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Abstract

In recent years there has been much interest in the application of holography to
condensed matter physics. In particular, gravity duals with non-relativistic scaling
symmetries have been constructed for this purpose. These are known as Lifshitz
and Schrödinger spacetimes. Recently, metrics with hyperscaling violation have also
become important. These are not invariant under the non-relativistic scaling, but
instead scale covariantly.

In this thesis, the equations of motion of four-dimensional N = 2 gauged su-
pergravity are derived in order to find Lifshitz solutions with non-zero hyperscaling
violation. Both vector multiplets and gauged hypermultiplets are included in this
general analysis. Focussing then on the F = −iX0X1 model, which contains a single
vector multiplet coupled to gravity, explicit solutions are found. Further, it is shown
that one of these solutions solves first-order flow equations. This implies that the
solution is supersymmetric.

Along the way, relevant topics are introduced, such as special Kähler manifolds,
quaternionic Kähler manifolds, gauging of N = 2 supergravity, and also some aspects
of non-relativistic holography and the formalism of first-order flow equations.
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Chapter 1

Introduction

The twentieth century saw huge leaps forward in theoretical physics. Albert Einstein’s
theory of relativity revolutionized the classical understanding of gravity, space, and time.
Quantum mechanics offered a description of small scale physics, introducing concepts such
as the uncertainty principle and wave-particle duality. The unification of special relativity
and quantum physics led to quantum field theory, the language of the Standard Model of
particle physics. However, Einstein gravity cannot be formulated consistently as a quantum
field theory, due to non-renormalizability. A consistent quantum theory of gravity is not
yet well established, however, among the leading candidates for such a theory is string
theory.

This thesis may be considered as part of the wide area of modern string theory research,
even though we will not address the question of whether string theory is a good quantum
theory of gravity. The main topics of this thesis are classical supergravity and solutions
relevant for the gauge/gravity correspondence. The aim of this Introduction is to place
this work into the context of modern research.

String theory

String theory [1, 2] was first introduced in the late 1960’s and early 1970’s, initially as an
attempt to describe the strong interactions [3–6]. The theory essentially postulates that
the elementary constituents of Nature are not point-particles, but rather one-dimensional
strings. These may be closed loops or open ended strings. The quantization of a string gives
rise to a discrete, infinite spectrum of vibrational modes, corresponding to different types
of particles. Among the initial problems was that the ground state was tachyonic, and that
the spectrum included a massless spin-2 particle, which was unwanted in the context of the
strong interactions. Further, the theory included only bosons, and consistent quantization
required precisely 26 spacetime dimensions, rather than our familiar four.

Later, it was realized that the massless spin-2 particle could be interpreted as the
graviton [7, 8]. Thus, string theory is actually a quantum theory of gravity. Inclusion of
world-sheet supersymmetry led to the introduction of fermions and got rid of the tachyon
state [9]. It was further shown, that this implies also spacetime supersymmetry, and that
consistent quantization of the superstring requires spacetime to be ten-dimensional.
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Introduction 2

Supergravity

Supergravity was originally discovered independently of string theory [10]. Inclusion of
supersymmetry in quantum field theories improves the UV behavior and delay divergences
to higher loop orders. Originally, it was hoped that supersymmetry would render grav-
ity finite, but this was realized not to be the case. Four-dimensional N = 8 maximal
supergravity, however, is still not ruled out as a finite quantum theory of gravity [11].

Supergravity does however find an important role in (super)string theory, as ten-
dimensional supergravity emerges in the classical limit. By compactifying some dimensions,
effective lower-dimensional theories may be obtained. These include gauged supergravities.

In this thesis we will take a more bottom-up approach to gauged supergravity. We
will discuss how supergravity arises as local supersymmetry, and gauged supergravity can
be regarded as a deformation of the ungauged theory, by promoting a global internal
symmetry to be local.

The gauge/gravity correspondence

Among the most notable recent discoveries from string theory is the gauge/gravity corre-
spondence, or holography. This states that a quantum gravity theory, in particular string
theory, is dual to a lower-dimensional quantum field theory without gravity. For a quantum
field theory at strong coupling and large N , the string theory dual reduces to the limit
of classical gravity. On the one hand, this potentially allows new insight into quantum
field theories from calculations in a classical gravity theory, while on the other hand we
might learn more about string theory by studying field theories in flat spacetime. The first
example was conjectured in 1997 by Maldacena [12–14]. This is a duality between type IIB
supergravity on AdS5 × S5 and four-dimensional N = 4 SU(N) super-Yang-Mills, which
is a conformal field theory (CFT). Hence, the duality is known as AdS/CFT.

There are obviously interesting non-conformal field theories, e.g. quantum chromody-
namics (QCD), to which one might want to extend the conjecture. In recent years, there has
been much attention on the application of holography to condensed matter physics [15–25].
In particular, in many condensed matter systems one finds phase transitions governed by
fixed points exhibiting non-relativistic scaling invariance. The gravity duals are known as
Lifshitz and Schrödinger spacetimes [16–19].

Recently, aspects of hyperscaling violation have also been addressed in the context of
holography [25,26]. Roughly speaking, a d-dimensional condensed matter system with hy-
perscaling violation exponent θ has the thermodynamic behaviour of a (d−θ)-dimensional
system [27].

Embedding in string theory

Gravity duals are often first constructed without any relationship to string theory. Nat-
urally, it is simpler to construct a specific solution if one is free to choose the matter
content. Such models may yield phenomenological results and improve the understanding
of the gauge/gravity correspondence itself. However, the duality actually involves a quan-
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tum gravity theory. It is therefore of interest to embed gravity duals into string theory as
a UV complete theory.

Embeddings in string theory from constructions of Dp-branes in ten-dimensional su-
pergravity can be considered a top-down approach. As a bottom-up approach one can
work directly in the lower-dimensional supergravity theories, which results from compact-
ifications. As compactifications in general increase the number of fields, it is convenient
to work with consistent truncations of the compactified theory. A solution of a consistent
truncation is then a guaranteed solution of the higher dimensional theory.

String/M-theory embeddings of Lifshitz solutions with hyperscaling violation have
recently been found [25, 28–32], and also some solutions with preserved supersymme-
try [29,33].

This thesis

This thesis investigates Lifshitz spacetimes with non-zero hyperscaling violation, as solu-
tion of four-dimensionalN = 2 gauged supergravity. Such solutions with non-zero gaugings
have not yet been found. We find indeed explicit solutions in the F = −iX0X1 model,
however, these are restricted to vanishing gaugings. One of these solutions solve first-order
flow equations, implying it is supersymmetric. Solutions with preserved supersymmetry
have only previously been constructed differently, from near-horizon geometries of black
holes or branes.

This thesis is organized as follows. In Chapter 2, we review supersymmetry and as-
pects of supergravity. Chapter 3 gives more details on four-dimensional N = 2 gauged
supergravity. Chapter 4 reviews the useful formalism of supersymmetric first-order flow
equations. In Chapter 5, we discuss briefly the AdS/CFT correspondence and some aspects
of non-relativistic generalizations thereof. In Chapter 6, we investigate the equations of
motions of N = 2 gauged supergravity in a Lifshitz-like background with non-zero hyper-
scaling violation. In Chapter 7, we consider the equations of motion of the F = −iX0X1

model with Fayet-Iliopoulos gaugings, as an explicit example. We find that we can solve
these equations, but only for vanishing gauging. We then show that one of these solutions
solves the first-order flow equations, implying it is supersymmetric. Finally, we conclude
in Chapter 8 with a discussion of the results.



Chapter 2

Supergravity

In this section, we discuss the basics of supergravity. As supergravity is essentially the su-
persymmetric extension of General Relativity, we start by reviewing rigid supersymmetry.
We then move on to different aspects of supergravity theories.

2.1 Rigid Supersymmetry

Supersymmetry has interesting properties desirable in particle physics, e.g. improved UV
behaviour and stabilization of the Higgs mass (the hierarchy problem) [34, 35]. However,
supersymmetry has not yet been observed in experiments. Hence, if it exists, it must be
broken at low energies. In the context of this thesis, supersymmetry is important since it
is required for consistency of string theory, in the sense mentioned in the Introduction.
For further details or proofs, see e.g. [34–38]. We take the Minkowski metric to be
ηµν = diag(1,−1,−1,−1).

The Poincaré algebra

Symmetries play a great role in particle theories. For example, relativistic theories are for-
mulated to be invariant under the Poincaré group, the group of all isometries of Minkowski
spacetime. Particles belong to representations of the Lorentz group with integer or half-
integer spin, i.e. scalars, spinors, vectors, etc. The Poincaré algebra contains the gener-
ators of the Lorentz group, Jµν , generating rotations and boosts, and the momentum Pµ
generating spacetime translations. The algebra is

[Jµν ,Jρσ] = i(ηνρJµσ − ηµρJνσ + ηµσJνρ − ηνσJµρ),
[Pµ,Jνρ] = iηµνPρ − iηµρPν , (2.1)

[Pµ, Pν ] = 0.

From the elements of the Poincaré algebra, one can construct two Casimir operators, which
commute with all elements of the algebra. The first is PµP

µ. To consider the action of
this operator on massive particle states, we can choose the rest frame in which the particle

4



2.1. Rigid Supersymmetry 5

has four-momentum kµ = (m, 0, 0, 0). The eigenvalue of the momentum operator is the
four-momentum. Thus, applying the Casimir operator yields

PνP
ν |kµ〉 = kνk

ν |kµ〉 = m2|kµ〉, (2.2)

since kµk
µ = m2. For a massless particle, one can choose the frame kµ = (E, 0, 0, E) to

find PνP
ν |kµ〉 = 0. The other Casimir operator is WµW

µ, where Wµ = 1
2
εµνρσJ νρP σ is

the so-called Pauli-Lubanski pseudovector. In a somewhat similar fashion, one can show
that WµW

µ yields the spin (helicity) for massive (massless) particles.
Since PµP

µ and WµW
µ are Casimir operators, mass and spin/helicity are thus Poincaré

invariant labels for particles.

The super-Poincaré algebra

In 1967, Coleman and Mandula considered the possible symmetries of the S-matrix under
very general assumptions, such as unitarity [39]. They concluded that the Lie algebra
of the largest possible symmetry must be a direct product of the Poincaré algebra and
the algebra of an internal symmetry. In 1975, Haag,  Lopuszański and Sohnius proved
that the Coleman-Mandula theorem can be generalized, if the algebra of the symmetry is
a superalgebra [40]. Thus, the Poincaré algebra can be extended to the super-Poincaré
algebra by adding anti-commuting generators QA, where A = 1, ...,N . These are the
generators of supersymmetry. They extend the Poincaré algebra with the relations

[QA
α , Pµ] = 0, {QA

α , Q̄α̇B} = 2σµαα̇Pµδ
A
B,

[QA
α ,Jµν ] = (σµν)

β
αQ

A
β , {QA

α , Q
B
β } = εαβZ

AB,
(2.3)

along with also the conjugate relations. Here, QA
α are Weyl spinors, and Q̄α̇A = (QA

α )†.
The components of QA are known as supercharges. When N > 1, the theory has extended
supersymmetry. The complex central charge ZAB = −ZBA commutes with the whole alge-
bra. Due to its antisymmetry there is no central charge for N = 1. Further, for extended
supersymmetry we can introduce another bosonic symmetry. The R-symmetry group is
defined to be the largest subgroup of the automorphism group of the supersymmetry al-
gebra that commutes with the Lorentz group. It corresponds to rotations between the
supercharges,

[Pµ, R
a] = 0, [Jµν , Ra] = 0,

[QA
α , R

a] = (Ua)ABQ
B
α , [Ra, Rb] = ifabcR

c.
(2.4)

In four-dimensional spacetime in the absence of central charges the R-symmetry group is
U(N ), while in the presence of central charges it is restricted to USp(N ) = Sp(N ,C) ∩
U(N ) [36].

Particles related by supersymmetry are called superpartners, and irreducible repre-
sentations of the supersymmetry algebra form supermultiplets. Since the supercharges
commute with Pµ, the operator PµP

µ is still a Casimir. Hence, particles belonging to
the same supermultiplet must have the same mass. The operator WµW

µ, however, turns
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out not to commute with the supercharges, which indicates that spin is not conserved
under supersymmetry transformations. Since the supercharges are fermionic, their action
on particle states will change the spin statistics of the state,

Q|boson〉 = |fermion〉, Q|fermion〉 = |boson〉, (2.5)

schematically.

Massless supermultiplets

Consider a massless particle with momentum kµ, for which we may choose the frame
kµ = (E, 0, 0, E). The anti-commutator of the supercharges becomes

{QA
α , Q̄α̇B} = 2σµαα̇Pµδ

A
B = 2EδAB

(
11 + σ3

)
αα̇

= 4EδAB

(
1 0
0 0

)
αα̇

. (2.6)

Note in particular {QA
2 , Q̄2̇B} = 0. This implies QA

2 for all A lead to zero-norm states,

0 = 〈ψ|{QA
2 , Q̄2̇B}|ψ〉 = ||QA

2 |ψ〉||2 + ||Q̄2̇B|ψ〉||2 ⇒ QA
2 = Q̄2̇B = 0 ∀A,B. (2.7)

Plugging QA
2 = Q̄2̇A = 0 back into the super-Poincaré algebra (2.3) further implies van-

ishing central charges, ZAB = 0, for the massless representations. On the other hand,
defining qA ≡ (1/

√
4E)QA

1 and q†A ≡ (1/
√

4E)Q̄1̇A leads to cannonical fermionic creation
and annihilation operators,

{qA, q†B} = δAB {qA, qB} = {q†A, q
†
B} = 0. (2.8)

Recall above, that for a massless state with energy E and helicity λ, applying Wµ yields
the helicity. In the chosen frame,

W0|E, λ〉 = λP0|E, λ〉 = λE|E, λ〉. (2.9)

To find the helicity of the state q†A|E, λ〉, one can apply W0 and subsequently use the
commutators of Q̄α̇A with Pµ and J µν to find

W0q
†
A|E, λ〉 = E(λ+ 1

2
)q†A|E, λ〉. (2.10)

Thus, q†A raises the helicity by 1
2
. To build a supermultiplet, one now chooses a vacuum

state of helicity λ0 satisfying
qA|E0, λ0〉 = 0 ∀A, (2.11)

which is always possible due to the anticommutativity of the supercharges. By applying
the N creation operators one can construct 2N states with helicities from λ0 to λ0 +N /2.
However, helicity changes sign under CPT conjugation, so unless the multiplet is self-
conjugate, the states of opposite helicity must be added to ensure CPT invariance.
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As an example, consider a massless N = 1 multiplet. This contains the helicity states

{λ0 + 1
2
, λ0, −λ0, −λ0 − 1

2
}. (2.12)

Choosing λ0 = 0 the field content corresponds to a complex scalar field (or two real scalar
fields) and a spin-1

2
Weyl fermion. This is called the chiral multiplet. The vector multiplet

corresponds to λ0 = 1
2
, and contains a spin-1

2
Weyl fermion and a spin-1 gauge field. For

rigid supersymmetry without gravity, we do not choose λ0 >
1
2
, due to renormalizability.

However, in supergravity the N = 1 gravity multiplet is build from λ0 = 3
2

and contains
the spin-2 graviton and one spin-3

2
gravitino.

Massive supermultiplets

Now, consider a massive particle. In the rest frame, kµ = (m, 0, 0, 0), we have

{QA
α , Q̄α̇B} = 2mσ0

αα̇δ
A
B = 2mδαα̇δ

A
B. (2.13)

Consider first the super-Poincaré algebra (2.3) with vanishing central charges, ZAB = 0.
Defining qαA ≡ (1/

√
2m)QA

α , the relevant part of the super-Poincaré algebra (2.3) becomes

{qαA, q†βB} = δαβδAB, {qαA, qβB} = {q†αA, q
†
βB} = 0. (2.14)

Choosing again a vacuum state and applying the creation and annihilation operators yields
22N states, instead of just 2N as in the massless case. Such multiplets are called long
multiplets.

Massive multiplets may be shortened due to non-vanishing central charges. For ZAB 6=
0 the definition of the creation and annihilation operators is more subtle, since {QA

α , Q
B
β } 6=

0. By appropriate symmetry transformations, the antisymmetric central charge can be
brought to the form:

ZAB =



0 Z1

−Z1 0
0 Z2

−Z2 0
. . .

0 ZN/2
−ZN/2 0


, (2.15)

where we have assumed that N is even. The entries ZL can be chosen to be real and
non-negative. Splitting the indices A = (a, L), where L,M = 1, ...,N /2 and a, b = 1, 2,
the central charges can be written ZAB = Z(a,L)(b,M) = −εabδLMZM , with no sum over M
and ε12 = −1. The anticommutators of the super-Poincaré algebra can then be written

{Q(a,L)
α , Q̄α̇(b,M)} = 2mδLMδ

a
b δαα̇, (2.16)

{Q(a,L)
α , Q

(b,M)
β } = −2εαβε

abδLMZM , (2.17)

{Q̄α̇(a,L), Q̄β̇(b,M)} = −2εαβεabδLMZM . (2.18)
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The creation and annihilation operators can then be defined as

q±αL = 1
2

(
Q1L
α ± εαβδβγ̇Q̄γ̇2L

)
, (2.19)

q± †α̇L = 1
2

(
Q̄α̇1L ± εα̇β̇δ

β̇γQ2L
γ

)
, (2.20)

and the algebra can be worked out to be

{q±αL, q
± †
α̇M} = (m± ZM)δαα̇δLM , (2.21)

{q±αL, q
±
βM} = {q± †α̇L , q

± †
β̇M
} = {q∓αL, q

± †
αM} = ... = 0. (2.22)

Now, the q±αL act as annihilation operators, while the q± †α̇L act as creation operators. Thus,
one chooses again a vacuum state, annihilated by all q±αL, and then applies the q± †α̇L . One
can show that q± †

1̇L
raises spin by 1

2
, while q± †

2̇L
lowers spin by 1

2
. An important observation

in eqn. (2.21) is that one must require

m ≥ ZL, (2.23)

in order to avoid unphysical negative norm states. This is known as the Bogomolnyi-
Prasad-Sommerfeld bound, or BPS bound for short. If none of the central charges ZL
saturate the BPS bound, the multiplet is constructed as in the case with vanishing central
charges. Hence it is a long multiplet with 22N states. If n ≤ N /2 of the central charges
saturate the bound, according to (2.21) the corresponding creation operators q− †α̇L yield
zero-norm states and do not contribute to the state spectrum. The multiplet will then
contain 22N−2n states, and is called a short multiplet.

Supersymmetric Lagrangians

One of the simplest examples of a supersymmetric Lagrangian is the Wess-Zumino model
[41], containing a single chiral multiplet and a complex auxiliary field F . In the free,
massless case, the Lagrangian is

LWZ = ∂µφ∂
µφ̄+ i∂µχσ

µχ̄+ FF̄ . (2.24)

The auxiliary field has the trivial equation of motion F = 0, which means it has no physical
on-shell degrees of freedom. The field is needed, however, to close the supersymmetry
algebra off-shell, and to match the bosonic and fermionic off-shell degrees of freedom. The
off-shell closure and matching of degrees of freedom are important for the quantum theory.
However, since this thesis is primarily concerned with classical solutions of supergravity,
on-shell closure will do.

The Lagrangian (2.24) is invariant, up to total derivatives, under the infinitesimal
supersymmetry variations:

δφ = εχ,

δχ = εF + iσµε̄∂µφ, (2.25)

δF = −i∂µχσµε̄.
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Here, ε is a spinorial parameter, with no spacetime dependence. Masses and interactions
can consistently be added to the Lagrangian (2.24), see e.g. [34,37]. Note that in the case
at hand, when adding masses, the field content remains the same, even though the massive
representation is a long multiplet (recall, there is no central charge for N = 1). This is
due to the added CPT conjugates in the massless representation, doubling the number
of states. As a final remark, let us mention that a powerful formalism for constructing
manifestly supersymmetric Lagrangians is the superspace formalism, see [37].

2.2 Local supersymmetry: Supergravity

In the previous section rigid supersymmetry was discussed. In the super-Poincaré algebra
(2.3) the supercharges anticommutate to a global translation,

{QA
α , Q̄α̇B} = 2δABσ

µ
αα̇Pµ. (2.26)

Promoting supersymmetry to be a local symmetry, the above indicates that one must allow
for spacetime dependent translations, i.e. general coordinate transformations. Indeed, local
supersymmetry will necessarily require the inclusion of gravity. We will now review how
to turn a global symmetry into a local one, and then apply this to supersymmetry.

