Phases of Thermal
N =2 Quiver Gauge Theories

Cand. scient. thesis

Kasper Jens Larsen
e-mail: kjlarsen@nbi.dk

Supervisor: Niels A. Obers

The Niels Bohr Institute
University of Copenhagen



Abstract

In this master thesis we consider large N U(N)M thermal A = 2 quiver gauge theories on
S x §3. We obtain a phase diagram of the theory with R-symmetry chemical potentials,
separating a low-temperature/high-chemical potential region from a high-temperature /low-
chemical potential region. In close analogy with the A" = 4 SYM case, the free energy is of
order O(1) in the low-temperature region and of order O(N2M) in the high-temperature
phase. We conclude that the N' = 2 theory undergoes a first order Hagedorn phase tran-
sition at the curve in the phase diagram separating these two regions. We observe that in
the region of zero temperature and critical chemical potential the Hilbert space of gauge
invariant operators truncates to smaller subsectors. We compute a 1-loop effective potential
with non-zero VEV’s for the scalar fields in a sector where the VEV’s are homogeneous and
mutually commuting. At low temperatures the eigenvalues of these VEV’s are distributed
uniformly over an S°/Z); which we interpret as the emergence of the S°/Z, factor of the
holographically dual geometry AdSs x S°/Zy;. Above the Hagedorn transition the eigen-
value distribution of the Polyakov loop opens a gap, resulting in the collapse of the joint
eigenvalue distribution from S°/Zy; x St into S%/Zy;. We finally give a detailed compu-
tation of the 1-loop anomalous dimension matrix of the SO(6) sector of single-trace scalar
operators of N'=4 SU(N) SYM theory in the planar limit.
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Introduction

The phase structure of large N U(N) gauge theories at finite temperature is in itself
a very rich and interesting subject that may provide qualitative insight into the phase
structure of QCD. Even more so, the AdS/CFT correspondence ([1], [2], [3]) has provided
a general framework for translating results obtained in weakly coupled thermal gauge
theory into results about the finite temperature behavior of the physics of black holes
and stringy geometry at strong coupling. One such connection was suggested by Witten
[4] who argued that the Hawking-Page phase transition [5] between thermal AdSs and
the large AdSs Schwarzschild black hole should have a holographic dual description as
a confinement/deconfinement transition in the dual thermal field theory defined on the
conformal boundary S' x S3 of thermal AdSs.

A general framework for studying large N U(N) gauge theories on S2 at finite temper-
ature was given in [6] and, independently, in [7]. Despite the fact that these theories are
defined in a finite volume, they can still have phase transitions, since the N — oo limit acts
as a thermodynamic limit. Indeed it was found that the theories exhibit phase transitions
even in the limit of zero gauge coupling. The origin of this is the Gauss law constraint that
all states must be gauge invariant. The order parameters of the phase transition are the
expectation value of the Polyakov loop' and the scaling of the free energy F with N. In
the low-temperature phase, the Polyakov loop has zero expectation value (thus, the Zy
center symmetry is unbroken), and the free energy is of order 1 with respect to N. The N
dependence of the free energy naturally suggests that the physical system in this phase is
a non-interacting gas of color singlet states, and the phase is therefore called “confining”
(consistent with the unbroken center symmetry). When the temperature is raised above a
critical temperature Ty the theory enters a new phase in which the expectation value of
the Polyakov loop is non-zero (so that center symmetry is spontaneously broken), and the
free energy scales as N2 as N — oo. Here the N dependence of the free energy suggests
that the gauge theory in this phase describes a non-interacting plasma of color non-singlet
states, and the phase is accordingly called “deconfined” (consistent with the spontaneously
broken center symmetry). This phase transition is of first order? and is identified with a

!We use the term Polyakov loop loosely since we are actually referring to the holonomy matrix of the
gauge field around the thermal circle and not just its trace.

2As pointed out in [6], the order of the phase transition may change for non-zero gauge coupling.
However, settling this issue requires a 3-loop computation since the leading (1-loop) result for the phase
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Hagedorn phase transition.

Specializing to N’ = 4 U(N) SYM theory, Yamada and Yaffe [9] and, independently,
Harmark and Orselli [10] extended the analysis of the phase structure by including chemical
potentials conjugate to the R-charges, and thus obtained a phase diagram of the theory as
a function of both temperature and chemical potentials. As noted in [9], the phase diagram
obtained from the weakly coupled gauge theory is in qualitative agreement with the phase
diagram of R-charged gravitational solutions of 5-dimensional N' = 2 gauged supergravity,
which are believed to be related to the strong-coupling limit of N' =4 SYM theory [11],
[12]| through AdS/CFT.

As another application of the phase diagram, in [10] the observation was made that in
regions of small temperature and critical chemical potential N' = 4 SYM theory reduces
to a quantum mechanical theory. More specifically, the gauge invariant partition function
reduces to that of an SU(2) spin chain when two of the chemical potentials are turned on
and are equal, and an SU(2|3) spin chain when all three chemical potentials are turned
on and are equal. These were identified with, respectively, the SU(2) and SU(2|3) closed
subsectors of the conjectured complete SU(2,2[4) spin chain of ' =4 SYM theory that
have been investigated in the study of integrability [13], [14], [15], [16], [17], [18].

Again for N' = 4 SYM theory, the framework of [6], [7] was generalized in a different
direction in [19] by allowing non-zero VEV’s for the scalar fields. The authors computed
a one-loop effective potential for the theory at finite temperature on S% at weak 't Hooft
coupling under the assumption that the VEV’s of the scalar fields are constant? and diag-
onal matrices.* Above a critical temperature T, > Ty the effective potential was observed
to develop new unstable directions along the scalar directions accompanied by new saddle
points which only preserve an SO(5) subgroup of the global SO(6) isometry group. This
phenomenon was identified as the weak coupling version of the Gregory-Laflamme local-
ization instability® of the small AdSs5 black hole in the gravity dual of the strongly coupled
gauge theory.

The solutions to the equations of motion obtained from the effective potential of [19]
were given in terms of eigenvalue distribution functions in [21]. The authors considered the
joint eigenvalue distribution of the Polyakov loop and the scalar VEV’s and found that
the topology of the joint distribution was tied to the Hagedorn phase transition: below the
Hagedorn temperature Ty the eigenvalues of the scalar VEV’s are distributed uniformly
over an S° and the eigenvalues of the Polyakov loop are distributed uniformly over an S*.
Thus, the joint eigenvalue distribution is an S® fibered trivially over S'; i.e., it is S' x S5,

transition is precisely on the borderline between a first order and a second order transition. This has so
far only been carried out for pure U(N) Yang-Mills theory [8] where it was found that the transition is
indeed of first order.

3The VEV’s are assumed homogeneous on the S® to preserve the SO(4) isometry. Otherwise the vacuum
would spontaneously break rotational invariance, and such an exotic phase is very different from what is
observed at strong coupling.

4This potential was computed earlier in [9] for the special case of zero Polyakov loop eigenvalues.

5See [20] for a recent review of Gregory-Laflamme instability.
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Above T} the eigenvalue distribution of the Polyakov loop opens a gap and thus becomes
an interval. The scalar VEV’s are distributed uniformly over an S° fibered over this in-
terval, with the radius of the S° at any point in the interval proportional to the density
of Polyakov loop eigenvalues at that point (for fixed TR). The S® thus shrinks to zero
radius at the endpoints of the interval: the topology of the joint eigenvalue distribution is
an S%. The authors interpreted the S® eigenvalue distribution of the scalar VEV’s as the
emergence of the S° factor of the holographic dual thermal AdSs x S° geometry, whereas
the S% was identified with a non-contractible S® appearing in the near-horizon geometry
of a configuration of smeared D2-branes, arising from T-dualizing along the thermal circle
of thermal AdSs.

This thesis is organized as follows. In Chapter 1 we give an introduction to N’ = 2 U(N)M
quiver gauge theory on S' x S? with chemical potentials conjugate to the R-charges. In
particular, we note that some of the details given here we have not found elsewhere in the
literature. In particular, we write the full Lagrangian density in terms of SU(2)r x U(1)r
invariants.

In Chapter 2 we evaluate the quantum effective action of N' = 2 quiver gauge theory
with non-zero R-symmetry chemical potentials and zero scalar VEV’s in the gypy — 0
limit and express it in terms of single-particle partition functions. We use the effective
action to construct a matrix model for A" = 2 quiver gauge theory on S x $3. The model
turns out to be an M-matrix model with adjoint and bifundamental potentials. Before
turning to the phase transition in this matrix model we discuss order parameters by which
to identify the phase transition. We then move on to study the saddle points of the matrix
model as functions of temperature and chemical potential and thereby examine the phase
structure of the model. In the low-temperature phase we find a saddle point corresponding
to a uniform distribution of the eigenvalues of the Polyakov loop®. In this phase the free
energy is O(1) with respect to N. This behavior of the free energy suggests that the
model in this phase describes a non-interacting gas of color singlet states, and the phase
is therefore labelled “confining”. This saddle point is observed to become unstable when
the temperature is raised above a certain threshold temperature (which depends on the
chemical potential). The model then enters a new phase in which the free energy scales as
N2M as N — oo. This phase is thus interpreted as describing a non-interacting plasma of
color non-singlet states and is labelled “deconfined”. The “deconfinement” transition is of
first order and is identified with a Hagedorn phase transition. The condition of stability of
the low-temperature saddle point is translated into a phase diagram of the gauge theory as
a function of both temperature and chemical potentials. We subsequently study the phase
diagram in regions of small temperature and critical chemical potential. We observe that
the Hilbert space of gauge invariant operators truncates to the SU(2) subsector when the

SWe are using a somewhat sloppy terminology here: by ‘Polyakov loop’ we really mean the holonomy
matrix of a closed curve winding about the thermal circle and not just its trace. Throughout this thesis
we will use the word to describe both and leave the precise meaning to be determined from the context.
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chemical potential corresponding to the SU(2) g factor of the R-symmetry group SU(2)g X
U(1)g is turned on, whereas when both chemical potentials are turned on and set equal,
it truncates to a larger subsector that corresponds to an orbifolded version of the SU(2|3)
sector found in A/ = 4 SYM theory.

In Chapter 3 we develop a matrix model for A" = 2 quiver gauge theory on S* x S3
with non-zero VEV’s for the scalar fields and zero R-symmetry chemical potentials. We
carry out this computation in the special case where the background fields are assumed
to be “commuting” in a sense that conforms to the quiver structure. Furthermore the
background fields will be taken to be static and spatially homogeneous in order to preserve
the SO(4) isometry of the spatial S® manifold. The method employed for computing the
effective potential will be the standard background field formalism. That is, we expand the
quantum fields about classical background fields and path integrate over the fluctuations,
discarding terms of cubic or higher order in the fluctuations. The resulting fluctuation
operators turn out to have a particular tridiagonal structure in their quiver indices. By
exploiting the vacuum structure of the theory we find that the determinants factorize,
leading to an expression for the quantum effective action of N' = 2 U(N)M quiver gauge
theory that explicitly displays the Zj; structure of the theory. Finally we generalize our
results to a specific class of field theories that can be obtained as Zj; projections of N' = 4
SYM theory, of which A/ = 2 quiver gauge theory is a special case.

In Chapter 4 we find the saddle points of the matrix model of Chapter 3 in the large
N limit in a coarse grained approximation. We consider the joint eigenvalue distribution
of the scalar VEV’s and the Polyakov loop and find that the topology of the eigenvalue
distribution is tied to the Hagedorn phase transition. Below the Hagedorn temperature
the eigenvalues of the scalar VEV’s are distributed uniformly over an S%/Zj; and the
eigenvalues of the Polyakov loop are distributed uniformly over an S!. Thus, the joint
eigenvalue distribution is an S°/Z); fibered trivially over S'. We interpret this S%/Z)s as
the emergence of the S°/Z); factor of the holographically dual AdSs x S°/Z); geometry.
Above the Hagedorn temperature the eigenvalue distribution of the Polyakov loop becomes
gapped and is thus an interval. The scalar VEV’s are now distributed uniformly over an
S®/Zs fibered over this interval, with the radius of the S°/Zj; at any point in the interval
proportional to the density of Polyakov loop eigenvalues at that point (for fixed TR). The
S®/Zyy thus shrinks to zero radius at the endpoints of the interval: the topology of the
joint eigenvalue distribution is an S6 /Zpr where the Zj is understood to act on the S5
transverse to an S' diameter. Finally we generalize our results to the Zj; orbifold field
theories discussed at the end of Section 5. In particular we find that the geometry of the
dual AdS spacetime is mirrored in the structure of the quantum effective action in a precise
way within this class of orbifold field theories.

In the conclusion we discuss the results we have obtained in this thesis and suggest
directions for future study.



Chapter 1
N =2 quiver gauge theory

In this chapter we review A = 2 U(N)™ quiver gauge theories on S' x S3 with R-symmetry
chemical potentials.! A brief introductory review of N” = 2 quiver gauge theories on S* x 3
is given in Section 1.1. In the section 1.2 we show explicitly how A" = 2 quiver gauge theory
can be obtained from N' = 4 SYM theory by orbifold projection. In 1.3 we display the
SU(2)r x U(1)g R-symmetry of the theory by writing the Lagrangian density in terms of
invariants. We note that many of the technical details given here are not available elsewhere
in the literature. In Section 1.4 we review how to implement the chemical potentials into
the Lagrangian density. In Section 1.5 we then write up the complete Lagrangian density
including R-symmetry chemical potentials.

1.1 Review of N/ = 2 quiver gauge theory

N = 2 quiver gauge theory with gauge group U(N)M arises as the world-volume theory
of open strings ending on a stack of N D3-branes placed on the orbifold C3/Zj;. The
gauge theory is thus superconformal [26] with 16 supercharges. It can be obtained as a Zy,
projection of N'=4 U(NM) SYM theory as explained in detail in Section 1.2. The result-
ing gauge group is U(N)M where all the U(N) factors of the gauge group have the same
gauge coupling constant gyy associated with them. Letting ¢ = 1,..., M and identifying
i ~ i+ M, the field content can be summarized as follows. There are M vector multiplets?
(Aui, @i, Vs i, 1i) where A, is the gauge field, v; is the gaugino, ®; is a complex scalar field,
and g ; is the superpartner of ®;. We take v; and ¢ ; to be 2-component Weyl spinors.
Furthermore there are M hypermultiplets (Ai,(i—l—l)aB(i—i—l),i?XA,i?XB,i) where A; ;1) and
Bi(i41),; are complex scalar fields and x4 ; and xp,; are their respective superpartners which
we will take as 2-component Weyl spinors. The fields in the i’th vector multiplet all trans-
form in the adjoint representation of the i’th U(N) factor of the gauge group. The fields
in the ¢’th hypermultiplet transform in a bifundamental representation of the i’th and

Tt is assumed that the reader is already familiar with supersymmetric field theory. For reviews, see for
example [22, 23, 24, 25].
?We will use an N = 1 notation throughout this thesis since this proves convenient.

9



10 CHAPTER 1. N =2 QUIVER GAUGE THEORY

(1 4+ 1)’th factors. More specifically, letting N; denote the fundamental representation of
the i’th U(N) factor and N; the corresponding antifundamental representation, Aj (1)
and its superpartner x 4; transform in the N; ® N;1; representation, whereas B(;,1); and
its superpartner xpg; transform in the N; ® N; 1 representation.

The field content is conveniently summarized in the quiver diagram in Figure 1.1. The
diagram consists of M nodes, labelled by i = 1,..., M with the identification ¢ ~ ¢ + M.
The i’th node represents the i’th U(IN) gauge group factor. Fields belonging to the i'th
vector multiplet are drawn as arrows that start and end on the i’th node. For the i’th
hypermultiplet, the fields transforming in the N; ® N; ;1 representation are drawn as arrows
that start at the i’th node and end at the (i + 1)’th node; the fields transforming in the
N; ® N, are depicted as arrows going from the (i + 1)’th to the i’th node.

Figure 1.1: Quiver diagram summarizing the field content of N' = 2 U(N)M quiver gauge theory.
Each of the black dots (called nodes) represents a U(N) gauge group factor. The nodes are labelled
byi=1,..., M with the identification i ~ i+ M. Arrows go from fundamental to antifundamental
representations of the corresponding gauge group factors. The scalar fields A; (i1 1), B(iy1),; and ®;
are shown in the figure, whereas the gauge fields and the superpartners of each field have been left
implicit.

The holographic dual of N' = 2 quiver gauge theory was found in [26] to be Type 1IB
string theory on AdSs x S°/Zy;.3 The quotient S°/Zy; is obtained by embedding S% in C3
where the action of the orbifold group Z; is as defined in (1.2.1). Note that this statement
implicitly contains the information that the N' = 2 quiver gauge theory is conformally
invariant. Namely, since the AdS5 part of the 10-dimensional geometry is not acted on by

#We will assume that the reader has some familiarity with the AdS/CFT-correspondence. For an ex-
cellent introductory review see [27].
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the orbifold group, it preserves the isometry group SO(2,4), and so the 4-dimensional field
theory defined on the conformal boundary of AdSs will therefore be invariant under the
full conformal group SO(2,4).

The AdS5 space has a radius given by

R2 5 = \/41gs(a/)2NM (1.1.1)

where g5 is the Type IIB string coupling. There are also NM units of 5-form RR-flux
through the AdSs. Due to the orbifold action the volume of the quotient S°/Zj; equals
the volume of the covering space S° divided by a factor M where the radius of the S° is
the same as that of AdSs given in (1.1.1). Similarly, there are N units of 5-form RR-flux
through the S%/7Zy; factor which originate from N M units of flux in the covering space.
Finally, we note that the Yang-Mills coupling for each U(N) gauge group factor gyyp is
related to the Type IIB coupling by 9%/1\/[ = 4mwgsM. This means that the ’t Hooft coupling
relevant for each factor is A = g%MN = 4mwgsN M. This is the same as the 't Hooft coupling
on the original N M D3-branes before orbifolding, for which the Yang-Mills coupling was
equal to 4mg,. In the following we will often denote the Yang-Mills coupling simply by g.

Before giving the action of N' =2 U(N)M quiver gauge theory on S x S% we will fix
our conventions. We set Fj,, = 9,4, — 0,A, +ig[A,, A)) and D, = 0, + ig[A,, -]. We
denote the circumference of the circle S! with 8 and the radius of the spatial S% with R.
The bosonic fields are required to satisfy periodic boundary conditions around the thermal
circle, ¢(t + B,2) = ¢(1,x), whereas the fermionic fields have antiperiodic boundary
conditions ¥ (7 4 B,x) = —(7, x). The fact that the boundary conditions are different for
bosonic and fermionic fields explicitly breaks supersymmetry.* The temperature is defined
to be the inverse circumference of S'; that is, T = B~'. The circle S' will be referred to
throughout this thesis as the thermal circle.

The Euclidean action of N' = 2 quiver gauge theory on S x S3 at the temperature 37!

is then
S = / d'z |g| (»Cgauge + Lscalar + ﬁferm) (1.1.2)
S1x.S3
where the gauge boson, scalar field and spinor field Lagrangian densities are given by,
respectively®
1
Leauge = 1 Tr Fy Fl (1.1.3)

Lot = Tr |(DuAD,A+ DB DB + D, D,®)
+ R72(AA+ BB + %) + %gQ (14,74) + (B, B] + [@,6])2

—20*(|4, B)]* + |[4,9]]" + |[B, @] )| (1.1.4)

*We will moreover see a clear manifestation of the SUSY breaking in subsection 2.5.3.

5Note that for all fields, including the Weyl spinors x4, xB,%®,, the bars denote the Hermitian
conjugate, not the complex or Weyl conjugate. E.g., (X4)as = (x4)5, Where a, § are gauge group indices
and the * denotes complex conjugation. Furthermore, in the third line of Eq. (1.1.4), the notation means,
e.g., |[A, B])|? = [A, B][4, B].
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Liom = iTr (XA7uDpXa +XB 7 DX + 0 7 Duth + Yo 74 Dy )

+% Tr (% (14, ] = (B, 6)) + 5 (A, 9] + [B, va])

_E([va_B] - [va_A]) - 1/}‘1)([A7X_A] + [B»X_B])
+xa([4, %] = [B,¥]) + x5([A,¥] + B, $o])
- w([AaxB] - [B7XA]) - %([Z’ XA] + [Ev XB])

+X_A[6ax_f3] - X_B[(I)aX—A] + ¢[¢’¢¢] - ¢<I>[(I)’w]
@, xa] + V@, 0] — Vo9 ). (113)

+
o
b
i
<
=,
|
o

The traces are taken over the NM x NM matrices. The spinor fields x4, x5, ¥, are
undotted 2-component Weyl spinors. We define 7, = (1,i0). The operator Bu is defined
by 1 Buwg = %(wlDung — (Dyn) 1/12). It is implied that the fields A, B, ®, A, etc. take
the orbifold projection invariant forms given in Egs. (1.2.15)-(1.2.16) and (1.2.37)-(1.2.38).
Note that the scalar fields are conformally coupled to the curvature of the spatial manifold
53 through the term R~2Tr (AA+ BB+ ®®) in (1.1.4). This effectively induces a mass for
the scalar fields. Note here that, strictly speaking, the curvature coupling term should be
expressed through the Ricci scalar R = 6R~2 of S2 rather than the radius R. The reason
for coupling the scalar fields to the curvature of the spatial manifold is to preserve the in-
variance of Sgcalar under conformal transformations of the metric g, (z) — Q2() g, ().
In order for the kinetic part of the action to be invariant under a transformation with a con-
stant €2, any scalar field ¢ of the theory must accordingly transform as ¢(z) — Q71 (2)¢(z)
(this reflects the fact that ¢ has the dimension of [length]~! in a 4-dimensional spacetime).
Allowing §2(x) to vary over the spacetime, the variation of the kinetic part is cancelled by
the variation of the curvature coupling term due to the non-trivial transformation of the
Ricci scalar under the conformal transformation. This is explained in further detail in [28],
below Eq. (3.27).

Finally we note that the R-symmetry group of N' = 2 U(N)™ quiver gauge theory
is SU(2)r x U(1)g, resulting from breaking the SU(4)r R-symmetry group of N = 4
theory via the action of the orbifold group Zj,; as explained in the next section. Indeed,
much of the renewed interest in orbifold quiver gauge theories during the past decade is
motivated by the desire to extend the AdS/CFT correspondence between Type IIB string
theory on AdSs x S% and N' = 4 SYM theory to include boundary field theories with lower
supersymmetry than A/ = 4. Field theories obtained from A/ =4 SYM theory by orbifold
projection with a discrete orbifold group I' C SU(4) g present an elegant way of doing this
since their dual holographic string theory description can often be deduced geometrically.
Depending on whether T" is embedded entirely in an SU(2), SU(3) or SU(4) subgroup of
the SU(4)g R-symmetry group, the resulting orbifold field theory will have N' = 2,1,0
supersymmetry, respectively [29, 30].
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1.2 Relation to N =4 SYM theory

In this section we give a detailed description of how A" = 2 U(N)™ quiver gauge theory
can be obtained by applying a Zj; projection to N =4 U(NM) SYM theory. We include
here details which we have not found elsewhere in the literature.

Consider Type IIB string theory and introduce a stack of N M coincident D3-branes into
the 10-dimensional (initially flat) spacetime. It is well known that the low-energy effective
field theory of open strings with endpoints attached to the D3-branes is 4-dimensional
N =4 SYM theory with gauge group U(NM). The space transverse to the world volume
of the D3-branes is R® = C? which has the isometry group SO(6). Now we consider the
action of the subgroup Zj; on C? given by

(21,22,23) — (z1,w ‘29,w23), w = e2mM (1.2.1)

The group Zjy is called the orbifold group. We will denote the resulting quotient of C3 by
C3/Zy; where it is implied that the action of Zj; on C? is always that given in Eq. (1.2.1).

Consider now open strings living on the stack of D3-branes where the transverse space
is C3/Zy;. The low-energy effective field theory is no longer A" =4 U(NM) SYM theory.
This is because associated with the orbifold group action (1.2.1) on the coordinates of C3
there is an orbifold group action on the scalar fields and their superpartners (to be defined
below), and we must require that all quantum fields of N' = 4 SYM theory be invariant
under this action. The gauge theory obtained from N' =4 SYM theory by truncating the
Hilbert spaces of quantum fields to Zps-invariant fields is called N' = 2 quiver gauge theory.

The orbifolding breaks the R-symmetry group SU(4) of N' = 4 SYM theory into
SU(2)r x U(1)g.5 This is shown explicitly in Section 1.3 where the Lagrangian density of
the quiver gauge theory is expressed in terms of SU(2)g x U(1)g invariants. The quiver
gauge theory thus indeed has N' = 2 supersymmetry.

The orbifold group action (1.2.1) breaks the gauge group U(NM) of the N' = 4 theory
into

UN)D x UN)? x ... x UN)M) (1.2.2)

which is thus the gauge group of NV = 2 quiver gauge theory. We can see this as a manifes-
tation of the fact that the quiver gauge theory is a low-energy effective field theory of open
strings. Indeed, each of the M copies of C?/Z,; embedded in C? will contain N coincident
D3-branes, and an open string can attach its endpoints to any of the stacks. Finally, to
conclude the enumeration of the symmetries of N' = 2 quiver gauge theory, we note that
it is known to be a conformally invariant theory like the parent N'=4 SYM theory [26].
In order to define the action of the orbifold group Zy; on the N’ = 4 SYM fields we first
set up some notation. First Zy, is embedded into U(NM) by defining the twist matrix

5To be precise, one has the breaking SU(4) = SO(6) — SO(2) x SO(4) = U(1)r x SU(2)z x SU(2)r
since the 21 direction of C? is left inert under the Zj; action (1.2.1). We will not be concerned with the
SU(2)r, symmetry (which is strictly speaking broken to a U(1); symmetry) and just remark that the
charges of all fields of N' = 2 quiver gauge theory under a Cartan generator Ji, of SU(2)r can be found in
Table 1 of [31].
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v = diag(1,w,...,wM~1) and mapping Zy; > k — 7¥ € U(NM). (Note that the entries
wl of v are really N x N matrices.)” The action of Zy; on the N’ =4 SYM fields is then

¢ — () (p-0)7* (1.2.3)

where p- ¢ equals a phase times the field ¢. For the scalar fields the phase is determined by
their identifications with the 21, zo and 23 directions in C?® and comparing with (1.2.1). For
the gauge field the phase is 1. For the spinor fields the phase equals that of their bosonic
superpartner. Thus the condition for the A/ = 4 SYM fields ¢ to be invariant under the
action of Z)y is

o=7"(p-9)7. (1.2.4)
In the following we will obtain the Lagrangian density of N' = 2 U(N)™ quiver gauge
theory by rewriting the N'=4 U(NM) SYM Lagrangian density and require that all the
fields satisty the Zj/-invariance condition (1.2.4).

