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Abstract

In this thesis we will give a review of certain aspects of higher-spin gravity theories
on AdSs and Wh-algebras in two-dimensional conformal field theories. Recently the
CPY Kazama-Suzuki models with the non-linear chiral algebra SW,[\] have been
conjectured to be dual to the fully supersymmetric Prokushkin-Vasiliev theory of
higher spin gauge fields coupled to two massive A/ = 2 multiplets on AdS3. We perform
a non-trivial check of this duality by computing three-point functions containing one
higher spin gauge field for arbitrary spin s and deformation parameter A from the bulk
theory. We also consider this problem from the CFT where we show that the three-
point functions can be calculated using a free ghost system based on the linear swuo[)\]
algebra. This is the same ghost system known from BRST quantization of perturbative
superstring theories. We find an exact match between the two computations. In the 't
Hooft limit, the three-point functions only depend on the wedge subalgebra shs[A] and
the results are equivalent for any theory with such a subalgebra. In the process we
also find the emergence of N = 2 superconformal symmetry near the AdS; boundary
by computing holographic OPE’s, consistently with a recent analysis of asymptotic
symmetries of higher-spin supergravity.
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Chapter

Introduction

The holographic principle |2, 3] is one of the core concepts of quantum gravity. It was
originally inspired by black hole thermodynamics and was proposed to solve the informa-
tion loss paradox of Hawking [4]. The number of degrees of freedom in a region in a local
theory must scale as the volume of the region. According to the holographic principle
however, gravity is non-local in the sense that the number of degrees of freedom inside a
volume scale as the surrounding area.! This very bizarre feature of gravity rely on general
arguments and thought experiments based on combining the laws of quantum mechanics,
such as unitary time evolutions, and classical black hole thermodynamics, and must there-
fore be realized in any consistent theory of quantum gravity. Holography was however not
taken seriously until Maldacena proposed a concrete realization in the context of string
theory, called AdS/CFT correspondence [6]. Loosely speaking, Maldacena conjectured
that type IIB superstring theory on AdSs x S°, with N five-form fluxes on S°, is dual to
N = 4 super(conformal) SU(N) Yang-Mills theory on the asymptotic AdS; boundary.
Many highly non-trivial tests of this duality have been performed and the conjecture has
so far passed in an astonishingly impressive way. Furthermore, many generalizations have
been proposed during the years, and recently it has become popular to apply holography
to QCD or condensed matter systems as a tool to understand non-perturbative aspects of
strongly coupled systems.

There are however many conceptual and technical problems left which are not well-
understood, not to mention that a proof of this conjecture remains elusive. A better
understanding of these problems are important since holography seems to be a funda-
mental concept of gravity, but also because of its potential applicability in other areas
of physics. It is therefore of great interest to search for simpler realizations of AdS/CFT
correspondence, which at the same time is complex enough to capture important features
of more realistic theories.

The simplest class of theories are without any doubt free field theories, and it is natural
to ask what kind of theories are dual to a CF'T of free fields. It is however clear that the
dual theory cannot be anything conventional. Free field CFT’s are integrable and clearly
posses an infinite number of higher-spin conserved currents, the dual bulk theory must
therefore contains an infinite number of higher-spin gauge fields.

A particular interesting class of models are the higher-spin theories of Vasiliev on

'For an interesting review of the holographic principle and covariant entropy bounds, see [5].



Introduction 2

anti-de Sitter space. These theories can evade the usual no-go theorems by containing an
infinite tower of massless higher-spin fields. It is widely believed that these theories are
a certain tensionless limit of superstring theory, but however not exactly understood how
in detail. Vasiliev theory, despite being highly non-linear, is much simpler than full string
theory and thereby perfect candidate for toy models of AdS/CFT correspondence.

Based on such reasoning, Klebanov and Polyakov [7], inspired by earlier work of for
example Sezgin and Sundell [8], considered the 3D O(N) model of N massless scalars ¢*
with interactions of the form (¢%¢®)2. Besides the trivial fixed point, being the free theory,
this theory has a non-trivial fixed point. It was conjectured that the two critical points of
the 3D O(N) model are dual to Vasiliev theory on AdSy in the large N limit, depending on
boundary conditions. Note that supersymmetry is not necessary for this duality. Recently
three-point functions functions were calculated in these theories and highly non-trivial
agreements were found [9], this sparked a renewed interest in this duality (see a recent
review in [10]).

It is however possible to find even simpler dualities along these lines. Pure gravity
on AdS3 do not contain dynamical degrees of freedom, in the absence of a boundary, but
contain very interesting black hole solutions similar to Kerr black holes in four dimensions.
Vasiliev theory on AdSj is similarly much simpler than its higher dimensional counterparts,
where the massless sector is only dynamical through its coupling to massive matter fields.
Furthermore, consistent interacting theories of finite number of massless higher-spin fields
in AdS3 exist and gives a platform of analyzing the massless sector of Vasiliev theory in a
much simpler form. When coupling to matter fields, one is however forced to include an
infinite tower of higher-spin fields. It was recently shown that higher-spin gravity theories
on AdSs, generically lead to asymptotic higher-spin symmetries known as W-algebras
[11, 12].

On the boundary side the situation is even better. Two-dimensional conformal field
theories are possibly among the best well-understood non-trivial theories because of their
infinite number of symmetries. This power is only enhanced when there are additional
higher-spin invariants, not to mention an infinite number of them.

Inspired by the Klebanov-Polyakov conjecture, and the emergence of W-algebras near
the AdS3 boundary of higher-spin theories, Gopakumar and Gaberdiel [13]| conjectured
that W,, minimal models are dual to Vasiliev theory on AdSs. This conjecture has been
supported by many non-trivial and detailed checks in the 't Hooft limit, and impressive
insight into the finite N regime has already been achieved (which has led to slight refine-
ments of the finite N part of the conjecture). It is hoped that one may eventually be
able to prove this duality and thereby gain deep insight into the mechanisms of holog-
raphy. Subsequently, several variations of the Gaberdiel-Gopakumar conjecture has been
proposed an tested.

For example, recently it was conjectured that the CPY Kazama-Suzuki model is dual
to the AN/ = 2 supersymmetric Vasiliev theory on AdSs. In this case there are an infinite
tower of fermionic and bosonic higher-spin fields, coupled to two massive 3d N = 2
hypermultiplets. To be more precise, Vasiliev theory is a one-parameter family of theories
parametrized by A. There only exist few checks of this conjecture.

In this thesis we will consider this A/ = 2 higher-spin conjecture. We will calculate
three-point functions containing two massive scalars and one bosonic higher-spin field
from the bulk, for arbitrary spin s and deformation parameter A. On the boundary side
we argue that the full Kazama-Suzuki model is not necessary for this particular class of
correlation functions. We will in particular show that all these can be calculated using a
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simple ghost system known from BRST quantization of perturbative superstring theory.
From the CFT side we will also calculate three-point functions containing fermionic matter
or higher-spin fields. Let us show two examples of our results

2(s s — s — z §
(0F, (21,2008, (22, 2)W* (23)) = (—1)5_1F(I;s(—)1) F(F(z iAzj\r)l) 2sl_+12A< 5 )

x (OR, (21,21) 0%, (22, %)),

213223

and

20, 5.\ (S N s P2(S) (s —2)\) z s
<O£+(z1,z1)(9g+(22722)(; +(z3)> =2(-1) I'(2s—1) I'(2 —2X) <21312'223>

X <O£+(21,21)(7)g+(z2,22)>.

Here O£+(z1, Z1) and (’)ir (21,71) are bosonic and fermionic primary fields of the CPV
Kazama-Suzuki coset, respectively. Furthermore W*~(23) and Q*"(z3) are bosonic and
fermionic holomorphic higher-spin fields, respectively. We find non-trivial agreements
between correlation functions calculated on both sides of the duality.

