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Abstract

Motivated by recent progress in amplitude calculations in Yang-Mills and gravitational the-
ories, the goal of this thesis is to calculate explicit open string scattering amplitudes in four
and six dimensions from the Dirac-Born-Infeld action. This is an effective action describing
electromagnetic fields on the worldvolume of a single D-brane. Scattering amplitudes are im-
portant in particle physics and string theory since they provide a direct connection between
theory and experiment and because the scattering amplitude is really the measured physical
quantity in detectors at particle accelerators as for instance the Large Hadron Collider (LHC)
at CERN. This thesis introduces the basic concepts from string theory and the relevant meth-
ods from field theory used in scattering amplitude calculations are reviewed. Especially the
spinor-helicity formalism is central and it is introduced in detail in order to streamline con-
siderably the calculations in four dimensions. The simple structure in four dimensions invites
an extension of studies into higher dimensions and the spinor-helicity formalism is also em-
ployed in a modified form in six dimensions in a search for an appropriate way of expressing
six-dimensional amplitudes. The amplitudes are calculated for specific polarizations of exter-
nal states with four-dimensional calculations of both four-point and six-point amplitudes and
six-dimensional calculations of four-point amplitudes. A method of evaluating contractions of
the electromagnetic field strength tensor in terms of traces of block matrices is developed in
connection with the calculations in six dimensions and also a generic four-point amplitude is
calculated in generality without specification of external polarization states and independent
of the number of dimensions. In six dimensions, four-point and six-point pure scalar ampli-
tudes are calculated and the cross section for scattering of four scalars is estimated for the
current maximal energy at the LHC.
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Introduction

Unification of theories has always been a fundamental concept in theoretical physics. When
Einstein formulated the theory of general relativity in 1916 it was a successful generalization
of his theory of special relativity of 1905 and he kept on pursuing an even more general
theory in which he could formulate equations describing electromagnetism as well as gravity.
Einstein did not succeed but his strive for unification is characteristic for a physicist’s way of
thinking. This is exemplified in modern high energy physics where unification plays a central
role for the understanding of the fundamental particles and interactions observed in nature.
Four fundamental interactions are observed with a huge difference in strength spanning over
39 orders of magnitude. One intriguing problem is to understand why the strengths of the
fundamental interactions are so different. The difference in strengths can be illustrated by the
following example where the electromagnetic interaction is compared to gravity. One can rub
a comb on a piece of clothing to add static electricity to the comb surface. The comb will then
be able to lift a piece of paper due to the net difference in charge between the comb and the
paper and this shows how the electromagnetic attraction due to the small net charge difference
easily overcomes the gravitational interaction between the entire earth and the paper.

The relative weakness of gravity is reflected in the standard model of particle physics which
unifies all fundamental interactions except gravity. It is believed that both gravitational and
quantum effects are important at scales near the Planck energy Ep ~ 10 Gev, determined
uniquely by combining the fundamental physical constants /i, G, and ¢, associated respectively
with quantum phenomena and gravity. Although the standard model provides a correct de-
scription of nature at more moderate energies it is not a correct theory near the Planck energy
since it does not incorporate gravity. The standard model is therefore an example of an ef-
fective theory which is defined in general as a theory with a validity only within some certain
energy scale. This is manifest in many branches of physics where the physical understanding
of different energy regimes is based on effective theories. Although a full description valid for
any energy scale might not exist, the different energy regimes can be very well understood indi-
vidually in the frame of effective theories. This thesis is no exception from the comprehensive
use of effective theories since it is written in the framework of an effective theory.

Effective theories can be studied from scattering amplitudes which are directly connected
to experiments performed at particle accelerators. The connection between theory and experi-
ment goes through the scattering cross section and this makes scattering amplitudes naturally
interesting. This thesis is motivated by the recent progress in the field of scattering ampli-
tude calculations in Yang-Mills and gravitational theories where developments have resulted
in new technology. The results presented in [1] are part of these interesting developments
and this reference contains among other things calculations of string theory scattering ampli-
tudes in four-dimensions. These amplitudes are calculated from the Dirac-Born-Infeld action
which is a famous effective action describing gauge fields on D-branes in the low-energy limit
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of superstring theory. The calculations are performed with use of the spinor-helicity forma-
lism which in this context appears to be the right language for four-dimensional calculations
since the results for the amplitudes and the calculations themselves simplify considerably due
to the formalism. Just as the spinor-helicity formalism seems to be the right language for
four-dimensional calculations, another motivation for this thesis is to study a possible similar
language in six dimensions in which calculations and results are more streamlined. In order to
look for traces of the simplifications in four dimensions it is therefore interesting to study scat-
tering amplitudes in higher dimensions using a modified form of the spinor-helicity formalism.
This is addressed among other things in this thesis where the goal is to extend amplitude
calculations from four dimensions and to perform amplitude calculations in six dimensions
which have have not previously been done.

The thesis is structured as follows. Chapter 1 contains an introduction to the basic con-
cepts of string theory with focus on quantization of the classical string. Also the concept of
supersymmetry and the important objects in the open string sector known as D-branes are
discussed. The use of effective theories is discussed along with an introduction to the Dirac-
Born-Infeld effective action. In chapter 2 the useful spinor helicity formalism is introduced as
a continuation of a more general discussion of spinors and representations of tensors. Also a
review of the basic field theory methods used throughout the thesis is presented with focus
on the use of functional methods. These methods and the observations from the first two
chapters are put to use in chapter 3 where scattering amplitudes with specific configuration
of external polarizations are calculated in four dimensions. These calculations are performed
along the lines of [1]. Chapter 4 contains calculations of scattering amplitudes in six dimen-
sions including calculations which have previously not been performed. These calculations are
based on manipulations of the four-point scattering term in the Dirac-Born-Infeld Lagrangian
and the developments in this context are also discussed in this chapter. Finally, chapter 5
contains a discussion of the results obtained in chapters 3 and 4 along with some general
concluding remarks. Additional details of computations are found in the first appendix. The
second appendix contains as a service to the reader the new results for the amplitudes which
have not previously been calculated.
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Chapter 1

String theory background

String theory is a huge subject in theoretical physics and a deep discussion of the field is
beyond the scope of this thesis. This section presents therefore the concepts that are most
important in order to place scattering amplitude calculations in a bigger picture of an effective
theory emerging from string theory.

String theory is a candidate for a unified theory describing the fundamental interactions
and elementary particles in nature. If string theory is a more fundamental theory than the
standard model of particle physics, the results of the standard model must emerge somehow
from it. An interesting aspect in this context arises in connection with the objects in string
theory known as D-branes. The standard model is a quantum field theory of interacting gauge
fields and it is found in string theory that D-branes have gauge fields living on them. First
order corrections to these gauge fields are studied in this thesis where calculations of scattering
amplitudes for photon scattering in the frame of an effective theory is the main tool.

1.1 Effective theories

The importance of effective theories was addressed in the introduction. An example of an
effective theory is the Fermi theory for g decay which was developed in 1933 by Enrico Fermi
as a theory of weak interactions. One problem at that time was to describe the observed
continuous spectrum for the electron energy in a B-decay process and in 1930 Wolfgang Pauli
suggested the existence of the neutrino in order to solve the problem. A typical (-decay
process could then be

n—pt+e +7, (1.1.1)

according to the suggestion by Pauli. Fermi assumed in his formulation of the theory that
the interaction responsible for this decay was pointlike. This provided a good qualitative
description of the decay process and the theory had great phenomenological success. Early
experiments for the Fermi theory carried out at energies below 10 Mev were consistent with
the assumption of a pointlike interaction but a deeper structure has been revealed as experi-
ments at larger energies have been carried out with newer generations of particle accelerators.
Consequently it is known today that the interaction is not pointlike and that it takes place
with an intermediate W™ boson decaying into the electron and the electron antineutrino. The
W is a heavy particle with mass myy ~ 80 GeV and it was not discovered until 1983. This
example with the Fermi theory illustrates the typical use of an effective theory: It provides a
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good approximation at lower energies but becomes insufficient in order to describe the deeper
structure at higher energies.

In the discussion of low-energy effective theories in particle physics it is natural to introduce
the propagator which will be discussed in detail section 2.2. The propagator in a quantum
field theory describes the amplitude for a particle to propagate in spacetime and it is of the
form

1
s — 1.1.2
p?+m?’ ( )

where p is the momentum and m the particle rest mass. In the low-energy limit the momentum
is negligible compared to the rest mass so that

P <1, (1.1.3)
m
and hence (1.1.2) becomes
1 P’ P!
p— [1_W+O<W . (1.1.4)

This can be understood heuristically from a comparison with the law of inertia in classical
physics where a larger force is required in order to accelerate a heavier body. As for a massive
particle in a quantum field theory, a sufficiently high energy is required in order to “move”
the particle and make it take place in interactions. For sufficiently low energies the massive
particles can therefore be ignored so that only massless particles are considered in interactions.
In this sense one can say that high energy structure is hidden in the effective theory describing
the low-energy limit. The effective action is defined in principle by the functional integral
which will be discussed in detail in section 2.2.4. The ordinary action is formally replaced by
the effective action

Stull = /dn$£fu11 — Seff = /dnx‘ceﬁ s (115)

in which only variables important for the particular scale under study are taken into account.
It should be noted that this procedure is only used in principle. For practical purposes, the
appropriate effective action is constructed with desired dependence on relevant variables.

1.1.1 Physics at different energy scales

As discussed in the introduction, one problem in physics is to understand why the strengths of
the four fundamental interactions are so different. This is known as the problem of separation
of scales. A rough comparison for the coupling constants for the fundamental interactions is

—2 —6 -39
Qstrong — 1, (electromagnetism ™~ 1077, aweak ~ 10 y  Qgravity ™ 10 > (116)

and it is apparent that gravity is by far the weakest of the interactions. The strong, the weak
and the electromagnetic interaction tend to unify at energies Ey, ~ 10 Gev. This discussion
involves an interesting aspect of supersymmetry which is addressed in section 1.2.4. It should
be noted that the comparison of the coupling constants for the fundamental interactions is
more complicated than what is apparent from (1.1.6). This is because the interactions have
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different ranges so that a comparison of the coupling constants is only meaningful on a given
energy. For (1.1.6) the scale is the mass mz ~ 91 Gev of the Z boson. This will not be
discussed in further detail.

Gravity is so weak that it can be neglected in calculations in the standard model. However
it is believed that gravity becomes important in physics at the Planck scale which is given by
the Planck length defined uniquely in terms of the fundamental constants i, G and ¢ as

ep:,/ﬁfvzx 1073 cm . (1.1.7)
C

Because the Planck length is constructed from the fundamental units associated with quantum
mechanics and gravity it is believed that both interactions are important at this scale. The
Planck energy is defined uniquely as

hed 2 19

FEp = el = mpc” ~ 10" Gev , (1.1.8)
and it is the natural energy scale associated with the Planck length. As both quantum phe-
nomena and gravity are important at the Planck scale, a theory which unifies these two
interactions is necessary in order to describe physics at this scale. One problem in the unifica-
tion of gravity with the other three fundamental interactions is that general relativity is not
power counting renormalizable because it has a dimensionfull coupling constant. This means
that a theory providing a unified description of quantum mechanics and gravity cannot be
constructed in the most straightforward way.

1.1.2 String theory and the standard model

The standard model of particle physics is the theory which accounts for the description of
elementary particles and their interactions. The standard model is able to explain all experi-
mentally observed particles and their interactions as an internally consistent theory of quantum
fields. The theory is a non-Abelian gauge theory with gauge group U(1) x SU(2) x SU(3)
and it explains three of the four fundamental interactions; the electromagnetic interaction, the
weak interaction and the strong interaction. The standard model has proven very successful
and at the time of writing, no high energy particle experiment has yielded results in disagree-
ment with the standard model. However, one piece is still missing in the unified picture as
the standard model cannot include gravity which is described by the entirely different theory
of general relativity. This is one reason why it is widely believed that the standard model is
an effective theory describing the low-energy limit of a more fundamental theory which also
includes gravity. An interesting aspect in this context is that string theory contains naturally
a massless spin-2 particle which is the quantum of gravity, known as the graviton. It is the
currently hypothetical carrier of the gravitational interaction just as the photon is the carrier
of the electromagnetic interaction. String theory is therefore a candidate for such a more
fundamental and unifying theory. It is formulated by the assumption that all particles and
their physical properties are vibrations of very tiny physical strings and in this way, both the
fermionic particles that make up matter and bosonic particles that transmit the fundamen-
tal interactions are unified. This property that everything is build into the theory from the
beginning is the power of string theory. The simplicity is manifest by a comparison with the
standard model which has almost 20 adjustable parameters that have to be determined from
experiments in order to get a consistent theory.

Page 9



1.2 Foundation of string theory

An interesting historical aspect is associated with string theory since it was not conceived as a
theory of strings but emerged as a consequence of a postulate by Gabrielle Veneziano in 1968.

1.2.1 The Veneziano amplitude

In the late 1960’s interactions of m-mesons were studied intensively along with scattering
amplitudes. Today it is known that the m-meson is a bound state of a quark and an antiquark
but at that time m-mesons were considered to be elementary particles just as the proton and
the neutron were. For the study of scattering of four particles it is convenient to introduce

t—channel

s—channel

Figure 1.1: A scattering process through the s- Figure 1.2: A scattering process through the ¢-
channel. channel.

the Mandelstam variables

s=(p4+p)®, t=(@i+p)?, u=(p+p3)°, (1.2.1)

which for massless particles become
s=2p1-p2, t=2pi-ps, u=2pi-p3, (1.2.2)

defined in terms of the four-momenta of the four interacting particles. The scattering of
four particles can be described as taking place through the s, t or the u-channel as shown in
figures 1.1 and 1.2 for the first two channels. The physical interpretation of particle scattering
through the s-channel is different from that of interactions through the ¢t-channel. However, the
two interaction channels are just two ways of describing the same physical interaction where
particles 1 and 2 interact and produce particle 3 and 4. The poles in the transition amplitude
must therefore be the same regardless of channel. Veneziano searched for a mathematical
formula which described this kind of interaction for m-mesons and he simply wrote down the
amplitude

1
A(p17p27p37p4) = 9(2)/ dz x?a/pypg (1 - x)Qa p2ps 5 (123)
0

as a postulate. The p;’s are the particle momenta. The Veneziano amplitude can as well be
rewritten in terms of the S-function and the I'-function as

T (—a(s) T (—a(t)
A =90 T o (o) —a @)

= g5 B(~a(s), —a(t)) (1.2.4)
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with
a(s)=ad's+1, (1.2.5)

and gg denoting the strength of the interaction. It follows from properties of the g-function
that the amplitude can be expressed as

s,y = =S @O TV +2) () +m) L
n=0

n! alt) —n
y (a(t) + 1) (a(t) ;2) - (aft) +n) a(s)l_ . (1.2.6)
n=0 '

which can be found in [2]. The amplitude postulated by Veneziano resulted in much activity
in the research field. This research culminated in the realization that elementary particles
modeled as vibrational modes of one-dimensional strings instead of zero-dimensional particles
are subject to interactions described exactly by the amplitude written down by Veneziano.
The physical interpretation of the theory was due to Yoichiro Nambu, Holger Bech Nielsen
and this realization was essentially the birth of string theory.

A pole in a scattering amplitude corresponds to the exchange of a physical particle. The
poles in the Veneziano amplitude can be read of directly from (1.2.6) and it is apparent
that the amplitude has the same poles in the s-channel as in the ¢t-channel. Because of this
symmetry where the two channels represent two ways of looking at the same scattering process,
Veneziano’s model became known as the dual resonance model.

1.2.2 Constructing the string action

The fundamental assumption in string theory is that the basic objects are tiny strings with a
physical extension in one spatial dimension. This is very different from the notion in quantum
field theory where particles are considered as zero-dimensional points. The fundamental scale
in string theory is the length scale of the strings given by the string parameter

of ~ 0 (1.2.7)

with the Planck length given in (1.1.7). This parameter is also known as the slope parameter
and it is the only parameter that enters the theory. A good pictorial way to think of string
theory is to compare a relativistic tiny string with a classical guitar string which has certain
resonant frequencies depending on its length and tension. The different resonances of a guitar
string are perceived by the human ear as different musical notes whereas the different vibra-
tional modes of the relativistic string constitute particles and their basic properties. This
means that a particle in string theory is just a particular oscillation mode of a string and
that different particles simply correspond to different oscillation modes. The different vibra-
tional modes have different energies which lead to different masses for the particles through
Einstein’s famous mass-energy relation. Examples of different oscillation modes are given in
figure 1.3. All other properties of a particles such as charge and spin are also governed by the
vibrational patterns of strings. As described above, this is exactly the power of string theory.
Since everything is just vibrational modes of the same string, matter and forces are unified
and all particles and forces are intrinsically build into the theory from the beginning.
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Figure 1.3: Different string oscillation modes. A string can undergo an infinite number of different resonances
and the length and tension of the string determine which resonances are allowed. The connection between string
vibrations and particle properties can be illustrated for the mass of a particle. Because of Einstein’s equivalence
principle between mass and energy, a low oscillation mode corresponds to a small mass whereas high energy
oscillations correspond to a large particle mass. The leftmost string oscillation is the lowest possible oscillation
mode and it corresponds therefore to the lowest possible particle mass in the string spectrum. The examples in
the middle and to the right correspond to the next two masses in the spectrum.

String theory is formulated by writing down the appropriate action and quantize it by
imposing quantum mechanical momentum and position commutation relations. In this con-
text, the action for a relativistic point particle is a good starting point for the discussion of
the string action. A relativistic point particle propagating in spacetime traces out a world
line which is parametrized by the proper time of the particle. The proper time 7 is a Lorentz
invariant and is connected to the world line of the point particle by the integral

T:/%:/ds, (1.2.8)

with the usual relativistic «-factor

(1.2.9)

where ¢ = 1. From (1.2.8) it follows that the infinitesimal proper time is connected to the
infinitesimal line element of the world line by

dr =ds . (1.2.10)

All Lorentz observes must agree on the value of the action for any world line of the particle.
Since the proper time is a Lorentz invariant and connected to the world line it is natural to
construct the action for the point particle proportional to the proper time. Equation (1.2.8)
holds for natural units where length has the inverse dimension of time and in order to ensure
that the point particle action is dimensionless the proper time is multiplied by the rest mass
which is also a Lorentz invariant. The relativistic point particle action is hence written as

Srel = —m/ds , (1.2.11)

where the minus sign turns out to be correct in order to recover the right expression for the
kinetic energy when the Lagrangian is expanded in the classical limit of low velocity. The
action for a one-dimensional string can be constructed as a generalization of the point particle
action. The string propagating in spacetime traces out a two-dimensional world sheet and just
as all Lorentz observes will agree on the elapsed proper time of the point particle, all Lorentz
observes will agree on the size of the area of the world sheet traced out by the string. Hence
it is natural to construct the action for the string being proportional to the integral over the
world sheet area. To ensure that the action is dimensionless it must be multiplied with a
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Lorentz invariant quantity with dimension of inverse length squared. The fundamental string
parameter is one such object and the resulting action is known as the Nambu-Goto action

SNa = — L/‘dA . (1.2.12)

2ma!

Equation (1.2.12) is fundamental in the sense that it shows how the fundamental string pa-
rameter o/ is the only parameter that enters the theory.

1.2.3 String quantization

In order to obtain a quantum theory, the string action is quantized by imposing quantum
commutation relations on the string momentum and position. It should be noted that in
practice, often an action known as the Polyakov action will be used instead of the Nambu-
Goto action when a string theory is quantized. These two actions are classically equivalent
but the Polyakov action is more convenient for a quantum formulation. Quantization of the
string action yields the different oscillation modes with corresponding masses in the string
theory. This is known as the string spectrum. As described above, the only parameter of the
theory is the string parameter o/ and one must therefore expect that the mass scale is set by
this parameter. In order to have the right dimension of the mass

1
m? ~ —
o’

(1.2.13)
must hold. A bosonic string theory is a theory that contains only bosons. It can be shown that
a bosonic string theory requires 26 spacetime dimensions in order to be physically consistent.
Such a theory can be quantized in four different ways depending on choice of string boundary
conditions. Strings can be open with free ends or they can be closed with the ends joined
together. Furthermore strings can be considered orientable or unorientable. An orientable
string has two different directions to travel along whereas an unorientable string has only one
direction. All bosonic theories include a particle known as the tachyon which has the lowest
mass in the string theory spectrum. The mass square is
9 1

Mtachyon = — (1214)

o’
so that the tachyon mass is imaginary. The existence of the tachyon with imaginary mass
signals an instability of the theory which can be seen from the potential for the tachyon field
T. The potential is
L9 2

V(T)zim T°<0, for m°<0, (1.2.15)
which is just a parabola with an unstable maximum. The existence of the tachyon combined
with the existence of bosons only are two features in a bosonic string theory that make it
unattractive as a candidate for a real theory. The Veneziano amplitude as discussed in section
1.2.1 is interpreted in string theory as the scattering of four open string tachyons.

To be considered as a theory of everything, string theory must contain fermions. Fermions
obey Pauli statistics where two identical particles cannot be in the same quantum state. This
causes fermionic theories to be more complicated than bosonic theories. It can be shown
that a fermionic theory lives naturally in 10 spacetime dimensions and that a concept known
as supersymmetry is necessary in order to make it physically consistent. Supersymmetry is
a suggested fundamental symmetry in nature between fermions and bosons which will be
discussed below.
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1.2.4 Supersymmetry

Nature is considered to have a number of symmetries. One example is Einsteins equivalence
principle according to which the physical laws are the same in all local inertial frames. Beside
the observed symmetries in nature one can think of a possible symmetry which relates bosons
and fermions. This symmetry is known as supersymmetry (SUSY) and it relates to any
elementary particle a supersymmetric partner with the same mass and a spin quantum number
which is decreased by half a unit of spin. Supersymmetry is an independent concept and can
exist in nature independent of string theory. However, there is an interesting interplay between
supersymmetry and string theory since supersymmetry is necessary in a string theory that
includes fermions. A string theory with supersymmetry is known as a superstring theory.

An interesting aspect in connection with supersymmetry is the possible unification of the
coupling constants of the electromagnetic interaction, the weak interaction and the strong
interaction. These coupling constants depend on the energy as discussed in section 1.1.1. As
seen in [3, 4, 5] the coupling constants almost unify in the standard model around FEy, ~
10™ GeV. But only almost. If supersymmetry is included, it is found that the three coupling
constants will unify at E., sysy ~ 10'6 Gev which is known as gauge unification. This is
naturally an indication for the presence of supersymmetry in nature.

As string theory is believed to be a unifying theory, the physics of the standard model
should emerge from string theory somehow. There has been no experimental evidence of
supersymmetric properties for the particles of the standard model. One possible explanation
is that if supersymmetry is part of nature it must be spontaneously broken at low energies
by some unknown mechanism. The undiscovered supersymmetric partners to the elementary
particles must therefore be very heavy. Some of these supersymmetric partners have predicted
mass ranges which should be visible at the LHC at CERN and the existence of supersymmetry
in nature could therefore be suggested by future LHC experiments. This is exciting since
supersymmetry is needed in order to ensure string theories to be physically consistent.

EjS oy

Figure 1.4: An interaction process between a D-brane and a string. Both ends of the open string are subject
to Neumann boundary conditions on the D-brane. The ends can join to form a closed string which can leave the
D-brane. The process can as well be reversed so that a closed string hits the D-brane. The closed string sector is
not considered so interactions like this is ignored.

1.2.5 D-branes and gauge theories

Naturally there is a difference between open and closed strings. However, a closed string can
break up into an open string and conversely the ends of an open string can join to form a closed
string. Only the open string sector will be considered in this thesis. The ends of an open string
are naturally subject to certain boundary conditions of which there exist two different types.
A string with its endpoints free to move is subject to Neumann boundary conditions in which

Page 14



case momentum is conserved at the endpoints. A string having its endpoints fixed is subject to
Dirichlet boundary conditions where momentum transfer takes place at the string endpoints.
Objects on which open strings can end are known as D-branes and play an important role in
string theory.

A D-brane is defined as a hypersurface onto which strings can end with Dirichlet boundary
conditions. A D-brane is often written as a Dp-brane where p is an integer and denotes the
number of spatial dimensions of the hypersurface. The integer p can take any value from 0 to
d—1. A D(d — 1)-brane is known as a space filling brane and since superstring theories live
naturally in ten dimensions, a D9-brane is a space filling brane in a superstring theory. In the
case of a space filling brane, the string endpoints are fixed on a hypersurface which fills the
entire space. This corresponds therefore to a free open string subject to Neumann boundary
conditions. For a general Dp-brane in d dimensions, open strings are subject to boundary
conditions according to

p+1 directions with Neumann boundary conditions (1.2.16)
d— (p+1) directions with Dirichlet boundary conditions . (1.2.17)

It follows that an open string which ends on a D3-brane is subject to Neumann boundary
conditions in 4 dimensions and Dirichlet boundary conditions in 6 dimensions.

An arrangement of several closely spaced D-branes enforces some constraints on which
string states can be found in a system. For two D-branes close to each other, strings can
stretch with an endpoint on each brane. A string stretching between the two branes has a
certain minimum length which equals the brane separation. When a string is pulled, energy is
added to the string since work is done on the string as it is pulled against its tension. Adding
energy to the string is equivalent to adding mass. The separation of the D-branes thus controls
the minimum mass of the resonance modes of open strings. In this sense the arrangement of
D-branes controls which particles are present in the string theory.

The simplest case occurs when a string has both endpoints attached to the same D-brane.
This is shown in figure 1.5. One can analyze this situation by quantizing the relevant string
action and find that the photon is among the particles of the spectrum where it is recognized
as the lowest oscillation mode. In this sense an electromagnetic field is living on the D-brane.
It is found in general that a Dp-brane has an electromagnetic field obeying a p-dimensional
generalization of Maxwell’s equation living on it. From (1.2.16) and (1.2.17) it is apparent that
the study of strings with both endpoints on a single D3-brane neglecting all string oscillation
modes except for the lowest, leads to electromagnetic interactions in 3 + 1 = 4 dimensions.
Likewise, the study of open strings with both endpoints on a D5-brane leads to a generalization
of electromagnetism in six dimensions.

The situation can be studied in the more general case with N closely spaced D-branes
and open strings with endpoints on the branes. It can be shown that in the limit where all
branes are put on top of each other, this corresponds exactly to a U(N) gauge theory which
is therefore in general non-Abelian. The discussion above with one single D-brane is hence a
special case with N = 1 which therefore corresponds to a generalization of electromagnetism
with gauge group U(1).

The effective action describing electromagnetism on the worldvolume of a single Dp-brane
is

Spp :/dpﬂx (LoBr+---) , (1.2.18)
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to leading order where Lppy is the Dirac-Born-Infeld Lagrangian. Only the contributions from
the DBI-action will be studied.