Gauging a global symmetry

The procedure of turning a global symmetry into a local one is sometimes called the
Noether method [42–44]. See also [45] for further details and generalizations. It is in
general an iterative process, where terms must be added to the Lagrangian in order to end
up with an invariant theory.

As an example, consider a spin-1
2

Dirac spinor ψ in Minkowski spacetime with the
Lagrangian,

L = iψ̄(γµ∂µ −m)ψ. (2.27)

The above Lagrangian is invariant under global U(1) transformations, ψ → eiαψ. This
symmetry is gauged by promoting α to be spacetime dependent. While the mass term in
(2.27) is still invariant, the kinetic term is not, due to the derivative,

δL = jµ∂µα(x), jµ = −ψ̄γµψ. (2.28)

jµ is the Noether current. Invariance can be restored by introducing a vector gauge field
Aµ transforming as

Aµ → Aµ −
1

e
∂µα(x), (2.29)

with coupling constant e. Adding to the Lagrangian the term

LN = ejµAµ, (2.30)
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gauge invariance is restored. The gauge field Aµ is in fact a connection, and we can
introduce covariant derivative, Dµψ = ∂µψ + ieAµψ, transforming as

Dµψ → eiα(x)Dµψ. (2.31)

Adding now also the gauge invariant kinetic terms for the gauge field, the action becomes

L = iψ̄(γµDµ −m)ψ − 1

4
FµνF

µν . (2.32)

We have then obtained the familiar gauge invariant Lagrangian of quantum electrodynam-
ics (QED).

To conclude, the gauging of the global U(1) symmetry of (2.27) introduces a covariant
derivative, as well as a spin-1 gauge field as a connection.

Local supersymmetry

Now, consider promoting global supersymmetry to be local. For definiteness, consider the
Wess-Zumino model, eqn. (2.24), consisting of a single N = 1 chiral multiplet,

LWZ = ∂µφ∂
µφ̄+ i∂µχσ

µχ̄. (2.33)

We consider here only the on-shell form, since we will be interested in classical solutions
in the later chapters. The supersymmetry variations with global parameter ε are

δφ = εχ, δχ = iσµε̄∂µφ . (2.34)

Promoting now ε → ε(x), the Lagrangian is no longer invariant. Including now spinor
indices for clarity, the variation and Noether current is

δL = ∂µε
αJ µ

α + h.c., J µ
α = χβσµ

ββ̇
εβ̇α̇σναα̇∂νφ̄ (2.35)

Analogous to eqn. (2.30), a gauge field must be added. Notice, however, that the gauge
field ψαµ must carry both a Lorentz index and a spinor index,

LN = κψαµJ µ
α + h.c.. (2.36)

It must transform as

ψαµ → ψαµ −
1

κ
∂µε

α + ..., (2.37)

in order to cancel the variation (2.35). This field is the spin-3
2

representation of the Lorentz
group, called the gravitino. The kinetic term for a spin-3

2
field is the Rarita-Schwinger

Lagrangian [46],

Lψ = −1

2
εµνρσψ̄µγ5γν∂ρψσ. (2.38)
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The term (2.38) is in fact invariant under gauge transformations of the form (2.37). Work-
ing out the local supersymmetry variations of the Lagrangian LWZ +LN +Lψ, the theory
is still not invariant, however. Among other terms, one finds a term proportional to the
energy-momentum tensor of the scalar field, Tµν(φ). Yet another field must therefore be
added to the theory, a bosonic symmetric rank 2 tensor field, hµν , along with a coupling,

L(2)
N =

1

2
κhµνT

µν . (2.39)

The bosonic, symmetric rank-2 tensor field which couples to the energy-momentum tensor
is identified with the graviton. The metric is then introduced as gµν = ηµν + hµν . Also,
one can work out that the coupling constant κ is dimensionful, unlike the QED case
above. In fact, it is identified with the Newton constant, κ2 = 8πG. Continuing the
iteration process, the end result is a Lagrangian of matter-coupled gravity, invariant under
appropriate supersymmetry variations. Hence the name: supergravity.

2.3 Four-dimensional N = 1 supergravities

We now discuss the structure of supergravity actions. We consider here only ungauged
actions, postponing the gauged case specifically to Chapter 3.

A supergravity action always contains the gravity multiplet. This is constructed by
choosing the graviton as the state of highest helicity, and then lowering helicity with the
supercharges. For example, an N = 1 gravity multiplet contains just the graviton and one
gravitino. Theories containing only the gravity multiplet are called minimal supergravities.

Minimal N = 1 supergravity

The four-dimensional N = 1 minimal supergravity action was first constructed in [10,47],
see reviews [43,48]. In order to couple spinors to gravity, we need to introduce the vielbein
eµ
a, such that gµν = eµ

aeν
bηab, and the spin connection ωµ

ab. Appendix B includes some
details on this.

The action contains the Einstein-Hilbert term, the Rarita-Schwinger term, and also
higher order terms in the gravitino. We will use units in which κ2 = 8πG = 1, so the
action has the form

S =

∫
e d4x

(
R

2
+

1

2
εµνρσψ̄µγνγ5Dρψσ + Lψ4

)
. (2.40)

Here e ≡ det eµ
a =
√
−g, and Dµ =

(
∂µ + 1

4
ωµ

abγab
)

contains the torsionless spin connec-
tion. The fact that the connection is torsionless implies D[µeν]

a = 0. The terms in (2.40)
with higher orders of fermions are typical to supergravity models. Such terms are generi-
cally non-renormalizable. However, since Einstein gravity is non-renormalizable anyways,
this will not concern us.

The action (2.40) may be written simpler, by introducing a connection with torsion,

ω̂abµ = ωµ
ab +Ka

µ
b, Ka

µ
b = −i

(
ψ̄[aγb]ψµ + 1

2
ψ̄aγµψ

b
)
. (2.41)
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Then, D̂[µeν]
a = − i

2
ψ̄µγ

aψν , where the covariant derivative is D̂µ =
(
∂µ + 1

4
ω̂ ab
µ γab

)
. The

action can then be written as

S =

∫
e d4x

(
R̂

2
+

1

2
εµνρσψ̄µγνγ5D̂ρψσ

)
, (2.42)

where R̂ and D̂µ are functions of ω̂µ
ab, rather than ωµ

ab. The action (2.42) is invariant
under local supersymmetry variations,

δeµ
a = −iε̄γaψµ, δψµ = D̂µε. (2.43)

Matter-coupled N = 1 supergravity

As discussed in section 2.1, the massless multiplets of N = 1 supersymmetry are the
chiral multiplet, the vector multiplet, and in supergravity also the gravity multiplet. An
arbitrary number of matter-multiplets may be coupled to the minimal action above. We
take nC chiral multiplets and nV vector multiplets. Thus the action contains nC complex
scalar fields and nV vector fields, which we take to be Abelian. Since we are interested
in solutions of supergravity where all fermions are truncated, we will focus on the bosonic
part of the action. This has the form

S =

∫ √
−g d4x

(
R

2
+

1

4
IΛΣ(φ, φ̄)FΛ

µνF
Σ|µν +

1

4
RΛΣ(φ, φ̄)FΛ

µν
?FΣ|µν + gī(φ, φ̄) ∂µφ

i∂µφ̄̄
)
.

(2.44)
The action contains a topological term Ltop = 1

4
RΛΣF

Λ
µν
?FΣµν . This is a generalization

of the theta-angle of quantum chromodynamics [49]. The couplings of the vector kinetic
terms and the topological term are given by the so-called period matrix or kinetic matrix,
NΛΣ, such that IΛΣ ≡ ImNΛΣ and RΛΣ ≡ ReNΛΣ.

The kinetic terms of the scalar fields are not canonical. Rather, they are described by
a non-linear sigma model, where the scalar fields may be interpreted as coordinates on a
manifold called the target space or the scalar manifold,Mscalar. The scalar fields define a
set of maps from spacetime M4 to the target manifold,

φi(x) : M4 −→ Mscalar. (2.45)

The scalar kinetic terms in the action are given by the metric gī on Mscalar. For N = 1,
supersymmetry dictates that the target space is a Kähler manifold (see Section 3.2).

2.4 Extended supergravity

In four dimensions, supergravity can be extended with N ≤ 8. Theories with N > 8 must
necessarily contains fields with helicity λ > 2. A finite number of fields with λ > 2 cannot
consistently couple to other fields, at least in Minkowski space. However, recently there
has been much interest in higher-spin theories and their role in holography. For a review
see e.g. [50]. For further details on extended supergravity than given below, see e.g. [43,51].
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Field content

The possible matter couplings depend on the value of N . The question is if any multiplets
can be constructed with helicities −1 ≤ λ ≤ 1, for consistency.

For N = 2, there are two types of matter-multiplets, vector multiplets and hypermul-
tiplets. We will discuss this in more detail in Chapter 3. For N = 4, the only matter-
multiplets are vector multiplets, while for N > 4 the field content is completely fixed.
Due to the large supersymmetry, such theories must contain many fields. For example,
maximal N = 8 supergravity contains the graviton, 8 gravitinos, 28 vectors, 56 spin-1

2

fermions, and 70 real scalar fields. Vectors belonging to the gravity multiplet are known
as graviphotons.

Action

The bosonic part of the action has the same overall form as in the N = 1 case,

S =

∫ √
−g d4x

(
R

2
+

1

4
IΛΣ(φ, φ̄)FΛ

µνF
Σ|µν +

1

4
RΛΣ(φ, φ̄)FΛ

µν
?FΣ|µν + gī(φ, φ̄) ∂µφ

i∂µφ̄̄
)
.

(2.46)
The vector couplings are again described by the period matrix NΛΣ = RΛΣ + iIΛΣ, and
the scalar fields are described by a non-linear sigma model. For N > 2 (but also some
theories with N ≤ 2) the target spaceMscalar is a coset space G/H. This means the target
space has a global isometry group G, and an isotropy group (also called the little group or
stabilizer) H ⊂ G. The isotropy group H associated to a chosen point x ∈ Mscalar is the
largest subgroup of G, which leaves x fixed, i.e. hx = x for all h ∈ H. A simple example
is the 2-sphere S2, which is the coset SO(3)/SO(2).

As an example, the scalar manifold for N = 4 supergravity with nV vector multiplets
is

SU(1, 1)

U(1)
⊗ SO(6, nV )

SO(6)× SO(nV )
. (2.47)

2.5 Electric-magnetic duality

Electric-magnetic duality is well-known for simpler theories, such as classical Maxwell-
theory. Maxwell’s equations in vacuum,

∇ · E = 0, ∇ ·B = 0, ∇× E = −∂B

∂t
, ∇×B =

∂E

∂t
, (2.48)

are invariant under a transformation (E,B)→ (B,−E). Supergravity theories also exhibit
electric-magnetic duality, though a little more involved, due to the scalar fields in the same
supermultiplets as the vectors [52–54].

Assume the action (2.46) contains n vector fields AΛ
µ . The n equations of motion for

these fields are
√
−g ∂L

∂AΛ
ν

− ∂µ
(√
−g ∂L

∂(∂µAΛ
ν )

)
= 0 ⇔ ∇µ

∂L
∂FΛ

µν

= 0. (2.49)
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Defining
?Gµν

Λ ≡ 2
∂L
∂FΛ

µν

= IΛΣF
Σ|µν +RΛΣ

?FΣ|µν , (2.50)

sometimes called the magnetic dual field strength, we can write the equations of motion
as

∇µ
?Gµν

Λ = 0. (2.51)

We can also introduce the Bianchi identities

∇µ
?FΛ|µν = 0. (2.52)

Gauge theories are naturally formulated in differential geometry. A theory with a (possibly
non-Abelian) gauge group G has an associated G-principal bundle. Gauge transformations
correspond to different choices of local sections. Let g denote the Lie-algebra of G. The
gauge potential A = Aµdxµ is a g-valued 1-form, and can be regarded as a local expression
for the connection. The field strength F = dA + A ∧ A is a g-valued 2-form. It is a local
form of the curvature associated with the connection. The Bianchi identity is a geometrical
constraint on such a curvature: dF + [A,F ] = 0. In the Abelian case, this becomes just
dF = 0, which can be brought to the form of eqn. (2.52) (using such identities as found in
Appendix C). Alternatively, since the Abelian field strength is an exact 2-form, F = dA,
it must be closed, dF = d2A = 0, since the exterior derivative satisfies d2 = 0. The
Bianchi identity can be violated, however, by magnetic monopoles or magnetic gaugings,
introducing a current on the r.h.s. of eqn. (2.52).

Consider linear combinations of ?F and ?G,(
?F̃
?G̃

)
= S

(
?F
?G

)
, (2.53)

where S ∈ GL(2nV ,R) is a constant matrix. This is a symmetry of the combined Bianchi
identities (2.52) and equations of motion (2.51),

∇µ
?F̃Λ|µν = 0, ∇µ

?G̃µν
Λ = 0. (2.54)

Such rotations are called electric-magnetic duality rotations.
Now, one can think of the duality rotation (2.53) as also inducing a diffeomorphism

on the scalar manifold, as well as a suitable transformation of the period matrix NΛΣ(φ).
Thus under a transformation,

(?FΛ, ?GΛ) → S(?FΛ, ?GΛ),
φ → φ′(φ),

NΛΣ(φ) → N ′ΛΣ (φ′) .
(2.55)

The transformation of NΛΣ is fixed by demanding ?GΛ to still be defined as a variation of
the action, eqn. (2.50), leading to [51,55]

NΛΣ (φ) → N ′ΛΣ (φ′) =
[
(C +DN ) · (A+BN )−1

]
ΛΣ
, (2.56)
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where

S =

(
A B
C D

)
. (2.57)

Symmetry of N ′ΛΣ implies the contraint S ∈ Sp(2n,R) ⊂ GL(2nV ,R). The symplectic
group Sp(2n,R) is the group of all real 2n× 2n matrices satisfying

STCS = C, (2.58)

where

C =

(
0 −11
11 0

)
(2.59)

is the symplectic invariant matrix. This implies the homomorphism,

Diff(Mscalar) → Sp(2n,R), (2.60)

such that all diffeomorphisms on the scalar manifold, Diff(Mscalar), have an image in the
symplectic group.

Though (2.55) is a symmetry of the equations of motion and the Bianchi identities,
the Lagrangian is not invariant in general. While this may be important for quantum
calculations, classical solutions are on-shell. Thus, one may rotate one classical solution
to other solutions. For example, a black hole may have magnetic charges pΛ and electric
charges qΛ, given by

pΛ =
1

4π

∫
S2

FΛ, qΛ =
1

4π

∫
S2

GΛ, (2.61)

where S2 is a two-sphere enclosing the black hole. This will perhaps be more clear from
Chapter 4.2. However, the point to make here is that duality rotations exchange electric
and magnetic charges, without changing the spacetime metric. Hence the name, electric-
magnetic duality.



Chapter 3

Four-dimensional N = 2 gauged
supergravity

The calculations in the later chapters of this thesis are performed in four-dimensional
N = 2 supergravity, which we will study in this section. In the last two decades, N = 2
supergravity has been chosen for many studies of black holes, e.g. [56–61]. One reason
for studying N = 2 is that it has enough symmetry to make calculations tractable, yet
not so much symmetry as to only yield very restricted solutions. E.g. one can couple an
arbitrary number of supermultiplets to the theory, unlike N > 4 where the matter content
is completely fixed.

The action is comprised of the gravity multiplet coupled to nV vector multiplets and
nH hypermultiplets. The full action with electric gaugings can be found in [55]. However,
in the solutions we will study, fermions will always be put to zero and therefore we will
primarily study the bosonic part of the action [62]. Also, we assume Abelian gauge groups
(though, a few details of non-Abelian gauging will be included below in Section 3.4). The
bosonic action then has form1

S =

∫ √
−gd4x

(
R

2
+

1

4
IΛΣF

Λ
µνF

Σµν+
1

4
RΛΣF

Λ
µν
?FΣµν+gī∇µz

i∇µz̄ ̄+huv∇µq
u∇µqv−g2V

)
,

(3.1)
where ∇µz

i = ∂µz
i + gkiΛA

Λ
µ and ∇µq

u = ∂µq
u + gkuΛA

Λ
µ are the covariant derivative arising

when gauging the supergravity. The potential depends on general on both vector scalars
and hyperscalars V = V (z, z̄, q). Taking g = 0 corresponds to ungauged supergravity.

As described in the previous Chapter, all couplings in the action are fixed by supersym-
metry. The couplings of the vector kinetic terms and the topological terms are determined
by the period matrix NΛΣ, such that IΛΣ ≡ ImNΛΣ and RΛΣ ≡ ReNΛΣ. The scalar kinetic
terms are in general nonlinear sigma-models, gī = gī(z, z̄) and huv = huv(q), displaying a
fascinating interplay between supersymmetry and geometry. The vector multiplets are de-
scribed by special Kähler geometry, while the hypermultiplets are described by qauternionic
Kähler geometry, see below.

1In the gauging, we will only be concerned with the ”classical symmetries” of ref. [55]. An additional
term containing the cΛ,ΣΓ-tensor can be added in some cases, which is included in [62,63]. See also [64].

16
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When discussing multiplets and gaugings below, the supersymmetry variations of the
fermionic fields will be given. The variations of the bosons are all linear combinations of
fermions. For example for the vielbein:

δeµ
a = −i

(
ψ̄Aµγ

aεA + ψ̄Aµ γ
aεA
)
, (3.2)

where ψAµ is the gravitino. Since fermions are put to zero in solutions, the variations of the
bosonic fields vanish. Therefore, only the variations of the fermions will be relevant.

3.1 The gravity multiplet

The gravity multiplet consists of the vielbein, a doublet of spin-3
2

gravitinos with opposite
chirality, and the graviphoton A0

µ:

(eµ
a, ψAµ , ψµA, A

0
µ).

Thus, A = 0, 1 labels the gravitinos and is the index acted on by R-symmetry. The position
of the index A denotes the chirality.

Minimal N = 2 supergravity contains only the gravity multiplet. The bosonic action
is just that of Einstein-Maxwell theory,

S =

∫ √
−g d4x

(
R

2
− 1

4
F 0
µνF

0|µν
)
. (3.3)

Hence, Einstein-Maxwell theory can be embedded into N = 2 supergravity by adding the
two gravitinos.

In ungauged supergravity, the U(1) × SU(2) R-symmetry acts as a global symmetry
and rotates between the gravitinos. A U(1) subgroup of the R-symmetry can be promoted
to a local symmetry [65]. The gravitinos then become charged under the gauge field
via a covariant derivative with coupling constant g. Due to supersymmetry, the bosonic
action further gets a negative cosmological constant, Λ = −3g2. Hence, the bosonic action
becomes

S =

∫ √
−g d4x

(
R

2
− 1

4
F 0
µνF

0|µν + 3g2

)
. (3.4)

This action admits an AdS4 vacuum with negative curvature, R = −12g2. In the context
of e.g. black hole solutions, this is important since the gauged case allows asymptotic
AdS4 black holes, whereas the ungauged case does not. Supersymmetric AdS4 black holes
in gauged minimal N = 2 supergravity were found in [66,67].

The supersymmetry variation of the gravitino in minimal supergravity is

δψµA =

(
∂µ +

1

4
ω ab
µ γab

)
εA + F 0

µνγ
νεABε

B − 1

2
gσxABε

B, (3.5)

where εA are two Weyl spinors. Also, x = 1, 2 or 3 depending on how the U(1) gauge
group is embedded in the R-symmetry.
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3.2 Vector multiplets & special Kähler manifolds

Each of the nV vector multiplets consists of a vector field Aiµ, a doublet of spinors with
opposite chirality called gauginos, λiA, λiA, and a complex scalar field zi,

(Aiµ, λ
iA, λiA, z

i).

where i = 1..., nV . When nV vector multiplets are added, the action contains nV +1 vector
fields, due to the graviphoton. These are collectively labelled by Λ = 0, ..., nV . The kinetic
terms of the vector scalars are described by a non-linear sigma-model,

Lvec.sc. = gī(z, z̄)∂µz
i∂µz̄ ̄. (3.6)

Thus, gī is the metric on the target space. Supersymmetry dictates the target space to be
a so-called special Kähler manifold, or just special manifold for short [68].

