
eigenvalues of a state that is simultaneous eigenvector of all the generators of the Cartan
subalgebra

λ̂ =
(
λ̂(h1

0), . . . , λ̂(hr0); λ̂(k̂); λ̂(−L0)
)
, (E.5)

where the first r components characterize the finite part λ, we will use the short-hand
notation

λ̂ = (λ; kλ;nλ).

We will call λ̂ an affine weight. The extended Killing form induces a scalar product on
the dual space

(λ̂, µ̂) = (λ, µ) + kλnµ + kµnλ.

Note the similarity with the inner product in light-cone gauge. Now let us concentrate
on the weights in the adjoint representation, the roots. Since k̂ commutes with all other
elements in the algebra, its ad eigenvalue is zero. Thus the affine roots are of the form

β̂ = (β; 0;n).
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Clearly the inner product on affine roots are the same as their finite part

(β̂, α̂) = (β, α).

Thus for α ∈ ∆ all affine weights are of the form α̂ = (α; 0;n) for n ∈ Z. Using the
notation δ = (0; 0; 1) and α ≡ (α; 0; 0), we can express the affine roots as

α̂ = α+ nδ.

Is this notation, nδ is the root associated to H i
n. Finally, the full set of affine roots are

given by
∆̂ = {α+ nδ|n ∈ Z, α ∈ ∆} ∪ {nδ|n ∈ Z, n 6= 0}.

Note that δ has zero length, (δ, δ) = 0. Therefore all roots of the form {nδ} are called
imaginary and have multiplicity r, while all others are called real and have multiplicity 1.

E.3 Simple Affine Roots and the Cartan Matrix

Now we need to identify a basis simple roots for ĝ. The basis must contain r+1 elements,
there r of then correspond to the simple roots of the finite part αi, whereas the remaining
simple root must be linear combination involving δ. The proper choice is

α0 ≡ (−θ; 0; 1) = −θ + δ,

where as always θ is the highest root of g. The basis of simple roots are then {αi},
i = 0 . . . , r and the set of positive affine roots is

∆̂+ = {α+ nδ|n > 0, α ∈ ∆} ∪ {α|α ∈ ∆+}. (E.6)

One can indeed see this, let n > 0 and α ∈ ∆, then

α+ nδ = α+ nα0 + nθ = nα0 + (n− 1)θ + (θ + α)

where the last term is a positive root. Thus any positive root can be expanded in the basis
of simple roots with nonnegative coefficients. One important difference between the finite
and affine case is that, there are no highest affine root (and thus the adjoint representation
is not a highest weight representation).

We can now define the extended Cartan matrix as

Âij = (αi, α
∨
j ) 0 ≤ i, j ≤ r,

where we have defined the affine coroots by

α̂∨ =
2

|α̂|2
(α; 0;n) =

2

|α|2
(α; 0;n) = (α∨; 0;

2

|α|2
n).

The extended Cartan matrix Â has an extra row and column compared with its finite
counterpart A. The extra diagonal element is (α0, α

∨
0 ) = |θ|2 = 2, while using θ =∑r

i=1 aiαi we find the other components

(α0, α
∨
j ) = −(θ, α∨j ) = −

r∑
i=1

ai(αi, α
∨
j ).
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It is convenient to define the zeroth mark as a0 = 1. Since the finite part of α0 is θ we
find a∨0 = a0

|α0|2
2 = 1. Using this, the last equation can be rewritten as

r∑
i=0

aiÂij =

r∑
j=0

Âija
∨
j = 0,

which means that the mark and comark are right, respectively left, eigenvectors with zero
eigenvalue. This is of course due to the linear dependence of the rows and columns of
the affine Cartan matrix. A useful relation is obtained by observing that

∑r
i=0 aiαi =

−θ + δ +
∑r

ia aiαi leading to

δ =
r∑
i=0

aiαi =
r∑
i=0

a∨i α
∨
i . (E.7)

Also note that we can now express the dual Coxeter number as g∨ =
∑r

i=1 a
∨
i + 1 =∑r

i=0 a
∨
i , and similarly for the Coxeter number.

