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Abstract

Gravitational physics in higher dimensions can be used as a laboratory for conducting exper-
iments in material science. A laboratory can be set up whenever there exists a connection
or duality between gravity and the physics of continuous media. Conducting experiments
amounts to placing the experimenter on a surface in space-time whose task is to measure
the fluxes of energy-momentum originating from a gravitational solution. Black branes -
black holes infinitely extended along some directions - are the canonical example of gravity
solutions that can be used as objects of study for material science. From this point of view,
they belong to a rather unusual class of materials since, besides the fact that they cannot
be experienced through the senses, they can be deformed in space as well as in time and
exhibit simultaneously fluid and solid properties. In this thesis, we explore the blackfold ap-

proach to higher-dimensional black holes, an effective worldvolume theory that describes the
dynamics of thin black branes. Within this framework, black holes made of wrapped black
branes (blackfolds), can be viewed as materials, characterized by transport and response co-
efficients such as viscosities, Young modulus and piezoelectric moduli. The linkage between
fluctuations of black branes and the physics of dissipative fluid flows has been established
in the past few years, however, the connection between the bending of black branes and
relativistic (electro)elasticity theory is genuinely new and has been developed here. In fact,
what is realized is that depending on the type of deformation applied to the back brane, dif-
ferent behavior is exhibited. In this thesis, we explore this idea and show that the effective
theory describing the dynamics of black branes can be reformulated in a way such that the
(electro)elastic character of these materials becomes evident. Blackfolds can be seen as thin
elastic branes and in the limit where they become infinitely thin we compute their modulus
of hydrostatic compression and elasticity tensor. The elastic equilibrium condition for differ-
ent configurations in non-trivial background space-times is obtained and known black hole
solutions, such as Kerr-(Anti) deSitter black holes, are reproduced. These last are shown
to suffer from a Gregory-Laflamme instability, which is verified by taking an ultra-spinning
limit. The (electro)elastic character of neutral and charged dilatonic black strings is unrav-
elled by measuring for the first time the elastic and piezoeletric moduli of materials that are
deformed both in space as well as in time.



Resumé

I denne afhandling udforsker vi den såkaldte blackfold metode for sorte huller og braner i mere
end fire dimensioner. Blackfold metoden går ud på at approksimere tynde sorte braner med
en effektiv dynamisk world-volume teori. En blackfold er en sort bran der kan bøjes, vikles og
bevæge sig dynamisk hvilket beskrives af blackfold metoden. I denne metode kan sorte braner
beskrives som kontinuerte materialer og de har både hydrodynamiske og kontinuummekaniske
karakteristika. Dette inkluderer både transport og responskoefficienter såsom viskositet,
Young modulus og piezoelektriske moduli. Forbindelsen mellem fluktuationer af sorte braner
og hydrodynamik er udviklet fornyligt over flere år mens forbindelsen til kontinuummekanik
er ny og er blevet udviklet som en del af dette projekt. I denne afhandling udforsker vi denne
ide og viser at den effektive teori der beskriver dynamikken af sorte braner kan formuleres
på en måde sådan at de (elektro)elastiske karakteristika explicit kommer til syne. Blackfolds
kan ses som værende tynde elastiske braner og i grænsen hvor de bliver arbitrært tynde
udregner vi deres moduli for hydrodynamisk kompression og tensoren for elasticitet. Vi
udregner betingelsen for elastisk ligevægt for forskellige konfigurationer i ikke-trivielle rum-
tids baggrunde for kendte sorte huller såsom Kerr-(Anti)-de Sitter sorte hul. I dette specielle
tilfælde er det sorte hul ustabilt med hensyn til Gregory-Laflamme instabiliteten, og dette
kan ses ved at tage en ultraspin grænse. De (elektro)statiske karakteristika for neutrale og
ladede sorte stringe bliver fundet ved at måle for første gang den elastiske og piezoelektriske
moduli af materialer som deformeres både i rum såvel som i tid.
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Chapter 1

Introduction

Black holes continue to be extremely interesting and important objects of study of experimen-
tal and theoretical physics not only due to their complexity but also due to their weirdness.
Experimentally (in the astrophysics sense) they pose highly difficult problems of observation
and measurement, let alone the puzzling phenomena of quasars, supermassive black holes
and black hole formation. Theoretically, besides the high level of fine mathematical detail
necessary to explain experimental observations, they provide one of the most exciting puzzles
that defy both gravitational physics and quantum mechanics.

According to general relativity, black holes hide a singularity behind the horizon where
the strength of gravitational fields is beyond reasonable leading to a break down of known
physics. In addition, a semi-classical analysis that attempts to incorporate a slight amount
of quantum physics results in information loss, which has lead to the famous information

paradox [1, 2, 3]. While there are many unfinished proposals to deal with these two problems,
the most common belief is that only a consistent theory of quantum gravity will be able to
resolve both the singularity and information loss puzzles [4]. Several attempts to unify
gravity with quantum mechanics have been made and none so far could be experimentally
verified. Among these, string theory [5, 6] has been the most exhaustively explored approach
providing us with many insights into these puzzles and, in certain cases, able to touch “reality”
in a qualitative way through one of its spinoffs - the AdS/CFT correspondence [7].

This thesis, as any other in the field of theoretical high energy physics, and allowing
ourselves to portray it partly by a human body, has one foot in a mathematical development,
another in a hunch (or in many cases belief) of what physical reality is supposed to be and
a hand that barely touches reality through an intricate process of relations to other hands
- parts of other bodies (theses). Let us be more explicit about this point. The AdS/CFT
correspondence [7] is a holographic duality that relates, in its original form, type IIB string
theory (our hunch/belief) on AdS5 × S5 space-time - a product of five-dimensional Anti-
de Sitter (AdS) and a five-dimensional sphere - and N = 4 Super Yang-Mills (SYM) - a
conformal quantum field theory that lives on the boundary of AdS. This field theory living
on the boundary, in a certain regime, admits a hydrodynamic description which translates

9



10 CHAPTER 1. INTRODUCTION

into fluctuations in the geometry of planar black holes in the bulk of AdS - this has been
dubbed the fluid/gravity correspondence [8, 9, 10, 11, 12]. In this way, by studying higher-
dimensional gravitational physics it is possible to obtain properties, such as the viscosity
to entropy ratio, of quantum field theories in the regime where they are described by fluid
configurations [8, 9]. While N = 4 SYM is a theory that has a priori nothing to do with
any particle theory observed in physical reality it seems to share similar properties with
certain physical systems, in particular with the quark-gluon plasma extensively studied at
RHIC [13]. In this context, the work presented in this thesis, which explores a method - the

blackfold approach [14, 15, 16, 17, 18, 19] - that can be regarded as a generalization of the
fluid/gravity correspondence, could possibly be used to predict by extrapolation (through an
intricate process of relations) properties of real world physical models.

Despite the connection between the study of higher-dimensional gravity and real world
physics not being straightforward, the linkage between gravitational physics and hydrody-
namics and, more generally, material science deserves attention in its own right. Let us
give an example. Within the framework of the fluid/gravity correspondence perturbations
of black branes along boundary directions are mapped onto dissipative fluid configurations
on the boundary. The physics of dissipative fluid flows can therefore be used to study the
dynamics of black holes and, conversely, the analysis of perturbations of black holes can be
used as a testing ground for developing the correct theory of hydrodynamics. As a matter
of a fact, this has lead to the development of parity violating theories of hydrodynamics and
to a rigorous development of superfluid dynamics [20, 21, 22, 20, 23, 24]. Another example,
pertinent to this thesis, relates the bending of black brane geometries along directions trans-
verse to the worldvolume with the physics of elastic solids and piezoelectrics [25, 18, 26, 19].
Connections as these can be used to conduct experiments, as if a laboratory was given to us,
and can also lead to a formal development of relativistic (electro)elasticity theory - a subject
which is also far from being established in full generality. The important lesson to take from
these examples is that different long-wavelength perturbations of black branes are described
by different long-wavelength physics.

The main subject of this thesis is to establish the connection between gravitational physics
and the theory of (electro)elasticity. However, it can be considered, in a broader context,
as an exploration of higher dimensional black hole physics despite its applications to the
fundamental problems of string theory and, in holographic setups, to the construction of toy
models that can mimic properties of quantum matter. From a purely gravitational perspec-
tive, the interest in gravitational physics in more than three spatial dimensions has increased
considerably in the past few years due to the fact that as the space-time dimension D is in-
creased the space of possible solutions becomes more intricate, rich and complex [27, 28, 29].
To what concerns black hole solutions of Einstein equations, many more horizon topologies
(single or multiple) are allowed than those restricted by uniqueness theorems in D = 4
[30, 31, 32, 33, 34, 35, 36]. The non-linearity of Einstein equations also becomes aggravated
in higher dimensions and solution generating techniques are scarcer and more evolved, hence
so is the number of exact and analytic solutions. Effective descriptions of black holes in a
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corner of phase space and perturbative methods for solving Einstein equations are needed
in order to study the vast landscape of black hole solutions and their dynamics. Within the
realm of higher dimensional gravity, there are a few interesting avenues of research:

• Analysis of known solutions: In D = 5 dimensions new and exotic, exact and ana-
lytic solutions such as black rings, black saturns, di-rings, bi-rings exhibit complicated
metric structures that are hard to analytically analyze due to their dependence on a
large number of parameters. The study of their geodesic structure, possible extensions
across Killing horizons, causal relations and properties such as regularity, stable causal-
ity or even global hyperbolicity is still in many cases left untouched while in others
some considerable amount of work has been done [37, 38, 39, 40, 41].

• Classification and uniqueness: In D = 4 one can describe black holes in vacuum
Einstein gravity just by their asymptotic charges and show uniqueness of the Kerr
solution [42, 43, 44]. In D ≥ 5 black hole uniqueness theorems must be at least
supplemented by the rod/domain structure as the asymptotic charges are not sufficient
[45, 46, 47, 48, 49]. In D = 5 and D = 11 uniqueness theorems have been written
down for certain types of theories where an integrable subspace of Einstein equations
exists, which normally involves a high degree of symmetry [47, 50, 51, 52, 53]. In non-
asymptotically flat space-times uniqueness of black holes has not been accomplished
even in D = 41 but a complete topological and geometric description has been provided
and serves as a first step for a uniqueness theorem [49].

• Construction of solutions: Due to the non-linearity and non-integrability of Ein-
stein equations in general, solution generating techniques in higher dimensions are few.
Whenever Einstein equations are integrable in a certain sub-sector, one can generate
new black hole solutions using, for example, the rod structure [31, 32, 33, 34, 35, 36]. In
vacuum, the only non-trivial, exact and analytic black hole solutions so far known are
the 5D black ring [30, 31] and the higher-dimensional Myers-Perry (MP) solution [55]
or composites with multiple horizons made out of these two [32, 33, 34, 35]. In (Anti)-de
Sitter space-time for example, the only non-trivial black hole solution is the higher-
dimensional Kerr-(A)dS solution [56, 57]. It is clear that even just a method for solving
perturbatively in a derivative expansion Einstein equations in higher-dimensions can
be useful to probe and study the higher dimensional phase space and properties of
black holes.

• Effective descriptions: Due to the complexity of solution space in higher dimensions
and the difficulty in finding exact analytic solutions, effective descriptions in certain
regions of parameter space can be used to study the dynamics of black holes. Ex-
amples of these effective theories are: the membrane paradigm [58, 59, 60, 61, 62],
which describes the behavior of black hole horizons; the fluid/gravity correspondence

1Uniqueness in AdS of static black holes has been shown under certain assumptions [54].
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[8, 9, 10, 11, 12], which provides an effective long-wavelength description for the behav-
ior of perturbations of black branes along boundary directions; and the blackfold ap-

proach [14, 15, 16, 17, 18, 19], an effective theory for the dynamics of thin black branes,
which characterizes the behavior of strained black brane geometries along worldvol-
ume directions and orthogonal to these. All these approaches show that the physical
properties of black holes in certain regimes can be captured by the physics of fluid
flows that either live on the stretched horizon (membrane paradigm), on the boundary
(fluid/gravity correspondence) or in an intermediate region (blackfold approach).

While all these possibilities must be investigated to correctly understand the consequences
of higher dimensionality in gravitational physics, it is the last two avenues of these four that
we take in this thesis by exploring and applying the blackfold approach to higher-dimensional
black holes. Below, we provide the insight underlying this development, briefly describe
the method, summarize some of its accomplishments and give an overview of the main
contributions of the work presented here together with the structure of this thesis.

1.1 The blackfold approach

In higher-dimensional gravity black holes admit regimes where two widely separated horizon
length scales exist simultaneously. Two such well known examples are 5-dimensional black
rings [30] and MP black holes [55]. A 5-dimensional black ring has S1×S2 horizon topology
with rotation along the S1 and is characterized by a horizon size r0 and a radius R. When set
to rotate very fast its radius increases rapidly and one obtains a hierarchy of scales r0 � R.
Taking a near horizon limit at a fixed angle of the S1 direction leads to the metric of a
boosted black string [63]. If we now focus on the case of a singly-spinning MP black hole
in dimensions higher than six, the horizon topology is SD−2 under mild rotation. Increasing
its angular momentum results in an horizon topology for which a SD−4-sphere of radius
r0 is fibered over a disk D parametrized by (ρ, θ) of radius R satisfying r0 � R. Again
approaching the disk at any fixed angle θ leads to the metric of a boosted black membrane
[64, 25].

These two geometries are in fact the only known non-trivial, exact and analytic back
hole solutions of vacuum Einstein equations in higher dimensions and, as explained above,
have something in common: both exhibit regimes where their horizon is characterized by
two distinct and widely separated length scales. Bearing this in mind, one is lead to pos-
tulate the existence of other black hole solutions that show this same common feature and
to devise a method capable of searching for them. Such method is called the blackfold ap-

proach and consists in wrapping (or bending) the metric of a boosted black brane along an
arbitrary horizon geometry and solving perturbatively Einstein equations order-by-order in
the parameter ε ≡ r0/R. We proceed by describing in detail how this method works.
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Description of the method

The blackfold approach was first used in the context of black rings in a variety of different
settings [14, 65, 66]. Recently, it has been generalized for a very large class of black holes
which are locally described by boosted Schwarzschild branes [18]. Its application requires
solving Einstein equations by means of a matched asymptotic expansion (MAE), in which
there are two different coordinate regions: the region near the horizon for which r � R, and
the far region for which r � r0 where the weak field approximation is valid. The applicability
of a MAE requires the existence of an overlap region r0 � r � R which is guaranteed
whenever r0 � R. Focusing on neutral (uncharged) black branes, in the near region the
metric is a perturbation of the boosted black brane while in the far region the gravitational
field is well described by the linear approximation sourced by the appropriate blackfold
effective stress-energy tensor. Each region feeds the other with boundary conditions. We
summarize the procedure to first order in ε:

• 0th order (near/far): In the near region the geometry is locally that of a boosted
Schwarzschild membrane

ds2 =

�
ηab +

rn0
rn

uaub

�
dσadσb +

�
1−

rn0
rn

�−1

dr2 + r2dΩ2
n+1 , (1.1.1)

where the vectors ua are related to the boost velocities and satisfy uaua = −1. In the
far region the metric gµν is that of the ambient spacetime we choose our black hole to
tend asymptotically to.

• 1st order (far): For an observer sitting in the far region the gravitational field is that
of an object with the shape of the horizon of the black hole we want to construct and
locally described by the stress-energy tensor that sources the metric (1.1.1). This stress
tensor T̂ µν can be written in the perfect fluid form [16]. Requiring the solvability of
Einstein equations in the linearized regime �h̄µν = −16πGT̂µν implies that only sources
satisfying

∇νT̂
µν = 0 (1.1.2)

can be consistently coupled to the gravitational field [14, 18]. Here we have assumed
the absence of couplings to other background fields. The set of equations that result
from (1.1.2) constitute the blackfold effective equations of motion (EOMs), which we
will analyze in detail below, and have been derived directly from Einstein equations
for objects with no boundaries and whose local geometry is given by (1.1.1)2.

2Even though that Eq. (1.1.2) has only been proven to be the correct requirement for constructing black
hole spacetimes in these cases, the correct matching with many different analytic solutions makes it a strong
case to assume its validity in full generality.
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• 1st order (near): The geometry in the near region is the 1/R perturbation to the
Schwarzschild black membrane (1.1.1) that is found using the 1st order (far) metric
as a boundary condition. As shown in [18], it has locally the general form3

ds2 =

�
ηab − 2Kab

iyi +
rn0
rn

uaub

�
dσadσb+

�
1−

rn0
rn

�−1

dr2+r2dΩ2
n+1+hµν(y

i)dxµdxν ,

(1.1.3)
where r =

�
yiyi and Kab

i is the extrinsic curvature tensor of a surface with the same
topology as that of the horizon. The metric is regular in and outside the horizon as
long as Eq. (1.1.2) is satisfied.

It is expected that this procedure can be continued order-by-order by measuring the corrected
effective stress-energy tensor from (1.1.3) and proceeding as above. The reader might find
certain similarities between the procedure implemented here and the procedure carried out in
the context of the fluid/gravity correspondence [8, 9, 10, 11, 12]. There, the brane fluctuations
are of the hydrodynamic type and introduced by perturbing the fields that characterize the
fluid flows, in particular, they do not break the spherical symmetry of the brane (1.1.1).

On the other hand, for most practical purposes one does not necessarily need to produce a
metric. It is possible to scan for a wide variety of horizon topologies, to study thermodynamic
and dynamical stability of the solutions or to evaluate their conserved charges simply by
studying the effective EOMs (1.1.2) which also suffer corrections order-by-order. It is the
theory defined by these equations that is called the blackfold effective theory and, being
a truncation of Einstein equations, describes the dynamics of thin black branes to leading
order in ε. As mentioned above, because the effective stress-energy tensor is, to leading
order, of the perfect fluid form, Eqs. (1.1.2) present a generalization of the usual relativistic
fluid mechanics since the fluid is in these situations confined to a dynamical surface and
include the fluid/gravity correspondence effective description as a particular case.

Applications and structure of the thesis

The method described above has been applied in different settings and the EOMs analyzed
in different situations. We summarize the several directions directions that have arise from
this exploration:

• Analysis of the EOMs: The effective blackfold EOMs (1.1.2) require a generalization
of usual fluid mechanics and hence must be studied in its own right. For stationary
fluid configurations it is shown that the system inherits both fluid (intrinsic) properties
as well as elastic solid (extrinsic) properties. A rigorous formal development of this
with applications beyond the scope of the blackfold approach is presented in Sec. 2.
The procedure of Sec. 1.1 can also be applied to charged branes. In this context it has

3A generalization of this metric to Einstein-Maxwell-Dilaton theories will be presented in [67].
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required the development of a theory that describes stationary charged perfect fluids
living on a (p + 1)-dimensional surface with q = p or q = 0 brane charge [76, 69] as
well as the study of anisotropic fluids with q = 1 brane charge, in the latter case,
fluids with conserved string number [69]. If external background fields are present, the
theory must be further developed. An example, pertinent to AdS/CFT applications
was explored in [68].

• Constructing metrics/solutions: The construction of metrics to order ε by direct
application of the method of Sec. 1.1 has been applied to black rings in flat, (A)dS
and Taub-Nut asymptotics [14, 65, 66]. An application to charged strings in Einstein-
Maxwell-Dilaton (EMD) theory is considered in Sec. 4. Construction of solutions by
studying the EOMs has lead to a variety of new exotic horizons such as helical rings and
strings, odd-spheres with or without different types of charges, black cylinders and the
higher-dimensional Kerr-Newman solution [63, 69]. In Sec. 3 we present some examples
of these in (A)dS backgrounds and show the existence of ultra-spinning regimes in the
Kerr-(A)dS black hole, a study motivated by the recovery of known solutions from the
blackfold approach.

• Fine structure corrections and transport/response coefficients: ’Fine struc-
ture’ corrections is the terminology introduced in [25] to characterize the corrections
that come from pushing the method of Sec. 1.1 to next order when backreaction can
be neglected. In these situations the EOMs take the same form as in (1.1.2) but the
effective stress tensor is modified. This includes the case of viscous corrections as well
as of curvature corrections. Viscous corrections have been considered in the context of
fluid/gravity correspondence [8, 9] and also in Minkowski space-time [17] and allow for
the measurement of transport coefficients such as shear and bulk viscosities. In the case
of charged branes, they allow for the measurement of conductivities [20, 21]. Curva-
ture corrections, which require a multipole expansion of the stress-energy tensor, have
been considered for black strings and branes in asymptotically flat space as well as for
charged black strings [25, 18, 26]. A rigorous analysis of how the EOMs get modified to
next to leading order is given in Sec. 4 together with the example of the measurement
of two new response coefficients of black branes: the elastic and piezoelectric moduli.

• Thermal brane probes: The EOMs given in (1.1.2) can be used to probe space-times
at finite temperature and in the context of AdS/CFT can be seen as a generalization
of the DBI action at finite temperatures. The novelty of the method, as compared to
previous attempts to thermalize certain configurations, is the requirement of the brane
probe to be in thermodynamic equilibrium with the background. This method has
been used to construct thermal versions of the BIon solution [70, 71, 72, 73] as well of
thermal Wilson loops [74] and giant gravitons [68].

The following sections are adapted versions of the papers [19, 75, 26, 25].
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Chapter 2

Stationary fluids on dynamical surfaces

In this section we review and reinterpret the effective worldvolume theory describing station-
ary fluid configurations confined to a (p+1)-dimensional dynamical surface, parametrized by
the mapping functions Xµ embedded in an ambient D-dimensional space-time with metric
gµν [14, 15]. When the surface and the space-time are of equal dimension we obtain the
ordinary description of fluid mechanics. We work under the assumption that the fluid is in
local thermodynamic equilibrium. This is achieved when the mean free path characterized
by the inverse of the local temperature T (σa) is much smaller than the radius of curvature
of the embedding geometry R(σa), i.e.,

1

T (σa)
� R(σa) , (2.0.1)

where σa, a = 0, ..., p are the coordinates that parametrize the worldvolume Wp+1 traced out
by the surface in space-time and endowed with metric γab = gµν∂aXµ∂bXν , µ, ν = 0, ..., D−1,
with Lorentzian signature. We further assume that the surface is infinitely thin. Finite
thickness effects will be considered in Sec. 4. Secs. 2.1 and 2.2 review the worldvolume
effective theory and the intrinsic fluid dynamics following Refs. [15, 16, 69, 76], while the
remaining reinterpret the extrinsic dynamics in terms of relativistic elasticity theory.

2.1 The worldvolume effective theory
Assuming the fluid not to backreact onto the background, the usual equations of fluid me-
chanics can be derived by imposing conservation of the stress-energy tensor T̂ µν [77]

∇νT̂
µν = F̂

µ , (2.1.1)

where we have included the possibility of an external force F̂µ as opposed to Eq. (1.1.2). The
dynamics of fluids living on dynamical surfaces also follows from (2.1.1) but the stress-energy

17
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tensor characterizing these configurations is confined to the surface in the following way:

T̂ µν(xα) =

�

Wp+1

dp+1σ
√
−γ T µν(σa)

δD(xµ −Xµ(σa))�
−g(xα)

. (2.1.2)

Here one should interpret T̂ µν(xα) as the full spacetime stress-tensor while the components
T µν(σa) with support on Wp+1 should be seen as worldvolume densities of stress-energy. We
assume the force term F̂µ(xα) to be of the same form as (2.1.2) with appropriate worldvolume
density Fµ(σa). Introducing (2.1.2) into Eq. (2.1.1) results in a worldvolume theory where
the densities T µν(σa) only have components tangential to the worldvolume

⊥
ρ
νT

µν = 0 , (2.1.3)

where the orthogonal projector to the worldvolume is defined as ⊥ρν= gρν − γρν with
γµν = γab∂aXµ∂bXν being the push forward of the induced metric. The equations of motion
derivable from Eq. (2.1.1) can be written in the form

γρ
ν∇ρT

µν = F
µ , (2.1.4)

together with the boundary condition

T µνn̂ν |∂Wp+1 = 0 , (2.1.5)

where n̂ν is a unit normal vector orthogonal to the worldvolume boundary. Imposing the
constraint (2.1.3) on T µν requires T µν = T abuµ

au
ν
b with uµ

a = ∂aXµ which can then be used
to split Eq. (2.1.4) into two sets of equations by projecting along tangential and orthogonal
directions to the worldvolume:

DbT
ab = ua

µF
µ , (2.1.6)

T abKab
ρ =⊥

ρ
µ F

µ . (2.1.7)

Here Da is the covariant derivate with respect to the induced metric γab of the surface on
which the fluid lives. Eqs. (2.1.6)-(2.1.7) were first derived by Carter [77]. The first equation
expresses the conservation of worldvolume stress-energy while the second can be interpreted
as the balance of forces acting on the fluid in orthogonal directions. We will in the remaining
sections take T ab to be of the perfect fluid form and Fµ to be vanishing but we note that
this worldvolume effective theory is valid for any type of material one would like to describe.



2.1. THE WORLDVOLUME EFFECTIVE THEORY 19

Fluid and elastic interpretation

Before continuing further, we would like to point out in which sense Eqs. (2.1.6)-(2.1.7)
encode simultaneously fluid and elastic behavior. Assuming Fµ = 0, Eqs. (2.1.6)-(2.1.7)
reduce to

DaT
ab = 0 , T abKab

ρ = 0 . (2.1.8)

When the stress-energy tensor density T ab is assumed to be of the perfect fluid form, as
in the case of planar AdS branes or Schwarzschild branes, the first set of equations give
rise to the usual energy density continuity and Euler equations of a perfect fluid. When
considering, for example, the type of (intrinsic) hydrodynamic perturbations of black hole
horizons encountered in the context of the fluid/gravity correspondence, this set of equations
can be derived as constraint equations directly from Einstein equations [8]. One can think
of perturbations of this type as fluctuations in the fields that characterize the material -
in this case the fluid - that lives on a space-time surface. Proceeding order-by-order in
perturbation theory results in dissipative corrections to the stress-energy tensor. The second
set of equations in (2.1.8) is of extrinsic nature and is associated with deformations of the
geometry (surface) on which the fluid flows. As in the case of hydrodynamic fluctuations,
this set is also directly derivable as constraint equations from Einstein equations [14, 18]
when deformations, for example bending, of black brane geometries are considered, as we
will show in Sec. (4). One of the main goals of this thesis is to show that this extrinsic set
of equations can be viewed as a relativistic generalization of elasticity theory of thin branes.