We also derive operator product expansions of the boundary CFT currents holograph-
ically from the bulk theory. In particular, we show that near the AdSs boundary the
theory has N' = 2 SW[A\] symmetry. This is another consistency check. A preprint of
our results was recently published in [1].

The plan of this thesis is as follows. In chapter 2 we will give a basic introduction to
higher-spin (super-) gravity theories on AdSs. It is in particular seen that these theories
can be constructed as Chern-Simons theories based on Lie algebras gr & g_x. Special
emphasis is laid upon the infinite dimensional one-parameter family of Lie algebras shs[A],
and their associative extensions SB[u], since they play a crucial role in our calculations.
Structure constants of these algebras are also derived in a convenient form, not explicitly
found in the literature. Hereafter we will show that the calculation of asymptotic sym-
metries generically lead to classical Drinfeld-Sokolov reduction of Affine Lie algebras, and
thereby to W-algebras. Finally we will discuss the coupling of matter fields to higher-spin
gauge fields, which leads to Vasiliev theory. This theory on AdS3 and a linearization
needed for our calculation is discussed. Most importantly, we will argue that a slight
reformulation of the formalism will lead to tremendous simplifications.

In chapter 3, we will give a brief (and shallow) review of extended symmetries in
two-dimensional conformal field theory. In particular systematically introduce supercon-
formal symmetries and W-algebras. In the end we will discuss Kazama-Suzuki models,
in particular the subset based on hermitian symmetric spaces. The discussion of many
advanced aspects of the topic, such as quantum Drinfeld-Sokolov reduction, is either ne-
glected or very short despite the fact that most of the work on this thesis were based on
these CF'T topics. This is partly because the advanced technical details of these topics
are not relevant for our original results, but mainly due to lack of time.

In chapter 4, we will give a ridiculously short and unjustified review of the conjectures
at play, only touching the details necessary (beyond general knowledge about AdS/CFT
correspondence) to understand our original results.

Chapter 5 contain the main parts of the original contributions of this thesis. In par-
ticular we show how to calculate the relevant three-point functions from the bulk and
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boundary point of view. On the way, we give a holographic proof of the emergence of
N =2 SW.[)] algebra near the AdS3 boundary.

Appendix A contain the solution of a recursion relation. Appendix B contain the
structure constants of shs[A] and SB[\ which we have found in a particular convenient
form, together with certain properties used in our calculations.

Appendix C contains a review of basic aspects of two-dimensional CFT’s, including
modular invariance, RCFT’s, WZW and coset models.

Appendix D contains the structure theory, classification and representation theory of
finite-dimensional semi-simple Lie algebras, together with a discussion of regular embed-
dings and branching rules. Appendix E is about the classification and representation
theory of untwisted affine Lie algebras. Finally appendix F contains a list of finite and
affine (extended) Dynkin diagrams, together with useful information about these.?

2These three appendices were written due to my focus on conformal field theory and quantum Drinfeld-
Sokolov reduction during most parts of this work. Only in the final few month the focus shifted to
three-point functions. We have however chosen to include these anyway.



Chapter

2+1D Higher-Spin Gravity

Long before the discovery of the holographic principle [2, 3] and the string theoretical
realization by Maldacena [6], Brown and Henneaux analyzed the asymptotic symmetries
of 2+1-dimensional Einstein gravity with negative cosmological constant [14]. They found
that the asymptotic symmetry algebra was the Virasoro algebra with, quite surprisingly, a
central charge even though the bulk theory is purely classical. Back then, it was of course
unthinkable to believe that the effective conformal theory on the boundary is equivalent
to the bulk theory through a holographic duality.

Three-dimensional gravity is in many ways much simpler than its higher dimensional
counterpart, mainly due to the fact that pure Einstein gravity does not have any (lo-
cal) dynamical degrees of freedom in 2+1 dimensions. One way to see this is by Ricci
decomposition

Ryuvpy = Spvpy + Euvpy + Cpupy- (2.1)

The first two terms are given by the Ricci scalar and tensor, respectively, and are fixed
by the Einstein equations. The last term is the Weyl tensor and contains all dynamical
information since it is left undetermined by the equations of motion. But C),,,, = 0 for
all three dimensional manifolds, thus gravity is non-dynamical.

This implies that the phase space is finite dimensional and that there are only global
degrees of freedom present, which makes the theory topological. At the purely classical
level, it was shown by Achucarro and Townsend [15] and later Witten [16], that Einstein
gravity can be mapped to a Chern-Simons theory with the gauge group SL(2,R)xSL(2,R)

S = ScslA] = ScslA], (2.2)

where the Chern-Simons action is given by

k 2
Scs[A]—CS/ tr(A/\dA+A/\AAA>. (2.3)
47 M 3
This can be mapped to the first order formulation of gravity by
l ~ 1 -
e:7<A—A), w=f(A+A), (2.4)
2 2
with the AdS radius [. Here the coefficients of e = e}, J*dz" are the vielbein, w =
wzJ edat = %eabc wf’fJ“dx” is the spin connection, and the commutation relations are

5



2.1. Higher-Spin Generalizations 6

given by
[Jm Jb] = 6(/‘LchC-

Since s[(2,R) is not the compact but rather the normal real form of sly = s((2,C), its
Killing form is not euclidean but tr(J,Jp) = %nab. Using this, it can be shown that the
Chern-Simons coupling constant is related to the Newton constant G as

l
kcs = —. 2.5
5= 15 (25)
The infinitesimal gauge transformations of the gauge theory translate into transformations
of the vielbein and spin connection

§A = dX+[4, ], e =dg§ + [w, §] + [, A],
- - . = 1 (2.6)
0A=dA+[4,A, dw = dA + [w, A] + 5 [e. €],

where £ = L(\ — A) corresponds to diffeomorphisms [16], while A = (A + )) is the local
Lorentz transformations associated to change of frame of the tangent bundle. Thus it is
necessary to use the first order formalism, in order to have “enough” gauge invariance to
map gravity into a gauge theory.

Although irrelevant for this thesis, we cannot resist briefly mentioning the interesting
topological features of Chern-Simons theories. In the case of compact gauge groups, the
coefficient kcg is quantized due to the fact that 73(G) = Z and the requirement that the
quantum partition function should be invariant under large gauge transformations. The
theory was solved by Witten in [17], where he showed that the Hilbert space is isomor-
phic to the space of conformal blocks of a two-dimensional WZW model (at level k) and
expectation values of Wilson loops are given by knot invariants such as the Jones polyno-
mials. Conformal blocks are not monodromy invariant but transform as representations
of the Braid group,! as is known from the work of Moore and Seiberg [18]. This makes
them ideal wave functions of exotic particles in 2+1 dimensions, called non-abelian anyons
[19, 20]. It is also possible to axiomatize these topological field theories, similar to the
Moore-Seiberg axioms [21, 22|, using braided fusion categories which play important roles
in mathematics and the field of topological quantum computers. We will however not
discuss these extremely interesting topics in detail.

2.1 Higher-Spin Generalizations

Higher-spin theories turn out to be difficult to construct and seem to be forbidden by
several no-go theorems. For example, the so-called Weinberg low energy theorem states
that higher-spin theories cannot mediate long-range interactions. It is however possible to
construct a certain type of theories with an infinite tower of higher-spin fields, such as the
class of theories constructed by Vasiliev [23, 24]. These theories can be seen as some sort
of tensionless limit of string theory, but in full string theory this higher-spin symmetry is
typically dynamically broken. Note that there is no problem with free higher-spin theories,
it is due to interactions that inconsistencies arise. See [25] for a detailed review of these

!To be more precise, one has to consider the mapping class group of, say, the punctured sphere which
contains both the braid group and Dehn twists. In the case of non-abelian statistics, the latter are called
topological spins.
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no-go theorems and how they can be surpassed.? These theorems, however, only apply
for dimensions d > 3, and therefore it is possible to construct higher-spin theories in three
dimensions without resorting to an infinite tower of higher-spins.