We now consider N' = 4 U(NM) SYM theory on R x S% where the radius of S? is
denoted by R. The scalar fields will couple conformally to the curvature of the S3 through
a quadratic term in the action. In the decompactification limit R — oo this term will
vanish. The action of N' =4 U(NM) SYM theory on R x S? equipped with a metric of
Fuclidean signature reads

_ 1 1 , . 1 | L
CAR / d'z Tr (ZFWFW + 5 (Du¢")(Dud’) + SR 00" — 29° [0, ¢'] [¢, ]

+ %‘w_p')/,uDuwp - gw_p[(algq(ﬁ%il =+ iﬁ,].fq’Ys(ﬁ%), %]) (1.2.5)

where F,, = 0,A, —0,A, +ig[A,, A)]) and D, = 0, +ig[A,, -]. The traces are taken over
the gauge indices. The indices have the ranges p,v =0,...,3;4,5=1,...,6;p,g=1,...,4
and k= 1,...,3. Here ¢' are six real scalar fields and 1y, are four 4-component Majorana
spinors. Moreover, 7, are the 4-dimensional 4 x 4 gamma matrices and of and * are 4 x 4
matrices satisfying the relations

{of o'}y = —20M1,, {64} =—26"14,  [oF,8]=0. (1.2.6)

Explicit representations can be given as

Oél = 0 o1 ) Oé2 = 0 B ) a3 = 172 O ) (127)
—o1 O o3 0 0 o9
0 o 0 1 —i0 0
1 2 2 2 3 2
= y = 5 = . . ].28
ﬂ < iUg 0 ) ﬁ (—12 0 ) 5 ( 0 109 > ( )

"Note that this representation of Zy; satisfies Try* = 0 for all k € Zs \ {0}. As pointed out in Ref.
[29], this is needed for consistency (the cancellation of one-loop open string tadpole diagrams).
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1.2.1 The bosonic part of the quiver action

To put the action of N' = 4 SYM theory in a form suitable for performing the orbifold
projection we now define three complex scalar fields

_L 1 2‘2 :i 3 i4 :L 5 i6

The fields ¢ are Hermitian (since they transform in the adjoint representation of the gauge
group U(NM)), so by Hermitian conjugation of (1.2.9) we find

- 1 , - 1 . = 1 ,
A= %(qﬁl —i¢?), B = E(&” —igh), ¢ = E(& —i¢°). (1.2.10)

The scalar field part of the N' =4 SYM Lagrangian density written in terms of these fields
takes the form
N=4 1 i i Xpe2 i Lo g g
£sca1ar = Tr §(Dli¢ )(DH¢ ) + §R ¢ ¢ - Zg [¢ 7¢ ] [¢ 7¢]]
— T (D,AD,A+ D,BD,B + D,®D, )
FRTY (AZ+§B+<1>§) 4Ly o= (1.2.11)
where the D and F' terms are, respectively,

o= %gQ 1 ([A4)+ (B8] + [2.5)) (1.2.12)

LY== 9Ty <[A, B[4, B + [A, ®|[4, ] + [B, 9|[B. _}) . (1.213)
The scalar fields ®, A and B can be identified with the z1,z9 and z3 directions of the
C? (because they are the Goldstone bosons associated with breaking the translational
invariance in the directions transverse to the D3-branes), so we have the orbifold group
action p : (®,A, B) — (®,w tA wB), and the condition for these fields to be invariant
under the Z,s-transformation is then

Yey=a, AlAy=wA, ABy=uw'B. (1.2.14)

One easily checks that these conditions are satisfied by splitting the NM x NM matrix
fields of the N' =4 U(NM) SYM theory up into M x M block matrices whose entries are
N x N matrices:

0 ALQ

A
ul 0 Ays

Anra 0
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0 Bim

By, 0 |
00

0

@
Byv-1y 0
(1.2.16)
Here A, A (i+1), B(i+1),; and ®; are N x N matrices (where i = 1,..., M and we identify
i ~ i+ M). Inserting the Zy-invariant forms of A,, A, B and ® given in Eqs. (1.2.15)-
(1.2.16) into (1.2.11)-(1.2.13) the scalar field part of the N' = 2 quiver gauge theory La-

grangian density reads

M

Lscalar = Z { Tr [(8MAZ',(1'+1) +igAuiAi (iv1) — igAi,(i—&-l)A,u(i—&-l))
i1

x (aum 19 Au(i+1)Ai i41) — igAz',(m)Am)]
+ Tr [(6HB(i+1)7i T 19 AuGi+1) Bty — "'gB(iJrl),iAm)
X (%M +igAuiB(it1) — igB(m),iAu(m)ﬂ
o+ T [ (9@ + gl Ay, @i]) (9, + gl Ay, 8] )|

+RTr (Az +1)Ai 1) T Bv1),i By, + @zaz)

)

1
+ 592 Tr [(Ai,(i+1)Ai,(i+1) —A-1),i4a6-1)4

+ Bii-1)Bii-1) = Bi+1),i B+ + [q)"’a"])z}
~2¢°Tx [(Ai,(iJrl)B(Hl)ﬂ' - Biv(i%)A(i*l)v")

—2¢* Tr [(Ai,(iﬂ)@iﬂ — (I)iAi,(i-i-l)) (M D — iy Ai,(i—&—l))}

—2¢° Tr [(B(i—f—l),iq)i - (I)iJrlB(z'-l—l),i) (B(i+1),i Qit1 — P B(z‘+1),i)] } (1.2.17)

Inserting the form of A, given in (1.2.15) into (1.2.5), the gauge field part of the ' = 2
quiver gauge theory Lagrangian density reads

M
1 S
ﬁgauge = Z Z Tr F;WF;W (1.2.18)
=1

where of course F) fw = 0, A, — &,AL + ig[AZ,Af/] and the trace is taken over the gauge
indices of the N x N matrices.
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1.2.2 The fermionic part of the quiver action

The fermionic part of the A/ =4 SYM Lagrangian density reads
_ T — g9— _ .
Lt =Tt (5 Up WDyt — Sp[ (g™ ™" + zﬁﬁq%dﬁ’“),wq]) (1.2.19)

where the gamma matrices are given by

0 7 1 0
= = = 1.2.20
Vu (Fu 0 ) , V5 = 0717273 < 0 _1> ( )

T, = (1, i0), 7, = (1, —io) (1.2.21)

and representations of o and ¥ are given in Egs. (1.2.7) and (1.2.8), respectively. The
fields v, p = 1,...,4 are 4-component Majorana spinors which can be decomposed in
terms of 2-component Weyl spinors as follows

(Ap)a - (Ap)®
(p)* = | | - (Vpla = | - (1.2.22)
? ()‘p) ? ()‘p)d
where a = 1,...,4 is the spinor index on 1,. The Majorana spinors are related to their
conjugates through the Majorana condition

¥p = Cyp (1.2.23)
where the Majorana conjugation matrix is C' = Egﬁ &b with €19 = —€g1 = —1.
€
Combining Egs. (1.2.22) and (1.2.20)-(1.2.21) one finds
1— -
§¢p'7uDu1/’p = ()\p)a(ﬁb)aﬁ' Dy (/\p)’g . (1.2.24)

Here the operator Bu is defined by XpB,qu = L (xpDuxq — (DuXp) Xq)-
It will be useful for exhibiting the R-symmetry of the quiver gauge theory to express
the fermionic Lagrangian density in terms of the following Weyl spinors

XAE)\_lu XBE)\_Za 1/15)\_3” 1/)51)5)\4' (1225)
Here x4, xB,%,ve are the respective superpartners of A, B, A, ®. Note here that the bar
used over the spinors in (1.2.25) is understood to mean the Hermitian conjugate whereas
the bar over the A, in (1.2.24) denotes the usual conjugate of Weyl spinors. Explicitly,
letting o = 1, 2 be the spinor index and letting m,n be the gauge indices,

(A a,mn = (XA)Z,nm = (Xa)a,mn (1.2.26)

and
M = (O fmn)’ = ) amm = (Xa)aumn (1.2.27)
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and analogously for xp, ¥ and . In particular, note that all the Weyl spinors x4, x5, ¥s
and 1 have undotted indices.

Inserting the definitions (1.2.25) into the decomposition (1.2.24) we can write the kinetic
part of the fermionic N' =4 SYM Lagrangian density (1.2.19) in the form

N =4 ki b (T
‘cferm "= 5 Tr (%WDM%)
= oTr (X_ATMDMXA+X_BTMDMXB +ETMDM/}+"¢<I> TMDM%> . (1.2:28)

In order to find the potential part of the fermionic Lagrangian density we use the
explicit forms of the o¥, 3¥ matrices given in Eqgs. (1.2.7)-(1.2.8)

Uy [(af, 6™ + iBE 5 67F), g

1 _ _ _ _ _ _
= /5 (a;q%’ [A+ A, ] + a?)qu [B + B, ] + Oéfaqu (@ + D, 1))

V2
+ ﬂ;qw_p ['75 (A - Z)a ¢q] + /quw_p [75<B - F)? wq] + ﬁng_p [75(@ - 6)7 %])

= L(E[A+Z,w4]+%[z4+1wz] — 3 [A+ A o] — Py [A+ A, 4]

5

2
+ 11 [@ + @, o] — o [© + B, 901] + U3 [P + D, hy] — thy [ + P, 93]
+ 101 [15(A — A),hs] — o [v5(A — A), 3] + Y3 [v5(A — A), 2] — 14 [15(A — A), 1]

+ 191 [15(B — B), 3] 4+ 2 [v5(B — B), ¥a] — ¥3 [v5(B — B), 1] — tha [y5(B — B), 2]

— 11 [v5(P — @), 92) + U2 [15(P — ®), ¥1] + 3 [v5(P — @), 10a) — Uu [15(P — D), 103]) :

(1.2.29)

We can simplify this expression by noting that for two arbitrary 4-component Majorana
— Xa (e
=120, Ve = | = (1.2.30)

X%a = (Xa» X¥) (%) = Xl + XU = —(X"ta + Xa?") (1.2.31)

spinors

we have the identity

and analogously
Xvstha = —(X*¥a — Xa¥" ) - (1.2.32)
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Applying these identities and leaving spinor indices implicit we find

Uy [(ak, 0™ 71+ iBE 45 87%), U]

= V2 (= 2 (14 M] = [BAs]) = Ao ([ As] + [B, M) + s ([, Ao] = [B, Ad))

+ A1 ([A, M)+ [B, Aa) = A1 ([A, M) = [B,Xs]) — X2 ([4, Xs] + [B, Ma))

+ X3 ([4, X2 — [B,A1]) + A ([A, M] + [B,X2)

— A [®, Aa] + Ao [@, A1) — A3[@, A4] + Ma[P, A3]

— X9 Ng] + Rof@ 2] = X[ Xa] + Na[B, %] ) (1.2:33)
= V2 (= ¥a (A va] - B.¥]) — X5 (A 9] + [B,val) + ¥ ([4,X5) - [B. %4)

+¢a ([A,xa) + [B,XB]) — xa([4,¢a] - [B,¢]) — x5([A, ¢] + [B, ¥s))

+ va([A, xB] — [B.x4]) + ¥a ([A, xa] + B, x5])

—Xa[®,XB] + XB[®,Xa] — V[®,vs] + Ve [P, V]

= xal®xz] + X810 xa] = V[E, Vo] + Vo[ ) . (1:2:34)

In the last equality we made the substitutions (1.2.25). We conclude that by expressing
the 4-component Majorana spinors v, in terms of the 2-component Weyl spinors A, (cf.
(1.2.22)) and then making the substitutions (1.2.25) the fermionic part of the N’ =4 SYM
Lagrangian density takes the form

Cé\e/r;‘l = ¢Tr (X_ATMDMXA +XBTuDuXB +ETMD,,¢ + Vg TMDM%)

+75 T (A (14, va] = [B,7)) + X5 ((A.9] + B, a))

_E([Avx_B] - [E)X—A]) - Yo

The Weyl spinor fields x 4, xB, Vs, ¢ are the respective superpartners of A, B, ®, A,. There-
fore they must satisfy the Z,;-invariance conditions

Yxay=wxa, Axey=wxs. Aery=ve, Aluy=v. (1.2.36)

One easily checks that these conditions are satisfied by splitting the NM x NM matrix
fields of the N'=4 U(NM) SYM theory up into M x M block matrices whose entries are
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N x N matrices:

e 0 XA 1
0 XA,2
o
77/} = 5 XA = ’ 5
0 AM—
s XA,M-1
XA,M 0
(1.2.37)
0 XB,M
xB1 O Yo
) Ve 2
XB = XB2 - ; Yo =
0 Yo M
XB,M—1 0
(1.2.38)

Here i, x4, XB,i and e, are N x N matrices (where ¢ = 1,..., M and we identify
i ~ i+ M). Inserting the Zys-invariant forms of 1, x4, x5 and g given in Egs. (1.2.37)-
(1.2.38) into (1.2.35), the spinor field part of the N = 2 quiver gauge theory Lagrangian
density reads (summation over ¢ = 1,..., M implied)

Ltem = iTr (XA,@' TuDpXAi + XBi TuDuXB,i + Vi TuDuthi + o TuDulﬁqm‘)

g N R _
+ﬁ Tr (XA,iAi,(i+1)¢<1>,(i+1 — XA %o Ai (i+1) — XA B(iv1),i%i+1 + XA,i0i Biy1)i
+ XB,i Ai (i+1)¥i — XBiYir1Ai (i+1) + XBiB(it1),i %, — XB.i ¥ (i41) Blit1),i
—Yit1 A (i11)XB + YiXB,iAi (iv1) T YiBiv1),iXai — Vi1 XA Bt
- qu)‘I) 1444 ( z—l—l)XA i+ w@ J(i+1) XA, lAz ,(i4+1) — ¢q> ,(i4+1) B(H—l) ZXB i+ @% iXB ZB(H—I) 7

+ XA,imwcb,i — XA, ﬂ/hb ,(1+1) Ai J(i+1) — XA, B (i+1), Vi +xa, i¢i+1B (i+1),

+ XB,iAi (i+1) Yit1 — XB,i Vi A (i+1) + XB,i B(i+1),i %o, (i+1) — XB,iVa,i B(i+1)i
=i A (i41)XB,i T Vit1XBi Ai (i41) T Vit1 Bg1),iXAi — YiXai B

— Vo (141) Ai (i+1) XAt + P0,iXAi A (i41) — Vo Blis1),iXB,i + Vo, (i41) XB,i B(it1),i

+ XA, PiXBi — XAiXB,i Qit1 — XBi Qi+ 1 XA + XBi XA Qi

+ XA,iPir1XBi — XA,iXBi Pi — XB,iPixA,i + XB,iXAi Pit1

+ i [®s, Vo] — Vi [P0, V] + Ui [ i, Vo] — Yo [Pi, 1/%]) : (1.2.39)

We conclude that the Lagrangian density of N' =2 U(N)M quiver gauge theory is
L = Lcalar + £gauge + Lterm (1240)

where Lgcalar; Leauge and Leerm are given in Egs. (1.2.17), (1.2.18) and (1.2.39), respectively.
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1.3 R-symmetry

The Lagrangian density of N' = 2 quiver gauge theory (given in Egs. (1.2.40), (1.2.17),
(1.2.18) and (1.2.39)) is invariant under global SU(2) g xU (1) g transformations. The U(1)r
factor of the R-symmetry group acts on the fields as

Ai iy — AiGry Bty — B(it1),i ; — O, (1.3.1)
Xai — € xa,, XBi — ¢ “/*xp; (1.3.2)
W — /%y, Yo, — e g, (1.3.3)

The U(1)g transformations of the Hermitian conjugate fields are obtained by flipping
¢ — —(. The Lagrangian density is manifestly invariant under the U(1)g transformation.
We now move to consider the SU(2)g transformations. Define the 2-component spinors

Ai i + Aj (i+1)
M) = | 22D ) ) = | SR ) (1.3.4)
Bit1),i Biy1),

Under o € SU(2)g these spinors have the transformations

()\i)a — Uab )\z‘)b 1.3
) — )3, 3
Note that (A;)qs = €a5(A;)? has the transformation
Mo — €™ N)a = 0,2 Ni)a (1.3.7)

where the equality follows by using o € SU(2)g. Thus, (\;), and (\;), are SU(2) g doublets.
To exhibit the SU(2)g invariance of the Lagrangian density we define SU(2)g invariants
such as

(A)a () = —€(A)a(Xi)o = —Aj (141)Ai (141) — B(ir1),iBlit1)i (1.3.8)

and write the Lagrangian density in terms of these. For N/ = 2 quiver gauge theory the
bifundamental scalars and the adjoint fermions are organized into SU(2)r doublets as

A, — — B
(Ao = [ 22D ) N)a = [ 0D (1.3.9)
Biv1), A (i41)

I [ Ve
(Xi)a = (@qu) : Xi)a = < b ) : (1.3.10)

The scalar field Lagrangian density written in terms of the SU(2)r doublets takes the

follows

following form®

¥Note that the term R~ Tr (¢*”(\i)a(Xi)s + ®; ;) describing the conformal coupling of the scalar fields
to the curvature has been omitted here.
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i=1

)
M)a®is1 (s + € (A)aBig1 (Vi) ;)
+2¢2Tr <eab A)a®ir1 it )y + eab(Ai)a(A_i)@@)} . (1.3.11)

field Lagrangian density written in terms of the SU(2)g doublets takes the

following form

£ferm

M
Z [iTr <XA7i TuDpXAi + XBi TuDuXByi + GCd(Xi)c(TuDME)d)
i=1

+% Tr (de{XA,i N)es (a} + €Hxain (Grt)eN)a)
+ e“UNa7 (No)es (iv1)a} + XA, (xi)e(No)a}
+ e“Yxpi(M)ey Xir)a} + €HxBir (Xi)e(N)a}
— Y XB7 N)es (i)a} — €Y XBa (Xit1)e(Ni)a}
+ e () e®i, (Xi)a} + €{(X0)ePir (Xi)a}
+ {xa,i®i+1, xBi} + {X4: P, XB,i}
— {xB.a®i, i} — {XBTPis, xT})] : (1.3.12)

These results are conveniently summarized in Table 1 which lists the R-charges of all the

fields in N' = 2 quiver gauge theory. Here the generators of su(2)g in the fundamental
representation are chosen as %(aw, 0y,0z). The R-charges of the corresponding Hermitian
conjugate fields are obtained by simply changing the signs of the U(1)r and SU(2)gr
charges.
A (i41) Biy1), D, Aui XA,i XB,i (Y (0
U)g 0 0 1 0 -1 -1 -1 :
SU(2)r 3 : 0 0 0 0 -3 | -3

Table 1. R-charges for the bosonic and fermionic fields
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We note that the R-charges of the scalar fields are consistent with the geometric intu-
ition that ® is associated with the z; direction of C3, which is inert under the action of
the orbifold group Zjs, and ® should thus not be mixed under R-symmetry transforma-
tions with the fields A and B associated with the z9 and z3 directions in which Z,; acts.
Therefore ® should have zero SU(2)g charge, and A, B should have zero U(1)g charge.

1.4 R-symmetry chemical potentials

In this section we argue why, given a non-Abelian symmetry group, one should introduce
chemical potentials conjugate to a maximal Abelian subgroup rather than the entire group
itself. Consider a quantum mechanical system described by a Hamiltonian H with a sym-
metry group G that is assumed to be a compact and semisimple Lie group. Let U(g) denote
a unitary representation of a group element g. We define a generalized partition function
by the expression

Z(B,g9) =Tr (U(g)e ). (1.4.1)

By assumption U(g) commutes with H, and consequently Z([3, g) is a class function,

ZBn tgn) =Tr (U@ Um) e UMW) =Te (Ulg) e ™) =Z(B,9).  (142)

Since G is compact and semisimple, there exists a maximal torus 7" of G. In particular,
T is a compact and connected maximal Abelian subgroup with the property that any
element g of G can be written in the form g = n~!'t7 with ¢ an element of 7. As a further
property, using that 7" is compact and connected, any element ¢ of 1" can be written as
the exponential of some element of a corresponding Cartan subalgebra t of g. Letting
{Q, | a = 1,...,rank G} denote a complete set of generators” for t we can thus write
t = ¢"aQa where ~y, are real numbers. Therefore Z(3, g) can be expressed as a function of
rank G real numbers 7, and rewritten as

Z(3,7,) = Tre PH+Qa (1.4.3)
After analytically continuing =y, — —iBu, this takes the form
Z(B, pta) = Tr e PUHHaQa) (1.4.4)

We recognize this as the grand canonical partition function. The chemical potentials p, are
conjugate to a maximal set of commuting conserved charges @),. This demonstrates why,
given a non-Abelian symmetry group, one should introduce chemical potentials conjugate
to a maximal torus of the group rather than the entire group itself.

9We adopt the convention that the generators Q, are Hermitian.
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1.5 Lagrangian density with R-symmetry chemical potentials

The maximal torus'® of the R-symmetry group SU(2)r x U(1)g of N' = 2 quiver gauge
theory is U(1) x U(1). For the U(1) corresponding to U(1)g the eigenvalues of the Cartan
generators can directly be read off from Table 1. For the U(1) C SU(2)r we choose as a
basis for the Cartan subalgebra the diagonal generator o, so that the SU(2)gr doublets
will have well-defined charges under U(1). (We choose o rather than 1o as the generator
Q2 because we require €'92% to be invariant under § — 6 + 27. Setting Q2 = o, we have
@20 — diag(e?, =) which is clearly invariant.) Therefore the charges under the maximal
torus U(1) of SU(2)g will be 2 times the SU(2)r charges.
Thus for the bosonic fields,

1.5.1
1.5.2
1.5.3
1.54

(HaQa) Ai(iv1) = M2 Ai(iy1)
(1aQa) Biiv1)y = M2 Bay1),
(1aQa) @i = 11 ®;

(1aQa) Api = 0,

o~ o~ o~ o~
~— ~— ~— ~—

and for the fermionic fields,

1.5.5
1.5.6
1.5.7
1.5.8

(HaQa) Xa; = —3p1xa;
(1aQa) XBi = —3M1 XByi
(HaQa) Vi = ($p1 — p2) s

(
(
(
(1aQa) Vi = (=5 — p2) Yo - (

)
)
)
)

The corresponding expressions for the Hermitian conjugate fields are obtained by simply
changing the signs of the chemical potentials.

To obtain the Lagrangian density of N' = 2 quiver gauge theory with chemical potentials
for the SU(2)gr x U(1)r Cartan generators, we imagine gauging the global SU(2)g X
U(1)r symmetry. This will introduce a fictitious gauge field. The time component AZX
of the fictitious gauge field will couple to the conserved U(1) x U(1) charge densities ;[

through the standard coupling term Aa“]a# giving rise to a term ig (Qa@> in the

covariant derivative.!! Thus, introducing R-symmetry chemical potentials is equivalent to

z,uaé

coupling the R-charged fields to a fictitious constant gauge field 222 In conclusion, the

R-symmetry chemical potentials p, are introduced into the Lagranglan density by making

10Maximal tori are unique only up to conjugation, but the generators of Cartan algebras will appear
inside traces, and by cyclicity of the trace such expressions are invariant under conjugation. We will
therefore treat the maximal tori as identical.

HGince we are only interested in couphng the gauge field to the R-charge density, we set the spatial

ifgd Hadpuo
g

components to zero, i.e. Af’H = . The factor i is natural since the appropriate Minkowskian gauge

field is %, and the corresponding Euclidean gauge field is obtained by multiplying a factor of i. We
include the coupling constant in the denominator since we want to keep the term when taking the ¢ — 0
limit,.
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the substitution

Dy — Dy — 11aQabpu0 - (1.5.9)

Below we have written the Lagrangian densities for the fundamental scalar and spinor
fields of N/ = 2 quiver gauge theory. This will be important for the analysis in the following
sections in order to distinguish the adjoint from the bifundamental structures.