Figure 1.5: The simple case where both ends of an
open string are subject to Neumann boundary condi-
tions on one single D-brane. The lowest oscillation mode
of the string corresponds to a massless gauge field and
the D-brane has therefore an electromagnetic field living
on its worldvolume. For a Dp-brane the electromagnetic
field lives in p + 1 dimensions.

At

Ao\

1.3 String theory and experiment

The link between theory an physical observations in nature goes through experiments and
measurements. In order to be able to test a theoretical model it has to contain parameters
whose numerical values can be measured from an experiment. A good theory is even able to
give a sharp prediction which can be tested. In turn, the interesting quantities to calculate
are those that can actually be experimentally determined or at least be connected somehow
to experiment. The following is a quick comparison of relevant energy scales.

1.3.1 Energy scales

In order to study phenomena at the Planck scale, at least naively, energies comparable with
the Planck energy (1.1.8) are necessary. The string scale is of the order of the Planck scale and
it can therefore in principle be studied directly by using energies comparable to the Planck
energy. At the Large Hadron Collider (LHC) at CERN, proton beams will be collided with
a maximal energy of Epeam ~ 7 Tev so that the total maximal energy is Fpax ~ 14 Tev. A
comparison yields

Emnax
Ep

~14x1071 (1.3.1)

so the maximal energy at the LHC is roughly 15 orders of magnitude too small for the purpose
of string theory experiments. This is naturally a very rough estimate which however gives
a good indication of how far the string scale is from the available energies in the present
generation of particle generators. An interesting estimate can be made for the size of the
accelerator ring at the LHC. The radius of the ring is r;gc ~ 27 km and the maximal possible
energy is Fpax ~ 14 Tev. By assuming that the maximal energy scales linearly with the radius
of the ring, it can be estimated that an accelerator with a maximal energy FEn.x = Fp equal
to the Planck energy would require a ring with radius r ~ 10% parsec which is approximately
thirty times smaller than the diameter of the Milky Way.

In principle, there could be very large unknown factors which have to be accounted for in
an estimate like (1.3.1). This is considered in section 4.5 where an estimate for a cross section
will be given.
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1.3.2 Interaction cross sections

In the discussion of experiments and string theory it is natural to address the cross-section.
Basically it is a measure of the likelihood of an interaction of particles which is independent
of beam characteristics. More specifically, the cross section is defined by considering two
cylindrical colliding beams of certain particles. These beams are referred to respectively as a
and b and have the respective particle number densities p, and p;. For each beam, only a slice
of length [ is considered such that two bunches of particles with respective lengths [, and I,
are collided. If A denotes the area where the two beams collide, the cross section is defined
as the total number of scattering events N divided by the beam quantities

N

oc=———,
Apalapblb

(1.3.2)

where the studied scattering events can be of whatever type desired. From (1.3.2) the cross
section has dimension

([area] [volume] 2 [length]Q) o [area] . (1.3.3)

It is interpreted as the effective area of the target particle as seen from the incoming particle
with the assumption that the particles will scatter with 100 % certainty if this area is hit.
The definition (1.3.2) is symmetric in a and b as it should be since the scattering process is
not affected by choice of reference frame.

In order to probe the behavior of elementary particles, beams with well-defined particle
momenta are collided and the final-state particles and their momenta are detected. When
doing so, the cross section becomes infinitesimal

do

m , (1.3.4)
and dependent on the momentum of the outgoing particles. An integration over any small
momentum d>?p; determines the cross section for scattering into that particular final-state
momentum. The situation simplifies for the scattering of four particles due to four-momentum
conservation and the two particles in the final state are constrained in such a way that only
two components of the final-state momenta are independent. These two components can be
specified with two spherical angles and the differential cross section is therefore expressed
using the solid angle d€2. For four identical particles with identical masses the differential
cross section is

do |A?
—_— = 1.3.5
dQ  64m2EZ, ( )

and is determined by the center of mass energy in the collision and the square of the ampli-
tude for the particular scattering process. This is essentially the reason why calculations of
scattering amplitudes are so interesting since it is apparent from (1.3.5) how the scattering
amplitude is the direct connection between theory and experiment. It is also apparent that
the cross section is independent of beam characteristics as it should be.
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1.4 Born-Infeld theory

The Dirac-Born-Infeld action was discussed briefly in a string theory context in section 1.2.5
as the effective action describing a gauge field living on the worldvolume of a D-brane. In
this thesis the DBl-action is used as an effective action from which scattering amplitudes are
calculated. However, this is far from the original purpose for the action which was founded by
Max Born in 1933 [6] and developed further in 1934 in collaboration with Leopold Infeld [7]
many years before string theory. The Born-Infeld theory was formulated for the purpose of
solving the problem in ordinary Maxwell theory that a charged point particle has an infinite
self energy at the origin. In 1960 Dirac elaborated [8] on the original work by Born and Infeld
and this is where the name Dirac-Born-Infeld (DBI) comes about.

1.4.1 Historical motivation

At the time of the paper [7] by Born and Infeld the relations between matter and electromag-
netic fields were interpreted from two opposite viewpoints; the unitarian viewpoint versus the
dualistic one. In the unitarian viewpoint, the electromagnetic fields are assumed to be the
only physical entities and thus particles are considered as singularities of the fields. According
to this viewpoint, the mass of a particle is a derived notion which is expressed in terms of the
energy of the electromagnetic field. The dualistic viewpoint operates with particles and fields
as two distinct entities where particles are the sources of the fields. The particles are as well
acted upon by the fields. The dualistic viewpoint was widely accepted when the Born-Infeld
theory was formulated. In particular it was supported by the theory of general relativity as
well as quantum mechanics which is essentially based on a dualistic point of view. In ordinary
Maxwell theory the dualistic viewpoint suffices as long as the wavelengths of the fields are
large compared to the electron radius. On smaller length scales the theory breaks down and
leads to an infinite electric field at the origin and thereby an infinite self energy of a charged
point particle. The motivation for the formulation of the modified theory was to avoid these
infinities which have later been removed with the principle of renormalization. Born and Infeld
used the principle of finiteness according to which a satisfactory physical theory should not
allow any physical quantity to become infinite. The infinite self energy for a charged point
particle is discussed below.

1.4.2 Self energy for a charged point particle in Maxwell theory

The discussion begins with the operation of dualization which can be defined in four dimensions
as

Fu = %EWPUFPU . (1.4.1)

With the metric (2.4.1) and the convention that

go123 = +1, (1.4.2)
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the electromagnetic field strength tensor and its dual are given explicitly for ¢ = 1 in matrix
form as

0O -k, —-E, —-LE. 0

E, 0 —-B, B, P B, 0 —-E. E,

E, B, 0 —-B; |’ w1 By, E, 0 —-E; |’
E, -B, B, 0 B, -E, L, 0

-B, —B, —B.
FH = (1.4.3)

in terms of the spatial field components for the magnetic and electric fields. By use of the
usual three-vector notation

E=(E,E,E.) , E?=E-E, E-B=E,B,+ E,B,+ E.B, , (1.4.4)
the objects C7 and Cy can be constructed from F),,, and Fuv as
1 1 1 -
C = -1 F,, F" = 3 (E*—B?) , Cy= -1 F"E, =—E-B, (1.4.5)

such that both objects are fully contracted and hence Lorentz invariant. The field strength
tensor is by itself gauge invariant and both C and C are therefore gauge invariant. It can
be shown that C; and C5 are the only independent naturally invariant objects that can be
constructed from Fj,,, without using its derivatives. This is discussed in A.1 with use of the
spinor-helicity formalism from section 2.1.7. The ordinary Maxwell Lagrangian is

1
['Maxwell - _Z F;WFMV = Cl ; (146)
and in vacuum where D = E, the energy density is given by
1
Hataswell = B - D = Lytawell = 5 (E*+B%) , (1.4.7)

with D denoting the electric displacement field. In the electrostatic case B = 0, the energy
density is H ~ E? and the self energy of a charged point particle is calculated by integrating
the energy density. In a spherically symmetric field from a charged point particle, the electric
field can only have radial components

E=Fr, (1.4.8)
so that Maxwell’s equation yields
10 ,
whereby it follows that
1
El~ = 1.4.10
B~ (14.10)

for the field magnitude as function of the distance r from the origin. The self energy is given
by

1
£ = /d%HMaxweu = 5/d?’a;EQ , (1.4.11)
and with the volume element d® z = r2sin 6 dr df d¢ the integrand becomes
1 1
d3zE% ~ dr 7‘2—4 =dr— . (1.4.12)
T T

This result diverges for small r and it is apparent how the self energy for a charged point
particle in ordinary Maxwell theory becomes infinite.
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1.4.3 Modification of ordinary Maxwell theory

The modification of Maxwell theory according to Born and Infeld is formulated by replacing
the ordinary Lagrangian (1.4.6) by a new non-linear Lagrangian. This can be done by incorpo-
rating a maximal value for the electric field and is another example of an effective theory. The
theory of special relativity has an incorporated maximal value since nothing can move with a
velocity greater than c. This property is reflected in the Lagrangian describing a relativistic
point particle which is given in (1.2.11). Using (1.2.8) and restoring factors of ¢ yields the
relativistic point particle Lagrangian

Lio = —mc\ |1 — — | (1.4.13)

where the maximal possible velocity is vmax = ¢ since the argument of the square root is
required positive. This property of maximal velocity in the theory of special relativity was used
by Born and Infeld as an inspiration. The maximal value for the electric field is incorporated
in the theory by writing the Lagrangian

201 B2

LMaxwell = L£=-b\/1- ? v = 1-— (1414)
which was originally proposed by Born [6] in 1934. For B = 0 it follows that
E[<b, (1.4.15)

to ensure a positive argument under the square root. For a small electric field C; < b2,
equation (1.4.14) is expanded as

C
_ 12 1 2 2\ _ 2
= _p (1—b—2>+b + 0 (CP) =C1+0(CF) , (1.4.16)
and the Born-Infeld theory resembles the ordinary Maxwell theory in the limit of small fields,
/
L Cl<<b2N £Maxwell . (1.4.17)

As was proposed by Born and Infeld |7] later in 1934, (1.4.14) can be modified further by the
inclusion of one additional term under the square root

2 E?—B? (E-B)’
Lppr = —b*\/1 - ;1+%+b2 b2\/1— = ! b4)+b2. (1.4.18)

This is the Lagrangian known as the Dirac-Born-Infeld Lagrangian which is both Lorentz
and gauge invariant since it is constructed from C7 and Cy. For small fields 'y and Cs are
comparable and hence

Lppr ~ C1 , (1.4.19)

holds in the weak field limit just as (1.4.16). The modification from (1.4.14) to (1.4.18) is
preferred because the latter expression can be generalized. The generalization reads
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which can be checked explicitly in Mathematica by writing the metric and the field strength
tensor explicitly as matrices. This particular computation can be found in detail in section
A.1. From (1.4.20) it follows that

1
Lppr = —52\/— det (mw + 3 Fuv) + 0%, (1.4.21)

which allows for a generalization to any number of dimensions. It follows straightforwardly
from a Lorentz transformation

M — M = AMAT | (1.4.22)
with
ANT =1, (1.4.23)

for the transformation matrix A that the determinant (1.4.21) is Lorentz invariant and hence
also the DBI Lagrangian.

The classical Maxwell equations incorporate the electric displacement vector field D and
the auxiliary magnetic field H in order to describe electromagnetism in materials. In a nonlin-
ear theory, the vacuum itself behaves as some kind of material. Born-Infeld theory describes
electromagnetism in vacuum and since it is a nonlinear theory there is a nontrivial relationship
between E and D. From computations along the lines of section 1.4.2 for the displacement
field D it can be shown [9] that the DBI Lagrangian leads to a finite self energy for a charged
point particle as was the original purpose for the modification of the Lagrangian.
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Chapter 2

Field theory background

The low-energy limit of string theory can be viewed effectively as a quantum field theory. On
a low-energy scale, the smallest structure of string theory cannot be resolved and string theory
appears therefore effectively as a quantum field theory. Consequently, scattering amplitudes
in the next chapters will be calculated by use of perturbative methods from field theory.

This chapter contains a discussion of the relevant field theory methods used in amplitude
calculations. It is discussed how correlation functions are computed by use of Wick contrac-
tions and the formalism of functional integrals are introduced. Furthermore, spinors and in
particular the spinor-helicity formalism is discussed in detail. The spinor-helicity formalism
is a method to express tensors in terms of spinors and it will be useful in explicit calculations
of Wick contractions in connection with scattering amplitudes in the next chapters.

2.1 Spinor-helicity formalism in four dimensions

This section is based on references |10, 11, 12, 13, 14] and it deals with the so-called spinor-
helicity formalism, a formalism that enables a translation between tensors and products of spin
vectors. A modern review on the spinor helicity formalism can be found in [15]. It turns out
that this correspondence between tensors and spinors is very useful especially in connection
with the study of scattering amplitudes in four dimensions where the calculations simplify
when tensors are expressed as spinors. The correspondence is introduced in the following
sections and it is natural to begin with a discussion of the helicity quantum number.

2.1.1 Particle spin and the helicity quantum number

The spin of a massive particle is found by studying the transformation properties under ro-
tations in the rest frame. The angular momentum operator, or the spin operator, in the rest
frame is denoted by J and it does not have simple transformation properties under Lorentz
transformations. It is therefore not the best operator to use in the description of particle
states. A natural object to use is the polarization operator

1
WH = 3 e’ P, Y s (2.1.1)
with

(Zpa)w, = i(npunau - 770,u77pu) s (2.1.2)
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denoting the generators of Lorentz transformations i.e. boosts and rotations in the vector
representation of the Poincaré algebra. The polarization operator is known as the Pauli-
Lubanski vector and it transforms as a pseudo vector under Lorentz transformations. It
commutes with the momentum operator

[WH PY] =0, (2.1.3)
and it is related to the spin operator by
Wo=0, Wt=mJ,, W?=mldy, W3=mJs, (2.1.4)

where m is the particle mass. The relations (2.1.4) can be obtained explicitly in the rest frame.
In a specific representation the eigenvalues of the square of the Pauli Lubanski vector are

W WH =-m?j(j+1) , (2.1.5)

in terms of the mass and the particle spin j. It can be shown explicitly that the operator
(2.1.5) commutes with all of the generators of the Lorentz algebra

[WAW’\,PH] - [WAWA,ZW] —0, (2.1.6)

which means that it is a Casimir operator. The other Casimir operator is the invariant mass
operator,

PPt =m?, (2.1.7)

so that the eigenvalues of (2.1.5) and (2.1.7) can be used to characterize an arbitrary physical
spin system of elementary particles. The helicity quantum number can be used instead of
the spin in the description of elementary particles. This is particularly useful for a massless
particle where the polarization operator,

WHEW, cm?® =0, (2.1.8)

does not provide useful information. The helicity operator is defined as the projection of the
spin on the direction of the momentum

H=J-p, (2.1.9)

with the unit vector

p="L (2.1.10)

Ip|

pointing in the propagating direction of the momentum. An observer of a massive particle will
always be able to perform a boost into a frame in which the particle momentum is reversed.
It follows that the helicity quantum number for a massive particle is not Lorentz invariant but
only invariant under spatial rotations. The situation is different for a massless particle since it
has no rest frame. An observer cannot boost to reverse the direction of the particle momentum
and a massless particle will therefore always appear to spin in the same direction along its
direction of momentum. It follows that the helicity for a massless particle is independent of
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frame, meaning that it is a Lorentz invariant. A massless particle can be boosted to a frame
in which its momentum vector has the form

" =(p,0,0,p) . (2.1.11)

This vector is invariant under spatial rotations in the (1,2) plane and it follows that the little
group is SO(2) which is generated by the angular momentum operator in the 3-direction. The
angular momentum operator has eigenvalues given by the helicity A and a massless particle
state can therefore be characterized with the quantum state

. A) (2.1.12)

where ) is the eigenvalue of the helicity operator and p is the eigenvalue of the momentum
operator.

2.1.2 Spatial rotations

In order to express tensors in terms of spinors it is natural to consider representations. A
Lorentz transformation on an arbitrary four-vector will mix all vector components meaning
that the vector representation of the Lorentz group is irreducible. A tensor with arbitrarily
many indices transforms as

i ’ ’ ’ ’
Ttz — Tt = AT A, o AV TR (2.1.13)

which is a tensor product of transformations on each index. From (2.1.13) it is apparent that
the tensor representation of the Lorentz group is just a tensor product of vector representa-
tions. Consequently the vector representation is said to be the fundamental representation
of SO(3,1). The group of spatial rotations SO(3) is a subgroup of the group of Lorentz
transformations. Under spatial rotations governed by SO(3), a tensor representation will be
labeled by its angular momentum j and contain a total number of 2j + 1 states. For SO(3)
the angular momentum will be a non-negative integer. A spatial rotation of the four-vector
vt = (vo, v) does not mix the spatial components with the time component which means that
the time component of the vector is invariant under spatial rotations and hence has angu-
lar momentum j = 0. From the point of view of SO(3) rotations, the four-vector is then a
reducible representation since it can be decomposed into

eoal, (2.1.14)

which is a direct sum of a scalar representation with angular momentum j = 0 and a vector
representation with angular momentum j = 1.

From non-relativistic quantum mechanics it is known that the tensor representation is
not the only representation of spatial rotations. In particular the spinorial representation is
of physical interest since fermionic particles are described by spinors which are the elements
of a spinor representation. The spinor representations are as well labeled by the angular
momentum j which in this case take non-zero half-integer values. The group for the spinor
representation is SU(2). Both SU(2) and SO(3) have the angular momentum algebra as Lie
algebra but the groups are only locally isomorphic since a rotation of 27 in SU(2) is minus the
identity. In SO(3) a rotation of 27 is identical to the identity. Physical systems with integer
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or half-integer spin can be constructed as composite systems of spin j = 1/2 particles and in
particular the composite system
1 1

=041 2.1.15
5©5 @1, ( )

is a direct sum of a scalar representation and a vector representation. The right hand side
of (2.1.15) is equal to that of (2.1.14) and it is apparent how the vector representation is
equivalent to the product of two spin representations. This equivalence is the starting point
to establish the spinor helicity formalism as the correspondence between tensors and spinors.

2.1.3 Vector representation and spinor representation

The equivalence discussed above between the vector representation and the product of two
spin representations is related to the group isomorphism

SO(4) ~ SU(2) x SU(2) . (2.1.16)

To make this explicit, a Lorentz index p in four dimensions can just as well be written as
the composite index av where each index can take two values. This equivalence between two
ways of writing indices can be discussed by considering an arbitrarily chosen four-vector K*
which is written as

KH = (2.1.17)

in a particular reference frame. The four-vector is fully determined by its four components.
A hermitian 2 X 2 matrix

o
M=M= [ﬁ* g} : (2.1.18)
with a = o, 0 = §* is also fully determined by four independent components and it is therefore
suggested that a one-one correspondence between real world vectors and 2 x 2 hermitian
matrices can be established. This is then the correspondence p < ad discussed above. The
correspondence is written as

Koo = Kuoh, (2.1.19)
where O'Zd are the Clebsch-Gordan coefficients for the transition between the vector represen-

tation and the spin representation. The Clebsch-Gordan coefficients are given by the Pauli

matrices
10 0 -1 0 —i -1 0
0 _ 1 _ 2 _ 3 _
(U)aa_[o J’ (U)aa_[_l 0]’ (U)ad_|:2' 0}’ (O-)Oldf_|:0 1]‘
(2.1.20)
This can be seen by considering the Lorentz transformation
u, = A u, (2.1.21)
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expressed in spinor indices

Upg = Uy, Ohg, = N u, ol (2.1.22)

ad [ oo
Since the spinor representation is equivalent to the tensor representation, there exist transfor-
mation spinors denoted as Caﬂ so that

e = G ¢ gy = (PG T - (2.1.23)
It follows from a comparison of (2.1.22) and (2.1.23) that
Aoy =Ll (2.1.24)

which relates the transformation matrix in tensor indices to the transformation matrices in
spinor indices. The generalization of (2.1.19) for a tensor with arbitrarily many Lorentz indices
18

H1 Hno . .
Doy opin Oy " ey, = Lorda - andon s (2.1.25)

where Ty, 61 -ana, 18 an outer product of n (2 x 2) matrices. Equation (2.1.19) has the explicit
matrix form

K4+ K3 Kl'4iK?

Koo = Kl K2 KO_ K3 |° (2126)
so that the determinant of the hermitian matrix
det Kog = (K°) — (K)? = (K?)" = (K?)® = K, K", (2.1.27)

is the invariant length of the four-vector K#. As in (2.1.11), for K* massless, one can boost
to a frame in which the vector has components

K' = (K,0,0,K) , (2.1.28)
and it is apparent from (2.1.26) that

Kad:|:2([)( 8]=<\/§_K>(\/ﬁ, 0), (2.1.29)

holds when K* is massless. It follows that a massless vector can always be written as the
outer product

Koo = Mg - (2.1.30)

Ko = (g) , (2.1.31)

the matrix @ can be constructed as the outer product

Writing the general spin vector

(¢ ey | CCT CET | _
such that
det Q = (C* € — £C* ¢ =0. (2.1.33)
This is equivalent to
det Koo =0, (2.1.34)

for K* massless.
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2.1.4 Covariant and contravariant spinor indices

Equation (2.1.19) has the inversion
Ko 0'0Y = k K = K, 0%, o | (2.1.35)
such that
ol oY = g (2.1.36)

This involves both covariant and contravariant spinor indices and it is therefore natural to
discuss how spinor indices are raised and lowered. The vertical position of an index is changed
by the metric spinor which is the spin space analogue of the metric tensor in spacetime. The
metric tensor 7, is invariant under Lorentz transformations and it defines the invariant inner
product

a#bu — a#b'/mw — alublumw — alﬂbil , (2_1_37)

between tensors. Furthermore, 7, acts as the link between covariant and contravariant tensors
by raising and lowering Lorentz indices. The element in spin space which raises and lowers
indices is the metric spinor denoted e,4. It defines the bilinear form

Aok = )\a/ﬁﬁeag = M = N%Pep (2.1.38)

for the spinors A and k. Spinor products like (2.1.38) are invariant under SU(2). In tensor
language, if t¥, denotes the transformation matrix for some coordinate transformation, K*
transforms as

K" =" KV (2.1.39)

with an identical transformation in case of the covariant tensor K,. For tensors of more
indices the transformation is just a tensor product of transformations (2.1.39) for each index.
Similarly the transformation of an arbitrary spinor reads

¢ =A%, (2.1.40)
and the metric spinor transforms according to
ehg = ANJAeqs - (2.1.41)
The metric spinor is required to be invariant under spin transformations

€aB = Enp
=AAS AMAD 2.1.42
=Ny Ageor + Ay Agero (2.1.42)

where the transformation matrix is unimodular.
If the metric spinor is antisymmetric

o0 = €11 = 0 y €01 =— —€10 » (2.1.44)
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it follows from (2.1.42) that
g =co1 (AJAG —AJAS) (2.1.45)
so that an antisymmetric metric spinor is invariant under unimodular spin transformations
€aff = Eqp - (2.1.46)

The metric spinor can be written explicitly as

0 -1
Eaf = |:+1 0 :| , (2.1.47)

in matrix form where a choice of “1” as the entries has been made. Since €,43 is antisymmetric,
the bilinear form (2.1.38) is as well antisymmetric

Aok = —A%q (2.1.48)
and it follows that the contraction of a spin vector with itself necessarily vanishes
AaX® = MNe 5 = —A"Nep, = AN, = 0. (2.1.49)

As a consequence of the antisymmetry it is necessary to adopt a sign convention for the
procedure of raising and lowering spinor indices. As indicated in (2.1.38) and (2.1.49) the
convention is that spinor indices descent from left to right such that

Ca=CPepa, (*=e"(s. (2.1.50)

For the purpose of determining the explicit matrix expression of the metric spinor with upper
indices €7 it follows from (2.1.50) that

€aB = gl Eva €53
=gy, €13 +ef%%q, €08 » (2.1.51)
and thereby

g0 = % = 10, (2.1.52)

In terms of matrices, e,4 is thereby identical to €% Equivalent relations and matrix expres-

sions are found for the spinors €4 and, 8 in the conjugate space. A useful result is
Eap e =gp1 e 100 =2. (2.1.53)

2.1.5 Relating the metric tensor to the metric spinor

Individual spinor indices are raised and lowered with the metric spinor just as individual
Lorentz indices are raised and lowered with the metric tensor. A single Lorentz index p
corresponds to a pair of spinor indices acv and a change in the vertical position of an index p
corresponds therefore to a change in the vertical position of the index pair ad. The object in
spin space which raises or lowers a pair of indices must therefore be equivalent to the metric
tensor in spacetime. The purpose of this section is to determine the relation between this
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particular object in spin space and the metric tensor in spacetime. The object g3 €4 is

symmetric under (ad) < (ﬁﬁ) and from
ac __ _af d,@ .
K% =eg%"¢ Kﬂﬁ ,
it is apparent that
M e b Edﬂ ]
For some constant C' it holds that
,uu — Olﬁ 5
K,K,=Ce KooK gy
since both sides are invariants. The choice C' = 1/2 yields
WKLK, = 5 (260 MK K+ 260 VK g
= (K°)" = (5)" = (K%)= (K%)°
by use of (2.1.26). Equation (2.1.56) then becomes
1 1 ;
WK, = 5 Y Koo K gy = 5 Kuly ol 0

using (2.1.19) and it is subsequently found that

1

wo_
n =5%40

From the definition it holds that
Napas = M Th Ugg = éEaﬂ €af
and contracting both sides with 2 & yields
4C = Nuw Thg, oot = §

using (2.1.59). The constant is therefore C' = 1/2 and it follows that

1
€afsp = 577“” 05@ agﬂ» .

By considering

- 2 U\ -
R /JI/TD\H2 K 77VH:2’<57

]. - Aad 3
€ap Eo'zﬂ (5 aa ,@ﬁ) <’€77>\n o UHﬂﬁ)
1
2

it is apparent that £ = 2 and hence

Eaﬁ Ealg — 2 77IJ,I/ O—N’7aa O-VNBB i

When Lorentz indices are expressed as spinor indices the correspondence is therefore

1 .
Nuw < 2500@5025 . e §€aﬁ€aﬂ ,

(2.1.54)

(2.1.55)

(2.1.56)

(2.1.57)

(2.1.58)

(2.1.59)

(2.1.60)

(2.1.61)

(2.1.62)

(2.1.63)

(2.1.64)

(2.1.65)

which will become important in order to obtain the right constant factors in calculations when

Lorentz tensors are translated into spinors.
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Momentum bilinears

For arbitrary spinors ¢ and ¢, the momentum bilinears

($U) = s = 6905, (0] = Gath® = 6% eug (2.1.66)

defines respectively the holomorphic spinor product and the anti-holomorphic spinor product.
If p* and k# are both massless p,p" = k,k* = 0, it follows that

1 y
(P + k)% = 2pukun®™ = 2 kakadaAg 3 g¥Pedh (2.1.67)

The dot product of two massless four-vectors can thereby be expressed in terms of spinor
bilinears as

2p- k= (\k) [KA] , (2.1.68)
with
kag = Aaréa s,  Paa = Faka - (2.1.69)
Dot products of massless momenta as (2.1.68) will be written with the notation

2pi - pj = {id) 7] - (2.1.70)

2.1.6 Symmetry properties of spinors

This section contains a discussion of spinors with certain symmetric properties. In particular
spinors which are antisymmetric in some indices are considered and it is found that these
spinors can be expressed in a simpler form. This is useful in order to express the electromag-
netic field strength tensor in spinor indices.