Instead of taking the general approach of [25], let us see a glimpse of some of the
problems associated to higher-spin theories.

2.1.1 Free Theory and Coupling to Gravity

At the linearized level, Fronsdal [27] constructed equations of motion for massless bosonic
higher-spin fields (later generalized to fermions [28|). For example the free propagation of
an integer spin s field on Minkowski space (using the notation of [29, 30]) is

‘FML..;LS = D¢M1---H$ - 8(u1\8)\¢|u2.,.u5))\ +8(ulaug¢u3...ys)A)\ = 0, (2'7)

which is invariant under the gauge transformation

5¢u1---us = a(u1§u2...us)7 §u1~~.u573>\)\ = 0. (2‘8)

The parentheses in (2.8) is the complete symmetrization of the indices, with no normaliza-
tion. These gauge transformations make sure the fields in d > 3 have the correct number
of degrees of freedom, while in d = 3 they make the theory non-dynamical. Note that
these equations and gauge transformations reduce to what we already know for s = 1 and
s = 2, in particular F,, is the linearized Ricci tensor. In order to couple these equations
to gravity, it is natural to consider minimal coupling, @ — V and n — g. Consistency
requires that the theory must preserve the same gauge symmetries it has on flat space.
Taking the spin 3 equation, a calculation shows that F},, transforms as

0Fuvp = = 6V R oo — 9B uloVip) €7 + 6 Rrgunjo V7€) 00
; 2.9

A A A

— 68 (WA B p) + 5 BV ) — 9BV &)™

This does not vanish on general backgrounds, not even using the vacuum Einstein equa-
tions, i.e. vanishing Ricci tensor. Furthermore, it was shown in [31] that for d > 3 and

spins § > %, this problem remains, even if one considers non-minimal couplings. The
exception s = % is crucial for supergravity.

A way out was given by Fradkin and Vasiliev [32], and requires higher-derivative
contributions and a negative cosmological constant A to be added. It turns out that the
interactions are non-analytic functions of A, and thus do not have an expansion around flat
space [32]. This line of thinking eventually led to the Vasiliev equations, which describe
full non-linear interactions and are manifestly invariant under (2.8) [23, 24].

Next, it is natural to consider d = 3. As mentioned before, the Weyl tensor vanishes
in 2+1 dimensions, so equation (2.9) is proportional to the Ricci tensor. It turns out
that these terms can then always be removed by a {-dependent gauge transformation, and
thus there are no problems with massless higher-spin fields coupled to gravity [31]. Note
that the presence of the spin-3 field has extended the diffeomorphisms. We shall use the
term “higher-spin diffeomorphisms” to account for all gauge transformations, including all
spins.

2There is also a very recent review about the no-go theorems in Minkowski space [26].
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2.1.1.1 Spin in 241 Dimensions

Before proceeding, let us elaborate on the notion of “spin” in 241 dimensions. Bine-
gar [33] found the unitary (projective) irreducible representations of the Poincare group
R3 % O(1, 3) using the usual Mackeys induced representations technique, which essentially
reduces the problem to the stabilizer subgroups (little groups). For massive particles,
representations with continuous spin are found (which is not surprising).? In the massless
case, choosing a frame p = (%, %, 0) for the orbit Of = {p € R3|p? = 0, py > 0}, one finds
the little group [33, eqn. (25)]

SO(T ~ ZQ x R. (210)

In [33], the continuous representations are discarded, claiming that they are “unphysical”
and cannot be used in local field theories. Therefore, there are only two inequivalent
representations, {1, —1}. In d = 3 “spin” therefore just reduces to the distinction between
fermions and bosons. What do we then mean by “higher-spin”? When constructing field
theories of massless fields in four dimensions, it is convenient to use spin rather than
helicity and then let gauge invariance kill the unphysical degrees of freedom. Similarly
the tensors ¢, ..., are non-dynamical, due to the gauge transformations (2.8), as noted
before. It is however not all trivial, since tensors of different rank will give rise to different
boundary dynamics, as we will shortly see. This distinction motivates us to regard the
rank of the different tensors as their “spin” [11].4

2.2 Higher-Spin Interactions and Chern-Simons
Formulation

We are interested in constructing a full non-linear theory with spins s > 2, describing
their interactions while preserving the higher-spin diffeomorphisms (2.9). It turns out
that this is much easier to achieve by first moving the linearized theory into the frame-
like formulation (see [34] for some progress using the metric-like formalism). One can
introduce generalized vielbeins and spin connections

A1,eees05—1 A1,eees05—1
eyt wy et (2.11)

The generalized spin connections are auxiliary fields, which are introduced due to a gen-
eralization of local Lorentz invariance (2.6).° Combining these into a gauge connection,
it turns out that a higher-spin diffeomorphism invariant interacting theory can be con-
structed by various types of Chern-Simons theories [11, 35], just like in (2.2).

3To see why, recall that we need projective representations according to Wigner and thus must consider
the universal covering. Recall that SU(2) is a two-to-one compact universal covering of the d=4 massive
little group SO(3) = SU(2)/m1(SO(3)) = SU(2)/Z2 which gives rise to integer and half-integer represen-
tations. The universal covering of SO(2) = R/m1(SO(2)) = R/Z is however co-to-one and non-compact,
leading to a continuous family of representations. In other words R is a fiber bundle over SO(2) ~ S* with
infinite discrete fibers Z, and hence R wraps an infinite number of times around SO(2).

41f the reader thinks the concept of “spin” of massless fields in d=3 is a little bit fishy, the author will
not disagree. Nonetheless, in this section we made an attempt to motivate the idea.

5Doing this in higher dimensions, one is forced to introduce an infinite number of higher-spin vielbeins
and more auxiliary fields. One can then define higher-spin generalizations of the (linearized) curvature
tensors and formulate Fronsdal equations in terms of them. Attempting to formulate interactions will lead
to the Vasiliev theory.

51f one allows the Chern-Simons levels to be different, one obtains topologically massive gravity. See
[36] for a higher-spin construction along these lines.
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Let us however take the opposite route. It is possible to define different types of
higher-spin interactions by a quite general Lie algebra g x g, which can even be infinite-
dimensional. This is however not the full story. In order to map back to the metric
formulation, we need to identify the gravity sector. This entails choosing an embedding
5[(2,R) — g, with different choices corresponding to reorganization of the field content,
and thereby different theories, or least to different boundary dynamics.