E.4 Fundamental Weights

Just like the finite case, we define the affine fundamental weights {ω̂i}ri=0 as the basis dual
to the simple coroots; (ω̂i, α̂

∨
j ) = δij . Its easy to verify that these are given by

ω̂i =

{
(0; 1; 0) for i = 0

(ωi; a
∨
i ; 0) for i 6= 0

Again its convenient to use the notation ωi ≡ (ωi; 0; 0) and ω0 = (0; 0; 0) to express the
fundamental weights as

ω̂i = a∨i ω̂0 + ωi.

The affine quadratic form matrix is given by

(ω̂i, ω̂j) = (ωi, ωj) = Fij for i, j 6= 0,

(ω̂0, ω̂i) = (ω0, ω0) = 0 for i 6= 0,

and is essentially the equal to the finite case. Affine weights with zero L0 eigenvalue can
thus the expanded as

λ̂ =
r∑
i=0

λiω̂i + lδ, l ∈ R.

The k̂ eigenvalue is called the level. Using (E.5) and (E.7) we find

k ≡ λ̂(k̂) = (λ̂, δ) =
r∑
i=0

a∨i (λ̂, α∨i ) =
r∑
i=0

a∨i λi.

The zeroth Dynkin label depends on the rest, the relation is given by

λ0 = k −
r∑
i=1

a∨i λi = k − (λ, θ). (E.8)
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This will turn out to be an important relation for the representation theory of affine Lie
algebras. We will use the following notation

λ̂ = [λ0, λ1, . . . , λr]

for Dynkin labels (modulo L0 eigenvalues, which sometimes are written as an index).
As in the finite case the Cartan matrix contain Dynkin labels of simple roots αi =
[Âi0, Âi1, . . . , Âir]. Finally the affine Weyl vector is defined as

ρ̂ =
r∑
i=0

ω̂i = [1, 1, . . . 1],

but it cannot be written as half the sum of positive affine roots. Note that ρ(k̂) =∑r
i=0 a

∨
i = g∨. As last thing to note is that the concept of dominant weight is k-dependent

through the zeroth Dynkin label (E.8). We let P k+ denote the set of dominant weights at
level k.

E.5 Outer Automorphisms

A notion that will be important for us is the group of outer automorphisms of ĝ which is
defined as

O(ĝ) = D(ĝ)/D(g). (E.9)

Here D(ĝ) and D(g) are the groups of transformations of simple roots that leave the inner
product, and therefore Cartan matrix, invariant. It is most easily though of as the group
of symmetries of the Dynkin diagrams, figure F.1 and F.2. This means that O(ĝ) contains
the set of transformations that does not leave the zeroth root invariant. For example, it
is clear from the diagrams that D(Ar) = Z2 while O(A

(1)
r ) = Zr+1. We will not list these

groups since they all can easily be seen from figure F.2. There are actually one slightly
surprising isomorphism

O(ĝ) ' B(G),

where B(G) is the center of the universal covering of all groups which has g as Lie algebra.
Take for example (using the compact real forms) G = SU(r + 1) which has the center
B(SU(r + 1)) = Zr+1 composed by (r + 1)’th root of unity multiplied by the identity
matrix. These automorphisms have an action on affine weights which have important
applications, for example in the case of A(1)

r the automorphism group is generated by
a ∈ O(A

(1)
r )

a[λ0, λ1, . . . , λr−1, λr] = [λr, λ0, . . . , λr−2, λr−1],

and similarly for other affine Lie algebras.