If M is an arbitrary antisymmetric 2 x 2 matrix it is of the form

Mz[_oa g]za[_ol é] (2.1.71)

and it is proportional to the matrix form (2.1.47) of 43. It is apparent from (2.1.71) that
the matrix on the right hand side is necessarily proportional to any antisymmetric 2 x 2
matrix. In the space of 2 X 2 matrices, the matrix on the right hand side is therefore the
only antisymmetric one up to a constant. In terms of indices, this property is manifest such
that any object which is antisymmetric in two indices e.g. (a, ) must be proportional to
the metric spinor £, in the same two indices. For an arbitrary antisymmetric spinor S,z it
follows therefore that

Sap = S[am =KEag » (2.1.72)
where [---] denotes antisymmetrization as in (2.4.5). Contracting with ¢*# determines the
constant

1 «
R=5 5" (2.1.73)
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and S,g can subsequently be written as

Sug = %Eaﬂ S (2.1.74)
The spinor with only two indices is a special case of the general picture. A spinor with
arbitrarily many indices with a certain antisymmetry in two of the indices may be expressed
in a way analogous to (2.1.74). In order to find this expression and as a continuation of the
discussion of antisymmetric spinors, the Schouten identity for products of metric spinors will
now be derived.
Symmetry considerations leads to

EaB Exs — E5BEya = KEaS EBy - (2.1.75)

By construction, the left hand side is antisymmetric under (o < 0) and as well under (8 < 7).
The right hand side has the same antisymmetric properties and (2.1.75) holds for some ap-
propriate numerical constant k. Contracting (2.1.75) with £ 7% yields k = —1 and thereby

Eaf Eyo T Eay €5 T Eas€py =0 . (2.1.76)

This is known as the Schouten identity and can as well be obtained from the antisymmetri-
zation €,(3€,5)- In this case the antisymmetrization is performed over three indices taking
only two values and the result necessarily vanishes. Equation (2.1.76) can be checked directly
by some explicit choice of index values or by a contraction with any of the spinors e, €7,
£ 87 or £#9. Contracting (2.1.76) with upper indices with E¢a Eyg leads to

€ap eV = Eoﬂsg‘s — sa‘ssg“’ ) (2.1.77)

which will be useful in the derivation of an expression similar to (2.1.74) but for spinors with
arbitrarily many indices. The spinor

Syt = Syl s (2.1.78)

is defined with arbitrarily many indices represented by the dots and with the explicit property
that it is antisymmetric in the indices (y,6). A contraction of (2.1.77) with S...s... yields

1
S..af.. = §€ag S...,y’y... , (2.1.79)

which is the generalization of (2.1.74) for more than two indices.
In general, an arbitrary square matrix N can be expanded as a sum of its symmetric and
antisymmetric components as

N =N L N@ (2.1.80)
where the symmetric and antisymmetric components are given respectively
N(S>:%(N+NT) : N(ﬂ):%(J\/—NT) : (2.1.81)
It follows from (2.1.25) that an arbitrary second-rank tensor &, is written as

S < Eaapp (2.1.82)
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in spinor indices as an outer product of two 2 x 2 matrices. For an outer product of two
matrices N7 and N5, an expansion of each of the matrices in symmetric and antisymmetric
components as (2.1.80) leads to

NNz = NN + NN + NN + NG (2.1.83)

with four possibilities for combining the symmetric and antisymmetric components. Viewing
faaﬁ,é as an outer product of two matrices allows an expression of the form (2.1.83) such that
the spinor can be expanded as

Sapas = 5(aﬁ)(aﬁ') T €lag) [ag] T §(ap) [ag] T é[aﬁ](dg) , (2.1.84)

in terms of the four possible ways of combining symmetrization and antisymmetrization over

the indices. The notation (---) denotes symmetrization. Employing (2.1.79) for the antisym-
metric elements in (2.1.84) leads to

1 .1 o1
Sapap = Sap)(a8) T 7508 %ap &y T 3Cap8nr’ T 58086 (ap) - (2.1.85)
If £, is an antisymmetric tensor it holds that

Sapas = ~Cpapa - (2.1.86)

It is apparent from (2.1.85) that each of the first two terms are symmetric under the interchange
(af) < (o’zﬁ) whereas the last two terms considered as one single object are antisymmetric

under this interchange of indices. The first two terms constitute therefore the vanishing
symmetric part of the tensor while the last two terms constitute the antisymmetric part of
gaﬂdﬂ" The tensor £, can hence be written in spinor indices as

1 1
Sapas = 5 apSlanyy’ T 5588 (ap)

= 4 Pap +ap Vig (2.1.87)
with ¢, and ¢aﬁ' symmetric.

2.1.7 Spinor expression for the field strength tensor

The Dirac-Born-Infeld action is build from the electromagnetic field strength tensor and its
dual. It is of interest to study these two objects in spinor indices since calculations of scattering
amplitudes from the Dirac-Born-Infeld action are simplified if the field strengths are expressed
this way. The dual of the electromagnetic field strength tensor is defined in four dimensions
using the totally antisymmetric four-dimensional tensor €,,,,s. In order to express the dual of
the field strength in spinor indices it is therefore natural to study the totally antisymmetric
four-dimensional tensor € 0B in spinor indices. The correspondence is

€aiBiyiss = Envpo g Ol 0y 055 (2.1.88)

but it can be useful to instead consider another approach. Equation (2.1.76) can be used to
check explicitly that

(Ea'y €BS €4 E,W' — Ead EqB Eay EBS) = (Eag €y €46 E%g' —Ead EyBE44 54,5)

= <5av5555a65»y5_50&5755555&7) , (2.1.89)
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holds. The bracket on the left hand side is antisymmetric under the interchange of indices
(at) (ﬁﬁ) as well as under the interchange (v%) < ((55) The upper bracket on the right
hand side is antisymmetric under the interchange of indices (ad) < (7¥) and as well under
(ﬂﬂ) > (55) Finally, the lower bracket on the right hand side is antisymmetric under the

interchange (ad) < (55) and as well under (ﬂﬂ) < (7). It follows that

Euvps — C (Ea,y €86 €46 €53 — Ead ExB Edry EBS) , (2.1.90)

holds because the bracket has the correct antisymmetric properties in all indices. It is observed
that

Euvpo EXkTU 77H)\ 771”i in WUU =-24 s (2.1.91)
with
gz = — P = +1, (2.1.92)

which is used below. Evaluating explicitly the self contraction of the bracket without the
constant C' on the left hand side of (2.1.89) yields

<€a'y €85 €45 €4p — Ead ExB Ea s-:ﬁ(;) o (60‘“’ PO g8 WP _ cod 7B &Y s-:ﬁ‘s)
1 24
=—2x16-2x4)=— 2.1.93

with the factor 1/2% originating from the four metric tensors in (2.1.91). Hence
C?=-16, C=4i, (2.1.94)

where a choice of the positive solution has been made. The expression for €,,,, in spinor
indices is therefore
€acBivios = 49 (60[7 €B6 €46 €43 — €ad Exp Eory 655) , (2.1.95)

which will be used in the discussion of the dual of the electromagnetic field strength in spinor
indices.

The electromagnetic field strength tensor is real and antisymmetric and can be written
on the form (2.1.87). For an antisymmetric rank-two tensor in four dimensions, the dual is
defined in (1.4.1) as the contraction of the tensor with the total antisymmetric symbol. It
follows from (2.1.87) that the dual of F),, is given in spinor indices as

i 1/ 4 g
Flosap = 3 4q <5a.y €85 €45 E4p — Ead ExB Eary 5/@5) 1 (575 70 470 1/1“’5)
=€aBVsps ~ Eap Pas - (2.1.96)

The field strength itself is given as

Fopap = CapVup T €4p Pas - (2.1.97)
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and in terms of

wd,g' = +Fo'[,g' s (baﬂ =" af (2-1-98)

the field strength and its dual can be rewritten as

Fopap = €ap Faptess Fap (2.1.99)
Fopap =€ap Fap—€ap Fag (2.1.100)

which is nothing but a rescaling corresponding to the normalization
TP o V2eaptFyy . (2.1.101)

Since TF,3 and “F, 5 are symmetric, the right hand sides of (2.1.99) and (2.1.100) are clearly

antisymmetric under the interchange (ad > ﬂﬂ) as they should be. This particular antisym-

metric form could have been guessed based on pure antisymmetry considerations. It follows
from (2.1.99) for the selfdual and anti-selfdual that

1 1 a5

1 i 1
+ — — - — —
Fup =5 Faw 006 05 e = 5 Fagas e TFs= 5 Fav 066 755 e = 5 Fapas

(2.1.102)

which will be used later in manipulations of the Dirac-Born-Infeld action and in specific
calculations of scattering amplitudes.

2.1.8 Massive vectors

Equation (2.1.30) was obtained for a massless vector K4 and it is natural also to consider
the general case where K4 is massive. The result will be used later in chapter 4. For any
massive vector p#, one can construct the vector

p
bt = ph — ", 2.1.103
5p 4 ( )
in terms of the massless vector g# and with
p-q#0. (2.1.104)
It follows from
P2
b =p" 25— q"pu=0, (2.1.105)
p-q

that b is massless and hence it can be considered as the massless part of p
b, — pz ] (2.1.106)

Rearranging (2.1.103) yields in spinor indices

p2
Pac = Aara — 35— Cala » (2.1.107)
2p-q
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where

Xada = Pha < Dy Cals = dac < Gy (2.1.108)

are massless spinors. It should be noted that in the case where p,, is massless, (2.1.107) reduces
properly

Pag = Aol , (2.1.109)
in agreement with (2.1.30). Tt is observed that
1 | )
P 0= 5 PoaC (T = S AT =1, (2.1.110)

which can be substituted in the denominator in (2.1.107).

2.1.9 Polarization vectors

From (2.2.63) the polarization vector enters the amplitude calculations as

A= Lot pos (2.1.111)

2aa

For on-shell photon fields in four dimensions the corresponding polarization vectors are

el =V2 C[Zi? , ey = \/5% : (2.1.112)
where the spinor A is the corresponding photon momentum as in (2.1.109) and ¢ is a massless
spinor which can be chosen freely due to the freedom of on-shell gauge transformations [15].
The spinor expression for the polarization vectors can be found explicitly as in [16] however
here it will only be checked that (2.1.112) are both transverse to the momentum and that
a contraction of two polarization vectors of the same kind vanishes. The transversality is
apparent from

por (A8 o (458) 0. v

while

+ +aa _ Caia COO\? — 15.‘ e — CaAia CQ}‘? =0
v [CA] [CA] 2 he (i) (CAz) ’
shows how the contraction of two polarization vectors of the same polarization state van-

ishes. This is the case even for different particles. The square root in (2.1.112) ensures the
normalization

1
5 Eiad (2.1.114)

1+ —aa _ Cata (A

—€ (2.1.115)
2 "od [
In Lorentz indices the polarization vectors can be written in the light cone frame as
0 0
1 1 1 1
+,,l/4 —_ THH
et = — |, et = — A 2.1.116
V2 | —t V2 | +i ( )
0 0
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which becomes

e;d:x/i[o 1}, s;d:x/i[g 8}, (2.1.117)

in spinor notation.

2.2 Field theoretical methods

The fundamental objects, i.e. the strings in a string theory have finite size of the order of the
Planck length £p ~ 10733 cm. This is a crucial difference between string theory and quantum
field theory where particles are point like. Small distances correspond to high energies and if
a string theory is studied in the low energy limit, the finite extension of the strings is invisible
such that the string theory therefore appears to be equivalent to a quantum field theory. In this
case, the string theory can be studied by using quantum field theory as an effective theory in
the low-energy limit so that computations are performed with quantum field theory methods.
This section presents the important concepts which will be used in computations in chapters
3 and 4. The discussion in the subsequent sections 2.2.1 - 2.2.6 are based on [17, 18, 19, 20].

2.2.1 Propagators and integration contours

The propagator is a central object in computations in a field theory. The notion of the
propagator will be discussed in this section where the Klein-Gordon field is used as an example.
In particular the Feynman propagator will be discussed since it is useful in perturbative
calculations for interacting fields.

In the Heisenberg picture the Klein Gordon field has the expansion

3
1 A A
o(x) = / dp (ape_”"g” + a;r,eﬂp'g”) , (2.2.1)

(2m)? \/2Ep
f

where ap and ap are the usual time independent ladder operators acting on the quantum
states of the Hilbert space. The vacuum state in this space is denoted by |0) and in the free
Klein-Gordon theory the amplitude for a particle to propagate from the spacetime point y to
the spacetime point x is determined by the vacuum expectation value

D(z —y) = (0] ¢(z) ¢(y) |0) , (2.2.2)

where D(x — y) is referred to as the propagator. The object ¢(x) ¢(y) contains four products
of ladder operators but since it is placed inside two vacuum states the term

(Olapalj0) = (2m)° 6P (p —q) (2.2.3)

is the only one which is nonzero. This normalization and the three-dimensional delta function
yields for the propagator

_ [ 1 ey
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In order to study different propagators it is observed that a four-dimensional momentum
integral can be expressed as

4 ; 3 00 0 .
/ d’p L —ip(e-y) :/ d’p o TP (x—Y) /+ dp ¢ o~ (z°—y°)

(271')4 p* —m? (271')3 —o0 o (P° + Ep) (p¥ — Ep) ’
(2.2.5)
using the relativistic relation
m® = E} — |p|*, (2.2.6)
such that
2
p?—m? = (po) - Eg = (po — Ep) (po + Ep) . (2.2.7)

The pY integral in (2.2.5) has poles at p° = + Ep and it can be evaluated as a contour integral
in the complex plane for some appropriate choice of integration contour. In the specific case
where 20 > ¢° the contour shown in figure 2.1 is used and according to Jordan’s lemma the
convergence of the exponential on the integration contour is ensured by closing it in the lower
half plane. This integration picks up both poles and the integral gives

/+<>o d_po i oin®(a"—4") _ 1 o~ iEp (203" + 1 ot Ep(20—10)
oo 2w (PY + Ep) (p¥ — Ep) 2F, —2FEy
(2.2.8)

A substitution of (2.2.8) into (2.2.5) with a shift p — —p in integration variable for the second
term yields

dp i Bp 17 (o
/Wme p(@—y) :/(%)3E [6 ip(a—y) _ grip(e y)] ’ (2.2.9)

0

since B, = E_p. In the case 2° < yY the integral is zero because the integration contour

— b + By

Figure 2.1: The integration contour for the p®-integration corresponding to the retarded propagator. For
29 > 90 the integration contour can be closed in the lower half plane to pick up both poles. For 20 < 49 the
contour has to be closed in the upper half plane and the integration is zero.

has to be closed in the upper half plane and hence encloses no poles. The right hand side of
(2.2.9) is equal to the vacuum expectation value of the commutator

(Ol o(x), ¢(W)]10) = [¢(2) , (Y] , (2.2.10)
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which is a complex number and can be evaluated from (2.2.1). The normalization (0|0) = 1
has been used. In terms of the Heaviside step function

1, forxz>0
9(93)—{ 0 forz<o, (2.2.11)

the expectation value (2.2.10) defines the retarded propagator as

Dr(z —y) = 0(2° = °) (0 [6() . ()] |0) , (2.2.12)

which is the right hand side of (2.2.9) since the integral is zero for z° < y° as discussed above.
The result of the Klein-Gordon operator acting on (2.2.12) can be obtained as

(0% +m?) Dr(z —y) = — iz —vy) , (2.2.13)

which shows that the retarded propagator is a Green’s function for the Klein-Gordon operator.
If the retarded propagator is Fourier expanded and acted on by the Klein-Gordon operator it
follows that
d*p i ’
Dpg(z — :/—76—”"(*@ , 2.2.14
@0 = [ G (22.14)

with the same prescription for going around the two poles. Other prescriptions for the in-
tegration can be chosen and for the case 2 < y° the contour is closed in the upper half
plane picking up both poles. The propagator associated with this prescription is known as the
advanced propagator.

When interacting fields in perturbation theory will be discussed in section 2.2.2 it turns
out that a more physical prescription for the integration contour is the Feynman prescription
in which the associated propagator is causal. This is not the case for neither the retarded or
the advanced propagator as both have support outside the light cone. As is the case for the
retarded propagator also the advanced propagator and the Feynman propagator are Green’s
functions with different boundary conditions for the Klein-Gordon operator. The Feynman
prescription is written in terms of time ordering which is defined for two fields ¢(z) and ¢(y)
as

¢(z) d(y) , for 2 >y°
T =

{6(z) d(y) } { o(y) d(z) , for 20 < yO
=0(2" —¢°) d(2) p(y) +0(y" — 2°) o(y) d(2) | (2.2.15)
placing the field with the latest time to the left. In (2.2.15) time ordering is written for just
two fields but the operation has a straightforward generalization to an arbitrary number of
fields. The Feynman prescription is associated with the Feynman propagator

dip e~y
(2m)t p? —m?2 +ie

Dr (z — ) = (0] T{6(x) 6(y)} [0) = / (2.2.16)

where the inclusion of the term ¢e with infinitesimal £ is a convenient way to remember
the contour prescription. The integral should be evaluated in the limit € — 0 whereby the
denominator in (2.2.16) becomes

(P° + Ep — i8) (p° — Ep +i€) = (p° + Ep) (p° — Ep) + ic (2.2.17)
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with
e =2E, , (2.2.18)

neglecting second order terms in €. The poles are displaced infinitesimally from the real axis
to positions at p° = + (E — i&) such that the contour of the integration along the real axis
runs below and above the poles respectively. An explicit evaluation of the p° integral in the
Feynman propagator according to the prescription shown on figure 2.2.2 yields

D(x —vy) , forz?>4°

D(y—x) , fora®<y?, (2:2.19)

Dp(z —y) = {

0

by a comparison with (2.2.4). For the integral 20 < 9% the integration variable has to be

shifted p — —p as was the case above.

\__/ + B,

Figure 2.2: The Feynman prescription for the p-integration in the complex plane. The integration contour is
closed in the lower half plane for 0 > 39 whereas the contour is closed in the upper half plane for z0 < 9.

2.2.2 Field interactions

In order to calculate real physical quantities such as cross sections of particle scattering one
needs to compute amplitudes for certain interaction processes. An essential part of an am-
plitude is the correlation function which correlates fields on spacetime and has the physical
interpretation of the amplitude for a particle to propagate between two spacetime points. The
two-point correlation function of the free theory has already been discussed above and is just
the Feynman propagator. In this section the general correlation function, i.e. the time ordered
expectation value of fields between vacuum states of the interacting theory will be expressed
as a time ordered expectation value of interacting fields between vacuum states of the free
theory. Using ¢*-theory as an example, interactions are included in the theory as a correction
to the non-interacting Hamiltonian

H = HO + Hinteraction ) (2220)

with
3 A 4
Hinteraction = d°z E ¢ s (2221)
such that the interaction can be evaluated perturbatively as a power series in A\. The fields
and the states in the free theory can be manipulated straightforwardly whereas the interacting

fields and states are harder to manipulate. The fields and states of the interacting theory are
therefore expressed perturbatively in terms of fields and states of the free theory.
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The interaction Hamiltonian enters the interacting theory in two places namely in the field
operator itself and in the vacuum state |Q2) of the interacting field. The Heisenberg field in
the interacting theory is defined as

o(z) = elp(x) e I (2.2.22)

with the Hamiltonian (2.2.20). What is known as the interacting field is defined subsequently
as

$(2) [rmo = 01(w) = U g(tg,50) ) (2229

which can be constructed explicitly as an expansion using creation and annihilation operators
as in (2.2.1). When XA = 0, H becomes Hy and there is no interaction. But as A is assumed
to be a small parameter, (2.2.23) is still an expression for the important part of the time
dependence of the interacting field. Since Hipteraction 1S taken as a small perturbation it can be
assumed that the vacuum states |2) and |0) have some overlap which is a crucial assumption
in order to relate the vacuum expectation value to the general expectation value. It is found
that

(ofT {Cb[(xl) ¢1(w2) exp [_i f dt Hinteraction] } 0)
<0| T {eXP [_i f dt Hinteraction] } |0> ’

(QT{¢(x1) p(x2)} ) = (2.2.24)

and hence that

(QT{d(w1) - dwn)} Q) — O T{r(x1) -~ dr(wn)} 10) , (2.2.25)

holds. This should be understood in the sense that evaluating a n-point correlation function
of Heisenberg fields in the interacting theory corresponds to evaluating a n-point correlation
function of interacting fields as defined in (2.2.23) in the free theory. That the right hand
side of (2.2.25) is a vacuum expectation value means that the Feynman propagator enters in
computations of such correlation functions. This is an important observation which will be
discussed in the next section.

2.2.3 Wick contractions

Interactions will naturally always involve the interaction field. For notational reasons the
interaction subscript ¢r(x) will be dropped on fields in the following though the fields are
still interacting fields as (2.2.23). When computing correlation functions of interacting fields,
Wick’s theorem is useful since it expresses a given correlation function as products of Feynman
propagators.

In order to establish the relation between correlation functions and the Feynman propa-
gator the operation of normal ordering of operators and the contraction of two fields will be
defined. However the first step is to split up the operator of the interaction field into positive
and negative frequency parts as

$(x) =o' () + ¢ (2) , (2.2.26)

such that.

0=¢"(2)[0) = (0] ¢~ (=) . (2.2.27)
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For 2° > 3° the time ordered product of two fields can be written with a commutator as

T{p(z1) p(x2)} = [¢T (21), ¢ (x2)] + ¢ (x2) o™ (21)
+ ¢t (21) ¢T (22) + ¢~ (1) @7 (w2) + ¢ (21) ¢ (22) (2.2.28)

while the time ordered product for 2 < y" gives the same result but with x and y interchanged
in the commutator. The operation of normal ordering is defined as

: apaTqaLas D= a:;aif(apas , (2.2.29)

where respectively the creation and annihilation operators commute mutually and their order
is therefore irrelevant. An important observation is that the vacuum expectation value of a
collection of normal ordered operators is zero. In (2.2.28) all terms except the commutator
are normal ordered which means that the commutator is the only nonzero contribution of the
vacuum expectation value of the time ordered product of two fields.

The Wick contraction of two fields is defined as

N x), ¢ or z° 0
- (GO0 B2 e

and it is seen that
[—

Dp(x —y) = ¢(z) o(y) - (2.2.31)

From (2.2.28) the relation between time ordering and normal ordering can be written in terms
of a field contraction as
1

T{o(x) p(y)} = : o(x) ¢(y) : + o(z) P(y) , (2.2.32)

which can be generalized to an arbitrary number of fields

T{d(x1) - d(zn)} = d(x1) - P(xy) : + Z (all possible contractions) |, (2.2.33)

where the sum contains a term for each way of contracting the fields. An example with four
fields is convenient in order to show the structure

T{¢a¢b¢c¢d} = ¢a¢b¢c¢d e (Dab : ¢c¢d :) + (Dac : ¢b¢d :) + (Dad : (bb(bc :)
+ (Dpe = Pa®a :) + (Do = ¢adbe :) + (Ded : Gady :)
+ Dy Deg + DoeDyg + DagDye (2.2.34)

which is a useful result. If the vacuum expectation value of (2.2.34) is evaluated, only the three
fully contracted terms in the last line survive. The conclusion is that correlation functions are
computed by evaluating all possible full Wick contractions of the involved fields. The terms
that are not fully contracted simply vanish in the vacuum expectation value.

2.2.4 Path integral formulation

A quantum theory is the result of a quantization of a classical theory according to some quan-
tization procedure. The same theory can be quantized in different ways and one speaks of
different formulations of the same theory. Usually ordinary quantum mechanics is formulated
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using the procedure of canonical quantization where the classical variables such as position
and momentum are promoted to quantum mechanical operators. An alternative formulation
of a quantum theory is the path integral formulation in which a certain classical theory is
quantized using path integrals. The path integral formulation can be used for quantum me-
chanics as well as for quantum field theories and it is due to Richard Feynman based on earlier
work by Paul Dirac. In this formulation the fields in a quantum field theory remain ordinary
functions instead of operators. The creation and annihilation operators in the canonical quan-
tization provide a good understanding of the notion of particles which is not the case for the
path integral. However, the path integral formulation has certain advantages. This comes
about because the canonical quantization uses the Hamiltonian formalism where time has a
special role and Lorentz invariance is therefore broken. In the path integral formulation of a
quantum field theory, the Lagrangian is used instead of the Hamiltonian as the most funda-
mental way of specifying the theory. There is nothing special about time in the Lagrangian
and it has therefore a build in manifest Lorentz invariance. Furthermore, the path integral
method preserves all other symmetries which the Lagrangian may have. With the path in-
tegral method, computations can be done directly from the Lagrangian without invoking the
Hamiltonian. The Hamiltonian dynamics are therefore taken to be defined by the path integral
of the Lagrangian.

A natural way to introduce the path integral is to consider a double slit experiment where
a quantum mechanical particle propagates from a source to a detector. Along the way of
propagation the particle passes a screen with two closely spaced slits in it; a double slit. In a
classical description of the propagation path the particle passes the double slit through either
one or the other of the two slits whereas quantum mechanics has a fundamentally different
interpretation in terms of wave functions. The particle is described by a wave function and
as a wave it propagates through both slits to create an interference pattern with itself on
the detector. This interference pattern is determined by the superposition of the two wave
contributions from the slits. Since in this particular case only two possible propagation paths
exist, only two contributions in the superposition sum are present. In general the number of
possible paths can be infinite in which case the space of paths becomes continuous and the
discrete total sum of superposition contributions becomes an integral over all possible paths.
This integral is exactly the path integral.

The path integral provides the transition amplitude A(z;,z¢;t) for some particle to prop-
agate from a spacetime point x; to the point xy and it is the continuous limit of the sum of
amplitudes for each of all possible paths on which the particle can propagate. The total sum
of amplitudes is basically the sum of different phases for the different paths and hence the
total propagation amplitude is written in terms of the path integral as

Az, zp3t) = Zei‘z’ — /Dx(t) e, (2.2.35)

where the arrow indicates the continuous limit. The integration measure Dx(t) states that
the integration is over the continuous space of all the coordinate functions that connect the
points x; and xy. Each coordinate function is a function of time.