Given this subalgebra we can identify the physical fields as follows. Decompose g into
representation spaces of s[(2,R) under the adjoint action

g=sl2,R)® (@ g(s’“)> ) (2.12)

s,a

where dim g(*% = 2s+1 with 2s € Z+ and the index a accounts for possible multiplicities.
Note there is a subtlety associated with the fact that sl[(2, R) is the normal real form of sly
and the corresponding group is non-compact, such as it has infinite dimensional irreducible
representations. However, for finite dimensional representations, it behaves exactly as the
compact real form su(2). Thus, we restrict g and the choice of embedding, such that
the decomposition (2.12) only contains finite dimensional representations. We will further
assume only integer s € Z representations will arise, in order to avoid certain subtleties
(see [35]). This induces the decomposition of the gauge connection

S
A=Al Lidat+> " > Aldsmws ), dat, (2.13)
where L; generate sl(2,R), while (W3 )[4 generate g(®® . We have used a basis such that
(L., L_]=2Lo, (L., Lol ==+Ly, (2.14)
and
[Li, (W] = (is = m) (W) a),

_m(s+m)
(Wi = (1) "= ad; "™ (W) -
(2s)!
The last equation follows from the (finite) representation theory of sl(2, R) with highest
weight (W¢)[q and the coefficients are just normalizations. Similar to (2.4), we can now
define higher-spin vielbeins and spin connections as

(2.15)

dilv= Y g, W= 3 WO, a9
given by
als,m ! als,m Alal s,m als,m 1 als,m Ala] s,m
%g,zi(Mg _ Al ), wle! :§<4g + Alel ). (2.17)

In the metric formulation, the fields must be invariant under generalized local Lorentz
transformations (2.6) generated by A. It turns out that dpe = [e,A] = datr(e™) =
ntr(e" e, A]) = 0 by the cyclicity of the trace. Thus this fixes the metric and spin-3
field (up to normalization)

G ~ tr(eye,), Guvp ~ tr (e(ueyep)) , (2.18)
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where

e=g <A - fl) = Zekﬂsdx“. (2.19)

Note that the metric receives in general contributions from the higher-spin vielbeins (2.17).
Higher-spin fields require more work. For example for spin-four, there are two possibilities,
tr(e?) and tr(e?)?, and the result turns out to be a linear combination. For further details
see [11, 35].

It might seem that the choice of s[(2,R) embedding does not matter at all and (2.12)
is just a random choice of basis, since the map to the conventional formalism (2.18) uses
the whole vielbein and does not make reference to the decompositions (2.12) and (2.17).
As will be seen later, the choice of s[(2,R) is crucial when specifying asymptotic boundary
conditions. Different choices correspond to different embeddings of the gravity sector,
leading to inequivalent theories.

2.2.1 Higher-Spin algebras hs[\|] and the Lone-Star Product

The most studied example with a finite number of spins is g = s[(/V,R) with the principal
embedding, where one has spins s = 2,..., N with multiplicity one.

Our current aim is a description of the massless sector of Vasiliev theory. For this we
will use the so-called higher-spin algebra hs[A]. This consists of the elements

Ve, s>2, In|>s-—1,

each of spin s — 1 under the adjoint action of s[(2,R). It can be constructed in various
ways; as an analytic continuation of sl(\, R) to real A [37, 38|, as an algebra of differential
operators [39, 40|, or as quotient of a universal enveloping algebra [41, 38|. For now,
let us consider the last approach. Let U(sl(2,R)) be the universal enveloping algebra of
s[(2,R) and (Co — pl) be the two-sided ideal generated by elements of the form Cy — pl
(see appendix D), where the second-order Casimir is given as

1
Co=L3— 5 (L Lo+ Lo Ly), (2.20)
and set !
o= 1()\2 —1). (2.21)
We can now define an associative algebra by the quotient
U(sl(2,R))
= gy = s (2.22)

where we have identified the higher-spin algebra hs[A] as a subspace of B[u| by removing
the one-dimensional complex space along the identity operator 1. This just means that
we are allowed to take formal products of a,b = Lo +, and then identify

Xx(axb—bxa)xY =~ X x[a,b]xY, and Cy=yp,

where X and Y are arbitrary products the s[(2,R) generators. For the associative product
of B[u] we have used x, this product is usually called the “lone-star” product. Using the
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notation VO2 + = Lot and V' = 1, we can construct the rest of the algebra from the
adjoint action of the subalgebra sl(2,R), and simultaneously decompose it as (2.12) [38]

s—1—n (S +n— 1)'

Vo= (1) (25 — 2)!

adj "t (L5 (2.23)

Compare this to (2.15). In order to use this in a Chern-Simons theory, we need an invariant
bilinear form. It turns out one can define a trace as

tr(X«Y)=XxY|, _, (2.24)

or in other words the coefficient proportional to 1. Since the trace is symmetric we
have that tr ([X,Y]) = 0. Thus, commutators of elements in hs[A] do not have a term
proportional to 1 and form a closed Lie algebra. As an example, take

1 1
V=L, L., V03:§(L_*L+—|—L0—s—2L§)zL%—E(Az—l),

from which one can calculate the commutator
[V, V5] = 4Vy.

Luckily, it is possible to write down the full set of commutation relations [41, 3§]

s+t—1
Vi Vil = > giltmm AV ki, (2.25)
u=2 even

This can also be done for the whole associative algebra and not just the Lie algebra. It
turns out that for integer A = N > 2, we have that

tr (V3V,) =0, s> N. (2.26)

Thus these decouple from the Chern-Simons theory and can consistently be truncated. In
other words, an ideal xy appears, consisting of generators of spin s > N. Factoring over
this ideal, one finds

s[(N,R) = hs[N]/xn, N >2. (2.27)

Thus in this sense, hs[)] is an analytic continuation of sl(A,R) for A € R.

2.3 N =2 Higher-Spin Supergravity theory

Before considering the N/ = 2 higher-spin SUGRA of our interest, we will make some
general comments about supergravity on AdSs. It turns out that (extended) pure super-
gravity on AdSs can also be formulated as a Chern-Simons theory associated to a Lie
superalgebra [15, 42]. The classification of finite dimensional Lie superalgebras, in the
same spirit as in appendix D, was solved by Kac [43, 44]”. Not all these algebras will
work for us however. Let us denote the Lie superalgebra with its natural Zy grading as
g = ge D 9o, where g, and g, correspond to its even and odd part respectively.

In order to describe SUGRA on AdSs, there are two basic requirements. (i) the
even part of g must contain s[(2,R), we thus demand the even part to take the form

"See [45] for an useful collection of results about Lie superalgebras.
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s |6 | o | dmg
osp(N|2) s0(N) N N(N —-1)/2

su(1,1N)nyze | su(N)@u(l) N+ N N?
su(1,1)2)/u(1) su(2) 2+2 3

osp(4*12M) | su(2) ®usp(2M) | (2M,2) | M(2M + 1)+ 3
D(2,1;«) su(2) @ su(2) (2,2) 6
G(3) Gy 7 14
F(4) spin(7) 8 21

Table 2.1: List of Lie superalgebras which can be used to formulate supergravity on AdSs
spacetimes. Here g is the Lie superalgebra, G is the internal subalgebra and p is the representation
of G in which the spinors of g, transform in.

ge = sl(2,R) & G. (ii) the fermionic generators of g, must transform in the 2 (spin %)
representation of s[(2,R) under the adjoint action. It turns out that only seven classes
of algebras in [43, 44| satisfy these requirements [46, 47, 48|, see table 2.1. Actually, this
is also the list of Lie superalgebras which give rise to two-dimensional superconformal
algebras with quadratic non-linearities by Drinfeld-Sokolov reduction of their affinization
[49, 50]. As we will see later, this is not a coincidence and Drinfeld-Sokolov reduction
comes out naturally from AdSs, giving a holographic perspective on this two-dimensional
CFT problem. The two algebras osp(1|2) and osp(2|2) correspond to N' =1 and N = 2
supergravity [15] and their Drinfeld-Sokolov reduction give rise to the conventional N' = 1
and A = 2 superconformal Virasoro algebras.® The other algebras generically give rise
to non-linearities after a DS-reduction [49] (similar to WW-algebras). We will however not
pursue these types of supergravities in this thesis. Note that we are only talking about
half of the algebra. The full algebra of the Chern-Simons theory must be of the form

Ok D Gk,

where the index refers to the CS-level. There might be some restrictions on which g and
g one may combine. We will only be concerned with diagonal combinations.