The reader may be familiar with Eqs. (2.1.8) when dealing with Dirac branes where
T ab = TDpγ

ab with TDp being the tension of the p-brane but we note that they have a
direct non-relativistic analog when considering deformations of thin membranes. To be
precise, suppose that we are given a thin elastic membrane of thickness r0 and subject it to
external forces applied at its circumference causing it to stretch in all directions. Assuming
the material to behave elastically, generating internal stresses σab that encode its Hookean
response to the stretching, the equations of motion that govern its mechanical equilibrium
can be obtained by varying the free energy [78]

F [Xµ] =
1

2

�

V ol

dV σabUab , (2.1.9)

where Xµ is the set of mapping functions that parametrize the position of the membrane in
the ambient space while Uab is the strain tensor. The resulting set of equations is exactly
(2.1.8) with T ab replaced by σab and with the indices a, b only running through the spatial
directions. Within this perspective, a response of the Dirac brane type can be seen as the
isotropic stretching of a p-brane.
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2.2 Intrinsic fluid dynamics
Our case study is that of a perfect fluid with energy density �(σa) and pressure P (σa) with
associated local entropy s(σa) and corresponding local temperature T (σa). The stress-energy
tensor is given by

T ab = (�+ P )uaub + Pγab . (2.2.1)

Here the fields ua denote the fluid velocities normalized such that uaua = −1. Assuming
local thermodynamic equilibrium the first law of thermodynamics must be satisfied

d� = T ds , (2.2.2)

where the infinitesimal differentials are taken along worldvolume directions. In addition
these quantities are supplemented by the Gibbs-Duhem relations

�+ P = T s , dP = sdT . (2.2.3)

The fluid dynamical equations follow directly from the intrinsic equation (2.1.6), which upon
contraction along directions tangential and orthogonal to the fluid flows and using the above
local thermodynamic relations can be written as the conservation of the entropy current Ja

s ,

DaJ
a
s = 0 , Ja

s = sua , (2.2.4)

and the Euler force equations

⊥̂
ab
T s(u̇b + ∂blnT ) = 0 , (2.2.5)

where ⊥̂
ab

= γab + uaub. Eqs. (2.2.4)-(2.2.5) are subject to the boundary condition (2.1.5)
now in the form:

T abuµ
a n̂b|∂Wp+1 = 0 . (2.2.6)

Focusing on stationary fluid configurations, these two equations are solved by requiring the
fluid velocities ua to be proportional to a worldvolume Killing vector field k of the form [79]

k = ξ + Ωiχi , (2.2.7)

where ξ is a worldvolume timelike Killing vector, χi are spacelike ones and i labels spatial
worldvolume directions. Without loss of generality we choose

ua =
ka

|k|
. (2.2.8)
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The global fluid temperature T appears as an integration constant from Eq. (2.2.5) and it is
related to the local temperature T via a local redshift factor,

T = |k|T , (2.2.9)

while the total entropy, assuming ka to be hypersurface orthogonal with respect to the
worldvolume metric, can be obtained by integrating the entropy current over the spatial
part of the worldvolume Bp,

S = −

�

Bp

dV(p)su
ana . (2.2.10)

Here we introduced the spatial measure dV(p) on the worldvolume and defined an orthogonal
vector na to a worldvolume spacelike hypersurface in the manner

na =
ξa

R0
, (2.2.11)

where R0 is the norm of the timelike Killing vector field ξ on the worldvolume.

2.3 Extrinsic elastic dynamics
In this section we analyze the extrinsic dynamics of fluid configurations described by Eq. (2.1.7).
We begin by defining the state of strain of the brane and the strain tensor and then proceed
to describe the equations of mechanical equilibrium.

The state of strain and the strain tensor

The fluid configuration studied in the previous section lives on an infinitely thin surface
described by the induced metric γµν . We are interested in examinaning the thermodynamic
properties of such a fluid when the geometry is deformed along orthogonal directions. The
metric γµν measures distances between neighboring points on the embedding surface, there-
fore, working under the assumption that the surface is thin and hence that variations in
distances measured with ⊥µν can be ignored1, the metric γµν describes the local state of
strain of the brane.

Let us define the state of strain of the brane prior to a deformation (unstrained state) by
γ̄µν . The length of infinitesimal spacetime distances along the surface is thus of the form

d̄s
2
= γ̄µνdx

µdxν . (2.3.1)
1This is the usual assumption of classical elasticity theory when considering deformations of thin mem-

branes and small strains and stresses [78].
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After a deformation, the state of strain is no longer described by γ̄µν but instead by the
actual value of γµν , hence the length of the infinitesimal element is changed to

ds2 = γµνdx
µdxν . (2.3.2)

Assuming the strains and stresses involved to be small, the difference between the length of
the line elements of the strained and unstrained case along an arbitrary orthogonal vector
Nρ is given by:

∆s2 = ds2 − d̄s
2
= £Nγµνdx

µdxν . (2.3.3)

Since we are only interested in changes along worldvolume directions we project this measure
along those directions,

∆s2|Wp+1 = γλ
µγ

ρ
ν£Nγλρdx

µdxν = −2NρKµν
ρdxµdxν , (2.3.4)

where we have used a mathematical identity described in [16]. Therefore, along any orthog-
onal direction Nρ, the strain varies proportionally to the extrinsic curvature tensor Kµν

ρ 2.
Since Kµν

ρ satisfies the property Kµν
ρ = ua

µu
b
νKab

ρ, we define the Lagrangian strain tensor
[80] for the brane as

Uab = −
1

2
(γab − γ̄ab) , (2.3.5)

which for infinitesimal deformations reads

dUab = −
1

2
dγab = NρKab

ρ . (2.3.6)

Equations of extrinsic dynamics

The extrinsic dynamics of the fluid living on the dynamical surface are described by the
extrinsic equation (2.1.7) which can be written in the form [16]

T s⊥ρ
µu̇

µ + PKρ = 0 , (2.3.7)

relating the acceleration of the fluid along orthogonal directions to the action of the mean
extrinsic curvature Kρ ≡ γabKab

ρ. Here, u̇µ is the fluid acceleration defined as u̇µ ≡ uν∇νuµ.
We now make the assumption of the existence of a background Killing vector kµ whose
pullback onto the worldvolume coincides with the worldvolume Killing vector field ka. Under
this assumption we can write

T su̇µ = −s∂µT . (2.3.8)
2Preliminary arguments in this direction were first given in [25].
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Introducing this into Eq. (2.3.7) and using the definition of Kρ yields,

⊥
ρ
µs∂

µ
T = PγabKab

ρ . (2.3.9)

Contracting the last equation with an arbitrary orthogonal vector Nµ leads to

sdT = −
1

2
σabdγab , (2.3.10)

where the infinitesimal differentials denote a variation along orthogonal directions and where
we have defined the pressure tensor σab as:

σab = Pγab . (2.3.11)

The r.h.s. of Eq. (2.3.10) can be written as σabdUab by recognizing the strain tensor defined
in (2.3.5). We now define the elastic solid density ρ as

ρ = �+ P = T s , (2.3.12)

and hence interpret s as an average particle density satisfying the conservation law (2.2.4)
and T as a mass function. In terms of infinitesimal variations along orthogonal directions to
the worlvolume we find

dρ = T ds+ sdT

= T ds+ σabdUab = T ds− PdV ,
(2.3.13)

where we have used the mathematical identity obtained in [16] for the relative change in the
local volume element

dV ≡
δN

√
−γ

√
−γ

=
1

2
γabdγab . (2.3.14)

Eq. (2.3.13) is exactly the relation that an elastic solid density ρ should respect under
hydrostatic compression [78] and expresses the fact that the system described by this set
of equations accounts for only changes in volume but not in shape. This is due to the
assumption of an infinitely thin surface since effects due to bending or torsion would require
a varying concentration of material across transverse directions. Along orthogonal directions
we can thus write the equivalent relations

�
∂ρ

∂Uab

�

s

= σab,

�
∂ρ

∂V

�

s

= −P . (2.3.15)

Here, as well as in (2.3.13), we have assumed that all strain components dUab are linearly
independent. This is not necessarily the case and we will deal with linear dependence towards
the end of this section. We note that the first equality in (2.3.15) only constrains the
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components of the pressure tensor which are contracted with non-vanishing components of
the strain tensor in (2.3.10). In order to make further contact with relativistic elasticity
theory [80, 81, 82] note that by means of the definition (2.3.12) the above thermodynamic
quantities and stresses can be derived from the mass function T , for example

s

�
∂T

∂V

�
= −P . (2.3.16)

Furthermore, we rewrite the stress-energy tensor (2.2.1) as

T ab = ρuaub + σab , (2.3.17)

motivating the interpretation of a solid at rest which has suffered hydrostatic compression
along all worldvolume directions. The definition and interpretation of Eq. (2.3.12) together
with the relations (2.3.13) and the decomposition (2.3.17) is one of the central results of this
section as they express the elastic character of the relativistic material since the components
of the pressure tensor σab involved in the extrinsic dynamics (2.3.10) can be obtained from
a single potential ρ - a required condition in relativistic elasticity theory [83, 80, 84, 82, 85].
It is possible to consider a more general elastic potential which is also better suited when
we consider charged branes. This will be the aim of the next section. For now, we focus
on the case for which the strain components in (2.3.13) can be linearly dependent. In such
situations, given the independent components of the strain tensor Uãb̃ we write (2.3.13) as

dρ = T ds+ σ̃ãb̃dUãb̃ , (2.3.18)

where we have introduced the effective pressure tensor along the component (ã, b̃),

σ̃ãb̃ = ⊥
ãb̃

abσ
ab , ⊥

ãb̃
ab =

∂γab
∂γãb̃

. (2.3.19)

Here the operator ⊥ãb̃
ab acts as a projector onto the linearly independent subspace of the

components of strain. Using Eqs. (2.3.18)-(2.3.19) we can write
�

∂ρ

∂Uãb̃

�

s

= σ̃ãb̃ . (2.3.20)

We wish to rewrite an effective form for the stress-energy tensor (2.3.17) along the direc-
tions (ã, b̃). To this aim we note that from Eqs. (2.3.7)-(2.3.8) together with the identity
uµuνKµν

ρ = ⊥ρ
µu̇ [16] and the Gibbs-Duhem relation (2.2.3) one finds the expression

ρuaub = 2

�
∂P

∂γab

�
, (2.3.21)
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which is only valid along transverse directions. Acting with the projector ⊥ãb̃
ab on both sides

of (2.3.21) and using (2.3.19) we can write the effective stress-energy tensor along transverse
directions as

T̃ ãb̃ = 2

�
∂P

∂γãb̃

�
+ σ̃ãb̃ , (2.3.22)

which must satisfy the constraint:

T̃ ãb̃ = 0 . (2.3.23)

Imposing (2.3.23) leads directly to the extrinsic equations of motion (2.3.7).

2.4 Elastic free energy, elasticity tensor and charges
Using the identity (2.2.3) it is possible to rewrite Eq. (2.3.10) only in terms of the pressure
P as

dP = −
1

2
σabdγab , (2.4.1)

or alternatively, along orthogonal directions and for the independent components of dγãb̃,

− 2

�
∂P

∂γãb̃

�
= σ̃ãb̃ . (2.4.2)

One can view this equation as a balance of forces between the pressure tensor and the internal
stresses generated by a variation in volume3. Moreover, at the level of uncharged fluid branes,
Eq. (2.4.2) is equivalent to Eq. (2.3.20) but this is not so in general. In fact, the pressure P ,
for reasons that will become apparent, provides a more general elastic potential which from
now on we take to be the canonical one. From Eq. (2.4.1) it is possible to define the bulk
modulus or modulus of hydrostatic compression K that measures the material response to
variations in volume through the relation

1

K
=

�
∂V

∂P

�

T

= −
1

P
. (2.4.3)

The definition (2.4.3) has a direct classical analog [78]. Eq. (2.4.1) can be integrated to an
action [16]

I[Xµ] =

�

Wp+1

√
−γ P , (2.4.4)

3For the fluid branes arising from a gravitational dual analyzed in [16] the pressure tensor takes the
interpretation of gravitational tension acting as a compression force while the first term in Eq. (2.4.2) takes
the interpretation of a centripetal force acting outwards the surface when the fluid is rotating. This is clear
from the r.h.s. of (2.3.21) since it is proportional to a density ρ and two copies of the four-velocity ua.



26 CHAPTER 2. STATIONARY FLUIDS ON DYNAMICAL SURFACES

which resembles the usual action for fluids living on a fixed background, the difference being
that γ is the volume measure on the worldvolume instead of being on the space-time [86].
On the other hand, the worldvolume being a surface of co-dimension higher than zero, allows
for elastic behavior which can be seen from the variation of the integrand along orthogonal
directions

−d(
√
−γ P ) = −

√
−γ dP − d

�√
−γ

�
P

=
√
−γ (−sdT − PdV) ,

(2.4.5)

where we have used the Gibbs-Duhem relation (2.2.3). Eq. (2.4.5) has direct analogy with
the variational form of the Helmholtz free energy of an elastic solid, exhibiting the same
local thermodynamic properties [78]. The action (2.4.4) demands to be interpreted as the
solid free energy F [Xµ] ≡ −I[Xµ] when the material has suffered hydrostatic compression.
To motivate this interpretation even further we assume in the present moment the fluid to
be barotropic, characterized by an equation of state � = wP . This together with (2.2.3) and
(2.3.12) allows us to rewrite the solid free energy as

F [Xµ] = −
1

w + 1

�

Wp+1

√
−γ ρ (2.4.6)

which is the usual action for relativistic elastic media [87, 81, 82]. The assumption of
barotropy can be relaxed in order to obtain an expression of the form of (2.4.6) as we
show in Sec. 2.6 when considering charged fluids. We note that the action (2.4.4) is very
general extending also to charged fluid branes [70, 69, 76, 74, 68], while the action (2.4.6) is
dependent on the equation of state. For this reason we have chosen the elastic potential P
to be the canonical one instead of ρ.

The elasticity tensor

In elasticity theory, given the potential P from which the pressure tensor σ̃ãb̃ can be obtained,
it is possible to define a deformation tensor K̃ ãb̃c̃d̃ as the variation of the pressure tensor with
respect to the state of strain [80, 81, 82]. For the fluid branes considered here this has the
general form

K̃ ãb̃c̃d̃
≡

�
∂σ̃ãb̃

∂Uc̃d̃

�
=

�
∂2P

∂Uãb̃∂Uc̃d̃

�
, (2.4.7)

satisfying the properties K̃ ãb̃c̃d̃ = K̃(ãb̃)(c̃d̃) = K̃ c̃d̃ãb̃. Note that in the second equality in (2.4.7)
we have imposed the constraint (2.4.2). Given a certain stationary fluid brane in a certain
prestrained state satisfying (2.4.2), one can apply a deformation taking the configuration to
another strained state. The definition (2.4.7) implies that variations of the pressure tensor
along orthogonal directions are related to the deformation tensor as

dσ̃ãb̃ = K̃ ãb̃c̃d̃dUc̃d̃ . (2.4.8)
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In order to give a concise explicit expression for (2.4.7) we introduce an effective pressure
P̃ (γãb̃) along a direction (ã, b̃) such that

σ̃ãb̃ = P̃ (γãb̃)γãb̃ . (2.4.9)

Using then the definition (2.4.7) we obtain the general expression

K̃ ãb̃c̃d̃ = −2

��
∂P̃

∂γãb̃

�
γ c̃d̃

− P̃γã(c̃γ d̃)b̃

�
. (2.4.10)

This has the expected form of the deformation tensor of a material that is responding to
stretching or compression signaling the fact that since the surface is taken to be infinitely thin,
only variations in volume can be accounted for. The second term in (2.4.10) is the usual term
when the pressure P̃ is constant while the first term arises due to pressure variations. For
Dirac branes the first term on the r.h.s. of (2.4.10) vanishes expressing isotropic compression
at constant pressure.

The relativistic elasticity tensor Ẽ ãb̃c̃d̃ can be expressed in an analogous way with respect
to the stress-energy tensor (2.3.22) [80, 81, 82]. In orthogonal directions to the worldvolume,
the elasticity tensor describes variations of T̃ ãb̃ such that

dT̃ ãb̃ = Ẽ ãb̃c̃d̃dUc̃d̃ . (2.4.11)

According to (2.4.11) the elasticity tensor takes the following generic form

Ẽ ãb̃c̃d̃
≡

�
∂T̃ ãb̃

∂Uc̃d̃

�
=

�
K̃ ãb̃c̃d̃

−

�
∂2P

∂Uãb̃Uc̃d̃

��
, (2.4.12)

where in the second equality we have used (2.4.10). The tensor Ẽ ãb̃c̃d̃ satisfies the usual
properties of an elasticity tensor Ẽ ãb̃c̃d̃ = Ẽ(ãb̃)(c̃d̃) = Ẽ c̃d̃ãb̃. We note that the Eqs. (2.4.8),
(2.4.11) express linear Hokean deformations of the pressure and stress-energy tensors. We
will evaluate (2.4.12) explicitly for neutral black branes in Sec. 3.

Conserved charges

The action (2.4.4) has a thermodynamic interpretation [16]. To make it precise, we note that
from Eqs. (2.1.4) with vanishing external force one can construct a set of conserved surface
currents T µνkµ, such that

γρ
ν∇ρ(T

µνkµ) = 0 , (2.4.13)

where kµ should be interpreted here as a generic space-time Killing vector field. The total
energy M and angular momentum J i of the fluid brane can then be computed by integrating
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the surface currents over the spatial part of the worldvolume in the following way:

M =

�

Bp

dV(p)T
abξanb , J i = −

�

Bp

dV(p)T
abχi

anb . (2.4.14)

Here we have assumed kµ to be hypersurface orthogonal with respect to the space-time
metric and also ka to be hypersurface orthogonal with respect to the worldvolume metric4.
To proceed further, we introduce the fluid Gibbs free energy density G as

G = �− T s = −P , (2.4.15)

which has the following thermodynamic properties along orthogonal directions

dG = −sdT = PdV . (2.4.16)

From Eq. (2.4.16) we conclude that deformations of G along orthogonal directions cause the
material to stretch or compress. After integrating the density (2.4.15) over the worldvolume
one finds the relation

F [Xµ] = −

�

Wp+1

√
−γ G = −

�
M −

�

i

ΩiJ
i
− TS

�
. (2.4.17)

Extremizing (2.4.17) while keeping the set of potentials T,Ωi fixed implies the first law of
thermodynamics to be satisfied for the fluid branes:

dM =
�

i

ΩidJ
i + TdS . (2.4.18)

This formula can interpreted as a prediction [16], namely, that a stationary fluid configuration
living on a particular dynamical surface must globally satisfy the first law of thermodynamics.

2.5 Deformations of fluid branes and elastic waves
The considerations of the previous sections are based on the action (2.4.4) being only a func-
tion of the state of strain given a fixed temperature T and angular velocities Ωi. Therefore,
providing the pressure P as a function of the independent components of the state of strain
γab, i.e., P (γab), deformations of the embedding geometry by explicit variation of the embed-
ding map Xµ(σa) can be analyzed through variations of the induced metric γab. These take
the form [70]

δγab = gµν,λ∂aX
µ∂bX

νδXλ + gµλ(∂aX
µ∂bδX

λ + ∂bX
µ∂aδX

λ) . (2.5.1)
4Other cases where kµ or ka are not hypersurface orthogonal have been considered in [66, 68].
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Hence, searching for the extrema of the action (2.4.4) implies that

T abδγab = 0 , (2.5.2)

where the effective stress-energy tensor is obtained in the usual way

T ab =
2

√
−γ

δI

δγab
. (2.5.3)

For the present case, using (2.5.3), the stress-energy tensor has the general form

T ab = 2
∂P

∂γab
+ σab , (2.5.4)

and is generally different from σab. Note that (2.5.4) is equal to (2.3.17) when the relation
(2.3.21) is used. The stress-tensor (2.5.4) obtained from the action is only valid along or-
thogonal directions and can be regarded as an off-shell form of (2.3.17) since a priori one can
compute (2.5.4) without the knowledge of the extrinsic curvature of the embedding. The
equations of motion obtained from Eq. (2.5.2) when projected along tangential and orthog-
onal directions to the worldvolume give rise to the intrinsic and extrinsic equations (2.1.8)
[70] together with the boundary term

�√
−γ T abuµ

a n̂bδXµ

�
|∂Wp+1

, (2.5.5)

yielding the boundary condition (2.1.5) and hence vanishing independently of the initial and
final configurations by construction. It is also possible to define an off-shell form of the
elasticity tensor (2.4.12) using (2.5.4), this is given by

Eabcd = 2

�
Pγa(cγd)b

−

�
∂P

∂γab

�
γcd

− 2

�
∂2P

∂γab∂γcd

��
. (2.5.6)

Projecting (2.5.6) using (2.3.19) for a particular embedding surface results in (2.4.12).

The speed of elastic waves

The dynamical properties of fluid branes as elastic materials can also be seen by applying a
small perturbation to the brane geometry. To this aim we follow [16]. Assuming the material
to be initially at rest ua = (1, 0, ...), we introduce a perturbation in the mapping functions
δXµ and initial pressure P such that

δP , δρ =
dρ

dP
δP, δua = (0, vi), δXµ = ξµ . (2.5.7)

Using the form of the stress tensor (2.2.1) together with the equation of extrinsic dynamics
(2.1.7) we find

�
(ρ− P )∂2

t −K∂2
i

�
ξµ = 0 , (2.5.8)
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and hence conclude that elastic waves propagate at the speed

c2⊥ =
K

ρ− P
, (2.5.9)

where we used the definitions of the modulus of rigidity (2.4.3) and of the solid density
(2.3.12). The above result is what is expected from a relativistic solid which has been
subject to hydrostatic compression [88, 81].

2.6 Charged fluid branes
Fluid configurations carrying a q-charge are not only characterized by the stress tensor
(2.1.2) but also by a totally anti-symmetric current tensor Ĵµ1...µq+1 which is confined to the
worldvolume surface

Ĵµ1...µq+1(xα) =

�

Wp+1

dp+1σ
√
−γ Jµ1...µq+1(σa)

δD(xµ −Xµ(σa))�
−g(xα)

(2.6.1)

and must satisfy current conservation

∇µ1 Ĵ
µ1...µq+1 = 0 , (2.6.2)

in the absence of external couplings. The set of effective worldvolume equations that result
from (2.6.2) imply that the current is purely tangential

Jµ1...µq+1 = uµ1
a1 ...u

µq+1
aq+1

Ja1...aq+1 , (2.6.3)

and

Da1J
a1...aq+1 = 0 , Ja1...aq+1na1 |∂Wp+1 = 0 . (2.6.4)

We will now apply these equations to the fluid configurations with q = p charge studied in
[76] and with q = 0 charge studied in [69, 76].

q = p worldvolume charge

The fluids carrying q = p worldvolume charge studied in [76] are characterized by a world-
volume current density Ja1...ap+1 of the form

J = QpV̂p+1 , (2.6.5)

where V̂p+1 is the (p+1)-volume form of the embedding surface and Qp is the charge density.
The worldvolume conservation equation (2.6.4) then implies

∂aQp+1 = 0 . (2.6.6)
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Therefore for q = p charges the charge density Qp is not allowed to vary along worldvolume
directions, hence the total charge of the configuration Qp equals the charge density Qp. Given
this, the fluid does not carry any additional extra degrees of freedom associated with the
charge and as such the Gibbs-Duhem relations presented in (2.2.3) still hold for the case at
hand. In this way, as long as all extrinsic variations are performed while the charge Qp is
kept constant, the results of the previous sections hold. However, it is possible to introduce
a chemical potential Φp conjugate to Qp [76], giving rise to a well defined global quantity

Φ(p)
H

= −

�

Bp

dV(p)Φpu
ana . (2.6.7)

Using Φp we can define the Gibbs free energy of the fluid as

G = �− T s− ΦpQp = −P − ΦpQp , (2.6.8)

where in the second equality we have made use of the relations (2.2.3). Therefore, for
hydrodynamical fluctuations where the charge Qp is kept constant due to (2.6.6) we find

dG = −sdT −QpdΦp , (2.6.9)

and hence for orthogonal variations that keep the potential (2.6.7) constant, ie.,

dΦp = −ΦpdV , (2.6.10)

the action can be recast as (2.4.17) noting that along those directions dG = −GdV . From
here one can define an electroelastic modulus of rigidity describing the deformation of the
charge potential as

1

KE

=

�
∂V

∂Φp

�

T

= −
1

Φp
. (2.6.11)

As far as the authors are aware, Eq. (2.6.11) does not have a classical analog. We suspect that
this modulus of electroelastic rigidity is associated with fluctuations of the charge density
in transverse directions in the same way as the isothermal permittivity is associated with
worldvolume fluctuations [76]. We further note that it is possible to define an electroelasticity
tensor associated with Φp as in (2.4.12) but its meaning is unclear. A better understanding
of this is presently lacking.