The Lagrangian density for the scalar fields with R-symmetry chemical potentials is

M
Lscalar = Z { Tr [(aqu‘,(iH) +igAuiAi 1) — 194 (i) Apirn) — N25u0Ai,(i+1))
i=1

X (8uAi,(i+1) +igAur1)Ai(ir1) — 19A; 1) Api + M25u0Ai,(i+1)>]

+ Tr |:<8,LLB(H—1),Z' +igAuir1) Bl — 19Bas1),iApi — IUZCS;LOB(H—I),Z')

X (8MB(1‘+1),1' +i9ALiBiv1)i — 19B(i41),iAuir) /’L26[LOB(i+1),i>i|
T [ (9@ + gl Ay, @] — pdu0®: ) (9,5 + g Api, i) + 10,0 ) |

+R?Tr (Ai,(i+1)Ai,(i+1) + B(iv1),iBlit1),i + ‘1%'37;)

1
+ 592 Tr [(Ai,(z’H)Ai,(iH) — A-1),iAG-1),

+ Bii-1)Bii-1) = Bli+1),i B+ + [‘1%@])2]
=20 T | (A 41y By — Bi-nAg-1))
x (Aafl)' Bi (i-1) —B<i+1>i A; <z’+1>)}
—2¢° Tr :(Az i+ @it — ®iA; (11 )( i(ir1) Pi = Pita Az‘,(z‘-H))]

—292Tr:(B(¢+1),i(I)i_ ®;41Bis1), )( a B — QTB(HI)J)}}(LE)JO)

Here the traces are always taken over the gauge indices of the N x N matrices. Observe that
the chemical potentials p; and u2 act like negative mass squares for ®; and A; (;41), Biy1)-
On a compact spatial manifold such as S2, these terms are balanced by the positive mass
square terms induced by the conformal coupling to curvature. We immediately observe
from (1.5.10) that N' = 2 quiver gauge theory on S' x S2 is well-defined as long as
w1, 2 < R™LIf the chemical potentials exceed this bound, the theory develops tachyonic
modes and there exists no stable ground state.
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The Lagrangian density for the spinor fields with R-symmetry chemical potentials is

M o[
1 . .
Lterm = Z { 3 Tr (XA,i Tu(Ouxai +igAuxAi — 19X AiAuGis1) + %NlduOXA,i))
i1
—3 Tr ((a,uXA,z’ + 09 AL+ XAy — 19X A A — 1116,0X A7) Tu XA,z’)

+5 Tr (XB,i Tu(OuXBji + 19 A (i+1)XB,i — 19X B,iApi + %ul(sp,OXB,i))

5 Tr ((auXB,i +19AuXBi — 19XBiAu(i+1) — 110,0XB) Tu XB,i)

+% Tr (% T (O + 19 Apis i) — (311 — pi2) 5u01/1i)>
5 T (9 + iglAuas Bl + (Bra — 1) S0%) 7%
+% Tr (wm (00 + 19[A s, Yoa] — (31 + o) 5uo@))
—1 Tr ((a,ﬂlkp,i +ig[Aui, Yo i) + (3i + p2) Suotae;) Tu E)
+% (Cd{XAz 2)07 X’L } + €Cd{XA,fw X1+1) ()‘_Z)d}
+ e “YXas (Ni)es (iw1)a} + €Y Xam (Xi)e(Mi)a}
+ GCd{XB )07 (XH— d} + €° {XB i XZ)C( ) }
!

- 6Cd{XB,Z z)ca (Xz } — €° {XB I3 X’L—i—l)c( )
+ € (x:)e®i, (Xi)a} + € (X0)ePis (Xi)a}
+ {x4,iPi+1, XB,Z'} + {xa, i, XB,Z'}

- {XB:i‘I)iv XA,i} - {XT%‘I%'H, W})} : (1.5.11)

Here the traces are always taken over the gauge indices of the N x N matrices. Note that
the potential part of the Lagrangian density has been written in terms of the SU(2)g
doublets given in Egs. (1.3.9)-(1.3.10) for notational simplicity.

To recapitulate, (1.5.10) and (1.5.11) are obtained by making the substitution (1.5.9)
in the Lagrangian density given in (1.1.3), (1.1.4) and (1.1.5), and finally making the
substitutions given in (1.2.15)-(1.2.16) and (1.2.37)-(1.2.38).

Finally, as the gauge fields have zero charge under SU(2)gr x U(1)g, the gauge field part
of the Lagrangian density is unaffected by introducing the R-symmetry chemical potentials.
Nonetheless, we give the result here for convenience:

gauge = Z TI'F;VF;,/ (1512)

where of course F},, = 9,4, — 9, A, + ig[Al, Al].



Chapter 2

Matrix model and phase structure

The matrix model we will consider is defined by integrating out the fluctuations of the
quantum fields. Therefore we will compute in this section the one-loop quantum effective
action.

2.1 One-loop quantum effective action

Mention (for thermal field theory): [32], [33]

The partition function for the grand canonical ensemble has the path integral repre-
sentation

7 — /DAM Do Dipe” Jg1y g3 d'z V19l (Lgauge+Lscalar+Lterm) (2.1.1)

with Lgeauge, Lscalar and Lierm being the Lagrangian densities with R-symmetry chemical
potentials given by Eqgs. (1.5.12), (1.5.10) and (1.5.11), respectively, and where the measures
DA,, D¢ and Dy are the products of the measures over all the gauge fields, scalar fields
and spinor fields, respectively. We will obtain an effective action from this expression by
taking the free limit g — 0 of the tree-level action. However, since the theory is defined on
a compact spatial S3 one must impose the Gauss law constraint that all states be gauge
invariant. We perform the projection onto gauge invariant states by using Ag; as a Lagrange
multiplier,

Ai(x) — Aui(x) + 60ai/g (2.1.2)

where /TOZ- integrates to zero over S 1'% 83 and a; are constant Hermitian matrices which
by gauge invariance can be assumed diagonal, a; = diag(qil, ey qZN ). To obtain the correct
zero coupling limit one inserts the decomposition (2.1.2) into the action given through
(1.5.10)- (1.5.12) and then takes the g — 0 limit.

We will write up the resulting action in a bilinear form that is amenable to Gaussian

27
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path integrations. For this purpose, define (m,n and ¢ are fixed)

. . 2 _
0%y = (Ou+ 0uo(p2 +igly —ig")” — R (2.1.3)
. . 2 _
Dgg+1),i - (8u + 6pu0(p2 +ig;" — lgﬁl)) - R7? (2.1.4)
. 2 —
Of" = (0 + duo(p1 —ig™))” — R (2.1.5)

where ¢/"" = ¢" — ¢I'. Then, by partial integration and discarding total derivatives, the
zero coupling limit of the scalar field action (given through (1.5.10)) can be written

hm Sscalar = Z Z / d437 ((A (1+1))mn( DAZ?(i+1))(Ai,(i+1))nm

i=1 mn=1

+ (B(Hl),i)mn(_mggﬂ)’i)(B(iJrl),i)nm + ((I)Z)mn( Dmn)((}ﬁ) > . (2-1-6)

The path integrals over the scalar fields are now Gaussian integrals and can readily be
done. For the scalar fields A; (;11), B(it1),i» ®i we have the respective contributions

ln ZAZ ,(i+1) - Tr ln ( DAZ (1+1)) (217)
In ZB(HI),Z‘ = —Trhn (_DB(iJrl),i) (2.1.8)
InZp, = —Trin(—0g,). (2.1.9)

Here the traces are taken both over the gauge indices and over the Hilbert spaces of the
scalar fields A; (j;1), B(i+1),; and ®;, respectively.

In order to put the spinor field part of the Lagrangian density in a bilinear form we
exploit the fact that these fields are Grassmann-values. Define

DM — (i@u - 5u0(q?+1 - qzm) - %6110“1)7_3 0 (2.1.10)
XAi 0 T (10 — 8p0(q" — @ 1) + E6u0p1)

DM — (i@u - 5u0(q? - qﬁ-l) - %6M0M1)TE 0 (2.1.11)
B 0 T (104 — 00 (afy 1 — af'") + §0u0111)
mn _ (Zau - 6;10(];(”71 + i(suO(%Ml - M?))TE 0 (2.1.12)
Vi 0 Ty (i@u — 0,0q)"™ — i00( 2,ul
mn _ (i@u — 8,0q™™ + i%o(%/ﬂ + ,MQ))TE 0 (2.1.13)
Ve 0 Tu (iau — Opoqi™ — 25u0(2/~‘1 + /‘2))

where the superscript * denotes the transpose. Then the zero coupling limit of the spinor
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field Lagrangian density (1.5.11) can be written

+

N
. 1 mn 72' nm
lim Liom = Z Z 9 XA i)mn; (XA,i)m") DXAz‘ (XA )
9—0 =1 m,n=1 2 , ( )
((xB.i)mn, (XB7)mn) DYy, < (XB”:)"’” )

5 ((wz)mna (wz)mn) Y; ( ¢ ) )

((d}cb 1)mn7 (¢<I> z)mn) Zq;:ﬂ < (¢<I>,z§nm ) } . (2.1.14)

l\DI»—\

InZy,, = zlndet(Dy,) (2.1.15)
mZy,, = zlndet(D},)) (2.1.16)
InZy, = %Indet (D 2) (2.1.17)
InZy,, = glndet(D} ). (2.1.18)

Here the determinants are taken both over the gauge indices and over the Hilbert spaces
of the Weyl spinor fields x4.i, XB,i, ¥ and ¥ ;, respectively.

For the gauge field, define (i, m and n fixed)
O = (8, + iq["0u0)” - (2.1.19)

Due to the decomposition in Eq. (2.1.2) we have (for a fixed i), up to total derivatives,

N

. > (A (O™ (AL — %Tr (0" AF +ifa;, AY))?]  (2.1.20)

pvt py 2 7

1
1T (FuF) =5

m,n=1

where the * denotes complex conjugation. We choose the gauge defined by adding the
gauge-fixing term

Los = % Tr [(9*A¥ + i[a;, A?))?] . (2.1.21)

One then decomposes the spatial components of the gauge field into spherical harmonics
on S3 by writing them as a sum of a transverse (i.e. divergenceless) vector field Af‘ and
a longitudinal vector field VF; where F; is a scalar function. That is, for £ = 1,2,3 we
decompose

AF = (ADF + (VE)F. (2.1.22)
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Using that Af‘ is divergenceless and ignoring total derivatives, the gauge fixed Lagrangian
density written in terms of S? spherical harmonics takes the form

N =

N
Longe + Lot = 5 30 (AN (~00) (AD)n + (ALYt (—07") (AP,
m,n=1
+ (VE g (~07™) (V)b ) (2.1:23)

Thus, the contribution to the path integral from the gauge field ﬁf and the Fadeev-Popov
ghosts ¢, ¢; is

Zimss = [ DA e (= [t (a9, (o) (41
<{ [ e (-5 [ae R, o ok, )

' / DAY exp (‘% / d'a (A), (~07™) @?)mn)

-/Dc_,- De; exp <—/d4x c—i(_mym)ci)} . (2.1.24)

The path integrals inside the brackets { e } immediately evaluate to
1 mn 1 mn mn
exp <—§ Tr In(—0O;] )> exp (—5 Tr In(—0O; )> exp (Tr In(—07"")) =1.  (2.1.25)

The last equality follows from the fact that the fields (VFi)k,g?,c_i, ¢; all have the same
eigenvalues wrt. 0" and the same degeneracy corresponding to each eigenvalue. (To
illustrate this, the eigenvalues are given explicitly in Eqs. (2.1.29)-(2.1.33) below. The
corresponding degeneracies can be read off from Table 2.) Therefore,

Zow = [ Dttrerw (= [[ate (b, (-0 (41
1
= exp (—2~§Trln(—Di)> : (2.1.26)

The factor 2 in the exponential comes from the fact that the transverse gauge field has 2
real degrees of freedom, hence there are 2 path integrations. Thus, the contribution to the
quantum effective action from the gauge field A is

In Zgauge = — Trin (—0;) . (2.1.27)

Here the trace is taken both over the gauge indices and over the Hilbert space of transversal
gauge fields (A7)
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2.1.1 Evaluating the trace over the Matsubara frequencies

Let 7 denote the O-direction. We will use the convention that any field ¢ defined on S* x S3
has the Fourier mode decomposition

d(r,x) = Y olM(a) (2.1.28)

k=—00

where the quantized Matsubara frequencies are wy = % for bosons and wy = w for

fermions giving, respectively, periodic and antiperiodic boundary conditions around the
thermal circle.! We now take the traces over both the gauge indices and the Matsubara
frequencies in Egs. (2.1.7)-(2.1.9), (2.1.15)-(2.1.18) and (2.1.27).

quantum field eigenvalue notation in text degeneracy (Dy,)
transverse vector At | —(h+1)2R2 —Ag 2h(h +2)
longitudinal vector ~ VF | —h(h+2) R™2 —A2 (h+1)2
real scalar A% ¢ | —h(h+2)R2 —A? (h+1)2
Weyl spinor P — (h + %)2 R? —A? h(h+1)

Table 2. Figenvalues and corresponding degeneracies of the S® spatial Laplacian V? =
03 + 02 + 02 for various quantum fields defined on S®. Here R denotes the radius of the
S3. The irreducible representations of the SO(4) isometry group are labelled by the angular
momentum h which has the range h = 0,1,2,... for all the fields except for the longitudinal
vector field VF where h starts from 1.2

Then (for fixed i) we have

oAl = — i (A2 + (Wi + ¢"™)?) (AW (2.1.29)
k=—oc0

Opn(VE) = - f} (A2 + (Wi + ™)) (VE) (2.1.30)
k=—0oc0

A = 3 (A4 ™)) (AW 131
k=—0oc0

o = - 3 (A2 4 (o + ™)) @)W (2132
k=—0oc0

Ofie; = — i (A2 + (wi + ™)) ()M (2.1.33)
k=—0c0

'However, for the Fadeev-Popov ghosts the boundary conditions are taken periodic.
2For further information on S® spherical harmonics, see also [34, 35].
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Performing the trace over the gauge indices and over the Matsubara frequencies in Eq.
(2.1.27) yields the expression

N 00
N Zgange = — Y > Trin (A2 + (wp +™)?) (2.1.34)

m,n=1k=—oc0

where the eigenvalue in Eq. (2.1.29) has been inserted. Proceeding along the same lines
one obtains the following expressions for the scalar fields

N o)
mZa 0 = — 3 > Trin[A2+ R+ (wy —iue +iqfy, —igf")?]  (2.1.35)
mmn=1k=—o0
N [e's]
mZp,.,, = — > Y Trin[A2+ R+ (wy—i(ue +iqf —ig}1))?]  (2.1.36)
m,n=1k=—o0
N [e's]
mZs, = — > Y Trin[A2+ R+ (wp —i(m —igf™))?] . (2.1.37)

myn=1k=—oc0

Asindicated in Egs. (2.1.15)-(2.1.18), for the spinor fields it is most convenient to square the
differential operators in Eqs. (2.1.10)-(2.1.13) using that (for fixed p) 7'3 = (TE)2 =+1and
thus obtain the eigenvalues of the Fourier modes. Applying the identity In det K = Tr In K,

the results take the form

Wy = 53 S T (83 (e et - )+ )
mn=1 k=—oo
X (A7 4 (wr + (¢ = aft1) — i%)2)] (2.1.38)
InZ,,, = %i i Tr In | (A% + (wp + (6 - afh) + %))
mn=1k=—oo
x (A3 + (we+ (g —a) - 5)7)] (2139)
InZ, = %i i Trln[(A?—i—(wk—i-q?m—i(%ul—m))Q)

mn=1k=—o0

X (Afc + (wk +q'" +i (%,ul — /@))2” (2.1.40)

N 00
InZy,, = Z Z Tr IHKA?JF(wk+q?m—i(%u1+u2))2)

m,n=1k=—o0

N —

X (A3 (wn+ g™+ (3 +p2)")| - 21.41)

The traces in Eqs. (2.1.34)-(2.1.41) are taken over S3 transverse vector, scalar and spinor
spherical harmonics. The summations over the Matsubara frequencies can be done explic-
itly:
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Theorem 2.1.1 (Bosonic Matsubara frequency sum). Let wy = % Then the fol-
lowing identity holds up to an additive constant that does not depend on A

f: In [ (wy +¢)* + A% =In [(1 — e PATD) (1 — e AAZ) ] 4 A (2.1.42)

k=—o00

Proof. Differentiating the above identity wrt. A leads to the identity

> 2A B s 8
DB e e e e o (2.1.43)

Therefore it is enough to show this identity. For this purpose we need the following two

identities N 1
kzzoo ilwrta)— A _eﬁ(A—iJ) 1 § (2.1.44)

and . |
kzzoo Mlﬁ N % <eﬁ(A+161) 1 eﬁ(qu) _ 1) : (2.1.45)

To prove identity (2.1.44), define the meromorphic function

F2)m(z) = _1 A <e5(2i1f1) — 1) (2.1.46)
and note that it has a simple pole at z = A with residue
Res(f(2)np(2), A) = m (2.1.47)
and simple poles at zp = i(wk + ¢q) with residue
Res(f(z)np(2), zk) = 1 <;> (2.1.48)
B \i(wr +q) — A

(use that €2~ — 1 = B(z — z;,) + O((z — 2)?)). From Cauchy’s residue theorem we thus
obtain?
1 o

1 1 1 1
L ¥ - - (214
2 2mi oo Jo) dz f(z)mo(2) kzzoo 3 <i(wk Yq) - A> t e 1 (2149

This completes the proof of Eq. (2.1.44).
To prove identity (2.1.45), define the meromorphic function

1z 1
9(2)ml(2) = 57 (eﬁ(z_iq) — 1) (2.1.50)

3The R — oo limit of the integral can easily be found in Maple by setting =1 and A = ¢ = 0.
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and note the residues

1 1
Res(g(z)np(2), £A) = 3 <T‘1)—1>
. 1 Wk +q
Res(g(2)np(2),21) = 5 <<wk+q) +A2> (2.1.51)
and the integral
1z 1
Jim Cn(0) 22 — A2 <eﬁ(“q) - 1) =. (2.1.52)

After some algebra this yields Eq. (2.1.45).
With the identities (2.1.44) and (2.1.45) in hand one finds

i A B i A +i(wi + q) LB 1 B 1
3 (Wi + )2 +A%2 i (wp +q)2+ A2 " 2\ eBAtig) 1 AlA—ig) — 1
=00 S
- Y ; + 5 (rm ;
- —i(wg +q) ilwp +q)— A 2\ eBBtia) — 1 B(A—ig) _ ]
B ﬁ 1 1
= 5\ v 1 + A ig) 1 +1]). (2.1.53)
Multiplying both sides by 2 we get Eq. (2.1.43) as desired. O
Theorem 2.1.2 (Fermionic Matsubara frequency sum). Let w, = (2k;1)”. The
following identity holds up to an additive constant that does not depend on A
o
> Inf(wp+q)? + A% =In [(1 4 e PEF)) (14 e FAD)] 4 gA (2.1.54)
k=—0c0
Proof. Simply substitute ¢ — q + % in (2.1.42). O

2.1.2 Evaluating the trace over the S® spherical harmonics

To obtain the single-particle partition functions one proceeds as follows. First one applies
the relevant Matsubara frequency sum.* Then one Taylor expands the In appearing on
the right hand side. Finally one performs the traces over the spherical harmonics on S by
replacing Tr [ -+ | with 37 Dp,[-- -] (where Dy, denotes the degeneracy of the eigenvalue
labelled by h, see Table 2). Before proceeding, we make the observation that due to the
decomposition (2.1.2) the Polyakov loop U; = P(eig I deA?) for the gauge field A" has
the g — 0 limit
eibat
U; = . (2.1.55)
eibal’

*In applying either of the frequency sums (2.1.42) or (2.1.54) we ignore the term SA appearing on the
right hand side as it will give rise to a Casimir energy times SN2, yielding an infinite additive constant in
the N — oo limit. We will evaluate the Casimir energies via (-function regularization in subsection 2.1.3.
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For the scalar field A4; ;1) one obtains®

InZy4.

N
0G4+ Z Tr In (1 — 6_6( V AZ+1+(p2tiql | —ig] )))

m,n=1

— i Tr In (1 —e (V Ag+1(“2+iqzn+1iqzm)>)

n=1

N o)
- ¥ (h+1)22%e—m<<h+1>+<u2+zq¢+1—iq;n>>

3
S
I
A
=
]
(e}
]
H

oo

35

N [e'S)
£ S 12y %efm((hﬂ) ~ (uaigl —ig™)

m,n=1h=0 =1
m,n=1

h=0 m,n=1

oo
1 (e P4 e20
_ - —pBl l —
= > l (7(1—6—&)3 ) w2 Ty U Tr UYL

e=Bl 4 =281

[ -1 l
+Z <W> 6’8“2 TI‘UZ TI‘UiJrl

In the last equality we made use of the identities

In(l—g) = —27

Z(h+ 1)267ﬁl(h+1) _ 2 ﬁl h+1  _
h=0 h:O

N
(h+1)26—ﬁl(h+l)> e—,gl/JQ ( Z e—iﬁl(q?_‘_l—qzn))
00 1 ] N
30 <Z (h+ 1>2e—ﬁl<h+1>) i ( )3 ewlwz@lm)
l

(2.1.56)

(2.1.57)

e pl + e 28l
(1 —ehl)3

(2.1.58)

It is precisely the identity (2.1.58) that is responsible for the characteristic form of the

single-particle partition function for scalar fields.
For the gauge field A one obtains

N
In Zgauge = — Z Tr In <1 — e~ P(Agtig™") ) Z Tr ln<
m,n=1 m,n=1
N %S 00 1
_ 9 1 —si((ht1) +igpm)
> 2 2h(h+2) Y 5
m,n=1h=0 =1
N o0 00 1
+ 2h(h +2 = o= BU(h+1) —ig™™)

SHere and in the following we will put R = 1 to simplify the notation.

—B(Ag —qu””)>
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N

= 2 lio: (i h h+ 2) —ﬁl(h+1)> Z e_iﬁlqzm"
1

= m,n=1

+2Z (Zhh+2 ﬁ”l“)) > et
=1

— m,n=1
1 [ 6e 20l — 9361 N
_ Zy( e >TrU; T (2.1.50)

=1

In the last equality we made use of the identity

—301

0 0 0 —28l _
S h(h +2) e PIHD = 37 (4 1)2 AU _§ oml1) e —e

Ty (2.1.60)
h=0 h=0 h=0

where in the second equality we used Eq. (2.1.58). Tt is precisely the identity (2.1.60) that
is responsible for the characteristic form of the single-particle partition function for gauge
fields.

For the Weyl spinor x 4 ; the Taylor expansion of the In on the right hand side of Eq.
(2.1.54) will yield an alternating series; i.e., since

o0 (_1)l+1 .
In(l+z) = — (2.1.61)
=1
one finds
1 > Bl ; 31
Nz, = B mgl Tr In [(1 + e P +ilgd—a") — 7)> (1 + e PAs —ilgf 1 —4; )+7))
(1 + e PAs +ilal—at) + %1)) (1 + e PAy —ilaf —aiy) — %))}
0 l+1 o L N '
= Z Z h(h+1) pi(ht3) | Bl /2 Z el (a1 —a™)
=1 m,n=1
© (L) (& N
+ Z Z h h + 1 Bl(h+3) e_ﬂl’“/Q Z elﬁl (qf+1*q§n)
=1 m,n=1
00 _ﬂ
(D™t 2e 2 Bln1/2 l 1
= > (= M2 Ul U,
=1
00 _3pL
(=D 275 ~Blp1/2 ! 1
> I ey |° 2 T UL Te U (2.1.62)
=1

In the last equality we made use of the identity

S (1) D = (Z hPe P 4+ N heﬁlh>
h=0 h=0 h=0

B _% e—ﬁl + e—Zﬁl N e—ﬁl _ 6—261
- € (1—e /)3 T (1= )3
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9 _ 381
e 2
— . 2.1.63
(1—e A3 ( )
It is precisely the identity (2.1.63) that is responsible for the characteristic form of the
single-particle partition function for spinor fields.
The effective actions for the remaining scalar and spinor fields are obtained in exactly

the same way. Below we write the results in terms of the variables z = e~? and = ePri

1/ 2 + le _

+Z <x+‘r > LUl YU, (2.1.64)
N R I _
1nZB(i+1),i = 27 ( ) 2 TI‘U TI‘ Ul+1
o
1 [ 2t 4 2% !
+ Z:j <m> "mut UL, (2.1.65)
> 1 21
InZp, = 27<%) (W +y7h) TrUf e U (2.1.66)
=1
1 /622 — 223 : ;
In Zgange = 27 N T U Tr U (2.1.67)
— X

00 N4l 31/2
InZy,, = Z( 1 (2‘” ) VUl U

—~ (1—ab)3
4 lf; le <(12f3;/12)3> Ul ey (2.1.68)
InZy,, = g (—1l)l+1 <(12fggf)3> eyl TeU;
n g (_1l)l+1 <(12“i3l;)3) v P Ul e U, (2.1.69)

5
N

I
WE

—1)+1 93l/2 3
( l) ((1931)3 Py P Ul Ut (2.1.70)

—1)H1 [ 932 _
( l) ((1 — xl)3 WP+ oy Py Ut U (2.1071)
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The quantum effective action I'[U;] is defined by
*F[Uz] — /DA;,L D¢ D¢ e_ fsl xS3 d4$ \/m (Egauge'i'ﬁscalar'i'ﬁferm) . (2172)

with Leauge, Lscalar a0d Lierm given by Eqgs. (1.5.12), (1.5.10) and (1.5.11), respectively.
Thus, by adding Eqgs. (2.1.64)-(2.1.71), we find

1 22% 12+
_ZZ [7(1_7@)*7(@) (vi+7)
_1)+1 231/2
= 1z)+ ((12—$l)3>( ) )

M oo 24 2 _1\l+1 1_1/2 ) 10
_ZZ[%<(1:F7:61)3> (bt + ll)+ ((12_3x)>(yll/ +y11/)]

< (TeUl TUZh + O Ul ) (2.1.73)

(mev! U

Note that the adjoint holonomy factors come from the vector multiplets ( i Pis Vi, Vo Z)
and the bifundamental factors come from the hypermultiplets (Ai’(i +1)s Blig1),i0 XAjis X B,Z).
For later convenience we define here the total single-particle partition functions for the
bosonic and fermionic sectors of the vector and hypermultiplets:

622 — 223 x + 22

(g, y2) = (1—2) + (1 —2) (y1 +y ) (2.1.74)
F 2252 1) 1/2 _1
Zad (T3 Y1, Y2) = ﬁ (y +y ) (yz + Yo ) (2.1.75)
T+ 22
Az, ye) = -3 (y2 + Yy ) (2.1.76)
2563/2
Ai(@iy,pe) = T _op (1 + ;%) (2.1.77)

These results are consistent with Ref. [6], Egs. (3.17)-(3.18), where the summation over
representations is taken to run over the adjoint and the bifundamental representations,
and the charges () are taken as 3 times the Cartan charges (1, Q2 given implicitly through
(1.5.1)-(1.5.8).