2.3.1 N =2 Higher-Spin SUGRA

In order to find higher-spin generalizations, we must allow higher s[(2, R)-spin generators
in the odd sector g,. Since we are interested in N' = 2 SUGRA, we also modify the
requirement of the even part to g. = 0sp(2|2) @ G. It turns out that the supersymmetric
analogue of s[(N,R) (which gives rise to bosonic higher-spin extension of pure AdSs3 grav-
ity), is s[(N|N — 1). Pure N' = 2 SUGRA is recovered for N = 2 since sl(2|1) ~ 0sp(2|2)
[51, 52|. The sl(2,R) decomposition, analogous to (2.12), takes the form

N N—-1 N-—1
sI(N|N — 1) = sl(2,R) @ (@ g<5>> @ <€B g(8>> B2 x (@ g<8+§>> , (2.28)
s=3 s=1 s=1

8Under the sl(2,R) decomposition of g, s[(2,R) transforms as a spin-1 representation (since its the
adjoint representation). Drinfeld-Sokolov reduction turns this sector into a spin-2 field, which is nothing
but the energy-momentum tensor (and thereby the Virasoro algebra). The generators of g, transform as
spin—% representations and DS-reduction turns them into spin—% fields. Typically g ends up as a wedge
subalgebra of the resulting algebra of DS-reduction (unless the algebra is non-linear). Thus it is not hard
to see why osp(1|2) and osp(2|2) give rise to N' = 1 and N = 2 super Virasoro algebras.
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where g(*) transforms in the spin-(s — 1) representation under the adjoint action of s{(2,R)
and the last part corresponds to the generators of the odd sector.” Note that only for
N = 2 there are only Spin—% fermionic generators, which is the osp(2[2) SUGRA. For
N > 2 there are necessarily higher-spin fields. See the recent paper [52]| for some results
on this /' = 2 higher-spin SUGRA.

Analogous to the non-supersymmetric discussion above, the N' = 2 Vasiliev theory is a
one-parameter family of theories with an infinite tower of multiplets containing higher-spin
fields. The massless sector can again be formulated as a pair of Chern-Simons theories
based on the so-called N = 2 higher-spin algebra shs[\].}? Similar to (2.27), shs[)\] can
be thought of as an analytic continuation of s[(A|A — 1) for non-integer A and it has the
following s((2, R) decomposition

shs[\] = sl(2,R) & (é g<3>> @ (é g<5>> P2 X <é g(8+%>> . (2.29)
s=1 s=1

s=3

In this decomposition, we have the following set of generators

LOF (s € Zsg, jm| < s — 1), L™ (s € Z1,|m| <s—1), (2.30)
GOT (s € Lsa,|r| < —3/2), G (s € Lz, |r| <7 —3)2), .
()

where Ly,’~ generate the even part of shs[A], while G&s)i generate the odd part. We will
spend some time discussing this algebra, since it plays a crucial role in this thesis.
The three generators Lg), m = —1,0,1, form the sl(2,R) subalgebra describing the
gravity sector
(LT LOF] = (m —n) LT (2.31)

m+n

In this basis, Lé2)+ is ad-diagonalized

L6 LPH = =LY%, (L0, G9%) = —r G, (2:32)

T

while under the adjoint action of the m = +1 s[(2,R) generators, the other generators
transform as

LN = (nbs = DLAT, WG = (crrs =326,
AL = (nms LY LGP = (cr - s 432G,

consistent with the sl(2,R) decomposition. There is also a osp(1]2) subalgebra spanned
by {L(2 i% ,G(21/2} This can be extended to o0sp(2|2) by adding the generators

{L(()l) ﬂ /2} where L( )~ is the R-charge and spans a u(1) internal subalgebra. These

9The reason we use s for a spin s — 1 representation, is that these generators naturally relate to a spin
s dual field on the boundary by Drinfeld-Sokolov reduction. Note also that s[(2,R) transforms as spin-1
under the adjoint action of itself (adjoint representation), and is labeled by s = 2.

19See [48] for N' = (N, M) extensions of the higher-spin gravity. For extensions above N = (2,2) it
turns out that there does not exist a one-parameter family of theories parametrized by A.
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generators act on the rest of the algebra as follows

@)+ ()t 1 (s)+ @) 1 (s (s+1)F
[G1/2 7L( * | = _§(m — s+ 1)Gm+1/2’ [G1/2 7L£n) I = Gm+1/2’
s 1 s 2)+ s s+1)F
[G( i/z,L( )+ = —§(m+ 5 — l)ng) 1/2 [G(fi/w L)) = _G£n+1)/2’ (2.34)
{G1/2 LGt = QLTfH/Qv {Gg/Q LGETY7Y = (5 — s+ 1/2)L! +1/2v
g~ L =0, [L§)7, G*] = GEIF,

Note that the osp(1]|2) and 0sp(2|2) supercommutators can be read off these by restricting
to s = 2 and the relevant set of generators. The R-charge maps the G generators
to G~, and vice versa, but one can construct generators with definite u(1) R-charge
by superpositions G&QH + Ggs)f. Please observe that if we truncate away all higher-
spin generators (s > 2) and use the above (anti-)commutators for unrestricted m and r,
we find the N/ = 0,1,2 (super)-Virasoro algebras in the Neveu-Schwarz sector with the

central charge ¢ = 0 (the reason for this will become more clear below). (Lg”, G&SH)

and (L%Tl)*,fo)*) form N' = 1 multiplets of 0sp(1|2), while combining them we get
N = 2 multiplets of osp(2|2). Note that there is no A\ dependence in the commutators
involving the osp(1|2) and 0sp(2|2) subalgebras. This is because by restriction this theory
reduces to pure supergravity and as we classified AdS3 SUGRA, there are no continuous
classes of theories (classification is discrete). The commutators written above are obvious
properties to be expected from an N = 2 higher-spin SUGRA, but commutators between
higher-spin generators will generally have complicated A dependence. Thus, it is not as
easy to write these down explicitly.
In this thesis we will mainly use a more compact notation. Allowing the superscript
to be half-integer and eliminating the need for the 4+ superscript, we define
LY = LY, LG =17, GO =GO and GED =GO (2.3)
Thus, in the following we allow s to be half-integer, but both notations will be used. To-

gether with these definitions, we will use the following notation for the structure constants
of shs[\]

s+t—1 s+t—1
0] = 3 am ) B [E260] = 3 R om0 G,
s+t—1 Si:,llA
{ ,G } Egu (pog; A) LS, [Géf),LT(f)}Z hSH(pms A) GO,
u=1

Here the notation ) means we are summing over half-integer steps. This is the most
convenient form of the algebra for the purposes of this thesis, but as far as we are aware
there do not exist explicit formulas for the shs[A] structure constants in the literature. It
turns out that shs[)] is a subalgebra of a (linear) W-algebra, which we will call swso[)].
This is a higher-spin extension of the super Virasoro algebra. The structure constants
of swo[A] have been explicitly calculated in [39, 40| and from these we can extract the
structure constants of shs[A].!!

Recently, the structure constants of shs[\] were found in [53] in the same way, but explicit expressions
of these were not given.
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2.3.2 Structure Constants of SB[u] and shs[)]

For our calculation of the three-point functions, it will turn out to be crucial to use
a slightly more fundamental structure than shs[A]: the associative algebra SB[u]. Let
U(osp(1]2)) be the universal enveloping algebra of osp(1|2), with the second-order Casimir
element [39, 45]

1
Co=L§— §{L1, —1p [G1/2,G 1/2); (2.36)

where {Lo, L+1,G+1/2} generate osp(1|2). Similar to (2.22), it turns out that the following
associative algebra is related to shs[\] [39]*2

U(osp(1]2))
(Cy — pl)

<A _ ;) (2.38)

We will use the notation % for the product of SB[u|, which we will call the super lone-star
product. Knowing the structure constants of SB[\], we can directly recover the structure
constants of shs[A], since X xY —Y x X = [X,Y]. Using this associative structure, we can
as above define the trace as

SBlu| = = shs[\] @ C, (2.37)

where we have defined

AxB

tr(AxB) = (2)\2—)\)’j:0

e (2.39)

The normalization is chosen for later convenience. We will identify Lg) and Gg) with
0sp(1]2) and use the notation L(()l) = L(()1)+ = 1 for the identity element of SB5[u]. The other
generators of shs[\] can be constructed as sums and products of the osp(1|2) generators,
but the analogue of equation (2.23) is not given in the literature as far as we are aware.