Kähler manifolds

In the following we will review some geometry. For further proofs and details, see e.g. [69].
Consider a complex manifold M of dimension dimCM = nV (since there are nV complex
scalar fields). The tangent space TpM, with p ∈M, is spanned by 2nV vectors{

∂

∂x1
, ...,

∂

∂xm
;
∂

∂y1
, ...,

∂

∂ym

}
, (3.7)

where zi = xi + iyi are the coordinates of p in a chart. The dual tangent space T ∗pM is
then spanned by the one forms{

dx1, ..., dxm; dy1, ..., dym
}
. (3.8)

Defining instead 2nV complex vectors,

∂

∂zi
≡ 1

2

{
∂

∂xi
− i ∂

∂yi

}
,

∂

∂z̄ ı̄
≡ 1

2

{
∂

∂xi
+ i

∂

∂yi

}
, (3.9)

these form the complex tangent space TpMC. Likewise for T ∗pMC,

dzi ≡ dxi + i dyi, dz̄ ı̄ ≡ dxi − i dyi. (3.10)

A complex manifold admits a globally defined almost complex structure J . This is a linear
map J : TpM→ TpM defined by

J

(
∂

∂xi

)
=

∂

∂yi
, J

(
∂

∂yi

)
= − ∂

∂xi
. (3.11)

Note that
J2 = −idTpM, (3.12)
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familiar from the imaginary unit i2 = −1. The almost complex structure J may also be
defined on TpMC,

J(X + iY ) ≡ JX + iJY, X, Y ∈ TpM. (3.13)

From (3.11) it follows that

J

(
∂

∂zi

)
= i

∂

∂zi
, J

(
∂

∂z̄ ı̄

)
= −i ∂

∂z̄ ı̄
. (3.14)

A Riemannian metric g of a complex manifold M is said to be Hermitian if it satisfies

gp(JX, JY ) = gp(X, Y ) (3.15)

for any point p ∈ M and for any X, Y ∈ TpM. The pair (M, g) is called a Hermitian
manifold. A complex manifold always admits a Hermitian metric. From the definition
(3.15) it follows for a Hermitian metric,

gij = g

(
∂

∂zi
,
∂

∂zj

)
= g

(
J
∂

∂zi
, J

∂

∂zj

)
= i2g

(
∂

∂zi
,
∂

∂zj

)
= −g

(
∂

∂zi
,
∂

∂zj

)
= −gij.

(3.16)
Therefore, gij = 0 and likewise gı̄̄ = 0. A Hermitian metric must take the form2:

g = gī dzi ⊗ dz̄ ̄ + gı̄j dz̄ ı̄ ⊗ dzj. (3.17)

Define now the tensor field K by its action on X, Y ∈ TpM,

Kp(X, Y ) = gp(JX, Y ). (3.18)

This implies that K is anti-symmetric and hence a two-form, called the Kähler form of the
metric g. Extending the domain of K from TpM to TpMC leads to the form

K = igī dzi ∧ dz̄ ̄. (3.19)

Now, a Kähler manifold is a Hermitian manifold (M, g) whose Kähler form K is closed,
i.e. dK = 0. The metric g is then called the Kähler metric ofM. One can show that this
implies

∂kgī = ∂igk̄, ∂k̄gī = ∂̄gik̄. (3.20)

The closure of the Kähler form also implies that the Kähler metric may locally be expressed
as

gī = ∂i∂̄K, (3.21)

where the function K is called the Kähler potential of the Kähler metric. The Kähler
potential of the metric g is not unique. Under Kähler transformations

K = K + f(z) + f̄(z̄), (3.22)

the Kähler metric is unchanged by eqn. (3.21).

2Of course we ought to also include the tensor product ⊗ when writing metrics on spacetime. It is
convention in physics, however, to not do so. We include them here for clarity.
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Special Kähler manifolds

Now, a special Kähler manifold is a Kähler manifold with further restrictions. Also, one
may distinguish the rigid and local case, corresponding to rigid supersymmetry and su-
pergravity, respectively. We focus here on the local case, introducing details needed for
calculations in later chapters. For a complete definition of special Kähler manifolds, see
e.g. [51, 55,68,70–73].

A special Kähler manifoldMSK of dimension nV , requires the existence of a (2nV +2)-
dimensional symplectic bundle with holomorphic sections Ω = (XΛ, FΛ), Λ = 0, ..., nV ,

∂ı̄Ω = 0. (3.23)

In terms of these, the Kähler potential may be written as

K = − log
[
i〈Ω, Ω̄〉

]
= − log

[
i(X̄ΛFΛ −XΛF̄Λ)

]
. (3.24)

Here, the symplectic product is defined by 〈A,B〉 ≡ AtCB, where C is the symplectic
invariant matrix

C =

(
0 −11
11 0

)
. (3.25)

We may also introduce the sections V = (LΛ,MΛ) = eK/2(XΛ, FΛ), which satisfy

i〈V , V̄〉 = 1. (3.26)

Under Kähler transformations, (3.22), a covariant derivative is needed. For a generic
section Φ with weight p, the covariant derivative is

DiΦ ≡
(
∂i + 1

2
p∂iK

)
Φ, Dı̄Φ ≡

(
∂ı̄ − 1

2
p∂ı̄K

)
Φ. (3.27)

The sections V have weight p = 1, while V̄ have weight p = −1. A simple calculation then
shows that the sections V are covariantly holomorphic,

Dı̄V = 0. (3.28)

We further define to quantities

fΛ
i ≡ DiL

Λ, hΛi ≡ DiMΛ,

f̄Λ
ı̄ ≡ Dı̄L̄

Λ, h̄Λı̄ ≡ Dı̄M̄Λ, (3.29)

with the appropriate weights given above. Using these quantities, the symmetric period
matrix is defined by the relations

MΛ = NΛΣL
Σ, h̄Λı̄ = NΛΣf̄

Σ
ı̄ . (3.30)

This can be solved to yield

NΛΣ =

(
h̄Λı̄

MΛ

)(
f̄Σ
ı̄

LΣ

)−1

. (3.31)
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The matrices
IΛΣ ≡ ImNΛΣ, RΛΣ ≡ ReNΛΣ (3.32)

appear in the action (3.1) as the scalar dependent couplings of the gauge field strengths. In
particular, IΛΣ is negative definite such that the gauge fields have positive kinetic energy.
Thus, if the holomorphic sections Ω = (XΛ, FΛ) are specified, the couplings in the action,
gī, IΛΣ and RΛΣ, can be derived from it.

There are a number of identities on the special Kähler manifold [70], which may be
useful for calculations, such as

IΛΣL
ΛL̄Σ = −1

2
, (3.33)

gīfΛ
i f̄

Σ
̄ = −1

2
IΛΣ − L̄ΛLΣ. (3.34)

We defined here gī as the inverse of the Kähler metric, and IΛΣ ≡ (ImN )−1 ΛΣ.

Prepotential

In some cases, the geometric quantities on the special Kähler manifold can all be derived
from a holomorphic function called the prepotential F (X).

When the prepotential exists, the holomorphic sections can be derived as

FΛ =
∂F

∂XΛ
. (3.35)

Also, we define

FΛΣ ≡
∂2F

∂XΛ∂XΣ
, FΛΣΓ ≡

∂3F

∂XΛ∂XΣ∂XΓ
, etc. (3.36)

Due to supersymmetry, the prepotential must be homogeneous of degree two, i.e.

F (λX) = λ2F (X). (3.37)

This implies some identities, e.g.

2F = XΛFΛ, FΛ = FΛΣX
Σ, FΛΣΓX

Γ = 0. (3.38)

The physical scalar fields may be chosen as so-called special coordinates, zi = X i/X0. By
eqns. (3.21) and (3.24), the prepotential thus gives the Kähler metric. Further, when a
prepotential exists, the period matrix is determined as

NΛΣ = F̄ΛΣ + 2i
Im(FΛΓ)XΓ Im(FΣ∆)X∆

XΩIm(FΩΥ)XΥ
. (3.39)

The prepotential thus specifies all couplings in the (ungauged) action coupled to vector
multiplets.
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Two examples of prepotentials are,

F = −iX0X1 and F = −X
1X2X3

X0
. (3.40)

Both are clearly homogeneous of degree two. The first contains just a single vector mul-
tiplet, and is among the simplest models due to the linearity. We will derive the action
from this prepotenial is Chapter 7. The second contains three vector multiplets. In this
case, the physical scalar fields are often called S, T and U , and therefore this model is
commonly known as the STU model.

Electric-magnetic duality

As discussed in Section 2.5, diffeomorphisms on the scalar manifold are embedded in the
symplectic group, Sp(2nV + 2,R) for nV + 1 vector fields. Under such transformations, the
sections of the symplectic bundle transform as(

XΛ

FΛ

)
−→

(
X̃Λ

F̃Λ

)
= S

(
XΛ

FΛ

)
, S ∈ Sp(2nV + 2,R). (3.41)

For the ungauged theory this is a symmetry of the equations of motion, but not necessarily
of the Lagrangian. Allowing for all possible symplectic matrices S, the duality rotations
thus generate an orbit of Lagrangians with the same solutions. In every orbit at least
one Lagrangian will have a prepotential. This illustrates the convenience of prepotentials.
These have the advantage of the nicely compact notation, while representing the whole
duality orbit.

As an example, the STU model in eqn. (3.40) is related to the prepotential F̃ =
−2i
√
X0X1X2X3 by a symplectic transformation [60],

S =



1
−1

−1
−1

1
1

1
1


, (3.42)

such that (X̃Λ, F̃Λ) = S(XΛ, FΛ), where (X̃Λ, F̃Λ) is derived from F̃ .

Action and supersymmetry variations

The bosonic action with ungauged vector multiplets is given by

S =

∫ √
−g d4x

(
R

2
+

1

4
IΛΣF

Λ
µνF

Σµν +
1

4
RΛΣF

Λ
µν
?FΣµν + gī∂µz

i∂µz̄ ̄
)
. (3.43)
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The variations of the gravitinos and gauginos are

δψµA =

(
∂µ +

1

4
ω ab
µ γab

)
εA +

i

2
ÃµεA +

1

2
T−µνγ

νεABε
B, (3.44)

δλiA = i∂µz
iγµεA +

1

2
G−iµνγ

µνεABεB, (3.45)

where

Ãµ = − i
2

(
∂iK∂µzi − ∂ı̄K∂µz̄ ı̄

)
(3.46)

is a U(1) connection on the special Kähler manifold. T−µν and G−µν are the field strengths
dressed with the scalars,

T−µν = 2iLΛIΛΣF
Σ−
µν , (3.47)

Gi−
µν = −gīf̄Λ

̄ IΛΣF
Σ−
µν , (3.48)

where FΛ±
µν are the (anti-)selfdual field strengths,

FΛ±
µν =

1

2

(
FΛ
µν ± i ?FΛ

µν

)
. (3.49)

3.3 Hypermultiplets & Quaternionic Kähler

Manifolds

One may couple nH hypermultiplets to the theory. Each multiplet consists of a doublet of
spinors called hyperinos ζα and four real scalars qu called the hyperscalars or simply the
hypers,

(ζα, qu),

where α = 1, ..., 2nH and u = 1, ..., 4nH . The kinetic terms of the 4nH scalars are described
by a non-linear sigma model,

Lhyp.scal. = huv(q)∂µq
u∂µqv, (3.50)

with the target space being a quaternionic Kähler manifold [74]. Despite the name, a
quaternionic Kähler manifold is not necessarily Kähler [75]. For N = 2 rigid sypersymme-
try, the target space is a instead a hyperKähler manifold, which is closely related.

Quaternionic Kähler manifolds

Quaternions can be thought of as an extension of complex numbers. A complex number
has the form z = a + ib, where a,b are real numbers and i2 = −1. Quaternions instead
have the form a+ ib+ jc+ kd, where a,b,c,d are real numbers, and

i2 = j2 = k2 = ijk = −1. (3.51)
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Following here refs. [55,73,75], both a quaternionic Kähler manifoldMQ and a hyperKähler
manifold MHK is a 4nH-dimensional real manifold endowed with a metric h,

ds2 = huv(q)dq
u ⊗ dqv, u, v = 1, ..., 4nH . (3.52)

The manifold admits three almost complex structures,

Jx : TpMQ −→ TpMQ, x = 1, 2, 3, (3.53)

(likewise for MHK), satisfying the quaternionic algebra,

JxJy = −δxy11 + εxyzJz. (3.54)

This has the form of eqn. (3.51), and extends the complex structures, eqn. (3.12). The
metric must be hermitian with respect to the three complex structures,

hp(J
xX, JxY ) = hp(X, Y ), (x = 1, 2, 3), (3.55)

where X, Y are generic tagent vectors. A triplet of two-forms may be associated to the
complex structures

Kx = Kx
uvdq

u ∧ dqv, Kx
uv = huw(Jx)wv , (3.56)

called the hyperKähler forms. Recall, for a Kähler manifold, the Kähler form is closed. In
the quaternionic and hyperKähler case, the hyperKähler forms must be covariantly closed,

DKx ≡ dKx − εxyzωy ∧Kz = 0, (3.57)

with respect to a connection ωx on a principal SU(2)-bundle. Supersymmetry requires the
existence of such a principal bundle, being essentially a fiber bundle with an associated
group structure. The curvature of the bundle is given by

Ωx = dωx − 1

2
εxyzωy ∧ ωz. (3.58)

For a hyperKähler manifold MHK of N = 2 rigid supersymmetry, the principal bundle
must be flat,

Ωx = 0. (3.59)

A quaternionic manifold MQ has instead curvature proportional to the hyperKähler two-
form, i.e.

Ωx = λKx, (3.60)

where λ is real and non-vanishing. In fact, λ = −1 (in natural units) in order to have
correct normalization of the kinetic terms of the scalars.

We can define a vielbein one-form,

UAα = UAαu (q) dqu, (3.61)

such that the metric can be decomposed as

huv = UAαu UBβv CαβεAB. (3.62)

The antisymmetric matrices Cαβ and εAB are the flat Sp(2nH) and SU(2) invariant metrics,
respectively (see eqn. (3.25)).
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Action and supersymmetry variations

When the hypermultiplets are ungauged, the bosonic part of the action is just the non-
linear sigma model,

Lhyp.scal. = huv(q)∂µq
u∂µqv. (3.63)

The supersymmetry variation of the hyperinos is given by

δζα = iUBβu ∂µq
uγµεAεABCαβ. (3.64)

Note that in the ungauged theory, the hyperscalars do not couple to the vector multiplets
in the action, and neither through the supersymmetry variations. The hypermultiplets do
therefore not participate in the electric/magnetic duality. In fact, the hyperscalars can
consistently be set to constant values and truncated.

The universal hypermultiplet

In compactifications of ten-dimensional type II supergravity, a particular hypermultiplet
is always present. It is therefore called the universal hypermultiplet. In real coordinates
(R,D, u, v), the metric on the quaternionic manifold can be written as (leaving out again
the tensor product ⊗)

ds2 =
1

R2

(
dR2 +R

(
du2 + dv2

)
+

(
dD +

udv

2
− vdu

2

)2
)
, R > 0. (3.65)

This metric describes in fact the coset space SU(2, 1)/U(2). For details, such as Killing
vectors and Killing prepotentials (see below), see [62,76,77].

3.4 Gauging isometries on the scalar manifolds

The target space of the scalar non-linear sigma models is the product space

M =MSK ⊗MQ. (3.66)

Assume now the target space has isometries generated by Killing vectors kΛ = kiΛ(z)∂i on
MSK and k̃Λ = kuΛ(q)∂u onMQ. The kinetic terms of the scalars are then invariant under
the transformations

δzi = −αΛkiΛ, δqu = − βΛkuΛ, (3.67)

with global transformation parameters αΛ, βΛ. Gauging the supergravity theory means to
promote a subgroup G of the group of isometries to a local symmetry. Since the theory
contains nV + 1 vector fields, the dimension of the gauge group can be at most nV + 1.
This is the reason for using the index Λ = 0, ..., nV in eqn. (3.67).
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Vector scalar isometries

For gauging of isometries on the special Kähler manifold, the gauged Killing vectors must
span the Lie-algebra,

[kΛ, kΣ] = fΛΣ
ΓkΓ, (3.68)

of the gauge group G with structure constants fΛΣ
Γ. Not all Killing vectors can be gauged

on the special Kähler manifold, see e.g. [55, 62, 73]. The vector scalars become charged
under the gauge fields via a covariant derivative with coupling constant g,

∇µz
i = ∂µz

i + gkiΛA
Λ
µ . (3.69)

The gauge fields transform as δAΛ
µ = ∂µα

Λ, such that the kinetic terms are gauge invariant.
For non-Abelian gauging, the field strengths must take the proper form,

FΛ
µν = ∂µA

Λ
ν − ∂νAΛ

µ + gfΣΓ
ΛAΣ

µA
Γ
ν . (3.70)

As was noted, it was already assumed that the gauge group is Abelian in the supergravity
action (3.1).

To preserve supersymmetry when gauging the special Kähler isometries, a scalar po-
tential must be added to the Lagrangian:

V (z, z̄) = gīk
i
Λk̄

̄
ΣL̄

ΛLΣ. (3.71)

The supersymmetry variations must also be modified, see below.

Hyperscalar isometries

For gauging of the hyperscalars, the Killing vectors k̃Λ = kuΛ(q)∂u on the quaternionic
manifold must again span the Lie-algebra of the gauge group G,[

k̃Λ, k̃Σ

]
= fΛΣ

Γk̃Γ. (3.72)

The hyperscalars become charged via a covariant derivative,

∇µq
u = ∂µq

u + gkuΛA
Λ
µ . (3.73)

This breaks again electric-magnetic duality. Due to supersymmetry, a potential must be
introduced, which depends on both the vector scalars and the hypers,

V (z, z̄, q) = 4huvk
u
Λk

v
ΣL̄

ΛLΣ +
(
gīfΛ

i f̄
Σ
̄ − 3L̄ΛLΣ

)
PxΛPxΣ. (3.74)

Here, PxΛ = PxΛ(q) is a triplet of real zero-forms, called Killing prepotentials or moment
maps. They are related to the Killing vectors by

Kx
uvk

v
Λ = DvPxΛ = ∂vPxΛ − εxyzωyvPzΛ (3.75)

(using λ = −1 from eqn. (3.60)). When gauging both vector scalars and hyperscalars, the
total scalar potential is the sum of (3.71) and (3.74).
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For non-Abelian gauge groups, the gauging must include isometries on the special
manifold. For Abelian gauge groups, however, the hyperscalars can be gauged without
involving the vector scalars. We will be dealing with this case in Chapter 6. Let us write
the action here for clarity,

S =

∫ √
−g d4x

(
R

2
+

1

4
IΛΣF

Λ
µνF

Σ|µν+
1

4
RΛΣF

Λ
µν
?FΣ|µν+gī∂µz

i∂µz̄ ̄+huv∇µq
u∇µqv−g2V

)
,

(3.76)
with V given by (3.74).

Such models have been studied in recent years in the context of black holes [62, 76]
and e.g. Lifshitz solutions [77, 78]. However, supersymmetric solutions of theories with
both gauged vector scalars and hypers have also been studied [63, 79], and the attractor
mechanism has recently been extended to such theories [61].

Supersymmetry variations

For both gauged vector scalars and hyperscalars, the supersymmetry variations of the
fermions are:

δψAµ =

(
∂µ +

1

4
ω ab
µ γab

)
εA +

i

2
ÃµεA + ωµA

BεB

+
1

2
T−µνγ

νεABε
B + igSABγµε

B, (3.77)

δλiA = i∇µz
iγµεA +

1

2
G−iµνγ

µνεABεB + gW iABεB, (3.78)

δζα = iUBβu ∇µq
uγµεAεABCαβ + gNA

α εA. (3.79)

Here,

ωµA
B = ∂µq

uωuA
B +

i

2
gσxA

BPxΛAΛ
µ (3.80)

involves the SU(2) connection on the quaternionic manifold. The so-called gravitino,
gaugino and hyperino mass matrices are given by

SAB =
i

2
PxΛLΛ(σx)A

CεBC , (3.81)

W iAB = kiΛL̄
ΛεAB + igīf̄Λ

̄ PxΛ(σx)C
BεCA, (3.82)

NA
α = 2UAαukuΛL̄A. (3.83)

As the names suggest, the fermions develop masses when scalar isometries are gauged. The
matrices (3.81)-(3.83) appear in those mass terms.

The dressed field strengths T−µν and G−µν were introduced in eqns. (3.47)-(3.48). The
U(1) Kähler connection (3.46) is however modified to

Ãµ = − i
2

(
∂iK∇µz

i − ∂ı̄K∇µz̄
ı̄
)
− i

2
gAΛ

µ(rΛ − r̄Λ), (3.84)
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when the vector scalars are gauged. Here, rΛ(z) is a holomorphic function, see e.g. [62].
The supersymmetry variations in the case of Abelian gauged hypers and ungauged

vector scalars is a special case of the above. They correspond to kiΛ = rΛ = 0 and
∇µz

i = ∂µz
i.