The path integral can be viewed as part of a generalization of calculus from spaces of
numbers to spaces of functions. In this sense, a functional is defined as a function that
maps functions into numbers. The path integral associates a complex number with each
function z(t) and the path integral is therefore a functional. In the classical limit the transition
amplitude should have only one contribution from the path integral namely the classical path.
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Considering the classical limit of (2.2.35) using a physicist hand waving arguments motivates
/ Da(t) e — / Dar(t) eli/MSla)] (2.2.36)

in the sense that the classical limit corresponds formally to
Slz ()] >h, or h—0, (2.2.37)

such that the integrand on the right hand side of (2.2.36) oscillates wildly in the classical limit.
These wild oscillations integrate to zero and hence the classical path can be identified as the
contribution to the transition amplitude with a stationary phase. Mathematically speaking
this argumentation is poor but from a physical point of view it makes sense. According to the
action principle, the classical path is the path for which the action is a stationary minimum and
this is exactly the reason why the phase is identified with the action as in (2.2.36). It can be
checked explicitly that the right hand side of this expression provides the correct interference
pattern for the double slit experiment.

The generalization of the path integral formulation to an infinite number of paths x(t) is
carried out by discretizing the time interval and approximating the path in each time interval
by a straight line. In each time interval an integration over the coordinate is performed and
the general form of the path integral is found as the limit where the number of time steps
becomes infinite and the length of each step approaches zero. This procedure will not be
discussed in further detail here.

When the functional integral formalism is applied to a quantum field theory of real scalar
fields it turns out that correlation functions for the interacting theory can be computed in a
way which has a certain similarity to (2.2.24). The two point correlation function is computed
as the path integral

/ D¢ ¢(x1) ¢(2) exp [2 / dtz E}

/ Dé exp [2 / d*x ,c} ’

and it is noted that the path integral depends on the Lagrangian rather than on the Hamil-
tonian as discussed above. The Wick contraction as discussed in section 2.2.3 is defined in
terms of the path integral

S / Do p(21) P(2) exp [z / d*z Lo}
et = / D¢ exp [z / d*z Lo]

by considering the non-interacting Klein-Gordon field. In fact, different n-point functions for
the free theory can be computed using path integrals with the rules of Gaussian integration
and the result is the same as obtained with Wick’s theorem.

QT {p(x1) p(w2)} ) = (2.2.38)

= Dp(xl - xg) 5 (2239)

2.2.5 Functional methods

Another method to compute correlation functions is the formal one of functional differentiation
of the generating functional. This method is convenient when the non-interacting Lagrangian
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is replaced by an interacting one. The generating functional for a scalar field is defined as

21 = / Dé exp [z / Az £ + J(z) 6(2)] |, (2.2.40)

with the inclusion of the source term J(x) ¢(x) in the exponential. Functional differentiation
can be viewed as a continuous generalization of differentiation of discrete vectors and it is
defined in four dimensions as

57 J(y) =D (x—vy) , (2.2.41)
such that
5 A B
i / Az J(2) 6(z) = 6(y) . (2.2.42)

The two-point correlation function in the free theory is then computed by differentiating the
generating functional with respect to the source as

0T 00 (e} 0) = 5 (=i (<igy=) 211, (2.2.43)

with
Zy=Z[J=0] = /D¢ exp [i/d%c] . (2.2.44)

The source is put J = 0 after the differentiations have been carried out. Equation (2.2.43) is
just a special case of the generalization

QT+ oo} 0 = 7- (=570 ) -+ (“igry ) 211 g
) /D(b¢($1)~--q§($n)exp [i/d% L}

/ D¢ exp [2 / d*z L} 7

which is a basic formula for computations. The fields on the left hand side are operators and
hence this formula connects the operator formalism with the path integral formalism.
For the free Klein Gordon Lagrangian

(2.2.45)

Lo = % .M+ %m2¢2 , (2.2.46)
the integral in the exponent of (2.2.40) can be rewritten by a partial integration as
/d% % (0,0 0 ¢ + m*¢* + Jp| = /d4x% (¢ (—0* +m?) ¢+ Jg] . (2.2.47)
By substituting the shifted field

§() = o) — i / d'y Dp(x — ) J(y) . (2.2.48)
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into (2.2.47), using that the Feynman propagator is a Green’s function of the Klein-Gordon
operator and changing integration variable back to ¢(x) yields for the free field generating
functional

Z[J] = Zyexp [—% /d4a? dy J(x) Dp(z — y) J(y)} . (2.2.49)
It follows that
<_i5JE§x1)> (—iéjfx2)> Z[J] ‘J:OZ Zo Dp(zy — 2) (2.2.50)

and hence

[ Do d(x1) p(x2) exp [z / dtz Lo]
[ Do exp [2 / d*z Lo]

DF(a?l —xg) = (2251)

This is in agreement with (2.2.45).
The interaction part of the theory is introduced as a perturbation to the free theory. One
can consider ¢*-theory as an example in which the interaction comes from the term

V(p) = %¢4 : (2.2.52)

in the Lagrangian where A is a small parameter. That A is small allows for the expansion

exp [z’/d‘lazﬁ} = exp [i/d‘lxﬁo] <1—i/d433% 4) , (2.2.53)

of the exponential which should be performed in both the numerator and denominator in
the four-point equivalent to (2.2.51) in the interacting theory. The expansion (2.2.53) of the
denominator does only contribute with vacuum diagrams which are not relevant when only
tree-level diagrams will be studied.

After the introduction of functional methods, this is the place for a comment in connection
with section 1.1 on effective theories. In this context the path integral is used in the definition
of the effective action. The massive fields which are neglected in the effective theory are said
to be integrated out in the low-energy effective theory. This procedure is outlined in the
following. Symbolically ¢ represents all the fields in a particular theory such that

¢ = {0, dm} (2.2.54)

with ¢g representing a massless field and ¢,, representing all massive fields. The generating
functional Z is used in calculations of expectation values as discussed above and in terms of
the ¢-fields

2= [ 06659 = [ Doy oy 6eS0in (2.2.55)

is a trivial expansion. In the low-energy limit, the interactions of the massive fields are
neglected so that the integration is independent of the massive fields

Z = c/mo B eertlPo] (2.2.56)

Hence the massive fields have been integrated out and the theory is described in the low-energy
limit by the effective action as a function only of the massless field.
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2.2.6 LSZ reduction formalism

In principle, the Lagrangian for some physical theory provides all information on the dynam-
ics of the system. It has been discussed above how the path integral formalism with the
Lagrangian is a neat way of computing relevant physical quantities. However the way from
the Lagrangian of a particular theory to actual predictions of measurable physical quantities is
still not straightforward. The LSZ reduction formalism is a useful step on this way. The name
is due to the three German physicist Harry Lehmann, Kurt Symanzik and Wolfhart Zimmer-
mann and the reduction formula is basically a way of relating the scattering amplitude for
some interaction of particles to the vacuum expectation value of a time ordered product of
fields.
The scattering matrix, or S-matrix, is defined as

S=1+4T, (2.2.57)

and it relates the initial and final states in a particle interaction. It is a unitary matrix that
connects the asymptotic particle states before and after the interaction. The “1” is just a trivial
part representing no interaction while the “4T” part governs the interaction. The S-matrix
element

out<p1 pn|S|kl "'km>in 5 (2258)

appears in measurable physical quantities like the cross section and the LSZ formalism relates
this matrix element to the vacuum expectation value

OIT{¢(z1) - - ¢(xn) d(y1) - - S(y2)} 0) (2.2.59)

which can be calculated. In a general form the LSZ-formula is written in momentum space as

m 4
[T [ armse s T [ dtys et 0 7o)+ o) 60) -+ o(02)} 0
i=1 j=1

= <H m) Hm out(P1 - Pn| S ki km)in , (2.2.60)
j=1%7

i=1""1

and it serves to represent the unknown interactions in terms of well-known free asymptotic
fields at time ¢ = 4+o00. The intermediate states between the asymptotic states are defined
off mass shell but as time approaches infinity the interacting particles go on shell and they
become free. In this limit where the interacting theory becomes a free theory, the fields are
written as

d(x) — dim(x) as t— —oo,
P(z) = dout(z) as t— +oo. (2.2.61)

For interactions with four particles (2.2.60) reduces to
out(P1P2| S [kika)in = (pi —m?) (p5 —m?) (ki —m?) (k3 —m?)
x /d4$1 dhag dys dlyg e ML em R PI P22 (0] T{ (1) Par2) G(y1) d(y2)}0)
(2.2.62)

where in particular the appearance of the squared momenta, is of interest and will be discussed
below.
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2.2.7 Contractions of massless vector fields

In the subsequent sections the LLSZ reduction formula has a central role and is used extensively
in computations of photon amplitudes. This section presents the notation and basic methods
which will be used for the computations.

Interactions will be studied at tree-level and the incoming fields will be photon fields

AT = el Ay (@) (2.2.63)

with polarization vector e/’ projecting out a certain polarization state. For the photon field
amplitudes the notation

(Ar---Ap) = (0] T{A1--- A} |0) (2.2.64)

will be used. The path integral formalism can be generalized to any field theory and therefore
equation (2.2.45) will be the main expression with the scalar fields replaced by photon fields.
When only interactions at tree-level are considered, the photon four-point function is

5t .
(WA A = 57 s /DAeXp [z/d% (£+JA)] ‘J:o’ (2.2.65)

where the Lagrangian is not specified. In the particular case of interest, the interactions are
governed by the Dirac-Born-Infeld Lagrangian Lpg; which was discussed in section 1.4 and
will be again in section 3.1.2. From (2.2.65) using £ — Lpp; it follows that

(A@)Aw;) Alar) Alar) )

= [ DA e ) € A) (A1) (7 Astan)ex i [ e Lom]

=¢; ;e Efi/d4$/DAAi,uAj,uAk,pAz,aﬁDBI : (2.2.66)

where in the last step the exponential has been expanded to first nontrivial order. The expan-
sion parameter in the DBI-Lagrangian is the inverse string tension /. Since the Lagrangian
is a function of field strength tensors

F = 9,4, — 0,A, , (2.2.67)

it is seen from (2.2.51) that (2.2.66) will be evaluated by performing Wick contractions of
photon fields

1
<Ai,uAj,u> = Ai,,uAj,V = Dw,(afi — ij) 5 (2268)

where D, (x; — ;) is the photon propagator. The photon propagator is found from the action
integral for the free electromagnetic field which can be written as

1 1
Sem,free = / d'z (‘Z FWFW> =3 / d'zA, [P0 — 019] A, , (2.2.69)
by a partial integration. A Fourier transformation yields
1 ~ -
Sem free = 3 / d*z A, (k) [k*n"™ + kFEY] A (—K) (2.2.70)
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and the photon propagator is defined in position and momentum space by
(0% — 0"9”) Dyp(x — y) = i6W (z — y) o4 (2.2.71)
(=E*n" + k'E") Dyp(k) = i6t: (2.2.72)

as the inverse of the operator on the right hand side of (2.2.69) and (2.2.70) respectively. It
is observed that

(—k*n"™ + k'K )k, =0, (2.2.73)
so that
A, (k) = kua(k) (2.2.74)

is a zero mode of D,, for any scalar function a(k). The 4 x 4 matrix in (2.2.73) is therefore
singular and (2.2.72) has no solution for the propagator. This problem of inverting the photon
propagator arises because a gauge transformation is not physical and the functional integration
of the free electromagnetic action is therefore performed over a continuous infinity of physically
equivalent states. The solution is to change the integrand in order to perform the functional
integration such that each physical state is counted only once. To break the gauge invariance
the Lagrangian for the free electromagnetic field is modified into

1 1
Eem,free = _Z F;wFlw - 2_6 8;“4“81/14” s (2275)

by adding the gauge fixing term. The photon propagator then becomes

Dy (k) = ;_; (nw (-9 k;’j) , (2.2.76)

with different choices of gauge corresponding to different values for the parameter £&. The
choice £ = 1 corresponds to the Feynman-t’ Hooft gauge in which the photon propagator
takes the simple form
i
Dy (k) = — 7 M - (2.2.77)

Using (2.2.77) for the photon propagator yields for a contraction of a photon field with a field
strength tensor

7 . — [ +p
A Fu = (—1) <pi,uAvAi,p - pi,VAuAi,p> &
1
-3 <pw e~ i efu) : (2.2.78)
where O = —ip" has been used. The four-point function for photons is computed by evalu-

ating all possible full Wick contractions of four photon fields and from (2.2.78) it is seen that
the expectation value has the form

1
-

=
§w| =

o=
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The amplitude is obtained when this expectation value is substituted into (2.2.62) whereby
an exact cancellation of the momentum poles takes place. Hence the useful result

_
AFFy, = (AF

is obtained for a contraction of a photon field into a field strength tensor. This result is also
found in |21]. For the four-point function, computations will have the general form

(A A; ARA|IFY) = }336 pip;pRpi el ef el ef / DA A; Aj oy Ar p ALy e (2.2.81)

where all the poles coming from the photon propagators of the Wick contractions are cancelled
by the factors of p?. The F* in the expectation value indicates that the four-point function
is controlled by terms in the action with a structure of four field strengths. This structure
also includes selfdual and anti-selfdual field strengths as discussed in section 2.1.7. The limit
means that the particles are on shell after the interaction. Equation (2.2.81) will be the basis
for computations of amplitudes throughout the remaining chapters.

2.3 Compactification and dimensional reduction

This section discusses the concept of compactification and the related procedure of dimensional
reduction. A dimensional reduction of a field theory under study is basically a redefinition of
the theory in a lower number of dimensions. If the theory is formulated in d dimensions it
can be dimensionally reduced to d = d — n dimensions by taking all fields to be independent
of the coordinates in the extra n dimensions. In terms of the action integral the dimensional
reduction from 10 to 4 dimensions may be described as the procedure

S = /d10$£($1 S, T0) — /dloxﬁ(xl,xg,xg,x4) :C/d4x£(x1,x2,x3,a?4) , (2.3.1)

where the Lagrangian is taken to depend only on the four dimensions into which all dynamic
variables such as momenta and polarization vectors are embedded. The Lagrangian as there-
fore independent of the six auxiliary dimensions and the integral can be factorized as above
where the overall constant C does not matter.

A compactification of a given theory means that it is changed with respect to one dimen-
sion. Strictly speaking, a dimensional reduction is then the limit of a compactification where
the size of a compactified dimension goes to zero. When a theory is compactified, one infinite
dimension is taken to be finite and often also periodic. Figure 2.3 shows an example where
a theory is formulated on the full space M x C' and where the dimension C' is compact. In
the limit where the size of the compact dimension goes to zero, the theory can be described
effectively as a theory in the space M independently of C. Compactification is an important
concept in connection to string theory. String theory operates with ten spacetime dimensions
and the universe appears to have four dimensions. In order to have a string theory which
is consistent with observations, it is therefore necessary to explain why the extra dimensions
are not observed. A possible explanation is that the extra dimensions are compact and so
small that their existence can not be resolved from experiments. A field in a compact periodic
dimension can always be written as a Fourier series

Pz) = Apel?min/b (2.3.2)
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M xC
¢ Figure 2.3: The principle of compactification. A the-
ory is formulated on the full combined space M x C
where C is compact. Upon a compactification of the full
space, the theory is reformulated as an effective theory
on the space M.

where L is the size of the dimension and n is an integer. The momentum is therefore

nh
~ 2.3.3
P~ (2.3.3)
whereby
E~p—oo, for L—0. (2.3.4)

In the special case n = 0, the field (2.3.2) is independent of the z-coordinate and thus in-
dependent of the compact dimension. For n # 0 it is apparent that the energy approaches
infinity as the size of the dimension becomes very small. The conclusion is that if the compact
dimension is very small it takes an infinite energy to resolve it. The compact dimension can
therefore be neglected which is the idea of dimensional reduction.

The idea of compactification goes back to Theodor Kaluza in 1921 where he sought for a
unified formulation of gravity and electromagnetism by extending gravity to five-dimensional
spacetime. Oskar Klein continued the work and proposed in 1926 that the extra dimension was
tiny and curled up. The result is known as Kaluza-Klein theory and is a five dimensional pure
gravity which is compactified to four dimensions. The compactification can be outlined by
the following where M, N are Lorentz indices in five dimension. The metric in five dimensions
can be written

IMN = Guv + 295, + G55 (2.3.5)

where g,,, represents the four-dimensional gravitational field, g5, represents the electromag-
netic field and gs5 is a four-dimensional scalar. The five-dimensional gravity theory is thereby
compactified to a four-dimensional gravity theory coupled to electromagnetism and a scalar.

2.4 Notation and conventions
This section is a brief presentation of conventions and notation used throughout the thesis.

Choice of metric

The metric for the flat spacetime is chosen to be mostly negative and reads on matrix form

+1 0 0 O

y 0 -1 0 0
e =1"=1 0 6 1 o | (2.4.1)

0o 0 0 -1
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Natural units and dimensions

Unless otherwise is stated, the natural units
h=c=1, (2.4.2)
are used. From the relations
E=ho, E>=(mcd)’+p*&, (2.4.3)

it follows that the dimension of length equals the dimension of time and that energy, mass
and momentum have the same dimension. The dimensions of energy and time are inverse of
each other and therefore

[energy] = [mass] = [momentum] = [length] ' = [time] ' . (2.4.4)

Symmetrization and antisymmetrization

The operations of symmetrization and antisymmetrization are defined respectively as

(Apo + Av) 3 Apw = = (A — A (2.4.5)

N —
N[ =

Ay =

for two indices. The operations can be generalized to arbitrarily many indices. According
to (2.4.5), if P, is some fully antisymmetric rank-two tensor and @, is a fully symmetric

Y

rank-two tensor the tensors can be written
P;w = P[,u,zz} ’ Q,ul/ = Q(p,zz) - (246)

Indices and dimensions

Lorentz tensors appear with different indices according to their dimensionality. Capital Latin
letters, (M,N,R,...), denote six-dimensional Lorentz indices taking values (0,1,2,3,4,5)
while Greek letters (u,v, p,...) denote the usual four-dimensional Lorentz indices taking val-
ues, (0,1,2,3). Latin letters (m,n,r,...), denote the auxiliary two dimensions in Lorentz
space-time and thus take the values (4,5). An arbitrary tensor in six-dimensional spacetime
can therefore be written as

Yun = Yl“’ + Yo + Y;m + Yo - (2.4.7)

Spinors have dotted or undotted indices (v, 3,7,...) and (d,ﬂ',’y, .. ) denoted with Greek

letters. These indices take values (1,2).

Inner products

Inner products are denoted
a-b=akb,, a-b=a"by, (2.4.8)

where especially the a - b is used in calculations in six dimensions.
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Scattering amplitudes

For scattering amplitudes the notation
A(external fields) — <external fields | internal ﬁelds> , (2.4.9)

will occur. The arrow simply indicates that the amplitude under study is constructed from all
possible wick contractions on the right hand side but that front factors of 7 and o’ are absent
in that particular expression.
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Chapter 3

Vector boson amplitudes in four
dimensions

In this chapter the developments from chapters 1 and 2 will be put to use. The Dirac-
Born-Infeld action will be the starting point as it is the effective action describing first order
corrections to electromagnetic fields on a D-brane. Photon scattering amplitudes will be
calculated in four dimensions and in this context, the spinor-helicity formalism from section
2.1 s central. Both four-point and six-point amplitudes will be calculated. The first part of the
chapter involves calculations of amplitudes with specific configurations of external particles
whereas the second part involves more general computations where a scattering amplitude is
calculated as a generic result without considering any specific external polarizations. This is
also a step towards a higher number of dimensions and in particular studies of amplitudes in
six dimensions which are addressed in the next chapter.

3.1 Employing spinor-helicity

Amplitude calculations are basically just Wick contractions of external fields into field strength
tensors. When the field strength tensor is split into its selfdual and anti-selfdual components
and expressed in spinor indices, it turns out that the contraction of an external photon field
into the field strength tensor simplifies. The subjects discussed in this chapter have previously
been discussed in [1] where also the scattering amplitudes have been calculated.

3.1.1 Dimensional considerations

Results for amplitudes will be expressed in terms of momentum products as defined in section
2.1.8. Before going into amplitude calculations it is convenient with an analysis of dimensions
of units. The relation for massless particles

2pi - pj = [i] (G1) (3.1.1)
as in (2.1.70) leads to a relation for momentum bilinears so that the objects
(@), [l . »p, (3.1.2)
have the same dimensionality
[p] = [Energy] . (3.1.3)
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The string parameter o ~ [? is associated with the square of the fundamental length of a
string and it follows that the dimension of the string parameter is the inverse of momentum
squared

[] =[P =177 . (3.1.4)

Amplitude calculations yield terms containing objects as (3.1.2) which are multiplied by factors
of (ma’)". An amplitude has to be dimensionless and it is apparent for instance that the
different terms

U e GRG) R LS ! (3.05)

have the same dimensionality and must be multiplied by a factor (7ro/)2 in order to be dimen-
sionless.
3.1.2 Dirac-Born-Infeld in four dimensions

The Dirac-Born-Infeld action in ten dimensions has the form |1, 22]

1

m2gsau

Sppr = —1+ 5 /dlox\/— det (nyn + T/ Fyrn) - (3.1.6)
As in [1] the string coupling constant is put g = 1 and the term “—1” is dropped from the
action since this term is irrelevant for particle interactions. Along the lines of the discussion
in section 2.3 the DBI-action can be dimensionally reduced such that the integration measure
is simply taken d'z — d*z and the indices are taken as ordinary four-dimensional Lorentz
indices M — p. It follows from section 1.4.3 that the action takes the form

2 12 4 14 B 2
— det (uy + 70/ Fyy) = 1+ = Fu ™ + ”106‘ (FuwF™) . (3.1.7)

The right hand side can be expressed in terms of selfdual and anti-selfdual components of the
field strength tensor and for this purpose (2.1.102) is useful. An explicit calculation for each
of the relevant contractions yields

Fl, P = - (aade st [-;Faﬁ) (saﬁ+Fd5 + sdB’Faﬁ)
("F?+F?%) (3.1.8)

and

e A O 2 A T (3.1.9)
whereby the determinant takes the form

—det (77W + ﬂ'a/FW) =
2 12 o/

o 2
1+4[F+F] i

(TPt +F*—2(TF*F*)] . (3.1.10)
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The determinant is a function of the string parameter which is small and the square root of the
determinant can therefore be expanded as a Taylor series in . In practice the determinant
is expanded in Mathematica by explicitly constructing (3.1.10). To tenth order the Taylor
expansion in o becomes

2 12 4 14 6 /6
\/_ det (1, + 70/ Fl) = 14 7% 4pe T jpo—pa  TO (+F4*F2+*F4+F2)
4 32 256
ma/® F6—12 | — 642 +rd—pd 110
—M(F F? + FTF? + 37FYFY) + 0 (o)
(3.1.11)

where the topological density 1/4F,,, F* = 1/8 (tF? — “F?) has been added after the expan-
sion has been performed. Since the topological density is a total derivative it can be added in
the action without affecting the equations of motion. Adding the topological density cancels
a “F?-term in (3.1.11).

Equation (3.1.11) is the starting point for scattering amplitude calculations and it can
be read of for instance that the four-point amplitude is controlled entirely by the term
(7r4o/4/32) TF?-F?. Before turning into explicit amplitude computations it is appropriate
to examine more generally the Wick contractions of external fields and F*.

3.1.3 Wick contractions of field strengths
External contractions

From (2.1.102) the selfdual and the anti-selfdual components of the field strength are given
respectively as

= %gaf’ (amAm - %Aad) - % (aadAaﬂ- n 8aﬂ-A“d> , (3.1.12)
“Fap = %gdﬁ' (0aa s — D5aa) = % (0aa s +93:Ast) (3.1.13)

which is also found in [23]. Equation (2.2.77) becomes simply
1
<AaﬁAﬂﬁ> = —21? €aBEup > (3.1.14)

in spinor indices and the contraction of a photon field as (2.1.111) with plus-helicity quantum
number into a selfdual field strength is found as

— 1 . — —
AT = TF [AT] = o5 (eM)” <8adAaBAW + aag‘AaaAw>
= % (—1) (—2i) <\/§ %) (pad % €4y T Do % 5,3-@)
= iV2XaA; . (3.1.15)
It has been used that
Oy = —ipy < —iPag » (3.1.16)
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and a factor of 1/p? has been omitted in (3.1.15) because it is cancelled by the LSZ formula
from (2.2.61). Since (3.1.15) is a tree-level calculation with particles on mass shell

Pod = Aada (3.1.17)

holds by (2.1.30) for massless particles. Calculations similar to the steps involved in (3.1.15)
lead to an analogous result for the contraction of a photon field with minus-helicity quantum
number into an anti-selfdual field strength

1

A" TFup = Fap[A7] = —ivV2Xa)s (3.1.18)

where the sign is the opposite compared to [1]. A contraction of a photon field with minus-
helicity quantum number into a selfdual field strength spinor yields the substitution

YN Y\
o] T

in the second line of (3.1.15). Hence the vanishing contraction A“), is obtained and conse-
quently

(3.1.19)

[A7] =0, (3.1.20)

holds. The opposite result for the contraction of a photon field with plus-helicity into an anti-
selfdual field strength spinor is obtained using (3.1.19) with a reversed arrow in the calculation
towards (3.1.18). Analogously the vanishing contraction A%\ is obtained in this case and

1
AT TF,3= Fus[AT] =0, (3.1.21)

follows. Equations (3.1.15), (3.1.18), (3.1.20) and (3.1.21) are on-shell relations useful for the
calculations of four-point amplitudes directly from the action where only external contractions
oceur.

Internal contractions

In order to calculate six-point amplitudes it is necessary to consider internal contractions
between field strength spinors. In this case the involved particles are off-shell and (3.1.20)
and (3.1.21) are therefore not valid. Instead the internal contractions has to be worked out
explicitly. The internal contraction between two field strengths of different types is

i
Fop Fap =
N2 11 v 6 v b v g L
(—’L) (—21)12? (pwapa(;éf 56,8 —I—p«,dpﬂ(;e? aEB +p7ﬁpa5€ﬁ€d +p'yﬁp66€ a€d>
)
- 2 (paﬁ'pﬂc'v +Paap55> ) (3.1.22)

as is calculated in detail in (A.1.22). It should be noticed that the internal contraction of field
strengths of opposite type is nonlocal as this contraction contains a pole in the propagating
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momentum. The internal contraction of two selfdual field strength spinors is
+
Fog"Fo; =
11
N .
(=) (—21)12? (paa P33 €435+ Pac D5 e €4+ PPy € €45 + Doy P € f:‘cw) ;
(3.1.23)

where the structure of each of the terms in the bracket is the same. Each term is antisymmetric
in the two dotted indices so that for instance

B

Paa P33 € = —pay Ppa €’ = Keay - (3.1.24)

This leads to
2K = paa ppy e’ e = 2p° (3.1.25)

when contracted with %7, Substituting x = p? in (3.1.24) and using this in (3.1.23) yields

A+ -
Fdﬁ F,;{(;:Z(Ed:yé‘ﬂ'g—i-é‘d(;éﬁ',;{) . (3.1.26)
The internal contraction between two anti-selfdual field strengths can be worked out using the
same steps that lead to (3.1.26) and it follows that

] .
Fop Fys = i(cay €8s + €as Eay) - (3.1.27)

From (3.1.26) and (3.1.27) it is apparent that the internal contraction of two field strengths
of the same type is local since the pole factors are cancelled. The cancellation of pole factors
occur off-shell and hence this local property does not depend on any on-shell conditions.