We will later show how the SB[u] generators can be expressed as polynomials of
0sp(1]2) generators, which will turn out to be important for us. But first, we will focus
on constructing explicit formulas for the structure constants of SB[u] and shs[A].

2Note that although we are using osp(1|2), the algebra ends up being N = 2 supersymmetric, since
another supercharge can be constructed in SB[u] [39]. This seems to imply that if we had used the more
natural generalization of (2.22) to A/ = 2, by using o0sp(2]2) instead of osp(1]2), we would find the same
algebra SB[u].
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2.3.2.1 swx[)] as an algebra of Super-Operators

In [39, 40], sweo[A] is constructed as an algebra of the following set of super-operators:

s—1
L+ = Z(n —s+1)s1-a'(s, ) 27" O
i=0
9 s—1 ) . ..
+ «9—9 (n—s+1s1-i[a'(s, A\ + 3) —a'(s,\)] 27",
1=0
s—1
—142) < o
Le- = _% S (0= s+ D1 iai(s,X) 27 0 (2.40)
i=0
s—1
o s—2\ s—142X i i
o B 1 1 i 1 7 —n+1
—1-9910(71 s+ 1)s-1 [25_1a(5,)\~|—2)+ 55 1 a(s,\)| z ",
s—1

GO =0 "(r—s+ 3)s—1-i (s, \) T2 g

i=0
g i T - S —|— s 2—1i ﬁi(sa )‘) Z_T+i+1/2 az
i=0
Here r
(@)n = (?J:)n) =z(@+ (@ +2)...(z+n-1), (2o=1

is the Pochhammer symbol, 9 = %, and 6 is a Grassmann number. See appendix B for
the definition of the coefficients a’(s, \), a’(s, \) and B%(s, A). One can readily check that

the commutators of Lg) give rise to the Witt algebra, and the properties discussed earlier
are satisfied. It turns out that the products of these operators close as an associative
algebra, while the supercommutators give rise to swo[A]. If we restrict n and r to be in
the wedge, |n| < s —1 and |r| < s — 3, we will recover SB[u] and shs[A]. In the following
we will for the sake of generality, let the modes be n € Z and r € Z + % which correspond
to sweo[A]. However, when we talk about SB[u] and shs[A], we just have to truncate to
the Wedge modes.

Using the notation (2.35), we are interested in the following set of structure constants

of SB|u]

s+t—1 s+t—1
LG 10 = 32 gt mom ) LT, LGP = 32 hitm,a ) R,
u=1
s+i—1 s+t—1
sti—u s 7s s+t—u
P = A e N LT, G I = 3 ) G
u=1

(2.41)

The structure constants calculated in [39, 40| are given in a very compact N = 1 super-
space notation. Since it is very tedious and technical to extract the coefficients above, we
will not go through the details. Instead we will just sketch parts of the calculation.
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All the operators in equation (2.40) can be expressed in a very compact N' = 1 super-
symmetric language as

2s—2

= ‘(s,\) ( D**7271Q8) ) D?, 2.42
£ (@) Ai(s, \) (D¥271Q()
=0

where

Q) (2) = AT (2) +2000)F(2), s =[s] € Z, (2.43)

PTG +0AD(2), s =[s]+Lez+], |

and ,

A(s ZA O E= n+s 1 @(s)i(z): Z Ggs)i zr+sf§. (2_44)

= reZ+1

Furthermore, D = 80 — 00 and the relation between A%(s,)\) and a'(s, \), (s, \) and
B(s, ) is given in appendix B. The coefficients of A®E are commuting numbers, while
the ones for ©®)* are anticommuting. By using relations shown in appendix B, and the
form of the operators (2.40), one can show that

£ () = Y onez A7(18)+ L(—Sq)j + ZreZ-irg 9(8)+ G(_83+7 =|s]e€Z
x () = (L= p(ls)- (D= s g1 L
ZGZA” L- +> Z+,@r GV s LsJ+2eZ+2

(2.45)
We have used the floor |s| and ceiling [s] functions. Note that |s] +1 = [s]if s € Z+ 3.

This means that we can recover L( 9% and G(S)jE by replacing A( S)E Om/,—m0s s and
oy)*

N — 0y _,0g 5, Tespectively, and putting everything else to zero. For example, we

have
Eg\s) (Z—m-l—s—l) _ Lni) _ Lg;sl)-&-? s=|s| eZ,
" ] ] (2.46)
£ (B 1)~ LD, s— s+ ezl
The product between the operators has been derived in [39, 40] in the form
s+t—1
s t s+t—u S+t—u
£ Q) % £ (D) = 37 £ (€l ), (2.47)
u=1

where the function & SH) u)( ) contains all the structure constants of (2.41). As a function

of Q) and Q®) it is given as

2u—2

s (@) = Y Fulin) (D) (D), (2.48)
1=0

where F4%(i,A) is a complicated function given in appendix B. In order to derive explicit
formulas for the coefficients in (2.41), we need to choose the appropriate functions Q) and
Q®), and then use (2.48), (2.42) and (2.40) to extract the structure constants. For each of
the structure constants, due to the property (B.22), we need to separate the calculation
into even/odd i and integer/half-integer s. Having found these four pieces, one then has
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to “glue” them together to find an explicit formula for each structure constant. The end
results of these tedious calculations are given in appendix B.

We have explicitly checked that these structure constants satisfy all possible combina-
tions of Zs-graded Jacobi identities for many s and ¢, which is very non-trivial. Further-
more, we have compared various limits and truncations of this algebra to results known
in the literature, and we find an exact match. The constants given in appendix B are
very complicated, but there are good reasons to believe that they can all be written much
simpler in terms of generalized hypergeometric functions. This is at least possible for
A = 0 [54] and for the non-supersymmetric higher-spin algebra hs[A] [41].

Before concluding this section, we have to mention that as long as we constrain the
modes to be inside the wedge, we can safely restrict the sums of (2.41)

1<u<s+t-—1 — 1 <wu < Min(2s — 1,2t — 1).

This is because the structure constants for larger u vanish, as can be seen by a careful
analysis of the formulas in appendix B.'> As we will later see, this is very important when
working in our modified formalism of Vasiliev theory, since it will then be manifest that
only a finite number of equations couple to each other.

2.3.2.2 Quotient of Universal Enveloping Algebra

As we discussed above, the associative algebra SB[u] can be constructed as a quotient
of the universal enveloping algebra of 0sp(1]2) as seen in equation (2.37). This implies
that all generators (2.37) can be written as polynomials of 0sp(1|2) generators, which we
will denote with G, = G(O?)Jr and L,, = Lg”, modulo the equivalence relation Co ~ u =
AA = 1). Actually, due to the anticommutator {Go,Gz} = 2L45, we only need the
fermionic generators G,. While the anti-commutator is fixed, the commutator is not and
corresponds to a new element in the algebra. It is convenient to write it in terms of a new
bosonic element @ as follows

[Ga, Ggl = (Q + 3)éas- (2.49)

Due to the 0sp(1|2) commutation relations one has the constraint {Q,G,} = 0 and noth-
ing else [39]. Hence the associative algebra generated by G, and @ modulo Co =~ p is
isomorphic to SB[u]. We can however simplify even more. By direct calculation it turns
out that @ is related to the Casimir by!*

1

T (2.50)

1 1
Co=L3— 5{Ll,L,l} + Z[G%,G_%] = ZQ2

This is very remarkable, since it implies that we can get rid of the Cy &~ \(\— %) constraint
by setting
Q=20\- DK, (2.51)

where K2 = 1. Thus, we conclude that SB[u] is isomorphic to the associative algebra
generated G, and K with the following relations

[Ga,Gal = (cK + L)eas, {K,G,} =0, K?=1, (2.52)

30ne can actually cut off the sum over u even more, but this will be mode-dependent.
17t seems that it has also been noted in math literature [55] that the Casimir posses a “square root”
related to the commutator of G.
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and ¢ = 2(\ — 1). By playing around with the (anti-)commutators (2.31),(2.32),(2.33)
and (2.34), it becomes obvious that even (odd) numbers of symmetrized products of

G correspond to the elements L,(f)* (G$S)+), while the same objects multiplied with K

correspond to LS,?‘ and Gﬁs)_. We will return to this later, when we discuss Vasiliev

theory.