Electric-magnetic duality

The gaugings discussed above are called electric gaugings. They introduce a current jµΛ =
∂L/∂AΛ

µ into the equations of motion

∇µ
?FΛ|µν = 0, ∇µ

?Gµν
Λ = jνΛ. (3.85)

The electric-magnetic duality discussed in Sections 2.5 and 3.2 is then broken (at least to
a smaller subgroup of Sp(2nV + 2,R)). Symplectic rotations lead to new field dynamics.
To restore the invariance, magnetic gaugings must be introduced. The most general La-
grangian with both electric and magnetic gaugings is not yet known. As shown in [80,81],
massive tensor multiplets must be introduced. More recent progress was reported in [82].

3.5 Fayet-Iliopoulos gauging

Instead of gauging an isometry on the scalar manifold, one may gauge a subgroup of the
U(1) × SU(2) R-symmetry, analogous to the gauging of minimal supergravity. This is
known as Fayet-Iliopoulos (FI) gauging. In this case, the gravitinos become charged by a
linear combination ξΛA

Λ
µ of the graviphoton and the gauge fields from the vector multiplets.

The constants ξΛ are known as FI parameters.
In FI gauging, the vector multiplet scalars remain uncharged. If hyperscalars are

present, however, they will be charged. We will consider the case where only vector mul-
tiplets are coupled to the theory.

Recall, the gauging of minimal supergravity gave rise to a cosmological constant. In FI
gauging, this cosmological constant is replaced by a scalar potential of the form

V (z, z̄) =
(
gīfΛ

i f̄
Σ
̄ − 3L̄ΛLΣ

)
ξΛξΣ. (3.86)

Using the identity (3.34), this may also be written as

V (z, z̄) = −
(

1

2
IΛΣ + 4L̄ΛLΣ

)
ξΛξΣ. (3.87)

The action is thus a simpler case of eqn. (3.1):

S =

∫ √
−g d4x

(
R

2
+

1

4
IΛΣF

Λ
µνF

Σµν +
1

4
RΛΣF

Λ
µν
?FΣµν + gī∂µz

i∂µz̄ ̄ − V (z, z̄)

)
. (3.88)

Both FI gauging and the gauging of scalar isometries lead to a scalar potential admitting
AdS4 vacua. However, with FI gauging one can consider the simpler case of uncharged
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vector scalars. Such models have been used to study e.g. AdS4 black holes [83–86],
attractors [58–60], and more general supersymmetric solutions [87].

There is an alternative view on the constant FI parameters ξΛ. They can be understood
as the quaternionic Killing prepotentials PxΛ(q) in the absence of hypermultiplets [85]. The
potential (3.86) then arises from the potential (3.74) with no quaternionic Killing vectors,
kuΛ = 0, and with the Killing prepotenials replaced by constants, PxΛ(q)→ ξxΛ,

V (z, z̄) =
(
gīfΛ

i f̄
Σ
̄ − 3L̄ΛLΣ

)
ξxΛξ

x
Σ, x = 1, 2, 3. (3.89)

The FI parameters must however satisfy εxyzξyΛξ
z
Σ = 0 [55,73]. Using the local R-symmetry

they can be brought to the form ξxΛ = (ξΛ, 0, 0), such that ξxΛξ
x
Σ = ξΛξΣ. This recovers the

form of the potential, eqn. (3.86).

Magnetic gaugings

The FI gaugings discussed above are again electric and break electric-magnetic duality.
Though the full Lagrangian is not yet known, magnetic FI gaugings are sometimes included,
e.g. [59, 60]. In this case, we define

G = (ξΛ, ξΛ), W = 〈G,V〉 = LΛξΛ − FΛξ
Λ. (3.90)

where ξΛ are the electric and ξΛ are magnetic gaugings, while the symplectic product and
the sections V were defined in Section 3.2. The potential is then

V (z, z̄) = gīWiW̄̄ − 3WW̄ , (3.91)

where
Wi =

(
∂i + 1

2
∂iK
)
W , W̄ı̄ =

(
∂ı̄ + 1

2
∂ı̄K
)
W̄ . (3.92)

As one can verify, this reduces to eqn. (3.86) if the magnetic gaugings vanish ξΛ = 0.

Supersymmetry variations

With electric FI gauging, the supersymmetry variations of the gravitinos and gauginos are

δψµA =
(
∂µ +

1

4
ωabµ γab

)
εA +

i

2
ÃµεA + ξxΛA

Λ
µσ

x
A
BεB +

1

2
T−µνγ

νεABε
B − 1

2
gξxΛL

ΛσxABγµε
B,

δλiA = i∂µz
iγµεA +

1

2
G−iµνγ

µνεABεB + igīf̄Λ
̄ ξ

x
Λσ

x,ABεB, (3.93)

where Ãµ, T−µν and G−iµν are introduced in eqns. (3.46)-(3.48). As discussed, one can choose
e.g. ξxΛ = (ξΛ, 0, 0).



Chapter 4

First-order flow equations

Using the structure of N = 2 supergravity, one can set up the formalism of first-order flow
equations. For supersymmetric solutions, these can be thought of as the combination of
the second-order equations of motion with the Killing spinor equations, which guarantee
preserved supersymmetry. Since the flow equations are first-order differential equations,
they provide in some cases a simpler route to solutions than the equations of motion. The
formalism can also in some cases be extended to non-supersymmetric solutions. In this
Chapter, we review aspects of supersymmetric solutions and the first-order flow equations.
We will apply these equations in Chapter 7 to the solutions found therein.

4.1 Black holes in supergravity

Supergravity naturally embeds General Relativity. Therefore, classical solutions of super-
gravity include black holes, or more generally p-branes in 4 ≤ D ≤ 11 dimensions. As the
spacetime curvature may become large at black holes, quantum gravity effects must be-
come important. However, when the spacetime curvature is much smaller than the string
scale, supergravity provides a reliable description of black holes. At the classical level,
string theory further induces higher-derivative corrections in the action. However, we will
not consider such higher derivatives here.

Supergravity generically contains vector fields and scalar fields. From the Reissner-
Nordström black hole of Einstein-Maxwell theory, some essential features can be under-
stood.

The Reissner-Nordström metric

Perhaps the simplest example of a supersymmetric four-dimensional black hole is the ex-
tremal Reissner-Nordström (RN) metric. This is a solution of Einstein-Maxwell theory,

S =

∫ √
−gd4x

(
R

2
− 1

4
FµνF

µν

)
. (4.1)

30
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The (non-extremal) Reissner-Nordström metric with mass M , electric charge q, and mag-
netic charge p is given by

ds2 =

(
1− 2M

r
+
Q2

r2

)
dt2 −

(
1− 2M

r
+
Q2

r2

)−1

dr2 − r2dΩ2, (4.2)

where dΩ2 is the line element on a two-sphere and Q2 = q2 + p2. This metric is asymptoti-
cally flat for r →∞, while it reduces to the Schwarzschild metric for Q = 0. For M > |Q|,
this metric has two horizons at r±, where the norm of the Killing vector ∂t changes sign,

r± = M ±
√
M2 −Q2. (4.3)

For M < |Q|, the horizons disappear, leaving a naked singularity. Due to the weak cosmic
censorship, this is considered an unphysical solution, hence introducing the bound

M ≥ Q. (4.4)

In the context of this Chapter, the extremal limit M = |Q| is the most interesting. Defining
also ρ = r −M , the extremal metric can be written in isotropic coordinates (where the
spatial coordinates are conformally flat),

ds2 =

(
1 +

Q

ρ

)−2

dt2 −
(

1 +
Q

ρ

)2 (
dρ2 + ρ2dΩ2

)
. (4.5)

Taking the near-horizon limit, ρ→ 0, the metric becomes

ds2 =
ρ2

M2
BR

dt2 − M2
BR

ρ2
dρ2 −M2

BR dΩ2, (4.6)

with MBR = Q = M . Clearly, the metric factorizes as AdS2 × S2, both with radius MBR.
This is known as the Bertotti-Robinson metric.

Supersymmetric solutions

As discussed earlier, an action is supersymmetric if it is invariant under supersymmetry
transformations with fermionic parameters, εA. A solution of supergravity may or may not
preserve supersymmetry. What we mean by this is whether the supersymmetry variations
vanish,

δεψAµ = 0,

δελ
iA = 0, (4.7)

δεζα = 0,

implying that the solution is invariant under the transformations. Eqns. (4.7) are known
as the Killing spinor equations and εA are the Killing spinors. Note that we only included
the variations of the fermions above, the gravitinos, gauginos, and hyperinos of N = 2
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supergravity. As already noted in Section 3, it is consistent to truncate all fermions from
the supersymmetry action and construct only bosonic solutions. Also, the variations of
the bosons are linear combinations of the fermions. Hence, the Killing spinor equations of
the bosons are trivially satisfied when truncating the fermions.

Since Einstein-Maxwell theory is easily embedded in N = 2 minimal supergravity, it
follows that the extremal RN metric is also a supergravity solution. Furthermore, it can be
shown that the solution preserves half the supersymmetries. The extremal RN black hole
can in fact be interpreted as a supersymmetric soliton [51, 88]. By a soliton, we mean a
stationary, regular and stable solution of the equations of motion with finite energy (mass).
The metric (4.5) is not only stationary, but in fact static, and it is regular in the sense
that it does not exhibit a naked singularity. It is stable both as a classical solution, as
well as thermodynamically, since extremal black holes do not emit semiclassical Hawking
radiation. The interpretation as a supersymmetric soliton implies that the charge Q should
be replaced by the central charge of the supersymmetry algebra, |Z|, given below in eqn.
(4.28)3. The bound (4.4), which was necessary to avoid naked singularities, now follows
from the BPS bound, eqn. (2.23),

M ≥ |Z|. (4.8)

The extremal RN solution saturates the BPS bound, M = |Z|. Non-renormalization
theorems of supersymmetric theories guarantee that the BPS bound must hold beyond
the perturbative regime. In this way extremal black holes provide information about non-
perturbative string theory, where the supergravity approximation to string theory must
break down. In Section 2.1 we discussed massive supermultiplets. In particular, for an
N = 2 multiplet saturating the BPS bound, half the supercharges act trivially. Likewise,
the extremal RN black hole preserves half of the supersymmetries, as mentioned above.
At the horizon, however, the Bertotti-Robinson geometry, AdS2 × S2, preserves all the
supercharges, as does Minkowski space at spatial infinity. Such spaces preserving the
full supersymmetry can be considered as supersymmetric vacua. The extremal Reissner-
Nordström solution is therefore said to interpolate between two vacua, which is typical for
solitonic solutions.

4.2 First-order flow equations in N = 2 supergravity

Supersymmetric flow equations were first derived for supersymmetric black holes in un-
gauged supergravity [57,89,90]. We first review this case and then move on to more general
cases.

Ungauged supergravity

Consider the action of N = 2 ungauged supergravity coupled to nV vector multiplets,

S =

∫ √
−g d4x

(
R

2
+

1

4
IΛΣF

Λ
µνF

Σµν +
1

4
RΛΣF

Λ
µν
?FΣµν + gī∂µz

i∂µz̄ ̄
)
. (4.9)

3In Section 2.1 we took the central charges to be real. We do not assumes this here.
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We will make an ansatz for the metric of a static and spherically symmetric black hole.
Since the action is ungauged, we will take the solution to be asymptotically flat. Such an
ansatz is

ds2 = e2U(r)dt2 − e−2U(r)
(
dr2 + r2dΩ2

)
. (4.10)

The metric has four Killing vectors,

K1 = ∂t, K3 = cosφ∂θ − cot θ sinφ∂φ,
K2 = ∂φ, K4 = − sinφ∂θ − cot θ cosφ∂φ,

(4.11)

corresponding to stationarity and the SO(3) isometry. This implies that the Lie derivative
of the metric along any of the Killing vectors (4.11) vanishes,

LKngµν = 0, n = 1, ..., 4. (4.12)

We can impose these symmetries on the matter fields by demanding the Lie derivatives
along the Killing vectors Kn to vanish. A calculation yields,

LKnzi = 0 ⇒ zi = zi(r), (4.13)

LKnFΛ = 0 ⇒ FΛ = FΛ
tr(r) dt ∧ dr + F̃Λ

θφ(r) sin θ dθ ∧ dφ. (4.14)

Imposing the Bianchi identity, εµνρσ∂νF
Λ
ρσ = 0, further restricts F̃Λ

θφ to be constants, which
are the magnetic charges, pΛ. The fields strengths must then be of the form

FΛ = FΛ
tr(r) dt ∧ dr + pΛ sin θ dθ ∧ dφ. (4.15)

Now, the equations of motion for the field strengths are

0 = ∂µ

(√
−gIΛΣF

Σ|µν +
1

2
RΛΣε

µνρσFΣ
ρσ

)
. (4.16)

Inserting (4.15) and taking the scalars to be functions of only r, the only non-trivial
equation in (4.16) is for ν = t,

0 = ∂r
(
−e−2Ur2IΛΣFrt(r) +RΛΣp

Σ
)
. (4.17)

Since the derivative of the parenthesis vanishes, the content of parenthesis must be equal to
a constant. This is the electric charge qΛ. By re-arranging, we can eliminate the function
FΛ
rt(r) in terms of the charges, the scalar couplings, and the metric components,

FΛ
rt(r) =

e2U

r2
IΛΣ

(
RΣΓp

Γ − qΣ

)
. (4.18)

We can now make the statements of eqn. (2.61) more precise. As in Section 2.5, we define

?Gµν
Λ ≡ 2

∂L
∂FΛ

µν

= IΛΣF
Σ|µν +RΛΣ

?FΣ|µν . (4.19)
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The equations of motion for the gauge fields of the action (4.9), along with the Bianchi
identities can be written

∇µ
?Gµν

Λ = 0, ∇µ
?FΛ|µν = 0. (4.20)

It is now straightforward to calculate

pΛ =
1

4π

∫
S2

FΛ, qΛ =
1

4π

∫
S2

GΛ, (4.21)

which we stated without further explanation in eqn. (2.61). While pΛ and qΛ appeared
above as integration constants, eqn. (4.21) identifies them as the black hole charges.

The supersymmetry variations of the action (4.9) were given in eqns. (3.44)-(3.45).
As described in Section 4.1, we obtain the Killing spinor equations by demanding the
variations to vanish,

0 = δεψµA =

(
∂µ +

1

4
ω ab
µ γab

)
εA +

i

2
ÃµεA +

1

2
T−µνγ

νεABε
B, (4.22)

0 = δελ
iA = i∂µz

iγµεA +
1

2
G−iµνγ

µνεABεB. (4.23)

If these equations are satisfied, the solution preserves supersymmetry. To derive the first-
order flow equations, the solutions of the equations of motion for the gauge fields, eqns.
(4.15) and (4.18), are inserted into the Killing spinor equations, (4.22)-(4.23). We take the
Killing spinors to only depend on the radial coordinate,

εA(r) = ef(r)χA, χA = constant, (4.24)

and we impose also a suitable projector on the constant spinor

χA = i
Z

|Z|
εABγ0χ

B. (4.25)

Notice that the last equation implies that only half of the supercharges are independent.
This corresponds to the earlier statement, that extremal black holes may preserve half the
supersymmetry. Using also identities (3.30), the Clifford algebra, {γa, γb} = 2ηab, and the
chiral projector γ5χ = ±χ, the Killing spinor equations can be brought to the form

U ′ = −e
U

r2
|Z|, (4.26)

z′i = −2eU

r2
gī∂̄|Z|. (4.27)

Primes denote derivatives w.r.t. r, and the central charge Z is defined by

Z = 〈Q,V〉 = LΛqΛ −MΛp
Λ. (4.28)

From this definition and from eqn. (3.28), it follows that Z is covariantly holomorphic,
Dı̄Z = 0. This was also used to bring the equations to the form (4.26)-(4.27).
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Eqns. (4.26)-(4.27) are known as the first-order flow equations. Their usefulness re-
sides in the fact that they are relatively simple first-order equations, whose solutions are
guaranteed to be supersymmetric and to satisfy the gauge field equation of motion. The
flow equations therefore provide a simpler way of obtaining supersymmetric solutions than
the full equations of motion.

Flow equations in gauged supergravity

It is of interest to consider a generalization of the first-order flow equations to include
gauged supergravity. This allows a broader class of solutions, such as black holes and
black branes with AdS asymptotics. Indeed, such work has been done [59, 60]. We take
here the approach of ref. [60]. For consistency with refs. [59,60], we take in this subsection
the metric signature to be (− + ++)4. Appendix A.1 includes some details for such a
change of notation. (Also, we take the convention (+ + +) as described in Appendix A.1).

To allow for solutions without asymptotic flatness, the metric contains the function
e2ψ(r), rather than just r2 as in eqn. (4.10),

ds2 = −e2U(r)dt2 + e−2U(r)
(
dr2 + e2ψ(r)dΩ2

)
. (4.29)

Consider the action of N = 2 supergravity coupled to nV vector multiplets and with
Fayet-Iliopoulos gauging,

S =

∫ √
−g d4x

(
R

2
+

1

4
IΛΣF

Λ
µνF

Σµν +
1

4
RΛΣF

Λ
µν
?FΣµν − gī∂µzi∂µz̄ ̄ − V (z, z̄)

)
. (4.30)

Following [60], we allow for both electric, ξΛ, and magnetic gaugings, ξΛ. The action (4.30)
can be reduced to an effective one-dimensional action. As above, the spacetime symmetries
restrict the form of the matter-fields, eqns. (4.13)-(4.14), and the gauge field equation of
motion can be solved in terms of the charges, pΛ and qΛ. This is inserted into the action
(4.30). However, when inserting the equations of motion for the gauge fields into the action
in order to use the charges qΛ and pΛ rather than the functions FΛ

rt, one must perform a
Legendre transformation for consistency. This implies adding a term −qΛF

Λ
rt, as shown

in [59]. The resulting action is independent of t and φ, while the θ-dependence factorizes
out. This yields the effective one-dimensional action,

S1d =

∫
dr
{
e2ψ
[
− U ′′ + 2ψ′′ + (U ′ − ψ′)2 + 2ψ′2 + gīz

′iz̄′̄ + e2U−4ψVBH + e−2UV
]
− 1
}

=

∫
dr
{
e2ψ
[
U ′2 − ψ′2 + gīz

′iz̄′̄ + e2U−4ψVBH + e−2UV
]
− 1
}

+

∫
dr
[
e2ψ(2ψ′ − U ′)

]′
.

(4.31)

The so-called black hole potential is given by

VBH ≡ −1
2
QtMQ, (4.32)

4In particular, we perform this change of convention in order to avoid a sign issue later in Section 7.4.
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where Q is a symplectic (2nV + 2)-vector of the charges, whileM is constructed from the
period matrix,

Q ≡
(
pΛ

qΛ

)
, M =

(
(I +RI−1R)ΛΣ −(RI−1)Λ

Σ

−(I−1R)Λ
Σ I−1 ΛΣ

)
. (4.33)

The black hole potential can also be written in terms of the central charge, Z = 〈Q,V〉,
such that

VBH = |Z|2 + gīDiZD̄Z̄, where DiZ =
(
∂i + 1

2
∂iK
)
Z. (4.34)

The approach taken in [60], building on [86, 87, 91], is again to solve the Killing spinor
equations for generic configurations preserving half the supersymmetries. Up to total
derivatives, and a constraint given below, the one-dimensional action can then be written
as a sum of squares, each of which is first order in derivatives of r. By demanding every
such squared term to vanish, we ensure that a variation of the action also vanishes. Hence,
this procedure yields first-order differential equations, whose solutions are guaranteed to
solve both the equations of motion and the Killing spinor equations. Such a rewritting is
sometimes called a BPS squaring.

To write the first-order flow equations in a compact form, we define first the metric
component A = ψ − U . We also define the superpotential, B, as

B ≡ eU |Z − ie2AW|, (4.35)

where Z is the central charge, and

G = (ξΛ, ξΛ), W = 〈G,V〉 = LΛξΛ − FΛξ
Λ. (4.36)

Eqn. (4.36) was also given in eqn. (3.90), and is part of the scalar potential. Using these
definitions, the flow equations can be written,

U ′ = −e−2(A+U)(B − ∂AB), (4.37)

A′ = e−2(A+U)B, (4.38)

z′i = −2e−2(A+U)gī∂̄B. (4.39)

The constraint mentioned above, which is necessary in order to complete the BPS squaring
is

〈G, Q〉 = −1. (4.40)

It is straightforward to verify that the flow equations (4.37) and (4.39) reduce to (4.26) and
(4.27), if we take the gaugings to vanish, G = 0, and take e2(A+U) = e2ψ = r2. However,
this is inconsistent with the constraint (4.40). As noted in [60], one can indeed take G = 0
consistently, by rewriting the BPS squares, from which e2ψ = r2 then follows.