Finally, extremizing (2.4.17) at fixed T, Ωi, Φ
(p)
H

implies the first law of thermodynamics
[76]

dM =
�

i

ΩidJ
i + TdS + Φ(p)

H
dQp , (2.6.12)

to be satisfied.
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q = 0 worldvolume charge

Stationary fluids carrying a q = 0 brane charge were analyzed in [69, 76] and have quite
different thermodynamic properties than the q = p case. These are instead characterized by
the worldvolume particle current5

Ja = Qua , (2.6.13)

and hence must satisfy (2.6.4):

Da (Qua) = 0 . (2.6.14)

The crucial difference with the q = p case is that now the charge density Q is allowed to
vary along the worldvolume and hence adds extra degrees of freedom to the system. Local
thermodynamic equilibrium implies

d� = T ds+ ΦdQ (2.6.15)

while the thermodynamic Gibbs-Duhem relations (2.2.3) are now changed to

�+ P = T s+ ΦQ , dP = sdT + ΦdQ . (2.6.16)

The intrinsic equations of motion (2.1.6) again lead to conservation of the entropy current
as in (2.2.4) while the Euler equations (2.2.5) are modified to [69]

P ab
T s(u̇b + ∂blnT )−QΦ

�
K̂a

− P ab∂b lnΦ
�
= 0 , (2.6.17)

where we have introduced the mean curvature of the worldlines embedded in Wp+1,

K̂a = ubucDb (ucu
a) . (2.6.18)

Assuming the solution to be stationary, we take the fluid velocities to be aligned with a
worldvolume Killing vector field as in (2.2.8). This ensures that the first term in Eq. (2.6.17)
vanishes leading to the same relation between local and global fluid temperatures (2.2.9).
The second term in Eq. (2.6.17) can be dealt with by imposing the mean curvature due to
the dissolved 0-charge on the worldvolume to balance the gradient of the chemical potential
[69], yielding

K̂a = P ab∂b lnΦ . (2.6.19)

On the other hand, the extrinsic equation (2.3.8) now becomes

T s⊥ρ
ν u̇

µ +Q⊥
ρ
ν∂

νΦ+ PKρ = 0 , (2.6.20)
5From hereon we omit the index in Qp and Φp.
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which after using (2.2.8) and contracting with an arbitrary orthogonal vector Nρ leads to

PdV + sdT +QdΦ = 0 . (2.6.21)

This can be integrated to the action (2.4.4). In order to make further contact with electroe-
lasticity we define the solid density

ρ = T s+ ΦQ , (2.6.22)

which under deformations along the extrinsic directions satisfies

dρ = T ds− PdV + ΦdQ . (2.6.23)

This is the thermodynamic relation that a solid charged under a particle current should
respect. From here, as before, we can obtain useful relations along orthogonal directions:

�
∂ρ

∂s

�

V,Q
= T ,

�
∂ρ

∂V

�

s,Q
= −P ,

�
∂ρ

∂Q

�

s,V
= Φ . (2.6.24)

Unlike the neutral case, not everything can be derived from a mass function. In fact, if we
use the definition (2.6.22) into (2.6.24) we find the identities

�
∂Φ

∂T

�

V,Q
=

�
∂Φ

∂T

�

s,V
= −

s

Q
,

s

�
∂T

∂V

�

s,Q
+Q

�
∂Φ

∂V

�

s,Q
= −P .

(2.6.25)

The Gibbs free energy introduced in (2.6.8) for charged fluids is now, due to (2.6.16), equal
to the pressure as in (2.4.15). Hence, if one wishes to specify an equation of state of the form

� = wP + ΦQ , (2.6.26)

one finds the action (2.4.6):

F [Xµ] = −
1

w + 1

�

Wp+1

√
−γ (ρ− ΦQ) . (2.6.27)

When written in terms of the solid density ρ, the extra term on the r.h.s. of the action
(2.6.27) acts as an external force. Variation of (2.6.27) keeping T,Ωi,ΦH constant leads to
the first law of thermodynamics (2.6.12), but now with global charge [69]:

Q = −

�

Bp

dV(p)Quana . (2.6.28)
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Chapter 3

Constructing black hole solutions

In this section we apply the considerations of the previous sections, as an example, to the
case of neutral black p-branes wrapped on a generic submanifold (blackfolds) studied in
[14, 16, 63, 65, 75]. Such branes are characterized by a stress-energy tensor of the type
presented in (2.1.2) and hence encompassed within the framework put forth above. We
begin by describing the effective blackfold fluid characterizing these branes and then write
down the elasticity tensor as well as an action of the thermodynamic type for blackfold
objects We finish by obtaining the elastic equilibrium condition of black rings and black
odd-spheres in asymptotically flat space by direct use of the extrinsic equation (2.4.2) and
then proceed to construct and analyze in more detail based on the action principle several
black holes in (A)dS and their ultra-spinning limits.

3.1 The effective blackfold fluid
The blackfold effective fluid characterizing neutral black branes is of the perfect fluid type
(2.2.1) and characterized by the equation of state [16]

� = −(n+ 1)P . (3.1.1)

The local thermodynamic quantities associated with the fluid living on the brane (�, P, T , s)
can all be described in terms of the brane thickness r0 in the following way:

�

n+ 1
= −P =

Ω(n+1)rn0
16πG

, T =
n

4πr0
, s =

Ω(n+1)r
n+1
0

4G
. (3.1.2)

Here n is the number of transverse directions given by n = D − p− 3. By inspection of the
above expressions it is easily observed that the Gibbs-Duhem relations (2.2.3) are satisfied.
The thickness r0, as well as the fluid velocities ua are allowed to be functions of σa and hence
to vary along worldvolume directions. From (3.1.2) one concludes that the requirement of

35



36 CHAPTER 3. CONSTRUCTING BLACK HOLE SOLUTIONS

local thermodynamic equilibrium (2.0.1) implies the hierarchy of scales

r0(σ
a) � R(σa) , (3.1.3)

or in other words, that the black branes being wrapped on the submanifold Wp+1 are thin
compared to the curvature radius of the submanifold.

3.2 Elasticity tensor of blackfolds and thermodynamic
action

Here we write down the elasticity tensor for neutral blackfolds using Eq. (2.5.6) and then an
action of the thermodynamic type. We begin by noting that from Eq. (2.2.9) and using the
quantities (3.1.2) we obtain a relation between |k| and r0

r0 =
� n

4πT

�
|k| = λ|k| , (3.2.1)

where we have defined λ = n/4πT . Using this, the pressure P can be expressed in terms of
the induced metric γab as

P (γab) = −
Ω(n+1)

16πG
λn

|− γabk
akb

|
n
2 . (3.2.2)

Hence, the derivative of the pressure with respect to the induced metric is simply given by
�

∂P

∂γab

�
= −

n

2
Puaub . (3.2.3)

Using the expression for the effective stress-energy tensor derived in (2.5.4) we arrive at

T ab = P
�
−nuaub + γab

�
, (3.2.4)

agreeing with (2.2.1) when the equation of state (3.1.1) is introduced. In order to continue
further, it is necessary to evaluate the second derivative of P with respect to the state of
strain. This yields:

�
∂2P

∂γab∂γcd

�
=

n(n− 2)

4
Puaubucud . (3.2.5)

Therefore, using Eq. (2.5.6) we obtain the off-shell elasticity tensor for neutral blackfolds:

Eabcd = P
�
2γa(cγd)b + nuaubγcd

− n(n− 2)uaubucud
�
. (3.2.6)

This is not manifestly invariant under (a, b) → (c, d) as discussed around Eq. (2.4.12) but
it becomes so after the equations of motion (2.4.2) are imposed. We note that (3.2.6) has
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the same structure as the Young modulus tensor measured for black branes in [25, 18, 26]1.
Moreover, it satisfies the properties

Eabcdγcd = P
�
2γab + n(n+ p− 1)uaub

�
, Eabcdγabγcd = P (2(p+ 1)− n(n+ p− 1)) .

(3.2.7)

Thermodynamic action

Here we rewrite the action (2.4.4), adapted to blackfold objects, in terms of the total entropy
(2.2.10). Using the Gibbs-Duhem relations (2.2.3) and also (3.1.1) we obtain the relation

P = −
1

n
T s , (3.2.8)

which when introduced into the action (2.4.4) leads to

I[Xµ] = −
T

n

�

Bp

dV(p)su
ana =

T S

n
. (3.2.9)

Therefore we see that extremizing the blackfold action at constant temperature and angular
velocities is to extremize the black hole entropy.

3.3 Physical properties and Smarr relations
Given the specific fluid properties of Sec. 3.1 it is convenient to rewrite the thermodynamic
quantities presented in Sec. 2.4 in a way more adapted to the construction of black hole
solutions. To the that aim we note that the Killing vector fields ξ and χi introduced in
Sec. (2.2.7) and given the assumptions of Sec. (2.3) are now generators of asymptotic time
translations and of asymptotic rotations respectively of the background space-time. We then
define the redshift factor R0 between infinity and the blackfold worldvolume and the proper
radii Ri of the orbits generated by χi along the worldvolume as the norm of this set of
commuting Killing vectors on the worldvolume:

R0 =
�

−ξ2 |Wp+1 , Ri =
�
χ2
i |Wp+1 . (3.3.1)

From here, it follows that k given in Eq. (2.2.7) can be expressed in a more convenient way
as

k = R0

√
1− V 2 , (3.3.2)

1There is a difference between the structure of (3.2.6) and the Young modulus measured in [25, 18, 26],
namely that here there is no ambiguity in the choice of worldvolume surface since we take the surface to be
infinitely thin.
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where the velocity field V is defined as

V 2 =
1

R2
0

�

i

Ω2
iR

2
i . (3.3.3)

The horizon thickness r0 (3.2.1) can be related to the velocity field in the following way:

r0(σ
a) =

nR0(σa)

2κ

�
1− V 2(σa) , (3.3.4)

where we have introduced the surface gravity κ of the black hole space-time we ought to
construct. With this we can rewrite the action (3.2.9) as

I[Xµ] = λ

�

Bp

dV(p)R0|k|n . (3.3.5)

Here λ is the constant introduced in Eq. (3.2.1) and since it does not play a role in the
variation of (3.3.5) we henceforth omit it in the remaining parts of this section.

The physical properties of the resulting blackfold solutions can then be easily computed.
The total mass M and angular momenta Ji read

M =
Ω(n+1)

16πG

� n

2κ

�n
�

Bp

dV(p)R
n+1
0 (1− V 2)

n−2
2 (n+ 1− V 2) , (3.3.6)

Ji =
Ω(n+1)

16πG

� n

2κ

�n
nΩi

�

Bp

dV(p)R
n−1
0 (1− V 2)

n−2
2 R2

i , (3.3.7)

while the entropy is given by

S =
Ω(n+1)

4G

� n

2κ

�n+1
�

Bp

dV(p)R
n+1
0 (1− V 2)

n
2 . (3.3.8)

Furthermore, the total integrated tension [63] takes the form

T =
Ω(n+1)

16πG

� n

2κ

�n
�

Bp

dV(p)R
n+1
0 (1− V 2)

n−2
2 (p− (n+ p)V 2) . (3.3.9)

Using the explicit expressions (3.3.6)-(3.3.9) and also that T = κ
2π one finds that these

physical quantities satisfy the Smarr relation2

(D − 3)M = (D − 2)

�
�

i

ΩiJi + TS

�
+ T . (3.3.10)

For asymptotically flat black hole solutions of the vacuum Einstein equations the tension T

[89] must vanish (see [63]), but this is generally not true in an (A)dSD background. In fact,
for the thin black rings constructed in [65] this is not the case, nor, as we will see, for any of
the other A(dS) blackfold solutions found in this thesis.

2This relation was first derived in [89] for flat black branes of vacuum gravity in D dimensions.
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3.4 Black holes in flat space
In this section we apply the results of the previous sections to re-derive the equilibrium condi-
tion of thin black rings and black odd 3-spheres [63] in asymptotically flat space parametrized
by coordinates (t, r, θ,φ,ψ, xi). We write the induced metric on the worldvolume as

γabdσ
adσb = −dτ 2 +R2

�
dθ2 + cos2θdφ2 + sin2θdψ2

�
, (3.4.1)

where R is the radius of the sphere (or the ring). The map onto the ambient space-time is
simply

t = τ, r = R, xi = 0 , (3.4.2)

while the remaining coordinates coincide. The non-vanishing components of the extrinsic
curvature are

Kθθ
r = −R Kφφ

r = −R cos2θ, Kψψ
r = −R sin2θ , (3.4.3)

while the mean extrinsic curvature vector reads

Kr = −
p

R
, p = 1, 3 . (3.4.4)

Black rings

Black rings are described by setting p = 1 and θ = 0 in the formulae above. This leads to
the induced metric and extrinsic curvature

γabdσ
adσb = −dτ 2 +R2dφ2 , Kφφ

r = −R , Kr = −
1

R
. (3.4.5)

The worldvolume Killing vector field takes the form

k = ∂τ + Ω∂φ , (3.4.6)

which we use to write the pressure P as

P = −
Ω(n+1)

16πG
λn

|− γττ − γφφΩ
2
|
n
2 . (3.4.7)

Since the only independent and non-zero component of the strain tensor is dγφφ we can use
Eq.(2.4.2) to obtain the equilibrium

− 2

�
∂P

∂γφφ

�
− σφφ = 0, (3.4.8)



40 CHAPTER 3. CONSTRUCTING BLACK HOLE SOLUTIONS

which in turn implies, using the result (3.2.3),

Ω2R2 =
1

n+ 1
. (3.4.9)

This equilibrium condition has been derived previously in [63] also using the action (3.2.9),
here we have merely performed a different derivation. From Eq. (3.4.8) we see that there
is only one non-vanishing component of strain, hence the only on-shell component of the
elasticity tensor is given by (3.2.6):

Eφφφφ = 2

�
n+ 1

n

�
Pγφφγφφ. (3.4.10)

Black odd-spheres

Black odd 3-spheres are described by setting p = 3. We assume them to be rotating with
equal angular velocity Ω along both directions (φ,ψ). This allows us to write the worldvolume
Killing vector field in the form

k = ∂τ + Ω (∂φ + ∂ψ) , (3.4.11)

and hence the pressure as

P = −
Ω(n+1)

16πG
λn

|− γττ − γθθΩ
2
|
n
2 . (3.4.12)

There are now three non-vanishing components of the strain, dγθθ, dγφφ and dγψψ. The last
two can be expressed in terms of dγθθ in the following way:

dγφφ = cos2θdγθθ , dγψψ = sin2θdγθθ . (3.4.13)

Using now Eq. (2.4.2) for the only independent component dγθθ we obtain the equilibrium
equation

− 2

�
∂P

∂γθθ

�
− σ̃θθ = 0 , (3.4.14)

where the effective stress along dγθθ is given by

σ̃θθ = P
�
γθθ + cos2θγφφ + sin2θγψψ

�
= pPγθθ . (3.4.15)

Solving Eq.(3.4.14) results in the equilibrium condition

Ω2R2 =
p

n+ p
, (3.4.16)
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which has been derived previously in [63]. Even though we only considered the cases p = 1, 3,
the result (3.4.16) is valid for all p [63]. Eq. (2.4.2) could have been solved using any of the
other two non-vanishing components of strain Uφφ,Uψψ, in fact, it is easy to see that the
effective pressure tensor has in this case the generic form σ̃ab = P̃γab where P̃ = pP . Using
expression (2.4.12) for the on-shell value of the elasticity tensor we find the non-vanishing
components:

Ẽθθθθ = 2

�
n+ p

n

�
P̃γθθγθθ , Ẽφφφφ = 2

�
n+ p

n

�
P̃γφφγφφ , Ẽψψψψ = 2

�
n+ p

n

�
P̃γψψγψψ,

Ẽθθφφ = 2
p

n
P̃γθθγφφ , Ẽθθψψ = 2

p

n
P̃γθθγψψ , Ẽφφψψ = 2

p

n
P̃γφφγψψ .

(3.4.17)

3.5 Black holes in (Anti)-de Sitter space
We now consider black holes in (A)dS space-time constructed from wrapping neutral black
branes. Since (A)dS naturally introduces its own length scale set by the cosmological constant
Λ, we consider blackfolds in the regime

r0(σ
a) � min(R, |Λ|−

1
2 ) , (3.5.1)

so that neither the curvature of the worldvolume nor the curvature set by the (A)dS radius
are felt locally at the blackfold. This implies, in particular, that locally the blackfold is still
described by the asymptotically flat neutral black brane solution of (1.1.1).

It will be useful to make use of the AdS metric written in terms of two different coordinate
systems. We first write the metric for global AdSD space-time in the form

ds2 = −V(r)dt2 +
dr2

V(r)
+ r2dΩ2

D−2 , 0 ≤ r ≤ ∞ , V(r) = 1 +
r2

L2
. (3.5.2)

It will also be convenient to work with a metric that highlights the existent U(1) symmetries
of the background space-time. This new metric can be obtained by introducing a new radial
coordinate ρ defined as

r =
ρ

1− ρ2

4L2

, (3.5.3)

thus bringing the AdSD metric (3.5.2) into homogenous (spatially conformally flat) coordi-
nates

ds2 = −F (ρ)dt2 +H(ρ)−1(dρ2 + ρ2dΩ2
D−2) , 0 ≤ ρ ≤ 2L, (3.5.4)

F (ρ) =

�
1 + ρ2

4L2

1− ρ2

4L2

�2

, H(ρ) =

�
1−

ρ2

4L2

�2

. (3.5.5)
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The AdS radius L is related to the cosmological constant Λ by

Λ =
(D − 2)(D − 1)

L2
, (3.5.6)

and thus the range of validity (3.5.1) of the results in this section can be recast as r0 �

min(R,L). The dSD metric in both coordinate systems can be obtained by performing a
Wick rotation such that L → iL in the metrics (3.5.2) and (3.5.4).

3.5.1 Blackfolds with odd-sphere horizon topology

In Ref. [63] the blackfold approach was used to construct a class of novel black holes in
D-dimensional flat spacetime with horizon topology

(Πpa=oddS
pa)× sn+1 ,

l�

a=1

pa = p . (3.5.7)

This class contains not only the family of thin black rings with horizon topology S1 × sn+1

but also single (and the product of) odd-spheres with S2k+1 horizon geometry. In this section
we generalize these results to (A)dSD spacetime, and furthermore study the thermodynamic
stability of these new solutions.

Black S2k+1
-folds in AdSD

The first step for constructing a stationary blackfold solution is to embed the spatial world-
volume Bp, p = 2k + 1 into the background space. In this case we want to wrap the spatial
world-volume on a S2k+1 sphere embedded into a (2k+2)-dimensional spatially conformally
flat subspace of AdSD spacetime (3.5.4). The appropriate part of the background metric can
be conveniently expressed as

ds22k+2 = H(ρ)−1

�
dρ2 + ρ2

k+1�

i=1

(dµ2
i + µ2

i dφ
2
i )

�
,

k+1�

µ=i

µ2
i = 1 , (3.5.8)

so that the S2k+1 is parameterized by k + 1 Cartan angles φi and k independent director
cosines µi. It is then natural to choose a gauge in which the worldvolume B2k+1 is specified
by the embedding scalar ρ = R̄({µi}) and the spatial worldvolume coordinates

{µi, i = 1, ..., k}, {φi, i = 1, ..., k + 1} . (3.5.9)
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In order to construct the action for these blackfolds one needs the induced metric on the
worldvolume. In terms of the Cartan angles and director cosines this metric takes the form

ds22k+1 = H(R̄(µi))
−1

k�

i,j=1

��
δij +

µiµj

µ2
k+1

�
R̄(µi)

2 + ∂iR̄(µi)∂jR̄(µj)

�
dµidµj

+H(R̄(µi))
−1R̄(µi)

2
k+1�

i=1

µ2
i dφ

2
i .

(3.5.10)

Since, in order to have a stationary blackfold, the corresponding Killing vector must generate
isometries of the worldvolume, the horizon Killing vector takes the form

k =
∂

∂t
+

k+1�

i=1

Ωi
∂

∂φi
. (3.5.11)

The redshift factor R0 and the proper radii Ri of the orbits generated by ∂
∂φi

are given
respectively by R0 =

�
F (R̄(µi)) and Ri = H(R̄(µi))−

1
2 R̄(µi), while the velocity field (3.3.3)

becomes

V (µi)
2 =

R̄(µi)2

(1 + R̄(µi)2

4L2 )2

k+1�

i=1

µ2
iΩ

2
i . (3.5.12)

We recall that the functions F and H entering the background metric are defined in (3.5.5).
For simplicity we restrict to round odd-spheres, so that we take the scalar R̄ to be

constant. Furthermore, we are interested in the maximally symmetric case for which the
S2k+1 sphere is rotating with equal angular velocity Ω in all k + 1 directions φi It follows
that the action (3.3.5) reduces to an R̄-dependent potential of the form

I[R̄] = Ω(p)

�
F (R̄)H(R̄)−

p
2 R̄p(F (R̄)− Ω2H(R̄)−1R̄2)

n
2 , (3.5.13)

where p = 2k+1 and Ω(p) is the area of the S2k+1 sphere. A nicer form of the action can be
obtained by performing the inverse transformation between the coordinate systems (3.5.2)
and (3.5.4). Thus defining R = R̄/(1− R̄2

4L2 ), the action (3.5.13) above becomes3

I[R] = Ω(p)R0R
p(R2

0 − Ω2R2)
n
2 , (3.5.14)

where now R0 =
�

V(R) , with V defined in (3.5.2). Varying this action with respect to R
we obtain the equilibrium condition for Ω

Ω2 =
1 + R2

R2

p+ R2(p+ n+ 1)

(n+ p) + R2(n+ p+ 1)
, (3.5.15)

3In fact, in this highly symmetrical case we could have simply used the form of the metric (3.5.2) and
obtained this action straight away.
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where we have defined the dimensionless parameter R = R
L . It is straightforward to check

that the limit L → ∞ gives the result obtained in [63] for S2k+1-folds constructed in a
Minkowski background and that the special case of a black ring in AdSD (p = 1) agrees with
the one obtained in [65]. It should also be noted that the inverse of the relation (3.5.15)
above in terms of R is single valued for a fixed value of Ω and is valid for all values of L.

Physical properties: The physical properties for the odd-sphere AdS blackfolds are straight-
forwardly obtained using equations (3.3.6)-(3.3.9). Setting V(p) = RpΩ(p) for the volume of
the S2k+1 sphere we find

M =
Ω(n+1)V(p)

16πG
rn0 (1 + R2)

3
2 (1 + n+ p) , (3.5.16)

S =
Ω(n+1)V(p)

4G
rn+1
0

�
R2 + (n+ p)(1 + R2)

n
, T =

n

4πr0

�
n
�
1 + R2

�
�
1 + R2

�
(n+ p) + R2 ,

(3.5.17)

Ji =
2

p+ 1

Ω(n+1)V(p)

16πG
rn0R

�
(p+ R(n+ p+ 1))

��
1 + R2

�
(n+ p) + R2

�
, (3.5.18)

Ωi = Ω , i = 1, ..., k + 1 . (3.5.19)

Moreover, the total tension T becomes

T = −
Ω(n+1)V(p)

16πG
rn0 (1 + R2)

1
2R2(n+ p+ 1) , (3.5.20)

showing explicitly that in AdS spacetime this quantity is not necessarily zero. The physical
quantities above can be shown to satisfy the Smarr relation (4.1.35).

The general product of odd-spheres in AdSD

The class discussed above is part of a larger one in which in which the spatial worldvolume Bp

is a product of l round odd-spheres embedded as in Sec. 3.5.1 above. We label the different
spheres by an index a = 1, ..., l and denote R̄a as the corresponding (constant) radius of each
Spa , where pa is an odd integer. For the sake of simplicity we choose for each sphere the
angular velocity associated with each Cartan angle direction to be equal

Ω(a)
i = Ω(a) , ∀i = 1, ...,

pa + 1

2
. (3.5.21)
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To embed Bp we consider a conformally flat (p+ l)-dimensional subspace of AdSD with the
metric

H(ρ)−1
l�

a=1

�
dρ2a + ρ2adΩ

2
pa

�
, ρ2 =

l�

a=1

ρ2a ,
l�

a=1

pa = p . (3.5.22)

Again we choose the Cartan angles and director cosines of each Spa sphere as the spatial
worldvolume coordinates and take ρa = R̄a as the embedding scalars. The transverse space
is (n+ 2− l)-dimensional, hence we require that l ≤ n+ 2.

Defining R̄2 =
�l

a=1 R̄
2
a, the action (3.5.13) can be generalized to an R̄a-dependent

potential

I[{R̄}] = Πl
b=1Ω(pb)

�
F (R̄) R̄pb

b H(R̄)−
pb
2

�
F (R̄)−H(R̄)−1

l�

a=1

(Ω(a)R̄a)
2

�n
2

. (3.5.23)

Introducing new scalars Ra as Ra = R̄a/(1−
R̄2

a
4L2 ) the previous action can be put in a simpler

form

I[{R}] = Πl
b=1Ω(pb)R0R

pb
b

�
R2

0 −

l�

a=1

(Ω(a)Ra)
2

�n
2

, (3.5.24)

where R0 = 1 −
R2

L2 , with R2 =
�l

a=1 R
2
a. Varying this action with respect to each of the

scalars Ra gives rise to l coupled equations for each of the angular velocities Ω(a). The
equilibrium condition can then be found to be

Ω(a) =
1 + R2

Ra

�
pa + R2

a(1 + n+ p)

(n+ p) + R2(1 + n+ p)
, (3.5.25)

where we have defined Ra = Ra/L. It easy to check that in the limit L → ∞ the above
condition agrees with that of [63] while the particular case l = 1 agrees with (3.5.15).

The physical properties for these blackfolds are also easily computed. In fact, the ex-
pressions for M, S, T, T coincide with those in (3.5.16), (3.5.17), (3.5.20) for a single
odd-sphere if we define the volume of Bp as V(p) = ΠaV(pa) while the angular momenta and
angular velocities read

J (a)
i =

2

pa + 1

Ω(n+1)V(p)

16πG
rn0nΩ

(a)
i

R2
a

(1 + R2)
1
2 (1− V 2)

, Ω(a)
i = Ω(a) , (3.5.26)

where the velocity field is given by V =
�l

a=1 RaΩ(a)/(1+R2)
1
2 . The Smarr relation (4.1.35)

can also be verified for this case.
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Black S2k+1
-folds in dSD

The equilibrium condition for odd-sphere blackfolds in a de Sitter background dSD can be
easily obtained from those in (3.5.15) by performing the Wick rotation L → iL, leading to

Ω2 =
1− R2

R2

R2(n+ p+ 1)− p

R2(n+ p+ 1)− (n+ p)
. (3.5.27)

Since Ω2 might become negative for certain values of the parameters we must impose the
condition Ω2 ≥ 0, which implies that the ratio R should be constrained to the region

�
n+ p

n+ p+ 1
≤ R ≤ 1 ∨

�
p

n+ p+ 1
< R . (3.5.28)

Hence black S2k+1-folds in dSD do not exist for all values of R. Moreover, a static solution
always exists if4

R2 =
p

n+ p+ 1
. (3.5.29)

The physical properties of these solutions can be obtained from those given in Sec. 3.5.1
by taking into account the same Wick rotation.