2.4 Asymptotic Conditions and Classical Drinfeld-Sokolov
Reduction

We have so far discussed different possibilities for formulating higher-spin (super)gravity
theories on AdSs. Using the Chern-Simons formulation, the input required is a Lie (su-
per)algebra g together with an sl(2, R) < g embedding which corresponds to the gravity
sector. The higher-spin content can then be found by a decomposition of g under the
adjoint action of this s[(2,R) embedding.

Having gone through detailed discussions about the algebras relevant for us, we will
in this section go back to the Chern-Simons theory, impose boundary conditions and then
find the asymptotic symmetries of AdS3. It is clear that imposing boundary conditions,
we must restrict the allowed gauge transformations such that they leave the boundary
conditions invariant. This means that an infinite number of previously gauge-equivalent
configurations become physically distinct. We will therefore have dynamical (massless)
degrees of freedom near the boundary although the bulk is non-propagating. It is well
known that for a g Chern-Simons theory on a manifold M with boundary OM, the
boundary dynamics is described by a gi Wess-Zumino-Witten CFT. This can be seen
either by directly rewriting the action in the holomorphic gauge [56, 20|, or from the fact
that the Poisson structure of the phase space of boundary excitations is an untwisted
affine Lie algebra.!®

However not all solutions, or equivalently all points in phase space, of this Chern-
Simons theory are admissible classical (higher-spin) gravity configurations. For this we
need to restrict to asymptotically AdSs configurations, which in turn impose (first class)
constraints on phase space. Turning the first class constraints into second class by gauge-
fixing and reducing to the constrained phase space, the Dirac-bracket algebra will generi-
cally turn g into a classical W algebra.

This way of deriving classical W algebras by constraining affine Lie algebras is known as
(classical) Drinfeld-Sokolov reduction [58|, and generically associates a centrally extended
W algebra to any semi-simple Lie algebra.'® This procedure critically depends on how
5[(2,R) is embedded in g. Alternatively instead of constraining the phase-space, one can
impose these constraints directly on the WZW or Chern-Simons fields, leading to the so-
called Hamiltonian reduction. After a reduction, this leads to a Liouville theory|60, 61]
for pure gravity, or more generally a Toda Field theory [62], which is known to have
higher-spin conserved currents generating ¥V algebras.

In the following sections we briefly discuss the boundary conditions imposed on the
Chern-Simons theory leading to asymptotic AdSs solutions, including rotating massive
black holes [63]. Then we will see how this induces a classical Drinfeld-Sokolov reduction

15This is actually also known from the fractional quantum Hall effect in which the bulk Chern-Simons
theory gives rise to gapless edge excitations [57] (known as chiral Luttinger liquid), which has been seen
experimentally.

163ee [59] (PhD thesis) for a very readable account.
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of the Chern-Simons gauge connection. The form this field takes in the so-called lowest-
weight gauge will be very important for us later in the thesis. Due to lack of time we
are sadly forced to be rather shallow and not too detailed, but we will sketch the general
features.

2.4.1 Boundary Conditions and Gauge fixing

We will here consider Chern-Simons theory with the gauge group G and Lie algebra g, on
a manifold with topology M = R x ¥ and boundary OM = R x S!. Let ¢ parametrize R,
while p and 6 are the radial and polar coordinate for the disc X, respectively. The first
thing to note is that the action (2.3) is not well-defined in the presence of a boundary.
Following Regge and Teitelboim [64], we need to impose boundary conditions such that the
functional derivative 0Scg[A]/dA exists and is well-defined. Using light-cone coordinates
x* = t+0, it can be shown that a variation of the action contains a boundary contribution

5S0s = — 78 [ qatde- tr(AL0A_ — A_SAL), (2.53)
47'[' OM

where Ay = %(At + Ap). This boundary contribution to the variation can be set to zero
by the boundary condition

A |y =0. (2.54)

We will now find the basic variables of the physical phase space, which can be thought of
as the space of classical solutions modulo gauge transformations. Thus, we need to fix the
gauge degrees of freedom. A particularly useful gauge is given by the condition

4, = b7 (0)9,b(p). (2.55)

which is always possible to obtain.!” The group-valued function b(p) is fixed and depends
only on the radial coordinate. We will here choose

b(p) = e Lo, (2.56)

where Ly and L are generators of the s[(2,R) subalgebra. This choice of gauge is par-
ticularly useful in the AdS/CFT context, since it naturally leads to a Fefferman-Graham
expansion. Decomposing the connection as A = A;dt+ A;dz’, one will find that the action
does not contain a time-derivative of A; and is linear in it. Thus, it can be thought as a
Lagrange multiplier. The variation of the action with respect to A; yields the constraint

Foo = 0,49 + [A,, Ag] =0, (2.57)

which is solved by
Ag(t, p.6) = b (p)i(t, 0)b(p), (2.58)

where a(t, ) is an arbitrary g-valued function of ¢t and 6. The p-dependence of the Lan-
grange multiplier A; is determined from the equations of motion

0, A; + [Ay, Ay =0, (2.59)

"This is easy to see by starting from an arbitrary A}, and solving the equation gflA;g +97'0,9 =
b='9,b. This can be shown to have a solution given by a path-ordered exponential for any group-valued
function b(p).
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which again have a solution of the form (2.58). Due to the boundary condition (2.54)
we have that A; = Ay on M, but since the p-dependence is completely fixed by b(p) in
(2.58), this must hold on all M and not only on the boundary

A = %(At — Ag) =0 (2.60)

From the final equation Fyy = 0y Ag — 0pAr + [Ay, Ag] = (0, — ) A+ = 0 and (2.60) we find
that d_a(t,0) = 0, and hence a must be a function of z* only. The other sector A can
be treated in a similar way, but it turns out that we must impose the boundary condition
Ay = 0 instead in order to ensure invertibility of the vielbein [35]. The final results can
be summarized as

A
A

“L(p)a(z)b(p) + b~ (p) db(p),

(P)a(a= )b~ () + b(p) b~ (1), (261)

b
b

where a(z1) = a(x) dz™ is a g-valued one-form which can be thought of as the connection
for constant p-slices. Similar results hold for the other sector.

We have thus found all solutions (2.61) of the equations of motion with the boundary
condition (2.54), and a(z™) and a(x~) parametrize the (reduced) phase-space of the theory.
So different choices of a(z™) and a(z~) correspond to exact gauge inequivalent solutions
of the equations of motion. Note that if there were no boundaries present, the general
solution would be of the form A = g~'dg. This can be gauge transformed to the trivial
solution A = 0 and there would be no local degrees of freedom (there might however be
global ones measured by holonomies). When boundaries are present, we have the more
general solution parametrized by a(z™). This solution can also be mapped to the trivial
solution, but by a transformation which is not generated by a first class constraint. Thus
it acts as a global symmetry on the space of solutions and maps inequivalent solutions
into each other [65]. In the following section we will, very shallowly, discuss these points
and find the Poisson bracket of the basic variables of phase space a(z™).