The BPS squaring can be performed in a similar way for a metric of the form

ds2 = −e2U(r)dt2 + e−2U(r)dr2 + e2A(r)
(
dx2 + dy2

)
. (4.41)
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In this case, as noted in [59,60], the symplectic constraint is instead

〈G, Q〉 = 0, (4.42)

in order to complete the squares. We note, that there is no inconsistency in taking G = 0
in this case. Rather, this exactly solves the constraint (4.42). The flow equations then
simplify,

U ′ = −e−2A−U |Z|, (4.43)

A′ = e−2A−U |Z|, (4.44)

z′i = −2e−2A−Ugī∂̄|Z|. (4.45)

In Chapter 7, we indeed apply eqns. (4.43)-(4.45).



Chapter 5

The gauge/gravity correspondence
and Lifshitz holography

The gauge/gravity correspondence is the conjecture that a theory of quantum gravity
theory on a spacetime is equivalent to a quantum field on the conformal boundary of
the spacetime. Below, we will sketch the basics of AdS/CFT correspondence and discuss
aspects of non-relativistic generalizations thereof.

5.1 The AdS/CFT correspondence

The AdS/CFT correspondence was the first example of a gauge/gravity duality, and it is
the best studied case. It was conjectured in 1997 by Maldacena [12], based on ideas about
the holographic principle by ’t Hooft [92] and Susskind [93].

The Maldacena Conjecture

The conjecture arises by considering a stack of N D3-branes in string theory. In string
theory, Dp-branes are p-dimensional extended objects, upon which the end points of open
strings with Dirichlet boundary conditions are restricted to. It can be shown that the
massless modes of open strings on N Dp-branes stacked at the same position in spacetime
will give rise to a U(N) gauge theory on the branes. The gauge theory further inherits
supersymmetry from the superstrings. In the case of D3-branes, the gauge theory is four-
dimensional N = 4 U(N) super-Yang-Mills (SYM). In the infrared, the U(1) subgroup of
the gauge group U(N) = SU(N)× U(1) decouples, leaving N = 4 SU(N) SYM.

Now, 3-branes also arise as charged black brane solutions of ten-dimensional type IIB
supergravity, the low-energy limit of type IIB string theory. The brane is charged under
the four-form Ramond-Ramond-field or RR-field5. When the brane is extremal, it is syper-
symmetric, preserving 16 of the 32 supercharges. The geometry in the near-horizon limit

5A q-form gauge field can in general be sourced by a p = (q−1)-brane, which is called an electric brane.
In D-dimensional spacetime, one can also have magnetic (D− q− 3)-brane solutions. In four-dimensional
black holes (0-branes) may thus be charged both electrically and magnetically under the one-form gauge
field, Aµ. Eleven-dimensional supergravity (M-theory) contains 2-brane and 5-brane solutions, charged

38
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is then AdS5×S5. In 1995, Polchinski showed that Dp-branes, on which open strings end,
are in fact charged under RR-fields, and also preserve 16 supercharges [95]. This indicated
that the metric of an extremal p-brane in fact describes a Dirichlet-brane.

Maldacena then conjectured the duality, that type IIB string theory on a AdS5 × S5

spacetime is dual to four-dimensional N = 4 SU(N) SYM on the conformal boundary of
the AdS5 space. The isometry group of AdS5 is SO(2, 4). On the four-dimensional bound-
ary, SO(2, 4) acts as the conformal group, and hence, the field theory on the boundary
must be a conformal field theory (CFT). This is indeed the case for four-dimensionalN = 4
SU(N) SYM. This theory is both classically and quantum mechanically conformal, with
a vanishing β-function. Hence, this duality is known as the AdS/CFT correspondence.

Weak-strong duality

Now, the AdS5 × S5 metric can be written in so-called Poincaré coordinates,

ds2 = L2

(
dt2 − dx2

i − dr2

r2

)
− L2dΩ2

5, i = 1, 2, 3 , (5.1)

where dΩ2
5 is the metric on a 5-sphere. Thus, both the AdS5 and the S5 have radius L.

In these coordinates, the conformal boundary is located at r → 0. Since this metric was
derived as a classical solution to (supersymmetric) Einstein gravity, we must take L to be
much larger than the Planck and string scales.

Using the interpretation that the metric is the near-horizon geometry of an extremal
D3-brane, the geometric quantity L can be expressed in terms of string theory parameters,

L4

`4
s

= 4πgsN = g2
YMN = λ. (5.2)

Here, gs is the string coupling constant, gYM =
√

4πgs is the coupling constant of the SYM
theory on the brane, and `2

s = α′ sets the string tension T = 1/(2π`2
s). The parameter

λ = g2
YMN is known as the ’t Hooft coupling. ’t Hooft showed that in the limit N → ∞

with λ fixed, one can simplify computations and do a perturbative expansion in 1/N ,
known as a large-N expansion [96].

From (5.2) we see that in the ’t Hooft limit of fixed λ with N →∞, the string coupling
must go to zero, gs → 0. Hence, we can describe the field theory at large N using only
tree diagrams on the string theory side of the duality.

Further, consider the limit of N → ∞ with also λ → ∞. Then also the coupling
constant gYM must be large, so the field theory is strongly coupled. Eqn. (5.2) then
demands we take `s → 0, the classical limit of string theory. Thus, we find a duality
between classical supergravity and a quantum field theory at strong coupling and large N .
This is indeed a remarkable duality.

electrically and magnetically, respectively, under the 3-form gauge field. A nice review is [94].
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The dictionary

Further details on how to map the two theories onto each other were subsequently given
in [13, 14]. This has become known as the dictionary. We give here a rough overview, for
more details see e.g. [97–100].

In a conformal field theory, primary fields or operators are classified by their transfor-
mation properties under dilatations,

xµ → λxµ, O(x)→ λ−∆O(x), (5.3)

where ∆ is the conformal weight of the operator O(x) (and the parameter λ is not related
to the ’t Hooft coupling above). We can define the partition function for O(x) with sources
φ0(x),

ZCFT [φ0] =
〈
e
∫

d4xφ0(x)O(x)
〉
. (5.4)

An interesting physical object is the n-point correlation function for O(x). This is obtained
by functional derivatives,〈

O(x1) · · · O(xn)
〉

=
δ

δφ0(x1)
· · · δ

δφ0(xn)
ZCFT [φ0]

φ0=0

. (5.5)

Let now φ(x, r) be a field in the five-dimensional AdS5 spacetime, known as the bulk. Here,
r is the radial coordinate of the metric (5.1), while xµ with µ = 0, ..., 3 correspond to the
coordinates on the boundary when r → 0. The prescription in AdS/CFT is to identity the
boundary values of the bulk fields with the sources of the CFT,

φ(x, r) −−→
r→0

f(r)φ0(x). (5.6)

The function f(r) is needed to ensure regularity of the boundary values. A bulk field,
characterized by its mass and spin, is in this way dual to some boundary field, characterized
by its spin and conformal weight. Further, the partition functions of the bulk and the
boundary are identified,

ZCFT [φ0] =
〈
e
∫

d4xφ0(x)O(x)
〉

= ZAdS[φ(x, r)] φ(x,r)→f(r)φ0(x). (5.7)

In particular, in the strong coupling, large-N limit of the boundary theory, we can use
classical supergravity in the bulk, as described above. The partition function in the bulk
is then just the classical action,

ZAdS[φ(x, r)] = eiSAdS [φ(x,r)]. (5.8)

Thus, by combining the above equations, correlation functions in the boundary theory can
be computed from the purely classical bulk action.



5.2. Non-relativistic holography 41

5.2 Non-relativistic holography

While the AdS/CFT case is a beautiful example, it is also a very restricted one. The
boundary field theory has both N = 4 supersymmetry and conformal invariance. Since the
conjecture, there has been much research devoted to generalizing the concepts of AdS/CFT.

In recent years, there has been much research in the application of holography to
condensed matter physics ( [15–24] and refs. therein). In many condensed matter systems,
one finds phase transitions governed by fixed points exhibiting anisotropic, non-relativistic
scaling invariance. The gravity duals of such systems are known as Lifshitz and Schrödinger
spacetimes. In the following, we will focus on Lifshitz spacetimes.

Lifshitz holography

In the AdS/CFT case, the field theory is conformal. It it thus invariant under dilatations,

t→ λt, xi → λxi. (5.9)

Following conventions, we take i = 1, ..., d, such that the boundary theory is (d + 1)-
dimensional. The gravity dual is the AdSd+2 metric,

ds2 = L2

(
dt2 − dxidxi − dr2

r2

)
, i = 1, ..., d. (5.10)

This metric is also scale invariant,

t→ λt, xi → λxi, r → λr. (5.11)

In many condensed matter systems, however, there are phase transitions governed by fixed
points exhibiting anisotropic scaling invariance,

t→ λzt, xi → λxi, z 6= 1. (5.12)

This is known as a Lifshitz scaling. Since time and space are scaled differently, Lorentz
invariance is broken. The parameter z is known as the dynamical critical exponent. An
example of a toy model exhibiting such scale invariance with d = 2 and z = 2 is

S =

∫
d2xdt

(
(∂tφ)2 − k(∇2φ)2

)
. (5.13)

Such a theory arises at finite temperature critical points in the phase diagrams of known
metals [101, 102] and strongly correlated electron systems [103–106]. Holography for such
systems was first considered in [16].

Since Lorentz invariance is broken, the theory enjoys fewer symmetries than a conformal
theory. The (d+ 2)-dimensional gravity dual must exhibit the same symmetries, i.e. scale
invariance, translational invariance in (t, xi), spatial rotations in xi, and P and T symmetry.
The metric has the form

ds2 = L2

(
dt2

r2z
− dxidxi + dr2

r2

)
, i = 1, ..., d, (5.14)
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with 0 < r <∞. It is invariant under the scaling

t→ λzt, xi → λxi, r → λr. (5.15)

The metric is often written in another form. Performing a simple coordinate transforma-
tion, r̃ = 1/r, and then renaming r̃ → r, the Lifshitz metric takes the form,

ds2 = L2

(
r2zdt2 − dr2

r2
− r2 dxidxi

)
, i = 1, ..., d. (5.16)

The Lifshitz scaling (5.15) becomes

t→ λzt, xi → λxi, r → r

λ
. (5.17)

It was shown in [107] that bulk-matter violating the null energy condition (NEC) leads
to causality violation in the boundary theory6. The NEC is the constraint on the energy-
momentum tensor Tµν ,

Tµνn
µnν ≥ 0, (5.18)

where nµ is a generic null vector, i.e. nµnµ = 0. Since on-shell Rµν − 1
2
Rgµν = Tµν , we

easily get an expression for the energy-momentum tensor in terms of the parameters in the
metric (5.16). The NEC is satisfied for

z ≥ 1. (5.19)

Lifshitz solutions

The Ricci scalar associated to the metric is

R = −2
z2 + 2z + 3

L2
. (5.20)

This is constant and negative for all values of z. Of course, this is familiar from the AdS
case with z = 1, and indicates the need for a negative cosmological constant or a scalar
potential with a negative minimum. However, in order to support the Lifshitz metric
(5.16), a cosmological constant alone is not sufficient.

In [16], four-dimensional Lifshitz spacetimes were constructed in Einstein gravity cou-
pled to a negative cosmological constant, a one-form A1 and a two-form B2 with a topo-
logical term:

S =

∫ √
−g d4x

(
R

2
− Λ

)
− 1

2

∫ (
1

e2
F2 ∧ ?F2 + F3 ∧ ?F3 + cB2 ∧ F2

)
, (5.21)

6Recall, without any restrictions, the Einstein equations allow solutions for metrics with unphysical
matter or energy. The energy conditions are coordinate-invariant restrictions on the energy-momentum
tensor. [108]
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where F2 = dA1 and F3 = dB2. This action allows for Lifshitz solutions with z ≥ 1.
In [109], it was shown that Lifshitz spacetimes can be engineered with a cosmological
constant and a timelike massive vector field, rather than a two-form.

While these models support Lifshitz spacetimes, they are phenomenological in the
sense that they were constructed without any relationship to a UV finite theory, such as
string theory. Attempts to embed Lifshitz solutions into string theory first led to no-go
theorems [110,111]. String theory embedding, however, was first achieved for z = 2 in [112],
then followed by [113–115], [77, 78]. All values of z ≥ 1 were embedded in string theory
in [116].

For example, in [78] it was demonstrated that a (D + 1)-dimensional gravity theory
with quite general constraints on the matter content can be dimensionally reduced on a
circle S1 and will admit a D-dimensional z = 2 Lifshitz solution. The (D+ 1)-dimensional
theory must contain a scalar potential V (φ) with a negative minimum ∂V/∂φu(φex) = 0,
V (φex) < 0, such that it allows for an AdSD+1 vacuum. The theory must also contain a
scalar axion. By this, we mean that after a suitable field redefinition of the scalar fields φu,
the metric on the scalar target space is independent of the axion, ξ. Thus, a vector n ∂/∂ξ
on the target space with constant n is a Killing vector. While the other scalar fields are
assumed to be independent of the coordinate x̂ of the compact S1, the axion is taken to
have the form

ξ(x, x̂) = ξ(x) + nx̂, (5.22)

where x are the coordinates of the D-dimensional space. Such a field dependence in the
compact dimension is known as a flux. In the effective D-dimensional action, the axion
gets coupled to the Kaluza-Klein vector Aµ via a covariant derivative,

∇µξ∇µξ = (∂µξ − nAµ) (∂µξ − nAµ) , (5.23)

assuming the axion was uncharged in the (D + 1)-dimensional action. A coupling of the
form (5.23) is known as a Stückelberg coupling, and effectively provides a mass term
for the vector, n2AµAµ. In [78], a five-dimensional consistent truncation from type IIB
supergravity was used for this procedure, thus embedding z = 2 Lifshitz in string theory.

In [77] z = 2 Lifshitz solutions which preserve supersymmetry were found in four-
dimensional N = 2 gauged supergravity. They were also embedded in string theory via
consistent truncations. As will be noted, part of Chapter 6 in this thesis can be viewed as
a generalization of part of [77], since hyperscaling violation is included. However, we will
not attempt to solve the Killing spinor equations as in [77], rather we will investigate the
full equations of motion.

Hyperscaling violation in Lifshitz holography

Gravity duals for theories with hyperscaling violation has received much attention re-
cently [25, 26, 28–32, 117–126]. Roughly speaking, condensed matter systems in d spatial
dimensions with hyperscaling violation exponent θ exhibit the thermodynamic scaling be-
haviour of a theory living in d− θ spatial dimensions [27].
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In the bulk, hyperscaling violation is a violation of the scaling invariance, which oth-
erwise characterizes AdS, Lifshitz and Schrödinger spacetimes. The Lifshitz metric with
hyperscaling violation exponent θ can be written as

ds2 = L2r−2θ/d

(
r2zdt2 − dr2

r2
− r2dxidxi

)
, i = 1, ..., d. (5.24)

It is conformally equivalent to the Lifshitz metric (5.16), which is in fact a special case for
θ = 0. The metric (5.24) is hence also known as a Lifshitz-like metric. Under a scaling,

t→ λzt, xi → λxi, r → r

λ
, (5.25)

the metric (5.24) is not invariant. Rather, it scales covariantly,

ds2 → λ2θ/dds2. (5.26)

In the gauge/gravity correspondence, one associates an energy scale with the radial coor-
dinate in the gravity dual. The metric (5.24) is not expected to be a good description of
the boundary theory for all values of r as discussed in [25]. Therefore, the dual theory lives
on a finite r slice, and there could be important corrections for r →∞ or for very large r.
As in the Lifshitz case, the gravity theory should satisfy the null energy condition (NEC),
eqn. (5.18), to yield a physically sensible dual field theory [25]. Using the metric (5.24),
the constraints coming from the NEC become

(d− θ)(d(z − 1)− θ) ≥ 0, (5.27)

(z − 1)(d+ z − θ) ≥ 0. (5.28)

For example, in the scale invariant case, θ = 0, the constraint is z ≥ 1, familiar from eqn.
(5.19). The range z < 1 is allowed by the NEC, however, if θ 6= 0. For z = 1, the NEC
implies θ ≤ 0 or θ ≥ d, which both have string theory realizations in [25]. Other possible
solutions are e.g. 0 < z < 1 with θ ≥ d+ z. It is argued in [25], however, that θ > d leads
to instabilities in the gravity side, even though this range is allowed by the NEC.
The case θ = d − 1 is emphasized in [25, 26] to be dual to particularly interesting field
theories. In this case, the NEC requires

z ≥ 2− 1/d. (5.29)

Metrics of the form (5.24) are solutions to Einstein-Maxwell-dilaton actions [117, 121,
122,127],

S =

∫ √
−g dd+2x

(
R

2
− eαφ

4
FµνF

µν +
1

2
∂µφ∂

µφ− V0e
βφ

)
. (5.30)

There are also top-down constructions from the near-horizon geometry of D-branes in type
II supergravity, which hence are embedded into string theory. Solutions with z 6= 1 and
θ 6= 0 have been found in [25,28–30,32,128], and e.g. a configuration with z = 2 and θ = 1
for d = 2 was found in [31].
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The calculations in Chapters 6 and 7 of this thesis are thus to be seen in this context. In
this thesis, we investigate solutions of the form (5.24) in four-dimensional N = 2 gauged
supergravity. While this theory has a rich structure, the form of e.g. the potential is
however restricted, whereas such models as (5.30) are constructed exactly for the purpose
of finding such solutions.



Chapter 6

Four-dimensional Lifshitz spacetimes
with hyperscaling violation in N = 2
supergravity

In this Chapter we investigate the equations of motion of four-dimensional N = 2 gauged
supergravity in Lifshitz-like backgrounds with dynamical exponent z and hyperscaling
violation exponent θ. As discussed in Chapter 5, the spacetime metric can be written as

ds2 = L2r−θ
(
r2zdt2 − dr2

r2
− r2(dx2 + dy2)

)
. (6.1)

The structure of N = 2 gauged supergravity was discussed in Chapter 3. We consider here
an action of the form

S =

∫ √
−gd4x

(
R

2
+

1

4
IΛΣF

Λ
µνF

Σ|µν+
1

4
RΛΣF

Λ
µν
?FΣ|µν+gī∂µz

i∂µz̄ ̄+huv∇µq
u∇µqv−g2V

)
,

(6.2)
where ∇µq

u = ∂µq
u + gkuΛA

Λ
µ . This action includes nV vector multiplets and nH Abelian

gauged hypermultiplets7. The potential is given by eqn. (3.74),

V (z, z̄, q) = 4huvk
u
Λk

v
ΣL̄

ΛLΣ +
(
gīfΛ

i f̄
Σ
̄ − 3L̄ΛLΣ

)
PxΛPxΣ. (6.3)

Recall, that kuΛ(q) are Killing vectors on the quaternionic target space, and PxΛ(q) are
the Killing prepotentials. LΛ(z) are sections on the special manifold, and fΛ

i (z) ≡ (∂i +
1
2
∂iK)LΛ.

We keep in mind that the action (6.2) can be reduced to the case of only vector
multiplets with Fayet-Iliopoulos gaugings. This corresponds to kuΛ → 0, qu → 0, with
PxΛ → ξΛ. We will indeed consider this case later on.

7We will use z for the dynamical exponent and zi with i = 1, ..., nV for the complex vector scalars.
The difference should be clear from the context. E.g. for the scalar potential V (z, z̄), z refers to the scalar
dependence, not the dynamical exponent.
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Vacuum solutions

In order to consider the equations of motion, we need of course to calculate the Ricci tensor
from the metric (6.1). The non-vanishing components of the Ricci tensor are

Rtt = r2z (2z − θ)(θ − z − 2)

2
,

Rrr =
2z2 − θz − 2θ + 4

2r2
, (6.4)

Rxx = Ryy = r2 (2− θ)(2 + z − θ)
2

.

From these, the Ricci scalar also follows,

R = gµνRµν = − r
θ

L2

(
2z2 + z(4− 3θ) +

3

2
(θ − 2)2

)
. (6.5)

Before looking for more complicated solutions supported by matter-fields, one may consider
the vacuum Einstein equations,

Rµν = 0. (6.6)

These equations have three solutions for particular values of z and θ,

(z, θ) =
{

(0, 2), (1, 2), (4, 6)
}
. (6.7)

For the sake of interest, these can be found in Appendix D for arbitrary spacetime dimen-
sion. The solutions (z, θ) = (0, 2), (1, 2), have vanishing Riemann tensor, Rµ

νρσ = 0, and
hence correspond to just flat spacetime. For example, for z = 1 and θ = 2 the metric (6.1)
becomes

ds2 = L2

(
dt2 − dr2

r4
− dx2 − dy2

)
. (6.8)

By a coordinate transformation r̃ = 1/r and a rescaling of the coordinates to absorb L,
this metric becomes just the canonical Minkowski metric. For z = 0 and θ = 2, one can
likewise recover the Minkowski metric with t̃ = r−1 sinh t and r̃ = r−1 cosh t. The solution
with z = 4 and θ = 6, however, has non-vanishing Riemann tensor,

Rt
xtx = Rt

yty = −2r2, Rr
xrx = Rr

yry = −2r2, Rt
rtr =

4

r2
, Rx

yxy = 4r2 .