2.1.3 Casimir energies

Let us consider the contributions to the quantum effective action I'[U;] originating from the
BA terms in the Matsubara frequency summations (2.1.42) and (2.1.54) that we discarded
in the previous section. In particular, for a scalar field one finds the contribution

N
—In Zgatar =y Tr(BA,) (2.1.78)

m,n=1
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where the trace is taken over the S3 scalar spherical harmonics. This trace is evaluated
by regularization via the Riemann (-function as explained below. The free energy F' is
related to the partition function Z through the relation SF = —In Z. Therefore, since the
right hand side of (2.1.78) is linear in 3, and contributions to F containing z = ¢~ go to
zero in the 7' — 0 limit, we conclude that the right hand side of (2.1.78) represents the
contribution to the Casimir energy of ' = 2 quiver gauge theory on S' x S3 from a scalar
field. Using the eigenvalues and corresponding degeneracies of the Laplacian on S3 given
in Table 2 one finds the following contribution to the Casimir energy from a scalar field on
S x §3:

B 1 [e’s) ) . B 1 0
Escalar = 2 Z(h + 1) (h + 1)R - 2R Z h+ 1
h=0 s=—1 h=0 s=—1
1
= —((s—2
T
- L (2.1.79)
~ 240R o
where in the last equality we set s = —1 in the analytic continuation of (.
Analogously, the contribution from a vector field defined on S x S is:
1 — 1 — 5
gvector == 52 h+2 h+1)R EZ<(h+1) (h+1)—(h+1)>
h=0 h=0
1
= E( -1))
= (2.1.80)

120R

For a spinor field the contribution to the Casimir energy is obtained by regularization via
the Hurwitz (-function:

:U|H

Espinor = —Zh h+1)(h+1/2)R i(thl/Q —i(h+l/2)>
h=0 h=0
- —%(c(—a%)—m—l,%))
17

= —. 2.1.81
9601 (2.1.81)

From these contributions, the total Casimir energy of N' = 2 quiver gauge theory on S' x §3

evaluates to
1 11 17 3
ECasimir = 6 —— 4+ —+4- =—M. 2.1.82
Casimir ( 240R T 1208 T 960R> 16R (2.1.82)
Note that for any finite radius R of S® the Casimir energy is non-vanishing, implying
that supersymmetry is spontaneously broken. Thus, supersymmetry is broken even in the

T — 0 limit as a result of defining the field theory on a compact spatial manifold.
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2.2 The matrix model

The matrix model we will consider is defined by the partition function

M
M = /H [DU;] exp (- T[U]) (2.2.1)

where I'[U;] is given in (2.1.73). It is convenient for taking the continuum limit to rewrite
['[U;] directly in terms of the zero modes a;. To simplify the notation, define the rescaled
zero mode «; = Ba; so that U; = e, We note that (for fixed 7)

N
BT =) cos (la —la?) 22
m,n=1
U ToUSL + T U TeULy,, = 2 Z cos (laf" —laf ) . (2.2.3)
m,n=1

Furthermore, the path integral measures [DUJ and [Dai] are related by

pu;] = ] sin® (#) [Day)

m<n

exp Z In

m#n

sin (#)‘ (Do - (2.2.4)

Hence the path integral of the matrix model takes the form

Znin = / H [Dai] exp ( 3 (v (@™ — o) + Vig(al™ — a7+1))) (2.2.5)

m#n

where the adjoint and bifundamental potentials are, respectively

(0 1
Vaa0) = —tnsin (§)]= 3§ (8Gahohoob) + (0" 2ok ) cost)
=1
1
= m2+ )7 (1 - ZAEhul ) - (D) ) o) (226)
=1
.2
Vis0) = =37 (eB@hihinh) + (~) @ty 0h)) cosi6) (2.2.7)

In the second equality in Eq. (2.2.6) we used the identity

2sin ( > ‘ Z ~ cos(16) (2.2.8)

In
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which can be found, e.g., in Ref. [9] (p. 16, footnote 8). We will ignore the term In 2 on the
right hand side of Eq. (2.2.6) since it will only give rise to an overall constant that can be
absorbed into the normalization of Zy.

We will now take the continuum limit N — co. It is convenient to introduce eigenvalue
distributions p;(6;) proportional to the density of the eigenvalues e of U; at the angle
0; € [—m,m]. Here p; must be everywhere non-negative, and we choose its normalization so
that for any fixed ¢

™

d@z pl(tgl) =1. (2.2.9)
Furthermore we define the Fourier modes of p; and V,q and V;;:
pé = / d92 pz(el) COS(Z(%) (2.2.10)
VL = / dO Vaq () cos(16) (2.2.11)
/A / d6 Vi (0) cos(10) (2.2.12)
so that, assuming p;, Va4, Vi to be even functions, we have the Fourier expansions
1 o0
pi(0;)) = — Z P cos(16;) (2.2.13)
T
=1
1 o0
Vaa(0) = — ) " Vi cos(i) (2.2.14)
1 o0
Vi@ = =) Vcos(ih). 2.2.15
5(0) = 230 Viscos() (2:2.15)

The continuum limit is obtained by making the substitution®

N T
%Zl[...] —>/7rd9ipi(9i>["'] (2.2.16)

so that
1 N
DI a}) — (o) (2.2.17)
m,n=
| X
N2 Z —lajy,) — Pépiﬂ- (2.2.18)
TL:

Furthermore we replace the path integral measure [Dai} — [D)\i]. Thus, in the contin-
uum limit the path integral of the matrix model takes the form

M
Znin = / [ [P exp (= Samlo]) (2.2.19)
i=1

SHere it is implied that the content of the brackets [ . ] carries an ¢ label.
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where the action for the eigenvalue distribution functions p is

M oo

N2
SMM ZZ ( pl T ,Ul,,ug) + pzpz+1Vb1(T ,Ul,/,éQ)) (2220)
=1 =1

Here Vald and thi denote the {’th moment of the adjoint and bifundamental potentials.

Explicitly,
V(T p, o) = l(l—z a(@h oyl vh) — ()l e 91792)) (2.2.21)
2
Vi(Tippe) = —F(Behyleh) + DR ). (2222)

To summarize, the matrix model under study is defined by Eqgs. (2.2.19)-(2.2.22) along
with Eqs. (2.1.74)-(2.1.77).

2.3 Order parameters of deconfinement phase transition

Before proceeding with the analysis of the phase structure of the matrix model established
in Sections 2.1-2.2 we will first review some well-known order parameters for deconfinement
in 4-dimensional thermal Yang-Mills theories defined on flat space S' x R3. (For a more
thorough review, see [36].)

First of all it is very important to note that even though U(N') gauge theory for NV finite
can only develop genuine phase transition in the infinite volume limit, N = oo theories
may have phase transitions even in finite volume because the N — oo limit acts as a
thermodynamic limit. One well-known example of this type is the Gross-Witten phase
transition in 2-dimensional U(N) gauge theories [37].

It is a defining property of a confining theory (with no fields in the fundamental rep-
resentation of SU(NN)) that a single external particle in the fundamental representation
(a “quark”) can be inserted into this theory only at an infinite cost in free energy. Heuris-
tically, such a quark forms one end of a QCD string which is infinitely long because it
has nowhere else to end. In the low temperature confining phase this long string also has
infinite positive free energy. Let F,(T") denote the change of the free energy of the system
induced by the presence of an external quark. It follows from the form of the coupling of
an external quark to the gauge fields that e~ Fa(1)/T = (P), where P = % Tr Pexp ( ¢ A)
is the so-called Polyakov loop [38, 39|, the trace of a Wilson loop around the compacti-
fied Euclidean thermal time circle. Therefore, since F(T') is infinite in a confined phase,
(P) = 0 in the low temperature confining phase, whereas in a deconfined phase Fy(T') is
finite and therefore (W(C)) # 0.

Thus, (P) constitutes an order parameter that sharply distinguishes the low temper-
ature confining phase from the high temperature deconfined phase. From a low tempera-
ture point of view, the transition that separates these two phases is associated with the
condensation of flux tubes whose effective free energy is driven negative at high enough
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temperatures (when the energy of these strings is overcome by the entropy of their vibra-
tions).

In the large N limit (with fixed 't Hooft coupling, or equivalently fixed Agcp) the de-
confinement phase transition has yet another order parameter [40]. The confined phase
is dominated by gauge-invariant bound states and so its free energy F(T') scales like
NO at large N. On the other hand, the deconfined phase is described by free gluons,
and consequently its free energy scales as N2 at large N. Thus, in the large N limit,
limy o F(T)/N? constitutes a second order parameter for deconfinement; like the Polyakov
loop this new order parameter vanishes in the confined phase but is finite in the deconfined
phase.

2.4 Low-temperature solution and phase transition

The term —In !sin (g)| in the adjoint potential (2.2.6) originating from the change of mea-
sure is a temperature-independent repulsive potential. On the other hand, the remaining
parts of the adjoint and bifundamental potentials (2.2.6)-(2.2.7) provide an attractive force”
which grows from zero to infinite strength as the temperature is raised from zero to infin-
ity. One would therefore expect that at low temperatures, the stable saddle points of the
matrix model are characterized by the eigenvalues of the holonomy matrices U; spreading
out uniformly over the unit circle, whereas at high temperatures the attractive potential
causes them to localize. In this section and the next we will see that this intuition indeed
is true.
We now consider the saddle points of the matrix model action (2.2.20),

0Sum _ N2 1o 1o ! ! !
0= apt = 7<2Pivad + (pi1 + pi+1)Vbj> . (2.4.1)
7
For M > 2, this condition translates into M linear equations in M unknowns:
20tVia + (Pho1 + plpa) Vi = 0. (2.4.2)

The determinant of this system of equations is generically non-zero, so we find the unique
solution pé = 0, corresponding to the flat distribution p; = % Thus we conclude that the
eigenvalues of the holonomy matrices U; are distributed uniformly on each of the M unit
circles. This defines the low-temperature solution of the matrix model.

The leading O(N?) contribution to the free energy computed from the path integral
(2.2.19) comes from the action Sy [p]. However, as pl = 0, the first non-zero contribution
to the free energy in this phase comes from a Gaussian integral over the fluctuations about
the solution p; = % The free energy is therefore of O(1) with respect to N, suggesting that
the theory in this phase describes a non-interacting gas of color singlet states. Furthermore,
we note that the Polyakov loop W (C) = Tr P exp (ig foﬁ deA?) has zero expectation value

"The fact that the remaining parts of (2.2.6)-(2.2.7) are attractive potentials can be shown following
the argument in [6], footnote 32.
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since the trace averages to zero in the uniform eigenvalue distribution. In particular, this
implies that the Zy center symmetry is left unbroken in this phase. Accordingly, we label
this phase “confining”.

For M > 2 the solution p; = % will be a minimum of the action until we reach values
of (T; uy, o) for which

0 = det Hij == (243)

for any fixed I. When the temperature or the chemical potentials are raised above these
critical values, the flat distribution becomes an unstable saddle point of the matrix model,
and the model thus enters a new phase which we will discuss in the next section. For now
we note that (2.4.3) defines a phase transition condition of the matrix model.

It will be convenient to express the Hessian matrix in terms of the variables & = 2Vald
and n; = Vbli. Note first that in the special case M = 2, due to the identification ¢ ~
i+ M =i+ 2, the Hessian matrix obtained from (2.2.20) takes the form®

2
g & 2m) (2.4.4)
20 &
The determinant factorizes as det H = —4(771 — %&) (171 + %fl). For M > 3 the Hessian
matrix is a tridiagonal, periodically continued matrix:

H;j = { s forg=i (2.4.5)
m forj=i+1

where, as usual, we make the identifications ¢ ~ ¢+ M and j ~ j + M. The determinant
of H factorizes as follows®

£ n n
£ < 21
det | o = H ({ + 2cos (W) 77) . (2.4.6)
e i=1
1 no§

Thus, the determinant of H vanishes on any of the lines & + 2 cos (%) m = 0 for j =

1,..., M. To single out the physically relevant condition for the vanishing of det H we will
first consider the case M = 12 to gain intuition. For M = 12 the determinant in particular
factorizes as

_ 20,2 22 2_5_12 2_§ ?
det H = =36¢} (nf —&)" (i = ) (0 = (24.7)

where [ is fixed. In Figure 2.1 we have divided the (&, ;) plane into regions where H is
positive-definite (denoted by +) and where H is indefinite (denoted by —).

8We omit here, and in the following, the overall factor of NTZ in Eq. (2.2.20) for notational simplicity.
9This formula is a special case of (3.1.11).
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Thus regions marked by + correspond to a local extremum (minimum) of Sy, and
regions marked by — correspond to unstable saddle points. In Figure 2.1 we have further-
more marked the region occupied by the N' = 2 quiver gauge theory matrix model in the
low temperature phase by plotting (£1,71) for (T p1, p2) = (0.1;0.8,0.8). For fixed chemi-
cal potentials, zfd, 251, zﬁ, z,l; all increase monotonically with the temperature. Therefore,
as the temperature increases, the dot in Figure 2.1 will move as indicated and hit the
instability line 7, = —%gl at the phase transition temperature.

MT T T T T T T T T 11T |||||||||||||||§1

-6 -4 2 2 4

Figure 2.1: Regions of positive-definiteness and indefiniteness of H for the case M = 12. Regions
where H is positive-definite (corresponding to a local minimum of S ) are marked by +; regions
where H is indefinite (corresponding to an unstable saddle point of Sniv) are marked by —. The
lines represent the locus of det H = 0. The physically accessible region of the (§,m;) plane is
bounded from above by the & axis and from below by the line of the numerically smallest negative
slope. This is illustrated by the dot which corresponds to (T 1, pu2) = (0.1;0.8,0.8) and l = 1. The
arrow shows how the dot will move as the temperature is increased, keeping p1 and uo fized.

By the same analysis, for any M > 2 the phase transition occurs at the instability line
m = (M) where a(M) is the numerically smallest negative slope of the zero lines of the
Hessian determinant. For all M > 3 we find from (2.4.6) that (M) = —1 (corresponding
to j = M). For M = 2 we also find a(M) = —3. Indeed, note that for M > 2 the matrix
obtained by substituting 7 = —3& in Egs. (2.4.4) and (2.4.5) will have a zero eigenvalue
(with (1,1,...,1) as an eigenvector) and hence zero determinant.

2.4.1 The large M limit

As a consistency check, we can derive that limp; oo a(M) = —% by a different route.
We take the continuum limit M — oo in the quiver direction. The quiver label i thus
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becomes a continuous angular parameter 9 which we take to be 27m-periodic; i.e., we identify
¥ ~ 9 4 2. Accordingly we make the substitutions

) — () (2.4.8)
o) —  —5(@) + () (249

where ~ denotes %. The matrix model action (2.2.20) thus becomes'’

2 o0 27
Swnilp] = %; | a0 [ +2m 602 = n ()] (2.4.10)

The Euler-Lagrange equations obtained from this action are those of a harmonic oscillator,

mpl(9) + (& +2m) p'(W9) =0 (2.4.11)

where [ = 1,2,.... Note here that it is the bifundamental contribution in (2.2.20) that
gives rise to the derivative term in (2.4.10) and in turn to the mass term for the har-
monic oscillator. Thus, the harmonic oscillator EOM’s in the large M limit is a pure
‘quiver phenomenon’. Solutions to these equations will become unstable when the tension
7 = (§ +2m;) goes from 7 > 0 to 7 < 0. Thus, for large M, the phase transition will occur
when 7, = —%&, consistent with what we found above.

We now return to the phase transition condition 7, = «a(M)&;. Since za%, zfd, zfi, z]fi are
all monotonically increasing as functions of x and 0 < x < 1, the [ = 1 condition is the
strongest. Therefore, the phase transition condition for M > 2 is

for M > 2 (25 (z;y1, y2) + 2l (@ y1, v2)) + 2(20 (91, 2) + (2391, 12)) = 1. (2.4.12)

Finally, in the special case M = 1 we immediately obtain V!, + Vi%. = 0 from (2.4.1) due
to the identification i ~ ¢ + M = i+ 1. Putting [ = 1, this is precisely the phase transition
condition (2.4.12). We thus conclude that for any M the phase transition condition is

(22 (s y1,12) + 2lq (s y1, 2)) + 2(2D (s y1, v2) + (291, 12)) = 1. (2.4.13)

In Figure 2.2 below we have plotted the curves in the (7, u) plane obtained from this
condition for the cases (u1,u12) = (14,0) ; (u1, pu2) = (0, 1) and (p1, p2) = (i, p). For each
of these cases, the relevant curve defines the phase diagram of N' = 2 quiver gauge theory as
a function of both temperature and chemical potential. Note that, as discussed in Section
1.5, if one or both of the chemical potentials are larger than the inverse radius of the spatial
manifold S3, the theory develops tachyonic modes and becomes ill-defined. Therefore the
line 4 = 1/R defines a boundary of the phase diagram.

10The extra prefactor % comes from changing the counting measure over i to the measure dd.
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The phase transition condition (2.4.13) defines a phase transition temperature T (p1, p2)
as a function of the chemical potentials. We will refer to Ty (u1, p2) as the Hagedorn tem-
perature of N’ = 2 quiver gauge theory. This terminology will be justified in Section 2.5.
We remark that the Hagedorn temperature at zero chemical potential is

1
Ty=—— ~0.37966 (2.4.14)

In(7 — 4v/3)
in units of R~!, the inverse radius of the S3. This is exactly the Hagedorn temperature for
N =4 SYM theory (cf. [6, 7]). The origin of this fact can be traced to the observation in
[30] that in the large N limit the correlation functions of N'=4 U(N) SYM theory equal
the corresponding correlation functions of the N/ = 2,1,0 quiver gauge theories obtained
from orbifold projections. Since our computations rely on perturbation theory (namely,
taking the g — 0 limit of the action and then performing Gaussian path integrations),
and we are furthermore taking the N — oo limit, we should expect that the matrix model
defined out of the quantum effective action will have the same behavior for the N' = 2
quiver gauge theory as for the A =4 SYM theory.
Furthermore, for small chemical potentials the Hagedorn temperature is given by

1
Th(pa, p2) = 5" c(pi +203) + enpd + crapi i + caapiy + O(117) (2.4.15)

where the coefficients are

V3 Bo ( 36280—209v/350+28961/3—5016
fo=-In(T-4V3), c=-T2. en=—4% ( o200/ 350+2696 ) (2.4.16)

1o — Do (1810801045360 —2896v/3+5016 oo — B0 (36280—209v/350—1448/3+2508 (2.4.17)
12 = 93¢ 62743623 » €22 = 108 —627+362/3 o
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Figure 2.2: Phase diagram of N' = 2 quiver gauge theory. The outermost curve is the transition line
corresponding to (u1, u2) = (,0). It has slope 0 in the neighborhood of the point (T, u) = (0,1). The
inbetween curve corresponds to (u1, p2) = (0, 1), with slope —1n2 near (0,1). The innermost curve
corresponds to (w1, p2) = (p, 1), with slope —In4 near (0,1). The phase transition temperature at
zero chemical potential is common for the three curves and equals T = —m ~ 0.37966 as in
the N =4 SYM case.

2.5 Solution above the Hagedorn temperature

As the temperature is increased beyond T > Ty, the attractive terms in the pairwise
potential continue to increase in strength, and so the eigenvalues will become increasingly
localized. The precise distribution can be determined, following [6], by the condition that
a single additional eigenvalue «; added on the ¢’th circle experiences no net force from the
other eigenvalues on the circles ¢ — 1, ¢ and 7 + 1:

™

0= / 4¢ 2V!y(ei — Q) pi(C) + / d¢ Vii(oi — Q) (pi1(O) + pia () (25.1)

_r —m

where V,q and Wy are given in (2.2.6) and (2.2.7), respectively. Setting
a = z(ahyn, ) + ()™l vl vh) (2.5.2)
b= zi(ahiynve) + (D) ag(atvivh) (2:5.3)
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we find
Vaaloi =€) = —% cot <ai2_ C) + > agsin(lo; — IQ) (2.5.4)
=1
Vi —¢) = 2 bysin(lo; —IC). (2.5.5)
=1

Moreover, using the Fourier expansion of p; in (2.2.13) and furthermore using the orthonor-

mality of (1, %r cos(n(), # sin(n()) on [—m, 7|, one finds

| acvisai- o) = - [ ac cot(o‘"; C)pi@) + 2 aplsin(ia;) (25.6)
=1

—T —T

/7r d¢ V(i =€) (pie1(Q) + piv1(Q)) = 2D bu(pi—1 + phya) sin(las) - (2.5.7)

T =1

Thus the no-force condition (2.5.1) can be written

—T

JG cot(“"; C)pz-«;) = 23 aptsin(ion) + 23 brsinlan) (ol + o) (258)
=1 =1

which provides M equilibrium conditions

oS T i — G .
95(¢) + / d¢; pi(G) cot (&) =0 Vi=1,...,.M (2.5.9)
9Gi Ci=a -7 2
for the lattice action
M oo 1 | !
aip; + ble'—l + blPH-l 1 )
Shatt = N TrU: +TYU; ") . 2.5.10

We will assume unbroken quiver translational invariance for the solution; i.e., that pé =
pé 41 for any i. Our motivation for this is the non-perturbative equivalence between par-
ent/daughter gauge theories related by orbifold projections [41, 42, 43, 44]. More specifi-
cally, it was shown in [42, 43] that a necessary and sufficient condition for the equivalence
is unbroken invariance under the orbifold group. Since it was shown in [30] that there
is a perturbative equivalence between N' = 4 SYM theory and N/ = 2,1,0 quiver gauge
theories obtained from orbifold projections in the planar limit, we expect the case of un-
broken quiver translational invariance to be the one of physical interest. However, we note
that non-perturbative effects might destroy the equivalence established in [30], potentially
leading to i-dependent saddle points of (2.2.20).

To find the solutions p; we rewrite!! the equilibrium conditions (2.5.9) in terms of the
complex variables z; = ¢/ and 7 = €. Defining K(z;) = %éjc), the conditions (2.5.9) can
be written

K(z) +i = 2% pim) dr (2.5.11)

S1 T—Zj

"Use that cot (O“T_C) =227 and that s, Lpi(r) = .

-



50 CHAPTER 2. MATRIX MODEL AND PHASE STRUCTURE

Assuming pl = p! 41, the exact inversion formula of this equation was found in [45]. As we
will not need the exact solution for our purposes, we will not go further into its derivation,
and we simply cite here the following approximate solution:

1 0 0
pi(0) = —54/5% — sin? <§> cos <§> (2.5.12)
s
0 / 1
82 = sin2 (5()) =1- 1-— m . (2513)

The support of the solution (2.5.12) is [—6p, O] It is immediately clear from (2.5.13) that
for temperatures above the Hagedorn temperature one has 0y < m; i.e., the eigenvalue

where

distribution becomes gapped.

2.5.1 Twisted partition function

In analogy with [46] we note the possibility that the quiver translational invariance can
be broken when the boundary conditions for the spinor fields on the S! are taken to be
periodic rather than antiperiodic.'? In this case the Matsubara frequencies for the spinor
fields will be the same as for the bosonic fields, and the twisted partition function'® Z =
Tr(—1)Fe P = ¢=TlVil may be obtained directly from (2.1.73) by replacing (—1)+1 —
(—1). In order to exhibit the Zj; symmetry of the (twisted) partition function more clearly
we rewrite the adjoint and bifundamental holonomy factors in terms of eigenvectors under

quiver node displacements i — i + 1. Indeed, define for w = 2™/M
M .
0= > WUl (2.5.14)
j=1
Under the quiver node displacement Uil — Uil 1 we find
O — Y w UL, = WF) Wl = Wha) (2.5.15)
j=1 j=1

so that ka is an eigenvector under the displacement with eigenvalue w*. The adjoint holon-
omy factor can be written in terms of Q% in the form

M 1 M
l —l l —1
El TrU;, Tr U " = i kgl Tr, TrQ”, . (2.5.16)

2Note that the choices of periodic and antiperiodic boundary conditions exhaust the possible choices on
S'. This follows since the spin structures on S” are in 1-1 correspondence with the elements of H'(S*; Zs) =
Zso. Thus, there are 2 spin structures, corresponding to 2 distinct choices of boundary conditions for spinor
fields.

13The twisted partition function is also known as the Witten index. Letting the trace run over the entire
Hilbert space of gauge invariant states, the Witten index defines a topological invariant of a supersymmetric
field theory. In particular, it may be shown to be independent of the inverse temperature .
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Likewise, the bifundamental holonomy factor can be written
M M
l l —k l -1
ZTrU U, = Mkzlw TrQ, TrQ”, . (2.5.17)
Thus, the twisted quantum effective action takes the form
M oo
~ 1 1 (622 — 223 1z +x
ry;] = —— | N T
U= H<1—xl>3)+l<<1—x>>(yl+yl)
1 21331/2 1/2 —1/2 l .y
—7<m (/" +u ) (e +ys)

—ﬁii[ (x - )(yzﬂ/a -1 (%) (yi/2+y1”2)]

k=11=1

(Tr QL Tr Qjc)

xw (e TrOT + e ol ) (2.5.18)

As in Ref. [46], we expect that for the effective action T'[U;] there exist phases that break
the translational invariance along the quiver direction. It would be interesting to study
this further.

2.5.2 Free energy slightly above the Hagedorn temperature

Using the Hagedorn temperature for small chemical potentials given in (2.4.15)-(2.4.17)
we can compute the free energy slightly above the Hagedorn temperature in analogy with
[10]. Defining AT =T — Ty (p1, u2), we find for 0 < AT < 1 the perturbative expansion

F 3 2v/3 + o
m = *ﬁog (1 - ﬂOT(M% + 2#%) + O(N?)) AT

—ﬂé\/g (1 ~ o2t ; ﬁ’;ﬁ * (1 +203) + o(ﬁ)) AT?? + O(AT?). (25.19)

2.5.3 High-temperature behavior of free energy

Let us examine the free energy in the limit 7" — oo where the chemical potentials are kept
fixed. We will first treat the uj, us = 0 case. First note that from (2.2.21) and (2.1.74)-
(2.1.75) one obtains, for large T,

27TT3
N

whereas from (2.2.22) and (2.1.76)-(2.1.77) one obtains, for large T,

Vi(T50,0) = (4+4(-1)), (2.5.20)

27TT3

T4+ 4= . (2.5.21)
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In the T' — oo limit the pairwise attractive potentials grow to infinite strength, so the eigen-
values of the holonomy matrices U; localize to extremely small intervals; i.e. the eigenvalue
distribution functions will become delta functions, p;(6;) — 0(6;). (This is also clear from
(2.5.13) since for T' — oo one has aj, by — oo and thus 6y — 0. The normalization condi-
tion (2.2.9) then implies p;(6;) — §(6;).) Therefore pl — 1, and so from (2.2.20) we find
that the free energy in the T" — oo limit is

o0
F = TSyu=-2N>MT*>" 114(8 +8(—1)H1)
=1

= —2NZMT*¢(4) (8+ (1-1)8) (2.5.22)
= —%QNQMT4V01(S3) (2.5.23)

where in (2.5.22) we used that ((4) = % and Vol(S3) = 272 (putting R = 1) and finally
that

X 1yn+1
> EUE ) = (1 - %) ¢(d) (2.5.24)

n=1

where 7 is the Dirichlet eta function. We note that the free energy scales as N2M as
N — oo. This is to be expected from the orbifold projection invariant form of the fields
(1.2.15)-(1.2.16) and (1.2.37)-(1.2.38), given that the free energy scales as N? for N = 4
U(N) SYM theory for high temperatures in the N — oo limit (cf. Eq. (5.62) of [6]).