2.4.2 Global Symmetries and Poisson Algebra

It turns out that the gauge fixing condition above completely removes all gauge degrees of
freedom, i.e. those that are generated by a first class constraint. There are however some
residual gauge transformations left, but these do not correspond to first class constraints,
but rather to global symmetries of the space of solutions (or reduced phase space of the
theory).'®
The gauge choice (2.55) is preserved by transformations, parametrized by A : M — g,
which satisfy d,A + [A,,A] = 0. This is again of the form (2.57) and the solution is
therefore
A(t,p,0) = b~ (D)A(E, 0)b(p). (2.62)

The condition that it must preserve the boundary condition A_ = 0 forces the gauge
parameter to only depend on z, A = A(z"). The Lagrange multiplier A; gives rise to
first-class constraints which can be used to define the smeared generator

G(A) = % /E da' Adad tr(AFy) + Q(A). (2.63)

7

¥ We will only sketch the main ideas here, for more details see [66, 65, 11].



2.4. Asymptotic Conditions and Classical Drinfeld-Sokolov Reduction 22

The first term generates gauge transformations, while the second ensures that the variation
of G(A) is well-defined and cancels any surface term. If one assumes that A is independent
of the fields, one can show that the boundary term is given by

Q(A) = —’;%S " da’ tr (AA;). (2.64)

Using this, a gauge transformation of any phase-space functional is given by the Poisson
bracket!¥ 5, F = {G(A), F'}, in particular 54 A = {G(A), A} = dA +[A, A]. The boundary

term gives rise to a central extension, which can be shown to be

{G(A),G(D)} = G(IA,T]) + ’“2% /6 dz’ tr (AO;T) . (2.65)
DX

The crucial point to note is that the charge does not weakly vanish when the constraints
Fij = 0 are imposed, G(A) ~ Q(A). This means that Q(A) does not correspond to a
gauge transformation, but is a global charge, mapping inequivalent configurations into
each other. This is the origin of the infinite number of degrees of freedom in the presence
of a boundary.

Fixing the gauge as discussed above and going to the reduced (physical) phase-space,
the gauge algebra turns into the algebra of global charges

k .

(QU). QD). = QA T) + 55 [ as' r(aar), (2.66)
0%

where { -, - }, is the Dirac bracket. In this reduced phase space the basic variables are not

A? anymore, but rather a(z*) = a(z")dz™ as seen in (2.61). Using the form of 4y given

(2.58) and the allowed transform (2.62) we find the following global charge®®

k k
QA) = —=S5 a0 tr (A(0)Ag(0)) = —~2 [ d6 tr (A(0)a(0)) . (2.67)
2T o2 21 o2
We can now find the canonical Dirac brackets of the dynamical degrees of freedom. These
can be found from the transformation

. . k a . .
6ad(0) = {Q(A),a(0)} = — = = A (0" ran{a(8"),a(6)}, (2.68)
where we have used the Killing form k.. We can evaluate the transformation dpa =
OgA + [a, A], which is found from dpAg = JpA + [Ag, A]. Expanding in a generic basis of
the Lie algebra a® = a7, this transformation can be shown to be reproduced by the
following bracket

- - 27 ~
[@(0), 3" (0} = - |k*0'(0 — 0') — ftac(9)s(0 - 0], (2.69)
kcs
9The Poisson bracket for two phase-space functionals F[A;] and H[A;] is defined as {F,H} =
,fc—”s fz dz' A da? tr (#sz) %) = K2§S fz d2z eij%nab%, where kg, is the Killing form de-

fined from the trace of g (we are ignoring possible subleties of non semi-simple and infinite dimensional
algebras). Before gauge-fixing, the basic phase-space variables are A{ (z) and they have the Poisson bracket
{Af(2), Ab(y)} = ,fc—"seijﬁ“bé(x — y), which can be derived by calculating the canonical momenta corre-
sponding to Af(x).

20We only write the 6-dependence since we are integrating along % ~ S' and the ¢-dependence is
completely fixed by 6.
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where fgb are the structure constants of g in the chosen basis. Expanding in terms of
modes

~q _ 1 a _—imb
a*(0) = s 1%%ame , (2.70)

we find that this is nothing but a classical untwisted Affine Lie algebra?!

—i{ad,, @}, = ifeas, ., + mkosk®om, . (2.71)
This is the well-known fact discussed earlier, namely that the boundary dynamics of
a Chern-Simons theory is given by a Wess-Zumino-Witten model, but derived from a
Hamiltonian point-of-view.

2.4.3 Asymptotic AdS; Solutions and Asymptotic Symmetries

There is a problem with our analysis so far. Not all solutions (2.61) are admissible since
they do not all asymptote to AdSs. In [11] it was proposed to impose the additional
asymptotic fall-off condition??

(A — Aaas =0(1), (2.72)

Nom

which requires the difference between the configuration and AdSs to be finite at p — oo.
There is a similar condition on A. Here the gauge configuration corresponding to pure
AdS3 is given by

1
A=p"! <L+ + 4L_> bdx™ + Lo dp,
) (2.73)
A=—b (L + 4L+> b~ldz — Lodp.

Note that this crucially depends on the embedding s[(2,R) < g. For inequivalent embed-
dings, one will therefore obtain different theories. In order to see the consequence of this
extra condition on a general Lie (super)algebra g, it is convenient to use the triangular
(Gauss) decomposition (see appendix D)

g=g-®goD g+ (2.74)

This is just splitting the generators into negative, zero, and positive eigenvalues of ady, :
g — g. Consider expanding A in the basis (2.13), with appropriate Zo grading of the
coefficients in the case of Lie superalgebras. From the Baker-Campbell-Hausdorff theorem
we see that any generator with adr, mode m, goes as €™”, and opposite for the other
sector. Using this, the asymptotic fall-off conditions (2.73) imply that a(z") — Ly may
not contain components of positive ady,, eigenvalues

a(zt) — Ly € g_ @ go. (2.75)

This constraint essentially corresponds to those of Drinfeld-Sokolov reduction. It turns
out that these are first class constraints?, and they provide enough gauge invariance to

2!This can also be derived directly from (2.66)

?28ee [67] and [68] for a generalization of these boundary conditions to include Schrédinger, Lifshitz
and warped AdS spacetimes, among others.

23Except a few cases which are not important for us.
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put the action into the so-called lowest weight gauge [58, 35|. In this gauge we have that
a(zt) = Ly + a_(z") where

ad;_a_(z7) =[L_,a_(z")] = 0. (2.76)

Therefore, only generators with lowest possible mode m for each spin-s generator are kept.
It turns out that this completely fixes the gauge. The other sector can again be treated in
a similar way. In the case of g = shs[)], we will write the connection for constant p-slices
as

(@ 27 1 +y 7 (5) 1 +y (5) +
G(IIZ ) = <L1 + @ >E |:]VSB [,5(1' )L*LSJ+1 + st(x )G[s]+§:| ) dx s
= (2.77)
_, 2 27 1 _ s 1 - _ s _
a(x™) = —(L(_% + — E [NSB Ls(x )L(LSL1 + st(x )G([S%_g] > dx~,

>

where one has the freedom of choosing a convenient normalization. It turns out that L,
and s can be identified with the bosonic and fermionic currents of the boundary CFT,
respectively, and can be thought of as conserved charges of the solutions. In particular,
Lo is related to the energy-momentum tensor.

Since the phase-space has been reduced even more by the additional constraint (2.72),
the canonical structure of the phase-space (2.71) is constrained. Drinfeld-Sokolov reduc-
tion constrains this affine Lie algebra and turns it into a VW-algebra. There are essentially
two ways to proceed. Having turned the first-cla