3.2 Scattering amplitudes with specified external polarizations

The developments in the previous section will now be employed in amplitude calculations
where four-point and six-point amplitudes will be computed.

3.2.1 Four-point amplitudes
Equations (3.1.15), (3.1.18), (3.1.20) and (3.1.21) serve as the basis for calculations of four-

point scattering amplitudes. Contractions between external states and vertices simplify consid-
erably according to these equations and certain vanishing amplitudes can be read of directly
from the expanded action. Since the four-point amplitude is controlled solely by the term
(—7m%a/?/32) TF?7F? in (3.1.11) it can be deduced right away that the following four-point

amplitudes necessarily vanish
A(17273%4%) = A(17273747) = A(17273T4T) = A(17273747) =0. (3.2.1)
As an example the first amplitude in (3.2.1) is calculated

A(IT2F8H4Y) = (AT AT AT AT, 5P R FOT ) (3.2.2)
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and it is apparent that (3.1.21) will appear in all possible full contractions. Likewise it can be
deduced that the second amplitude in (3.2.1) contains (3.1.20) in all contractions while each
of the last two amplitudes in (3.2.1) respectively contain both (3.1.20) and (3.1.21). From the
above discussion it can be concluded that the four-point amplitude

A(1T2¥3747) = (AT AT AT AT, TP R FOT ) (3.2.3)

is the only one which is nonzero. In order to evaluate this amplitude explicitly with the right
numerical constants, (3.1.20) and (3.1.21) with upper indices

TFO AT = iV2ZAN L R [AT] = —iv2 AN (3.24)

are used and the result is

2 12 4 .
A(1T2r3747) = (—”33 ) <4¢2 (—i)? (\/5) 151420273, 3ﬂ4a4ﬂ>

7T20é/2

=-— (12)2 [34]* | (3.2.5)

where the proper numerical front factor from the action has been taken into account. The
factor “4” comes about because all the possible four Wick contractions are identical.

3.2.2 Six-point amplitudes

In calculations of the six-point amplitudes two contributions have to be taken into account.
One contribution is the direct one from the vertex (w%a/®/256) (TF*"F? 4+ “F4TF?) in the
action while the other contribution consists of two four-point vertices controlled by the square
of the term (—7r20/2/32) TF27F? where two four-point vertices are contracted. This latter
term originates from the second order contribution in the expansion series of the exponentiated
action which involves internal contractions of field strengths. Therefore (3.1.22), (3.1.26) and
(3.1.27) will be used. It can be read of directly from the action that the amplitudes

A(1T273T475%6%) = A(172737475767) = A(172737475767) = A(172+3T4T5767)
=0, (3.2.6)

vanish. This is simply due to the fact that the action does not contain any vertices with the
structure

tpER AR AR AR ¥R FRIRTR TR TR AR (3.2.7)
or
AR b O Jh 2k Al (3.2.8)

Furthermore, no vertex with this structure is found when internal contractions of field strengths
are carried out on the second-order terms in the expansion of the action.
In general, the n-point amplitude

A(1*2%37 o7 (3.2.9)
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is known as a maximally helicity violating amplitude (MHV) since in Yang-Mills theory it
violates conservation of helicity [24] to the maximum possible extend at tree level. The
particular amplitude from the DBI-action

A(1%2%737475767) (3.2.10)
is therefore an example of an MHV amplitude and it is evaluated by the Wick contractions
<1+2+3*4*5*6*‘+F2+F2*F2*F2> , (3.2.11)

of the squared term from the action. In this case it is apparent that one internal contraction
of two selfdual field strengths must be performed in order to obtain a nonzero full contraction.
Equation (3.1.26) yields

tp RSt AR = 9t Aes (3.2.12)
aB Ao aB ’ -

for an internal contraction of selfdual field strengths. Since four identical internal contractions
of the selfdual field strengths can be made, a factor of four is obtained and

<1+2+3’4’5’6’ +F2+F2*F2*F2> — 8 <1+2+3*4*5*6*(+F2*F4> , (3.2.13)

holds for an internal contraction of selfdual field strengths. The internal structure of the con-
tribution from the two four-point vertices is identical to that of the direct contribution TF2~F*
and these two contributions only differ by a constant. The prefactor of the contribution from
the two four-point vertices is

1 2 12\ 2 4 14
5(—2'”33 ) 8i = —2'7;5“6 , (3.2.14)

where the factor 1/2 is from the expansion of the action and the factor 8 is from (3.2.13).
Equation (3.2.14) is exactly identical to the prefactor of the term in the action with six fields
but with the opposite sign. The sum of these two contributions is exactly the amplitude
(3.2.10) which therefore vanishes

A(1%2%37475767) =0. (3.2.15)

It is interesting that the six-point contribution exactly cancels the contribution from the
contraction of two four-point vertices.
The six-point helicity conserving NMHV amplitude

A(1*2%3%475767) (3.2.16)

has only one contribution which is the one where two field strengths of the opposite type are
contracted between two four-point vertices. There exist nine possible permutations of particles
where two are shown in figures 3.1 and 3.2. The particular configuration of external particles
in figure 3.1 corresponds to the propagating momentum

Pac=(14+2+4),, , (3.2.17)
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1+ 6~ 1+ 5~

Figure 3.1: A contraction of two four-point ver- Figure 3.2: A contraction of two four-point ver-
tices. The contraction for this configuration of ex- tices with another configuration of particles com-
ternal particles is calculated in (3.2.18). pared to figure 3.1.

and it follows from (3.1.22) that the particular full contraction becomes
R R e AV e s +1 +pi0 [A+] —peB [A—] — —1 =8 [ A
Fap Fop'F [45] F«',S[Al] F°[AS) TP [AL] Ty [Ag] TF [Ag]
i o . 3 5
= - (padpﬂﬂ' —|—paﬂ'pgd> 39301,1,; 27294 495, 5,676
27

= - p—<12> [56]* 4%4”pag pﬁg3d35
— —Wﬁmﬂ B2 (4] (1+2+4)[3)? . (3.2.18)
where the notational abbreviation
[i[k|l) = i%jaak® (3.2.19)

is used. The full amplitude is a sum of the nine permutations of (3.2.18) and reads

A(1+2+3+456):1< 2 e /4> Z Z (Im)? (| (I +m + k) |n))? ’

4 128 o(l,m,n) o(i,j,k) (pl—i_pm—’_pk)
(3.2.20)
where the sums are performed over the permutations of indices
o(l,mn)=0(1,2,3) , o(l,mmn)=0(2,3,1), o(l,mmn)=0(3,2,1) , (3.2.21)
o(i,j,k)=0(4,5,6) , o(i,j,k)=0(5,6,4) , o(i,j,k)=0(4,506) . (3.2.22)

The numerical factor in (3.2.20) is calculated as

% <—z ”202‘/2>2 (\/5)6 (2i) = <—i”f2a;> , (3.2.23)

which is in agreement with [1] apart from a factor 7.

3.3 A step towards six dimensions

The previous section contains calculations of amplitudes in four dimensions. Amplitudes in
six dimensions are not calculated in a similar straightforward way and it is necessary with
some preliminary considerations.

Page 60



3.3.1 Dirac-Born-Infeld in higher dimensions

The approach to calculate six-dimensional scattering amplitudes begins with the Dirac-Born-
Infeld Lagrangian. In four dimensions it can be expanded [22] as

Lopi =L+ 1 [1+0(F?)] , (3.3.1)
with abbreviations
1
Iy = 3 FuF" (3.3.2)
— 1 vp ou 1 w2 | 1 1\ 2 (—\ 2
Iy = =2 | Fu PP Fpg 7 — - (Fu F)? | = == ("F)" (F)” (3:33)

where the string tension 7" has been put equal to one,

1

T —
2ma!

=1. (3.3.4)
In an arbitrary number of dimensions (3.3.1) is instead
Lppr = I+ 144+ O (F°) , (3.3.5)

with the same abbreviations used. That (3.3.5) holds has been checked explicitly by writing
the field strengths as matrices in Mathematica. This is discussed in appendix A.1.

Whether four, six or any number of dimensions are considered, especially the Iy term is of
interest since it contains products of four field strengths and hence it controls the four-point
amplitudes at tree-level. In the following the constant will be ignored and

1
Iy = By F*PFpg POV — 2 Fu P o F7 (3.3.6)

will be studied. The operation of dualization was defined in four dimensions in (1.4.1) and the
selfdual *F and anti-selfdual ~F components of the field strength tensor was introduced in
3.1.2. The rightmost equality in (3.3.3) holds in four dimensions but it has no straightforward
generalization to higher dimensions. In six dimensions one would define the dual of Fisn as

~ 7
FryNps = §5MNRSKLFKL , (3.3.7)

which is obviously not a two-form. In order to obtain a two-form (3.3.7) must be contracted
into some antisymmetric object with two indices and the dual will then depend on this par-
ticular object. The conclusion is that the dual in six dimensions is not uniquely defined.
The simplicity of calculations in four dimensions as a consequence of the use of the dual can
therefore not be transferred to six dimensions.

A general four-point amplitude with unspecified external polarizations

The purpose of this section is to calculate the photon four-point scattering amplitude as a
general result in terms of generic polarization vectors. Only tree-level amplitudes will be
studied and hence only external contractions are taken into account.
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3.3.2 Constructing the amplitude
The result
ef.ef=0, (3.3.8)

is important in calculations of scattering amplitudes with specific external polarizations. How-
ever, when an amplitude is calculated in generality as a function of generic polarization vec-
tors, (3.3.8) cannot be used since, in general, all dot products of polarization vectors are
non-vanishing. The general amplitude is calculated from the four-point term

1
It = FynFNEFpg M I FynFMN FrgPRS (3.3.9)

in the Dirac-Born-Infeld Lagrangian as discussed in the previous section.

The general calculation can be outlined as a process of three steps. Step one is to compute
one arbitrarily chosen full contraction. Step two is to construct in Mathematica the result of
this computation as generic momenta and polarization tensors with indices and then perform
the summation over all possible permutations of these indices. Step three is to employ mo-
mentum conservation to simplify the expression. These three steps are described below. The
amplitude is computed by the Wick contractions of (3.3.9)

1
A(AA;ARAL) — 2P &1 el <Ai7,1141],514&71411,(S ‘FWF”"FPUF"“ -7 Fu,,F‘“’ch,Fp">

= e 5? 5Z 5? [<Ai7aAj7ﬁAkﬁAl,5‘FWF”"FWF"“>
1
1 <Ai,aAj,ﬂAk,wAz,5‘FHVF“”F/JUF””>] ; (3.3.10)

suggesting that each of the two terms in (3.3.10) are treated separately. For each of the two
terms one arbitrarily chosen full contraction

— |

o — |
X(ijkl) = €7 5? ) ) As A Ak n Al s F FPFpu FOH (3.3.11)

and

I f i | 1 | | |
Wikt = €8 €5 €] ) AiaAj g Ak y Ao Fu F*" Fpo FP7 (3.3.12)

is labeled according to (3.3.11) and (3.3.12). Both objects x(;x) and wy;jx;) consist of sixteen
terms and can be evaluated respectively as

Xy = (pi-er) (pj-€i) (pr-e5) Pi-ex) + (0i-mi) (p5-€i) (Pr-€1) (g5-€x)
— (pi-p1) (piver) (pj-€i) (ex-€5) — (pivpi) (pj-€i) (Pr-€5) (e-er)
+ (pi-€j) (P pr) (pr-ck) (€iver) + (pi-€j) (pj-ex) (Pr-er) (pi-€i)
— (pe-p1) (pivej) (pj-ex) (giver) — (pivej) (pj-pr) (pr-€i) (ex-€1)
— (pi-pj) (Px-€5) (Di-ex) (gi-e1) — (pi-p;) (Pr-€1) (pr-€i) (ek-€5)
+ (pi-p;) (pr-p) (€'-€1) (ex-g5) + (0ips) (pr-€) (pr-&i) (ex-e1)
— (pirer) (pi-ex) (pj-pr) (ive5) — (pivpi) (pj-ex) (Pr-er) (€iv€5)

+ (pr-p1) (piver) (pj-ex) (iv€j) + (pip1) (P -pr) (€iv€5) (ex-er)
(3.3.13)

Page 62



and

Wik = 4 [(pz"pj) (pk-p1) (giv€5) (ex-€1) + (pi-gj) (pj-€i) (Pr-e1) (pi-ex)

— (pe-p1) (pivej) (pj-€i) (ek-e1) — (pivpj) (Pr-e1) (pr-ek) (€ivg5) | - (3.3.14)

Interchanging the contractions of A; and A; in (3.3.11) simply interchanges the indices i and
j in (3.3.13). A similar structure is found for (3.3.12) and (3.3.14) and the full amplitude in
(3.3.10) can therefore be written formally as the sum over all possible permutations of the
indices i, 5, k,[ as

1
o(i,5,k,0)

containing 4! contributions of the form (3.3.13) and just as many of the form (3.3.14). It
follows that 24 x (16 + 4) = 480 is the total number of terms in the sum which will be referred
to as §. In order to evaluate and simplify S, the full expressions for x(;r) and wji) are
constructed individually in Mathematica such that for instance the second term in (3.3.13) is
written as

(pi-p1) (pj-ei) (Pr-e1) (€5-€x) — (PP (Pe);; (Pe)y (e8) 5 (3.3.16)

with each dot product represented as one variable having two indices. The name of each
variable carries the information of whether the dot product is between two momentum vectors,
two polarization vectors or between one momentum vector and one polarization vector. The
sum S is explicitly evaluated in Mathematica and the output is shown in figure A.3. As a
consequence of the definitions of variables' (3.3.16) Mathematica distinguishes between terms
such that

(Pp)i,j # (Pp)j,i ) (ee)i,j # (ee)j,z‘ ) (3.3.17)

even though these terms are identical. To obtain the proper cancellation of terms, the opera-
tion

(PP)M - (Pp)i,j ) (ee)j,i - (ee)z’,j ) (3.3.18)

is performed for every combination of the indices ¢, j, k and [. The Mandelstam variables from
(1.2.2) are

s=2p1-p2, t=2pi-ps, u=2pi-p3, (3.3.19)
and due to conservation of momentum
s+t4+u=0, (3.3.20)

holds. This simplifies S into a form of 60 term as shown in figure A 4.

'This definition could have been done more clever to avoid the problems described along (3.3.13).
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3.3.3 Simplifying the overall sum of contributions

One finds from the Mathematica output that all the terms in & can be grouped into one of
three distinct categories with certain characteristics. The first category consists of nine terms
with the structure

5% (e1-€2) (e3-€4) (3.3.21)

of two dot products between polarization vectors and the square of a Mandelstam variable.
The second category consists of 42 terms with the structure

u(e2-¢3) (p1-c4) (P3-€1) (3.3.22)

having one Mandelstam variable, one dot product between polarization vectors and two dot
products between a momentum vector and a polarization vector. The third category consists
of 9 terms with the structure

(p1-€2)(p2-€1)(p3-€a)(psa-€3) or (p1-€2)(p2-€3)(p3-c4)(pa-e1) (3.3.23)

of four dot products between one momentum vector and one polarization vector. In the
following each category of terms will be considered individually in order to simplify S.

Terms from the first category
The nine terms in this category are manipulated using the rearrangement of (3.3.20)
s2 = (t+u)? =t +u?+2tu , (3.3.24)
whereby the three terms with the common coefficient (g1-£2) (3-€4) can be rewritten as
(e1-82) (e3-c4) [—28* + 2% + 2u%] = — 4 (e1-€2) (e3-c4) tu . (3.3.25)

Equation (3.3.24) is symmetric in s,¢ and u and hence the method leading to (3.3.25) can be
applied straightforwardly to the three terms proportional to (£1-€3) (€2-€4) as well as for the
three terms proportional to (£1-€4) (e2-¢3). This yields for the six remaining terms
(e1-e3) (e2-€4) [282 + 2% — 2u2] = —4 (e1-e3) (e9-e4) st , (3.3.26)
(e1-€4) (e2-e3) [25% — 22 + 2u®] = — 4 (e1-e4) (e2-e3) su , (3.3.27)

such that the original nine terms have been rewritten as the three terms on the right hand
sides of (3.3.25) (3.3.27).

Terms from the second category

The four different polarization vectors form six different dot products each being a common
factor in seven terms in the second category. In order to show how simplifications occur, the
seven terms proportional to (£1-£2) are considered. Substituting s from (3.3.20) yields the
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4| = s(pi-ea) (p2-e3) — s(pr-e3) (pa-ea) + u(pr-€3) (p3-ea) + 1 (p2-e3) (p3-€4)
+ ¢ (pr-21) (pa-2s) + u (pa-ea) (pa-es) = s (ps-ea) (pa-3)]
= 4t [(p2-es) (p-ea) + (pr-€1) (p1-23) + (p1°24) (p2-5)
+ (pr-es) (pa-2a) + (pa-e) (pa-es)]
+ du | (p1-25) (pa-2a) + (p2-24) (pa-5) + (p1-4) (p2-23)
+ (pr-es) (p2-ea) + (ps-ea) (pa-es)] (3.3.28)

for the seven terms proportional to (1-£2). Considering explicitly in (3.3.28) the sum of term
number one, two, three and five in the square bracket proportional to 4t gives

(p2-e3) (p3-€4) + (p1 64 (pa-e3) + (p1-€4) (p2-€3) + (p3-€4) (pa-€3)
(P2,uP3,v + PauP1y + P2,uP1y + Paup3y)
= ebel (pau + Pay) (PLv + P3.0)
= ehef (—pru—p3w) (— P2y — Pay)
= e5e) P12y
= (p1-e3) (p2-€4) » (3.3.29)

where momentum conservation has been employed along with transversality of the momentum.
It is apparent that the right hand side of (3.3.29) is identical to term number four in the square
bracket proportional to 4t in (3.3.28).

Identical manipulations are used in the square bracket proportional to 4u in (3.3.28) and
hence the sum of term number one, two, four and five is

(pa-e3) + (p1-€3) (2-€4) + (p3-€4) (Pa-€3)

(p1-€3) (p3-€4) + (p2-€4)

= ehe! (P1uP3,y + Papb2, + P1pb2,y + Papbsy)
u_v

3<4

n

ebel (p1u+ Pay) (P3w +p3,,)

=egeq (= p2u+p3u) (— Py — Pay)

= €54 P2 Py

= (p2-e3) (p1-€4) » (3.3.30)

which is identical to term number four in the square bracket. From (3.3.29) and (3.3.30) it is
possible to rewrite (3.3.28) in the much more compact form

4t {(Pz'és) (p3-€4) + (p1-c4) (pa-€3) + (p1-€4) (P2-€3)
+ (p1-€3) (p2-€4) + (p3-€4) (p4-€3)]
+4u [(pl'ES) (p3-€4) + (p2-c4) (pa-€3) + (p1-€4) (P2-€3)

+ (p1-€3) (p2-€4) + (p3-€4) (p4-63)}
= 8t (p1-€3) (p2-c4) + 8u (p2-€3) (p1-€4) , (3.3.31)
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which is the final simplification.

Only seven terms have been considered in the manipulations (3.3.28)  (3.3.31) but the
remaining 35 terms in this category can be manipulated in the same way. For each of the
dot products (e1-€3),(e1-€4),(€2-€3),(e2-€4),(£3-€4) respectively, an expression equivalent to
(3.3.31) can be obtained for the seven terms proportional to this particular dot product and
hence the 42 terms in the second category are reduced to 12 terms.

Terms from the third category

Conservation of momentum yields

(pa-e2) (p3-€1) = (p1-€2) (p2-€1) + (P1-€2) (Pa-€1) + (P3-€2) (P2-€1) + (P3-€2) (Pa-e1) ,
(3.3.32)

(Pa-e3) (p2-e1) = (p1-€3) (p3-€1) + (p1-€3) (Pa-1) + (p2-€3) (p3-€1) + (P2-€3) (Pa-c1)
(3.3.33)

which will be used to expand the nine terms of the third category. For convenience and to
introduce a certain labeling the nine terms are written explicitly

— (p1-€4)(pa-e1)(p2-3)(p3-€2) — (P1-€3)(P3-€1)(P2-€4)(Pa-€2) — (P1-€2)(P2-€1)(P3-€4)(Pa-E3)
a1 51 71

+ (p1-€3)(p3-c2)(P2-€4) (pa-€1) + (P1-€2)(P2-€3) (P3-€4) (Pa-1) + (P1-€4)(Pa-€2)(P2-€3)(P3-€1)
B2 72 a2

+ (p1-e3)(p3-ca) (pa-e2) (p2-€') + (p1-€2) (P2-c4) (Pa-€3) (p3-€1) + (P1-64) (Pa-€3) (P3-€2) (p2-€1) -

B3 73 ag

(3.3.34)

Substituting (3.3.32) and (3.3.33) respectively in the expressions for ag and as, the sum of
a1, as and ag becomes

— (p1-€4)(pa-e1)(p2-e3)(p3-2) + (p1-€4)(Pa-€2)(p2-€3)(p3-€1)
+ (p1-€4)(pa-€3)(p3-€2)(p2-€1)

= (p1-€4) {(p2'€3) (p3-e2) [(pa-e1) + (p2-e1) + (p3-€1)]
+ (p2-e3) (p1-€2) (pa-€1) + (p2-€3) (P1-€2) (P2-€1)
+ (ps-e2) (pr-e3) (paer) + (pa-e2) (r-23) (ps-e1) |

= (p1-c4) €5l [Pa D1y P2.p + D2 PLY P2.p + Payp P30 PLp + D3, P30 P1p)

= (p1-€4) elerel (P4, + D2,u) P1w P20 + (Payp + P3,4) P30 P1p)
= — (p1-ca) el ebel [p3,u 1w P2.p + P2 P30 DL (3.3.35)

where momentum conservation has been used in combination with transversality to obtain

(ps-€1) + (p2-e1) + (p3-e1) = —p1-e1=0. (3.3.36)
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An identical procedure can be used for the sum of 31, 82, O3 as well as for the sum of 1, y2, 3.
For the sum of (31, 32, 83, the terms (o and (3 are expanded and explicit calculations yield

— (p1-e3)(p3-e1)(p2-€4)(pa-g2) + (p1-€3)(P3-€2)(P2-€4)(Pa-c1)
_|_ (p1.€3) (p3'54) (p4.€2) (p2‘€1)
= — (p1-e3) eesel [pou Py Prp + PapPrub2y) - (3.3.37)

For the sum of 1,72 and -3 it is found that

— (p1-€2)(p2-€1)(P3-€4)(Pa-€3) + (P1-€2)(p2-€3)(p3-€4)(Pa-€1)
+ (p1-€2)(p2-€4)(pa-e3)(p3-€1)
= —(p1-e2) €T€§€Z [p?),u D4y Pl,p + PapuPly p3,p] ) (3.3.38)

in a similar way. Equations (3.3.35), (3.3.37) and (3.3.38) are summed up to give
— eheyebe] [p3 up1,ub2,pP1,0 + P2,uP3,.0P1,pP1,0] — €1 E5ERET [D2,1uPa, D1 pP1,0 + PapP1,uP1,pP2,0)
— elebebe] [p3,uP1,uPapP1o + PauD1,uP1,pP3,0)
evehe] [p3,up1w (P2,p + Pap) PLo + P2, (P30 + Paw) PLpPLo + PapP1,uP1p (P20 + D3.0)]
= tehenehe] [p3.up1u (P1,p + D3,0) Pro + D2 (P1y + D2,u) P1pP1e + PapP1uP1p (Pro + i)
= el 1V e3P [y D1uP1 pP1 e + D2 uP1 P pP e + PauD1 D1 P o)
= —eyesesedpypipip]

=0, (3.3.39)

I~
= —€]

such that the nine terms (3.3.34) add to zero.

Collecting the pieces

The entire amplitude can be written in terms of the contributions (3.3.25) (3.3.27) together
with six contributions of the form (3.3.31) where each contribution is multiplied be the ap-
propriate dot product of polarization vectors. The final result for the amplitude is

A(A;AjA; Ay)
— — 4 (er-22)(e52a) tu + (1-2) (220) st + (e1-64) (e2-63) su
+ 85| (pr-ea)(pa-ea) (€1-€4) + (p1-2)(ps-2) e1-3)

+ (p2-24) (p3-e1)(2-23) + (p2-23) (pa-21) (e2-21)|

8t | (pre) (pa-ea) (e1-63) + (p1-23) (pa-ea) e1-22)
+ (ps-21) (pa-22) (3-24) + (p2-1) (pa-2s) (e2-21)|
+8u | (pr-e2) (pa-e3)(er-ea) + (pr-2a) (pe-es) (e1-22)

+ (pa-e1)(p3-e2)(es-€4) + (p2'€1)(p3'€4)(€2'€3)] ;o (3.340)

which is identical to the “kinematic factor” calculated in [25] apart from an overall multi-
plicative factor of 16. Furthermore, (3.3.40) is found in [26]. The different overall factor is
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due to different choices of conventions regarding normalization of the string parameter o’. It
follows directly from (3.3.40) combined with (2.1.114) that the amplitudes A(+ £ £+ +) van-
ish identically regardless of dimension. This an interesting result which is in agreement with
(3.2.1).

In higher dimensions one can chose specific polarization vectors and compute directly
from (3.3.40). However, another approach starting from the Dirac-Born-Infeld action is used
in order to gain more insight in the six-dimensional case. This approach will be the topic
for the next chapter where one must expect that the A(+ 4+ + +) amplitude vanishes due to
(3.3.40).
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Chapter 4

Vector boson amplitudes in six
dimensions

In the previous chapter, various scattering amplitudes were calculated in four dimensions with
diligent use of the spinor-helicity formalism. The calculations were streamlined considerably
due to the formalism. This chapter presents calculations of amplitudes in six dimensions where
the situation is more complicated. A first observation is that the spinor-helicity formalism
is not generalized straightforwardly to six dimensions and this suggests another approach.
However, the four-dimensional spinor-helicity formalism will still be used to express the four
dimensional part of six-dimensional amplitudes. This approach is based on some simplifying
assumptions and the use of auxiliary dimensions. In fact it is part of the discussion of the
appropriate language in six dimensions as addressed in the introduction.