(6.9)
Thus, this is a curved spacetime. Such a solution does not seem to have been noted in the
literature on Lifshitz-like solutions until ref. [33] appeared while this thesis was in the final
stages of preparation.
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6.1 Field ansätze

In order to simplify the later calculations, it is worthwhile to consider the symmetries of
the metric (6.1).

Killing vectors

The metric has four Killing vectors,

∂t, ∂x, ∂y, y∂x − x∂y. (6.10)

These correspond to translations in t, x, y, as well as SO(2) rotations in the x, y plane.
Recall that the Lie derivative of the metric vanishes along the Killing vectors,

LK gµν = 0, (6.11)

where K is any of the Killing vectors (6.10).
Under the anisotropic scaling,

t→ λzt, r → λ−1r, xi → λxi, (6.12)

the metric (6.1) scales covariantly,

ds2 → λθds2. (6.13)

The scaling (6.12) is generated by the conformal Killing vector C,

C = zt ∂t − r ∂r + x ∂x + y ∂y. (6.14)

In general, the Lie derivative of the metric along a conformal Killing vector yields the
metric itself multiplied by a constant or a spacetime-dependent function. In our case, one
finds the Lie derivative of the metric along C to be

LC gµν = θgµν , (6.15)

i.e. the metric multiplied by a constant.

Gauge fields

In order to simplify the equations of motion, we will impose the spacetime symmetries on
the matter fields. We therefore demand the Lie derivative of the field strengths along the
Killing vectors to vanish,

LKFΛ
µν = 0. (6.16)

After a short calculation, one finds that the most general solution for FΛ is

FΛ = FΛ
tr(r) dt ∧ dr + FΛ

xy(r) dx ∧ dy. (6.17)
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Imposing further the Bianchi identity εµνρσ∂νF
Λ
ρσ = 0 restricts FΛ

xy to be constants. As in
Section 4.2, we identify these as the magnetic charges and denote them as pΛ. Also, we
denote Frt(r) = E ′Λ(r), hence

FΛ = E ′Λ(r) dr ∧ dt+ pΛ dx ∧ dy. (6.18)

Under the anisotropic scaling (6.12), the components of the field strengths scale as

E ′Λ(r) dr ∧ dt −→ λz−1E ′Λ(λ−1r) dt ∧ dr, (6.19)

pΛ dx ∧ dy −→ λ2pΛ dx ∧ dy. (6.20)

We will demand that the field strengths scale covariantly,

FΛ −→ λαΛFΛ (no sum over Λ), (6.21)

where αΛ are constants, associated to each field. Since the xy-component scales with λ2 if
pΛ 6= 0, so must the rt-component. From (6.19),

λz−1E ′Λ(λ−1r) = λ2E ′(r). (6.22)

To satisfy this, we take E ′Λ(r) = eΛ rz−3, where eΛ are constants. However, if pΛ = 0 for
some of the field strengths, then E ′Λ(r) = eΛ rβΛ will scale covariantly for any βΛ. We will
therefore take the ansatz (no sum over Λ)

FΛ = eΛrβΛ dr ∧ dt+ pΛ dx ∧ dy, βΛ = z − 3 if pΛ 6= 0. (6.23)

For the sake of overview, we will just write E ′Λ(r) below and then keep in mind that
E ′Λ(r) = eΛrβΛ .

Let us mention that a similar ansatz can be obtained by considering the Lie derivative
of FΛ along the conformal Killing vector (6.14). This is essentially the same argument as
above, but on an infinitesimal form. Analogous to eqn. (6.15), we demand

LCFΛ = α̃ΛFΛ, (6.24)

for some constants α̃Λ. If FΛ
xy = pΛ is non-zero, this fixes again α̃Λ, since a calculation

yields
α̃ΛFΛ

xy = LCFΛ
xy = 2FΛ

xy. (6.25)

For the rt-component, a calculations yields

α̃ΛFΛ
rt = LCFΛ

rt = (z − 1)FΛ
rt − r∂rFΛ

rt ⇒ FΛ
rt = eΛrz−1−α̃Λ . (6.26)

Hence, we find again E ′(r)Λ = eΛrz−3 if p 6= 0, while for pΛ = 0 there is no constraint on
α̃Λ. This coincides with (6.23).

Another observation is that some gauge fields, AΛ
µ , may appear in the action not only

through their field strengths, but also in the covariant derivative, ∇µq
u = ∂µq

u + kuΛA
Λ
µ .

Up to gauge transformations, a gauge field corresponding to (6.23) is

AΛ = E(r) dt + xpΛ dy. (6.27)

The component AΛ
y = xpΛ violates the symmetries of the problem if pΛ 6= 0, in the sense

that L∂xAΛ
y = pΛ 6= 0. Thus, for the gauge fields that are gauging a scalar isometry, pΛ

must vanish. We will enforce this by taking kuΛ p
Λ = 0, and then remember that such pΛ

must also vanish elsewhere in the equations of motion.
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Scalar fields

Demanding vanishing Lie derivatives of the scalar fields along the Killing vectors (6.10)
restricts the fields to

zi = zi(r), qu = qu(r). (6.28)

Using the conformal Killing vector, we could now try to restrict the form even further,
analogous to (6.24). For example,

αizi = LCzi(r) = −r∂rzi ⇒ zi(r) = zi0 r
−αi , (6.29)

where αi and zi0 are constants. However, for the scalar fields, we can do field redefinitions
which are diffeomorphisms of the scalar target space. For example, a non-linear sigma
model with a single complex scalar τ = φ+ iχ could be

gτ τ̄∂µτ∂
µτ̄ =

∂µφ∂
µφ+ ∂µχ∂

µχ

φ2
, with φ > 0. (6.30)

By a field redefinition φ = φ̃ sin χ̃ and χ = φ̃ cos χ̃, the non-linear sigma model becomes

1

sin2 χ̃

(
∂µφ̃∂

µφ̃

φ̃2
+ ∂µχ̃∂

µχ̃

)
, with 0 < χ̃ < π and φ̃ > 0. (6.31)

We can choose either set of coordinates on the target space. Thus, if we choose e.g.

φ(r) = φ0 r
α, χ(r) = χ0 r

β, (6.32)

the same form of r-dependence does not hold in the (φ̃, χ̃)-coordinates. We will therefore
use the ansätze (6.28).

6.2 Equations of motion

A variation of the action w.r.t. the inverse metric yields the Einstein equations,

Rµν −
1

2
Rgµν = Tµν ⇔ Rµν = Tµν −

1

2
T ρρ gµν . (6.33)

For the energy momentum tensor, one finds

Tµν =gµν

(
1

4
IΛΣF

Λ
ρσF

Σ|ρσ + gī∂ρz
i∂ρz̄ ̄ + huv∇ρq

u∇ρqv − g2V

)
− 2

(
1

2
IΛΣF

Λ
µρF

Σ
ν

ρ
+ gī∂µz

i∂ν z̄
̄ + huv∇µq

u∇νq
v

)
. (6.34)
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Variations w.r.t zi, qu, and AΛ yield,

0 =
1

4
∂iIΛΣF

Λ
µνF

Σ|µν +
1

4
∂iRΛΣF

Λ
µν
?FΣ|µν + ∂igjk̄∂µz

j∂µz̄k̄ − g2∂iV −
1√
−g

∂µ
(√
−ggī∂µz̄ ̄

)
,

(6.35)

0 = ∂u (hvw∇µq
v∇µqw)− g2∂uV −

2√
−g

∂µ
(√
−ghuv∇µqv

)
, (6.36)

0 = 2huvk
v
Λ∂

µqu + 2huvk
u
Λk

v
ΣA

Σµ − 1√
−g

∂ν
[√
−g
(
IΛΣF

Σ|νµ +RΛΣ
?FΣ|νµ)] , (6.37)

respectively, where ∂i ≡ ∂/∂zi and ∂u ≡ ∂/∂qu.
Inserting now the ansätze (6.23), (6.28), and the metric, the equations become more

concrete, yet still involved. The Einstein equations become

(θ − 2z)(θ − z − 2) = −E − 2g2L2V r−θ + 4g2huvk
u
Λk

v
ΣE

ΛEΣr−2z, (6.38)

2z2 − θz − 2θ + 4 = −E − 2g2L2V r−θ − 4gīz
′iz̄′̄r2 − 4huvq

′uq′vr2, (6.39)

(θ − 2)(2 + z − θ) = −E + 2g2L2V r−θ, (6.40)

0 = ghuvq
′ukvΛE

Λ. (6.41)

Primes denote derivatives w.r.t. r, and we defined also

E ≡ 1

L2
IΛΣE

′ΛE ′Σr2−2z+θ +
1

L2
IΛΣp

ΛpΣrθ−4. (6.42)

The equation of motion for the vector scalars becomes

0 = ∂iIΛΣE
′ΛE ′Σr2−2z − ∂iIΛΣp

ΛpΣr−4 − 2∂iRΛΣE
′ΛpΣr−z−1

+ 2g2L4∂iV r
−2θ + 2L2∂igjk̄z

′j z̄′k̄r2−θ − 2L2r−z−1∂r(r
z+3−θgīz̄

′̄). (6.43)

The equation for the hyperscalars becomes

0 = g2L2∂uV r
−θ − g2∂u(hvwk

v
Λk

w
Σ)EΛEΣr−2z

+ ∂u(hvw)q′vq′wr2 − 2rθ−z−1∂r(huvq
′vrz+3−θ). (6.44)

Finally, the gauge field equations become

0 = ∂r
(
IΛΣE

′Σr3−z −RΛΣp
Σ
)

+ 2g2L2huvk
u
Λk

v
ΣE

Σr1−z−θ, (6.45)

0 = ghuvq
′ukvΛ. (6.46)

Eqn. (6.46) clearly implies the Einstein equation (6.41). The above equations are obviously
quite involved. Recall that not only E ′Λ is a function of r. The period matrix, the potential,
the Killing vectors, and the scalar metrics all depend on the scalar fields, and hence in
general have implicit r-dependence. An issue is that an equation may split into more
equations, depending on the r-dependence, since we are interested in solutions valid for all
values of r. A simple example of this is

0 = a+ brc, (6.47)

where a, b, c are constants. If c = 0, then a = −b. However, when c 6= 0, one must take
a = 0 and b = 0 separately.
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6.3 Constant scalar fields

As a simplifying case, we can consider the scalars as constants. In this case, the scalar-
dependent quantities are also constants w.r.t. r. The equations of motion, eqns. (6.38)-
(6.46), then simplify somewhat, and after re-arranging the Einstein equations, we have

1
2
θ2 − θ − z2 + z =

1

L2
IΛΣE

′ΛE ′Σr2−2z+θ +
1

L2
IΛΣp

ΛpΣrθ−4, (6.48)

−1
2
θ2 + 3θ − z2 − z + θz − 4 = 2g2L2V r−θ, (6.49)

θ2 − 2θz + 4z − 4 = 4g2huvk
u
Λk

v
ΣE

ΛEΣr−2z, (6.50)

0 = ∂iIΛΣE
′ΛE ′Σr2−2z − ∂iIΛΣp

ΛpΣr−4

− 2∂iRΛΣE
′ΛpΣr−z−1 + 2g2L4∂iV r

−2θ, (6.51)

0 = g2L2∂uV r
−θ − g2∂u(hvwk

v
Λk

w
Σ)EΛEΣr−2z, (6.52)

0 = ∂r
(
IΛΣE

′Σr3−z −RΛΣp
Σ
)

+ 2g2L2huvk
u
Λk

v
ΣE

Σr1−z−θ.
(6.53)

Lifshitz metrics, θ = 0

Consider the special case of the Lifshitz metric with θ = 0. In this case, the anisotropic
scaling (6.12) is an isometry of the metric. The vector C, eqn. (6.14), is then a true
Killing vector, rather than a conformal Killing vector. Imposing the scaling invariance on
the fields, the scalars must be constants. For the field strengths, it is evident from the
finite scaling, eqn. (6.20), that the xy-component is not scale invariant. Hence, imposing
the symmetry restricts pΛ = 0. From eqn. (6.19), it follows that we must take EΛ = eΛrz.

Again, same conclusions follow from the Lie derivatives of the fields, in fact more
elegantly. Since C is a true Killing vector, the Lie derivatives along C must vanish. A
short calculation yields

0 = LCzi(r) ⇒ ∂rz
i(r) = 0,

0 = LCFΛ
µν(r) ⇒ AΛ = EΛ dt = eΛrz dt, pΛ = 0.

(6.54)

With these ansätze and θ = 0, the equations of motion simplify. The Einstein equations
(6.48)-(6.50) take the form

IΛΣe
ΛeΣ =

1− z
z

L2, (6.55)

g2V = −z
2 + z + 4

2L2
, (6.56)

g2huvk
u
Λk

v
Σe

ΛeΣ = z − 1. (6.57)

The matter-field equations become

0 = z2∂iIΛΣe
ΛeΣ + 2g2L4∂iV, (6.58)

0 = g2L2∂uV − g2∂u(hvwk
v
Λk

w
Σ)eΛeΣ, (6.59)

0 = zIΛΣe
Σ + g2L2huvk

u
Λk

v
Σe

Σ. (6.60)
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Eqns. (6.55)-(6.60) exactly coincides with ref. [77]8, where Lifshitz spacetimes with dy-
namical exponent z = 2 and preserved supersymmetry were found in N = 2 gauged
supergravity. Note that the r-dependence completely drops out in eqns. (6.55)-(6.60).
This will not be the case in general, when hyperscaling violation is included below.

Several lessons can be learned about pure Lifshitz solutions. The r.h.s. of eqn. (6.55)
is negative for all z > 1. This is consistent with IΛΣ being negative definite, as noted
in Section 3.2. The r.h.s. of eqn. (6.56) is negative for all values of z. This requires a
negative scalar potential, V (z, z̄, q) < 0. Thus, ungauged supergravity does not admit Lif-
shitz solutions. Eqn. (6.57) requires gauged hyperscalars for interesting Lifshitz solutions
with z 6= 1. For example, consider supergravity with Fayet-Iliopoulos gaugings. In this
case, there is a scalar potential but no hyperscalars, huvk

u
Λk

v
Σ → 0. Taking g → 1, for

convenience, eqns. (6.55)-(6.57) easily yield:

z = 1, V = − 3

L2
, IΛΣe

ΛeΣ = 0. (6.61)

Of course, a Lifshitz spacetime with z = 1 is just familar AdS4. Taking eΛ = 0, i.e. no
gauge fields, the action effectively consists only of the Einstein-Hilbert term and the scalar
potential, which plays the role of a cosmological constant. However, since the potential
is actually scalar dependent, eqn. (6.58) requires that the scalar fields extremize the
potential,

∂iV (z, z̄, q) = 0. (6.62)

In Section 5.2 it was noted that Lifshitz solutions can be constructed with a massive
vector field and a cosmological constant. From the above discussion, we see that N = 2
supergravity with gauged scalars may also admit Lifshitz solutions. The potential plays the
role of the cosmological constant, while the gauging of the constant scalars may effectively
give mass to the gauge fields via a Stückelberg coupling.

Lifshitz-like metrics, θ 6= 0

Consider again the Einstein equations with constant scalar fields,

1
2
θ2 − θ − z2 + z =

1

L2
IΛΣE

′ΛE ′Σr2−2z+θ +
1

L2
IΛΣp

ΛpΣrθ−4, (6.63)

−1
2
θ2 + 3θ − z2 − z + θz − 4 = 2g2L2V r−θ, (6.64)

θ2 − 2θz + 4z − 4 = 4g2huvk
u
Λk

v
ΣE

ΛEΣr−2z. (6.65)

The l.h.s. of eqn. (6.64) is a constant on spacetime, while the r.h.s. scales as r−θ. For
θ 6= 0, both sides must vanish independently, since we are interested in solutions valid for
all values of r. Thus, in a gauged theory, the constant scalars must take values, z0, q0, such
that the potential vanishes,

V (z0, z̄0, q0) = 0. (6.66)

8Except for typos in the ”effective potential” in [77], to which Nick Halmagyi has agreed in a private
correspondence.
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Figure 6.1: Values of z and θ 6= 0 admitted by eqn. (6.67).

The l.h.s. of eqn. (6.64) vanishes for

θ = 3 + z ±
√

1 + 4z − z2. (6.67)

This constrains z and θ,

2−
√

5 ≤ z ≤ 2 +
√

5 and 5−
√

10 ≤ θ ≤ 5 +
√

10. (6.68)

The values of (z, θ) for which (6.67) is solved are shown in Fig. 6.1. This followed from
the analysis of just one equation of motion. A solution must further satisfy the remain
equations. From eqns. (6.63) and (6.65) it follows that in order to obtain the full orbit of
solutions of Fig. 6.1, the theory must contain gauged hyperscalars. The subtlety, however,
is the r-dependence of the vectors, specifically EΛ(r). Non-constant terms must vanish,
and do not support the solutions of Fig. 6.1. While it is simple to choose the vectors such
that the r.h.s. of either (6.63) or (6.65) is constant, the r.h.s. of both equations must be
constant and non-vanishing. Without vectors, EΛ = pΛ = 0, the only solutions are

(z, θ) =
{

(0, 2) , (1, 2) , (4, 6)
}
. (6.69)

These are clearly just the solutions of the vacuum Einstein equations, eqn. (6.7). If instead
we consider the case without gauged hypers, g2huvk

v
Λk

u
ΣE

ΛEΣ = 0, but with EΛ = eΛrz−θ/2,
eqns. (6.63)-(6.65) have only one solution,

z = 3, θ = 4, z2IΛΣe
ΛeΣ + IΛΣp

ΛpΣ = −2L2, g2V = 0, g2huvk
u
Λk

v
Σe

ΛeΣ = 0,
(6.70)

along with the three vacuum solutions (6.69). Note that θ = 4 happens to be the value of
θ where eqn. (6.63) allows non-zero magnetic charges, pΛ. In fact, z = 3, θ = 4 implies
that the field strengths are constants, E ′Λ = (z − θ/2)eΛrz−1−θ/2 = eΛ. Such constant
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field strengths are known as fluxes. Notice also, that this precisely respects the covariant
scaling of the field strengths for pΛ 6= 0, from eqn. (6.21), FΛ → λ2FΛ.

Let us sum up what we found above. N = 2 supergravity with constant scalar fields is
well suited to obtain Lifshitz solutions with θ = 0. The negative scalar potential and the
gauged scalars are crucial ingredients in such solutions. For hyperscaling violation, θ 6= 0,
we found however that only solutions with very restricted values of z and θ are possible
for constant scalar fields. The potential, which is essentially a cosmological constant for
constant scalars, must in fact vanish. We may note at this point, that in the Einstein-
Maxwell-Dilaton model, eqn. (5.30), which has been used to construct solutions with θ 6= 0,
there is a scalar potential rather than a cosmological constant. Clearly, this indicates that
one should allow for non-trivial scalar profiles to find more general solutions with θ 6= 0.

6.4 Vector multiplets with Fayet-Iliopoulos gauging

In this subsection, we consider supergravity coupled only to vector multiplets. We will allow
for FI terms supporting a scalar potential. As noted in the beginning of this Chapter, this
may be considered a special case of the calculations above. For constant scalar fields, this
case was essentially included in the previous section, but yields a nicer result below. In
the following, we absorb g into the FI parameters ξΛ.