3.5.2 Ultra-spinning and "ultra-spinning" Kerr-(A)dSD black holes

as blackfolds

Blackfold solutions in flat space with Bp an even-dimensional ellipsoidal ball have been shown
to exist in Refs. [15, 63]. These have event horizon with SD−2 topology due to the fact that
the transverse Sn+1 is non-trivially fibered over the ellipsoid, becoming zero size at the
boundary. In fact, the physical properties of these even-ball blackfolds have been shown to
exactly reproduce those of ultra-spinning MP black holes [64].

Despite the fact that ultra-spinning regimes have not been found for spinning black holes
in AdSD, it has been pointed out in [65] that the Kerr-AdSD black hole with an appropriate
choice of mass and rotation parameters m, a has an "ultra-spinning" regime which shares
many of the same properties with the ultra-spinning regime of the MP black hole. As an
example, the transverse and parallel size of the horizon of the single spinning Kerr-AdSD

black hole in D ≥ 6 behave in the limit a → L as

l⊥ ∼ r+ , l� ∼

�
r2+ + a2

Ξ

� 1
2

, Ξ ≡ 1−
a2

L2
, (3.5.30)

where r+ is the event horizon radius. For fixed mass the ratio l�
l⊥

diverges like ∼ Ξ− D−1
2(D−5) ,

meaning that the horizon pancakes out along the plane of rotation. Thus this limit could in
4The case for which R = 1 leads to a blackfold with vanishing horizon and vanishing physical properties.
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principle be captured by an even-dimensional ellipsoidal ball Bp, in particular a disk in the
case of one plane of rotation. Moreover, the Kerr-AdSD solution has a BPS bound J ≤ LM
[90] restricting the rotation parameter in such a way that a ≤ L. Thus it is clear that at
fixed mass M and fixed L one cannot simply take a → ∞ and obtain an ultra-spinning limit
as in the asymptotically flat case since the bound would be violated. However, as we will
show below, it is possible to take a limit in which a → ∞ and simultaneously taking L → ∞

while keeping the ratio a
L constant. This limit amounts to considering a very thin black hole

compared to the scale L, set by the cosmological constant, while keeping a of the same order
of magnitude as L, i.e., making the black hole simultaneously thin compared to the parallel
section of the horizon. Thus the resulting limit is not asymptotically flat. Furthermore, we
will show that this limit can also be captured by the same blackfold Bp.

In this section we will start by solving the action for a worldvolume with even-dimensional
ball geometry in an AdSD background and compute the physical properties of these solutions.
Subsequently we will identify the properties of this solution with both the ultra-spinning and
"ultra-spinning" regimes of the Kerr-(A)dSD black hole. At the end of this section we will
generalize these results to a dSD background.

Even-ball blackfolds in AdSD

The starting point for constructing these blackfolds is to consider a planar 2k-fold embed-
ded into a (2k + 1)-dimensional spatially conformally flat subspace of AdSD, which can be
equipped with the metric

ds22k+1 = H(ρ)−1



dz2 +
k�

i=1

(dρ2i + ρ2i dφ
2
i ) +

D−2(k+1)�

j=1

dx2
j



 , ρ2 =
k�

i=1

ρ2i +
D−2(k+1)�

j=1

x2
j .

(3.5.31)
It is then natural to choose the embedding of B2k as

z = Z(ρi), xj = 0, j = 1, ..., D − 2(k + 1), {ρi = σi, φi = σi+1, i = 1, ..., k} , (3.5.32)

with the function Z(ρi) to be determined. The Killing vector field that generates the isome-
tries of the worldvolume is of the form

k =
∂

∂t
+

k�

i

Ωi
∂

∂φi
. (3.5.33)

Thus the action (3.3.5) takes the simple form

I[Z(ρi)] = Ω(p)

� k�

i=1

dρiR0

k�

j=1

Ri

�
1 + ∂ρiZ(ρi)

�
R2

0 −

k�

i=1

R2
iΩ

2
i

�n
2

, (3.5.34)
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where R0 =
�
F (ρ) and Ri =

�
H(ρ)−1 ρi. Varying this action with respect to Z(ρi) and

analyzing the resulting equation leads to the conclusion that Z = 0 is a blackfold solution.
In the asymptotically flat case [63], any plane Z = const. is a valid solution, while in the
present case due to the AdSD potential only Z = 0 is a solution.

In what follows we will focus on the case of singly-spinning blackfolds (k = 1) with
angular momentum along the φ1 direction and deal with the general case in App. B. In this
case the worldvolume velocity field is given by

V (ρ) =
ρ

1 + ρ2

4L2

Ω , (3.5.35)

where R = R1, Ω = Ω1 and ρ = ρ1. Since V cannot exceed the speed of light V = 1, we find
that ρ is bounded by the maximum value

ρmax = 2L(LΩ−
√
L2Ω2 − 1 ) . (3.5.36)

The other value for ρ at which V = 1, which has a plus sign in front of the square root,
can be discarded since in this coordinate system (see (3.5.4)) spatial infinity is reached at
ρ = 2L.

Since the argument of the square root in (3.5.36) must be positive definite we obtain a
constraint

0 ≤ α ≤ 1 , α ≡ (L2Ω2)−1 . (3.5.37)

In terms of the parameter α defined above we can now distinguish three different situations:
(i) α = 0. In this case ρmax →

1
Ω . This is the asymptotically flat space case and so we

correctly recover the ultra-spinning MP black hole where ρmax ∼ a, so that the blackfold has
the shape of a disc with radius a (see [15, 63]).
(ii) α = 1. In this case ρmax → 2L, so the disc extends all the way to spatial infinity. As
we show below, this corresponds to the "ultra-spinning" limit taken in [65] where a → L.
(iii) 0 < α < 1. In this case ρmax < 2L, so that the disc is cut at some value of ρ and does
not reach spatial infinity. As we will see below, this corresponds to a new ultra-spinning
limit of the Kerr-AdSD black hole.

Before taking these limits it is useful to compute the physical properties of this blackfold.
These are easily obtained using the equations (3.3.6)-(3.3.9), yielding

M =
Ω(D−2)

8πG

r̂n+
(1− α)2

�
1 +

(n+ 1)(1− α)

2

�
1

Ω2
, (3.5.38)

J =
Ω(D−2)

8πG

r̂n+
(1− α)2

1

Ω3
, S =

Ω(D−2)

4G

r̂n+1
+

(1− α)

1

Ω2
, (3.5.39)

T = −α
Ω(D−2)

8πG

r̂n+
(1− α)2

1

Ω2
, (3.5.40)
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where we have defined r̂+ = n
2κ . It is worthwhile to notice that the tension T vanishes only if

α = 0, in agreement with the flat space result. Also, when α lies within the region 0 < α ≤ 1
the tension is non-zero and hence the blackfold does not describe an asymptotically flat
solution. Moreover, it is straightforward to check that the quantities above satisfy the Smarr
relation (4.1.35).

We also note that by defining r = ρ/(1− ρ2

4L2 ) the thickness r0 becomes

r0 =
n

2κ

�
1− r2Ω2(1− α) , (3.5.41)

so that in terms of this coordinate we now have rmax = ρmax/(1 −
ρ2max
4L2 ). The thickness

remains finite for all values of α since when α = 1 and rmax → ∞, R0 → ∞ but r0 → 0.
Thus the blackfold is always in the regime r0 � L.

We will now proceed to identify the physical properties of the disc blackfold given above
with those corresponding to the two different limits of the Kerr-AdSD black hole.

α = 1: the "ultra-spinning" limit: This limit was found in Ref. [65] and amounts to
taking a → L, and hence Ω →

1
L ,α → 1 while keeping µ̂ = 2m

L2(1−α)2 finite, i.e., sending
m → 0. The resulting metric near the rotation axis can be expressed in appropriately
rescaled coordinates as

ds2 = Ξ
4

D−5

�
−

�
1−

µ̂

r̂D−5

�
dt̂2 +

�
1−

µ̂

r̂D−5

�−1

dr̂2 + r̂2dΩ2
D−4 + dσ2 + σ2dφ2

�
,

(3.5.42)
where Ξ is given in (3.5.30). This metric describes the geometry of a flat black membrane
with an overall conformal factor. Its physical properties can be summarized as follows

M =
Ω(D−2)

8πG
µ̂L2 , (3.5.43)

S =
Ω(D−2)

4G
rD−4
+

r2+ + L2

(1− α)
, T =

D − 5

4πr+
, (3.5.44)

J =
Ω(D−2)

8πG
µ̂L3 , Ω =

1

L
, (3.5.45)

r+ =

�
2m

L2

� 1
(D−5)

. (3.5.46)

It is easy to check that with the identification r̂+ = r+ and using Ω = L−1 the blackfold
physical properties (3.5.38)-(3.5.40) found above exactly reproduce the properties (3.5.43)-
(3.5.45) of this "ultra-spinning" limit (note that n = D − 5). To see this one also needs to
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use the fact that our blackfold is a valid solution only in the regime L � r+, i.e., the entropy
becomes5

S =
Ω(D−2)

4G

rD−4
+

(1− α)
L2 . (3.5.47)

Moreover a straightforward computation shows that the thickness for this solution behaves
like r0(θ) = r+ cos θ. However, since in this limit m → 0, it follows from (3.5.46) that this
implies r+ → 0 and thus r0 → 0. This is actually a prediction from the blackfold side since
by taking Eq. (3.5.41) we see that in the case α = 1, r0 = r+ except when r → rmax in which
case r0 = 0, therefore such solution would only be regular if r+ = 0, ∀r.

0 ≤ α < 1: the ultra-spinning limit: This limit resembles very closely that of the ultra-
spinning MP black hole. To see this, start with the metric of the singly-spinning Kerr-AdSD

black hole [56] in spheroidal coordinates (t, r, θ,φ,ΩD−4) (see App. C for the multi-spin case).
The ultra-spinning limit of the Kerr-AdSD black holes is defined as

a → ∞ , L → ∞ , m → ∞ , (3.5.48)

keeping α = a2/L2 and µ̂ = 2m/a2 fixed. Consider in this limit the metric near the axis
of rotation by defining a new coordinate σ = a sin θ which remains finite as the axis is
approached, i.e. as θ → 0. Then the metric takes the form of that of a flat black membrane

ds2 = −

�
1−

µ̂

rD−5

�
dt2 +

�
1−

µ̂

rD−5

�−1

dr2 + r2dΩ2
D−4 +

1

1− α

�
dσ2 + σ2dφ2

�
. (3.5.49)

The difference between this metric and the flat space case (α = 0) resides in the last term,
which is multiplied by the factor (1−α)−1. In fact, since we are free to rescale the coordinate
σ by a factor of

�
(1− α)−1 , we can eliminate the factor in front of the line-element of the

two-plane (σ,φ). However we are only allowed to do this if 0 ≤ α < 1 since if α = 1 the
metric diverges and if α > 1 the metric changes signature. In summary, the limit above is
only valid if α lies within the range 0 ≤ α < 1 as claimed in the discussion below (3.5.37).

The physical properties of the Kerr-AdSD solution in the limit (3.5.48) can be easily
obtained from [91]

M =
Ω(D−2)

8πG

µ̂

(1− α)2

�
1 +

(D − 4)(1− α)

2

�
a2 , (3.5.50)

S =
Ω(D−2)

4G
rD−4
+

a2

(1− α)
, T =

D − 5

4πr+
, (3.5.51)

5In fact, as a → L, the horizon size r+ approaches zero and hence S → 0. The tension T remains finite
in this limit.
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J =
Ω(D−2)

8πG

µ̂

(1− α)2
a3 , Ω =

1

a
, (3.5.52)

r+ =

�
2m

a2

� 1
(D−5)

. (3.5.53)

It is then seen that with the identification r̂+ = r+ and using Ω = a−1, we can reproduce
from the blackfold approach (Eqs. (3.5.38)-(3.5.40)) the thermodynamic quantities given in
(3.5.50)-(3.5.52). Furthermore, the thickness of this black membrane is given by r0(θ) =
r+ cos θ. By looking at Eq. (3.5.41) and defining a new coordinate θ = arcsin

�
rΩ

√
1− α

�

the two expressions for the thickness exactly match.
We note that the resulting metric does not represent an asymptotically flat solution. This

is clear from the fact that there is a non-vanishing tension, as seen in (3.5.40). Another way
is by looking at the Quantum Statistical Relation that these black holes must satisfy, this
relation reads [91]

M − TS −

�

i

ΩiJi = TID , (3.5.54)

where the Euclidean action ID in this limit reduces to

ID =
1

4T

Ω(D−2)

(1− α)
m . (3.5.55)

We can see that there is a factor of (1 − α)−1 in the expression above, and one may check
that only for α = 0 does one recover the Euclidean action for the asymptotically flat case.6
This limit thus represents an asymptotically AdSD solution.

The existence of the ultra-spinning limit of Kerr-AdSD black holes described above pro-
vides non-trivial information on the stability properties of these black holes. In the asymp-
totically flat case Ref. [64] showed that ultra-spinning MP black holes become membrane-like
suggesting that these should exhibit a GL-type instability [92]7, as confirmed in [94]. Sim-
ilarly, our analysis thus predicts that Kerr-(A)dSD black holes for D ≥ 6 suffer from an
ultra-spinning GL-type instability when ΩL > 1. This is in agreement with the recent nu-
merical analysis of Ref. [95] for the singly-spinning case in AdS. More generally, it follows
From App. C that in the multi-spin case there is an ultra-spinning GL instability when
ΩiL > 1.

Even-ball blackfolds in dSD

In this section we want to generalize the results of Sec. 3.5.2 to a dSD background. By
performing a Wick rotation L → iL the action (3.5.34) takes the same form but now with

6To compare this result with the one obtained in [15] note that the parameter µ in [15] is related to m
by µ = 2m.

7See [93] for a review on the GL instability.
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different functions F (ρ), H(ρ) which transform accordingly. Z = 0 is still a valid blackfold
solution and the velocity field attains the velocity of light at a maximum value of

ρmax = 2L(−LΩ+
√
L2Ω2 + 1 ) . (3.5.56)

There is thus no upper bound on the parameter α = (L2Ω2)−1 and hence α is free to take
any value in the interval

α ≥ 0 . (3.5.57)
In terms of α we can now distinguish two different regimes:
(i) α = 0. This is the flat space case as noted previously in Sec. 3.5.2.
(ii) α > 0. In this case ρmax ≤ 2L, and so the disc is cut at some value of ρ in general but
reaching the cosmological horizon when α → ∞ and hence Ω = 0 for which case the solution
is static8. As we will see below, this case (α > 0) corresponds to the ultra-spinning limit of
the Kerr-dSD black hole.

We have not mentioned here any "ultra-spinning" regime. This is because the Kerr-dSD

does not show such special behavior when a → L. To see this it suffices to look at Eq. (3.5.30)
and keep in mind that the ratio l�

l⊥
∼ Ξ− D−1

2(D−5) remains finite since now Ξ = 1 + α, so that
the event horizon does not pancake out along the plane of rotation.

The ultra-spinning limit of the Kerr-dSD black hole can be obtained by performing the
same Wick rotation on the metric (3.5.49)

ds2 = −

�
1−

µ̂

rD−5

�
dt2 +

�
1−

µ̂

rD−5

�−1

dr2 + r2dΩ2
D−4 +

1

1 + α

�
dσ2 + σ2dφ2

�
. (3.5.58)

It is then obvious that this metric is valid for all values of α ≥ 0. Moreover, it is also a
straightforward exercise to show that the physical properties of this solution matches those
of the even-ball blackfold. Finally, as in the AdS case, it follows that Kerr-dSD black holes
for D ≥ 6 have an ultra-spinning GL instability.

3.5.3 Rings and helices

In [63] blackfold solutions were found in D ≥ 5 with exotic horizons and a single axial U(1)
isometry. These helical black rings and helical black strings constitute the first examples of
asymptotically flat black holes that saturate9 the rigidity theorem [97]. In this section we
address the question whether helical rings can be attained as well in (A)dSD spacetime. We
will show that solutions describing helical rings with these symmetries, which are valid in
the regime r0 � L, can also be constructed in these backgrounds. On the other hand the
question wether or not helical strings can be constructed in these backgrounds remains open
as it would require a different starting point from that of an asymptotically flat black brane
(see (1.1.1)).

8We are grateful to Roberto Emparan for pointing this out.
9Ref. [96] found evidence for another example, in the context of time-independent perturbations at the

onset of instabilities of higher-dimensional black holes.
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Helical black rings in (A)dSD

In order to construct the action for these blackfolds it is convenient to write the metric of a
2N -dimensional spatially conformally flat subspace of (A)dSD spacetime in such a way that
all its U(1)N symmetries are explicit

ds2D−1 = H(ρ)−1




N�

i=1

(ρ2i + ρ2i dφ
2
i ) +

D−(2N+1)�

j=1

dx2
j



 , ρ2 =
N�

i=1

ρ2i +
D−(2N+1)�

j=1

x2
j , (3.5.59)

where we have the constraint n ≥ (2N − 1). To embed the black 1-fold worldvolume B1 we
set xj = 0, ∀j and choose the set of scalars ρi = R̄i and the spatial worldvolume coordinate
σ such that

{φi = niσ , 0 ≤ σ ≤ 2π, i = 1, ..., N} , (3.5.60)
where we assume without loss of generality that ni ≥ 0. The numbers ni must be integers in
order for the ring to close up on itself and the smallest of them (nmin) must be coprime with
all the remaining ones to avoid multiple covering of the ring. The Killing vector field must
be such that all the U(1)N symmetries generate the isometry of the worldvolume, giving

k =
∂

∂t
+

N�

i=1

Ωi
∂

∂φi
. (3.5.61)

The ratios between the angular velocities must be rational such that
����
Ωi

Ωj

���� =
ni

nj
, ∀i, j , (3.5.62)

and hence we can simply set |Ωi| = Ωni. The action then takes the simple form

I[{R}] = 2πR0R
�
R2

0 −R2Ω2
�n

2 , (3.5.63)

with R2
0 = F (ρ), R2 = H(ρ)−1

�N
i=1 n

2
i R̄i

2 and ρ2 =
�N

i=1 R̄i
2. The general form of the

action (3.5.63) was given in Ref. [15]. The action depends on the single scalar R with R0 a
function of R, which should be taken into account when varying as well as the fact that the
variation should be orthogonal to the helix. As a result one single equation is found.

A more convenient action to work with can be obtained by making the following redefi-
nition

Ri =
R̄i

1±
�N

i=1 R̄i
2

4L2

. (3.5.64)

The action (3.5.63) then takes the same form but now with R2
0 = V(r), R2 =

�N
i=1 n

2
iR

2
i and

r2 =
�N

i=1 R
2
i . Varying this with respect to R leads to [63]

Ω2 =
R2

0

R2

1 + (n+ 1)dlnR0
dlnR

n+ 1 + dlnR0
dlnR

. (3.5.65)
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In the case at hand for AdSD the solution becomes

Ω2 =
1 + R2

R2

(1 + R2)(n+ 2)− (n+ 1)

(1 + R2)(n+ 2)− 1
, (3.5.66)

where we have defined R2 = L−2
�N

i=1 R
2
i . This agrees with the result for planar black rings

ni = 1, ∀i of (3.5.15) with p = 1. The equilibrium condition for helical rings and planar
rings is exactly the same but with a more complicated expression for R in the former case.
The only difference resides in the fact that in the planar case specifying R immediately
specifies R0 for these backgrounds while for the helical case one needs to specify R and R0

independently since the latter is a function of
�N

i=1 R
2
i . Note that it follows from (3.5.66)

that static helical black rings can exist in dSD provided

R2 =
1

n+ 2
, (3.5.67)

which is the same condition as for static planar rings in dSD and hence independent of the
integers ni. Accordingly, (3.5.67) can also be obtained from (3.5.29) in the special case of
p = 1.

We now proceed by describing the physical quantities of the helical AdS black rings

M =
Ω(n+1)

8G
(n+ 2)rn0 (1 + R2)

3
2

����
N�

i=1

n2
iR

2
i , (3.5.68)

Ji = ±
Ω(n+1)

8G
rn0 ((1 + R2)(n+ 2)− 1)

�
1−

n

(1 + R2)(n+ 2)− 1
niR

2
i , (3.5.69)

S =
πΩ(n+1)

2G
rn+1
0

�
(1 + R2)(n+ 2)− 1

n

����
N�

i=1

n2
iR

2
i . (3.5.70)

These quantities agree with the ones computed in [63] for helical rings in flat space (when
taking L → ∞) and with the ones computed in [65] for planar rings in (A)dS (when taking
ni = 1, ∀i). For completeness we also give the tension for these helical rings

T = −
Ω(n+1)

8G
(n+ 2)rn0 (1 + R2)

1
2R2

����
N�

i=1

n2
iR

2
i . (3.5.71)

As expected, the tension vanishes only in the asymptotically flat case when R → 0. It can
be shown that these physical properties satisfy the Smarr relation (4.1.35).
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Helical rings in different backgrounds

We would now like to give a few comments on helical rings in different background geometries.
In fact it seems likely that helical rings can exist in any spherically symmetric background of
the form (3.5.2) since these can always be put into coordinates for which the potential V(r)
is constant along the ring. As a matter of a fact, Eq. (3.5.65) first derived in [63] holds for
any 1-fold assuming only the existence of a background timelike and spacelike Killing vector,
hence a valid solution should exist for such backgrounds. This leads us to the following
conjecture

Conjecture 3.5.1 Neutral helical black ring solutions exist in any background with spherical

symmetry in the regime r0 � |Λ|−
1
2 .

As an example of a different spherically symmetric background we take the Schwarzschild-
Tangherlini solution in D dimensions (SchD) as the background and try to construct a helical
black Saturn.10 The SchD metric can be written as in (3.5.2) but with

V(r) = 1−
�µ
r

�D−3
, µ ≤ r ≤ ∞ . (3.5.72)

By performing the transformation r = (1 + µD−3

4ρD−3 )
2

D−3ρ one can bring the Schwarzschild
metric to the form (3.5.4) with

F (ρ) =
(1− µD−3

4ρD−3 )2

(1 + µD−3

4ρD−3 )2
, H(ρ) = (1 +

µD−3

4ρD−3
)2 ,

�
5

4
µ

D−3
2

� 2
D−3

≤ ρ ≤ ∞ . (3.5.73)

Using the embedding (3.5.60) the action reduces to (3.5.63) but with R2
0 = V(r) given by

(3.5.72). The solution can be obtained from (3.5.65) and reads

Ω2 =
(1−mn+1)

R2

(1−mn+1)(2− (n+ 1)2) + (n+ 1)2

(n+ 1)mn+1
, (3.5.74)

where we have defined the parameter m = µ�N
i R2

i

and used the fact that in this case D = n+4.
One can go even further and perform the same calculation for a general potential of the form
V(r) with r2 =

�N
i=1 R

2
i , the equilibrium condition for Ω is given by the relation

Ω2 =
R2

0

R2

2R2
0 + (n+ 1)R2�

0

��N
i=1 R

2
i

2R2
0(n+ 1) +R2�

0

��N
i=1 R

2
i

, (3.5.75)

where R2�
0 ≡ ∂rR2

0. This generalizes the equilibrium condition obtained in [65] for planar
rings in backgrounds of this form.

10The black Saturn solution in five dimensions was constructed in Ref. [32]. See also Refs. [14, 65, 63, 29]
for results on black Saturns in higher dimensions.
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Chapter 4

Linear (electro)elastic deformations and

spin

In this section we push the method described in Sec. 1.1 one order further by deriving the
modified EOMs (1.1.2) and measuring the corrected stress-tensor from the metric (1.1.3) in
the case of a bent string p = 1. This is done by doing a multipole expansion of the stress
tensor T̂ µν (finite thickness corrections) as opposed to viscous corrections when hydrody-
namic perturbations are introduced. It is convenient to introduce an analogy to develop
intuition about the physics of this type of corrections. Consider a dielectric object with
electric charge q under the influence of an electric field �E. In the point-like approximation
the charge density of the object is ρ(x) = q δD−1(x) and its equation of motion is

m�a = q �E . (4.0.1)

For a real material the electric field �E causes a charge redistribution and induces an electric
dipole, which to lowest order in �E is given by linear response

�d = κ�E , (4.0.2)

where κ depends on the material (and could be a matrix). The object is no longer an electric
monopole,

ρ(x) = q δD−1(x)− �d · �∂
�
δD−1(x)

�
, (4.0.3)

and the equations of motion for this pole-dipole object now read

m�a = q �E + �d · �∂ �E . (4.0.4)

If the induced dipole is small with respect to the scale in which the electric field varies,
the second term in the r.h.s of this equation is a small perturbation. Here we present the
gravitational analog of this equation that applies to black branes under bending by the

57
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action of the extrinsic curvature and use these results to exhibit the elastic character of
black strings by measuring their elastic moduli - a relativistic generalization of the Young
modulus. Finite thickness corrections also encode intrinsic spin degrees of freedom and we
use this to correctly describe doubly-spinning MP black holes. The procedure can also be
applied to charged branes in which case they will develop piezoelectric properties. In line
with this we measure the piezolectric moduli of charged dilatonic black strings in Einstein-
Maxwell-Dilaton (EMD) theory.

4.1 Dynamics and conserved charges of pole-dipole branes
Here we briefly review the equations of motion for p-dimensional objects in the pole-dipole
approximation, i.e., when the stress-energy tensor is expanded to first order in a Dirac-delta
series. Following closely the work done in Ref. [98], it is shown how to iteratively account
for higher-pole deformations to the stress-energy tensor T̂ µν while the extra symmetries that
this object exhibits are commented upon. The equations of motion are then presented in
their original form, as derived in [98], which, when applied to black p-branes, are collectively
called blackfold pole-dipole equations. In search of a clearer physical interpretation, we
introduce a new set of quantities that make apparent the physics involved. Towards the
end of this section, we provide a characterization of these p-branes in terms of well defined
physical quantities and, in the particular case of blackfold constructions, of well defined
thermodynamic properties. In Sec. 4.1.4 we derive the equations of motion for branes carrying
a 0-brane charge.