4.1 Six dimensions from a four-dimensional perspective

The topic of the subsequent sections is to calculate different scattering amplitudes in six di-
mensions. The external states of these amplitudes are specified which in this sense is much
along the lines of section 3.2 where specific amplitudes were calculated in four dimensions.
However, in order to take the step from four to six dimensions some developments are re-
quired. These developments will be made below and are introduced in order to simplify the
calculations. The general expression (3.3.40) will be left and instead the situation will be
considered more specific using a bottom-up approach. One similarity however is that (3.3.6)
is still the interesting term to consider.

4.1.1 Auxiliary dimensions

The overall motivation for the developments mentioned above is to simplify the calculations
by removing some degrees of freedom. The problem under consideration is six-dimensional
and one can think of the four and five-directions as being auxiliary dimensions with respect
to the usual four dimensions. Introducing suitable constraints on vector components in the
auxiliary dimensions will result in a splitting of the auxiliary dimensions from the usual four
dimensions and in this way the overall kinematics can be treated in a simpler way. One can
think of the auxiliary dimensions in terms of a scattering experiment in N dimensions. The
scattered beams can be prepared in a suitable way so that momentum and polarization vectors
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are embedded in m dimensions where N > m. Of course momentum can be scattered into
the N —m dimensions as long as overall momentum is conserved but these dimensions are in
some sense auxiliary to the m dimensions.

Two different approaches will be taken in the context described above and each of them
uses its own constraint in the auxiliary dimensions. Scattering amplitudes in sections 4.3
and 4.4 are calculated using the different approaches respectively. These two approaches are
discussed below.

4.1.2 Constraining gauge field components

In the first approach, scattering amplitudes in six dimensions will be calculated under the
constraint

Ag=A5=0, (4.1.1)

on the gauge field components in the auxiliary dimensions. This constraint is used in (3.3.6)
where it leads to a simplification of this term. The simplification does not occur straight-
forwardly but is obtained by writing the field strength tensors as explicit matrices. This
procedure is discussed below in section 4.2.1

If one studies the four and five directions as two extra dimensions with respect to the usual
four dimensions it is convenient to express the momentum square of the usual four directions
in terms of momentum components in the extra directions. From a massless momentum vector

0=p"=(")" - (") - ()" - () - ") - "), (4.1.2)
one can define the momentum square
Py == - ") - () - ") =+ ")+ (") . (4.1.3)

This definition suggests a four-dimensional interpretation. Let p™ be the momentum vector
for a massless particle in six dimensions. By (4.1.3) it follows then that the same particle can
be considered from a four-dimensional perspective as massive with

mig = (0") + (") - (4.1.4)

The momentum vector in four dimensions should therefore be expressed as a massive spinor
according to (2.1.107).

Another simplification used in this approach is regarding polarization of the scattered
photons. A massless particle in d dimensions has d — 2 physical degrees of freedom because
one degree of freedom is removed by the equations of motion and one is removed by the gauge
condition. These degrees of freedom are reflected by a photon in four dimensions having two
possible polarization states. In six dimensions, a photon has four possible polarization states
of which two are the same as the four-dimensional states. The simplification used is to ignore
the two extra polarization states in six dimensions. In this way the photon in six dimensions
can be described using the same polarization vectors as in four dimensions. This turns out to
be useful since the spinor-helicity formalism can then be used to describe the four-dimensional
parts of results obtained in six-dimensional calculations.
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4.1.3 Constraining momentum components

The second approach uses the assumption to neglect momentum components in the auxiliary
dimensions

pa=ps=0. (4.1.5)

This constraint leads to an interesting four-dimensional perspective on the fields in the theory.
In order to see this, the Lagrangian for the free electromagnetic field

LED (AM) = iFMNFMN : (4.1.6)

is considered in six dimensions. The six-dimensional indices can be decomposed simply into
lower-dimensional indices so that the field strength tensor becomes

Fyn =Fu + Fpn + Fup + Fo (4.1.7)
and subsequently
FynFMYN = B F* + 2F 5 F* + 2F, F" + 2F 5 F* (4.1.8)
For the case (4.1.5) the field strength components are
Fi5=0, F,F'= +0,A0"A"= —9,A,0"A; , (4.1.9)
for the metric (2.4.1) generalized to six dimensions. Equation (4.1.8) becomes
FynFMYN = F,,F'" — 49,60"¢ , (4.1.10)

for the definitions of scalars

¢ = %(A4+iA5) , 6= %(Azx—i/ls) : (4.1.11)
with the inversion
1 - i _
A4:$(¢+¢) , As = —ﬁ((b—gb) . (4.1.12)

It follows from (4.1.10) that the requirement (4.1.5) turns the six-dimensional Lagrangian
with six-dimensional gauge fields into a Lagrangian with four-dimensional gauge fields and
two complex scalars

£l (aM) = £GP (4.6.9) . (41.13)
This is exactly the four-dimensional perspective on the theory as considered above which

will be used in section 4.4 where scattering amplitudes involving the scalars (4.1.11) will be
calculated.
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4.2 Preparing amplitude calculations

The first amplitude calculations will be based on the gauge field constraint (4.1.1) as discussed
above. The four-point amplitudes are controlled by the term

1
It = FynFNEFpg M i FynFMN g PES (4.2.1)

which can be simplified by the gauge field constraint in the auxiliary dimensions. In order to
simplify (4.2.1) it is useful to write the field strengths explicitly as block matrices. This is done
in order to split the usual four-dimensional part of the tensor from the part in the auxiliary
dimensions and it leads to an expression for (4.2.1) which is suitable for Wick contractions.

4.2.1 Decomposing the field strength tensor

When the field strengths are considered as matrices the two terms on the right hand side of
(4.2.1) are written as the traces

FunFNRFRg ™M — pM PN PR S, =Tr F* | (4.2.2)
FynFMN Fpg RS = (= FMyFN,) (= FRgF®R) = + T’ F? (4.2.3)

of ordinary matrix products. In order to simplify (4.2.2) and (4.2.3) the matrix expression
for the field strength tensor will be decomposed into block matrices. This is straightforward
since an arbitrary matrix can be interpreted as a block matrix where the entries are grouped
according to a certain block structure. In six dimensions the electromagnetic field strength
tensor can be written as the 6 x 6 block matrix

A B
M _ | 79 (“Xﬂ 4.9.4
|:_ng4) D(QXQ) ’ ( )

with the dimensionality of each of the matrices A, B and D written explicitly. The notation
of (4.2.4) is obviously insufficient since A",, BY, and D™ have Lorentz indices. In terms of
these indices (4.2.4) becomes explicitly

Al B,
M — [ v n } , 4.2.5
N Bym 'D'n;bZ ( )

where the matrices are

00A4 — 04Ay OpAs — 05 Ao

5 | 1A= QA A5 - 05 A —_— 0 D4As5 — D5 A4 (4.26)
pn 82A4 — 84142 82A5 — 85A2 ’ mn 85144 — 84A5 0 ’ o
D3Ay — 04As  B3A5 — D5 A3
and
Ar = Udpn = g1 (4.2.7)

is just the usual four-dimensional field strength.
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4.2.2 Tensor contractions as traces of matrix products

In matrix notation
F? = FM PN = (FR)M, (4.2.8)

and from (4.2.5) the products of field strength matrices in (4.2.2) and (4.2.3) are

m_ [ A B][ A B]_ A2 — BBT AB + BD (42.9)
| -BT Dp||-BT D|  |-BTA-DBT —BTB+7D?|’ “
and
. A2 — BBT AB + BD A2 — BBT AB+BD | [¢é x (42.10)
“ | =BTA-DBT —BT'B+D?| |-BTA-DBT —BTB+D?|  |¢ w|> U7
with the abbreviations
¢ =A*+BBTBBY — A?BBT — BBTA? — ABBT A — BD?BT — ABDBT — BDBT A,
(4.2.11)
w=-BTA’B-DB"BD — BT ABD — DBY AB + B'BBTB+ D* — BTBD?> - D?B'B
(4.2.12)
x = A*B — BBTBD + A’BD — BBY A% + ABDB + BD? + ABD? — BDB'B (4.2.13)
v =—-BTA*+DB'BBT — DB A% + BTBBT A — BT ABBT — D*BT + B'BDBT — D?BTA .
(4.2.14)

This is nothing but a decomposition which by itself provides no simplification. The crucial
step is to use (4.1.1) whereby

Dy =0, (4.2.15)

and hence (4.2.9) and (4.2.10) simplify.
The trace of a product of arbitrary n x n matrices is cyclic in the order of matrices and
by (4.2.15) the trace of (4.2.9) becomes

TrF?=TrA*>-2TrBBT . (4.2.16)
The trace of (4.2.10) is

Tt =Tr¢+ Trw
= TrA* —4Tr ABBT + 2Tr BB BBT | (4.2.17)
from (4.2.11) together with (4.2.12). Squaring (4.2.16) yields
Tr?F? = Tr? A% + 4T BBT Tr BBT — 4Tr A2 Tr BBT (4.2.18)
and by (4.2.2), (4.2.3), (4.2.17) and (4.2.18), equation (4.2.1) becomes
I =TrF* - iTrFQ

=TrA* - i T’ A% + 2Tr BBTBBY — 4Tr A2BBT — Tr BBY Tr BB + Tr A> Tr BBT .
(4.2.19)

Page 73



The matrix A is exactly the four-dimensional part of Fj;n and hence
Tr At = 2 W2 = B FE, For — LB P e Fe — (FF) (F)? 4
A= = v po Tyt po =("F)" (F)" (4.2.20)
holds for the four-dimensional matrices. Subsequently (4.2.19) becomes

1= (*F)* (F)" +2(B5")", (BB")", —4F,F", (BB")",
— (B87)" (BBT)", - Fu, F* (BBT)", | (4.2.21)
which appears almost as a four-dimensional expression because only four-dimensional Lorentz

indices are present. The dependence on the auxiliary two dimensions is in the matrix product
BB where for instance

(BB")" =B (B"),, = BBy . (4.2.22)
By (4.1.1) equation (4.2.22) becomes
(BB")", =" AP0, A, (4.2.23)

which will be used in section 4.3 in order to compute Wick contractions of certain external
fields into (4.2.21).

4.3 Amplitudes with gauge field constraints

This section contains the calculations based on the developments in section 4.2. Four-point
amplitudes with specific configuration of external polarization will be calculated with the
use of the constraints discussed in section 4.1.2. The calculated amplitudes are A(+ + + +),
A(—+++), A(— —++). The explicit expression of the term I} in (4.2.21) is the starting
point for all amplitudes calculations in this section. For convenience and to make references
to certain terms easier throughout the calculations, the expression (4.2.20) is written again as

2 2 v v
I = ("F)"("F)" +2(B8")", (BB")" —4 FLF, (BBT)pu
X1 X2 X3
— (BBT)" (BBT)" + F, P (BBT), | (4.3.1)
X4 X5

where a labeling of terms is included. For each of the y;-terms all non-vanishing Wick con-
tractions have to be calculated. This is done below for each of the amplitudes. Before the
amplitudes are calculated explicitly, it is natural to evaluate some particular Wick contractions
which are relevant for the computations.

4.3.1 Relevant Wick contractions

The results obtained in (3.1.15) and (3.1.18) will still be used in the six-dimensional calcula-
tions. This is due to the discussion in section 4.1.2 of polarization states in six dimensions.
The outcome is that since the two extra polarization states in six dimensions are neglected,
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the four-dimensional spinor-helicity formalism can be used to describe the non-auxiliary di-
mensions in the six-dimensional problem.
The contraction of a (+) photon field and a selfdual field strength is

1 %!
A++Faﬁ = = (=2i) (i) V2 25+ & (pad €% €45+ Pap €% Eda,) : (4.3.2)

22 [CA]
where the factor of 1/p? from the photon propagator is cancelled due to (2.2.80) and has been
omitted. Contracting the first term in the bracket of (4.3.2) with the numerator yields

C’U\;pro'z = C’U\;Y <>\ Aa + C«,Ca) = [)\C] )\o')\ﬁ' , (4.3.3)

which is also the result when the numerator is contracted with the rightmost term in the
[ —

brackets. Similar calculations for the contraction A™7F yleld in six dimensions

TF 5 [AT] 0 = 1V2Xa);s (4.3.4)
TFap [A7] o, = —iV2Xa)s - (4.3.5)
It is important to note that
TR #0, (4.3.6)
—
AT #0, (4.3.7)
hold in the six-dimensional case. The contraction (4.3.6) is computed by substituting
YN Y\
o , 4.3.8
o~ 35
in (4.3.2) which yields
1 p? P 5 [N 252
AaAa + CaCoz)C <)\ )\ + Cac >Ca)\a:| = &7\ Cdg' .
<CA>[< s (CA) 2p 8
(4.3.9)
It follows from (2.1.68) that
A 1
A _ 1 (4.3.10)
2p°-q  (AQ)
whereby
v@[—}—ka V@%’ (4.3.11)

is obtained using (4.3.2) and (4.3.9). The opposite relation is derived in a similar fashion and
reads

TFap [AT],, :-w} F@@ (4.3.12)

Expressions (4.3.4), (4.3.5), (4.3.11) and (4.3.12) will be used in the following in calculations
of the terms (4.3.1).
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The amplitude A(+ + + +)
The all-plus amplitude

A+ +++) — (Af A} AL A

L’1> , (4.3.13)

is the most simple amplitude and according to the general amplitude (3.3.40) it is expected
to vanish. It follows from (4.2.23) that

(BB"),, (BB)" = 0™ A,0,,A,0" AF0,A” (4.3.14)
so that
<Li(><2>= <Li‘><4>= <L’1‘X5>:0, (4.3.15)

because of metric contractions which lead to contractions of polarization vectors of the same
type. The result
(n

follows straightforwardly since it is identical to (3.2.1). By (2.2.80) and (4.2.23) it follows that
all contractions of the term y3 in the all-plus amplitude is of the form

X1 > =0, (4.3.16)

(pé‘ e —f E?) (Pjwv €jip — Pip i) P PLin €L €] (4.3.17)
where signs have been ignored. In the case of four identical polarizations
+ + + +
€ 1 & 1 €k s € (4.3.18)

equation (4.3.17) vanishes due to (2.1.114) and hence
<L’1‘><3>= 0. (4.3.19)
It has thus been found that
A++++)=0, (4.3.20)
as expected.

The amplitude A(— + ++)

The amplitude with one polarization different vanishes in four dimensions. The situation
is different in six dimensions as will be found below. The amplitude is calculated from all
possible Wick contractions

A= +++) — (47 A} AL A

Ig> , (4.3.21)
of (4.3.1).
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4.3.2 Computing y; terms

The Wick contractions of external fields into (4.3.1) are considered term by term and will be
collected after all terms have been calculated.

The terms x5 and x4

First, the ys term given by (4.3.14) is considered. In order to support the following argument,
the external photon fields are written as

ef ef e el Ap(pi) Ao (pj) A(pr) A(p1) (4.3.22)

without specifying the polarizations. Independent of the way the external photon fields are
contracted into (4.3.14), a factor of metric tensors with the structure

My Mo = NoATlpr (4.3.23)

will be the outcome. From (4.3.23) it follows that any full Wick contraction will contain two
dot products of polarization vectors

(€i-ex) (e &) (4.3.24)

for some permutation of the indices. Since there are three external fields with polarization
(4+) and one field with polarization (—), every possible Wick contraction will produce a dot
product E;’— . E;— = 0 of two polarization vectors with identical polarization and therefore all

contractions of the yo term must necessarily vanish. The term y4 is explicitly expressed as

(BB")" (BB")", = 0" A", A, 0" A0, A, (4.3.25)
and identical arguments show that all contractions into x4 vanish as well so that
<Li xQ> = <L’1 ( X4> =0, (4.3.26)
holds.
The term yx;

The Wick contractions of the term y; are computed straightforwardly as follows. Contracting
the external field A~ into one of the TF field strengths will force two contractions of a A™
into a “F'. This particular contraction involves

CalsC¢? =0, (4.3.27)

and hence vanishes. By this argument it can be concluded that the only non-vanishing full
contraction has the external field A~ contracted into one ~F field strength. Employing the
formulae derived above yields an explicit contraction

AlfjlegA'ﬁJfF—}!“_ﬁL = (i \/5)4 [lolg] [[Cp% Cacﬂ} [343;] [4947]

2
= 4(34)? E ;2 pe (4.3.28)
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where the square brackets respectively contain the results from each of the contractions of
external photon fields into field strengths. It is apparent from (4.3.28) that neither of the
particle permutations (Af — A;r) or (A§r — AI) will alter the result of the contraction and
hence a symmetry factor of four is obtained. The remaining two possible distinct contractions
are obtained by permuting (A;r — A;) and (A;r — Aj{) respectively. In each of the calcula-
tions, a symmetry factor of four is obtained as is the case above. The full expression for the
sum of all full contractions of the term y; becomes

<AIA;A:JSFAI‘+F2 _F2> =16 <<34>2@ ]5% + <24>2@ ]53 + <23>2 [Cl] S P )

2] [¢3)” [¢4]
2 2 2
=16 [¢1]? <<[2;1]>2 e+ i;é e+ ii}é ﬁi) . (4.3.29)

As could be expected, the result is symmetric under permutations of particle momenta 1,2

and 3.

The term x5

The term x5 contains the trace
(BBT) = 0" A%, A, . (4.3.30)

Contracting two photon fields A; and A; into this term will produce the dot product ¢; - ¢;
which vanish if the two photon fields are identically polarized. In order to obtain a nonzero
contraction the two photon fields which are contracted into (4.3.30) must therefore have op-
posite polarizations. Hence the two remaining Wick contractions for the term x5 must be of
the type

A+F;w = (pi,p €, — Diw EZM) : (4.3.31)

Furthermore it is obtained that

ATATF, P = — 29l el ple], (4.3.32)

due to the vanishing dot products 62_ . ej. In terms of spinor indices it can be obtained that

1 Ca
+ B B aNi,&
p?’fz‘,u—g et (N )‘Jﬁ+2 b §<ﬂ5ﬁ>\f [CA]
1 [CA)]
= — AiNi) 4.3.33
such that (4.3.32) becomes
AF AT P = ()7 (4.3.34)
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in terms of spinor products. A contraction of the photon fields AT and A~ into BBT/\)\ is
given by

———
A7 ATO" A0, AN = D} pime; e " (4.3.35)

inj

which involves a contraction of polarization vectors that can be expressed in terms of spinor
products as

— +,u_1 aﬁ ,Boz C,@ “h Ca J,&
f< >f[ Al

2°
_[CA] (EA)
= oo (4.3.36)

Both equations (4.3.32) and (4.3.35) are symmetric in the Wick contractions and therefore
a symmetry factor of four is obtained. It follows from (4.3.34) combined with (4.3.35) and
(4.3.36) that

[ I I

. | ] A [Chs
AT AT AL AT | B 0" A0, Ay = (Ar)? EEA;[[CCA} P Din

which is one of three possible different full contractions. The full sum of all full contractions is
obtained by putting ¢ = 1 and permuting the values (2, 3,4) between the indices (j, k,[) with
the result

(4.3.37)

(L] xs) =4 [<34>2% (51-F2) + (24>2% (B1-7) + <23>2§§‘1‘i EH (pl.m)]
—4 Eﬂ [<34>2<[g]> (Pr-P2) + (24)° <[§§]> (P1-P3) + <23>2<[g_4]> (ﬁl.p4):| . (43.38)
where the dot products of momenta have been written as
PiBj = DiPjn = DiDja+ DiDjs - (4.3.39)

The term x3

The calculations connected to the ys-term are a bit more complicated. As this term does
not contain neither the trace of BBT or (BBT)2 it is not as straightforward as for the other
x;-terms above to determine the vanishing contractions. Therefore a more systematic study
of all the possible contractions is needed.

As a method to perform Wick contractions in a systematic way, the following calculations
will distinguish between two types of contractions. One type of contractions has two AT
photon fields contracted into F*F, , whereas the other type of contractions has one A% field
and one A~ field contracted into F'**F),,. The first type of full contractions will be referred to
as 77 while the second type will be referred to as 75. The 77-type of contractions is evaluated
as

FMF,, (BBT) [pz 52— Y —pf 6+’“] [ph,, z-:;fp —Dip s-:lfy p? pin €;FM , (4.3.40)
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where the arrow represent one possible contraction and where the notation of the two po-
larization vectors on the right indicates the two possible configurations of polarization. The
relation (4.2.23) has been used and factors of i as well as signs have been omitted. Equation
(4.3.40) is equivalent to (4.3.17). Due to the mutual contractions of polarization vectors, one
term vanishes when the two square brackets are expanded and one more term is cancelled
from the contraction of the polarization vectors to the right. This takes place independently
of which of the two possible polarizations is chosen. Hence (4.3.40) reduces to

— (pZ e pr &, +piei e V) piE; P;nE;E“ : (4.3.41)

One of the terms in the parenthesis necessarily vanishes when contracted with the two polar-
ization vectors to the right; which one depends again on the configuration of polarizations. It
follows from (4.3.41) that

T | — |
AZ._A A’LA+ F‘“’F 8”Ap8 A —A A+A+A+ F’“’F O”APO A (4.3.42)

is valid. If one particular full Wick contraction is considered, this contraction is identical to
the full contraction where the four individual contractions are interchanged two by two in such
a way that the new full contraction is still of the type 73.

The sum of all possible full Wick contractions of the type 77 can now be obtained from
(4.3.40) by evaluating this expression for all possible permutations of this type of contractions.
This sum is

Y1 =2 {(151-152) [(51-54)(134'63)(173-52) + (51'63)(173-54)(134'62)}
+ (P1-P3) [(51-52)(132'64)(174-53) + (51'64)(174-52)(132'63)]

+ (P1-Pa) [(51'62)(132'63)(173'64) + (51'63)(173'62)(132'54)} } ; (4.3.43)

where the factor of two stems from (4.3.42) and the terms have been ordered with mutual
dot products of momentum vectors as the common factors. Again the short hand notation
(4.3.39) has been used. Employing (4.3.33) and (4.3.36) leads to an expression for (4.3.43) in
terms of spinor products

[c1] . (34) o (24)
X = (1) {(pl P2) To7 2 [(23)(C4) + (42)(C3)] + (P1-P3) @l [(43)(C2) + (32)(C4)]
+ (P1-Pa) % [(42)(¢3) + <34><§2>]} , (4.3.44)

with a little factorization occurring.
The evaluation of contractions of the type 75 goes on as follows. Analogously to (4.3.40),
the arrow indicates that one possible contraction is evaluated and it follows that

+v +
F™F,, (BO)’, — (pé‘e pjyejp+pZ Ppipel, —pie  pipe ) prel plnel,J .
(4.3.45)
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In (4.3.45) the term
=2} ()} P (7)

has been omitted since it necessarily vanishes in the contraction with the polarization vectors
to the right independent of the configuration of polarizations. Either the first or the second
term in the bracket will vanish depending on the configuration of polarizations. Because two
terms in the bracket survive the mutual contractions of polarization vectors, the total sum Yo
of full contractions of the type 75 contains twice as many terms as the sum 1. The twelve
different full contractions are calculated by considering respectively all terms with the same
common factor of a certain momentum vector dot product. If the terms are as well collected
with these dot products of momentum vectors as common factors, the sum is

i (4.3.46)

22 = 2{ (52-Bs) | — (E1-20)(p1-23)(pa-22) — (e1-60) (p1-22) (pu-23)
+ (e1-2s)(pr-ed) (pa-s2) + (e1-22)(pr-20) (pu-es) |
(o) | — (e1-3)(p1-24) (p-22) = (c1-53) (pr-2) (pa-ea)
+ (E1-e0)(pr-es)(pa-22) + (1-22)(pr-23) (pa-ea) |

(P3-P1) [— (e1-€2)(p1-€4)(p2-€3) — (€1-€2)(p1-€3)(P2-€4)

+ (e1-€3)(p1-€2)(p2-c4) + (51'54)(131'62)(172'53)] } : (4.3.47)
Rewriting this result in terms of spinor products yields
Py ]
%= Ay {<p2-p3> G (2031 + (1)) + (324 (1) + (234 41)]
. 1
+ (B2B) gy |63 (28) (A1) + (21)(43) +(C4)(23) B1) + (¢2)(43)(31)
. 1
+(yh) Ty (G2 (B2)141) + (42)B1) + (€3)(12)(24) + (CH32)(21) } .

(4.3.48)

The results obtained in (4.3.29) (4.3.38), (4.3.44) and (4.3.48) are collected and determine the
final result for the amplitude as

A(17itTET) = ol (] > L.{+4<jk>27[cl] Wl g

5,2, T il P
+ S (g (1) + GRY 1) + (AR kL) + (Gid k) k)| i |
(4.3.49)
where the sum contains three cyclic permutations of indices given by
o(i,j,k)=0(2,3,4) , o(i,j,k)=0(4,2,3), o(i,j,k)=0(3,4,2) , (4.3.50)

so that the amplitude contains three contributions of the form on the right hand side of
(4.3.49). One term has cancelled out due to the Schouten identity (2.1.76). The details in this
calculation can be found in appendix A.1.
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The term which has been cancelled is the factorized sum of the respective contributions
from the contractions of the term x5 and the term ;. These two sums have the common
factor “4”. For the term ¥ this factor originates from the original expression (4.3.1) whereas
the factor comes about as a symmetry factor from the contractions of the term x5. The
remaining terms in (4.3.49) are respectively the contributions from the contractions of the
term x1 and Xo. Not much factorization occur for these two terms.

It is interesting to consider the amplitude (4.3.49) in the four-dimensional limit where
momentum components in the auxiliary dimensions are put to zero

pt=p"=0. (4.3.51)
This corresponds to
Pi =pi-p;i=0, (4.3.52)
for momenta in the auxiliary dimensions and it follows that

Al=+++)| =0 (4.3.53)

This is in agreement with (3.2.1) as it should be in the four-dimensional limit. The result
for the amplitude (4.3.49) is also written in apendix B.1 where the new amplitude results are
collected.

The amplitude A(— — ++)

In this section the symmetric four-point amplitude
A= = +4) — <A;A;A§AI‘ I4> , (4.3.54)

having two (—) polarization photons and two (+) polarization photons will be computed in six
dimensions. The same constraints on the gauge field components in the auxiliary dimensions as
discussed in section 4.1.2 will be used. As in the previous section, the amplitude is computed
from (4.3.1). In order to distinguish present calculations from calculations in the previous
section the five terms in the expression will be labeled as ;.

4.3.3 Computing y; terms
As in section 4.3.2 the Wick contractions of external fields into (4.3.1) will be considered term
by term.