E.6 Integrable Highest Weight Representations

As we discussed before, all irreducible representations of the semi-simple Lie algebras are
highest weight representations. This is not the case for affine Lie algebras, for example
there does not exit any highest root and therefore the adjoint representation is not a highest
weight representation. For physical applications however, it turns out that highest weight
representations are the most relevant ones to study.
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As in the finite case, a highest weight representation is characterized by a unique
highest weight |Λ̂〉 which is annihilated by all positive roots (E.6)

Eα0 |Λ̂〉 = E±αn |Λ̂〉 = H i
n|Λ̂〉 = 0, n > 0, α > 0, i = 1, . . . , r, (E.10)

with the eigenvalues

H i
0|Λ̂〉 = λi|Λ̂〉, k̂|Λ̂〉 = k|Λ̂〉, L0|Λ̂〉 = 0. (E.11)

Note that it is purely a matter of convention to put the L0 eigenvalue to zero, in applica-
tions this is fixed for other reasons and is extremely important. In the following we will
mostly use eigenvalues of hi, the Dynkin labels Λi, since they turn out to be integers for
the type of representations we are interested in.

The class of highest weight representations that are most important to us, are the ones
that are analogous to the finite case. We require that the projections onto sl2 subalgebras
associated to any positive real root, are finite. Using the same argument as in the finite
case leading to (D.10), we find that any affine weight in the weight system λ̂ ∈ ΩΛ̂ must
satisfy (

λ̂, α∨i
)

= −
(
pα̂,λ̂ − qα̂,λ̂

)
∈ Z, (E.12)

which implies that
λi ∈ Z, Λi ∈ Z+, i = 0, . . . , r. (E.13)

The last condition follows from the fact that all p’s are zero for the highest weight and all
the q’s are positive. Since Λ0, (Λ, θ) ∈ Z+, using (E.8) we find the bound

k ∈ Z+, k ≥ (Λ, θ). (E.14)

These two conditions are among the most important ones we have found, the level k is a
positive integer and makes sure that there are only a finite number of irreducible modules.
In other words, the highest weight must be a dominant weight Λ̂ ∈ P k+. It turns out
that these representations satisfy a so-called integrability condition which is why we will
call them integrable highest-weight representations. Due to lack of time and space, we are
forced to neglect many beautiful topics.

In order to obtain the weight system ΩΛ̂ of a integrable highest weight module VΛ̂,
we can use a very similar algorithm to the one in the finite case. Starting from |Λ̂〉, one
can grade-by-grade subtract the relevant affine roots but whenever we apply the zeroth
root, the grade is increased by one. Projecting so a fixed grade, one will then see that
the representation is organized into direct sums of irreducible representations of g. Note
however, that this procedure will never end, unlike the finite case. It is easy to construct
the weight system of the the highest affine weight [1, 0] of ŝu(2)1. For ŝu(2)2 the simplest
highest weight is [2, 0], but already at level one it becomes messy to write down the weights
by hand.

E.7 Missing Topics

Due to lack of time we cannot write about several very important topics such as the affine
Weyl group, characters and modular transformations, affine embeddings (important for
the WZW coset construction) and many others. For more details see the references given.



Appendix F
Finite and Affine Dynkin Diagrams

In this appendix we have collected the set of finite and (extended) Dynkin diagram,
together with useful information.

Ar
1 2 3 r − 1 r

2 3 4 51

6

E6

Br
1 2 3 r − 1 r

2 3 4 5 61

7

E7

Cr
1 2 3 r − 1 r

2 3 4 5 6 71

8

E8

Dr

1 2 3 r − 2

r − 1

r
2 3 41

F4

1 2

G2

Figure F.1: The Coxeter-Dynkin diagrams of finite-dimensional simple Lie algebras.
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(1)
r
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(1)
r
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(1)
r
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(0;1)

E
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Figure F.2: The Extended Dynkin diagrams corresponding to untwisted affine Lie algebras.
Labels (i, a, a∨) stands for the simple root label, mark and comark. If only two labels are present,
then a = a∨.
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