4.1.1 Stress-energy tensor and extra symmetries

The stress-energy tensor is a well-localized object on the brane and can be consistently
expanded into a Dirac delta function series around the embedding surface xµ = Xµ(σa).
Schematically, the expansion has the following form1:

T̂ µν(xα) =

�

Wp+1

dp+1σ
√
−γ

�
Bµν(σa)

δ(D)(xα −Xα)
√
−g

−∇ρ

�
Bµνρ(σa)

δ(D)(xα −Xα)
√
−g

�
+ ...

�
.

(4.1.1)
In the context of electrodynamics, (4.1.1) corresponds to the usual multipole expansion of
a charge distribution. For the series (4.1.1) to be well defined we must require T̂ µν to fall
off exponentially to zero as we move away from the surface xµ = Xµ(σa), which implies
that each of the coefficients Bµνα1...αk must become smaller and smaller at each order k
of the expansion. At order k = 0 the only non-vanishing coefficient is Bµν , resulting in
T̂ µν acquiring the form of (2.1.2) and, by means of Eq. (1.1.2), leading to the equations

1Note that we slightly changed notation with respect to (2.1.2) to match the original work of [98]. Here
the monopole stress-energy tensor Bµν is the same as Tµν in (2.1.2).
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of motion for single-pole branes as presented in (2.3.7). In this section we are concerned
with truncating the expansion (4.1.1) to order k = 1 and obtaining, in the same way, the
equations of motion for pole-dipole branes moving in curved backgrounds. Truncation of
the series is a covariant operation and can be done at any arbitrary order. As it stands,
(4.1.1) is written in a manifestly invariant way both under spacetime diffeomorphisms and
worldvolume reparametrizations.

These are not the only gauge redundancies that T̂ µν possesses since it is also invariant
under two other gauge transformations, which were coined by the authors of [98] as ‘extra
symmetry 1’ and ‘extra symmetry 2’. As these symmetries play an important role in un-
derstanding the physics of pole-dipole branes, we proceed by describing their action on the
B-tensors.

Extra symmetry 1

This additional gauge freedom arises naturally in the expansion (4.1.1) due to the p + 1
δ-functions and p + 1 integrations that were introduced solely with the purpose of making
the full expression covariant. Specifically, derivatives along the worldvolume directions are
integrated out, implying that there are redundant components of Bµνρ. Physically, this is a
consequence of the fact that the multipole expansion is an expansion in derivatives transverse
to the brane, rather than longitudinal. The invariance of the stress-energy tensor under this
symmetry is defined by its action on the Bµν and Bµνρ tensors as

δ1B
µν = −∇a�

µνa, δ1B
µνρ = �µνauρ

a , (4.1.2)

with �µνa = �νµa being free parameters except at the boundary of the worldvolume where
they are required to obey,

n̂a�
µνa

|∂Wp+1 = 0 , (4.1.3)

where n̂a is the unit normal vector to the brane boundary (see App. A for details). Using
the transformation laws (4.1.2) one can easily check that the purely tangential components
to the worldvolume of Bµνρ are in fact a gauge artifact,

δ1(B
µνρua

ρ) = �µνa . (4.1.4)

Hence, the components Bµνa can be gauged away everywhere except at the boundary where
the parameters �µνa cannot be freely chosen. This implies that there are degrees of freedom
that live exclusively on the boundary of the worldvolume, for which a physical interpretation
will be given in the next section.

Extra symmetry 2

The stress-energy tensor T µν has been expanded around the surface xµ = Xµ(σa) as in
(4.1.1) but since we are dealing with objects of finite thickness there is freedom in choosing a
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different worldvolume. In physical terms, the finite thickness of the brane allows for different
choices of worldvolume surfaces2. This redundancy is an exact symmetry of the full series
expansion (4.1.1) but only an approximate one of the truncated series to order k = 1. This
is because neglecting higher order terms in the expansion (4.1.1) already constrains the
allowed choices of worldvolumes. In particular, choosing the surface Xα(σa) to lie outside
the localized matter would require a non-zero contribution from the higher order B-tensors.
Therefore, we choose the surface to lie within the localized matter and assume the following
hierarchy of scales:

Bµν = O0, Bµνρ = O1, Bµνρλ = O2, ... . (4.1.5)

In this way, we can define the action of ‘extra symmetry 2’ as

X
�α(σa) = Xα(σa) + �α(σa) , (4.1.6)

where �α is constrained by the requirement that the transformed B-tensors obey Bk+1 =
Ok+1. In both the single-pole and pole-dipole cases this implies �α = O1. The action of
(4.1.6) to order k = 1 demands the following transformation rule for the B-tensors:

δ2B
µν = −Bµνua

ρ∇a�
ρ
− 2Bλ(µΓν)

λρ�
ρ, δ2B

µνρ = −Bµν�ρ , (4.1.7)

where we have ignored contributions of O2 and higher. In the single-pole approximation we
find δ2Xα = 0 and δ2Bµν = 0, emphasizing the fact that there is no freedom in choosing the
worldvolume surface for the object as they are infinitely thin.

4.1.2 Equations of motion and physical interpretation

The equations of motion (EOMs) for probe pole-dipole branes moving in a curved background
spacetime can be obtained by solving Eq. (1.1.2) using the stress-energy tensor given in (4.1.1)
truncated to order k = 1. The derivation of these equations is somewhat involved and we
refer to [98] for an extensive detailed analysis.

It is convenient to decompose the objects Bµν and Bµνρ into tangential and orthogonal
components to the worldvolume, the latter being subjected to the constraint equation [98]

⊥
ν
λ⊥

σ
ρB

µ(λρ) = 0 , (4.1.8)

while the former is not altogether independent and bares a relation with Bµνρ which will be
described below. This suggests the following decomposition3:

Bµν = Bµν
⊥ + 2u(µ

b Bν)b
⊥ + uµ

au
ν
bB

ab, Bµνρ = 2u(µ
b Bν)ρb

⊥ + uµ
au

ν
bB

ρab
⊥ + uρ

aB
µνa , (4.1.9)

2In the particle case there is a natural choice of reference frame which is the centre of mass.
3A subindex ⊥ on a tensor indicates that all µ, ν type of indices are orthogonal, e.g., Baµ

⊥ = ⊥µ
νBaν

⊥ .
Details can be found in App. A.
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that can be shown to obey the properties B(µν)a
⊥ = Bµ[ab]

⊥ = B[µν]a = 0. Due to ‘extra
symmetry 1’, described in the previous section, the last components in the decomposition of
Bµνρ are left neither parallel nor perpendicular to the worldvolume, as Bµνa can be gauged
away in the bulk of the brane. A convenient form of the EOMs can be obtained by defining
a new set of tensors

Sµνa = Bµνa
⊥ + u[µ

b B
ν]ba
⊥ , Nµνa = Bµνa + u(µ

b Bν)ba
⊥ , (4.1.10)

which are, respectively, anti-symmetric and symmetric in the first two indices µ, ν. In terms
of these it is straightforward to check that Bµνρ can be recast as

Bµνρ = 2u(u
a Sν)ρa +Nµνauρ

a . (4.1.11)

Furthermore, the interdependence between the orthogonal components of Bµν and the quan-
tities Sµνa and Nµνa is expressed through the relations

Bµν
⊥ = ⊥

µ
λ⊥

ν
ρ∇aN

λρa, Bµa
⊥ = ua

λ⊥
µ
ρ∇b

�
Sλρb +Nλρb

�
, (4.1.12)

while the tangential components Bab describe the monopole contribution to the intrinsic
stress-energy tensor of the brane.

Parametrizing the EOMs using (4.1.11)-(4.1.12) yields two sets of bulk equations: a
partial conservation equation of the brane worldvolume currents Sµνa,

⊥
µ
λ⊥

ν
ρ∇aS

λρa = 0 , (4.1.13)

and the equation that describes the motion of the pole-dipole brane

∇b

�
mabuµ

a − 2ub
λ∇aS

µλa + uµ
cu

c
ρu

b
λ∇aS

ρλa
�
− uν

aS
λρaRµ

νλρ = 0 , (4.1.14)

where we have defined, for later convenience, the worldvolume tensor mab through the formula

mab = Bab
− ua

ρu
b
λ∇cN

ρλc . (4.1.15)

Eqs. (4.1.13)-(4.1.14) reduce to those of a spinning point particle as obtained by Papapetrou
in [99] when p = 0. In order to highlight the physical meaning of Eq. (4.1.14), we project it
along the tangential and orthogonal directions to the worldvolume. This operation leads to
the intrinsic and extrinsic worldvolume equations:

∇bm
ab = 2∇b

�
u[b
ρK

a]
cλS

ρλc
�
− 2ub

λK
a
bρ∇cS

ρλc
− ua

µu
ν
cS

ρλcRµ
νλρ , (4.1.16)

mabKab
ρ =

�
2⊥ρ

λK
b
bν + uc

νu
b
λKbc

ρ
�
∇aS

νλa+2ub
ν⊥

ρ
λ∇b∇aS

νλa
−uν

a⊥
ρ
µS

σλaRµ
νλσ . (4.1.17)



62 CHAPTER 4. LINEAR (ELECTRO)ELASTIC DEFORMATIONS AND SPIN

In this way, it is clear that Eq. (4.1.16) can be interpreted as an equation for the conservation
of the intrinsic monopole stress-energy tensor Bab, which can be violated due to the higher
order dipole contributions4, while Eq. (4.1.17) is the generalized geodesic equation for a
pole-dipole p-dimensional object, in contrast with the single-pole case (2.3.7).

In turn, the EOMs that govern the brane dynamics (4.1.13)-(4.1.14) everywhere inside
Wp+1 are supplemented by well defined boundary conditions derived from solving Eq. (1.1.2),

Sµνan̂an̂ν |∂Wp+1 = 0

⊥
µ
λ⊥

ν
ρS

λρan̂a|∂Wp+1 = 0
�
∇î

�
N îĵvµ

ĵ
+ 2Sµνan̂av

î
ν

�
− n̂b

�
mabuµ

a − 2ub
λ∇aS

µλa + uµ
cu

c
ρu

b
λ∇aS

ρλa
��

|∂Wp+1 = 0 ,

(4.1.18)

where vĵν are the boundary coordinate vectors (see App. A for details) and we have defined
N îĵ = Nµνan̂av îµv

ĵ
ν . These quantities appear only in the boundary conditions and nowhere

else and, as mentioned in the previous section while discussing ‘extra symmetry 1’, contain
the degrees of freedom that live exclusively on the boundary. In full generality, the tensors
mab, Sµνa and N îĵ characterize the internal structure of the brane and play a crucial role
in describing its dynamics. We will proceed by analyzing their physical meaning and of the
resulting EOMs.

Physical interpretation

Ref. [98] introduced the Sµνa and mab quantities, in terms of which the equations of motion
of pole-dipole branes simplify considerably. In the following we give an interpretation of
Sµνa, and see that it contains two types of contributions: the genuine intrinsic transverse
angular momenta, and the dipole moment of the distribution of worldvolume stress-energy5.
Thus, besides generalising Papapetrou’s equations, Eqs. (4.1.16), (4.1.25) include dipole
interactions analogous to those in (4.0.4).

We begin by analyzing which components of Sµνa are involved in the description of the
intrinsic angular momenta. To this end, we assume to be working in flat spacetime written in
Cartesian coordinates and focus on uniform p-branes extended along the x0, ..., xp directions.
Evaluating the total angular momentum on the transverse plane labeled by the indices µ, ν
leads to

Jµν
⊥ =

�

Σ

dD−1x
�
T̂ 0µxν

− T̂ 0νxµ
�
=

�

Bp

dpσ
√
−γ

�
2B0µν

⊥
�
+ boundary terms , (4.1.19)

4Even though the conservation of the monopole stress-energy tensor is not necessarily guaranteed, in the
cases studied here we always find that Bab is conserved.

5In the case of the 0−brane the dipole can be gauged away and, as demonstrated in the original work of
Corinaldesi and Papapetrou [99, 100], Sµνa describes only spin degrees of freedom.
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where Σ is a constant time slice in the bulk spacetime. At this point, we ignore the boundary
terms, which only depend on the components Bµνa, but we will consider them towards the
end of this section. From (4.1.19), we can see that the monopole contribution to the intrinsic
stress-energy tensor Bab does not play a role in (4.1.19) and hence a p-brane when treated
in the single-pole approximation can never carry intrinsic angular momenta. Furthermore,
only the components Baµν

⊥ contain information about the spin of the object. This suggests
the introduction of a current density of transverse angular momenta as

jaµν = 2ua
ρ⊥

µ
σ⊥

ν
λB

ρ[σλ] = 2Baµν
⊥ , (4.1.20)

where both indices µ, ν are orthogonal to the worldvolume.
On the other hand, there is another source of Bµνρ which is of a different nature than

transverse angular momenta. It arises from the fact that, since we are probing the finite
thickness of the brane, we need to take into account corrections to the intrinsic stress-energy
tensor T ab due to the dipole-type effects. This is characterized by the integral6,

Dabρ =

�

Σ

dD−1xT̂ abxρ =

�

Σ

dD−1xT̂ µνua
µu

b
νx

ρ =

�

Bp

dpσ
√
−γ Bρab

⊥ + boundary terms ,

(4.1.21)
where xρ is an orthogonal coordinate to the worldvolume. Dabρ captures the dipole moment
of the distribution of worldvolume stress-energy. As in the case of intrinsic angular momenta,
we introduce a current density that describes such deformations to the intrinsic stress-energy
tensor by

dabρ = ua
µu

b
ν⊥

ρ
λB

µνλ = Bρab
⊥ , (4.1.22)

where the index ρ is orthogonal to the worldvolume Wp+1.
Our aim now is to recast the EOMs, including the boundary conditions, in terms of these

newly defined quantities. Using the definitions of the current densities (4.1.20) and (4.1.22),
we can rewrite the tensors introduced in (4.1.10) as

Sµνa =
1

2
jaµν − dab[µuν]

b , Nµνa = Bµνa + dab(µuν)
b . (4.1.23)

We note that we have not been concerned so far with giving a physical interpretation to
the components Bµνa. This is because, due to ‘extra symmetry 1’, we can gauge them away

6As a matter of a fact, this is the usual notion of an electric induced dipole. In electrostatics, given a
density of charge ρ(x), the dipole can computed as,

�D =

�

Σ
dD−1x�xρ(x) .
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everywhere in the bulk while on the boundary we will have to deal with N îĵ as we will see
below. In turn, the current conservation equation (4.1.13) becomes:

1

2
⊥

µ
λ⊥

ν
ρ∇aj

aρλ + dab[νKab
µ] = 0 . (4.1.24)

This equation can be interpreted as the balance between orbital angular momentum and
intrinsic angular momentum. Nevertheless, as it will be argued in Sec. 4.2, for blackfold-type
objects, the dipole current dabρ is induced by the extrinsic curvature. In all such situations,
the second term in Eq. (4.1.24) vanishes, leading to a conserved spin current which can be
naturally interpreted as a 0-brane particle current on the worldvolume.

We now turn our attention to the intrinsic and extrinsic Eqs. (4.1.16)-(4.1.17), which can
be rewritten using (4.1.20) and (4.1.22) as

Dam
ab = Kc

b
µ

�
Ka

c
λj

aµλ +∇ad
acµ

�
+∇cKa

[b
µd

c]aµ
− ub

µu
ν
a

�
1

2
jaλρ − dab[λuρ]

b

�
Rµ

νλρ ,

(4.1.25)

mabKab
ρ = ∇b

�
jaλρKb

aλ

�
+ uρ

cK
a
bλK

c
aσj

bλσ
−Kac

ρK(c
bλd

a)bλ
−⊥

ρ
σ∇b∇ad

abσ

− uν
a⊥

ρ
µ

�
1

2
jaλσ − dab[λuσ]

b

�
Rµ

νλσ . (4.1.26)

These equations provide the gravitational analog of Eq. (4.0.4) for p-branes. Written in this
way it is apparent that, besides spin interactions, we also have couplings to the dipole current
dabρ. For blackfold objects these interactions can be interpreted as elastic forces, for which
a derivation in terms of high-pressure elasticity theory [80] can in principle be accomplished
and will be presented elsewhere. This point will be further motivated in Sec. 4.2. Finally,
the boundary conditions (4.1.18) take the form:

dabµn̂an̂b|∂Wp+1 = 0

jaµνn̂a|∂Wp+1 = 0
�
∇î

�
N îĵvµ

ĵ
− dabµn̂av

î
b

�
− n̂b

�
mabuµ

a − jaµλKa
b
λ −Ka

(c
λd

b)aλuµ
c −∇ad

abµ
��

|∂Wp+1 = 0 ,

(4.1.27)

where N îĵvµ
ĵ

is in fact

N îĵvµ
ĵ
= Bλνan̂av

î
λv

ĵ
νv

µ

ĵ
. (4.1.28)

Eqs. (4.1.24)-(4.1.27) when applied to black p-branes constitute the blackfold equations in
the pole-dipole approximation and will be analyzed in detail in particular cases throughout
the course of this work.
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We end this section by briefly commenting on the physical interpretation of the coefficients
N îĵ. As remarked in [98], N îĵ characterizes the tangential components to the worldvolume
of the brane thickness. The reason why these components drop out of the bulk equations is
because thickening the brane along tangential directions does not affect the brane interior
but if the brane has a boundary then it will be affected by such process. Essentially, N îĵ is
a correction to the intrinsic stress-energy tensor of the brane boundary T îĵ and can be read
off from an analytic solution by evaluating the stress-energy tensor on the boundary of the
brane surface. Since for all the cases analyzed here Bµνa vanishes everywhere, including at
the boundary, we assume Bµνa = 0 from hereon.

4.1.3 Physical properties

Branes in the pole-dipole approximation can carry different conserved charges and this sec-
tion is devoted to describing them. In the case of blackfolds, where these charges acquire a
thermodynamic interpretation, we present a method for obtaining the remaining thermody-
namic quantities involved.

As mentioned in Sec. 1.1, fine structure corrections do not violate stress-energy conser-
vation (1.1.2). Hence, since we are working in the probe approximation, associated with any
background Killing vector field kµ, there exists a conserved current given by T µνkν and thus
the conserved charges can be obtained in the usual way. In general, we have a charge Qk
given by

|Qk| =

�

Bp

dV(p)B
µνnµkν +

�

Bp

dV(p)B
µνρ

∇ρ (nµkν) , (4.1.29)

where nµ is the normal vector to a constant time slice of the background space-time and is
defined as

nµ =
ξν

R0
. (4.1.30)

In writing Eq. (4.1.29) we have assumed that ξν is hypersurface orthogonal with respect to
the background spacetime and that ξν is parallel to the worldvolume timelike Killing vector
field, which is also hypersurface orthogonal with respect to the worldvolume metric, i.e.,
ξµ = uµ

aξ
a.

Using the decompositions (4.1.9) and Eqs. (4.1.20),(4.1.22) we can write down general
expressions for the physical quantities in terms of the spin and dipole currents. The total
mass, associated with ξν , reads7

M =

�

Bp

dV(p)B
abnaξb +

�

Bp

dV(p)d
abρξau

µ
b ∂ρnµ . (4.1.31)

7Here we have used the Killing equation ∇(µkµ) = 0 to exchange covariant derivatives for partial deriva-
tives.
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The first term above describes the contribution to the total mass arising from a monopole
source of stress-energy, while the second is the extra contribution coming from a dipole
distribution. Similarly, the total angular momentum along a worldvolume spatial direction
i associated with the rotational Killing vector field χi takes the form

J i = −

�

Bp

dV(p)B
abnaχ

i
b −

1

2

�

Bp

dV(p)d
abρuµ

b

�
ξa∂ρ

χi
µ

R0
+ χi

a∂ρnµ

�
. (4.1.32)

Moreover, the transverse angular momentum associated with the rotational Killing vector
field χα

⊥ is given by

Jα
⊥ = −

�

Bp

dV(p)

�
1

2
∇aj

aλρ + uλ
b∇ad

abρ

�
nλχ⊥ρ −

1

4

�

Bp

dV(p)j
aµρuν

a

�
ξν∂ρ

χα
⊥µ

R0
+ χα

⊥µ∂ρnν

�
.

(4.1.33)
We see that the spin current jaµρ only plays a role in the transverse angular momenta. On the
other hand, the dipole current dabρ does influence all charges, including Jα

⊥ (which corresponds
to orbital angular momentum). This is because, in general, jaµρ is not a conserved current
due to Eq. (4.1.24). In the cases considered here, the first term in Eq. (4.1.33) always
vanishes, as the spin current is always conserved.

Thermodynamic quantities

When considering the dynamics of black p-branes, the conserved charges have a thermo-
dynamic interpretation. Furthermore, a local temperature and entropy density can be as-
signed to the p-dimensional object from which one can then compute a global temperature
and total area. As we will be mainly concerned with blackfolds constructed from wrapped
Schwarzschild and Myers-Perry p-branes on curved submanifolds, the knowledge of these
quantities amounts to perform a near-horizon computation which is beyond the scope of this
thesis. Instead, we present here an alternative method to obtain the on-shell temperature
and entropy.

Focusing for the moment on asymptotically flat spacetimes, the method consists of using
the first law of black hole thermodynamics

dM =
�

i

ΩidJ
i +

�

α

ΩαdJ
α
⊥ + TdS , (4.1.34)

together with the Smarr relation

(n+ p)M = (n+ p+ 1)

�
�

i

ΩiJ
i +

�

α

ΩαJ
α
⊥ + TS

�
, (4.1.35)

in order to determine the two unknown quantities T and S. Since, in general, all physical
quantities depend on a set of intrinsic parameters, such as r0 and R, which we collectively
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call by Φw, then, by means of Eq. (4.1.35) the product TS can be determined, as all other
quantities involved can be evaluated using the expressions (4.1.31)-(4.1.33). Inserting this
result into Eq. (4.1.34) leads to a set of equations, one for each Φw, which take the following
form:

1

T

∂T

∂Φw
=

1

TS

�
∂TS

∂Φw
+
�

i

Ωi
∂J i

∂Φw
+
�

α

Ωα
∂Jα

⊥
∂Φw

−
∂M

∂Φw

�
. (4.1.36)

Solving this set of equations yields the temperature of the black object and hence also the
entropy by Eq. (4.1.35). The method just described provides the knowledge of T and S up
to a constant, which can later be fixed by demanding the correct behavior in the infinitely
thin limit, or in the single-pole approximation, where all quantities can be unambiguously
determined using the results of Ref. [16].

We conclude this section by briefly considering blackfolds in (A)dS backgrounds in situ-
ations where the dipole current dabρ vanishes. In such cases the total integrated tension T ,
given by

T = −

�

Bp

dV(p)R0B
µν (hµν − nµnν)−

�

Bp

dV(p)R0B
µνρ

∇ρ (hµν − nµnν) , (4.1.37)

plays a role in the thermodynamics and must be added to the rhs of Eq. (4.1.35). These
considerations will be used later in Sec. (4.4) and App. (E) in order to make contact with
the thermodynamic properties of doubly-spinning Myers-Perry and higher-dimensional Kerr-
(A)dS black holes.

4.1.4 Pole-dipole branes carrying a 0-brane charge

Here we consider finite thickness corrections to the worldvolume theory of charged branes
described in the end of Sec. 2.6. Besides being described by a stress-energy tensor (4.1.1),
these are characterized by an additional monopole source of electric current that must suffer
multipole corrections. We will be interested in applying this theory to black branes that
are electrically charged under a 2-form field strength F µν(xα) which develop worldvolume
electric dipoles due to the action of bending. In direct analogy with classical electrodynamics
we expand the electric current in a Dirac-delta function series8:

Ĵµ(xα) =

�

Wp+1

dp+1σ
√
−γ

�
Jµ
(0)(σ

a)
δ(D)(xα −Xα)

√
−g

−∇ρ

�
Jµρ
(1)(σ

a)
δ(D)(xα −Xα)

√
−g

�
+ ...

�
.

(4.1.38)

8Here we also changed notation with respect to (2.6.1). Here the components Jµ
(0) are the same as the

components Jµ in (2.6.1).
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In parallel with (4.1.1), this displays general covariance via ‘extra symmetry 1’, δ1Jµρ =
−�µauρ

a and δ1Jµ = −∇a�µa, and has the same ambiguity as the stress-energy tensor under
small displacements of the embedding surface expressed by ‘extra symmetry 2’:

δ2J
µ
(0) = −Jµ

(0)u
a
ρ∇a�

ρ
− Jλ

(0)Γ
µ
ρλ�

ρ ,

δ2J
µρ
(1) = −Jµ

(0)�
ρ .

(4.1.39)

In the probe approximation, Eq. (1.1.2) is now supplemented with current conservation
(2.6.2). Following the same method as in [98], we can solve Eq. (2.6.2) decomposing the
monopole part of the current as

Jµ
(0) = uµ

aJ
a
(0) + Jµ

⊥, Jµ
⊥ = ⊥

µ
λJ

λ
(0) , (4.1.40)

and the 2-index structure Jµρ
(1) as

Jµρ
(1) = m[µρ] + uµ

ap
aρ + Jµa

(1)u
ρ
a , (4.1.41)

where we have used ‘extra symmetry 1’ to gauge away some of the components. Here
m[µρ] = ⊥[µ

ν⊥
ρ]
λJνλ

(1) is an additional contribution to the electric current due to the motion
in transverse directions, paρ = ua

µ⊥
ρ
νJ

µν
(1) is the electric dipole moment while the components

Jµa
(1) are pure gauge and can be set to zero. The extra components of the monopole part

of the current are not independent and can be related to the dipolar part by the relation
Jµ
⊥ = ⊥µ

λ∇a

�
2J (λa)

(1) − J (ab)
(1) uλ

b

�
. Consequently, current conservation (2.6.2) results in the

worldvolume conservation equation

∇a

�
J

a + pbρ∇bu
a
ρ

�
= 0 , (4.1.42)

where we have defined the worldvolume tensor J a = Ja
(0) −∇bJ

(ab)
(1) . In the case of worldvol-

umes with boundaries Eq. (4.1.42) must be supplement by additional boundary conditions
[67]. When applied to the special case p = 0, these equations reduce to those derived for
the charged spinning point particle [101, 102], though the complete decomposition (4.1.41),
crucial for its physical interpretation, has not been considered in the literature.