After some rearranging, the Einstein equations (6.38)-(6.40) become

(z − 1)(θ − z − 2) =
1

L2
IΛΣE

′ΛE ′Σr2−2z+θ +
1

L2
IΛΣp

ΛpΣrθ−4, (6.71)

(θ − z)2 − z2 + 4z − 4 = 4gīz
′iz̄′̄r2, (6.72)

−
(
z + 3

2
− θ
)2

+ 1
4

= 2L2V r−θ. (6.73)

The vector scalar equation of motion looks the same as (6.43),

0 = ∂iIΛΣE
′ΛE ′Σr2−2z+θ − ∂iIΛΣp

ΛpΣrθ−4 − 2∂iRΛΣE
′ΛpΣr−z−1+θ

+ 2L4∂iV r
−θ + 2L2∂igjk̄z

′j z̄′k̄r2 − 2L2rθ−z−1∂r
(
rz+3−θgīz̄

′̄). (6.74)

The equation of motion for the gauge fields, simplifies without gauged scalar fields,

0 = ∂r
(
IΛΣE

′Σr3−z −RΛΣp
Σ
)
. (6.75)

The gauge field equation (6.75) can be solved analogously to Section 4.2. Since the deriva-
tive vanishes, the terms in the parenthesis must be equal to a constant, the electric charge,
−qΛ,

−qΛ = IΛΣE
′Σr3−z −RΛΣp

Σ. (6.76)

Solving for E ′Λ(r), we may eliminate this function in terms of the charges,

E ′Λ(r) = rz−3IΛΣ
(
RΣΓp

Γ − qΣ

)
. (6.77)
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Inserting this into eqn. (6.71), the Einstein equation becomes

−2VBH
L2

rθ−4 = (z − 1)(θ − z − 2). (6.78)

The black hole potential,
VBH ≡ −1

2
QtMQ, (6.79)

where

Q ≡
(
pΛ

qΛ

)
, M =

(
(I +RI−1R)ΛΣ −(RI−1)Λ

Σ

−(I−1R)Λ
Σ I−1 ΛΣ

)
, (6.80)

was introduced in Chapter 4. Inserting (6.77) into eqn. (6.74) yields

0 = V̂i − L4∂iV r
4−2θ − L2∂igjk̄z

′j z̄′k̄r6−θ + L2r3−z∂r(r
z+3−θgīz̄

′̄), (6.81)

where

V̂i ≡ −
1

2

(
(pR− q)I−1∂iII

−1(Rp− q)− p∂iIp− 2(pR− q)I−1∂iRp
)
. (6.82)

Eqns. (6.81)-(6.82) have the advantage that we have replaced the function EΛ(r) by the
constant charges qΛ and pΛ. Note that VBH and V̂i only depend on r through the scalar
fields.

For a theory coupled only to vector multiplets, the equations of motion to solve are
hence (6.72), (6.73), (6.78) and (6.81). We will indeed solve these in Chapter 7.

Constant scalar fields

Consider again the special case of constant scalar fields, zi. The r.h.s. of the Einstein
equation (6.72) vanishes. For θ 6= 0, the Einstein equation (6.73) implies again that the
potential must vanish, since the l.h.s. is a constant, whereas the r.h.s. scales as r−θ. The
last Einstein equation (6.78) requires VBH = 0, unless θ = 4. After these considerations,
the eqns. (6.72), (6.73), and (6.78), have four solutions:(

z, θ, VBH
)

=
{

(0, 2, 0), (1, 2, 0), (4, 6, 0), (3, 4, L2)
}

(6.83)

along with the constraint
V = 0. (6.84)

The three first solutions in (6.83) are clearly the solutions of the vacuum Einstein equations,
which we will not deal with further. The fourth is the non-vacuum solution also found in
(6.70). Since z = 3, the gauge field strengths are constant by eqn. (6.77). The scalar field
equation of motion (6.81) becomes

0 = V̂i − L4∂iV r
−4. (6.85)
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Due to the r-dependence, the two terms must vanish separately,

V̂i = 0, (6.86)

∂iV = 0. (6.87)

Recall that the difference in the bosonic part of the action, between an ungauged theory and
a theory with FI gaugings, is the existence of the potential, V . It is clear from eqns. (6.84)
and (6.87), that for constant scalar fields the gauging does not contribute constructively
to the equations of motion.

Nevertheless, for the solution with z = 3, θ = 4, and constant scalar fields, we have
found that the equations of motion reduce to the constraints (6.84), (6.86), (6.87), and
VBH = L2. We will solve these explicitly in the next Chapter.



Chapter 7

Solutions in the F = −iX0X1 model

In this Chapter, we derive the relevant components for the equations of motion from the
prepotential F = −iX0X1 with Fayet-Iliopoulos gauging. We then use this model as an
explicit example, following the model-independent analysis of Chapter 6.

7.1 The F = −iX0X1 model with FI gauging

In Section 3.2, we discussed the target space of the vector multiplet scalars, namely special
Kähler manifolds. Recall that for the ungauged theory coupled to vector multiplets, the
Lagrangian is specified simply by the prepotential, when a such exists. The prepotential
F = −iX0X1 is among the simplest, since it is linear in XΛ and contains just one vector
multiplet. The scalar target space manifold is in fact the coset space SL(2,R)/SO(2) [129].

Now, differentiating the prepotential yields

FΛ =
∂F

∂XΛ
= −i

(
X1, X0

)
. (7.1)

Choosing the physical scalar to be τ = X1/X0 and the gauge X0 = 1, the holomorphic
section Ω becomes

Ω =
(
XΛ, FΛ

)
= (1, τ,−iτ,−i) . (7.2)

From this, the Kähler potential follows,

K = − log
[
i(X̄ΛFΛ −XΛF̄Λ)

]
= − log

[
2(τ + τ̄)

]
. (7.3)

It is clear that we must restrict (τ + τ̄) > 0, or

Reτ > 0. (7.4)

This is the so-called positivity domain [62]. Now, since the model has just one complex
scalar field τ , the only non-zero component of the Kähler metric is

gτ τ̄ = ∂τ∂τ̄K =
1

(τ + τ̄)2
. (7.5)

58
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From the Kähler potential we can also find the sections

V = (LΛ,MΛ) = eK/2(XΛ, FΛ) =
1√

2(τ + τ̄)
(1, τ,−iτ,−i) . (7.6)

These are needed to construct the scalar potential. It is also easily verified that they satisfy
eqn. (3.26),

i〈V , V̄〉 = 1. (7.7)

Of course, we also need the period matrix, NΛΣ. This determines the vector couplings,
and also appears in the scalar potential. We first need to calculate

FΛΣ =
∂2F

∂XΛ∂XΣ
= −i

(
0 1
1 0

)
. (7.8)

From this, the period matrix may be obtained,

NΛΣ = F̄ΛΣ + 2i
Im(FΛΓ)XΓ Im(FΣ∆)X∆

XΥIm(FΥΩ)XΩ
= −i

(
τ 0
0 1/τ

)
. (7.9)

Thus, the couplings of the vector kinetic terms and the topological terms are,

IΛΣ ≡ ImNΛΣ = −1

2
(τ + τ̄)

(
1 0
0 1/τ τ̄

)
, (7.10)

RΛΣ ≡ ReNΛΣ =
τ − τ̄

2i

(
1 0
0 −1/τ τ̄

)
. (7.11)

The above expressions specify the bosonic action of the ungauged theory. As described in
Section 3.5, under gauging with Fayet-Iliopoulos terms, the two gravitinos will be charged
under the two gauge fields. In the bosonic action, this gives rise to a scalar potential given
by eqn. (3.87). Using the quantities above, we find the potential to be

V (τ, τ̄) = −
(

1

2
IΛΣ + 4L̄ΛLΣ

)
ξΛξΣ

= 2ξ0ξ1 −
ξ2

0 + ξ2
1τ τ̄

τ + τ̄
. (7.12)

Below, we shall also need the derivatives

∂τgτ τ̄ = −2
1

(τ + τ̄)3
, (7.13)

∂τIΛΣ =
1

2

(
−1 0
0 1/τ 2

)
, (7.14)

∂τRΛΣ =
i

2

(
−1 0
0 1/τ 2

)
, (7.15)

∂τV =
ξ2

0 − τ̄ 2ξ2
1

(τ + τ̄)2
. (7.16)
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For simplicity, we define
φ ≡ Reτ, χ ≡ Imτ, (7.17)

with φ > 0. The above expressions are then generally neater,

gτ τ̄ =
1

4φ2
, (7.18)

IΛΣ =

(
−φ 0

0 −φ
φ2+χ2

)
, (7.19)

RΛΣ =

(
χ 0
0 − χ

φ2+χ2

)
, (7.20)

V (φ, χ) = 2ξ0ξ1 −
ξ2

0 + ξ2
1(φ2 + χ2)

2φ
. (7.21)

Also, let us write the needed derivatives,

∂τgτ τ̄ = − 1

4φ3
, (7.22)

∂τIΛΣ = −i ∂τRΛΣ =
1

2

(
−1 0

0 φ2−χ2−2iφχ
(φ2+χ2)2

)
, (7.23)

∂τV =
ξ2

0 − ξ2
1(φ2 − χ2 − 2iφχ)

4φ2
. (7.24)

7.2 Constant scalar fields

In Section 6.4, we studied the equations of motion for theories coupled only to vector
multiplets with constant scalar fields. We found that the only possible solution was z = 3
and θ = 4. Further, the solution must satisfy the constraints

V = 0, (7.25)

∂τV = 0, (7.26)

V̂i = 0, (7.27)

VBH = L2. (7.28)

Clearly, the potential does not contribute to the solution. However, we can check if any
configuration of τ , τ̄ and ξΛ solves eqns. (7.25)-(7.26) with non-zero gaugings, ξΛ 6= 0. For
ξΛ 6= 0, the gravitinos are charged and the FI gauging also has effects on the supersymmetry
transformations.

The scalar potential (7.21) vanishes for

ξ0 = ξ1

(
2φ±

√
3φ2 − χ2

)
. (7.29)

However, to make the derivative (7.24) vanish as well, we must take ξ0 = ξ1 = 0. Hence,
the solutions is restricted to ungauged supergravity.
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Consider next eqns. (7.27) and (7.28). Using the definition of V̂i, eqn. (6.82), along
with the quantities (7.19), (7.20) and (7.23) from the F = −iX0X1 model, we find

0 = V̂i

= −1

2

[
(pR− q)I−1∂iII

−1(Rp− q)− p∂iIp− 2(pR− q)I−1∂iRp
]

= − 1

2φ

[
(p2

0 + q2
1) (φ2 − χ2) + 2χ(p0q0 − p1q1)− p2

1 − q2
0

2φ
+ i

(
p0q0 − p1q1 − χ(p2

0 + q2
1)
) ]
.

(7.30)

We have introduced here the notation for the charges pΛ = (p0, p1) and qΛ = (q0, q1). From
the definition of the black hole potential, eqn. (6.79), we find

VBH =
q2

0 + p2
1 + (φ2 + χ2)(p2

0 + q2
1) + 2χ(q1p1 − q0p0)

2φ
. (7.31)

Demanding the real and imaginary part of (7.30) to vanish independently, and inserting
the black hole potential into (7.28), we thus have three equations to solve. Indeed, this
system has the solution,

L2 = φ
(
p2

0 + q2
1

)
, q0 = εφq1 + χp0, p1 = εφp0 − χq1, with ε = ±1. (7.32)

This solution contains both electric and magnetic charges, but also allows for only electric
(pΛ=0) or only magnetic charges (qΛ = 0). We have thus found that the F = −iX0X1

model with constant scalar fields admits the z = 3, θ = 4 solution with constant field
strengths (fluxes), but only in the ungauged theory where the FI terms vanish, ξΛ = 0.

7.3 Non-constant scalar fields

Consider now the equations of motion with non-constant scalar fields, which we found to
be (6.72), (6.73), (6.78) and (6.81). Inserting the special Kähler metric (7.18) into the
Einstein equation (6.72), this equation becomes

(θ − z)2 − z2 + 4z − 4 =
φ′ 2(r) + χ′ 2(r)

φ2
r2. (7.33)

This differential equation is easily solved, if either φ or χ is set to a constant value. Consider
here the case of non-trivial φ(r). Rather than taking χ to be constant, we will take it to
be

χ(r) = βφ(r) + χ0, (7.34)

where χ0 is a real constant. Setting β = 0 corresponds to setting χ to a constant. However,
allowing for arbitrary β gives a bit more freedom to solve the system. Then eqn. (7.33)
becomes

(θ − z)2 − z2 + 4z − 4 =
(
1 + β2

) φ′ 2(r)

φ2
r2. (7.35)
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This can be easily solved for φ(r),

φ(r) = φ0r
a, where a2 =

θ2 + 4z − 2θz − 4

(1 + β2)2
. (7.36)

Plugging now the potential (7.21) into the Einstein equation (6.73) yields

−
(
z +

3

2
− θ
)2

+
1

4
= 2L2

(
2ξ0ξ1 −

ξ2
0 + ξ2

1(φ2 + χ2)

2φ

)
r−θ. (7.37)

Using the explicit form of the scalars, (7.34) and (7.36), this can be written as

φ0

L2

(
1

4
−
(
z +

3

2
− θ
)2
)

= 2φ0ξ1 (2ξ0 + ξ1αχ0) r−θ+
(
ξ2

1χ
2
0 − ξ2

0

)
r−a−θ+

(
1 + α2

)
ξ2

1φ
2
0r
a−θ.

(7.38)
Now, the l.h.s. of this equation is constant, while the r.h.s. contains three terms with
different r-dependences. We are of course interested in solutions valid for all values of r.
Hence, the equation splits into more than one equation, depending on how the exponents
are chosen. We are focusing on hyperscaling solutions with θ 6= 0. Also, we take a 6= 0
since we already treated constant scalar fields. In this case, the term scaling as r−θ must
vanish,

ξ1 (2ξ0 + ξ1βχ0) = 0. (7.39)

The remaining terms of (7.38) may split up in three different ways,
Case I:

a = θ, ξ2
1χ

2
0−ξ2

0 = 0, (1+β2)L2ξ2
1φ0 = −z2−θ2 +3θ−3z+2θz−2. (7.40)

Case II:

a = −θ, (1 + β2)ξ2
1 = 0, L2 ξ

2
1χ

2
0 − ξ2

0

φ0

= −z2 − θ2 + 3θ− 3z + 2θz − 2.

(7.41)
Case III:

a 6= ±θ, ξ2
1χ

2
0−ξ2

0 = 0, (1+β2)ξ2
1 = 0, with θ = z+1 or θ = z+2.

(7.42)
All three cases also include the constraint (7.39), and a is given by (7.36). These equations
are hence solutions to two of the Einstein equations, and also the gauge field equation of
motion. The remaining Einstein equation is (6.78).

Consider Case III, eqn. (7.42). To satisfy these equations, we must take ξ0 = ξ1 = 0,
which restricts the solution ungauged supergravity. Using the black hole potential (7.31),
the remaining Einstein equation (6.78) becomes

z2 + θ + z − θz − 2 =
q2

0 + p2
1 + (φ2 + χ2)(p2

0 + q2
1) + 2χ(q1p1 − q0p0)

L2φ
rθ−4. (7.43)
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Inserting now φ = φ0r
a and χ = βφ0r

a + χ0, and collecting terms according to their
r-dependence, we find

L2φ0

(
z2 + θ + z − θz − 2

)
= βφ0

[
χ0(p2

0 + q2
1) + 2(q1p1 − q0p0)

]
rθ−4

+
[
q2

0 + p2
1 + χ2

0(p2
0 + q2

1) + 2χ0(q1p1 − q0p0)
]
rθ−4−a

+ (1 + β2)φ2
0(p2

0 + q2
1)rθ−4+a. (7.44)

Choosing now θ = z + 2 from (7.42), the l.h.s. of (7.44) vanishes. For a 6= 0, the three
lines on the r.h.s. of (7.44) must vanish separately. This can only happen for pΛ = qΛ = 0.
We have thus solved all Einstein equations by setting all charges and gaugings to zero. For
the scalar fields we find for a, from (7.36) with θ = z + 2,

a2 =
4z − z2

(1 + β2)2
. (7.45)

Since a must be real, (7.45) restricts z to take values 0 ≤ z ≤ 4. Having solved now the
Einstein equations and the gauge field equation, only the equation of motion for the scalar
fields remains, eqn. (6.81). With pΛ = qΛ = ξΛ = 0 and the scalar metric (7.20), eqn.
(6.81) becomes

0 = −L
2

2
(1 + β2)

φ′2

φ3
r2 − L2(1− iβ)rθ−z−1∂r

(
rz+3−θ φ

′

2φ2

)
. (7.46)

We separate this equation into two equations, demanding both the real and imaginary part
to vanish. Inserting φ = φ0r

a and θ = z + 2, both equations reduce to

0 = aβ. (7.47)

Thus, taking β = 0, we have solved all the equations of motion.
Summarizing, the solution is

0 ≤ z ≤ 4, θ = z + 2, φ = φ0r
±
√

4z−z2
, χ = constant, FΛ = 0, ξΛ = 0.

(7.48)
Actually, to reach this solution we excluded z = 0 and z = 4, since these imply constant
scalars, a = 0. However, these two special cases are in fact just two of the vacuum so-
lutions of the Einstein equations, and the solution (7.48) recovers these solutions in the
limits z → 0 and z → 4. We therefore consider these to be part of the solution found here.

Now, to find more solutions, one could obviously investigate Cases I and II above, as
well as the choice θ = z + 1 for Case III. Indeed, during this work we carried out this
analysis. However, we did not find that one could solve the remaining equations of motion
for any of these cases. Also, one may go further back and consider eqn. (7.33). By choosing
φ to be constant, φ′ = 0, the equation is solved by

χ(r) = a log r + χ0, with a2 = φ2
(
(θ − z)2 − z2 + 4z − 4

)
, (7.49)
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and where χ0 is a constant. We also carried out this analysis, but again found that all
equations of motion could not be satisfied.

Finally, one could consider solutions where both φ(r) and χ(r) are non-trivial functions
of r. In this case, it is less simple to solve the Einstein equation (7.33) and the scalar
equation of motion, (6.81). These are first order and second order differential equations,
respectively. We have not proven, however, whether such solutions are possible.

Consistent truncation of the action

The solution (7.48) was found by studying the equations of motion of the supergravity
action

S =

∫ √
−gd4x

(
R

2
+

1

4
IΛΣF

Λ
µνF

Σ|µν +
1

4
RΛΣF

Λ
µν
?FΣ|µν +

∂µφ∂
µφ+ ∂µχ∂

µχ

4φ2
− V (z, z̄)

)
,

(7.50)
where IΛΣ, RΛΣ and V (z, z̄) are given by eqns. (7.19)-(7.21). However, the solution requires
both vanishing charges and gaugings, as well as constant χ. We note here, that the solution
can actually be obtained from a much simpler action. Setting FΛ = ξΛ = ∂µχ = 0 in the
action (7.50) yields

S =

∫ √
−gd4x

(
R

2
+
∂µφ∂

µφ

4φ2

)
. (7.51)

Deriving the full set of equations of motion from the action (7.50) and then setting FΛ =
ξΛ = ∂µχ = 0, one finds precisely the same set of equations as the equations of motion
derived from (7.51). Therefore, any solution of (7.51) will also be a solution of (7.50).
This is known as a consistent truncation. In general, one cannot simply plug e.g. constant
scalar fields into an action and obtain a consistent truncation. Non-trivial constraints may
result from the equations of motion when setting the scalar fields to constants, and these
are not in general captured by the naively truncated action.

7.4 First-order flow equations

Having found explicit solutions in the F = −iX0X1 model, we will now plug these into
the first-order flow equations discussed in Section 4.2. Recall, a solution of these flow
equations must preserve supersymmetry.

As we found no solutions with non-zero gaugings, we take these to vanish, G = 0 ⇒
W = 0. The relevant flow equations are thus (4.43)-(4.45),

U ′ = −e−2A−U |Z|, (7.52)

A′ = e−2A−U |Z|, (7.53)

z′i = −2e−2A−Ugī∂̄|Z|. (7.54)

The central charge is given

Z = 〈Q,V〉 = LΛqΛ −MΛp
Λ = eK/2

(
XΛqΛ − FΛp

Λ
)
, (7.55)
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and the warp factors U and A are the metric components,

ds2 = −e2U(ρ)dt2 + e−2U(ρ)dρ2 + e2A(ρ)(dx2 + dy2). (7.56)

As in Section 4.2, we take in this section the metric signature (− + ++), for consistency
with [60].

The metric

In the usual coordinates such as eqn. (6.1), the Lifshitz metric with hyperscaling violation
is

ds2 = L2r−θ
(
−r2zdt2 +

dr2

r2
+ r2(dx2 + dy2)

)
. (7.57)

This does not have the form of (7.56). We can bring it to such a form by a coordinate
transformation,9

ρ ≡ ± L2

z − θ
rz−θ. (7.58)

The metric (7.57) then becomes (7.56) with

e2U = L
−2z
z−θ (z − θ)

2z−θ
z−θ ρ

2z−θ
z−θ , e2A = L

2z−4
z−θ (z − θ)

2−θ
z−θ ρ

2−θ
z−θ . (7.59)

By differentiating this, and re-arranging, we further obtain

U ′ =
2z − θ
z − θ

1

2ρ
, A′ =

2− θ
z − θ

1

2ρ
. (7.60)

Solutions of the F = −iX0X1 model

We found two solutions in this Chapter, eqns. (7.32) and (7.48). We focus first on the
latter with non-constant scalar fields, τ , but vanishing charges. This implies that the
central charge vanishes, Z = 0. The flow equations (7.52)-(7.54) are then trivial,

U ′ = 0, (7.61)

A′ = 0, (7.62)

τ ′ = 0. (7.63)

From eqn. (7.60), this implies
z = 1, θ = 2. (7.64)

Constant warp factors, U and A, correspond of course to the Minkowski metric. Indeed, it
was shown in Chapter 6 that the metric with z = 1, θ = 2 can be brought to the canonical
form of the Minkowski metric, and this is also easily seen from (7.56) and (7.59).