Note that the weight factor for the number of bosonic degrees of freedom (namely,
N EOF = 8) in (2.5.22) is 1, whereas the weight factor for the number of fermionic degrees
of freedom (namely, NROF = 8) is %. The origin of this difference in weight factors is
the antiperiodic boundary conditions for the fermionic fields. Thus we explicitly see that

supersymmetry is broken as a result of the antiperiodic boundary conditions for fermions.

For finite values of the chemical potentials f1, 2 one finds from (2.2.21) and (2.1.74)-
(2.1.75) for large T’

2T 2 | —12

Via(Ts i, ) = —1—4(2 + i+ u) + DT ) (s y;l)) , (2.5.25)

whereas from (2.2.22) and (2.1.76)-(2.1.77) one obtains, for large T,

27T _ -
Vo (Ts i, pi2) = == (20 +53") + 20" (u* +5,%)) - (2.5.26)

Once again, since pt — 1 in the T'— oo limit, one finds from (2.2.20) that the free energy
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in the T' — oo limit is given by

1
= TSy = —2N2MT4ZZ—4(2+ W+ o) + O () (b + 92 )
=1

+2(sh+u3h) 2D Py %)) (25.27)

= —2N2MT4<2C( )+ 2B4(Bu1) — 2Fy (B (5 + p2)) — 2Fs (B (4 — p2))

+4B4(Buz) — 4Fy (ﬁ“) (2.5.28)
2Tt T2 1
= —N’M ( T T(uf +2u3) — W(,ﬁ — 4M%M§)>vol(s3) . (2.5.29)

Here B, (z) and F,(z) are given, respectively, in (E.6) and (E.7) of Ref. [47], and the
polylogarithm regularization procedure described there has been used to obtain (2.5.29).14

The fact that the free energies (2.5.19) and (2.5.29) are both of O(N2M) with respect to
N suggests that the gauge theory in the phase above the Hagedorn temperature describes
a non-interacting plasma of color non-singlet states. Furthermore, from the fact that the
eigenvalue distribution (2.5.12)-(2.5.13) is gapped we can immediately conclude that the
Polyakov loop W (C') has non-zero expectation value as the trace does not average to zero in
this case. In particular, this implies that the Zy center symmetry is spontaneously broken
in this phase. Accordingly, we label this phase “deconfined”. Thus, we conclude that the
phase transition defined by Eq. (2.4.13) is a confinement /deconfinement phase transition.
Since furthermore the derivative of the free energy with respect to the temperature is dis-
continuous at the phase transition temperature Ty (p1, p2), we conclude that the transition
is of first order. Furthermore, cf. [7, 6], we identify it with a Hagedorn phase transition,
and Ty (p1, pe) is thus the Hagedorn temperature of N' = 2 quiver gauge theory.

2.5.4 Order of the phase transition

Before closing this section we raise the issue of the order of the phase transition when the
't Hooft coupling A = g%MN is non-zero.

[

Sain = ]::2 (mi(p")? + X% (p")?) (2.5.30)

where b is of order O(A?), and where m? = V1, (T; u1, p2) + VA (T; 1, p2) is interpreted
as the mass squared of the mode p'. Since for fixed chemical potentials, zﬁl,zfd,zg,zg
all increase monotonically with the temperature, it is clear that m? changes sign across
the phase transition (2.4.13): it is respectively positive, vanishing and negative when the
temperature is below, equal to and above Ty;. Depending on the sign of b there can either
be two phase transitions as the temperature is increased (a second order deconfinement

transition followed by a third order transition) or a single first order transition.

! Note that there is a minus sign missing on the right hand side of (E.4) for the n # 1 case.
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First, consider the case b > 0. For temperatures below T we have m% > 0, and so

pt = 0, corresponding to the uniform eigenvalue distribution, is a global minimum of

the action (2.5.30). For T > Tp, however, m? < 0, and so p' = 0 becomes unstable,
2
and Sy has a minimum at (p')? = %. At this minimum the action takes the value

2 4
SyvM = N |47bn1| , and since m? ~ K(Ty — T for temperatures in a neighborhood of Ty,

we have Sy ~ (T — T, H)Q, so the phase transition at T' = T is of second order. As
the temperature is increased above T, the eigenvalue distribution becomes non-uniform,
but still non-gapped. This continues to hold until m? = —b/2 where |p!| = 1/2, and the
eigenvalue distribution develops a gap. This happens at the temperature T' = Ty + %
which thus defines the threshold temperature of a second phase transition which is of third
order [6].

Now consider the case where b is negative. For temperatures where m? < |b|/2 there
are two minima, one at p! = 0 and one at |p'| = 2. When m? > |b|/4 the free energy at
Ipt = % is positive, and so p! = 0 is thermodynamically preferred, having zero free energy.
However, when the temperature is increased to m3 < |b|/4, the free energy at |p!| = 3
becomes negative, and so this minimum dominates the thermal ensemble. We conclude
that at T'= Ty — %, |p!| jumps discontinuously from 0 to %, and the theory undergoes
a first order phase transition. Above this temperature the eigenvalue distribution becomes
gapped. This behavior is qualitatively similar to that of the free theory which we have
analysed in the previous sections, with the exception that the phase transition now occurs
below Th.

Settling the issue of the order and pattern of the phase transitions thus requires knowing
whether b is positive or negative which in turn requires a 3-loop computation. This has so
far only been carried out for pure U(N) Yang-Mills theory [8] where it was found that the
deconfinement phase transition is of first order.

Finally we remark that, in the context of A" =4 U(N) SYM theory on S! x S3, it is
known that the Hagedorn singularity persists for non-zero ’t Hooft coupling A and chemical

potentials, at least for A < 1 [48, 10].

2.6 Comparison to the gravity dual phase transition

In the previous two sections we have studied the phase transition occuring for N' = 2
quiver gauge theory on S' x S3 at zero gauge coupling. From the point of view of the
AdS/CFT correspondence one should expect that in the gravity dual theory there should
be some analogous phase transition separating the gravity solutions that have the conformal
boundary S' x S? at a finite temperature. Indeed, this expectation holds true, as was first
realized by Witten in [4]. In this article, dealing with thermal N’ = 4 SYM theory and
its dual gravity description on AdS5 x S°, Witten argued that the strongly coupled gauge
theory exhibits a deconfinement phase transition, and that this transition manifests itself
in the dual bulk gravity theory as the Hawking-Page phase transition [5] originally studied
in the context of quantum gravity on AdS spaces.
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In this section we will therefore briefly review the Hawking-Page phase transition in
thermal AdS,+1. In [5] Hawking and Page identified two solutions to the Einstein equations
whose boundary at infinity is S' x S"~!. The first one is the manifold X; which is obtained
as a quotient of AdS,41 by a specific subgroup of SO(1,n + 1) that is isomorphic to Z.
The metric (with Euclidean signature) can be written

2 b2
it = (g 1) a4 oyt st 26.1)

with dQ? the metric of a round sphere S™~! of unit radius. Here ¢ is a periodic variable of
arbitrary period. The topology of X7 is S! x B™. Here (2.6.1) has been normalized so that
the Einstein equations read

Rz'j = —nb_zgz'j . (2.6.2)
The second solution, Xs, is the Schwarzschild black hole in AdS,+1. The metric is
2 2
o (T wy, M 9 dr 2 12
ds _<b_2+1_’r‘n2>dt —i-m-f—T dQ” . (263)
b2 rn—2

Here w,, is defined as the constant

167Gy
(n — 1)Vol(Sn—1)~

Wy (2.6.4)
Here G is the (n + 1)-dimensional Newton’s constant and Vol(S™~!) is the volume of a
unit (n — 1)-sphere; the factor w, has been included here so that M is the mass of the
black hole (as we will verify below). Note that the spacetime (2.6.3) is restricted to the
region r > ry where ry denotes the largest solution to the equation

r2 Wy, M

TR

=0. (2.6.5)

The metric (2.6.3) will have a conical singularity at » = r, unless ¢ is periodic with the
period
47Fb27'+
/80 = P)

nra + (n—2)b% (26.6)

The inverse 3, ! is referred to as the Hawking temperature of the black hole (2.6.3).

2.6.1 Entropy of AdS Schwarzschild black holes

With the normalization (2.6.2) of the cosmological constant, the bulk Einstein action is

1 n(n—1)
I =— ntl — ] . 2.6.
167TGN/d i <R+ - ) (2.6.7)

For a solution to the equations of motion one has R = —in(n + 1)/b?, and the action

n /d”*lx\/ﬂ, (2.6.8)

[ p—
81G N

becomes
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that is, the volume of the spacetime times 8W’C‘;N. The action additionally has a surface
term [49, 50], but the surface term vanishes for the AdS Schwarzschild black hole, as noted
in [5], because the black hole correction to the AdS metric vanishes too rapidly at infinity.

Actually, both the AdS spacetime (2.6.1) and the black hole spacetime (2.6.3) have
infinite volume. As in [5], one subtracts the two volumes to get a finite result. Putting an

upper cutoff R on the radial integrations, the regularized volume of the AdS spacetime is

B R
Vl(R):/ dt/ dr/ dQ =t (2.6.9)
0 0 Sn—1

and the regularized volume of the AdS black hole spacetime is

Bo R
V2(R)=/0 dt/ dr/s ler”‘l. (2.6.10)
T4 n-

Note that the radial integration for the AdS black hole starts at » > r,, while in the
AdS spacetime r > 0. Another difference between the two integrals is that one must use
different periodicities 3’ and [y for the ¢ integrals in the two cases. The black hole spacetime
is smooth only if 3y has the value given in (2.6.6), but for the AdS spacetime, any value of
3 is possible. One must adjust 3’ so that the geometry of the hypersurface r = R is the
same in the two cases. More precisely, the proper circumference of the S at r» = R must
be the same as the proper length on X5 of an orbit of the Killing vector %, also at r = R.
This is done by setting 3'v/r2/b2 + 1 = Fo/72/b2 + 1 — w, M /r"=2 . After doing so, one
finds that the action difference is

1

o n— Tn—l o T,n—i—l
lim (Va(R) — Vi(R)) = Vol(S™ ) i)

n
= = 2.6.11
87TGN R—oo 4GN (m’i + (’fl — 2)b2) ( )

This is positive for small r and negative for large r, showing that the thermodynamically
preferred spacetime for low temperatures is the AdS spacetime (2.6.1), whereas for high
temperatures the spacetime dominating the thermal ensemble is the AdS Schwarzschild
black hole (2.6.3). These two geometries are separated by a phase transition occurring at a
temperature [y for which the action difference in (2.6.11) is zero. This is the Hawking-Page
phase transition first identified in [5].

One then computes the regularized energy

0L (n—=DVol(S™ H(rb 2 + 7%
N 8,@0 N 167TGN

which in particular shows that the M appearing in (2.6.3) is the mass of the black hole,

E

=M, (2.6.12)

and the regularized entropy

TVol(5m )

r
S=0k—-1= 2.6.13
Bo 1Gx ( )
of the black hole. The entropy can be written
A
S=— (2.6.14)
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where A denotes the volume of the horizon; i.e., the surface at r = r.

Now, the black hole entropy (2.6.13) should be compared to the boundary conformal
field theory on S' x S"~! where the S* has circumference f3y; that is to say, the temperature
of the boundary field theory is identified with the Hawking temperature of the black hole.
Conformal invariance dictates that the coupling constant is dimensionless, and therefore

the entropy density on S"! scales as 3, (n=1)

as fp is taken to zero. From (2.6.6), in the
limit Gy — 0 one finds r; — oo (the 7y — 0 branch is thermodynamically unfavored [5])
with By ~ 1/r;. Hence the boundary conformal field theory predicts that the entropy of
this system is of order ri_l, and is thus asymptotically a fixed multiple of the horizon
volume which appears in (2.6.14). Note that the discussion here assumes 3y < 1, meaning
that r4 > b; therefore, it applies only to AdS black holes whose Schwarzschild radius
is much greater than the radius of curvature of AdS space. However, in this limit, one
does get a simple explanation of why the black hole entropy is proportional to the area of
its horizon that is entirely ‘holographic’. Fixing the constant of proportionality between
entropy and horizon volume presumably requires some more detailed knowledge of the

boundary quantum field theory.

2.7 Quantum mechanical sectors

Since N' = 2 quiver gauge theory is a conformal field theory, we can exploit the state/opera-
tor correspondence and map the Hamiltonian H to the dilatation operator D.!5 As a
consequence, the partition function of thermal A/ = 2 quiver gauge theory in the grand
canonical ensemble takes the form

Z(T; i1, p2) = Ty (e PPTORQ) (2.7.1)

Here the trace is taken over the entire Hilbert space H of gauge invariant operators. For
weak 't Hooft coupling A < 1, the dilatation operator D can be expanded perturbatively'6

D=Do+ Y N'’D,. (2.7.2)

n=2

We let () denote the total charge with respect to the Cartan generators of SU(2)gr x U(1)g,
Q = Q1 + @Q2, with u as the associated chemical potential.'” Taking A\ = 0, the partition
function (2.7.1) can be rewritten as

Z(T; ) = Terexp (= B(Dy — Q) = B(1 - 1)Q) (2.7.3)

5To be more specific, the conformal dimension of some operator @ on R* is mapped to the energy of
the associated state O|0) on R x S* (where |0) denotes the vacuum state).

'5This was shown for A" =4 U(N) SYM theory in [14, 51].

'"Recall that in Section 1.5 we defined the generator of the Cartan subalgebra of SU(2)g to be o, rather
than 1o, so that we have the associated charges Q1, Q2 implicitly given through Egs. (1.5.1)-(1.5.8). It is
these charges we are referring to here, rather than the R-charges given in Table 1.
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Following [10], we now consider the region of small temperature and near-critical chemical
potential
<1, l-p<l. (2.7.4)

In this region, the Hilbert space of gauge invariant operators of N' = 2 quiver gauge
theory truncates to certain subsectors. To show this, first observe that in the region (2.7.4),
operators with Dy > ) appear with an extremely small weight factor in the partition
function (2.7.3) since § > 1. On the other hand, for operators with Dy = @, the weight
factor is non-negligible precisely because 1 — pu < 1. Therefore, the partition function
(2.7.3) is dominated by contributions from operators belonging to the subsector

Ho={0OeH | (Dy—Q)O =0} . (2.7.5)
We thus conclude that by taking the near-critical limit
r — 0, xy fixed , (2.7.6)

the full Hilbert space H of gauge-invariant operators effectively truncates to the subsector
Ho. We will consider three concrete examples of this truncation below, obtained by either
turning off one of the R-symmetry chemical potentials, or by putting them equal. As we
remark below, the resulting subsectors are in a certain sense quantum mechanical.

2.7.1 Case 1: The 1/2 BPS sector

We take (p1,p2) = (p,0), and thus the total Cartan charge is Q = Q7. Taking the near-
critical limit (2.7.6) of the partition function (2.2.1) then yields

Z(zy) — /ﬁ[DU-] %i(w)lT Ul Te U (2.7.7)
Yy 11 il exp 2.2 ; rU; Tr U, . .

Since the scalar field ®; has Dy = @ = 1, we therefore conclude that the Hilbert space of
gauge invariant operators truncates to the 1/2 BPS sector spanned by multi-trace operators

of the form
Tr (@) Tr (92) -+ Tr (%) . (2.7.8)
It is clear that in the near-critical limit (2.7.6) all operators with covariant derivatives
decouple. Thus all modes originating from defining a field theory on the spatial manifold S3

are removed, and the locality of the field theory is lost. In this sense the resulting subsector
of the field theory is quantum mechanical.

2.7.2 Case 2: The SU(2) sector

We take (p1,p2) = (0, 1), and thus the total Cartan charge is Q = Q2. Taking the near-
critical limit (2.7.6) of the partition function (2.2.1) then yields

y S S RGN —
Z(xyy) — /H[DUZ] exp ZZ ;i U, TrU | - (2.7.9)
i=1 i=1 I=1
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Since the scalar fields A; ;1) and By;yq); both have Dy = @ = 1, we therefore conclude
that the Hilbert space of gauge invariant operators truncates to the SU(2) sector spanned
by multi-trace operators of the form

i —

k
H D 70 .79 ) (2.7.10)

where any letter ZZ(JJ)_, is one of the scalars A; ;1) or B(;;1);. The subscripts ‘—’ denote
that the quiver labels on the fields in question must trace out a closed loop on the quiver
diagram in Figure 1.1 so as to ensure gauge invariance. l.e.; an example of a gauge invariant

Single—trace Operator 1s Tr (Ai,(i+1)A(i+1),(i+2)B(i+2),(’i+l)B(i+l),i) .

2.7.3 Case 3: The SU(2|3)/Zys sector

We take (p1,12) = (u, ) and thus the total Cartan charge is @ = Q1 + Q2. Taking the
near-critical limit (2.7.6) of the partition function (2.2.1) then yields

I+1 31/2
Z(xyy) — /H DU exp [ZZ(xy S+ ;) (zy) )TrUilTrUZ-_l

=1 =1

Py el

=1 =1

U, (2.7.11)

Since the scalar fields A; (;41), B(i+1),i» @i all have Dp = Q = 1, and the Weyl spinor field
Ye; has Dy = Q = %, we therefore conclude that the Hilbert space of gauge invariant
operators truncates to a subsector spanned by multi-trace operators of the form

k
H WO WD ..wl) ) (2.7.12)

j—)

where any letter WZ(] )

is either one of the scalars A; ;11), B(i41),i, @i, or the Weyl spinor
g ;. Otherwise, the notation is as explained below (2.7.10).

It would be interesting to study this subsector further and determine its symmetry
group. This group is presumably a subgroup of the SU(2|3) symmetry observed in the
N =4 SYM case [10], and determined by the way the Z,; orbifolding breaks the embedding
of SU(2|3) into the full N' = 4 superconformal group PSU(2,2[4).

In [10] the authors considered weakly coupled N' = 4 U(N) SYM theory on S xS with
R-symmetry chemical potentials in similar near-critical regions of the phase diagram as
studied here. It was found that the Hilbert space of gauge invariant operators truncates to
similar subsectors as identified here, namely the 1/2 BPS sector, the SU(2) subsector or the
SU(2|3) subsector, depending on which chemical potentials are turned on. Furthermore,
the analysis in [10] was generalized to small, but non-zero 't Hooft coupling A by utilizing
the 1-loop correction Ds to the dilatation operator (cf. the perturbative expansion (2.7.2)).
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In the large N limit, Dy restricted to the SU(2) subsector becomes the Hamiltonian of
an SU(2) spin chain; and restricted to the SU(2|3) subsector it becomes the Hamiltonian
of an SU(2|3) spin chain. What is remarkable is that in both these cases, the spin chains
are integrable [13, 14, 51|, and that the truncated Hilbert spaces can be identified with
subsectors of the complete dilatation operator of N' = 4 U(N) SYM theory that are
expected to be closed to any order in perturbation theory.

For N' = 2 quiver gauge theory, the full dilatation operator along with possible inte-
grable subsectors is not yet completely settled, so we are not able to immediately generalize
our results to small, but non-zero 't Hooft coupling A. However, we note that much progress
has been made in this area. In particular, anomalous dimensions of various operators, the
anomalous dimension matrix restricted to various subsectors, Bethe ansétze and integra-
bility have been investigated in [52, 53, 54, 55, 31, 56, 57, 58, 59, 60, 61, 62].



Chapter 3

One-loop quantum effective action
with scalar VEV’s

In this chapter we will extend the matrix model for N' = 2 quiver gauge theory on S' x
S3 in Sections 2.1-2.2 to include non-zero VEV’s for the scalar fields. To this end we
calculate the quantum effective action at weak 't Hooft coupling to 1 loop in a slice of
the configuration space of the background fields. To simplify the calculation we restrict to
the case of zero R-symmetry chemical potentials. The potential we compute will be valid
within the temperature range 0 < TR < A~/2. The origin of the bound TR <« A\~1/2 is
that the color-electric Debye screening length (AY/27)~! of the Yang-Mills plasma! must be
much less than the radius R of the S in order for the perturbative scheme to be reliable.?

The method employed for computing the effective potential will be the standard back-
ground field formalism. That is, we expand the quantum fields about classical background
fields and path integrate over the fluctuations, discarding terms of cubic or higher order
in the fluctuations. The background fields will be taken to be static and spatially homoge-
neous; thus, the potential obtained from the computation will be a static effective potential.
Furthermore, we carry out the computation only in a slice of the configuration space in
which the background fields are mutually “commuting” in a sense that conforms to the
quiver structure.

We now proceed with a more detailed description of the calculation. For convenience
we first rescale all the fields in the N' = 2 quiver gauge theory Lagrangian density (as given
in Egs. (1.2.40), (1.2.17), (1.2.18) and (1.2.39)) with a factor of gy, as follows

1

¢ —

é. (3.0.1)

Ivym

We then expand the quantum fields about classical background fields by applying the

!For details about the computation of the Debye screening length of an SU(N) Yang-Mills plasma, see
(e.g.) [63] and the references therein.
2For a careful explanation of this point, see for example Section 3.3 of [19].

61
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following transformations to the Lagrangian density

Aivy — Aty +ain) (3.0.2)
Bty — B+, + bv) (3.0.3)
¢ — O+ ¢ (3.0.4)

Ayi  —  Api + 0poi . (3.0.5)

The background fields a; (;11),bi41),i, @i and «; are assumed to solve the Euler-Lagrange
EOM’s so that they are the VEV’s of the corresponding fluctuating fields. We take the
background fields to be static and spatially homogeneous, i.e. constant on S x S3. This
is to preserve the SO(4) isometry of S3 as we will not examine the more exotic phases in
which the vacuum spontaneously breaks rotational invariance.

The terms of the Lagrangian density arising after the transformations (3.0.2)-(3.0.5)
are grouped by their order in the fluctuating fields. The terms of zeroth order are grouped
into a tree-level Lagrangian density. The terms linear in the fluctuating fields combine to
vanish as the background fields are solutions to the Euler-Lagrange EOM’s. We discard
terms containing fluctuating fields to cubic or higher order.? The quantum corrections to
the tree-level Lagrangian density thus arise from path integrations over the terms quadratic
in the fluctuations. The result will thus be valid to 1-loop order in the loop expansion.

Since the zero modes a; (;41), b(i41),, ®i and «; are constant over St x S3, the tree-
level action is obtained from the tree-level Lagrangian density by simply multiplying the
volume?* of S x 93, yielding the result

(0) 27T26R3 M
SW= Q%M Z Tr | — (ai Qi (i41) = Q4,(i41) az‘+1> (az‘+1 Qi (i+1) — ai,(i+1)ai)
i=1

— (ai-I—l biir1),i — blir1)i Oéz‘) (ai biit1),i — blit1),i Oéi+1>

- [ai7 ¢z] [Oéi, E] +R7? (az (i+1) @i (i+1) T b(z—l—l) i b(z+1 + ¢ sz)
1

+ B (az‘,(i+1)a‘ (+1) — Q(i—1),i Ai-1) + i (i—1) bi(i-1)
—b(iy1),i 041y + (94, ¢z]>
-2 ((ai,(i—i-l) b(i—i—l),i - bi,(i—l) a(i—l),i) (a(i—l), b; S(i—1) — b(1+1) a; (z+1))
+ (i (i41) Piv1 — Di i (i11)) (@ (i71) Gi — Pit1 T (ir1))

( (i+1), i i — ¢i+1b(i+1)7i)( (i+1), i Pit1 — ab(i—i-l)ﬁ’))] . (3.0.6)

3Note that with the redefinition of fields in (3.0.1), discarding terms of cubic or higher order in the
fluctuations is the analog of taking the gy, — 0 limit in Section 2.1.

*To be specific, one obtains S = o d*z /9] £ = Vol(§')Vol(S*) £ = 27?BR3*L®) where
Vol(S*) is to be interpreted as the k-dimensional volume of a k-sphere of some radius. Explicitly, letting
on(k+1)/2

r denote the radius, the k-dimensional volume is given by Vol(S*) = (5
2
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It is technically difficult to compute the quantum corrections to the effective potential
for arbitrary background fields. We will therefore impose the constraints given below which
are analogous to requiring that the background fields commute, while at the same time
they respect the quiver structure of the theory.