4.2 Black string elasticity and thin black rings
The purpose of this section is to study how a Schwarzschild black string reacts to its bending.
This is done using an explicit solution describing a black string of thickness r0 bent on a
circle of radius R, to first order in r0/R. Very similarly to what happens to elastic rods, the
effective blackfold stress-energy tensor distribution acquires a dipole contribution, exhibiting
an effective elastic behavior characterized by a response coefficient: the Young modulus.
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4.2.1 Measuring the dipole from the approximate analytic solution

This section uses the solutions constructed in [14] to compute the dipole contribution to
the effective stress-energy distribution induced by the bending of strings. This reference
computes, to first order in r0/R, the spacetime of a bent Schwarzschild string, where r0 is
the thickness of the string and R is the radius of curvature of the circle on which the string
is bent by means of the method described in Sec. 1.1. The resulting bent metric takes the
local form of (1.1.3). Here we are interested in pushing the method one step further, i.e.,
2nd far. Let us summarize the order-by-order logic, now adapted to the specific case of a
black string:

• 0th (near/far): The geometry is that of the straight boosted Schwarzschild black
string (1.1.1):

ds2 =
dr2

1− rn0
rn

+ r2
�
dθ2 + sin2 θdΩ2

(n)

�

−

�
1−

rn0
rn

�
(coshα dt+ sinhα dz)2 + (coshα dz + sinhα dt)2 ,

(4.2.1)

where we have parametrized ua = [coshα,− sinhα].

• 1st (far): The far field is described by the ADM stress-energy tensor of the string
(4.2.1), which takes the perfect fluid form and is localized on the string worldvolume,
Tµν = Bµνδn+2(r):

Btt =
Ω(n+1)rn0
16πG

�
n cosh2 α + 1

�
, (4.2.2a)

Btz =
Ω(n+1)rn0
16πG

n coshα sinhα , (4.2.2b)

Bzz =
Ω(n+1)rn0
16πG

�
n sinh2 α− 1

�
. (4.2.2c)

now along a bent manifold with curvature 1/R. Only sources satisfying Eq. (1.1.2) can
be coupled to the gravitational field. For the case of the ring they reduce to constancy
of r0 and Bzz = 0, which sets the rapidity to

sinh2 α =
1

n
. (4.2.3)

This is interpreted as the value at which the centrifugal repulsion compensates the
tension.
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• 1st (near): The geometry in the near zone is a 1/R perturbation to the Schwarzschild
black string, that is found using 1st (far) as a boundary condition and has the local
form (1.1.3).

• 2nd (far): From the metric (1.1.3) obtained in 1st (near) one can compute the
corrected effective stress-energy tensor. The corrected stress-energy tensor would need
to satisfy the corrected effective equation of motion given in (4.1.24)-(4.1.27), which
would modify (4.2.3)...

and so on. [14] went to the step 1st (near). In this section we push that analysis to 2nd
(far) by reading the correction to the stress-energy source, which is of dipole type, and which
will have the equations derived in Sec. 4.1 as effective equation of motion.

The solution of a bent black string in flat space at 1st (near) was written down in [14]
as

gtt = −1 +
n+ 1

n

rn0
rn

+
cos θ

R
a(r) , (4.2.4a)

gtz =

√
n+ 1

n

�
rn0
rn

+
cos θ

R
b(r)

�
, (4.2.4b)

gzz = 1 +
1

n

rn0
rn

+
cos θ

R
c(r) , (4.2.4c)

grr =

�
1−

rn0
rn

�−1 �
1 +

cos θ

R
f(r)

�
, (4.2.4d)

gij = ĝij

�
1 +

cos θ

R
g(r)

�
, (4.2.4e)

where ĝij is the metric of a round n+ 1 sphere of radius r in polar coordinates:

ĝijdx
idxj = r2dΩ2

(n+1) = r2
�
dθ2 + sin2 θ dΩ2

(n)

�
. (4.2.5)

As expected, the limit R → ∞ corresponds to a black string boosted in the z direction with
rapidity sinhα = 1/

√
n , according to (4.2.3).

The regular solution to the Einstein equations found in [14] has the following large r
asymptotics

a(r) = [k1(1 + n)− n(4 + 3n)ξ(n)]
rn+2
0

rn+1
+O

�
r−(n+2)

�
, (4.2.6a)

b(r) =
rn0
rn−1

+
�
k1n− 2n2ξ(n)

� rn+2
0

rn+1
+O

�
r−(n+2)

�
, (4.2.6b)
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c(r) = 2r +
1

n

rn0
rn−1

+ k1
rn+2
0

rn+1
−

n2 + 2n− 1

2n2(n− 2)

r2n0
r2n−1

+ k2
r2n+2
0

r2n+1
+O

�
r−(2n+2)

�
, (4.2.6c)

f(r) = −
2

n
r +

1

n2

rn0
rn−1

+
�
(k1 + 2k2)n− (4n2 + 7n+ 4)ξ(n)

� rn+2
0

rn+1
+O

�
r−(n+2)

�
,(4.2.6d)

g(r) = −
2

n
r +

1

n2

rn0
rn−1

+

�
2(k1 − k2n)

1 + n
+ (n− 4)ξ(n)

�
rn+2
0

rn+1
+O

�
r−(n+2)

�
, (4.2.6e)

where we defined

ξ(n) = −
2−

4+n
n

n+ 1

Γ
�
2n+1
n

�
Γ
�
−

n+2
2n

�

Γ
�
−

n+1
n

�
Γ
�
n+2
2n

� , (4.2.7)

which is zero for n = 1 and divergent for n = 2. In the latter case this is because the corre-
sponding terms in the expansion should have logarithm contributions on top the polynomial
ones. The interest of this thesis is in the n > 2 cases, which are those in which the step 2nd
(far) can be interpreted in the probe approximation, as discussed in the introduction. In
what follows we assume n > 2, i.e., black rings in more than six dimensions.

It is worth mentioning various things about expressions (4.2.6). First, note that all
functions are expanded to order r−(n+2) except for c(r), which is expanded to order r−(2n+2).

Second, there is residual gauge freedom in the coordinate system in which the metric
reads (4.2.4) and, because of that, c(r) is essentially unfixed by the Einstein equations. This
shows up in the unfixed k1 and k2 parameters, which parametrize gauge ambiguities. c(r) is
not completely free because we demand that at large r the metric goes to a known metric in
a familiar coordinate system. That known metric is the one that one recovers if one keeps
only terms in this expansions up to order r−n in (4.2.4). The geometry to order r−n is just
the linearized gravitational field of the blackfold distributional stress-energy tensor sitting
on a circle of radius R, to first order in 1/R.

To be more specific with this interpretation, let us decompose the metric (4.2.4) in the
following way:

gµν = ηµν + h(M)

µν + h(D)

µν +O
�
r−(n+2)

�
. (4.2.8)

Here ηµν is flat space in cylindrical coordinates

ηµνdx
µdxν = −dt2 + dz2 + dr2 + r2(dθ2 + sin2 θdΩ2

(n)) , (4.2.9)

and h(M)

µν , which is the correction to the flat metric in the (1st far) step, includes two types of
contributions; There is a 1/R change of coordinates of flat space such that r = 0 corresponds
to a circle, which are the terms not multiplying any r0 in (4.2.6). The other type of terms,



72 CHAPTER 4. LINEAR (ELECTRO)ELASTIC DEFORMATIONS AND SPIN

which are the ones multiplied by rn0 , correspond to the linearized gravitational field sourced
by the monopole blackfold stress-energy tensor.

h(D)

µν are the order r−(n+1) terms in the expansion. All these terms have

h(D)

µν ∝
rn+2
0

R

cos θ

rn+1
, (4.2.10)

which is the field of a dipole source located at r = 0 in the spacetime (4.2.9)9, namely

∆h(D)

µν ∝
rn+2
0

R
∂(r cos θ)δ

n+2(r) , (4.2.11)

where ∂(r cos θ) points outwards from the worldvolume, such that ∂(r cos θ) r = cos θ. The metric
(4.2.4) at order r−(n+1) is the linearized solution of

Gµν [g] = 8πG
�
Bµνδ

n+2(r)− dµν
(r cos θ)∂(r cos θ)δ

n+2(r)
�
. (4.2.12)

The goal of this section is to determine dµν (r cos θ), which is the dipole source to the far field,
and because it is proportional to 1/R, it is induced by the bending of the monopole source.
To find it, we note that in TT gauge, the Einstein equations for h(D)

µν linearize to

∆h̄(D)

µν = 16πGdµν
(r cos θ)∂(r cos θ)δ

n+2(r) , (4.2.13)

for

h̄(D)

µν = h(D)

µν −
h(D)

2
ηµν , h(D) = h(D)

µν η
µν , (4.2.14)

such that10

h̄(D)

µν =
16πG

Ωn+1

cos θ

rn+1
dµν

(r cos θ) . (4.2.15)

It has been argued in Sec. 4.1 that dµν (r cos θ) has µν indices parallel to the worldvolume,
which is located at r = 0. µ and ν can thus only be t or z. This implies that in TT gauge

h(D)

rr =
h(D)

ΩΩ

r2
, h(D)

tt − h(D)

zz = nh(D)

rr , (4.2.16)

which is satisfied for
k1 =

2n

1− n
(k2 − 2(n+ 1)ξ(n)) , (4.2.17)

9Note that the field of the dipole is insensitive to the fact that r = 0 is now a circle of curvature 1/R.
This is because the metric (4.2.4) is valid only up to 1/R2 corrections. Being the dipole source already a
1/R effect, accounting for the fact that the dipole source sits on a circle of curvature 1/R is a 1/R2 effect.

10We used that in D spacetime dimensions ∆(D−1)r
−(D−3) = −(D − 3)Ω(D−2)δ

D−1(r) .
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which, of course, is a gauge choice. After this gauge fixing, it is straightforward to read
dµν (r cos θ) from h̄(D)

µν . For the sake of interpretation it is convenient to first redefine11,

k2 = (n+ 3) ξ(n) +
(n− 1)

2n
k̃2 . (4.2.18)

The dipole contribution is found to be

dtt
(r cos θ) = −

Ω(n+1)rn0
16πG

r20
R
(n2 + 3n+ 4)ξ(n)− k̃2

r20
R

Btt , (4.2.19a)

dtz
(r cos θ) = −k̃2

r20
R

Btz , (4.2.19b)

dzz
(r cos θ) =

Ω(n+1)rn0
16πG

r20
R
(3n+ 4)ξ(n) , (4.2.19c)

where Bab in these expressions are (4.2.2) and are evaluated at equilibrium (4.2.3). We
remind the reader that these expressions are valid for n > 2.

Some of these terms are not gauge invariant, as they depend on k̃2. This is the expected
‘extra symmetry 2’ ambiguity in the dipole under changes of the representative worldvolume
surface, see Sec. 4.1. Indeed, k̃2 → k̃2+ δ picks a worldvolume outwards by δ r20/R. dzz(r cos θ)
being unambiguously defined fits nicely with the fact that the equilibrium condition for the
ring is precisely Bzz = 0, which renders this symmetry (4.1.7) trivial for this component of
the dipole.

4.2.2 More general backgrounds

The calculation of Sec. 4.2.1 can be generalized to black strings lying on flat submanifolds
with a more general extrinsic curvature than just non-vanishing Kzz

(r cos θ). Ref. [65] studied
the gravitational field of a black string lying on the r = 0 submanifold of

ds2 =−

�
1 + Ct

2r cos θ

R

�
dt2 +

�
1 + Cz

2r cos θ

R

�
dz2

+

�
1−

Ct + Cz

n

2r cos θ

R

��
dr2 + r2(dθ2 + sin2 θ dΩ2

(n))
�
+O

�
(r cos θ)2

�
.

(4.2.20)

Note that the metric induced on the worldvolume is flat, and the non-vanishing components
of its extrinsic curvature read

Ktt
(r cos θ) =

Ct

R
, Kzz

(r cos θ) = −
Cz

R
. (4.2.21)

11See Eq. (4.2.23) for a motivation for this.
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This family of worldvolumes can be used to perturbatively study black rings in (A)dS space
or in Schwarzschild-Tangherlini black hole backgrounds (in which case one is studying Black
Saturns in a perturbative regime).

The equilibrium condition for the boosted string lying on r = 0 solving (2.1.7) reads

sinh2 α =
Cz + (n+ 1)Ct

n(Cz − Ct)
, (4.2.22)

and the linear blackfold stress-energy tensor takes the form (4.2.2) with the boost (4.2.22).
A calculation very similar to the one explained in Sec. 4.2.1 on the approximate solution
found in [65] reveals the induced dipole induced by such extrinsic curvature. To write it
down in a compact way it is useful to first consider

Kab
ρdabρ =

Ω(n+1)rn0
16πG

r20
R

�
−(3n+ 4)(C2

t + C2
z )− 2(n2 + 3n+ 4)CtCz

�
ξ(n) , (4.2.23)

which is k̃2−invariant thanks to the leading extrinsic equation of motion, Kab
ρBab = 0. The

symmetry of this expression under Ct − Cz exchange motivates a parametrization of the
gauge ambiguity12 such that this symmetry is apparent in the dabµ object,

k2 =
[(n+ 1)Ct + (n+ 3)Cz] (2Cz + (n+ 2)Ct)

2(Cz − Ct)
ξ(n)+

(n− 1) [Cz + (n+ 1)Ct]

2n(Cz − Ct)
k̃2 . (4.2.24)

The induced dipole of a black string on this submanifold reads

dtt
(r cos θ) =

Ω(n+1)rn0
16πG

r20
R

�
−Ct(3n+ 4)− Cz(n

2 + 3n+ 4)
�
ξ(n)− k̃2

r20
R

Btt , (4.2.25a)

dtz
(r cos θ) = −k̃2

r20
R

Btz , (4.2.25b)

dzz
(r cos θ) =

Ω(n+1)rn0
16πG

r20
R

�
Cz(3n+ 4) + Ct(n

2 + 3n+ 4)
�
ξ(n)− k̃2

r20
R

Bzz . (4.2.25c)

4.2.3 The Young Modulus of Black Strings

The study of how strains induce stresses is the subject of elasticity theory. It is well known
from elementary elasticity theory [78] that the bending of an elastic rod induces a stress on

12Here, as in Eq. (4.2.6c), k2 is defined as the coefficient of the r2n+2
0 /r2n+1 term in the large r expansion

of the c(r) function, appearing in Eq. (B.15) in [65].
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it that has opposite signs on the inner and outer side. This is so because under bending, the
inner side is compressed and the outer side is stretched. Thus, in classical elasticity theory
bent rods develop dipoles of stress. The geometric object capturing how strain varies on
directions transverse to a bent rod is the extrinsic curvature as explained in Sec. 2.3.

Black strings also develop dipoles when bent, exhibiting elastic behavior. In the linear
(Hookean) regime, the response coefficient relating stress and strain in non-relativistic elas-
ticity theory is the Young modulus. The black strings we have studied are in such linear
regime, as their dipole is a small deformation, of order 1/R.

To characterize the elastic behavior of black strings we need to introduce a relativistic
generalization of the Young modulus. Let us start by going back to classical elasticity theory
in flat space, in which a bent rod develops, in the case Ct = 0 and Cz = 1, the stress

Tzz = Y
r cos θ

R
, (4.2.26)

where Y is the Young modulus. If the rod has, to first approximation, a circular cross-section
of radius r0, the dipole of stress reads

dzz
(r cos θ) =

�
Tzz r cos θ

�
rn+1 sinn θ dr dθ dΩ(n)

�
=

rn+4
0

(n+ 2)(n+ 4)

Ω(n+1)

Ω(n)

�
Y

R

�
.(4.2.27)

Motivated by this we now define the Young modulus of black strings through the formula

dab
ρ =

�
−

rn+4
0

(n+ 2)(n+ 4)

Ω(n+1)

Ω(n)

�
Yab

cdKcd
ρ . (4.2.28)

For relativistic matter we need to use a tensor, accounting for necessary anisotropy of the
worldvolume directions: one of the a, b directions is timelike and the rest are spacelike.

It is not the purpose of this work to carry out a deep study of the properties of the
relativistic Young modulus that we just defined, Yab

cd. We note, however, that it should
display the ‘extra symmetry 2’ ambiguity that dabρ enjoys. By construction, for the result
(4.2.25) k̃2 = 0 yields

Y ttzz = Y zztt
��
k̃2=0

, (4.2.29)

which is a desirable property of such tensors in non-relativistic anisotropic media.
We close this section by collecting the measured components of Y abcd from (4.2.25) at

k̃2 = 0:

Y tttt =Y zzzz =
Ω(n)(n+ 2)(n+ 4)

16πGr20
(3n+ 4)ξ(n) , Y tztt = Y tzzz = 0 ,

Y ttzz = Y zztt = −
Ω(n)(n+ 2)(n+ 4)

16πGr20
(n2 + 3n+ 4)ξ(n) .

(4.2.30)
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The addition of flat directions to (4.2.4) or the corresponding case of (4.2.20) does not
threaten the solutions to Einstein equations we have been considering in this section, and
does not change the final result (4.2.30). Thus, much like the equation of state ε = −(n+1)P
is a property only of the codimension of black p−branes, so is the Young modulus, and
expressions (4.2.30) are also valid for p > 1. Also, because calculations in this section
are linear in 1/R, one can include the effect of a more general extrinsic curvature by just
adding the effects of different components up; Considerations in this section are also valid,
for example, for black tori [63], in which the ρ index in Kab

ρ may not be aligned in all ab
components of the extrinsic curvature.

4.2.4 Dipole corrections to the equilibrium of thin black rings

One of the main applications of the blackfold approach has been the construction of ap-
proximate black hole solutions. The dipole corrections to the stress-energy tensor of black
branes that we have found modify the effective blackfold equations of motion, and can be
used to compute next to leading order contributions to these approximate solutions. In this
subsection we consider corrections to the approximate construction of thin black rings in flat
space.

The relevant blackfold equation for stationary black rings is the extrinsic equation (2.1.7).
It reads

BabKab
ρ = 0 . (4.2.31)

In flat space, where in the thin limit black rings live on flat submanifolds with Kzz
ρ, these

equations become, as discussed around Eq. (4.2.3),

Bzz = 0 (4.2.32)

We shall consider corrections to homogeneous, stationary configurations in backgrounds
of the type (4.2.20). In these backgrounds, the only non-vanishing Christoffel symbols at
r = 0 (apart from the usual coordinate pathology on the transverse sphere) have two parallel
indices to the worldvolume:

uν
a u

ρ
b Γ

µ
νρ = Kab

µ , and ua
µ u

ν
b Γ

µ
νρ = −Ka

bρ . (4.2.33)

These, together with homogeneity, imply

∇cd
abµ = −uµ

dKc
d
ρd

abρ , ∇cj
aµν = −uµ

dKc
d
ρj

aρν
− uν

dKc
d
ρj

aµρ . (4.2.34)

As has been stressed, this includes black rings in (A)dS and Black Saturns [32] with a static
central black hole, but excludes other cases, as that of Black Rings in Taub-NUT [66].

Under these assumptions, the only non-trivial equation of motion is the extrinsic one
(4.1.17), which reduces to

mabKab
µ
−⊥

µ
σu

ν
aS

λρaRσ
νλρ = 0 . (4.2.35)
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In terms of Bab, jaµν and dabρ these become

�
Bab + dcaρKc

bρ
�
Kab

µ
−⊥

µ
σu

ν
a

�
1

2
jaλρ − dabλuρ

b

�
Rσ

νλρ = 0 . (4.2.36)

We will now use this formula to draw some predictions, but it is worth noticing that we will
not have complete predictability. The reason is that, because the dipole is an induced effect,
the dabρ corrections that are derived from it are two orders away from the leading order in
r0/R, instead of just one, and a complete accounting of effects at this order would require
extending the calculations of [14, 65] to one order beyond.

For rings in flat space or (A)dS there are no intrinsic angular momentum corrections to
(4.2.31). This is expected, as these should be insensitive to the orientation of the intrinsic
angular momentum (which is in a plane transverse to that of the ring), and thus should be
a j2 contribution. When jaµν = 0, the leading correction for rings in flat space to (4.2.31) is
the dipole correction

Bzz = −dzz(r cos θ)Kz
z(r cos θ) , (4.2.37)

which implies that the critical boost is

sinh2 α =
1

n
+

r20
R2

3n+ 4

n
ξ(n) . (4.2.38)

In the large n limit this becomes

sinh2 α =
1

n
+

r20
R2

�
3

n2
+ . . .

�
+ . . . , (4.2.39)

highlighting the fact that, at large n, the corrections to the single pole account of this type
of black holes are further suppressed in 1/n. Arguments along these lines have been given
in the past [79] stating that this supression is due to the shorter range of the gravitational
interaction at large n.

The correction term in (4.2.38) is two powers in r0/R away from the leading contribution.
This prevents us from computing the conserved charges and thermodynamic properties of
these black rings, as we do not have enough data to carry this out; a naive calculation of
these properties to the order at which the result (4.2.38) is relevant, that is to (r0/R)2, gives
k̃2−dependent charges, which is unphysical. Only the next order computation in the MAE
will cancel the gauge dependence by introducing the unknown ambiguous part in Bab, which
by Eq. (4.1.7) will be

Bab → Bab +
�
BabK

c
cρ + 2Bc

(aK b)cρ

�
�ρ , (4.2.40)

and is of order (r0/R)2.
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Note, however, that the leading equilibrium condition of black rings in flat space, Bzz = 0,
implies δ2Bzz = 0. One then expects Eq. (4.2.38) to hold to order (r0/R)2, and we trust
this equation to the order we have written it. This is not the case for rings in the more
general backgrounds (4.2.20), and this is why we do not write down a corrected equilibrium
condition for (4.2.22). In conclusion, we cannot at this point predict corrections to the
conserved charges of the black rings at order (r0/R)2. However, we would like to stress that
at order r0/R we do have a prediction, namely that the black rings do not receive corrections
for n > 2.

4.3 Black string electroelasticity and charged black rings
In this section we generalize the prescription of Sec. 4.2 to charged dilatonic black strings.
In addition to the elastic moduli, we find a new response coefficient of black branes making
a solid connection between the physics of piezoelectrics and gravity. This new effect can
be intuitively understood if one imagines slightly curving a charged black string of finite
thickness inducing a higher concentration of charged black material in the inner surface and a
depletion in the outer surface. A varying concentration of matter due to the compression and
stretching of the material on opposite sides induces a bending moment of dipolar character
as in classical Hookean elasticity theory and, since the matter is charged, it also induces an
electric dipole moment that describes the response of the charged string to the mechanical
stress. Electric fields induced by mechanical stresses are the basic feature of piezoelectrics
and their behavior is governed by the physics of electroelastic materials.

4.3.1 Electroelasticity of black branes

The dipole moment of worldvolume stress-energy dabρ introduced in (4.1.22) is not a priori
constrained. Under the expectation that bent black branes will behave like elastic solids, as
it was observed in (4.2.28), we assume the following relation between the dipole moment and
the strain in transverse directions Kcd

ρ:

dabρ = Ỹ abcdKcd
ρ , (4.3.1)

where Ỹ abcd are the elastic moduli that characterize the brane response to the bending13.
The assumption (4.3.1) has a direct analogy with Hookean classical elasticity theory. In the
following we make a further assumption, namely that a bent charged brane will behave like
a piezoelectric material in the manner dictated by linear electroelasticity theory:

paρ = κ̃abcKbc
ρ , (4.3.2)

where κ̃abc are the piezoelectric moduli that capture the response of the bent charged ma-
terial due to electroelastic deformations. In the case of a point particle Eq. (4.3.2) should

13Here we use Ỹ abcd instead of Y abcd as given in (4.2.28) to make the notation less cumbersome.
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be interpreted as the effect of polarization due to acceleration. To further motivate this
interpretation we consider the equations of motion for a spinless charged string bent over a
circle of radius R in Minkowski space-time:

Dam
ab = 0, mabKab

ρ = 0, DaJ
a = 0 , (4.3.3)

where mab = Bab+τab and Ja = Ja
(0)+Υa

(1) are the effective worldvolume stress-energy tensor
and current respectively. The linear electroelastic corrections are

τab = Ỹ abcdKcd
ρKρ , Υa

(1) = κ̃abcKbc
ρKρ , (4.3.4)

which arise along the direction set by the mean extrinsic curvature Kρ. Eqs. (4.3.3) are the
analog of Eq. (4.2.35) for pole-dipole branes with 0-brane charge in flat space. Below, we
provide explicit examples of charged dilatonic branes that satisfy these requirements.

4.3.2 Measurement of Piezoelectric Moduli

In order to measure the piezoelectric moduli from a gravitational solution we consider asymp-
totically flat charged dilatonic black branes in EMD theory with action

S =
1

16πG

�
dDx

√
−g

�
R− 2(∂φ)2 −

e−2aφ

4
F 2

�
. (4.3.5)

In Sec. 4.2 we measured the elastic moduli of uncharged black branes by extracting the
coefficients dabρ from the stress-energy tensor measured far away from the brane horizon
where the weak field approximation is valid and using Eq. (4.3.1). Similarly, we extract the
coefficients paρ by determining how the gauge field Aµ falls off at infinity and obtain κ̃abc

using Eq. (4.3.2). In general, the current Ĵµ and the gauge field are related through the
equation of motion

∇ν

�
e−2aφF µν

�
= 16πGĴµ , (4.3.6)

which in Lorenz gauge, ∇µAµ = 0, and for asymptotically flat space-times gives rise to the
linearized equation

e−2aφ0∂ν∂νA
µ = −16πGĴµ , (4.3.7)

where φ0 is the value of the dilaton far away from the brane horizon. The dipole term paρ

can then be obtained by introducing the expansion (4.1.38) into Eq. (4.3.7).