9Clearly, this is not a good choice if z = θ. In this case the coordinate transformation is ρ = L2 log r.
However, we did not encounter such a solution.
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The solution (7.32) with z = 3 and θ = 4 is non-trivial, however. This solution has
constant scalar fields, but non-zero charges. Consider first the coordinate transformation
(7.58), which for z = 3 and θ = 4 becomes

ρ = ∓L
2

r
. (7.65)

In order to have ρ > 0 for r > 0, we choose the lower sign in (7.58) and (7.65).
Now, for the F = −iX0X1 model, the symplectic sections, LΛ and MΛ, are given by

(7.6). Inserting these into the definition of Z, eqn. (7.55), yields

Z =
1√

2(τ + τ̄)
(q0 + τq1 + τp0 + ip1). (7.66)

By multiplying by the complex conjugate, Z̄, we obtain

|Z|2 =
1

2(τ + τ̄)

(
|τ |2(p2

0 + q2
1) + i(τ − τ̄)(p0q0 − p1q1) + (τ + τ̄)(p0p1 + q0q1) + p2

1 + q2
0

)
.

(7.67)
As earlier, we define τ = φ+ iχ. Eqn. (7.67) can then be written as

|Z|2 =
1

4φ

(
(φ2 + χ2)(p2

0 + q2
1)− 2χ(p0q0 − p1q1) + 2φ(p0p1 + q0q1) + p2

1 + q2
0

)
. (7.68)

Taking the square root of this and inserting the solution (7.32), this reduces simply to

|Z| = 1 + ε

2
L. (7.69)

For the flow equation (7.54), we need also to determine ∂τ̄ |Z|. By taking the square root
of eqn. (7.67) and differentiating, we obtain

∂τ̄ |Z| = −
(p1 + iq0 − τ(p0 + iq1))

√
p1 − iq0 + τ(p0 − iq1)

2
√

2
√
τ + τ̄

√
p1 + iq0 + τ̄(p0 + iq1)

. (7.70)

Inserting again τ = φ+ iχ and the solution (7.32), eqn. (7.70) simplifies to

∂τ̄ |Z| = −
(ε− 1)

8φ
L. (7.71)

Consider now the flow equation (7.54) for the scalar fields. For τ ′ = 0, eqn. (7.54) becomes
just

0 = ∂τ̄ |Z|. (7.72)

Clearly, this is solved using (7.71) by choosing ε = +1. Consider next eqns. (7.52) and
(7.53). For z = 3 and θ = 4, we find from (7.60),

U ′ = −1

ρ
, A′ =

1

ρ
, (7.73)
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and from (7.59), we find

e2U =
L6

ρ2
, e2A =

ρ2

L2
. (7.74)

From this, it follows

e−2A−U = e−2A
√
e−2U =

1

Lρ
. (7.75)

Using (7.69) with ε = +1, we then finally arrive at

e−2A−U |Z| = 1

ρ
. (7.76)

Plugging (7.73) and (7.76) into the flow equations (7.52) and (7.53), one sees that these
equations are solved. As mentioned, this is a non-trivial result implying that the solution
preserves supersymmetry.

Supersymmetric Lifshitz solutions with non-zero hyperscaling violation have only pre-
viously been constructed from near-horizon geometries of black holes or black branes. E.g.
solutions in [33] include a supersymmetric four-dimensional solution with z = 3 and θ = 4,
such as the solution above. In fact, [33] appeared only when this thesis was in the final
stages of preparation.



Chapter 8

Conclusions

Let us summarize and discuss some of the results of Chapters 6 and 7.
We noted a Ricci-flat solution with z = 4 and θ = 6 with non-zero Riemann tensor.

This simple solution was only mentioned in the literature [33] when this thesis was in the
final stages of preparation.

For constant scalar fields in gauged supergravity, we found that only a restricted set
of solutions are possible. In theories with gauged hyperscalars, the allowed solutions are
those of eqn. (6.67), or equivalently Fig. 6.1. Without gauged scalars, only a single non-
trivial solution is possible, for which z = 3 and θ = 4. In either case, the scalar potential
must vanish and therefore it does not contribute to the support of the solution for constant
scalar fields. This is very different from the Lifshitz (θ = 0) case.

For more general solutions, it is clearly necessary to allow for non-constant scalar
fields. The equations of motion with gauged hyperscalars, eqns. (6.38)-(6.46), are quite
complicated if one allows for non-trivial r-dependence, and in general contain many terms
which scale differently with r. However, there are no immediate restrictions to the possible
values of z and θ in this case.

In the F = −iX0X1 model, we found an explicit realization of the solution with
constant scalar fields, (7.32), and also a single solution with a non-constant real scalar
field, (7.48). As was mentioned, it is not excluded that allowing for non-trivial spacetime-
dependence of both real scalars can lead to more solutions.

We further showed that the solution (7.32) is supersymmetric, since it solves the first-
order flow equations. Supersymmetric Lifshitz-like solutions have only recently been con-
structed, and only from near-horizon geometries of black holes and branes. Our solution
is novel in this sense.

In Section 5.2 it was noted that the value θ = d − 1 is particularly interesting for
holography. Since our calculations are for d = 2, this implies θ = 1. Unfortunately, we did
not find such a solution.

The null energy condition is not an issue for our solutions. However, all our solutions
have θ > d = 2, except the trivial Minkowski space. It was pointed out in Section 5.2, based
on [25], that such gravity solutions may not be consistent. However, from our analysis, it
is unclear where this inconsistency or instability arises from.

Recall from Section 5.2 that solutions with more general z and θ may be found from
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the Einstein-Maxwell-Dilaton (EMD) action, eqn. (5.30). It is interesting to ask what the
key differences are between the EMD action and the F = −iX0X1 action, since the first
allows more general solutions. The F = −iX0X1 action is essentially a doubling of the
field content of the EMD action. The difference may reside in the fact that the latter is
allowed free parameters in the dilatonic coupling of the scalar to the vector, as well as in
the scalar potential. A comparison of the equations of motion could resolve this issue.

Finally, we did not succeed in finding explicit solutions with non-zero gauging. To
find such solutions in N = 2 supergravity seems to be an open problem. A possible way
to address this problem could be the flow equations. Rather than plugging in a known
solution, as we did, one could use these equations oppositely. Plugging in the metric
components (7.59) and (7.60), and allowing for both non-zero charges and gaugings, this
may shed light on such solutions.



Appendix A

Conventions

The metric convention on spacetime is mostly negative, (+ − −−) (except Section 7.4).
On quaternionic and special Kähler manifolds, which are Riemannian, we take Euclidean
signature.

The Riemann tensor is

Rµ
νρσ = ε

(
∂ρΓ

µ
σν − ∂σΓµνρ + ΓµρλΓ

λ
σν − ΓµσλΓ

λ
ρν

)
, (A.1)

while the Ricci tensor and Ricci scalar are

Rµν = Rρ
µρν , R = gµνRµν . (A.2)

On spacetime we take ε = −1. Then AdS has negative curvature despite the mostly
negative metric. For the special Kähler and quaternionic Kähler manifolds we take ε = 1.

We use natural units where Newton’s constant is κ2 = 1. The Einstein-Hilbert action
is then

S =

∫
√
gdDx

R

2κ2
=

∫
√
gdDx

R

2
. (A.3)

p-forms are defined with a factor p! in front of the components,

ωp =
1

p!
(ωp)µν dx

µ ∧ dxν . (A.4)

In particular, this implies for the 2-form field strength,

Fµν = ∂µAν − ∂νAµ. (A.5)

On a D-dimensional manifold endowed with a metric gµν , the Hodge dual of a p-form is a
(D−p)-form. In particular, in four-dimensions the Hodge dual of a two-form field strenths
is again a two-form,

?FΣ
µν =

√
−g
2

εµνρσF
Λρσ, (A.6)

?FΣµν =
1

2
√
−g

εµνρσFΛ
ρσ. (A.7)
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The totally antisymmetric Levi-Civita symbol on spacetimes with Lorentzian signature is

ε0123 = −ε0123 = 1, (A.8)

while on Riemannian manifolds (the target spaces of the non-linear sigma models),

ε123... = ε123... = 1. (A.9)

The Pauli matrices are

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A.10)

We then define σµ = (11, σi) and σ̄µ = (11,−σi), and σµν = i
2
σ[µσ̄ν].

A.1 Comparison of conventions

Without an overview of conventions, it can be confusing to compare papers in supergravity,
etc. Inspired by [130,131], we give here a short overview, which hopefully makes comparison
between references easier.

Sign classification

First, there is a sign choice for the Lorentzian metric. Take the metric g̃µν to be ”mostly
positive”, i.e. (− + + · · ·+). When comparing this metric to a metric gµν in another
convention, the choice of signature for the latter is then encoded in a factor s1 = ±1, such
that gµν = s1g̃µν .

In either case, the Christoffel symbols of the torsion-free Levi-Civita connection are
defined as

Γµνρ =
1

2
gµσ (∂ρgνσ + ∂νgσρ − ∂σgνρ) . (A.11)

The definition of the Riemann tensor comes with another choice of sign, s2 = ±1,

Rµ
νρσ = s2

(
∂ρΓ

µ
σν − ∂σΓµνρ + ΓµρλΓ

λ
σν − ΓµσλΓ

λ
ρν

)
. (A.12)

Likewise, the Ricci tensor can be defined with a choice of sign, s3 = ±1,

Rµν = s3R
ρ
µρν , (A.13)

while the Ricci scalar is defined as

R = gµνRµν . (A.14)

Now, take g̃µν , Γ̃µνρ, R̃
µ
νρσ, R̃µν and R̃ to be defined with s1 = s2 = s3 = +1. In order to

compare to other conventions, these quantities will pick up the signs,

gµν = s1g̃µν , Γµνρ = Γ̃µνρ, Rµ
νρσ = s2R̃µ

νρσ, Rµν = s3R̃µν , R = s1s2s3R̃. (A.15)
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Considering the action of a gravity theory. In order to have positive kinetic energy, the
signs for the Einstein-Hilbert term, a vector field, and a scalar field with a potential must
be

S =

∫
dDx
√
−g

(
s1s2s3

R̃

2
− 1

4
FµνF

µν − s1
1

2
∂µφ∂

µφ− V (φ)

)
. (A.16)

From the scalar kinetic term, one can read off the metric signature. The vector kinetic
term, however, is independent of metric convention, since it has two upper indices, and
thus gets a factor of s2

1 = +1.
We can now characterize the conventions of many papers by their choice of (s1 s2 s3).

In this thesis, we use (−−+), like e.g. [62,76]. Some papers use (−−−), such as [55,73],
while e.g. [69] uses (+ + +). All the signs are not always clear, nor necessary. For example
in [25,59], where s1 = +1 and s2s3 = +1.

Normalization

There are also different conventions on the normalization of the Einstein-Hilbert action,

S =

∫
dDx
√
−g
(
R

b
+ LM

)
. (A.17)

The normalization shows up when doing a variation w.r.t. the metric, i.e. deriving the
Einstein equations. Absorbing b into the energy-momentum tensor yields

Rµν −
1

2
Rgµν = Tµν , (A.18)

with

Tµν =
−b√
−g

∂ (
√
−gLM)

∂gµν

= b

(
1

2
gµνLM −

∂LM
∂gµν

)
. (A.19)

In this thesis we take b = 2.

p-forms

In this thesis and in e.g. [59,69,132], a p-form is defined as,

ωp =
1

p!
ωµ1···µpdx

µ1 ∧ · · · ∧ dxµp . (A.20)

On the other hand, in e.g [55, 62, 73, 76, 77], the factor of 1/(p!) is absorbed into the
components ωµ1···µp , thus

ωp = ωµ1···µpdx
µ1 ∧ · · · ∧ dxµp . (A.21)
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In particular, for the two-form field strength of vector fields, this means

Fµν,here = 2Fµν,there. (A.22)

This shows up for example in the action in the kinetic terms for vectors. In our convention,

S =

∫ √
−gd4x

1

4
IΛΣF

Λ
µνF

Σ|µν , (A.23)

while in the other convention

S =

∫ √
−gd4x IΛΣF

Λ
µνF

Σ|µν . (A.24)



Appendix B

Vielbein formalism

In order to consistently couple spinors to gravity, we need to introduce the vielbein [43,
69, 108]. In the following we consider a pseudo-Riemannian manifold with Lorentzian
signature, but the Riemannian analogue is straightforward.

Standard formalism

Recall, on D-dimensional spacetime M with metric g, the usual basis for vectors in TpM
is {∂µ}, while for one-forms in T ∗pM the basis is {dxµ}.

A tensor is independent of the basis chosen. For instance, for two choices of coordinates
{∂µ} and {∂µ′}, a vector has components

V = V µ∂µ = V µ′∂µ′ . (B.1)

This is the reason for the tensorial transformation properties of its components,

V µ′ ∂

∂xµ′
= V µ ∂

∂xµ
= V µ∂x

µ′

∂xµ
∂

∂xµ′
, (B.2)

from which it follows

V µ′ =
∂xµ

′

∂xµ
V µ. (B.3)

The covariant derivative Dµ contains the Christoffel symbol,

Γµνρ =
1

2
gµσ (∂ρgνσ + ∂νgσρ − ∂σgνρ) , (B.4)

which is torsionless Γµνρ = Γµρν and metric compatible Dµgνρ = 0.

Non-coordinate frames

Consider now the linear combination of basis vectors

ea = ea
µ∂µ, {eaµ} ∈ GL(D,R), (B.5)
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where det ea
µ > 0. Thus {ea} is a frame of basis vectors obtained by GL(D,R) rotations

of the basis {∂µ}, preserving the orientation. The basis {ea} is called a non-coordinate
bases. The coefficients ea

µ are called vielbeins. The word viel is German for many. One
may be more specific, e.g. vierbein for D = 4 or zehnbein for D = 10. However, we take
the sloppy approach of always writting vielbein.

We demand the frame {ea} to be of unit length and orthogonal with respect to the
metric,

g(ea, eb) = ea
µeb

νgµν = ηab. (B.6)

We define the inverse of ea
µ as eµ

a, such that

eµ
aea

ν = δµ
ν , eµ

aeb
µ = δab. (B.7)

These form a dual basis: ea = eµ
adxµ, such that the inner product of the basis and dual

basis is
〈ea, eb〉 = eµ

aeb
ν〈dxµ, ∂ν〉 = eµ

aeb
νδµν = δab. (B.8)

Inverting (B.6) then yields
gµν = eµ

aeν
bηab. (B.9)

Thus, we can always express the metric in terms of the vielbein.
A tensor is independent of whether we can choose the coordinate basis {∂µ} or the

non-coordinate basis {ea}, e.g. a vector,

V = V µ∂µ = V aea = V aea
µ∂µ. (B.10)

It follows that,
V µ = V aea

µ, V a = V µeµ
a. (B.11)

Local Lorentz transformations

For a given metric the vielbein are not uniquely determined by (B.9). Transformations of
the form

e′µ
a

= eµ
bΛb

a(x) (B.12)

leave (B.9) invariant if

Λa
cΛb

dηcd = ηab ⇒ Λ(x) ∈ SO(1, D − 1). (B.13)

Thus gravitational theories formulated using the vielbein are invariant under both general
coordinate transformations and also the transformations above, called local Lorentz trans-
formations. The indices µ, ν, ... are sometimes called curved indices, as they are raised and
lowered by gµν . The indices a, b, ... are known as local Lorentz indices or flat indices, and
they are raised and lowered by ηab.
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Spin connection

Spinors transform as scalars under general coordinate transformations. Under local Lorentz
transformations, however, a connection is needed. This is the so-called spin connection
ωµ

ab. The torsionless spin connection is

ωµ
ab =

1

2
ecµ
(
Ωabc − Ωbca − Ωcab

)
, (B.14)

where
Ωabc =

(
eaµebν − ebµeaν

)
∂µeν

c (B.15)

are called the anholonomy coefficients. The torsionless spin connection is antisymmetric
in a, b, i.e. ωµ

ab = −ωµba. It is related to the Christoffel symbols as

ωµ
ab(e) = eν

a∂µe
bν + eν

aebσΓνσµ (B.16)

The covariant derivative of a spinor χ is then given by

Dµχ =

(
∂µ +

1

4
ωµ

abγab

)
χ, (B.17)

with γab = γ[aγb]. The gamma matrices with flat indices γa may be taken to be the gamma
matrices of flat spacetime. As described in Section 2.3, it may be convenient in some
instances to introduce a connection with torsion.
From the spin connection, we can define the Riemann tensor

Rµν
ab = 2∂[µων]

ab + 2ω[µ
acων]c

b. (B.18)

Contracting the indices yields the Ricci scalar. Also, denoting by e the determinant of the
vielbein, one finds e ≡ det eµ

a =
√
−g. The Einstein-Hilbert action can thus be written in

terms of the vielbein,

S =

∫
dDx

1

2
e ea

µeb
νRµν

ab. (B.19)



Appendix C

Useful geometric identities

The following is a collection of some geometric identities and associated facts. These may
seem randomly chosen, however, as pointed out in Section 2.5, these identities are useful
for calculations therein. For further details, see e.g. [69]. We assume below in all cases
that the manifold M is endowed with a metric g.

Contraction of Levi-Civita symbols

On a D dimensional manifold M , the contraction of p indices of two Levi-Civita symbols
yields an antisymmetrized product of Kronecker deltas:

εµ1µ2···µpα1···αD−pε
µ1µ2···µpβ1···βD−p = s p!(D − p)!δ[β1

α1
· · · δβD−p]

αD−p
, (C.1)

where s = −1 for Lorentzian signature and s = 1 for Euclidean. Recall also the antisym-
metrization is

T[µ1µ2···µn] =
1

n!
(Tµ1µ2···µn + alternating sum over permutations of indices). (C.2)

In particular, the contraction of two indices of the Levi-Civitas on a four-dimensional
manifold with Lorentzian signature is then

εµνρσε
µνλκ = −2(δλρδ

κ
σ − δκρδλσ). (C.3)

The Hodge dual

On a D-dimensional manifold M endowed with a metric g, denote the vector space of
p-forms by Ωp(M). Then the Hodge ? operator defines an isomorphism between Ωp(M)
and ΩD−p(M). Applying the Hodge ? operator twice to a p-form ωp thus yields a p-form,
in fact the same form up to a sign,

??ωp = (−1)s̃+p(D−p)ωp. (C.4)

Here s̃ = 1 for Lorentzian signature and s̃ = 0 for Euclidean. In particular, for the two-form
field strength on a four-dimensional manifold with Lorentzian signature,

??F = −F. (C.5)
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The variation of the determinant of the metric is

δ
√
|g| = −1

2

√
|g|gµνδgµν = +

1

2

√
|g|gµνδgµν . (C.6)

Using this, and the antisymmetry of the field strength, one can prove

∇µF
µν =

1√
|g|
∂µ(
√
|g|F µν). (C.7)

More generally this relation holds for antisymmetric tensors of rank one or higher.



Appendix D

Vacuum solutions in general
spacetime dimension

For the sake of interest, this Appendix provides the vacuum solutions of the hyperscaling
Lifshitz metric in arbitrary spacetime spacetime dimension D = (d + 2). The metric has
the form,

ds2
d+2 = L2r−2θ/d

(
r2zdt2 − dr2

r2
− r2dxidxi

)
, i = 1, ..., d. (D.1)

The Ricci tensor has components

Rtt = r2z (θ − z − d)(zd− θ)
d

, (D.2)

Rrr =
(d+ z2)d− (d+ z)θ

r2d
, (D.3)

Rij = δijr
2 (d− θ)(d+ z − θ)

d
, (D.4)

and the Ricci scalar is

R = −r
2θ
d
d3 + d2(−2θ + 2z + 1) + d ((θ − 2)θ + 2z2 − 2θz) + θ(θ − 2z)

L2d
. (D.5)

The vacuum Einstein equations Rµν = 0 then has four solutions,

θ = d, z = 0,
θ = d, z = 1,

θ = d(d+1)
d−1

, z = 2d
d−1

.
(D.6)

The two first, however, have vanishing Riemann tensor.
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