First, the Polyakov loops must “commute” with the scalar VEV’s:

QG A (i41) — Qi (i41) Gir1 = 0, Qi1 (1) — Gi (i) @ = 0
@it1b(iy1)i — bty = 0, @ibgiynyi —burnicitr = 0 (3.0.7)
[abd)i] =0, [aivgbi} =0.
Second, the scalar VEV’s must “commute” among themselves:
@i (i41) Ci(i11) — Q6i-1),i 0(i-1); = 0, bi,i—1) bi,(i—1) — b(i41),ibv1)s = 0
(63, &4 0, agi-1),ib+1): — biyi—1) @iyi41) = 0
@ (i11) bi(i—1) — bs1),i0a—1): = 0, a‘(¢+1) Git1 — Gia;(ip1) = 0
Qi (i+1) bi — Pit104 J(i+1) = 0, z+1 <Z5z Git1 b(iJrl),i =0 (3.0.8)
bit1),i Pit1 — Gib(it1), 0, a; (i+1) bir1)s — biyi—1) ai-1); = 0
A1), bz’,(i—l) - b(i—l—l),i Qi (i+1) — 0, Qi (i+1) Git1 — O Qi (i41) = 0
Qi (i11) Qi — Piv1053i41) = 0, b(it1),i $i — Pit1b341); = 0
D(i+1); Pit1 — @i bis1); = 0.
After imposing the constraints (3.0.7)-(3.0.8) the tree-level action reduces to
272 ﬁR _ -
SO = Z Tl“( @ (41) iy (i41) + b(i1),i D1y, + G ¢i> : (3.0.9)

gYM =1

We choose an R¢ gauge defined by adding the gauge fixing action

Sef. = L Z / d*z+\/]g| Tr
g.f. gYM 2§

+ <ai,(i+1) Ai,(i+l) - A(zel),i a(zel),i) + (b(iJrl),i B(i+1),z’ - Bi,(ifl) bz’,(Fl))
2

0, Am + 7/[0417 AO’L] +1i§ (( (i—1) A(z 1), — Ay L(i4+1) @i (1+1)>

(3.0.10)

+<bi,(i—1)Bi,(z’—1)_B(i-i-l),ib(z—i—l ) [¢za } [@,‘}Tz])

We will furthermore choose the Feynman gauge £ = 1 for convenience. The virtue of
this gauge fixing action is that, using (3.0.7)-(3.0.8), it cancels terms appearing in the
Lagrangian density after the transformations (3.0.2)-(3.0.5) that contain both gauge field
and scalar field fluctuations. Thus, one can do the path integrations over the gauge field
fluctuations and over the scalar field fluctuations separately.
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Specification of the vacuum

We will restrict to the case where all the zero modes a; (41, b(i41),:, @i and «; are taken
to be diagonal N x N matrices.® The most general ansatz satisfying all the constraints
(3.0.7)-(3.0.8) is given by

Qi (i+1) = diag(ewi, R ei%) Q(i-1),i (3.0.16)
busns = diag(e ™, ..., e N) b ) (3.0.17)
¢ = Qit1 (3.0.18)
Q= Qe (3.0.19)

However, the gauge invariance and quiver translation invariance of the action places strong
constraints on the moduli 6 as we will now consider. Under a gauge transformation

aii+1) — UaiinUT Vi=1,...,M, (3.0.20)
Eq. (3.0.16) becomes
Ua; 11 Ut = diag(ewli, cey ei%) Uagi-1), Ut (3.0.21)

and analogously for (3.0.17). Thus, in order for (3.0.16)-(3.0.17) to be invariant under
gauge transformations, we must have

Udiag(e, ..., ) Ut = diag(e, ..., ¢iN) (3.0.22)

This is equivalent to requiring § = --- = va. Similarly, since the action is invariant under
quiver translations a; (;11) — a(i41),(i+2), the moduli 9; must also be independent of

5When the VEV’s are allowed to be off-diagonal, satisfying the constraints (3.0.7)-(3.0.8) along with
the quiver M-periodicity (i.e., @), (i+M+1) = @i (i+1) etc.) ultimately leads to relations between N and
M, as the following example illustrates.
Define the “raising” and “lowering” operators

1 ifl=k+1 _ 1 ifl=k-1
+
= = . .0.11
(J )k { 0 otherwise ’ (7w { 0 otherwise (3.0.11)

Assume that o; and ¢; are diagonal and that a; ;+1) and b(;11),; are above and below diagonal, respectively
(i-e., (as,(i41))kt = O unless I = k + 1 and (b(;41),;)x = 0 unless [ = k — 1). Then the constraints (3.0.7)-
(3.0.8) are satisfied by imposing the following relations,

aiiirny = Joag-nqJ7, Gy = Jagnad " (3.0.12)
b(i+1),i = Jibi’(ifl)J+ 3 b(i+1),i = =]7l7z‘7(i,1)g]+ (3013)
i1 = JdJT, bit1 = J iJT. (3.0.14)

By the quiver M-periodicity we must have
IHM = )M =1y (3.0.15)

which is true if, and only if, N | M (since J* thought of as group elements have order N).
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i. Finally, because of the identification a; 11y = a(it-11),(i+041), the moduli 6; must be
integer multiples of QM”

We conclude that upon restricting to diagonal VEV’S a; 41y, b(i41),i» @i, i, the most
general vacuum satisfying (3.0.7)-(3.0.8) and respecting the gauge invariance and quiver
translational invariance of the action along with the quiver M-periodicity is

aiiry = wragoy, (3.0.23)
bt = w b (3.0.24)
bi = Pit1 (3.0.25)
Qi = Qg (3.0.26)

where w = ¢2™/M and k € Z. This is the vacuum we will adhere to in the computations
throughout this section. We will find that the expression for the quantum effective action
is independent of the value of k in (3.0.23)-(3.0.24).

3.1 Quantum corrections from bosonic fluctuations

There are radiative corrections to the tree-level potential coming from path integrations
over the part of the action that is quadratic in the bosonic fluctuations. Below we present
in a bilinear form the part of the action that is quadratic in the bosonic fluctuations, as it
appears after being added to the gauge fixing action (3.0.10) and the Fadeev-Popov ghost
action, and the constraints (3.0.7)-(3.0.8) have been imposed. The path integrals will then
be Gaussian and can be evaluated easily.

First we introduce some notation. Define

(Aul)mn (A1,2)mn
An = : , A, = : , (3.1.1)
(AuM)mn (AM,I)mn
(BI,M)mn (q)l)mn
B, = : , P, = : (3.1.2)
(Bar,(v—1))mn (@rr)mn
so that, e.g.,
(A1,2)nm
(AT = ((A12)mns -, (Arg)un)  and A, = : . (313
(Anr1)nm

Furthermore, define for fixed m,n the fluctuation operators 07", OF™, OF™ and O™ as
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the following M x M matrices (labelled by i,7 =1,..., M)

( . o
-2 ((a(iq),z‘)nn (a(i=1),i)mm + (bi,(i—=1))nn (bz’,(iq))mm) for j=i—-1

—0? = 2i(al — a™) 0 + (a — at™)?

+2 ((%(iﬂ))nn (@,G11))nn + (agi=1),i)mm (@G=1),i)mm

9. + (bi,(i—1))nn (bi,(i=1))nn + (b(it1),0)mm (bgis1),i)mm
+ (((bz)nn - (¢i)mm) ((a)nn - (a)mm)) for j =1
—2 ((ai,(i—i-l))nn (@, (1)) mm + (big1),i)nn (b(i-l—l),i)mm) for j=i+1
(3.1.4)
and
-2 ((ai,(i+1))nn (a(ifl),i)mm =+ (b(i+1),i)7m (@',(i—l))mm) for j=i—1
_92 _9:;(n  _ .m n _ m\2 —2
0% =2i(afy; —af") 0o + (o —o")" + R
(o™ + 2 ((ai,(i+1))nn (@, G+ 1) )nn + (@4 (i41) ) mm (@3, (i41) ) mm
D .. = . .
A
“ + (bi+1),i)nn (bit1) i )nn + (bit1),i)mm (Di41),i)mm
+ ((¢z+1)nn - (¢z)mm) ((¢z+1)nn - (a)mm)> for j =i
-2 ((a(i+1),(i+2))nn (@, G110y ) mm + (b(it2),(i+1) )nn (b(i+1),i)mm) for j=i+1
(3.1.5)
and
. .
-2 ((a(i—l),i)nn (@4, ¢i+1))mm + (bi,(i—1) )nn (b(i—i-l),i)mm) for j=1i-1
—0% = 2i(af — aft1)do + (af —af}y)? + B2
(o + 2 ((ai,(i+1))rm (@G 10) ) nn + (@i, (i41)) mm (@, (i41) )y mm
mny =
K + (b(it1),i)nn (b(it1),i)nn + (bt1),i)mm (O@41),i)mm
+ ((¢l)nn - (¢i+1)mm) ((a)nn - (¢z+1)mm)> for .7 =1
-2 ((ai,(i+1))nn (@a11),(i+2) )mm + (b(it1),i)nn (b(i+2),(i+1))mm) for j=i+1

(3.1.6)
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and
( _ T . .
—2 ((a(i—l),i)nn (a(i=1),i)mm + (bi,(i—=1))nn (bi,(i—1))mm) for j=i—1
—0? = 2i(al —a™) 9y + (o —a™)? + R~
+ 2 ((ai,(i+1))nn (@, G110 )nn + (agi=1),i)mm (@G=1),i)mm
(Og")ij = —
+ (b3, (i=1) )nn (b3, (i—=1) )nn + (bit1),i)mm (b(i+1),i)mm
-2 ((ai,(i—i-l))nn (@, G+ 1) )mm + (b(i+1),i)nn (b(i+1),i)mm) for j=i+1
(3.1.7)

Then the part of the action that is quadratic in the bosonic fluctuations (including the
Fadeev-Popov ghosts ¢, ¢;) can be written in the form (k = 1,2, 3)

Sp = /d4x ] %AéT)mnDZm(AkL)nm %(akF )m”D;nn(akF)”m
gYan 1

5 (A mn 07" Agnm + (€)rn OF"

mn

(AT R Ay, + (BT ) OB B+ (7)1 05" 87,,,)(3.1.8)

where, as in Section 2.1, the spatial components of the gauge field have been decomposed
into a transversal (i.e., divergenceless) part (A;)* and a longitudinal part (VF;)¥. Thereby
all the fields have been written in terms of S spherical harmonics. The path integrations
over the bosonic fluctuations A; (j11), B(i+1),i» ®i and A,; can now readily be done and

yield the formal expression®

N N
Dhos [, @ (i41)s b(it1),i> @] = % > TrindetOp™ + > Trlndet OR"

m,n=1 m,n=1

N N
+ ) TrindetOg” + )  TrindetOg". (3.1.9)

m,n=1 m,n=1

Here the traces are taken over the Matsubara frequencies and over the S spherical harmon-
ics, and the determinants are taken over the i, j indices of the operators O™, OX", O™
and OF". In the general vacuum (3.0.16)-(3.0.19) these operators are tridiagonal, periodi-
cally continued matrices (assuming M > 3). The determinant of this class of matrices was

SWe are using a rather sloppy notation here as the term involving Oy"" is to be interpreted as the
total contribution from the path integrations over the transversal and longitudinal parts of the spatial
components of the gauge field, the time component of the gauge field and the Fadeev-Popov ghosts. The
individual contributions are explicitly written out in (3.1.13) below.
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considered in Ref. [64] (Appendix B) who found the following result, valid for M > 3:

1 mny.. —__ mny., . mny . .
det O™ = tr H ( (D )“ (D )z,(z—l)(D )(Z—l),z )

halyt 1 0

1 mn
+(—1)M+1trH<(D ();‘“‘” ’ ) (3.1.10)

Pty (O™ (i=1),i

The inverse order of the initial and final indices on the product symbol indicates that the
matrix with the highest index 4 is on the left of the product.

Fortunately, in the vacuum (3.0.23)-(3.0.26) the fluctuation determinants take a much
simpler form. Namely, using (3.0.23)-(3.0.26), the operators Oy*", 0", OF", Og™ (for fixed

m,n) can be written in the particular form below, and there is a simple closed expression

for the determinant.” That is, defining w = ¢*™/M  we have the determinant formula

& - —w kM =Dy
-n § —wkn M . .
det —wh ¢ = [[¢-wn—wn). (3.1.11)
=1
. Lk (M=2)y
— A=), _ K M=2)5 ¢

Note in particular that the phases w® on the left hand side cancel out. Therefore, for

any value of £ € Z in (3.0.23)-(3.0.24), one obtains the same result for the fluctuation
determinants.

Let us define here for convenience

Vijsnm = 2 (((ai,(iJrl))nn —w™ (az (i+1) ) ) (( ) -l (m)mm)
+ ((b(i+1),i)nn - W] (b i+1), ) ( wfj (b(i+1),z’)mm)
+ ((6)nn — (66)mm) (@m (@) )) (3.1.12)

Now we apply the determinant formula (3.1.11) to the formal expression (3.1.9) for I'yes.
Then we take the traces over the Matsubara frequencies and over the S3 spherical harmon-

"To prove the formula, note first that the powers of w* appearing in the super- and subdiagonal mutually
cancel according to (3.1.10), so the determinant is independent of the value of k. Putting k¥ = 0, the formula
(3.1.10) is a special case of Eq. (A.1) in Ref. [65].
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ics, labelled by the angular momentum h (see Table 2). This yields the following result

M N 00
1
I'hos = m Z Z Z Trhzg In [(wk + (a?n _ almm))2 + Ag + Vi 5; n,m]

i,j=1mmn=1k=—o0
1 M N [e's) )
o ST Y Y Tsoln [+ ol — o)+ A2+ 0]

i,j=1mn=1k=—oc0
M N

(513 2 3 3 Mo (et (o - a4 AT 4]

1,j=1m,n=1 k=—o0
3 M [e§)
T > Y Trzoln [(wk + (g™ — a"™)* + A2+ R 4 v nm} :

i,j=1 mn=1k=—oc0

N

(3.1.13)

Here the first line comes from the path integrations over the transverse part of the spatial
gauge field, and the second line from the integrations over the longitudinal part. The third
line comes from integrating over the temporal component of the gauge field and the Fadeev-
Popov ghosts, contributing with the weights % and —1, respectively. Finally, the fourth line
comes from path integrating over the conformally coupled scalar fluctuations. Note that
there is an exact cancellation between the contributions of all h > 0 spherical harmonics
in the second and third line. As we will see in Section 4.2, the surviving contribution from
the h = 0 scalar spherical harmonic will be the dominating radiative correction in the

low-temperature regime.

The summations over the (bosonic) Matsubara frequencies wy, = % can be performed

explicitly by applying the following identity which holds up to an additive constant that
does not depend on A

i In[(wp +@)*+A% = In[(1- e*ﬂ(AHO‘)) (1- e*ﬁ(A*m))] + /A (3.1.14)

k=—00
At
— 2In 2sinh% (3.1.15)
=1
= [BA -2 Z je_ﬁm cos(fla) . (3.1.16)
=1

Here (3.1.14) is the Matsubara frequency sum (2.1.42) and (3.1.16) is proven by Taylor
expanding In in (3.1.15) and using the definition of sinh along with the identity In|z| =
Reln z.

After performing the summations over the Matsubara frequencies by use of (3.1.16) and
writing out the traces over the S spherical harmonics with the appropriate eigenvalues of
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V2 and their degeneracies (cf. Table 2) we find

Thos = 2M Z Z [ UZ’]’”m)1/2+2Zl e—BU (V3,53 nym) /2 oS (ﬂl( nn_azmm))

i,j=1m,n=1

+ Z 2h(h + 2) (6((h +1)2R 2 4 vijonm)
h=0

- Z e PUIHDP R 0iinm)'? cos (Bl — a;"m)))
+6 Z(h +1)? <ﬁ((h +1)?R? + vy, n,m)l/2

Ly Z o BUMRF)? R 40 jinm) /2 (g (ﬁl(a?n - a;ﬂfﬂ)))]
(3.1.17)

where v; j: n.m is defined in (3.1.12). This is the complete result for the contribution to the
quantum effective action coming from bosonic fluctuations.

3.2 Quantum corrections from fermionic fluctuations

The fluctuating fermionic fields will also give rise to radiative corrections that can be
computed much along the lines of the bosonic corrections. It is convenient to carry out the
calculation using N’ = 4 SYM notation for the Weyl spinor fields. The quiver structure of
the action is taken into account by the €. factors as explained below.

Once again, we will need to introduce some notation in order to write up the part of
the action that is quadratic in the fermionic fluctuations. Define

0 1 0 Wwk(M-1)
0 Wk 0
I (w) = 0 , S (w) = wk 0
k(M —2) . .
WM —1) 0 WHM-2)
(3.2.1)
and
wp = a = (A, Q= Jf(w) (3.2.2)
wy = b= (B), Q = J, (W) (3.2.3)
w3 = gf) = <(I)>, Qg = 1M (3.2.4)

where it is implied that A, B, ® take the Zj; projection invariant forms given in (1.2.15)-
(1.2.16). The fermionic part of the Lagrangian density can be written in N' = 4 SYM
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notation (cf. (1.2.25)) in the following bilinear form

(()‘_P)i;mny ()\p)z‘;mn) D" ( 8_3;?2: > (3.2.5)

Q; _
—_ . — 50, v au"_éu Of? _a:n, 62
_ﬁ pq [((wd)nn - (wd)nn) - ((wd)med - (wd)med 1) ij 2 paT ( O( )) 7

(3.2.6)

The reason why the w, entries labelled by the gauge index m have additional factors of €2,
compared to the entries labelled by n comes from the commutator structure of the Yukawa
coupling (see (1.2.35)). Namely, when taking the trace over the gauge indices, the w, entries
labelled by n correspond to the terms where a scalar field appears between two spinor fields,
whereas those labelled with m correspond to the terms where the scalar field appears to
the right of both spinor fields. After substituting the orbifold projection invariant forms
given in Egs. (1.2.15)-(1.2.16) and (1.2.37)-(1.2.38), the bifundamental scalar VEV’s will
couple different pairs of spinor fields depending on whether the VEV appears between the
spinor fields or to the right of them in the Yukawa coupling. Since the scalar VEV’s are
mutually related through the vacuum (3.0.23)-(3.0.26), this can be compensated for by
appropriately multiplying factors of (2.

To compute the result of the path integrations it is convenient to define (for a fixed c)

Fo = ((we)nn + @e)nn) = (we)mmQe + (We)mmQ2 ") (3.2.7)
Ge = ((wC)nn - (M_C)nn) - ((wc)mec - (w_c)mmﬁgl) . (3.2.8)

Noting that
[F., Fy] =0, [F.,Gq] =0, [Ge,Ga] =0 (3.2.9)

one finds, by using the (anti)commutation relations (1.2.6) for a¢ and $¢, that the result
of the path integrations over the fermionic fluctuations (\,)i, (Ap); is

det (D}j") = det (= (9, + id0(a} — af"))’?

— 3 (3o, al}pr FoFy + [0, 8% FuGa — 38, 8}prGeGa) J3:210)

— det ((iau — Suo(al — ™) + L(FLFy — G.Gy) 5cd5pr) (3.2.11)
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Here we have defined the M x M matrix (labelled by i,j =1,..., M)
-2 ((al,Q)nn (m)mm + (E)nn (b271)mm) w_(i_Q)k for .7 =71—1

=02 = 2i(af — ") 0o + (af — af")?
+ 2((a1.2)un @)un + (@1.2)mrs (@)
+ (b2,1)nn (b2,1)nn + (b2,1)mm (b2,1)mm
+ ((@1)nn = (@D)mm) (Gun = @) for =i

(3.2.13)

-2 ((m)nn (a1,2)mm + (b2,1)nn (E)mm) w(iil)k for ] =i1+1

where we have used (3.0.23)-(3.0.26) to arrive at the equality (3.2.12). Applying the de-
terminant formula (3.1.11) and using (3.0.23)-(3.0.26) again one finds, after taking the
traces over the fermionic Matsubara frequencies wy = W and over the S2 spherical

harmonics,

M N [e's)
4 2
Plm = =22 > > > Tozoln [(wk+(a?"—a;”m)) +A§+vi7j;n,m} . (3.2.14)

i,j=1mmn=1k=—c0

The factor 4 comes from the 4 path integrations. After carrying out the summation over k
by use of the identity®

00 o0 l
> If(we+a)?+A% =pA+2) (_lz) - e P18 cos(Bla) (3.2.15)
k=—00 =1

and writing out the trace over the S2 spherical harmonics with the appropriate eigenvalues
of V2 and their degeneracies one finds the result

4 M N o) 2 o 1/2
Tierm = _M Z Z Zh(h+1) ﬁ((h-ﬁ-g) R +'Ui,j;n,m>

1,j=1m,n=1h=0

=1

1/2

cos (Bl(aj™ — a;”m))> (3.2.16)

where vj j; n,m is defined in (3.1.12). This is the complete result for the contribution to the
quantum effective action coming from fermionic fluctuations.

We conclude that the quantum effective action of N' = 2 quiver gauge theory with constant
scalar field VEV’s satisfying (3.0.7)-(3.0.8) is given by

L = S© 4 Tpos + Term (3.2.17)

80nce again, the identity (3.2.15) is only valid up to an additive constant that does not depend on A.
It is immediately obtained from (3.1.16) by substituting a — a + 7.
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where S(© is the tree-level action

0 212 3R M X —

SO = =, > ((ai,(i—l-l))nn(az’,(i—l-l))nn + (b(i1),0)nn (b(it1),i)nn + (¢i)nn(¢i)nn> :
Iym o a1

(3.2.18)

and I'hos and ey are given in (3.1.17) and (3.2.16), respectively, with v; j; m given in

(3.1.12).

Note that the tree-level potential (3.2.18) is attractive, whereas the 1-loop quantum
corrections in (3.1.17) and (3.2.16) are repulsive. As we will see in the Section 4.2, the
competition between an attractive and a repulsive part of the potential will cause the
equilibrium configurations of the eigenvalues of the scalar VEV’s to be hypersurfaces.

3.3 Generalization to other 7Z,; orbifold field theories

The computations in the preceding sections of this chapter can immediately be generalized
to field theories obtained as Zj; projections of N = 4 U(NM) SYM theory where the
action of Zj; is that in (1.2.1) with w replaced by wP for p € Z. For these theories?,
the quantum fields must satisfy the Z,; invariance conditions obtained from (1.2.14) and
(1.2.36) by replacing w — wP. In turn, the fields will take Z,; projection invariant forms
analogous to (1.2.15)-(1.2.16) and (1.2.37)-(1.2.38), except that the bifundamental fields
will have non-zero entries on the p’th super- or sub-diagonal. That is, A and B will have
the non-zero entries A; 4,y and By ;, respectively, and analogously for the respective
superpartners x4 and xp. As a result, the fluctuation operators Oy, Ox", 0g" and Og"
in (3.1.4)-(3.1.7) and A;; in (3.2.13) will have non-zero entries on the p’th super- and

sub-diagonals. Therefore, using the generalized determinant formula'® (where w = €27/M)
Z1 Z9 zZ3 ZM
ZM 21 22 -t ZM-1 M
det | 2mM-—1 2z2mM 21 -+ zZM-2 | = H (21 w2y Fwag+- -+w(M_1)sz) (3.3.1)
) . ) ey
Zo  zZ3 z4 -0 21

we see that the fluctuation determinants factorize as in (3.1.11), with w?? replacing w’. We
conclude that the quantum effective action of these more general Z; orbifold field theories
is given by the expression (3.2.17) where S is given in (3.2.18) and I'pos and Igey are
given in (3.1.17) and (3.2.16), respectively. The only change is that v; j, . now takes the

9These theories have also been considered in, e.g., Refs. [26, 29, 30, 58].
1%We emphasize that the entries of the M x M matrix in (3.3.1) are allowed to be complex numbers.
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form

Viginm = 2 (((aiv(i-i-p))”" — WP (ay (i) Jmm) (@ Gy ) — WP (@ (i) Jmam)
+ ((O(igp),i)nn — WP (bip)i)mm) ((Opigpyi)nn — @ (bitp).i)mm)
+ ((@0)an — (69)mm) (@i)an — (B)mm) ) - (332)



Chapter 4

Topology transition and emergent
spacetime

The discovery that the eigenvalues of scalar VEV’s reconstruct the dual spacetime geom-
etry was originally made by Berenstein et al. in [66], [67], [68], providing a very concrete
realization of emergent geometry within AdS/CFT. The general approach was to set up
matrix models for the different sectors of BPS operators in the chiral ring.

In Section 4.1 we review ...

In Section 4.2 ......

4.1 The notion of emergent spacetime

In this section we review some parts of Berenstein’s article “Large N BPS states and
emergent quantum gravity” [68], in particular the matrix models of 1/4 BPS and 1/8
BPS states in NV = 4 SYM theory, the solutions of these matrix models, and the dual
spacetime interpretation of these solutions. The purpose of this review is to justify how the
distribution of eigenvalues of the scalar field VEV’s can be interpreted as the emergence
of the compact part of the dual AdS spacetime.

First, in the conventions of [68], the 1/2 BPS operators are those which saturate the
BPS bound A > J with J = J; and Jo = J3 = 0 where J; denote the eigenvalues under
the Cartan generators of the R-symmetry group SU(4)g. The 1/4 BPS operators saturate
the bound with J = J; + Jy and J3 = 0. The 1/8 BPS operators saturate the bound with
J=J1+ J2+ Js.

The matrix models of 1/4 and 1/8 BPS operators in [68] are based on previous work in
[66]. Namely, it was observed in [66] that all 1/8 BPS states are built out of the s-wave of
three complex scalar fields on S3, plus a single partial wave for fermions (these can have
the two different polarizations of spin up or down), plus the s-wave of the time component
of the gauge field (which imposes the Gauss constraint that all the operators in the model
are gauge invariant). Thus the model of 1/8 BPS states consists of the three Hermitian

75
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matrices Z, X,Y, plus two fermionic matrices W,. This forms a closed subsector of the
Hilbert space of N/ = 4 SYM operators with SU(2|3) symmetry in the sense that the
action of the dilation operator D closes on this subspace. Similarly, the model of 1/4 BPS
states consists of the two Hermitian matrices Z, X and no fermionic matrices, forming the
closed SU(2) subsector.

In complex notation the Lagrangian density of the scalar fields reads

2
L= Tx(DiiDidh = bido) - % > Tilgi oilléi, il - %Tr (Z[@-,E}) (4.1.1)

7

where (¢1,¢2,¢3) = (Z,X,Y) and the summation runs over ¢ = 1,2 for the 1/4 BPS
model and over i = 1,2,3 for the 1/8 BPS model. The decomposition in (4.1.1) mirrors
the F-terms and D-terms of the N' = 4 SYM theory. By a Legendre transformation, the
corresponding Hamiltonian density is

2

The U(1)g charge is given by the generator
R=(=i))_ Tr(¢idi — dichi) (4.1.3)

so that for example Z has charge 1 and Z has charge (—1). We now want to understand
how the classical BPS bound A > J can be saturated. Here A is the energy of the state,
while J is the R-charge. Treating the commutators in (4.1.2) as a small perturbation and
ignoring them for the moment, we get a sum of harmonic oscillators with w = 1, and we
can decompose the modes as follows

Z(t) = Zpet + Z_e (4.1.4)

and similarly for X,Y while Z, X,Y are obtained by Hermitian conjugation. Inserting
(4.1.4) into (4.1.2), one finds the energy

H=3"Tr (|60 + (6)+ ) (4.1.5)
while the R-charge is found to be

A (CORSCHNY (4.1.6)

so that we need Z, = X, =Y, =0 if we want H = J. If we now include the commutator
terms as a perturbation of the dynamics, the energy increases if the commutators between
Z_,X_,Y_ don’t vanish, whereas the value of J stays invariant. Thus to saturate the
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classical BPS bound we need to require that Z_, X_ and Y_ commute. This is a crucial
feature of the model for 1/4 and 1/8 BPS states.