Charged dilatonic black strings

We now focus on a large class of asymptotically flat charged dilatonic black strings carrying
0-brane charge which can be obtained by performing an uplift of the neutral black string
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solution in D = n + 4 dimensions, followed by a boost with rapidity α and a Kaluza-Klein
(KK) reduction along a Killing direction. The resulting metric is given by [69]

ds2 = −
f

hA
dt2 + hB

�
dr2

f
+ r2dΩ2

(n+1) + dz2
�

, (4.3.8)

with f(r) = 1− rn0
rn and h(r) = 1 + rn0

rn sinh2 α, and the gauge and dilaton fields read

At(r) = −
√
N

rn0
rnh(r)

sinhα coshα , (4.3.9)

φ(r) = −
1

4
Na log h(r) . (4.3.10)

This solution generating technique leaves the horizon regular and yields a specific value for
the dilaton coupling a2 = 2(n+3)

n+2 as well as parameters A = n+1
n+2 , B = 1

n+2 and N = A+B = 1.
After KK reduction, the rapidity α gains the interpretation of a charge parameter. The bent
version of (4.3.8)-(4.3.10) can be obtained in a similar fashion using its neutral counterpart
[14] as a seed solution, i.e., the solution presented in the beginning of Sec. 4.2. Since we
only need to know how the dipole corrections to the fields gµν , Aµ, φ behave at infinity we
focus on the large r-asymptotics. For use below we recall the decomposition of the metric
components of the neutral bent black string given in (4.2.8). We now parametrize the dipole
contribution as h(D)

µν = f (D)
µν ε rn+1

0

�
cos θ
rn+1

�
, with coefficients f (D)

µν obtained from Sec. 4.2.1,

f (D)
tt = (n+ 1)k̃2 − n(n+ 2)ξ(n) , (4.3.11)
f (D)
tz = −

√
n+ 1 k̃2 , f (D)

zz = k̃2 + 2nξ(n) , (4.3.12)
f (D)
rr = f (D)

ΩΩ = k̃2 − (n+ 4)ξ(n) . (4.3.13)

where k̃2 is the residual gauge freedom associated with the ’extra symmetry 2’ and ξ(n) as
given in (4.2.7). Turning to the charged case, we adopt a similar decomposition for the gauge
field

Aµ = A(M)
µ + A(D)

µ +O
�
r−n−2

�
. (4.3.14)

Defining the asymptotic coefficients a(D)
µ of the gauge field by A(D)

µ = a(D)
µ ε rn+1

0

�
cos θ
rn+1

�
, one

then finds after KK reduction,

a(D)
t = − sinhαk coshαk f

(D)
tt

a(D)
z = − sinhαk f

(D)
tz ,

(4.3.15)

where n sinh2 α = (n + 1) sinh2 αk. Using this on the left hand side of Eq. (4.3.7) together
with the expansion (4.1.38) and the fact that φ0 = 0 yields

∇
2
⊥A

(D)
ν = 16πGpν

r⊥∂r⊥δ
(n+2)(r) , (4.3.16)
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where the Laplacian operator is taken along transverse directions to the worldvolume and
r⊥ = r cos θ. For the given configuration at hand one finds the electric dipole moment

pa
r⊥ = −

Ω(n+1)r
n+2
0

16πGR
a(D)
a , a = t, z . (4.3.17)

The dipole moment of stress-energy tensor dabρ can also be obtained using the expansion
(4.1.1) and the linearized equation

∇
2
⊥h̄

(D)
µν = 16πGd r⊥

µν ∂r⊥δ
(n+2)(r) , (4.3.18)

where the dipole perturbation h̄(D)
µν of the bent charged black string is defined in analogy

with (4.2.8). This leads to the components

d r⊥
tt = −

Ω(n+1)r
n+2
0

16πGR

�
cosh2 αkf

(D)
tt + f (D)

ΩΩ

�
, (4.3.19)

d r⊥
tz = −

Ω(n+1)r
n+2
0

16πGR

�
coshαkf

(D)
tz

�
, (4.3.20)

d r⊥
zz = −

Ω(n+1)r
n+2
0

16πGR

�
f (D)
zz − f (D)

ΩΩ

�
, (4.3.21)

expressed in terms of the asymptotic coefficients (4.3.11) of the neutral bent black string
solution.

Response coefficients and corrections to black rings

The leading order effective worldvolume stress-energy tensor is of the perfect fluid form
[76, 69],

T ab =
Ω(n+1)

16πG
rn0

�
n(1 +N sinh2 α)uaub

− ηab
�
, (4.3.22)

where ua is the local boost on the string. Using this in the second equation of (4.3.3) one finds
the leading order critical boost ua = [cosh β(0),− sinh β(0)] with sinh2 β(0) = (n cosh2 α)−1.
To lowest order in ε the electric current takes the form Ja

(0) = Qua with

Q =
Ω(n+1)

16πG
n
√
N rn0 sinhα coshα (4.3.23)

being the charge density to the same order. The piezoelectric moduli are then obtained from
Eqs. (4.3.2) and (4.3.17) as

κ̃tzz =

�
k̃2 −

2(n+ 2)

n+ 1
ξ(n)

�
r20J

t
(0) , (4.3.24)

κ̃zzz = −k̃2r
2
0J

z
(0) , (4.3.25)
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expressed in terms of the critical current. Similarly, the elastic moduli can be obtained using
Eqs. (4.3.1) and (4.3.19)

Ỹ ttzz = k̃2r
2
0T

tt
(0) −

Ω(n+1)r
n+2
0

16πG

�
n2(n+ 2)

n+ 1
sinh2 α + n2 + 3n+ 4

�
ξ(n) , (4.3.26)

Ỹ tzzz = −k̃2r
2
0T

tz
(0) , (4.3.27)

Ỹ zzzz =
Ω(n+1)r

n+2
0

16πG
(3n+ 4) ξ(n) , (4.3.28)

expressed in terms of the critical stress-energy tensor. The neutral case obtained in Sec. 4.2
is reproduced when α is taken to zero. Using Eqs. (4.3.3) we can compute the correction
to the critical boost of a thin charged dilatonic black ring by bending the charged dilatonic
black string described by the response coefficients (4.3.24)- (4.3.25) and (4.3.26)-(4.3.28).
This yields:

sinh2β = (n cosh2 α)−1
�
1 + ε2(3n+ 4)ξ(n)

�
, (4.3.29)

and constitute a prediction for n > 2 where the probe approximation is valid. The result
(4.3.29) reduces to (4.2.38) when the charge parameter α is taken to zero.

4.4 Spin corrections for Myers-Perry black holes
Myers-Perry (MP) black holes exhibit ultra-spinning regimes where the horizon pancakes
along one of the planes of rotation [64], a behavior which was realized also to be shown by
higher-dimensional Kerr-(A)dS black holes, as derived in Sec. (3.5.2). Both of these cases
can be captured within the blackfold framework (see Sec. (3.5.2)). The usual method, as
explained in Sec. (3.5.2), consists in focusing near the axis of rotation and taking a limit
such that the horizon looks like a boosted Schwarzschild membrane. On the other hand,
having been able to describe this particular limit using the blackfold approach implies that
the entire horizon must locally have the geometry of a boosted Schwarzschild membrane.
This has not been considered in the literature so far and in App. D we show how to fill this
gap by precisely taking a regular ultra-spinning limit everywhere over the horizon.

This section begins with a demonstration of the existence of a similar regime for MP
black holes with one non-zero transverse angular momentum. By taking the limit in which
the horizon flattens out along one of the planes of rotation and approaching any point on the
horizon it is shown that the horizon geometry is locally that of a boosted MP membrane. The
extended blackfold formalism presented in Sec. 4.1 should be able to capture this behavior
and, in fact, by reducing Eqs. (4.1.24)-(4.1.27) to the case under consideration together
with a detailed analysis of the thermodynamic properties of such blackfold geometry, this is
shown to be the case. The same type of analysis can be carried out for higher dimensional
Kerr-(A)dS black holes and it is presented in App. E.
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4.4.1 Refined ultra-spinning limit

Consider the metric of a MP black hole with two angular momenta in n+ 5 dimensions [55]

ds2 = −dt2 +
2�

i=1

�
a2i dµ

2
i + (r2 + a2i )µ

2
i dφ

2
i

�
+

µ

rn+2ΠF
(dt−

2�

i=1

aiµ
2
i dφ

2
i )

2

+
ΠF

Π−
µ

rn+2

dr2 + r2
�
dθ2 + cos2 θ(dψ2 + cos2 ψdΩ2

(n−1))
�
, (4.4.1)

where,
µ1 = sin θ, µ2 = cos θ sinψ , (4.4.2)

Π =
2�

i=1

(1 +
a2i
r2
), F = 1−

2�

i=1

a2iµ
2
i

r2 + a2i
. (4.4.3)

The event horizon is located at r = r+ with r+ being the largest positive real root of
rn+2Π − µ = 0. For clarity of notation, in what follows we label a1 and a2 as a1 ≡ a and
a2 ≡ b. The aim of this section is to show that there exists an allowed region of parameters
where, near the horizon, the metric (4.4.1) looks locally like a boosted MP membrane. To
this end, we take the ultra-spinning limit in the first angular momentum parametrized by a,
that is, a � r+. Since we want to capture the dynamics on the transverse plane b is kept
finite such that a � b. Within such restricted phase space the blackfold looks much like
the one encountered in the singly-spinning case14: a disc with center at θ = 0, radius a and
boundary at θ = π/2.

The assumption of this hierarchy of scales is sufficient to recover the metric of a black
membrane near the center of the disc but not everywhere close to the horizon. Instead, the
requirement r � a cos θ is needed. Under this assumption we find

Π �
a2

r4
(r2 + b2), F � 1− µ2

1 −
b2µ2

2

r2 + b2
, grr �

(1− µ2
1)(r

2 + b2)− b2µ2
2

r2 + b2 − µ̃
a2rn−2

,

µ

rn+2ΠF
�

µ

a2rn−2[(1− µ2
1)(r

2 + b2)− b2µ2
2]

.

Now we introduce the coordinate ρ1 as

ρ1 = a sin θ , (4.4.4)

which can be seen as the radius on the disc. Furthermore, assuming also that b � a cos θ we
obtain

2�

i=1

a2i dµ
2
i + r2dθ2 + r2 cos2 θdψ2

� dρ21 + cos2 θ(r2 + b2 cos2 ψ)dψ2 . (4.4.5)

14See App. D for details.
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As we are after a description of the local geometry of the horizon we need to approach it at
any point, thus we consider the metric near a fixed angle θ∗ (i.e., at a given radius of the
disc ρ1 = ρ1∗). The necessary requirements become r � a cos θ∗ and b � a cos θ∗. To make
contact with the metric of a MP membrane written in its usual form, it is convenient to
define

r̃ = r cos θ∗, b̃ = b cos θ∗, r̃n0 =
µ(cos θ∗)n

a2
,

Σ = r̃2 + b̃2 cos2 ψ, ∆ = r̃2 + b̃2 −
r̃n0
r̃n−2

. (4.4.6)

Using these definitions we obtain

grrdr
2
�

Σ

∆
dr̃2,

µ

rn+2ΠF
�

r̃n0
cos2 θ∗r̃n−2Σ

. (4.4.7)

Next, we introduce the coordinate z by

z = ρ1∗φ1 = a sin θ∗φ1 , (4.4.8)

which parametrizes the angular direction on the disc. The metric (4.4.1) near the horizon is
now seen to become:

ds2 = −dt2 + dρ21 + dz2 +
r̃n0

Σr̃n−2

� dt

cos θ∗
− tan θ∗dz − b̃ sin2 ψdφ2

�2
+

Σ

∆
dr̃2 + Σdψ2

+(r̃2 + b̃2) sin2 ψdφ2
2 + r̃2 cos2 ψdΩ2

n−1 . (4.4.9)

This geometry corresponds to the Myers-Perry membrane,

ds2 = −dt2 + dρ21 + dz2 +
r̃n0

Σr̃n−2
(dt− b̃ sin2 ψdφ2)

2 +
Σ

∆
dr̃2 + Σdψ2

+(r̃2 + b̃2) sin2 ψdφ2
2 + r̃2 cos2 ψdΩ2

n−1 , (4.4.10)

boosted along the z direction with the boost
�

t
z

�
=

� 1
cos θ∗

− tan θ∗
− tan θ∗

1
cos θ∗

��
t̃
z̃

�
. (4.4.11)

Applying the boost (4.4.11) to (4.4.10) and removing the tildes from t̃ and z̃ leads to the
metric (4.4.9). In turn, (4.4.11) corresponds to the Lorentz boost15

V = sin θ∗ =
ρ1
a
, γ̃ =

1
√
1− V 2

=
1

cos θ∗
, γ̃V = tan θ∗ . (4.4.12)

15The relation between θ∗ and the rapidity η is tanθ∗ = sinhη.
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In the regime under consideration the MP black hole given in (4.4.1) has angular velocity
along the φ1 direction,

Ω1 �
1

a
. (4.4.13)

Thus, in the blackfold description, the ultra-spinning MP black hole with transverse angular
momentum is a MP membrane which is rigidly rotating with constant angular velocity,

V = ρ1Ω1 , (4.4.14)

as in the singly-spinning case.

4.4.2 Blackfold pole-dipole equations with non-zero transverse an-

gular momentum

As seen above, there exists a limit in which the MP black hole can be locally seen as a black
membrane, hence, it should be possible to describe it using the formalism of Sec. 4.1. Here,
we construct such blackfold geometry by solving Eqs.(4.1.24)-(4.1.27) for a disc-like topology
with internal spin current.

Consider n+ 5-dimensional flat spacetime with metric

ds2 = −dt2 + dρ21 + ρ21dφ
2
1 + ds2⊥ +

n�

i=1

dx2
i , (4.4.15)

where ds2⊥ is the metric on the transverse 2-plane written in the form

ds2⊥ = dρ22 + ρ22dφ
2
2 . (4.4.16)

In this we embed a membrane as

t = σ0, ρ1 = σ1, φ1 = σ2, ρ2 = 0, xi = 0 , (4.4.17)

which gives rise to the induced metric

γabdσ
adσb = −dt2 + dρ21 + ρ21dφ

2
1 . (4.4.18)

The stress-energy tensor of the boosted MP membrane can be read off from (4.4.10) and
takes the perfect fluid form (2.2.1), with energy density and pressure given by

ε =
Ω(n+1)

16πG
(n+ 1)r̃n0 , P = −

Ω(n+1)

16πG
r̃n0 . (4.4.19)

Since we are trying to construct a black hole solution with a horizon Killing vector field of
the form

k =
∂

∂t
+ Ω1

∂

∂φ1
+ Ω2

∂

∂φ2
, (4.4.20)
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with constant Ω1 and Ω2
16, then, the fluid velocity must be of the form ua = ka/|k|, with

non-vanishing components

ut = γ̃, uρ1 = 0, uφ1 = γ̃Ω1, γ̃ =
1�

1− ρ21Ω
2
1

. (4.4.21)

Moreover, the boosted MP membrane spin current can also be obtained from (4.4.10) and
in this coordinate system simply reads

jaνρ =
Ω(n+1)

8πG

b̃r̃n0u
a

ρ2
δνρ2δ

ρ
φ2

. (4.4.22)

Since the embedding (4.4.17) is completely flat we must have Kab
ρ = 0. According to the

considerations of Sec. 4.2 this immediately implies dabρ = 0. Physically, this is so because
there is no bending taking place and hence no elastic forces playing a role. Also, there is no
extra contribution to the boundary stress-energy tensor from (4.4.10) leading to a vanishing
Bµνa everywhere. This is most likely due to the fact that the blackfold boundary is regular,
containing no extra stress-energy sources. Finally, we need to know the transverse angular
velocity Ω2 as a function of r̃n0 and b̃. This can be seen as an additional equation of state
and is given by

Ω2(r̃
n
0 , b̃) =

1

γ̃

b̃

r̃+(r̃n0 , b̃)
2 + b̃2

, (4.4.23)

where r̃+(µ̃, b) is found as the highest real root of ∆(r̃), see (4.4.6), thus,

r̃2+ + b̃2 =
r̃n0
r̃n−2
+

. (4.4.24)

With this in hand, the pole-dipole blackfold equations (4.1.24)-(4.1.27), reduce in this case
to:

BabKab
ρ = 0 , DaB

ab = 0 , ⊥
µ
λ⊥

µ
ρ ∇aj

aνρ = 0 , Babuµ
anb|∂W3 = 0 , jaµνna|∂W3 = 0 .

(4.4.25)
The first and last equations in (4.4.25) are trivially satisfied due to the vanishing of the
extrinsic curvature tensor and to the vanishing of the ρ1 component of the fluid velocity ua

respectively. The boundary condition Babuµ
anb|∂W3 = 0 requires that, at the boundary, the

fluid must be moving with the speed of light, i.e., ρ1|∂W3 = Ω−1
1 .

Furthermore, assuming that � and P only depend on ρ1, we find from the conservation
of the stress-energy tensor

DaB
ab = (�+ P )u̇b + ∂bP , (4.4.26)

16The constancy of Ω1 and Ω2 need not be imposed. In fact, it is a consequence of the requirement of
stationarity. A derivation of these conditions can be accomplished and it will be presented elsewhere.
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which is solved by,
r̃0(ρ1) = r̃0(0)

�
1− ρ21Ω

2
1 . (4.4.27)

Since jaνρ is independent of t and φ1, the conservation equation ⊥
µ
λ⊥

µ
ρ ∇ajaνρ = 0 is trivially

obeyed, i.e., it does not constrain b̃ as a function of ρ1. According to (4.4.20) we now use
the constancy of Ω2 over the blackfold. As a function of ρ1 we see from Eq. (4.4.27) that r̃n0
is proportional to γ(ρ1)−n. Using Eq. (4.4.23) and Eq. (4.4.24) we see that both b̃ and r̃n0
should be proportional to γ(ρ1)−1. Thus, we find

b̃(ρ1) = b̃(0)
�

1− ρ21Ω
2
1 . (4.4.28)

In order to show that this blackfold solution corresponds indeed to the limit taken above in
the doubly-spinning MP metric (4.4.1) we proceed by computing its thermodynamic prop-
erties.

4.4.3 Thermodynamic quantities

The thermodynamic properties for the analytic solution given in (4.4.1) in the ultra-spinning
regime can be obtained from reference [91] and read,

M =
Ω(n+3)

16πG
µ(n+ 3), J1 =

Ω(n+3)

8πG
µa, J2 =

Ω(n+3)

8πG
µb , (4.4.29)

with angular velocities

Ω1 =
1

a1
, Ω2 =

b

r2+ + b2
, (4.4.30)

while the temperature and entropy are given by,

S =
Ω(n+3)

4G

a2µ

r+
, T =
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4πr+

�
n−

2b2

r2+ + b2

�
. (4.4.31)

We want to show that this is correctly reproduced from the blackfold description. To this
aim, we use the expressions (4.1.31)-(4.1.33) together with (4.4.22) and find,
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Ω(n+3)

16πG

r̃n0 (0)
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1
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8πG
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8πG
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Ω2
1

b̃(0) .(4.4.32)

We see that we find perfect agreement between the above quantities and those presented in
(4.4.29)-(4.4.30) if we identify r̃n0 (0)/Ω

2
1 = µ, Ω1 = a−1 and b̃(0) = b. To compute the entropy

and temperature we use the method described in Sec. 4.1.3. We first start by computing the
product TS using the Smarr relation (4.1.35), yielding,

TS =
Ω(n+3)

16πG

r̃n0 (0)

Ω2
1

�
n−

2b̃(0)2

r2+ + b̃(0)2

�
. (4.4.33)
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All the quantities given in (4.4.32) and the product above can be parametrized in terms of
r+ and b(0) using Eq. (4.4.24). According to Eq. (4.1.36) we obtain a set of two equations,
for which the solution is,

T =
C̃

r+

�
n−

2b̃(0)2

r2+ + b̃(0)2

�
. (4.4.34)

The constant C̃ can be fixed by requiring the right result in the infinitely thin limit, i.e., when
b̃(0) = 0. This implies C̃ = 1/4π. It is easy to check that this matches with the temperature
given in (4.4.31). The entropy then follows by using Eq. (4.4.33). In this way, we have
indeed shown that the ultra-spinning MP black hole with one transverse angular momentum
is accurately described within the blackfold framework in the pole-dipole approximation.



Chapter 5

Overview & open problems

This thesis has developed and explored a connection between gravitational physics and rel-
ativistic (electro)elasticity theory using the blackfold approach to higher-dimensional black
holes. Within this framework, the dynamics of thin black branes are described by an ef-
fective theory of fluids living on dynamical surfaces whose thickness can be accounted for
in a long wavelength derivative expansion. Fluids living on thin surfaces of co-dimension
higher than zero were shown to behave like fluids along worldvolume directions and like
elastic solids along transverse directions to the worldvolume. The fact that fluid behavior
takes place along worldvolume directions was already known [8, 9, 17] but solid behavior
along transverse directions, even to leading order in the derivative expansion, is genuinely
new. Such behavior, as surprising as it might sound, can be intuitively understood. Given
a perfect fluid with density � and pressure P living on a two-dimensional sphere embedded
in four-dimensional space-time and applying a deformation to the surface such that the ra-
dius of the sphere increases by a small amount, then the density and pressure will drop (or
increase) due to the increase in volume. This is what we observe here. To leading order
the surface on which the fluid lives is infinitely thin and hence only variations in volume
(stretching and compressing) can be accounted for. The important quantities that quantify
this are the modulus of compression K (2.4.3) and the elasticity tensor Eabcd (3.2.6), which
are properties of the material composed of wrapped black branes. It is interesting to note
that the structure of the elasticity tensor (3.2.6) is similar to the structure of Young modulus
obtained from (1.1.3) in [18]

Ỹ abcd = −P f(n)

�
1

n+ 2
γa(cγd)b + 2u(aγc)(dud) +

3n+ 4

n+ 2
uaubucud

�
, (5.0.1)

where f(n) is a function that depends on the geometric properties of the brane. This means
that, to what concerns the type of elastic responses that an object can exhibit, deforming a
neutral blackfold to leading order or bending a black brane to order ε is equivalent: in both
cases, the reaction is that of a material characterized by a varying modulus of compression.
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Relativistic elasticity theory has been considered in the literature by a number of authors
[83, 87, 103, 84, 104, 81, 82], one of the most influential works being that conducted by
Carter and Quintana [80]. The main focus of these works has been on describing elastic
solids which are space-filling, contrary to being confined to a dynamical surface. However,
the main difference compared to the work presented here is not only related to the existence
of an embedding surface but also to the usual assumption regarding the form of the pressure
(2.3.11) and elasticity (2.4.12) tensors:

σabub = 0 , Eabcdud = 0 . (5.0.2)

This orthogonality condition with respect to the fluid flows seems to have classical roots,
namely, that an elastic material can be deformed in space but not in time. Not imposing
(5.0.2) has been the main point of departure in this work. From the point of view of material
science, materials that do not satisfy (5.0.2) might belong to a rather unusual class, but from
the point of view of gravitational physics, in which black holes in certain regimes may take
the effective description as a fluid brane, they are relevant for the analysis of their dynamics.
Their study can lead to the formulation of a corner of relativistic elasticity theory that has not
been previously explored (e.g. by applying extrinsic perturbations to black brane geometries)
in the same way that the fluid/gravity correspondence led to a more general formulation of
dissipative corrections to fluid and superfluid hydrodynamics [20, 21, 22, 20, 23, 24]. In
fact, here we have already taken a few steps in this direction, not only by measuring the
elasticity tensor (3.2.6), but also by measuring the Young modulus and piezoelectric moduli
for neutral and charged dilatonic black strings (4.2.30), (4.3.26), (4.3.24). These new effects
can also be easily understood if one imagines slightly curving a charged black string of finite
thickness inducing a higher concentration of charged black material in the inner surface and a
depletion in the outer surface. A varying concentration of matter due to the compression and
stretching of the material on opposite sides induces a bending moment of dipolar character
as in classical Hookean elasticity theory and, since the matter is charged, it also induces an
electric dipole moment that describes the response of the charged string to the mechanical
stress. Electric fields induced by mechanical stresses are the basic feature of piezoelectrics
and their behavior is governed by the physics of electroelastic materials.

The material scientist must already be dazzled by the usage of gravitational physics as a
laboratory where experiments with strange materials can take place, but even more would he
become if he knew that we are still far from exhibiting all the possible connections between
gravity and material science. There exists a vast landscape of other transport and response
coefficients that can be obtained from perturbations of black branes besides those associ-
ated with viscous flows and stationary (electro)elastic deformations. Along worldvolume or
boundary directions we expect that perturbations of black branes will reveal the viscoelas-
tic character of the fluid flows by looking at shorter timescales [105] while along transverse
directions time-dependent perturbations will lead us to the physics of nemetics (or liquid
crystals). In general, fluid and solid behavior will appear along both directions. Moreover,
when placing black branes on ambients with non-vanishing background fields one expects
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the material to behave like a dieletric (dimagnetic) allowing for the measurement of electric
(magnetic) susceptibilities.

We finalize this thesis by discussing two possible research directions that can be considered
the holly grails of the blackfold approach:

• The metric to order ε2: The metric to order ε2 would provide us with great insight
on the structure of the derivative expansion when applying the MAE procedure. It
could in principle aid us in showing that the expansion is well defined to all orders
in ε and hence formally establish a connection between fluid mechanics on dynamical
surfaces and black hole solutions. This is of course expected to be the case, since we
were able to reproduce the thermodynamics of singly and doubly-spinning Kerr-(A)dS
black holes in Sec. 3 and App. E. Moreover, the metric to order ε2 would also allow
us to further develop the worldvolume effective theory of Sec. 4 in the same spirit of
Sec. 2 when finite size corrections are taken into account. This could lead to a further
development of relativistic elasticity theory for materials that can be deformed in time
as well as in space.