The term y;

The first observation for the term 7 is that a contraction of both AT fields respectively into an
anti-selfdual field strength produces CaCﬁCO‘Cﬂ and thus vanishes. The contraction of both A~
fields respectively into a selfdual field strength vanishes as well since this contraction produces
gdgﬁgdgﬁ. The simplest nonzero contraction is therefore when each A™ is contracted into a

TF and each A~ is contracted into a ~F which gives

(—i\/§>4(1a15) (2@%’) (36»35) (4d4f3) = 4 [12)% (34)% . (4.3.55)
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This contraction is symmetric in the interchange of the two A~ fields as well as the two A™
fields and hence a symmetry factor of four is obtained. The remaining nonzero contractions
of the xi-term are of the form

|
AT A7 AT AT ‘ P i oW

_ <Z\f <p1>2ca<ﬁ) (—z‘ﬂ%%) (iv2333?) <—zxf [p‘*]QC“C">

(C )? [c4)”
which is symmetric under interchange of the contractions of (A1_ — A;) as well as under
(A7 < AJ). Hence there exist four contributions of the form (4.3.56). The remaining con-
tractions are obtained from permutations of the fields in (4.3.56) such that the contribution
from the term yi is

(%1 )= 16[12" (34)?

o o [C27(E3) | 5 5 [CAP(CA)? | 5 5 [C1P(E3)? | 5 5 [C1)° (¢4)?
TGP T PPy g T PP P TS ) P
(4.3.57)

The terms Y2 and x4
For the term yo, combinatorics for the contraction of photon fields into
(BB")", (BB")", = + 0" A*O, A" AV O, A, (4.3.58)

have to be considered. Because of the given polarization of the external fields the only nonzero
contractions of polarization vectors are (¢1-€3), (€1-€4),(€2-€3) and (e2-€4) such that only four
different nonzero full contractions exist. These are given by

((BB")", (BBT)", ) = 4(e1-5) (2-24) [(B1-2) (Bs-Ba) + (B1-5u) (52-Ps)]

+ 4 (e1-€4) (e2-€3) [(P1-P2) (P3-P4a) + (P1-P3) (P2-Pa)],  (4.3.59)
with the symmetry factor of four appearing. For the term y4 given by
(BB")", (BB")", = + 0" A4, A, 0" AV D, A, (4.3.60)

there exist only two distinct nonzero full contractions. With the appropriate symmetry factor
these contractions read

((BBT)", (BBT)", ) =8 [(51+5s) (5a-a) (21 -€5) (2-24) + (1 ) (PP (1-24) (2223
(4.3.61)

Using (4.3.36) the contractions of polarization vectors can written in terms of spinor products
as

e U)o [ ()
) = yanaa & D@9 G ¢
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and therefore

(e1€3)(e5er) — (e1ef) (e5-e5) = 0. (4.3.63)
The final result for the contractions is obtained as

[C1][€2] (¢3){c4)
(€1)(¢2) [¢3][¢4]

where the rightmost term in each square bracket of (4.3.59) is cancelled against (4.3.61) due
to the factor “2” in (4.3.1).

(2(BBT)", (BBT)", — (BBT)", (BBT)", ) =16 (31 -52) (5s-Fu) (4.3.64)

The term s

From
(BBT)Y = 0" 420,45 , (4.3.65)

it follows that the contraction of two identically polarized photon fields into (BBT))‘)\ nec-
essarily vanish. Therefore all nonzero full contractions have one AT field and one A~ field
contracted respectively into a field strength F},,. Writing the field strengths in terms of selfdual
and anti-selfdual components as

F P (BBT) = (*F> + “F?) (BB")", (4.3.66)
leads to the conclusion that all nonzero contractions are of the form
T (AL TP [AT] (D) (5-60) + Fap [AF] TFP (A7) (B-pi) (ej-e1) - (4.3.67)

One particular full contraction for the TF?2 (BO))‘)\ part is evaluated as

—— 1 | (€3 [c2] (c4)
— A . alB, n AN _ ~ 2 S
Ap Ay A;AI‘JFFMJFF prATpR AN =21 (1 (C2)[c4] (P2-Pa) (4.3.68)

with the same result if the respective contractions of fields A; and A;‘ are interchanged. This
result is again obtained if the contractions of the fields A, and A are interchanged and hence
a symmetry factor of 4 exists.

Performing all possible permutations of contractions of the form (4.3.68) for both the *F?
part and the “F? in (4.3.66) yields the result

(a7 4; A;AZ{‘FWFW (B5T)%, )

N 1 1R (S NP S (¢ N (4] L I (4 | K (< I BV (¢ ) e ()
= 8{7<C1> ) Pra) [p§ e + 74 | e (P1-Pa) [zﬁ e + KS]Q]
[€C21{¢3) | () | S[CP | 621(Ch) . | 2(C3)% L[
ey P2 ) [p? 0 + aF| e (Pa-Pa) [p? R + 5 mgl }
(4.3.69)

where the structure of (4.3.67) is apparent.
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The term x3

As was the case for the amplitude A (— + + +) the term x3 is the most complicated. Because
of its structure of one long trace, many full contractions are nonzero and must therefore be
computed. The expansion of the y3 term has the structure

FME,, (BBT)’JH — (p'epuep + DV poey — D' ppey — DV DLE,) D E PinE, . (4.3.70)

for some full Wick contraction. The way to compute all nonzero contributions is simply to
consider every single term of (4.3.70). It is apparent that the two terms to the left gives iden-
tical contributions while the rightmost term has the simplest structure. The entire expression
for the sum of all nonzero contractions is presented in (A.1.27) whereas the expression below
is written on a more compact form as a sum of four permutations of indices. The result is

(A7 A7 af A} ‘F‘“’pr (BBT)", )

= > {Q(Eifk) [((Pz’f;’) (pr-er) + (pr-gj) (pi'51)> (Dj 1) — (pi-ej) (pj-€1) (Pr-D1)

o (3,5,k,0)
— (pr-gj) (pi-er) (Pj-Pr) — (Pr-€j) (pj-€1) (Bi-Dr) — (Pr-€;) (Pr-€1) (ﬁz"ﬁj)]

+ (ei-ex) (g5-c1) [(pz"pj) (Pr-D1) + (pi-p1) (Pj-Dr) + (v o) (Bi-D1) + (Pr-21) (Pi pg)} } ;

(4.3.71)
with the four different permutations given as
o(i,j,k1l)=0(1,2,3,4) , o(i,5,k,1)=0(1,2,4,3) ,
o(i,j,kl)=0(2,1,3,4) , o(i,5,k,1)=0(2,1,4,3) . (4.3.72)

The dot products can be expressed as spinor products such that the right hand side of (4.3.71)
reads

S e L e okl + el ik 1) i)

o (i,i,k,l)
= [ig] GUY(Ca) [C5] (Bre- o) — [L5] (i) {CT) [Ca] (B D)
— [kg] GO (CR) [CI] (i pr) — [L5] (RD)(CT) [CK] (i p5)

+ 114G ( (piepy) i) + (rp) (Bie) + (piep1) (B +B) + (pype) (Bioi) )|
4.3.

(4.3.73)

with the same permutations (4.3.72) appearing in the sum.

Collecting results

Collecting the previous results from expressions (4.3.57), (4.3.64), (4.3.69) and (4.3.73) and
introducing the appropriate numerical factors provides the final result for the symmetric
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amplitude
7r4 0/4

8

a2 2 a2 2SI (Ck)?
U(MZ;J){[J] (k1) + 450 ) g o

. 2 12
Saieh [2<<j> 1) 55) (ﬁ? CU @>

A kNT) = - X

T GG I @2 M P

+ (1) (RCE) [CR] + [kg) Git) (CR) [¢1] ) (53+5)

— [ GIC) [¢] ) — (1] G (CT) G (5

— [kd) GICR) [¢] (i) — (1) (KL (CE) [C] (5i-7y)

+ (a1 (¢l <2 (pi-p;) Br-Pr) + (Pr-pr) (Bi-B;) + (pi-po) (Bj-Pr) + (ps-pr) (Bi-Pr) ]}7
(4.3.7

with the same permutations as in (4.3.72). The origin for each of the terms in the expression
above is rather clear except for the term with the factor of “2” in the last bracket. This
particular term originates from (4.3.64).

4)

It should be mentioned that since the respective momenta p!‘, are massive when considered
from a four-dimensional perspective, the dot products (p;-p;) cannot be written as spinor
products. In particular

P pjar = P — PV kjm = pi - Dj — Di* Bj » (4.3.75)

so that

pi*DPj # DiPj - (4.3.76)

This fact can be elucidated from a consideration of the two massive four-dimensional vectors
at and b*. These vectors can be written according to the massive decomposition (2.1.107) in
Lorentz indices

2 2

b a b
ay = a“ + m qu 5 b“ = bﬂ + Wq qu (4377)

where the vector g, is massless. The dot product between a and b is then
2 (bb . q)2 1p2 (ab ) q)2
2(a”-q) (¥ -q)

As was the case for the amplitudes A(+ + 4 +) and A(— + + +), it is natural to consider
the four-dimensional limit of (4.3.74). Again this corresponds to (4.3.52) and it follows that

a
a-b=a b+

(4.3.78)

71_4a/4 - 7.1.4a/4
A= —+H) | =T 2 il k0% = -5 12 (39)° (43.79)
U(Z7J7k7l)
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which is in agreement with (3.2.5) apart from the interchange (1,2) < (3,4) of particles.
This is simply because the two amplitudes have opposite ordering of particles. It is reassuring
that the result in the four-dimensional limit reduces properly to the result obtained from the
calculations in four dimensions. The result for the amplitude (4.3.74) is as well written in
appendix B.1 where the results for the amplitudes which have previously not been calculated
are collected.

4.4 Amplitudes with momentum constraints

In section 4.3 four-point scattering amplitudes in six dimensions have been studied with a
constraint on the gauge field in the auxiliary dimensions. The topic of this section is scattering
amplitudes where instead the momentum components have been constrained in the auxiliary
dimensions. This is the approach discussed in section 4.1.3. It follows from (4.1.13) that
the constraint (4.1.5) leads to a four-dimensional gauge field and two complex scalars in four
dimensions. The amplitudes for the scattering of theses scalars is exactly what will be studied
in this section. The study will be limited to the amplitudes which only involve scalars and no
gauge fields.

4.4.1 Constructing the Lagrangian for scalar interactions

The starting point is to consider the DBI-Lagrangian in six dimensions

1
L= 2.2 \/— det (npn + T Fyw) (4.4.1)

Mathematica is used to explicitly construct the field strength tensor and the metric as matrices
and the determinant can be evaluated in full generality. This yields a lot of interaction terms
controlling different amplitudes

AL Ay, A 6,6) o A6,6,--) . (44.2)

The choice is made to consider only pure scalar interactions. This means that all cross terms
in the Lagrangian will be neglected and only terms with the structure

(0*90u0) (4.4.3)

will be considered. The sum of the (6 x 6) matrices gy and Ta/ Fiyy is

nunN + 7o/ Fyn =

_(7T0/)_1 For Foz Fos OoAy dAs ]
—Fynn - (7TO/)_1 Fis : Fi3 O1Ay 0145
i | —Fo2 —F19 — (wa)” Fys O Ay 0 As
ra B . (444
— I3 —I3 — Iy — (ma/)”! 0344 0345 ( )
—80A4 —81A4 —82144 —83A4 — (ﬂa/)il 0
| —00As  —O1As  —0As 034 0 — (ra/) 7]

with the use of (4.1.5). Neglecting the cross terms in the evaluation of the determinant is
equivalent to putting every entry of the (4 x 4) matrix

F =0, (4.4.5)
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and hence (4.4.4) becomes

nun + 7 Fyrn =

(/)" 0 0 0 oAy Ao As
0 — (wa/) ! 0 0 1Ay A1 A5
, 0 0 — (ra/) 0 Ay B As
4.4.6
e 0 0 0 — (7TO/)_1 83144 83A5 ( )
—60A4 —61A4 —82144 —83A4 — (7TO/)_1 0
L —60A5 —61A5 —82145 —83A5 0 — (ﬂa/)il_

The determinant of this expression is evaluated by Mathematica with the result

— det (nav + 7ro/FMN) =
1 —2m2a/? (0000 — 01901 & — D2dDo — D3D30)
+ 7t (= 20000100901 — 2000200 Db — 2006030 dI3d
+ 20100201 9029 + 201$D30D1 93¢ + 202¢030D2$D30)
— (= 00001 dO1d — DDy dD20020 — Do pOopD3$D3
— 01901000000 ¢ + 01901 $pD2¢D2p + D101 30039
— 02002000000 ¢ + D22 D1 GO + D2D2$D3$ 3¢
— 030030000000 + 0300300101 ¢ + D3036026020) . (4.4.7)
By experimentation it is then obtained that
— det (nun + T’ Fyun) = 1 — 20°0/%8,00" ¢
+ 7t 9,00" 00, $0" ¢ — 10,00 $0,$0"d ,  (4.4.8)
holds since cancellations between the two terms in the second line of (4.4.8) take place. Upon
introducing the abbreviations

a= 0,000,  b=0,00"60,60"¢,  c=0,00"¢0,00" | (4.4.9)

1/2

the Lagrangian (—det (nyn + 7o/ Fyn)) ™' can be expanded as a Taylor series in o' as

1
Lscalar = W \/ — det (77MN + ma! NN)
1 2. 12 1 4 14 2 1 6 16 3 8
= 5. [1—7ra at 7o (—a —i—b—c)—|—§7roz (=a® 4+ ab—ac) + O ()],

(4.4.10)

with the use of Mathematica. From (4.4.9) it is apparent that a®> = b and a® = ab such that
(4.4.10) simplifies and is given to order o/6 as

1 _ 1 o
»Cscalar = m - 8u¢au¢ - 5 7T2al2au¢au¢au¢ay¢
5 T 00,00 60,600 60,50 + O (o) | (4.4.11)

where the expressions for a, b and ¢ have been substituted back. From (4.4.11) the kinetic
term 8H¢8“¢_5 is recognized. As well is the interaction term for the four point amplitude and
the term contributing directly to the the six point amplitude. These terms will be discussed
separately below.
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4.4.2 Scalar four-point amplitudes

The expanded Lagrangian (4.4.11) provides the scalar amplitudes for four particle and six
particle scattering. The four-point amplitude is provided directly by the Lagrangian and will
be calculated below while only the direct contribution to the six-point amplitude is present. In
order to evaluate the full six-point amplitude one has also to take into account the contribution
from the second order expansion of the action.

In the Wick contractions of scalar fields, a particular scalar field must be contracted
into a conjugate field. This requirement limits the number of possible contractions in the
computation of amplitudes. The scalar four-point amplitude

A(p1020304) = %7720/2<¢1¢2</33q34‘8u¢8“¢8,,q§8”g5> , (4.4.12)

is evaluated directly by the full contraction

| [T 1| ,
¢1¢2¢3¢4‘3u¢8“¢8u¢3y¢ =i (p1-p2) (p3-pa) =i (p1-p2)” , (4.4.13)

since this is the only contribution because of the requirement from above. The full contraction
(4.4.13) has a symmetry factor of four and the four point amplitude is therefore given by

A(p1¢20304) = —% 7T20/2<¢1¢2¢_53¢_54‘3u¢8“¢3u€58y&> = —% ma?s” (4.4.14)

in terms of Mandelstam variables. This result is also found in appendix B.2.

4.4.3 Scalar six-point amplitudes

At tree level, the six-point scalar amplitude

A(p1¢203010506) = Ao (d10203040506) + Apote (9102¢3040506) (4.4.15)

has two contributions as indicated above. The first contribution Aq is the direct one from
the term in (4.4.11) consisting of six scalar fields. This contribution is calculated directly
from the action and the diagram for this interaction is shown in figure 4.1. The second
contribution Apge is from the square of the term in (4.4.11) consisting of four scalar fields.
This squared contribution originates from the second order term in the Taylor expansion of
the exponentiated action. This contribution is a contraction of two four point vertices and
hence it involves a pole in the propagating momentum. The diagram for the interaction is
shown for one of the possible permutations of particles in figure 4.2.

The direct contribution to the amplitude

The direct contribution Ag (¢1¢2¢3g54¢_55¢_56) is evaluated by the systematic study of all possible
Wick contractions of the object

O1020304506|0,00"60,00" 901306 | (44.16)
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with one particular full contraction given as

H|| ' |

| i T 11 |
¢1¢2¢3¢4¢5¢6‘8u¢8“¢8,,¢8”¢8,\¢8)‘¢ =i (p1-pa) (p2-p3) (P5-D6) - (4.4.17)

Interchanging the respective contractions of fields ¢o and ¢3 does not alter the right hand side
of (4.4.16) and neither does an interchange of the contractions of ¢5 and ¢g. The right hand
side is consequently the result of four different full contractions.

The remaining eight full contractions are obtained by interchanging contractions of fields

(¢1 < ¢2),(¢1 < ¢3),(d4 < ¢5),(ds < ¢6) and the result is given by
Ao (¢10203h40506 )
= —2ir"a {(pl-m) [(p3-P4)(P5-P6) + (P3-P5)(Pa-P6) + (P3-P6)(P4-Ds5)]

+ (p1-p3) [(P2-P4) (P5-P6) + (p2-P5)(P4-p6) + (P2-16) (Pa-ps)]
+ (p2p3) [(p19) (05 D6) + (91-P5) (pa+p6) + (p1-D6) (pa-p5)]} , (4:4.18)

where the symmetry factor has been included.

®3 Z P4 ®3

P2

* ¢1 P6
P6
Figure 4.2: A contraction of to four-point scalar ver-

tices with a specific configuration of particles. The con-
traction is calculated in (4.4.23).

1

Figure 4.1: The direct contribution to the six-point
scalar amplitude.

The indirect contribution to the amplitude

The pole contribution to the six point amplitude is controlled by the second order term in the
expansion

e = exp [z‘/ddajﬁ] =1 +¢/d%z— % </dda;£)2 +0 ((iS)3) , (4.4.19)

such that the external fields are contracted into the term given explicitly by

5 (06(0) 0,0(2) () 0,6(2)) (90(0) Dr0() °G0) Aub(y)) - (1420)

Since this six particle vertex is a contraction of two four particle vertices, the particles have
dependence on two distinct space time points x and y. This dependence plays a role for the
internal contractions of fields and has been emphasized above. With the abbreviation

¢(z) = ¢a , (4.4.21)
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the pole contribution can be written formally as

Apote (010203040506) — Z<¢1¢2¢3(E4(E5€56 3“%3#%3”@fgxaquxa)‘ﬁf)y@%anquan@gy> ;
(4.4.29)

where the summation is performed over all possible permutations of full contractions between
external and internal fields in combination with all possible ways of performing one single
internal contraction without generating a loop.

Loops are generated from internal contractions between a ¢, and a ¢, and hence only in-
ternal contractions between a ¢, and a Q_Sy are considered in order to constrain the calculations
to non-loop level. There exist sixteen of these internal contractions and since they all have
the same structure, a symmetry factor of 16 is obtained.

In order to illustrate the structure of the contractions in (4.4.22), one particular term in
the sum is evaluated explicitly as

LT NN Lo
D102603019506|0" 0201000 60,020,016, 3,0,

1
= (p1-p2) (p5-p6) P4 - (1 + P2) P3 - (P5 + D6) RE— (4.4.23)
(p1 + P2 + p4)

with a pole in the propagating momentum. As is the case for the contractions in (4.4.16),
the diagram for the contractions above has a symmetry factor of four such that the total
symmetry factor is 64. This comes about when the symmetry factors for the internal and
external contractions are combined.

Summing up the contributions

When the remaining eight full contractions in (4.4.22) are calculated and all the nine contri-
butions are summed, the pole part of the amplitude takes the form

Apote (910203040506) =
+ 8irtat {(pl’PZ) (p1 +p2)" p3 [(p5'p6)p4,u s +§6)V
7 (p1 + p2 + pa)
(P4-P6) D5, (P4 +16)” | (P4-D5) D6, (P4 + ps)”}
(p1 + p2 + p5)° (1 + p2 + pe)”
(P5°p6) Pau (p5 + pe)”
(p1 + p3 + pa)”
(p4-p6) P51 (P4 + p6)” n (Pa-p5) P6u (P2 + ps)”}
(p1 + p3 + p5)° (1 +p3 + pe)”
(p5-p6) Pau (p5 + pe)”
(p2 + p3 + pa)°
(pa-p6) P, (P4 +ps)” | (Pa-P5) Pe pu (P4 +P5)V”
(p2 + p3 + p5)° (p2 + p3 + p6)° .

+ (p1-p3) (p1 + p3)! P2, [

+ (p2-p3) (P2 + p3)" P1w [

(4.4.24)
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In order to write the the full amplitude in a more compact form, the results from (4.4.18)
and (4.4.24) are respectively expressed as a sum of three terms such that the full six point
amplitude reads

A(p10203010506) =
Ao ($10203010506) + Apole (010203010506) =
=27t > > (0ip;) (PmPn) Peu Pl

U(Z7.77k) U(l7m7n)

+ &irta/? Z Z (pi‘pj) (Pm-Pn)

(pi +25)" Py (Pm + Pn)” Prw

2
o(i,5,k) o(l,m,n) (pi +pj +pl)
(4.4.25)
with the permutations
o(i,j,k)=0(1,2,3) , o(i,j,k)=0(2,3,1), o(ij,k)=0(3,1,2), (4.4.26)
o(l,mmn)=0(1,2,3) , o(l,mn)=0(2,3,1), o(l,mmn)=0(3,1,2) . (4.4.27)

As should be the case, it is noticed that the amplitude has an apparent symmetry under
any permutation of momenta (1,2,3) as well as the momenta (4,5,6). As the last step, the
expression (4.4.25) can be factorized further and the final result for the full six-point amplitude
takes the more compact form

A(d1¢2¢3010506) =

. (P + pn)"
=27 YN (pip) (Pmepa) | =4 (00 05)” Py | P
o(i,j.k) o(lm,n) (pi+p;+p1)

(4.4.28)
with the same permutations (4.4.26) and (4.4.27). This result is also part of the summary in
appendix B.2.

4.4.4 Manipulations of pole terms

Although the expression (4.4.28) provides the six point scalar amplitude in a compact form,
it is interesting to study a little bit further the result (4.4.25). Since all particles are massless,
the contractions of momenta satisfy

(i + )" Preyp = (i +pj +01)" Doy (4.4.29)

which suggests that (4.4.24) can be manipulated in a way that allows some pole free terms to
be extracted. The motivation for this is to obtain some cancellation of pole free terms when

(4.4.18) and (4.4.24) are added.
From (4.4.29) it follows that
(1 + p2)" Pajup3w (5 +p6)” = — (3 + p5 + P6)" Pay (P1 + D2 + pa)”
— (p3 +p5 +p6)!" Pay (s +p6), (01 +p2 +pa)” , (4.4.30)

where momentum conservation has been used. When (4.4.30) is substituted in the leftmost
term in the first square bracket of (4.4.24) the result is two terms where the pole is cancelled
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in the first. The middle and the rightmost term can as well be rewritten by a substitution of
the same relation (4.4.30) with suitable momentum vectors. The resultant expression for the
contents of the first square bracket upon these three substitutions becomes

(p5-16) Pay (p5 +16)” | (Pa-p6) P50 (P4 + p6)”
2 2
(p1 + P2 + p4) (p1 + P2+ ps)
(P4-ps5) P6,u (Pa + Ps)y}
(p1+p2+ 296)2

= (p1p2) | = (5°P6) (b3 + P5 + p6) - P — (a-P6) (P + P + o) - s

(p1- p2) (p1 +p2)" P30 [

— (pa-ps)(p3 + pa + ps) 'P6]

(p5-p6) (P5 + p6), (P1 + P2+ pa)” Pay
(p1+ p2 + pa)®
(pa-p6) (P4 + p6), (P1 + P2+ p5)" D5
(p1 + p2 + ps)°
(pa-ps5) (P4 + ps), (P1 + P2 + 6)” Pe
(p1+ P2 + p6)”

When the prefactor 874/ is included and (4.4.31) and (4.4.18) are added together it is found
that the first line of (4.4.18) combines with the pole free terms of (4.4.31). The procedure of
rewritings as described above is now employed on the remaining six terms of (4.4.24). This
yields the expressions (A.1.28) and (A.1.29) which are equivalent to (4.4.31) with permutations
in momentum vectors p',p? and p3. The expression for the amplitude when the pole terms
and the pole free terms have been combined is

A(d10203040506) =
2 I
+8rta Y (pirpy) (Pmepa) <pz'+Pj - ng) Pl

o(i,j,k) o(l;m,n)

(pi +pj +m)"”
+87%™ " > (9ips) (PmePn) (Pm + Pn), (;Hf—.ﬂglﬁ (Pi + )" Prps
2 J

+ (p1-p2) (p1 + p2)" [

_l’_

4 (4.4.31)

U(Z7J7k) U(l7m7n)

(4.4.32)

which can then be expressed in a slightly more compact way as

A(p1¢203040506) =
+8rta™ Y N (pip)) (Pmepa)
o(ig.k) o(lm,n)

2 \"  ®m+pa), i +pj+p)"

X <pz‘ +pj— gpk> + (Prn + Pr)y (i L ) (pi +25)" | PLys (4.4.33)
(pi +pj +p1)

where the sums are again over permutations (4.4.26) and (4.4.27). The expressions above
contain the rather awkward factor of 2/8 which occurs as a consequence of the different front
factors of Ap and Apge. From the calculations leading to (4.4.32) and (4.4.33) it is apparent
that, if the respective front factors of (4.4.18) and (4.4.24) had been identical, instead a
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“1” would be the factor of p; in the two expressions above. This comes about because the
contribution Apgle in case of identical front factors is entirely cancelled against the pole free
part of (4.4.24). Tt is most easily realized by a comparison of the expression (4.4.18) with
(4.4.31), (A.1.28) and (A.1.29) from where the cancellation of (4.4.18) in case of identical
front factors is manifest.

4.5 Cross section for scalars

The results obtained in section 4.4.2 can be used in an estimate of the differential cross section
for the scattering of four scalar particles. The computations are based on the discussion of
the cross section in section 1.3.2.

The differential cross section for the scattering of four massless scalars is calculated by
substituting (4.4.14) in (1.3.5). The result is

do 2 u 3
Co_T 45.1
aQ 256 ¢ 7 (4.5.1)

where the s-variable has been used for the center of mass energy
s=F% . (4.5.2)

It is noted that (4.5.1) has the correct dimension of area. Because of the o/* dependence,
the differential cross section is incredibly small. The center of mass energy in (4.5.1) can
be controlled in an experiment and in principle, the center of mass energy can be increased
sufficiently in order to compare with the o/4 factor. It is reassuring to see that the differential
cross section involves only the string parameter and the center of mass energy in the scattering
since this was addressed in section 1.3.1.