Adding the fermions to obtain all the 1/8 BPS states is straightforward, leading to a
(2|3) dimensional harmonic oscillator per eigenvalue.

We now turn to consider the solutions of the 1/4 BPS and 1/8 BPS matrix models. Since
Z,X,Y are commuting Hermitian matrices, they can be simultaneously diagonalized. This
will reduce the dynamics to that of N eigenvalues for each of the matrices Z, X and Y.
Performing the transformation from commuting Hermitian to diagonal matrices gives rise
to a measure factor

u? =] — o;1? (4.1.7)

1<j

in the path integral measure. Including this quantum correction (in analogy with the steps
(2.2.1)-(2.2.5) in Section 2.2), the matrix models for the 1/4 BPS and 1/8 BPS states are
given by the Hamiltonian

He oS L vt L (6) 4.1.8

- ;2;& it Z+2<¢l> ' (4.1.8)
The arrow denotes the direction in C2 or C3 for the 1/4 BPS and 1/8 BPS matrix models,
respectively. Using that Z, X,Y are diagonal, to each diagonal element of the triplet of
matrices we can assign a point in C3. Therefore (4.1.8) can be interpreted as a Hamitonian
for N non-relativistic particles. The measure factor pu? generates an effective repulsive
potential between the eigenvalues so that the IV bosons are strongly interacting.

One now does a coarse graining of the degrees of freedom of the matrix models by
going to densities p(Z) of particles in C? or C3. The function p must be positive-definite
and satisfy [ dPzp(z) = N where D = 2,3 for the 1/4 and 1/8 BPS models, respectively.
After coarse graining, the EOM’s obtained from the Hamiltonian (4.1.8) take the form

:U2+C'—2/d2Dy p(y) In(|Z —y]) =0 (4.1.9)

2 = 22 +iy? and 2® = 2 + iy and the arrows denote

where we have put 2! = z! +iy', 2
the direction in R* or RS. Here C is a Lagrange multiplier enforcing the constraint that p
integrates to N. Now, if p is smooth at x, then we can take derivatives of (4.1.9). Indeed,

for the 1/4 BPS matrix model
(V2)? In(|Z — §l) ~ 6 (& - 7)) (4.1.10)

so that p(#) = 0 at such points. For the 1/8 BPS model we use the fact that (V2)? In(|Z —
7)) ~ 6©)(Z — ¢) to reach the same conclusion. From this calculation we find that the
distribution of particles on R* or RS is singular. The simplest singular behavior we can
imagine is that the distributions p(Z) are supported on hypersurfaces in R* or R°. Because



78 CHAPTER 4. TOPOLOGY TRANSITION AND EMERGENT SPACETIME

of the rotational invariance of (4.1.8) one must assume that these hypersurfaces are spheres
and that p is constant over its support; i.e., the eigenvalues are uniformly distributed. The
radius rg of the sphere can be estimated by balancing the mutual repulsive force between
the particles, which is of order Nry ! and the confining harmonic oscillator force, which is
of order ro. Thus, at ro ~ /N, the configuration will be in equilibrium.

To summarize, for the 1/4 BPS matrix model the eigenvalues of Z, X are uniformly
distributed over a round S2, whereas for the 1/8 BPS model the eigenvalues of Z, X, Y are
uniformly distributed over a round S°. As we will discuss in detail immediately, one can
think of these eigenvalue distributions as fluids made up of charged particles flowing at the
speed of sound along certain fibrations on the spheres in an external magnetic field.

For the 1/8 BPS case it is tantalizing to identify the S° distribution of particles with
the S® factor of the dual AdSs x S® geometry. Indeed, there are 4 directions of the AdSs
that are already part of the field theory description. These are the angles of the S bound-
ary at infinity, and the time direction. Our claim now is that the S° is reproduced from
the dynamics of the 1/8 BPS states (and similarly, the dynamics of the 1/4 BPS states
reproduces an S3 embedded in the S°). We will now go back to the complex coordinates
2 = x' 4+ iy’ so that S and S° are embedded in the phase spaces C? and C3, respectively.

In the 1/4 BPS model there is a symplectic form w on the phase space C2. We have the
embedding i : S® — C2. The pullback i*w of the symplectic form can be interpreted as a
strong magnetic field. These magnetic field lines foliate the S3 along the Hopf fibration. The
particles can be seen as being charged in this magnetic field, and transport of particles can
only happen along the magnetic field lines. The motion transverse to these lines is confined
due to magnetic effects. The particle trajectories are BPS, and motion along them happens
at the speed of sound. In [68] it is noted that this phenomenon is very similar to the
quantum Hall effect of particles in the lowest Landau level! in higher dimensions [69], [70],
[71], [72].

In many senses this dynamics corresponding to the 1/4 BPS states is natural. On the
AdS side, the 1/4 BPS gravitons for some associated R-charge will all flow along a geodesic
on a particular S? equator of S°, and they will do so along the direction specified by the
vector field on the sphere which rotates the configuration by R-transformations. This is
done along a Hopf fibration of the S? which is adapted to the R-charge associated to the
1/4 BPS states. There is a particular J associated to an SO(2) rotation in SO(6) which
is a symmetry of all these configurations. This SO(2) has fixed points on the S% manifold
that we associated above for 1/4 BPS states.

We can do the same analysis for the 1/8 BPS states. The equivalent of the Hopf fibration
is the statement that S° is a circle bundle over CP2. In this case, the circle never shrinks to
zero size on the S°, and the circles are all diameters of the S°. This fibration is associated
to a vector field on the S° along which the excitations flow.

So far we have only described the ground state of the 1/4 BPS and 1/8 BPS matrix

!Defining the shifted Hamiltonian H = A — J the BPS bound translates into H' > 0, and BPS states
can be thought of as occupying the lowest Landau level.



4.1. THE NOTION OF EMERGENT SPACETIME 79

models. To understand more completely the dynamics of these models and to be able to
compare it with supergravity, we must look at the spectrum of excitations of the models
and the corresponding holographic dual descriptions on AdS5 x S°.

This is easy to do for BPS excitations. Traces of polynomials in z!, 22, 23 provide the
variables that correspond to gravitational quanta [2, 3]. We multiply the ground state
wavefunction by a truncated coherent state with small parameter. That is, we consider the

wave function
exp(anmNnm Tr((zl)"(z2)m))¢o . (4.1.11)

To find the shape of the eigenvalue distribution (E-brane) corresponding to the state, the
procedure roughly consists of writing out |¢9|> and taking the exponential term in the
coherent state wave function and treating it like a small correction to the background
potential. This will change the balance of forces, and the shape of the E-brane will change
to compensate for it. The potential one gets in this way is not the most general potential,
because the wavefunction is holomorphic. This also shows that these deformations do not
diffuse the E-brane: the E-brane should still be infinitesimally thin. The argument is along
the same lines as when we showed that the eigenvalue distribution is singular for the
ground state configuration. This is because the Laplacian (squared or cubed) acting on
a holomorphic function is zero, so the particle distribution density cannot have smooth
support. This is a very important point when one wants to embed the E-brane geometry
in the AdS spacetime.?

The potential for the individual eigenvalues is then given by the real part of the expo-
nential term in the coherent state. If we let time evolve, then different terms in the coherent
state expression will have different energies which are shifted by integers. This makes the
shape of the perturbation evolve uniformly in time, as these changes can be absorbed into
a phase rotation of all the z;. In essence, the initial shape of the geometry is kept fixed up
to some trivial rotations of the configuration.

Again, we have a constant speed of sound associated to these shape perturbations,
which we want to identify with the speed of light on the supergravity geometry. Moreover,
we have as many deformations as there are BPS gravitons with the given quantum numbers.
This follows from the AdS/CFT correspondence established in [2] and [3].

We see that the excited states of the 1/4 BPS and 1/8 BPS matrix models are certain
geometric objects with some peculiar hydrodynamics on them. The hydrodynamics is such
that the collective motion of particles occur at the speed of sound, and this motion coincides
with the motion of gravitons at the origin of AdSs which lie on an S3 equator and which
are BPS with respect to a particular R-charge, or which follow a particular fibration of the
S5 geometry with respect to some R-charge. It is natural then to conjecture that the S3
we found in phase space in the 1/4 BPS model embeds itself in the S° factor of AdS5 x S°

in some particular way.

2This is similar to stating that in the 1/2 BPS geometry the classical configurations are incompressible,
and the edge of the droplet is sharp.
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In conclusion, we found that the eigenvalue distributions which arose as the ground
state solutions of the 1/4 BPS and 1/8 BPS matrix models could be interpreted as fluids
made up of particles flowing at the speed of sound along certain fibrations on the spheres
in such a way that the motion occurs along BPS trajectories preserving some specific
supercharges. On the AdS side, these configurations correspond to gravitons propagating
in AdSs x S° along specific BPS trajectories at the origin of AdSs at the speed of light.
Moreover, we found that also for the excited states of the 1/4 BPS and 1/8 BPS models
there is a precise mapping between the motion of the particles on the E-branes and the
motion of gravitons at the origin of AdSs. Therefore, we conclude that the S° eigenvalue
distribution found in the ground state of the 1/8 BPS matrix model can be identified with
the S factor of the holographically dual spacetime AdS5x S®. In other words, the dynamics
of the 1/8 BPS states reproduces the S° factor of the dual geometry. This phenomenon is
referred to in [68] as ‘emergent spacetime’.

4.2 Low-temperature eigenvalue distribution

In this section we will find the solutions minimizing the effective potential computed in
Chapter 3 (given in (3.2.17), (3.2.18), (3.1.17), (3.2.16) and (3.1.12)) within the tempera-
ture range 0 < TR < A~1/2. We stress that, since the effective action of Section 5 is only
valid within a sector of constant background fields satisfying (3.0.7)-(3.0.8), the minima
we find in this section are not the absolute minima of the gauge theory, and the phase
transitions within this sector of background fields do not necessarily extend to phase tran-
sitions in the full gauge theory (cf. [73]). Nonetheless, we will see that the matrix model of
Section 5 exhibits some interesting dynamics.

The resulting distributions of eigenvalues will preserve the SU(2) xU (1) R-symmetry of
N = 2 quiver gauge theory. As in Ref. [21] we believe that due to the preserved R-symmetry,
the minima found here are indeed the global minima of the effective action (within the
sector of constant “commuting” VEV’s). The key observation needed for obtaining the
solutions is that both in the low-temperature regime and above the Hagedorn temperature
Ty, the eigenvalue distributions for the scalar VEV’s and the Polyakov loop can be solved
for separately. As we will see, the Hagedorn transition causes a change in the topology of
the joint eigenvalue distribution when the temperature is raised above T'y.

For temperatures low compared to the inverse radius of the S® (i.e., TR < 1), one
can consistently discard terms in the quantum effective potential that are suppressed by
Boltzmann factors?, and so one obtains the following low-temperature limit of the effective

3We will verify a posteriori that this procedure is valid for all temperatures below the Hagedorn tem-
perature.
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potential
212 BR M N - - _
FTR<<1 = 92 Z Z ((ai,(i—H))nn(ai,(i-i-l))nn + (b(i+1),i)nn(b(i+1),z‘)nn + (¢z)nn(¢z)nn)
YM =1 n=1

M
—% Z Z [2 (((ai,(i—i-l))nn —w™ (ai,(i+1))mm) ((ai,(i+1))nn — W (ai,(i+1))mm)

1,j=1m,n=1

+ ((b(iJrl),i)nn — (b(iJrl),i)mm) ((m)nn —w™ (b(i+1),i)mm)
+ (@0)on — @)om) (@Bhon — @) (121)

We observe that the eigenvalues of the Polyakov loop are not coupled to the eigenvalues of
the scalar VEV’s. Therefore, for low temperatures, the distribution of the Polyakov loop
eigenvalues will be the same as in the case with zero scalar VEV’s treated in Sections
2.4-2.5. Thus, we immediately conclude from Section 2.4 that the eigenvalues e!®" of the
Polyakov loop (for i fixed) are uniformly distributed over S* for any temperature below the
Hagedorn temperature. Note that for a uniform distribution of the angles o}'", the terms
multiplied by Boltzmann factors in (3.1.17) and (3.2.16) vanish exactly. Therefore we can
consistently discard these terms as long as the temperature is below Tx.

In order to find the saddle points of (4.2.1) we make the observation that by making
the identifications

Ai(i+1) = w_laz',(i—i-l) (4.2.2)
bt = wbiit1) (4.2.3)
i = @ (4.2.4)

and applying them recursively to (4.2.1), the low-temperature effective potential reduces
to

ZWQﬁR —
I'rr«a1 = Z Z ( a; (H—l nn az (z—i—l))nn (b(i+1),i)nn(b(z‘+1),z’)nn + (¢z)nn(¢z)nn)

i=1 n=1

M N
gz_: Z; [ ( Qg ( z+1)) (ai,(iJrl))mm)((ai,(iJrl))nn - (ai,(i+1))mm)

+ ((b(i-i—l),i)nn - (b(z—i-l),z)mm) ((m)nn - (b(z—l—l),z)mm)

It is important to note that the identifications (4.2.2)-(4.2.4) correspond uniquely to the
effective potential. That is, if one replaces w by w? in (4.2.2)-(4.2.3), the potential (4.2.1)
will not reduce to (4.2.5) for general M. To see this, note that, since all M powers of w
appear in (4.2.1), the order of w? must be M. Thus we must have ged(q, M) = 1 for all M
which implies g = 1.
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We now proceed with finding the saddle points of (4.2.5). These will be saddle points
of (4.2.1) where the identifications (4.2.2)-(4.2.4) have been made. It is convenient to
introduce the dimensionless variables

(Zi)n,l = B(¢i)nn (Zi)n,Q = ,3(ai,(i+1))nn, (zi)n 3= = B(b (i+1), nn (4.2.7)

(zi)n = ((Z)n,1, (Zi)n2; (2i)n.3) (4.2.8)

so that (z;), € C3 for fixed i and n. Furthermore we introduce a norm on C3 defined by

3 1/2
Jw—z| = (Z\(wc)—(zc)\2> (4.2.9)
c=1

where | - | denotes the modulus. Written in this notation, (4.2.5) takes the form
27T R
Irr<1 = ZZ (2 Z Z |(zi)n — (2)m] - (4.2.10)
i=1n=1 i=1 m,n=1

We will now take the continuum limit N — oo and describe the eigenvalues of the
Polyakov loop and the scalar VEV’s by a joint eigenvalue distribution p;(6;, z;) proportional
to the density of eigenvalues at the point (6;,z;) (for some fixed i) and normalized as
[ d9;d®z; p;(0;, z;) = 1. The continuum limit is obtained by applying the substitution

N
%Z [ ]— /deid?’zipi(Qi,Zi) [ ] (4.2.11)
n=1

in analogy with (2.2.16). Here it is implied that the content of the brackets [---] carries
an ¢ label. In the continuum limit, the equation of motion for z; obtained from (4.2.10)

V27TR / 3 zi — 2,
——zi= | &z pi(z)—. 4.2.12

Here p;(-) is defined as the average p;(z;) f do; pZ(GZ,zZ) and D; C C3 denotes the
support for p;. The solution to (4.2.12) is given by the eigenvalue distribution

reads

(] zall — i)
pi(zi) = W (4.2.13)
where the radius r; is given by
r; = A6 1024 (4.2.14)
V23R 945

as can be checked straightforwardly. That is, (4.2.12) is satisfied for any z; when the
eigenvalues are distributed uniformly over an S° with the radius (4.2.14). Since (4.2.10)
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was obtained from the low-temperature effective potential (4.2.1) by making the orbifold
identifications (4.2.2)-(4.2.4), we thus conclude that the saddle point of (4.2.1) is a uniform
distribution of the eigenvalues of the scalar VEV’s over S5 /Zpr where the action of Zy,
is precisely as in (1.2.1). This is consistent with [74], as one should expect in the low
temperature limit where thermal effects are small. Since we found that the eigenvalues
of the Polyakov loop are distributed uniformly over an S' for temperatures below the
Hagedorn temperature, we conclude furthermore that the joint eigenvalue distribution of
the scalar VEV’s and the Polyakov loop is S°/Zj; x S in this temperature range.

It is remarkable that the eigenvalues of the scalar VEV’s localize to a hypersurface
in C? rather than spreading out over the configuration space. The physical origin of the
localization is essentially common for the matrix model developed here and the matrix
model of [74], namely the competition between an attractive part of the quantum effective
potential, and a repulsive part where the latter is generated by the path integrations. We
interpret the eigenvalue distribution of the scalar VEV’s as the emergence of the S°/Zy;
factor of the holographically dual AdSs x S°/Z string theory geometry. Finally we note
that the hypersurface S°/Z s has the isometry group SU(2) x U (1), resulting from breaking
the SU(4) isometry via the orbifold identifications (4.2.2)-(4.2.4). Since this is the full R-
symmetry group SU(2)g x U(1)g of N' = 2 quiver gauge theory we believe (cf. [21]) that
the minimum found here is indeed the global minimum of the effective action of Chapter
3.

4.3 Eigenvalue distribution above the Hagedorn temperature

In the matrix model treated in Chapter 2 where the VEV’s of the scalar fields were zero
we observed that as the temperature is increased above Ty =~ 0.38 R~!, the Polyakov
loop eigenvalue distributions open a gap. In this section we will examine how this phase
transition manifests itself in the general case with non-zero scalar VEV’s.

From the radius (4.2.14) one in particular finds that for low temperatures ||z;|| > A,
so that the tree-level term dominates over the quantum correction by a factor ~ ”z—/\lH > 1.
On the other hand, around the Hagedorn temperature Ty one finds ||z;|| ~ A, and the
tree-level term and the quantum corrections come within the same order of magnitude. It
is therefore natural to re-express the effective potential in terms of the new variables
AN z)ns . (4.3.1)

Gt = A (20 s (C)n2 = A (2i)n2, (Gi)n,3

The computations in this section will be valid for temperatures in the range 0 < TR <
A~1/2_ Since we can no longer neglect the terms multiplied by Boltzmann factors, we have
to consider the full quantum effective action as computed in Chapter 3 (given in (3.2.17),
(3.2.18), (3.1.17), (3.2.16) and (3.1.12)). Once again, we apply the orbifold identifications
(4.2.2)-(4.2.4), and express the result in terms of the variables 6;, ;. However, the rescaling
with the 't Hooft coupling A in (4.3.1) will reorganize the perturbative expansion of the



84 CHAPTER 4. TOPOLOGY TRANSITION AND EMERGENT SPACETIME

effective potential into
T = TO[6] +ATM[G;, ¢+ O(N) . (43.2)
Here the 0—100p term is

Z Z i { ( AR 1)+ 220 (e 513“;1,1))

i=1 mn=1 (=1

(-1 (zfd(@*ﬁlR‘l; 1,1) + 225 (e PR 1, 1))} cos (1(6:)n — 1(6:)m) (4.3.3)

where 25, 2L 2B 2L are given in Egs. (2.1.74), (2.1.75), (2.1.76), (2.1.77), respectively,
and y; = yo = 1 in this case since we are taking p; = ps = 0 here.
The 1-loop term in (4.3.2) is given by

rOg,¢) - 2 RNZZH (Co)n

i=1 n=1

Z Z (€ = (€| (1+2Zcos (1(9i)n—z<ei>m)). (4.3.4)
=1

zlmnl

From the expansion (4.3.2) it is immediately obvious that to leading order in A the 6; are
unaffected by the ;. Therefore, to leading order, the eigenvalue distributions of the 6;
are the same as they were in the case with zero scalar VEV’s treated in Sections 2.4-2.5.
The eigenvalue distributions of the scalar VEV’s can therefore be found by minimizing
(M [g;,¢;]. Taking the large N limit of (4.3.4) according to (4.2.11) one finds

1 271'2R
= / 46; d°¢, pi(60i, C,) 1Ci11°

VErY [ 816G 61, €01 ) G~ €Il (435)
=1

Here we have used the identity 1+2 7%, cos (1(6;)n — 1(6;)m) = 278 ((0;)n — (0;)m) Which
is simply the Fourier expansion of the delta function.

Now we proceed to minimize the action (4.3.5). Since the eigenvalue distributions for
the Polyakov loop and the scalar VEV’s can be solved for separately, the joint eigenvalue
distribution factorizes:

pi(0:) 8 (111l — :(62))
(91,C ) ||C H5(1 + (dﬁ/de ) )1/2V01(55) '

Inserting (4.3.6) into the 1-loop term (4.3.5) one finds

1 21%R
m]_‘(1) — Z/d@zpl Tz 1 —ZWCZ/CW@,OZ i rz Z)

2 2 232
-2 ﬁR Z/dez‘ [Pz‘(@‘) <7'i(9i) - %Pi(@‘)) - %pi(&ﬁ] (4.3.7)

(4.3.6)
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where C = %. The final term only contributes to the 2-loop order distribution of
the Polyakov loop eigenvalues and can therefore be ignored cf. [21]. However, it might
potentially play a role in the higher loop computations needed for determining the order
of the phase transition at finite coupling (cf. the discussion in Section 2.5.4). Hence for a
minimum we have

TZ(HZ) = %pz(az) . (4.3.8)

2R

As we know from Section 2.5, when the temperature is raised above the Hagedorn tempera-
ture Ty, the Polyakov loop eigenvalue distribution becomes gapped and is thus an interval
[—0o, 00]. The scalar VEV eigenvalues are now distributed uniformly over an S%/Z, fibered
over this interval, with the radius of the S°/Z); at any point ; in the interval being pro-
portional to the density of Polyakov loop eigenvalues at 6; (for fixed TR). The S°/Zy; thus
shrinks to zero radius at the endpoints £6y of the interval: the topology of the joint eigen-
value distribution is an S% /Zpr where the Zy; is understood to act on the S5 transverse to
an S! diameter. Thus, the Hagedorn phase transition manifests itself in the general case
of non-zero scalar VEV’s as a change in the topology of the joint eigenvalue distribution
S5 )7y x St — S8/ 7.

In order to understand how the S®/Zj; eigenvalue distribution may be realized in
the dual AdS spacetime we first need to consider the S' part of the low-temperature
distribution S* x S5/Zy;. The eigenvalues of the Wilson line wound around the thermal
circle give the positions of D2-branes? on the T-dual of the thermal circle in thermal AdSs.
As the temperature is raised higher and higher beyond Ty, the Polyakov loop eigenvalues
become localized to smaller and smaller intervals. On the AdS side one therefore finds a
localized D2-brane configuration. It was noted in [21] that a similar localization of D2-
branes on a spatial circle, at finite temperature, was investigated in [76] where it was
observed to produce a near-horizon geometry containing a non-contractible S%. Moreover,
it was predicted in [76] from supergravity that a S x S — S topological transition of a
Gregory-Laflamme type should take place. In the present case, where the dual spacetime
is AdSs x S°/Zyr, we expect the appearance of an S%/Z); in the near-horizon geometry
of the localized configuration of D2-branes on the T-dual of the thermal circle.

4.3.1 Generalization to other Z,; orbifold field theories

The computations in this section immediately carry over to the more general Z,; orbifold
field theories considered in Section 3.3. In this paragraph we remark on the theory defined
by letting the action of Zj; be that of (1.2.1) with w replaced by w? for some fixed p € Z.
The quantum effective action of the corresponding field theory is obtained from that of
N = 2 quiver gauge theory by defining v; j n.m to be as given in (3.3.2). The saddle points
of this effective action are found by making the orbifold identifications

i (i+1) W Pa; (ig1) b1y, = WP bigyi bi = ;- (4.3.9)

4The D2-branes here are T-dual to the original D3-branes. See [75], pp. 263-270, for a careful explanation
of this point.
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The resulting expression for the effective action is then precisely the same as in the case
of N' = 2 quiver gauge theory treated in this section, and the conclusions carry directly
over. In particular, having made the orbifold identifications (4.3.9), one finds the low-
temperature joint eigenvalue distribution S°x.S' and the high-temperature distribution S°.
Alternatively, the joint eigenvalue distributions are S°/Zy; x S* and S%/Zy,, respectively,
where the action of Zj, is precisely the orbifold action defining the Zj; orbifold theory.
It is important to note that the orbifold identifications (4.3.9) correspond uniquely to the
quantum effective action of the field theory. Indeed, assume that we make the identifications
(4.3.9) with some w? replacing w?. In order for the quantum effective action to reduce to an
expression involving norms on C? we must require w? to have the same order as wP. That
is, we must have VM € N : ged(q, M) = ged(p, M) which implies ¢ = p. Identifying the
above S°/Z distribution with the S°/Zy; part of the holographically dual AdSsx S%/Zy,
spacetime, this shows in particular that, within this class of Zj; orbifold field theories, the
geometry of the dual AdS spacetime is mirrored in the structure of the quantum effective

action in a precise way.



Chapter 5

The SO(6) sector of N' =4 SU(N)
SYM theory

In this chapter we present a detailed derivation of the anomalous dimension matrix for
N =4 SU(N) SYM theory single-trace scalar operators to 1-loop order in the large N
limit. In the planar limit we only need to consider single-trace operators because they
completely decouple from multi-trace operators due to large N factorization (cf. [77]).
Our motivation for carrying out the computation in the large N limit is a different one,
however: as first noted by Minahan and Zarembo in [13], the anomalous dimension matrix
for this sector of operators can, up to a constant, be identified with the Hamiltonian of an
integrable SO(6) spin chain. However, for finite N the integrability is lost. We will return
to the importance of integrability later in this section.