• The bending of the D3-brane: The bending of the D3-brane would show what the
interpretation of the Young modulus and piezoelectric moduli is in the context of the
AdS/CFT correspondence. We expect these effects to appear as a dipole deformation
of the transverse sphere, which would correspond to deforming the S5 of AdS5 × S5.
The dual interpretation of this would be that of sourcing the scalars of N = 4 SYM
which transform in the fundamental representation of the SO(6) R-symmetry group.

These problems we expect to tackle head-on in the near future.
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Appendix A

Notation

In this appendix we collect some conventions about notation. This thesis deals with sub-
manifolds Wp+1 of a (D = p + n + 3)−dimensional spacetime, described by the mapping
functions Xµ(σa) from the worldvolume, parametrized by the coordinates σa, to the ambient
spacetime, with coordinates xµ.

gµν is the background metric while Wp+1 inherits the metric

γab = uµ
a gµν u

ν
b , uµ

a = ∂aX
µ . (A.0.1)

Here, µ, ν indices are raised and lowered with gµν and its inverse gµν , and a, b indices with
γab and its inverse γab.

To project any spacetime tensor along tangential directions to the worldvolume we can
use ua

µ, while for directions orthogonal to Wp+1 we define the projector,

⊥µν= gµν − ua
µ γab u

b
ν . (A.0.2)

A subindex ⊥ on a tensor indicates that all µ, ν type of indices are orthogonal, e.g.,

Baµ
⊥ = ⊥

µ
νB

aν
⊥ . (A.0.3)

jaµν and dabµ defined in (4.1.20) and (4.1.22) are ⊥-objects, but we do not write the ⊥
subindex on them in order to avoid cluttering.

∇µ is the covariant derivative on the ambient space compatible with gµν and Γρ
µν are its

Christoffel symbols. Da is the intrinsic covariant derivative on Wp+1 compatible with γab
and {

a
b c } are its Christoffel symbols. Our convention for the Riemann curvature tensor is

Rµ
λνρ = Γµ

λρ,ν − Γµ
λν,ρ + Γµ

σνΓ
σ
λρ − Γµ

σρΓ
σ
λν . (A.0.4)

The operator ∇a is defined to be compatible both with γab and gµν such that, for instance,

∇avµ
ν
b
c = uρ

a ∂ρ vµ
ν
b
c
− uρ

a Γ
σ
ρµ vσ

ν
b
c + uρ

a Γ
ν
ρσ vµ

σ
b
c
− Γd

ab, vµ
ν
d
c + Γc

advµ
ν
b
d . (A.0.5)
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For a submanifold tensor, ∇c ta...b... = Dc ta...b.... Moreover, the extrinsic curvature of Wp+1

can be written as

∇au
ρ
b = Kab

ρ , (A.0.6)

with Kab
ρ being also a ⊥−object.

The boundary of the submanifold is described by σa = ζa(λ) and normal vector n̂µ = uµ
a n̂

a

with unit norm. We introduce the coordinate vectors va
î

as

va
î
=

∂ζa

∂λî
, (A.0.7)

satisfying the properties vµ
î

= uµ
av

a
î

and n̂avaî = 0 such that the induced metric on the
boundary takes the form ĥîĵ = γab(ζ)vaî v

b
ĵ
. ∇î is the boundary covariant derivative compatible

with the metric ĥîĵ.



Appendix B

Multi-spin Kerr-(A)dSD black holes as

blackfolds

In this appendix we generalize the even-ball (A)dS blackfold construction of Sec. 3.5.2, which
focused on the case of a spinning disc, to include the multi-spinning case.

In this case the (2k)-ball rotates rigidly in k independent two-planes and the total velocity
is given by

V =

�
1 +

�N
i=1 ρ

2
i

4L2

�−1
����

N�

i=1

ρ2iΩ
2
i . (B.0.1)

The boundary of the ball is given by the locus where V = 1, which is solved by
k�

i=1

Ω2
i r

2
i (1− αi) = 1 , (B.0.2)

where we have defined ri = ρi/(1−
�N

i ρ2i
4L2 ) and αi = (Ω2

iL
2)−1. According to the parameters

αi we can distinguish three different cases:
(i) αi = 0, ∀i. This corresponds to the even-ball blackfold construction of the ultra-spinning
MP black hole constructed and discussed in Refs. [15, 63].
(ii) αi = 1, ∀i. This corresponds to the "ultra-spinning" limit Ωi → L−1 given in [65].
(iii) 0 < αi < 1, ∀i. This corresponds to a new ultra-spinning limit of the Kerr-AdSD black
hole presented in App. C.

The physical properties of the even-ball blackfolds can be computed from (3.3.6)-(3.3.9)
and read

M =
Ω(D−2)r̂n+

8πG
�

j(1− αj)

�
k�

j=1

1

1− αj
+

n+ 1

2

�
�

j

1

Ω2
j

, (B.0.3)

Ji =
Ω(D−2)r̂n+

�
j

1
Ω2

j

8πG
�

j(1− αj)

1

1− αi

1

Ωi
, , S =

Ω(D−2)r̂
n+1
+

4G

�

j

�
1

1− αj

1

Ω2
j

�
(B.0.4)

97



98 APPENDIX B. MULTI-SPIN KERR-(A)DSD BLACK HOLES AS BLACKFOLDS

T = −
Ω(D−2)r̂n+

8πG
�

j(1− αj)

�
k�

j=1

1

1− αj
− k

�
�

j

1

Ω2
j

, (B.0.5)

where r̂+ = n/2κ. These expressions reduce to the results (3.5.38)-(3.5.40) for the for
the singly-spinning case. The quantities above can be shown to satisfy the Smarr relation
(4.1.35). The horizon thickness r0 is given by

r0 =
n

2κ

����1−
k�

i=1

Ω2
i r

2
i (1− αi) . (B.0.6)

We can identify these even-ball blackfolds with two different limits of the Kerr-AdSD as
follows:

αi = 1, ∀i: the "ultra-spinning" limit

A detailed study of this limit has been presented in Ref. [65]. The limit amounts to taking
ai → L, ∀i while keeping µ̂ ≡

2m
L2k

�k
i=1 Ξi

finite. The resulting metric gives a flat membrane
with metric as in (3.5.42) where the horizon size r+ shrinks to zero. Its physical properties
are the same as for the ultra-spinning case (C.0.8)-(C.0.10) in the limit r+ � L but now
with ai = L, ∀i. With the identifications

Ωi =
1

L
, ∀i , r̂+ = r+ =

�
2m

L2k

� 1
D−2k−3

, (B.0.7)

the physical properties of this solution exactly match those of the blackfolds (B.0.3), (B.0.4).

0 ≤ αi < 1, ∀i: the ultra-spinning limit

A careful calculation of this limit is given in App. C. It amounts to taking k number of spins
to infinity while keeping the ratios αi =

a2i
L2 and µ̂ = 2m�k

i=1 a
2
i

finite. The resulting metric is
presented in (C.0.7) and has the geometry of a flat black membrane near the axes of rotation.
With the identifications

Ωi =
1

ai
, ∀i , r̂+ = r+ =

�
2m

�k
i=1 a

2
i

� 1
D−2k−3

, (B.0.8)

the physical properties (C.0.8)-(C.0.10) match precisely those of the blackfolds (B.0.3),
(B.0.4).



Appendix C

The ultra-spinning Kerr-(A)dSD black

hole

In this appendix we take the ultra-spinning limit of the Kerr-(A)dSD black hole with an
arbitrary number of spins in D ≥ 6. We focus here on the AdS case since we can obtain its
dS counterpart by performing a Wick rotation.

Defining N = D−1
2 mod 2 as the number of two-planes, � by the relation D = 2N + 1+ �,

with � being either 1 for even dimensions or 0 for odd dimensions, and introducing N + �
direction cosines µi obeying the constraint

�N+�
i=1 µ2

i = 1, the metric of this spacetime can
be conveniently written in Boyer-Lindquist coordinates as [57]

ds2 =−W (1 +
r2

L2
)dt2 +

2m

U

�
Wdt−

N�

i=1

aiµ2
i dϕi

Ξi

�2

+
N�

i=1

r2 + a2i
Ξi

µ2
i dϕ

2
i

+
Udr2

V − 2m
+

N+��

i=1

r2 + a2i
Ξi

dµ2
i −

1

L2W (1 + r2

L2 )

�
N+��

i=1

r2 + a2i
Ξi

µidµi

�2

,

(C.0.1)

where

W =
N+��

i=1

µ2
i

Ξi
, U = r�

N+��

i=1

µ2
i

r2 + a2i

N�

w=1

(r2 + a2w) , (C.0.2)

V = r�−2(1 +
r2

L2
)

N�

i=1

(r2 + a2i ) , Ξi = 1−
a2i
L2

. (C.0.3)

The horizon r+ sits at the largest positive real root of V − 2m = 0. We assume that the
parameters are chosen in a such a way that a horizon exists. In fact a horizon always exists
for odd D if any two of the spin parameters ai vanish, while for even D its existence is
guaranteed if only one vanishes.
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We now take an k number of spin parameters ai to be very large as compared to the
remaining N − k ones, i.e.,

aj → ∞, j = 1, ..., k ,

al finite, l = k + 1, ..., N .
(C.0.4)

Furthermore we take L to be of an equal magnitude as compared to the aj parameters such
that the ratios αj = a2j/L

2 remain constant, i.e.

L → ∞ ,

Ξj →1− αj , Ξl → 0 .
(C.0.5)

Moreover we take m → ∞ such that the ratio µ̂ = 2m�
j a

2
j

remains finite and define new
coordinates σj = ajµj that remain finite as we approach µj → 0. The remaining µl stay
finite and satisfy

�
l µ

2
l +µ2

N+1 = 1. In this limit we find that the metric function W behaves
like W → 1 while the remaining metric functions become

U → r�
µ2
l

r2 + a2l

�

l

(r2 + a2l )
2
�

j

a2j ≡ r�F̂ Π̂
�

j

a2j ,

V → r�−2
�

l

(r2 + a2l )
2
�

j

a2j ≡ r�−2Π̂
�

j

a2j ,
(C.0.6)

where we have assumed the summation convention over j and l. The limiting metric then
reads

ds2 =− dt2 + r2d2µN+1 + (r2 + a2l )(dµ
2
l + µ2

l dϕ
2
l ) +

µ̂r−�

F̂ Π̂
(dt+ alµ

2
lϕ

2
l )

2 +
r2F̂ Π̂

Π̂− µ̂r2−�
dr2

+
1

1− αj
(dσ2

j + σ2
jϕ

2
j) .

(C.0.7)

This limit looks just like the ultra-spinning limit of the MP black hole [64] except for the
extra factor (1− αj)−1 in the last term. Indeed since the parameters αj must lie within the
range 0 ≤ αj < 1, since otherwise the metric either changes signature or diverges, we can
rescale σj such that σj → σ̂j =

�
(1− αj)−1 σj, and hence the metric above will be that of a

rotating black 2k-brane with rotation along the spherical SD−(2k+1) sections of the horizon.
The physical properties of this solution can be easily computed from [91] with the result

M =
Ω(D−2)µ̂

8πG
�

j(1− αj)

�
k�

j=1

1

1− αj
−

D − 2k − 1

2

�
�

j

a2j , (C.0.8)
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S =
Ω(D−2)r

2(N−k)−1+�
+

4G

�

j

a2j
1− α2

j

, T =
2(N − k − 1) + �

4πr+
, (C.0.9)

Ji =
Ω(D−2)µ̂

�
j a

2
j

8πG
�

j(1− αj)

ai
1− αi

, Ωi =
1

ai
, (C.0.10)

r+ =

�
2m�
j a

2
j

� 1
D−2k−3

, i = 1, ..., k . (C.0.11)

These correctly reduce to the results (3.5.50)-(3.5.53) for the singly-spinning case. The
quantities in (C.0.8)-(C.0.11) obey the Quantum Statistical Relation

M −

�

j

ΩjJj − TS =
Ω(D−2)

8
�

j(1− αj)
µ̂
�

j

a2j , (C.0.12)

and thus only when αj = 0, ∀j does one recover the flat space result.
We conclude this appendix by noting that there are only three ways of making the Kerr-

AdSD black hole ultra-spin in the sense that J → ∞. This is obvious by looking at the
general expression for Ji

Ji =
Ω(D−2)m

4π
�N

w Ξw

ai
Ξi

. (C.0.13)

One way is to send ai → ∞ but keeping Ξi finite since otherwise Ji → 0. This can only
be done by simultaneously sending L → ∞. Another way is to send ai → L leading to
Ξi → 0, if then one sends m → 0, Ji remains finite and we obtain the "ultra-spinning" limit
of (3.5.42). If otherwise we keep m finite we obtain the rotating hyperboloid membrane
of [65]. This limit has the consequence that the horizon size is kept finite but the mass
diverges, i.e., M → ∞ and hence it is not ultra-spinning in the sense that J � M . A third
possibility would be to naively send m → ∞ but this results in a black hole with infinite
horizon radius, which is senseless unless we simultaneously send ai → ∞ and L → ∞ and
thus recover the limit taken here. Moreover, since we have taken L → ∞ while keeping r+
finite, the ultra-spinning limit of the Kerr-(A)dS black hole exists only in the regime r+ � L
and hence can be fully captured by the blackfold approach.
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Appendix D

Ultra-spinning Myers-Perry black holes

revisited

The purpose of this section is to instructively show how to take the blackfold limit for singly-
spinning MP black holes as it was done in Sec. 4.4.1 for its doubly-spinning counterpart.
Bearing this in mind, we consider the MP metric with a single angular momentum in n+ 5
dimensions

ds2 = −dt2 +
µ

rnΣ
(dt− a sin2 θdφ)2 +

Σ

∆
dr2 + Σdθ2 + (r2 + a2) sin2 θdφ2 + r2 cos2 θdΩ2

(n+1) ,

(D.0.1)
with

Σ = r2 + a2 cos2 θ, ∆ = r2 + a2 −
µ

rn
. (D.0.2)

The horizon radius r+ is given by the largest positive real root of ∆(r) = 0. The ultra-
spinning limit is attained when r+ � a [64]. From the definition of ∆ above we see that in
this limit rn+ � µ/a2. From the n+ 1-sphere metric in (D.0.1) we see that the radius of the
(n+ 1)-sphere is

r0 = r+ cos θ =
� µ

a2

� 1
n
cos θ . (D.0.3)

Hence, the blackfold is a rotating disc of radius a with its center and boundary located at
θ = 0 and θ = π/2 respectively. We can see this directly from the metric (D.0.1) above.
Sufficiently close to the horizon, the metric (D.0.1) should locally be that of a boosted black
membrane. Close to the center of the disc we need r � a. However, this is not sufficiently
close everywhere on the blackfold. We thus introduce the coordinate

ρ1 = a sin θ . (D.0.4)

This can be seen as the radius on the disc. In terms of this we can write the thickness as

r0(ρ1) = r+

�
1−

ρ21
a2

. (D.0.5)
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For a given point on the disc we should require that the distance scale over which the
thickness change is much larger than the thickness of the disc. Thus, we should require

r0 �
1

|r��0 |
. (D.0.6)

In terms of the horizon radius and rotation parameter, this requirement becomes:

r+ � a

�
1−

ρ21
a2

. (D.0.7)

This tells us, for each point on the disc, how widely separated the scales must be for the
blackfold approximation to be valid. To see the boosted black membrane from the metric
(D.0.1), given a radius ρ1, we need

r � a

�
1−

ρ21
a2

. (D.0.8)

This implies r � a cos θ. Now, consider a given point with radius ρ1 = ρ1∗ at the disc,
corresponding to the angle θ∗ with ρ1∗ = a sin θ∗. Hence, we require r � a cos θ∗. In order
to make a more clear contact with the metric of a Schwarzschild membrane we define

r0∗ = r+ cos θ∗, r̃ = r cos θ∗, z = ρ1∗φ . (D.0.9)

In the approximation r � a cos θ∗ the metric near ρ = ρ1∗ becomes:

ds2 = −dt2 + dρ21 + dz2 + (1− f)

�
dt

cos θ∗
− tan θ∗dz

�2

+
dr̃2

f
+ r̃2dΩ2

(n+1) , (D.0.10)

with
f ≡ 1−

rn0∗
r̃n

. (D.0.11)

This corresponds to boosting the static black Schwarzschild membrane

ds2 = −dt2 + dz2 + (1− f)dt2 + dρ21 +
dr̃2

f
+ r̃2dΩ2

(n+1) , (D.0.12)

along z with the boost (4.4.11) with corresponding Lorentz boost parameter (4.4.12). The
angular velocity in this ultra-spinning regime is also given by (4.4.13) and hence we see that
in the blackfold description the ultra-spinning MP black hole is a black membrane which is
rigidly rotating with constant angular velocity given by V = ρ1Ω1.
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Blackfold equations with zero transverse angular momen-
tum
To facilitate comparison with the doubly-spinning case of Sec. (4.4.2) we present here a brief
analysis of the blackfold equations in the single-pole approximation.

We begin by embedding the disc in the background (4.4.15) using the mapping functions
(4.4.17), leading to the induced metric (4.4.18). Next, we read off the static black membrane
stress-energy tensor from the metric (D.0.10), which has the form of (2.2.1). The fluid
velocity is given by the pullback of the background Killing vector field

k =
∂

∂t
+ Ω1

∂

∂φ1
, (D.0.13)

which gives rise to the same non-vanishing components as those given in (4.4.21).
Now, we analyze the blackfold equations (4.1.24)-(4.1.27) adapted to the current situa-

tion. As the embedding is flat, the extrinsic curvature Kab
µ vanishes and thus the extrinsic

equation T abKab
µ = 0 is trivially satisfied. The remaining non-trivial equations read

DaB
ab = 0, Babuµ

anb|∂W3 = 0 . (D.0.14)

The conservation of the intrinsic stress-energy tensor, assuming that � and P only depend
on ρ1, implies

r0(ρ1) = r0(0)
�
1− ρ21Ω

2
1 . (D.0.15)

Furthermore the boundary condition Babuµ
anb|∂W3 = 0 is again satisfied provided ρ1|∂W3 =

Ω−1
1 , hence the disc has a radius of ρ1 = Ω−1

1 and is moving at the speed of light there. This
is the result obtained in [15, 63] and matches the thickness (D.0.5) upon the identification
r0(0) = (µ/a21)

1
n and Ω1 = a−1

1 .
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Appendix E

Spin corrections for Kerr-(A)dS black

holes

Here we study the same limiting behavior of higher-dimensional Kerr-(A)dS black holes as in
Sec. 4.4 for MP black holes and show that it can be described using the blackfold formalism.
Due to the similarity between both cases we refer to Sec. (4.4) for a more extensive analysis.

In spheroidal coordinates, the metric of the Kerr-AdS black hole with two angular mo-
menta in even dimensions is given by1 [56, 57]

ds2 =−W

�
1 +

r2

L2

�
dt2 +

µ

U

�
dt−

2�

i=1

aiµ2
i

Ξi
dφi

�2

+
U

V − µ
dr2

+
2�

i=1

r2 + a2i
Ξi

�
dµ2

i + µ2
i

�
dφi +

√
αi

L
dt

�2
�

+ r2




(n+5)/2�

i=3

dµ2
i +

N�

i=3

µ2
i dφ

2
i





+
1

L2W (1 + r2

L2 )




2�

i=1

r2 + a2i
Ξi

µidµi + r2
(n+5)/2�

i=3

µidµi



 ,

(E.0.1)

where

W = 1 +
2�

i

αi
µ2
i

Ξi
, U = rn−2

�
1−

2�

i=1

a2iµ
2
i

r2 + a2i

�
2�

j=1

(r2 + a2j),

V = rn−2(1 +
r2

L2
)

2�

i=1

(r2 + a2i ) ,

(E.0.2)

1The same analysis also holds in the case of odd dimensions.
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with µ1 and µ2 as given in Eq. (4.4.2) and

U

V − µ
=

�
1−

�2
i=1

a2iµ
2
i

r2+a2i

�

(1 + r2

L2 )−
µ

rn−2
�2

j=1(r
2+a2j )

, αi =
a2i
L2

, Ξi = 1− αi . (E.0.3)

The horizon r+ is given by the largest positive real root of V (r) − µ = 0. For clarity of
notation we set a1 ≡ a and a2 ≡ b. The ultra-spinning limit is attained when r+, b � a, L
with 0 ≤ α1 < 1 and r � a, L with r finite2, in a similar fashion as in the singly-spinning
case, see Sec. 3. However, for the metric to look locally like a boosted MP membrane, we
furthermore need r � a√

Ξ1
cosθ and b � a√

Ξ1
cosθ.

Under these assumptions, it is easy to show that the last term in (E.0.1) is subleading
while the functions V, U,W reduce to

W → 1, U → rn−2a2
�
1− µ2

1 −
a2iµ

2
i

r2 + a2i

�
(r2 + b2), V → rn−2a2(r2 + b2) .(E.0.4)

In order to parametrize the membrane in a convenient way, we introduce the coordinates

ρ1 =
a

√
Ξ1

sinθ, z = ρ∗φ1 . (E.0.5)

Then, near a fixed angle θ∗, the metric (E.0.1) is seen to reduce again to that of a MP
membrane (4.4.10) but with Lorentz boost,

V = sinθ∗ =
�

Ξ1 Ω1ρ1, γ̃ =
1�

1− Ξ1ρ21Ω
2
1

, Ω1 =
1

a
. (E.0.6)

Blackfold pole-dipole equations with non-zero transverse
angular momentum
We now want to describe the above limiting behavior of the higher-dimensional Kerr-(A)dS
black holes using the blackfold approach. It is convenient, in order to highlight the existent 2-
planes of the background spacetime, to write the metric of AdS in conformally flat coordinates

ds2 = −F (ρ)dt2+H(ρ)−1

�
dρ21 + ρ21dφ

2
1 + ds2⊥ +

n�

i=1

dx2
i

�
, ρ2 = ρ21+ρ22+

n�

i=1

x2
i , (E.0.7)

where ds2⊥ is given by (4.4.16) and

F (ρ) =

�
1 + ρ2

4L2

1− ρ2+
4L2

�2

, H(ρ) = 1−
ρ2

4L2
. (E.0.8)

2In the case of higher-dimensional Kerr-dS black holes, the parameter α1 is instead constrained by αi ≥ 0.
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Note that this coordinate system differs from the one used in (E.0.1). To see how to translate
from one coordinate system to the other see Sec. 3. To embed the membrane in this back-
ground we chose the embedding coordinates (4.4.17), which give rise to the induced metric

γabdσ
adσb = −F (ρ1)dt

2 +H(ρ1)
−1

�
dρ21 + ρ21dφ

2
1

�
. (E.0.9)

Again, all extrinsic curvature components vanish since the embedding is flat. The stress-
energy tensor is still given by (2.2.1) but now with boost velocities,

ut = γ̃, uρ1 = 0, uφ1 = γ̃Ω1, γ̃ =
1�

1− Ξ1
ρ21

1− ρ21
4L2

Ω2
1

. (E.0.10)

Furthermore the spin current in this coordinate system reads

jaνρ =
Ω(n+1)

8πG

b̃r̃n0H(ρ)

ρ2
uaδνρ2δ

ρ
φ2

, (E.0.11)

while the dipole current and Bµνa components vanish. Due to the vanishing of the extrinsic
curvature and of all the contractions involving the Riemann tensor in Eqs. (4.1.24)-(4.1.27),
the blackfold equations reduce to Eqs. (4.4.25) as in the flat space case. Solving the bulk
equations requires:

r̃0(ρ1) = r̃0(0)

�
1− Ξ1

ρ21

1− ρ21
4L2

Ω2
1 , b̃(ρ1) = b̃(0)

�
1− Ξ1

ρ21

1− ρ21
4L2

Ω1 . (E.0.12)

Moreover the boundary condition Babuµ
anb|∂W3 = 0 implies that the disc has a maximum

radius given by ρ1|∂W3 = 2L(LΩ1 −
�
L2Ω2

1 − 1 ). We note that in the singly-spinning case
where b̃(0) = 0 the thickness r̃0 obtained in Sec. 3 coincides with the one given in (E.0.12) and
agrees with the analytic solution (E.0.1) upon the identification r̃n0 (0)/Ω

2
1 = µ and Ω−1

1 = a1.

Thermodynamic quantities
The thermodynamical quantities of the analytic solution (E.0.1) in the ultra-spinning regime
can be obtained from [91] and read

M =
Ω(n+3)

16πG

µ

Ξ2
1

(2 + Ξ1(n+ 1)) , J1 =
Ω(n+3)

8πG

µ

Ξ2
1

a, J2
⊥ =

Ω(n+3)

8πG

µ

Ξ1
b , (E.0.13)

with

Ω1 =
1

a
, Ω2 =

b

r2+ + b2
, (E.0.14)
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while the entropy and temperature are given by

S =
Ω(n+3)

4G

a2µ

Ξ1r+
, T =

1

4πr+

�
n−

2b2

r2+ + b2

�
. (E.0.15)

Evaluating the conserved charges using Eqs. (4.1.31)-(4.1.33) results in

M =
Ω(n+3)

16πG

r̃n0 (0)

Ξ2
1Ω

2
1

(2 + Ξ1(n+ 3)) , J1 =
Ω(n+3)

8πG

r̃n0 (0)

Ξ1Ω2
1

1

Ω1
, J2

⊥ =
Ωn+3)

8πG

r̃n0 (0)

Ξ1Ω2
1

b̃(0) .

(E.0.16)
We can straightforwardly check that these results agree with the ones presented in (E.0.13)-
(E.0.14) upon the identification r̃n0 (0)/Ω

2
1 = µ, Ω−1

1 = a1, and b̃(0) = b. Moreover, in the
AdS case the tension (4.1.37) is non-zero and reads

T = −α
Ω(n+3)

8πG

r̃n0 (0)

Ξ2
1Ω

2
1

. (E.0.17)

Using the Smarr relation (4.1.35) to compute the product TS and then the first law of black
hole thermodynamics we can exactly reproduce the temperature and entropy as given in
(E.0.15) in the same way we did for MP black holes. This leads one to conclude that higher-
dimensional Kerr-(A)dS black holes in the ultra-spinning regime are correctly captured by
the blackfold pole-dipole equations.
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