We will restrict attention to the single-trace scalar operators of N' =4 SU(N) SYM
theory defined as

O(z) = Tr(®i, () - - D4, (2)) (5.0.1)
Under renormalization these operators will miz. That is, the relation between the bare and

renormalized operators is given by

(@i, () Di, (2)) 5 = 209507 (D), () - @y, () - (5.0.2)

R TEREE
This implies the relation between bare and renormalized 1PI correlation functions

r®

i1-ig

= 7 el (5.0.3)

= Lo iy

which can be used to determine the anomalous dimension matrix.

5.1 Feynman rules and Feynman integrals

The Feynman rules for N' =4 SU(N) SYM theory in 4-dimensional Euclidean spacetime
(in covariant gauge) are listed below.

87
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1) Propagators

p -
scalar propagator: A?jb(p) = a,i > b,j = 5‘117%21
gauge boson propagator: Df;,bj(p) = A, ~A~A~AA~AA~A~ b, = 505‘5;_2"
fermion propagator: (S(D)pa = 0, ——————= b,3 = —5abp“(l;)ﬁa

2) Vertices

4-scalar vertex:
a,i c,k
= -9 [f@abfecd(aikdjl — 6ubjk) + f P (8ubkj — 0ij0m1)

+ feo £ (5500 — S ]
b,j d,l

scalar-scalar-gauge boson vertex:
Cyp
p q = —igf®di;(p+ au

a,t b,j

fermion-fermion-scalar vertex:

c,1
— _igfabc(l—‘i+4)a6
b”@ a,x

We note also the following Feynman integrals which hold in D = 2w Euclidean space-
time for m > 1:

d*q 1 1 (=)™ T(m4n—w)Bw—n,w—m) 5 4 m_n
/ (271')2“” q2n (q _ p)Qm - (471')“) F(m) F(n) ( ) (511)
ﬁ i 1 _(—1)m+”F(m—|—n—w)B(w—n+1,w—m) 2\w—m—n
/ (@m)2e M@ (g —pPm ~ (dm) T'(m)L(n) (P°) Pu

(5.1.2)
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22 Wl on (g —pypm = (4w T(m)T(n)

/ d2wq 1 1 (_1)m+n (p2)w—m—n
(

X (pupyf(m—i—n—w)B(w—m,w—n—i—2)
1
+ §5Wp2f‘(m+n—w— 1)Blw—m+1l,w—n-+ 1))(5.1.3)

where Euler’s beta function B is given by

() T(y)

B(z,y) = Tty

(5.1.4)
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5.2 The scalar self-energy diagrams

To 1-loop order we have a priori the following corrections to the scalar propagator:

_»@_._+£’:Lk+_.{;_._+ﬁ©;
A

q

1) The gauge boson loop correction: a,i —e [I:\,S 0,7
p P—q p

2w
- (‘@2/ élﬁ)% % (p) £ (2D — ) DI (@) ALY (0 — @) £ (2 — 4)u AL ()

s (e (L [ d*q (2p—q)?
- Cinfss o) (5) [ bt
(

—w)T(w —1)?

where in the second equality we also made use of the identity fc? fbed = Ng§ab,

q
L~
2) The one-fermion loop correction: a,i - — b,j
P N’ p
q—p
- N2 1 d2w aa’ cda’ (i’ +4 cc! d'd
= (i9* (1) (5) [ (s (BF @ (T 5 (5% (@) g (570 = 1))

X fd/C/b/ (Fj/+4 ﬁ/ lAb/ )

_ 1 2 7 sab 1 2((pu) (Fi+4) (Fu) (Fj+4) ) d**q qu(gv — pv)
- Y I o'a as\t ) gp gar) | | 2 >

2m)2 q%(q — p)
—w w—1)2 o
e

In the first equality we inserted an extra factor (—1) because of the fermion loop and
the factor % which is the weight factor of the diagram. In the third equality we used the
following identity for gamma matrices of size A x A

Tr THIVTPT = A - (g"g"7 — g"Pg"" + gH7g*P) . (5.2.3)
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In our case A = 16, and so in particular

(1) o (T4 15 (1) (T7F4) 5, ) = T (DATHATYTIH) = <1656, (5.24)

N / d2wq i
3) The scalar tadpole: > - (2m)% ¢

Letting D = 2w = 4 — 2¢, from Eq. (B.16) in [83] one finds

d2w 1 (-1 ¢
| Gt = ((47)—: L )t (5.2.5)

Putting m = 0 for € > 0, we find that the above diagram vanishes for any ¢ > 0. Hence
the tadpole does not give any contribution in dimensional regularization. Analogously,

the diagram ;} does not give any contribution.

5.3 The four-point correlation functions

In the following we will need some of the Feynman rules of ' =4 SU(N) SYM theory in
2w-dimensional (Euclidean) coordinate space. We list the Feynman rules we need for our
calculations below.

scalar propagator: A%’(az) = z;a,i —w—— 0;b,j = 5“%17%
gauge boson propagator: ng(x) = T;0,[t A~A~AAA~~ 0D, v = 6‘“’5,“,%
c,
scalar-scalar-gauge boson vertex: = —ig fabc(gij %
Yu
Tia,i 0;0,7

Here the derivative % in the vertex is understood to act on the entire expression obtained
from applying the Feynman rules to a diagram; i.e., on the product of all propagators
containing the point y.
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5.3.1 Four-scalar interaction

Tia,t 0;¢,k

x;b,7 0;d,l

After contracting the indices on the four-scalar vertex with the indices of the scalar prop-
agators one finds the following index structure of the diagram

g7 | 9 5 B — dadjn) + ST (Buds — big0nt) + P (81500 — dudi) |
(5.3.1)
Ignoring the index structure, the diagram evaluates to

MNw-—1) 1 1
2w 2 . 2 _ 2w
Jevse-naw = (D) ey

47w
I'(w (2m)% T(Bw —4)T(2-w)? 54 3,
< Am@ > I T(2w = 2)T(4 —20) &)
(2 —w)? F(w—l) I'(3w —4)
167+ F(2w —2)2T(4 — 2w)

()2 “A%(z). (5.3.2)

Thus, the final result for the diagram is

g [feabfeCd (k051 — Sudjn) + FF® (80kj — 0ij0mt) + FC £ (8350k1 — Oikdjt) }
['(2—-w)?T(w—1)2T(3w — 4)

167~ T'(2w — 2)2T(4 — 2w) (%) A% (). (5.3.3)
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5.3.2 Gauge boson exchange
;0,1 0;c,k

Y1

Y2
x;b,j 0;d,l

= /deyl /deyz 8y2 a an (Aaa ( - yl) ( — igfa’c’e’(si/k/) Agﬁc(yl) Dg,l}, (yl - yg)

x A (96 —y2) (— igfb/d,fl&'z’) Aflflzd(m))

1
(s 5., face bde /d2w /de
(=) 00y ff < ) . s ayl )@ — yr)2@ D
1

(y%)w—l(x - y2) (w=1) (yl — y2)2(w—1)

5
= CigPaudnge e (RS

8
% /deyl/d2wy2< — — — —
[ [(w—y1)4( 1)yf( 1)] [yg( 1)(3/1 _y2)2( 1)]
8

X

+ (o — o) @ D 2] [ 2D T
42°@7D
@@ - ) 2 @ - ) D gy — )Y
- 8
y%(w—l)(x . yl)Q(W—l)y;(w—l)(:p o y2)2(w—1)(y1 . y2)4(w—1)>]
2
= OO f (QFEMW;(;L - (2?)* (7471};2;)1)1)) . (5.3.4)

In performing the y1,ys differentiations under the integral signs we have simplified the
result using that the integrals are invariant under the interchange of y; with y» and fur-
thermore under the combined transformation y; — v} =z — y; and y2 — y) = = — yo.

The first two integrals inside [ . ] can be done by appying (5.1.1) two times, first
performing the integration over y» and then over y;. The remaining two integrals can be
found in Ref. [82].
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5.3.3 Annihilation

It is easiest to evaluate this diagram in momentum space. To do this, we must assign 4-
momenta correctly to the diagram. We consider the 4-scalar interaction and evaluate the
Fourier transform of the result obtained in coordinate space:

/d%x e T ( / d*y A*(z — y) A2(y))

(r(z —w)?T(w— 1)4> 1

Am)2 T (2w —2)2 ) (p?)+—2
2w QWT
- / (;er)gw / (;lﬂ)% Alg) Alp—q) Ar) Alp — ). (5.3.5)

The external legs of any connected 4-point diagram must exactly match those of the 4-
scalar interaction diagram since we are adding the contributions of these two diagrams.
Therefore we conclude that the annihilation diagram in momentum space is

a,i c,k

b,j d,l

d2wq Cl2w7” aa’ ’ . a'ble v
= — — (A% (q) A% (p — q) (—ig ") 6110 (24 — p) DL (p)
(2m) (2m)

(~igf< ) i (2r = p)y A1) Al (p = 1)

- carrrrs () ([ ) ([ o)
) (5.3.6)

where the last equality follows from

d*q (29—
/ GoEE q( ? —p;? =0 (5:37)

5.4 Renormalization

We will carry out the renormalization in the MS scheme, using dimensional regularization.
That is, we will set the spacetime dimension to D = 2w = 4 — 2¢. In order to proceed with
finding the wavefunction renormalization factors we shall need:
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e Laurent expansion of I'. The meromorphic extension of the I' function to the
complex plane has simple poles in —n where n = 0,1, 2,.... The Laurent expansion
around these poles is

(=" (1 e (m 2 ! 2
I‘(—n—i—e):T E—l—w(n—l—l)—i-g ?+1/J(n+1) —P'(n+1))+0() ) .
(5.4.1)
Here the digamma function 1 and its derivative are given by

1 dI'(»)

P(z) = T d (5.4.2)
1 1
Yn+1) = 1+§+'”+H_7 (5.4.3)
2 n

, m 1

= — - — 4.4

where v = 0.57721... denotes the Euler-Mascheroni constant.

e Trace identities. Let A, B,C, D be arbitrary N x N matrices and let 7%, a =

1,...,N? — 1 be the generators of su(N) in the fundamental representation. The

conventions for the generators and structure constants are!

[T, T = ifeere,  Tr(T°T°) = %5“ ;o (T)%(T) s = %5“55”5 . (5.4.5)
Then the following identities hold

Te(T*AT®B) Te(T°CTD) fead pebe = é (Tr ATrCTr BD 4+ Tr BTr D Tr AC

— Tv(ACBD) — Tr(ADBC’)) (5.4.6)
TH(T AT B) Te(T°CTD) feec febd = % (Tr ATt DTy BC + Tr BTr O Tr AD)

— Ty(ADBC) — Tr(ACBD)> (5.4.7)

Tr(TAT° B) Te(T°CTYD) fecb feed = é (Tr ATrDTr BC +Tr BTr C Tr AD
—TrATrCTr BD —Tr BTr D Tr AC) . (5.4.8)

The proof of the first identity is given below. The second identity follows from substi-
tuting C' «—— D and ¢ «— d and using the cyclicity of the trace. The third identity
follows from the first two via the Jacobi identity.

As a consistency check, note that inserting A= B =C = D = I in Eq. (5.4.6) one

finds 1 1
L feeret = ZN(N2 —1). (5.4.9)

!Note that these are the same conventions as in [78] so that (5.4.6) above coincides with (5.3) there.
For further information on trace identities for su(IN) generators, also see [79] and [80].
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Indeed, this is a true identity, as immediately follows from the identity focd fbed =
N&%® since e =1,...,N? — 1.

(Also note that the RHS of Eq. (5.4.8) can be written as a product of two factors,
one containing only 7, A, B, and the other factor containing only 7€, C, D. This is
easily seen by applying Eq. (5.4.27).)

Proof of Eq. (5.4.6). Using that f®¢ = —2i Tr([T%, T°|T¢) and the normalization
(T*)*4(T*)5 = §5%%06" 5 we find

Tr(T° AT B) Te(T°CT? D) feod febe
= (=2i)> Te(T*AT"B) Te(T°CTD) ([ T
= (=) () A” (1B, ) ()% Td

x (), (T (), — (1) ( )
x (X (1) (T, = (T9)7, (") <T€>Tp)

= (—4)((T“)°‘,3(T“)€n(Tb)”5 T)P o (T)\(T°),
)

TT°) Te([T°, T°|T°)

~— —
=

AN

3

T
\_/

( T°),A° B, C*, D",
— (T (T) ) (T°) 5 (T°) 7 (T)"\(T°)F,
( )71'( ) Aﬁ 36 C)\ DV,‘{

€

3
o
—

— (T 5(T) 1 (T°) 5 (T°) o (T°)*\(T€)
(T, (T (TO)"(T°)7, A% B, O, D"
(TG ()" (T°)5(T°)7 (TN TV
> (Td),uy (Td)en (T@)ﬂ'e (Te)TpAnyBaaC)\uDun)

X

= () (G (05%0%) (57,%5) (6%,07,) (5,07, (57,07,) A B, CA, DY,

- 2—15(5%5%) (87:8%) (8756",) (687,) (67,67) A” B*C*, D",
55 (5%075) (57,875) (5%,6%%) (8,%,) (57,7,) A, B, CA, D,

- 2—15(5a7r5”ﬂ)(5m505) (6%,0°)) (8%,0,) (67,07) A", B, C*, D", )

- é( — Tr(ACBD) + Tr ATt C Te(BD) + Te(AC) Tt BTr D — Tr(ADBC)) .
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e Fourier transforms

d*p eP® INw—a) 1
= 4.1
[ oimr = e (5410
o1 4977w — ) 1
d*x e = 5.4.11
/ @ M) wooe Ot
We now consider the renormalization of the scalar operators

O(z) = Tr (®;, (z) - By, () . (5.4.12)

The two-point correlation function is given by

(O(@)0(0)) = (¢! () --- 677 () ¢} (0) - ¢}7(0)) Tr (T ---T) Tr (T™ ---T") .

(5.4.13)
The tree-level contribution to (¢} (x) - - - ¢7/ (x)cb?i (0)--- (ﬁ?j (0)) comes from .J scalar prop-
agators connecting x and 0:
b b Ly
(5(11 1., 597 J) (51'1]‘1 .. ‘51‘”’]) (47rwx2) X (5.4.14)

5.4.1 Insertion of self-energy diagram

Now consider the diagram obtained from the above tree level diagram by replacing the i;
to j; propagator (where [ = 1,...,J) by the self-energy correction described in Section 5.2.
To compute this diagram we now translate the self-energy diagram results Eqgs. (5.2.1) and
(5.2.2) obtained in momentum space to coordinate space. Adding Egs. (5.2.1) and (5.2.2)
and using (5.4.10) we find

d2wp ip-T arby ¢ . F(Q B w) F(w — 1)2 w—
[ et (oo o = 67

[(w—1)? 1

2 arb,

= —g°NJuo§. . .
g 3272w (2 — w) (2w — 3) (22)23

(5.4.15)

Therefore the full diagram with J — 1 propagators connecting x and 0 with the self-energy
diagram inserted on the I’th spot evaluates to

I(w—1)2 1’
2 aib ayb
— PN (50l 5T (8, S : 5.4.16
9 ( )( 11 ”‘])877"-’(2—w)(2w—3) <47T“’x2> ( )
The divergent part of this is
2 a1by ajby 1 1 g
—g*N (8910 598 (8,5, - .5,L.Jjj)m o) (5.4.17)

Therefore, the renormalized 1PI Green’s function I‘f)w is given by

2 J
g°N a " 1
(1 8W26> (31br - 598 (855, - 8iyiy ) (—4 > (5.4.18)

w2
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i.e. the sum of the tree-level result and the counterterm associated with the one-loop result
obtained from inserting the self-energy diagram. Comparing this to Eq. (5.0.3) we conclude
that )

A (1 + Gl ) 5izjz‘5iz+1jz+1 (5-4-19)

"’ililJrl"' 877'26
where we have explicitly shown the 4;,%;41, Ji, ji+1 components. This notation will prove
useful for the 4-point one-loop renormalizations.
5.4.2 Insertion of the 4-scalar interaction diagram

The diagram obtained from the tree-level diagram by removing the ¢; to j; propagator and
the 4,41 to ji+1 propagator and inserting the four-scalar interaction diagram? evaluates to:

o2 —w)?T(w —1)2T (3w — 4)
7 16m (2w — 2)2T (4 — 2w)

eaib; rebi1aip1 (5. . s .
+ f f (5ZZJL+1(SJM+1 5Zzlz+15]m+1)

eaibiy1 reajp1by (5. . R YR S
+ f f (5zlil+15ﬂ]l+1 521]1 5'Ll+1]l+1)

eajai+1 rebibipr (5. 5. 5. S
(f f (574l]15”+1.71+1 574l]l+1521+1]l)

arby | sa—1bi—1 sai2bipe . sasby U Y N T
X (5 6 5 5 )(611J1 51171]l71511+2]l+2 5ZJJJ)

1 J
X Tr(T - T%) Tr(T% ... Tb7) ( 47T“’x2> (5.4.20)

I'(2-w)?T(w—1)2T(3w — 4)
= — 2 ealbl ebl+1al+1 __ feaiaj4q Eblbl+1 5 . 6 .
S Yo Te—2Ta—20) \U FEHAE L) B2 01

4 (fealal+1 feblbl+l _ fealbl+1 feal+1bl) 6iljl5

U141

(et et e ) 66)

b _1b_ b b
X (5a1 R J) (5i1j1 o '5izf1jzf15iz+2jz+2 T 52'JJ'J)

1 J
b b
x Te(T - - T%) Te(T% - - - T <4F%2> (5.4.21)
Using the trace identities (5.4.6)-(5.4.8) we find the following relations:

(feazbzfebl+1az+1 — feamai feblbl+1)

x Tt (TU T4+ (T2 ... T=1)) Ty (TP T+ (T2 ... Th1-1))
= 1((1\72 +2) Tr (T%+2 ... TU=1 T2 ... Th-1)
8

—3NTr (Taz+2 .. .Talfl) Tr (sz+2 . .szq)) (5.4.22)

2The reason why we restrict ourselves to interactions taking place only between neighboring sites I and
[+ 1 is that we consider only planar diagrams; general diagrams with interactions between sites [ and [ +p
will be non-planar and hence subleading in the 1/N expansion.
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(feazaz+1 febzbz+1 _ fealbl+1f€al+1bl)
x Tr (TUIT (T2 .. T=1)) Tr (TOIT 1 (T0+2 .. TP-1))
1
= -7 ((N2 — 1) Tr (Taz+2 e Tu—1bire Tbl—l)) (5.4.23)

(fealelfeaHlbl _ fealblfeleaHl)
x Tr (TUIT (T2 . T=1)) Tr (TP T+ (T0+2 ... TP-1))
= é((NQ —4) Tr (T2 - - Tu-17bi42 .szfl)
+ 3N Tr (T%+2 ... T%=1) Ty (TP+2 .. -TbH)) : (5.4.24)
To proceed further, we note the following theorem.

Theorem 5.4.1. Let 7%, T° T¢ and T? be generators of su(N) and let C, D be arbitrary
N x N matrices. Then the following identities hold.

625 To(T2T°C) Te(TPTD) = iTrCTrD (5.4.25)
56 Te(TeT°CTTID) = iT&"(CD) (5.4.26)

Proof. First note the fusion and fission rules

1
TrT*ATr T*B = 3 Tr AB (5.4.27)

1
TrT'AT'B =5 TrATrB. (5.4.28)

Both of these equations are easily obtained from the normalization condition on the su(N)

generators:
a a 1 «
(T)6(T)"5 = 50%675 (5.4.29)
Using Eqgs. (5.4.27) and (5.4.28) we find

§°05°4 Ty (T*(T°C)) Tr (T*(TD)) = & Tr (T(T°C)) Tr (T*(T°D))

= %5“1 Tr(T°CTD)

_ %Tr(TCCTCD)

- i TrCTrD (5.4.30)
which proves Eq. (5.4.25). Similarly for Eq. (5.4.26). O

In particular we find that

Tr (T2 - T9=2) Ty (T2 - TP=1) = 45901 §0+10e2 Ty (790 .. T%7) Ty (TP ... T
(5.4.31)
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Moreover, when J is even (but oddly enough, not when J is odd!!) we have

N2 Tr (Tal+2 cooTe-bie ,szf1) (5a1b1 oo gu—rbioa garpebige ,5anJ)
— NTr (Taz+2 .. ,Tal—l) Tr (sz+2 e sz—1) (5a1b1 .o gU-1bi—1 §rpabiye 5anJ) (5.4.32)

J=2
since both sides evaluate to (i) 2 N3,

With these trace identities, we can now write the result for the diagram obtained from
the tree-level diagram by removing the ¢; to j; propagator and the ¢;41 to j;+1 propagator

and inserting the four-scalar interaction diagram:

(2 —w)*I(w—1)’T'(3w — 4)
_92 167 (2w — 2)2T(4 — 2w) ( - 5izjz+15il+1jl — iy (5iz+1jz+1 + 25iziz+15jljl+1)

X (6i1j1 T 5iz_1jz_15i1+2jz+2 T 5iJjJ) (5a1b1 o 6anJ)
J
x Te (T - T%) Tx (T - T%7) < 47:0902) : (5.4.33)

The divergent part of this is

2
g°N
- Sn2e ( - 5iljz+15il+1jl - 5ilj15iz+1jl+1 + 25iliz+16jljz+1> (5i1j1 T 5il,1jl,15il+2jl+2 s 5z‘JjJ)
1 J
x (61b1 ... 50T Ty (T ... 797 ) Ty (T - .- ") (4772:52) , (5.4.34)
Therefore, the renormalized 1PI Green’s function I‘Z(f)w is given by

2
g°N
[5izjz 6iz+1jz+1 + Sn2e ( - 5izjl+16iz+1jz - 5in'1 5il+1jl+1 + 25iliz+15jzjl+1>]

X (5i1j1 o '5iz—1jz—15’iz+2jz+2 o '51"]]'1) (5a1b1 T 5anJ)
J
x T (T - T%) Tx (T - TP7) < 47;32) : (5.4.35)

i.e. the sum of the tree-level result and the counterterm associated with the one-loop result
obtained from inserting the 4-scalar interaction. Comparing this to Eq. (5.0.3) we conclude
that
G g*N
Z~~-gzli]zl:11~- = diyj 5il+1jl+1 T Sn2e (5izjz+15il+1jz + dij, 5iz+1jz+1 - 25iziz+15jzjz+1) . (5.4.36)

This is, however, in disagreement with the expression Z(b):"_'flljl'fll: in Ref. [13]
(p. !
5.4.3 Insertion of the gauge boson exchange diagram

Now we consider the diagram obtained from the tree-level diagram by removing the ; to
ji propagator and the ;41 to ji+1 propagator and inserting the gauge boson interaction
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diagram. More specifically, we consider only the divergent part of this diagram which
evaluates to:

2
4i26 (feazbl feaz+1bl+1) (5alb1 oo gU-1bi—1 §arpabiye 5anJ)

1 J
X (5i1j1 T 5iJjJ) Tr (Tal o ‘TaJ) Tr (Tbl o 'TbJ) (471’2:62)

N
_ ZT‘_—QE (5a1bl . 5(1JbJ) (6i1j1 o

J
) Tr (Tal .. .TCLJ) (Tbl .. .TbJ) <4Wix2> (5.4.37)

iyj

where we have used Egs. (5.4.7) and (5.4.31).
2

Therefore, the renormalized 1PI Green’s function I, 1s given by
2 J
9°N b b 1
(1 — 47T2€) (5‘11 1.,.. (5‘1J J) ((51'1]’1 . 5i]j]) <47T2x2) (5438)

i.e. the sum of the tree-level result and the counterterm associated with the one-loop result
obtained from inserting the self-energy diagram. Comparing this to Eq. (5.0.3) we conclude
that

2
S R g°N
Z"-i]lli]lﬁ;l"‘ = (1 — m) 6iljl6il+1jl+1 . (5439)
This is, however, in disagreement with the expression Z(a)zjllzjll:ll in Ref. [13]
(p.- !

5.5 The anomalous dimension matrix

Multiplying Egs. (5.4.19), (5.4.36) and (5.4.39) we find

g
Z---illilljll--- = 5i1j15il+1jl+1 + 1672¢ <6izil+15jljz+1 + 25iljzéil+1jl+1 - 25i1jl+15il+1jz> : (5'5'1)
The total Z factor is the product over all links of the expression in (5.5.1). For convenience
we can rewrite the result in terms of two elementary operators which act on each link: the
trace operator

JiJ
izlizl:f = Oisirs1 Ojjisn » (5.5.2)
and the permutation operator
JiJ
Pizlill:_ll = 6iljl+15il+1jl . (5.5.3)

With this notation, the total Z factor can be written in the form

J
A . .
Z = H I:(sizjl 5il+1jz+1 + 1672¢ (Kz‘]llz‘jll;l + 25izjl 6iz+1jz+1 - QPZJllz]ll:ll)} : (5.5.4)
=1
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The renormalization factor Z determines the matrix I' of anomalous dimensions through
the renormalization group equation

1dZ
F==—. 5.5.5
7 i (5.5.5)

Discarding terms of order A\? and higher, the anomalous dimension matrix can be written

J
I = # ZZ (Kijllijlirll + 25i1j15il+1j1+1 - 2szllz]lfll) : (5~5~6)
=1
As observed in 13|, this is the Hamiltonian of an integrable SO(6) spin chain.

Integrability means that there exists a set of “higher” charges (2, @3, ... that commute
among themselves, [@Q,,Qs] = 0, and that are conserved in the sense that they commute
with the generators of the N' = 4 superconformal algebra psu(2,2|4); i.e., [Jo, Q-] = 0.
Crucially, the generator of dilatations ©2 must be included in the set of conserved charges;
i.e. Do = Qo for instance. A well-known sufficient condition for integrability is that the
R-matrix satisfies a Yang-Baxter equation.

The SO(6) sector is a closed subsector. By a ‘closed’ subsector we mean a subspace H
of the total Hilbert space H of gauge invariant operators of N'=4 SU(N) SYM theory,
such that the action of the dilatation operator D closes on Hy; that is, that the image of
Ho under D is contained in Hy, i.e. D(Ho) C Ho.
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