The numerical value of the differential cross section can be determined from a very rough
estimate. In this estimate the maximal energy Eax ~ 14 Tev at the LHC will be used as the
center of mass energy. In natural units the second and the metre is related by

s~3-10°m , (4.5.3)
which yields
1 7
eV ~ 3 10" m , (4.5.4)

from the value of Planck’s reduced constant. Using

Fem ~14-10" eV, (4.5.5)
as discussed in section 1.3.1 gives
d
é ~as? ~ (107 m)® (107 - 10" m)® = 107196 m? | (4.5.6)

as a very rough estimate for the scalar differential cross section with a center of mass energy
equal to the maximal energy at the LHC. This is indeed astronomically small as could be
expected from the discussion of energy estimates in section 1.3.1.
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Chapter 5

Discussion and conclusions

The goal of the thesis was to calculate amplitudes in six dimensions as a continuation of
the work in [1]. On one hand, the motivation was to compute the amplitudes simply to
see what they look like and in order to compare with the four-dimensional amplitudes. On
the other hand, the purpose was to study whether the spinor-helicity formalism is suited for
calculations in six dimensions and, at least naively, to gain simplifications in six-dimensional
amplitudes similar to the simplifications in four-dimensional amplitudes due to the spinor-
helicity formalism.

The results obtained in section 3.2 were calculated along the lines of [1] with diligent use
of the spinor-helicity formalism as a very important ingredient. Due to the formalism, it can
be read off directly from the action that the only non-vanishing four-point amplitude is the
symmetric one A(+ + — —). One interesting result from this section is that the amplitude
A(+ + — — — —) vanishes. The amplitude has a direct contribution from a six-point vertex
and a contribution from a contraction of two four-point vertices and these two contributions
turn out to be exactly equal and with opposite signs. It is not a priori obvious that this
should be the case. The most important conclusion however from this section is to note how
simple the calculations turn out due to the use of the spinor-helicity formalism. This is also
the invitation to approach six-dimensional calculations.

The generic amplitude A (A;A4;A;Ay) was calculated as an intermediate step between the
explicit four-dimensional and six-dimensional calculations and it was calculated without use
of the spinor-helicity formalism. The calculation is in principle simple but it involves a large
amount of terms which makes it complex in practice. However, the final result turns out to
be simple and this might be an indication that an overall simplification should be possible
also in higher dimensions than four. Furthermore it is reassuring to see that this amplitude
vanishes for the case of four identical polarizations because this is consistent with the results
for the specific calculations of amplitudes in sections 3.2 and 4.3.

The latter section contains the six-dimensional results for the amplitudes A(+ + + +),
A(—+++) and A(— — ++) which have not previously been calculated in this way. This
makes these amplitudes interesting by themselves. Moreover it is reassuring that all three
amplitudes reduce to the results obtained in section 3.2 in the four-dimensional limit. All the
new amplitudes have been collected in appendix B as a summary of the results in the thesis
which have not previously been calculated. It is important to stress that the amplitudes in
six dimensions have been calculated with the use of the constraint A4 = As = 0 on the
gauge field in the auxiliary dimensions and also with restrictions on the number of considered
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polarizations. Although these constraints simplify the calculations considerably, the results
for the amplitudes are still complicated. Especially the result for the symmetric amplitude
A(— — ++) is complicated and involves comprehensive calculations. However, had these
simplifications not been included, the results for the amplitudes would have been even more
complicated.

It is interesting to note the apparent existence of a certain hierarchy of amplitudes. The
amplitude A(4 4+ — —) is the only non-zero four-point amplitude in four dimensions whereas
both A(— + ++) and A(— — + +) are non-zero in six dimensions. This illustrates a certain
ordering in complexity and indicates that there might be some deeper structure of simpli-
fications to be found. However, the difference in complexity when going from four to six
dimensions in this form is manifest and the results in the thesis indicate strongly that the
used approach is not really the way to go for the purpose of six-dimensional calculations. The
amplitude hierarchy suggests that simplifications as in four dimensions exist also in higher
dimensions but at this point it is not at all obvious how these simplifications should be imple-
mented. The most important lesson learned in this thesis is therefore that the generalization
to higher dimensions is not so straightforward. However, the results in the thesis indicate that
there exist a deeper structure in the amplitudes from which simplifications might be discov-
ered. One approach is to construct a six-dimensional spinor-helicity formalism as in [16, 27]
and implement this formalism in six-dimensional computations. This can be considered as
just one of many invitations for further studies in the interesting field of scattering amplitude
calculations in the frame of effective theories.
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Appendix A

Computational details

A.1 Results of computations

Lorentz invariants from the field strength

In section 1.4.2 it is discussed that

1
4

1

C = 1

F, FM | Co=—=F,F" (A.1.1)

are the only Lorentz invariants objects that can be constructed from F),,. Equations (2.1.99)
and (2.1.100) can be used to show that this is the case. It is observed that

tp Bp. o+ 3%+ B,
F P Fy = F Fy e = TR Ty (A.1.2)
and hence
+Fo'zﬁ +F,6";{ = R&€axy - (A13)

The constant x is determined by

g +Fdﬁ +FB"y = ke Ea (A.14)
and it follows that
and therefore
wpSp, = _ Lp —F B, = — L p? A16
Fd Fﬂﬁ__ﬁ Eay » @ g«,——g Eay - ()

A Lorentz invariant object must have all indices contracted and it can be deduced from
(A.1.6) that everything Lorentz invariant which can be constructed from F),,, must therefore
be proportional to *F and “F. This shows that (A.1.1) are the only possible Lorentz invariants
up to constants.
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Manipulations of the DBI-Lagrangian

The following is an explicit calculation inspired by [22]. The purpose is to calculate the
relevant determinant in the Dirac-Born-Infeld Lagrangian,

Lppr = \/— det (nu + Flu) , (A.1.7)

and check the agreement with the expression
Lppr =1+ I, [1+ O (F?)] , (A.1.8)

as in (3.3.1) with I3 and I given in (3.3.2) and (3.3.3). In order to evaluate the determinant
of (A.1.7), the metric 7,, and the field strength tensor F},, are constructed explicitly in

Y

Mathematica. In particular the field strength is constructed as the antisymmetric matrix

0 a b ¢
—a 0 d e

F b o—d 0 f]|° (A.1.9)
—c —e —f 0

with lower indices. The dual is constructed as a table in Mathematica according to the
definition

= %EWPUF,JU : (A.1.10)
by using the previously constructed F},,. Hence the dual is constructed with upper indices as
0 if  —ie id
v _ —if 0 ic —ib (A1.11)
ie —ic 0 da |’ o
—id b —ia 0O
It has then been checked explicitly that

1 1
—det (1 + Fuw) = 1+ 5 Fp P 4 7o Fus ' Fpo F7° (A.1.12)

with a different sign in front of the rightmost term compared to [22]. This is due to the

definition of the dual which includes “7” in the definition. This calculation from Mathematica
appears in figure A.1 from which it is apparent that (A.1.12) holds. Since the field strength

inf114]= -Det [n+F]

ouia 1-a2-b?-c?2+d?-c?d?>+2bcde+e?-b’e?-2acdf +2abef +f2-a2f?2

in131= Expand[1-1/2 *«Tr[F.n.F.n] +1 /16 (Tr [F. Fdual 1) " 2]

oufizi= 1-a2-b%2-c2+d?-c?2d?>+2bcde+e?-b?e?-2acdf +2abef +f2-a2f2

in132)= Expand[(1-1/4Tr [F. Fdual ])*2+1/4 (-Tr [F.n. F.n] - Tr [Fdual .n. Fdual .n] +2 Tr [F. Fdual ])]

oupzz- 1-a2-b?-c2+d?>-c?d’+2bcde+e®>-b’e?-2acdf +2abef +f2-af?

Figure A.1: The Mathematica calculation which shows that (A.1.12) holds.
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tensor constructed in (A.1.9) has been chosen to have lower indices, the evaluation in Mathe-
matica is performed as

F F" = —F, 0" Fon™ = —Tr FnFy (A.1.13)

with the rightmost expression written in matrix notation using the matrices as defined in
Mathematica. In the same way the trace of the field strength and its dual is just

F,F" = —TrFF , Al.14
I

since the dual as defined in (A.1.11) has been chosen to have upper indices. Furthermore, it
has been checked explicitly that

1 - 2 N2
<1 +1 FWF“”> +7 (FW - FW) = —det (nuw + Fu) , (A.1.15)
where the calculation of the left hand side appears in figure A.1. With the definitions
I, = L g Iy = L F,F"PF,,F" L F,FWEF, FP A
2—1 uv ) 4—_§ v po _Z nuy po ) ( 116)

it has been checked explicitly that
—det (N, + F) = (1 + L)* + 21y , (A.1.17)

with calculations and definitions of Iy and Iy in Mathematica appearing in figure A.2. For the

npsay= 12 =-1/74Tr [F.n. F.nl;

nissi= i4=-1/8 (Tr[F.n.F.n.F.n.F.n] -4i2°2);

nis71= S=Expand[ (1 +i2)"2+2%i4]

oufis7e 1-a2-b%2-c2+d?-c?2d?>+2bcde+e?-b?e?-2acdf +2abef +f2-a2f2
inpss)= -Det [n+F] -S

outf1s8)= 0

Figure A.2: The Mathematica calculation which shows that (A.1.17) holds.
leftmost term in the definition of I, the Mathematica input is written in matrix notation as
FFPFF" = +Tr FnFnFnkFn . (A.1.18)

An expansion of the square root of (A.1.17) in o’ yields

VA+ L) +2L—1=L+1L [1+0(F)], (A.1.19)

which is used in (3.3.1).

Internal field strength contractions

The following is a more detailed calculation of the internal contractions of field strength spinors
leading to (3.1.22). By writing

Oac = —1Pad 5 (A.1.20)
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it follows that

tp. .- —
af taB —
1 . . . .
~ (—i)? (pya Poy A3 Ag + rapsy A5 Ad +pyppay Ag Ag + 1 5psy Ay AJ) :

4
(A.1.21)
The Wick contractions yield
F T _ 12, VeV s A iy € ¥ D sPas € gEs + D505 n s
aB tap 4 p2 PyaPay € g€5 T PyaPBYE aly TPysPavE gEa T Py PBYE o€
1
= —i-@ (_pﬂd DPnj — Pac pﬁ,g' - pgﬁ'pad ~Puos p,@d)
i
= (pagpﬁa +Paapﬁg> ; (A.1.22)
which is the result (3.1.22).

Detailed calculations with the Schouten identity
The result (4.3.49) has been simplified by use of the Schouten identity. Before the simplifica-
tion, the term reads
4 /4
A= +++) = T x

8
© N~ U fop e 4 a2 CUED
&, {0t 060 + 100 + )+ 445
(0 (R + GRY ) + (CARYRL) + Gk k)| i}
(A.1.23)

where the sum contains three cyclic permutations of indices given by
o(i,j,k)=0(2,3,4) , o(i,j,k)=0(4,2,3) , o(i,j,k) =0(3,4,2) . (A.1.24)
Equation (2.1.76) has been used in (A.1.23) as
GRYCE) + ()CR) + (RiN(CH) = JOKTCPPesaesy + 79K esaesy + 1Pk CPies sena
= oKV (5%[55@ + 45855+ Edﬁ'sﬁ)
=0, (A.1.25)

where the bracket vanishes. The expression (A.1.23) is hence reduced to (4.3.49) which is the
result for the six-dimensional amplitude A(— + + +).

An explicit term in the amplitude A(— — ++)

The following is the expanded form of (4.3.71) for all Wick contractions into the y3 term

F* F,, (BBT)" (A.1.26)
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for the six-dimensional amplitude A(— — + +). The expression is

(A7 A7 Af A} ‘F“”Fl,p (BBT)", )=
2{(e1-23) [ ((pr-22) (p-20) + (p1-24) (p3-22)) (Pa-Bu) — (p1-22) (p2-4) (B -P1)
— (p1-€4) (pa-e2) (P2-P3) — (p3-€2) (p2-€4) (P1-Pa) — (p3-€4) (pa-€2) (131'132)}
+ (e1-€4) [((P1'€2) (pa-e3) + (pa-e2) (p1-€3)) (P2-P3) — (p1-e2) (p2-€3) (P3-Pa)
— (p1-e3) (p3-€2) (P2-Pa) — (pa-e2) (p2-€3) (P1-P3) — (pa-e3) (ps3-€2) (131'132)}
+ (e2-€3) [((pz'&i) (p3-e1) + (p3-ea) (p2-€1)) (P1-Pa) — (p2-€1) (p1-€4) (P3-Pa)
— (p2-€4) (pa-e1) (P1-P3) — (p3-€1) (p1-€4) (P2-Pa) — (p3-c4) (pa-e1) (251'252)}
+ (e2-€4) [((pzfl) (pa-e3) + (p2-e3) (pa-e1)) (B1-P3) — (p2-e1) (p1-€3) (P3-Pa)
— (p2-€3) (p3-e1) (P1-P4) — (pa-€1) (p1-€3) (P2-P3) — (pa-es) (ps3-e1) (251'252)}
+ (e1-e3) (e2-€4) [(pl'm) (P3-P4) + (P1-pa) (P2-P3) + (P2-p3) (P1-Da) + (P3-pa) (251'252)}

+ (e1-24) (2-23) [ (p1p2) (Ba-B1) + (Pr-ps) (Bo-P) + (p2-pa) (1) + (ps-ps) (5r-52) |}
(A.1.27)

Rewriting scalar terms

This section contains the remaining pole terms from section 4.4.4. The terms are the middle
and last term from (4.4.24) which are rewritten as in (4.4.31). The first term becomes

(p5-p6) pay (s +p6)”  (Pa-pe) Psu (P4 + p6)”
(p1+p3+ p4)2 (p1+p3+ p5)2
(Pa-ps5) P6,uu (P4 +p5)y]
(p1+p3 +p6)2

(pr-p3) (p1 + p3)" Py [

= (p1p3) [ = (5°P6) (92 + P5 + Ps) - P — (P4-P6) (P2 + P + o) - s

— (pa-ps)(p2 + pa + p5) 'P6]

(ps5-p6) (P5 +p6), (P1 + p3 +pa)” Pay
(p1 + p3 + pa)?
(pa-p6) (P4 + p6), (P1 + 3+ p5)" D5,
(p1 + p3 + ps)°
(pa-ps) (pa + ps), (1 + 3 + ps)” Pe.u
(p1 +p3 + pe)”

+ (p1-p3) (p1 +p3)" [

_|_

+ , (A.1.28)
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and the second term reads

(p5-P6) Pay (5 +p6)”  (pa-pe) Psu (P4 + ps)”
(2 + p3 +pa)” (p2 +p3 +p5)°
+(p4'p5)p6,u (P4 +p5)y]
(p2+p—3+ps)°

= (p2-p3) [— (p5-p6)(p1 + s + p6) - Pa — (Pa-p6) (D1 + P4 + D6) - D5

(p2- p3) (P2 + p3)" Py [

— (pa-ps)(p1 + pa + ps) 'pﬁ]

(ps5-p6) (P5 + p6), (P2 + 3 + Pa)” Pay
(p2 + 3 + pa)®
(pa-ps) (P4 +6), (P2 + p3 + ps5)” P54
(p2 + p3 + ps)°
14
(pa-ps) (pa + ps), (P2 +p:'; + P6)” D6, ’ (A.120)
(p2 + p3 + ps)

+ (p2-p3) (p2 + p3)" [

_|_

+

after the rewriting.
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Mathematica output from calculations in section 3.3.2

Figure A.3 shows the output from Mathematica for the full sum S in (3.3.15) for the calculation
of the generic amplitude A(A;A;A,A;). Figure A.4 shows the output from Mathematica after
S has been simplified at the end of section 3.3.2 by employing momentum conservation.The
content in figure A.4 is the starting point for the simplifications of S discussed in section 3.3.3
that ends with (3.3.40) as the final result.

-8pe; 4 pey 3Pe; ,Pey ; +8pey 3pe; 4 Pe; , Pe, 1 + 8Py , Pe, g Pes 4 Pey 1 + B PEy 4 PEy 3 P 1 PEy ; - B PEy g PE; 4 PE3 g Py, +
8pe; 3Pe; 1 Pe3 4 Pey 2 + 8Py 5 P, 4 PE3 1 Py 3 + B Py 4 PEy 1 PE3 , PEy 3 -8 PE) 5 PE; 5 PE3 4 PEy 3 +2 €34 Py 5 PEy 1 PPy o +
2ee4,3P€3 2 P&y 1 PPy 2 ~ €€2, 3 P€3 4 PEy 1 PPy o - 3€€3,2 PE3 4 P&y 1 PPy o + 2 €€3,4 P83 3 P4 5 PPy 2 + 2 €€4,3 PE3 1 P&y 5 PPy 2 -
3ee1,3Pe; 4 P€y 2 PPy 2 ~ €€3,1 PE3 4 PEy 5 PPy o ~ €€2,4 P31 P&, 3 PPy 2 - 3 €€4,2 P€3 1 P€4 3 PPy o ~ 3 €14 PE3 5 P&y 3 PPy 2 ~ €€4,1 PE3 5 PE4 3 PPy 2 +
4eeq 2 P34 PEy 3 PPy 2 +2€€2,4 PEy 3 Py 1 PPy 3 + 2 €4 2 P, 3 PEy 1 PPy 3~ 3 €€2,3 PEy 4 Py 1 PPy, 3~ €€3,2 P&, 4 PE4 1 PPy 3 -
€€3,4 P, 1 Pey 5 PPy 3~ 3 €€4,3P€, 1 POy , PPy 5~ 3 €€1,4 P, 3 PE, 5 PPy 3 — €€4,1 P, 3 PEy 5 PPy 3+ 4 €€1 3 PE, 4 POy 5 PPy 5 +
2eez 4Pe; 1 Pey 3PPy 3 +2 €42 P8 1 POy 3 PPy 5 - 3 €€1 2 PEy 4 PEy 3 PPy 3~ €€2,1 P, 4 P4 3 PPy 5 - 3 €€2 4 PEy 3 PE3 1 PPy 4 -
€€4,2 P, 3 P 1 PPy 4 + 2 €€2 3 P€y 4 PE3 1 PPy 4 + 2 €€3,2 PEy 4 PE3 1 PPy 4 - 3 €€3,4 P, 1 PO 5 PPy, 4 — €€4,3 PE, 1 PE3 5 PPy 4 +
4eey1,4P€; 3 P35 PPy 4 - 3 €€1 3P€, 4 PE3 5 PPy 4 - €83,1 P, 4 PE3 5 PPy 4 + 2 €€2 3 PEy 4 PE3 4 PPy 4+ 2 €€3,2 P, 3 PE3 4 PPy 4 -
3eey, 2 Pe; 3P€; 4 PPy 4~ €€2,1 P€y 3 PE3 4 PPy 4 + 2 €€3,4 PE3 5 P&y 1 PPy 1 + 2 €€4,3 PO 5 P4 1 PP, 1 ~ 3 €€2 3 P€3 4 PEy 1 PPy o -
€€3,2 Pe; 4 Pey 1 PPy 1 +2€€3 4 PE3 1 P&y , PPy g + 2 €€4,3 PEg 1 Py 5 PP, 1 — €€1, 3 P 4 PEy , PPy 1 ~ 3 €€3,1 PE3 4 Py 5 PP2, 1 —
3 €€z 4P€;3 1 PEy 3PP, 1 ~ €€4,2 PE3 1 PEy 3 PP, 1 — €€1,4 PE3 5 Py 3 PPy 1 ~ 3 €€4,1 Py , PEy 3 PP, 1 +4 €€2,1 PE3 4 Py 3 PPy 1 — €€3,4 P 5 PE4 1 PP2 3 -
3ees 3Pe; p Pey 1 PPy 3 -3 €24 P8 3P,y 1 PPy 3 ~ €€4,2 PE) 3 P€, 1 PPy 3 +4 €€2,3 P8 4 PE4 1 PPy 3 + 2 €€1 4 PEy 3 PEYy 5 PPy 3 +
2eeq,1Pey 3P€, 5 PPy 3 -3 €1 3P 4 Py 5 PPy 3 ~ €€3,1P€) 4 PEy 5 PPy 3 +2 €1, 4 P8y 5 Py 3 PPy, 3 + 2 €€4,1 PE; 5 PEY 3 PPy 3 -
€€1,2 P8y 4 P€y 3 PPy 3 - 3€€2,1 P8y 4 P&y 3PPy 3~ 2 €€1,4 €€, 3PPy 4 PPy 3+ 2€€1 38€2 4 PPy 4 PPy 3 + €€1,2 €834 PPy 4 PPy 3 + €€2,1 €€4 3PPy 4 PPy, 3
3ees 4 Pey ;, Pe3 1 PPy 4~ €€4,3 PEy , PG 1 PPy 4 + 4 €€2 4 P&y 3 PE3 1 PP, 4 - 3 €€2 3 P€y 4 PE3 4 PPy 4 ~ €€3,2 PEy 4 P 1 PP2 4 -
3eey 4Pey 3Pe; ; PPy 4~ €€4,1 P 3P , PPy 4 + 2 €€ 3 PEy 4 PE3 5 PP, 4 + 2 €€3 1 P@y 4 PE3 , PPy 4 + 2 €€1,3 PE 5 P 4 PP2 4 +
2ee3 1 Pey ; Pe3 4 PPy 4~ €€1,2 PEy 3 Pe; 4 PPy 4 — 3 €€2,1 PEy 3 PE3 4 PP, 4 + 2 €€1 4 €82, 3 PPy 3 PP 4 ~ 2 €€1,3 €€2 4 PPy 3 PP2 4 +
€€3,1 €€3,4 PPy 3 PP, 4 + €€1,2 €€4,3 PPy 3 PPy 4 + 2 €€2,4 PE; 3 P€, 1 PP3 1 + 2 €€4 2 PE, 5 PEy 1 PP3 1 — €€2,3 PE, 4 PEy 1 PP3 1 -~ 3 €€3,2 PE; 4 Pey 1 PP3 g -
3ee3 4Pe, 1 P&y PP3 1 ~€€4,3PEy 1 P&, o PP3 1 — €81, 4 PEy 3 P8, PP3 1 —~ 3 €84 1P, 3 P€, 5 PP3 1 + 4 €€31 D€y 4 P&y 5 PP3 g +
2eep4P€;y 1 PEy 3 PP; 1 +2€€4 2 PE, 1 P&y 3 PP3 1 ~ €€1,2 PE, 4 Py 3 PP3 1 ~ 3 €€2 1 PE; 4 PEy 3 PP3 ; + €€1,4 €€2,3 PP, 4 PP3 1 -
2eep 4€€3 1 PPy 4 PP3 1 +2€€2 1 €€3,4 PP, 4 PP3 1 + €€3,2 €€4,1 PPy 4 PP3 1 ~ 3 €€3 4 PEy , P&y 1 PPy , — €€4,3 PEy 5 Py 1 PP3 o — €€2,4 Py 3 P€4 3 PP3 5 -
3ees2pe; 3P, 1 PP3 o + 4 €€3,2 P 4 PE, 1 PPy +2 €1, 4 PE) 3Py 5 PP3 5 + 2 €€4,1 PE 5 PEy 5 PP3 2 — €€1,3 PEy 4 PEy 5 PP3 5 -
3ees 1 Pe; 4Pey  PP3 2 + 2 €14 PO 5 P 3 PP3 2 + 2 €€4 1 POy 5 PEy 3 PP3 , ~ 3 €€ 2 Py 4 Py 3 PP 2 — €€2, 1 PEy 4 PEy 3 PP3 o +
€€1,3 €2 4 PPy 4 PP3 2 -2 €€1,4 €€3 2 PPy 4 PP, + 2 €€1,2 €€3 4 PPy 4 PP3 o + €€3,1 €€4 2 PPy 4 PP3,, + 4 €€3 4 P€y 5 P, 1 PP3 4 -
3eez 4Pe; 3P€; 1 PP3 4 - €€4,2 PEy 3 PEy 1 PP3 4 ~ €€2,3 P€y 4 P, 3 PP3 4 - 3 €€3,2 Py 4 PE; 1 PP3 4 — 3 €€1, 4 PEy 5 PEy 3 PP3 4 -
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4€€4,1 P8 3 P35 PP4 1 ~ €€1,3P€, 4 PE3 5 PPy 1 ~ 3 €€3,1 P, 4 PE3 5 PPy 1 + 2 €€2 3 PEy 4 PE3 4 PPy 1 + 2 €€3,2 P, 3 PE3 4 PP4 g —
€€y, 2 Pe, 3 Pe3 4 PPs 1 ~ 3 €€2,1 Py 3 PC; 4 PPy 1 + €€ 3 €€2 4 PPy 3 PPy 1 — 2 €€2, 3 €€4, 1 PPy 3 PP4 1 + €€3,1 €€4,2 PP, 3 PPy 1 + 2 €82, 1 €€4, 3 PPy 3 PPy, 1 +
€€1,2 €€3,4 PPy , PPy 1 ~ 2€€3,2 €€4,1 PP3 , PP, 1 + 2 €€3,1 €€4,2 PPy , PPy 1 + €€2,1 €€4,3 PP3 2 PP4, 1 ~ €€3,4 PE; , PE3 1 PP, , - 3 €€4,3 PEy , PE3 4 PPy o +
4eey 2P 3PC5 1 PPy 2 ~ €€2, 3 PEy 4 PE3 1 PPy, - 3 €32 Py 4 PE3 3 PPy, ~ €€1, 4 PE 3 P , PPy o — 3 €€4,1 PEy 5 PE3 5 PP, o +
2eey 3Pey 4 PE3 o PPy, +2€€3 1 PEy 4 Py 5 PPy o + 2 €€1 3P 5 PE3 4 PPy, + 2 €€3 1 PEy 5 P 4 PPy, ~ 3 €€1,2 P 3 PE3 4 PPs, 5 —
€€, 1 Pey 3 P€;3 4 PP4 o + €€1, 4 €€2 3 PPy 3 PPy, + ©€3, 2 €€4,1 PPy 3 PPy, ~ 2 €€1, 3 €€ 2 PPy 3 PPy o + 2 €€1 2 €€4,3 PPy 3 PPy, + €€2,1 €€3,4 PP3 1 PPy o +
2. ee3 2 €€4,1 PP3 1 PPy, ~2€€3,1 €€4,2 PP3 1 PPy » + €€1,2 €€4, 3 PP3 1 PPy 2 +4 €€4 3 PEy 5 PE, 1 PPy 3~ €€2,4 PEy 3 Py 1 PPy 5~ 3 €€ 2 PEy 3 PE, 1 PPy 3~
3eez 3Pe; 4 PEy 1 PPy 3~ €€3 2 PEy 4 PE, 1 PPy 3~ €€1,4 PEy 5 P, 3 PPy 3~ 3 €€ 1 Py 5 PE; 5 PP, 3 + 2€€1,2 PEy 4 Py 3 PPy 5+ 2 €€ 1 PEy 4 PE, 3 PPy 3 -
3eey zpe; ; Pe; 4 PPs 3 —€€3,1 P 5 PE; 4 PPy 3 +2 €€ 2 PEy 3Py 4 PPy 5 + 2 €€2 1 Py 5 PE; 4 PPy 3 + €€1, 4 €€3 2 PPy 5 PPy 3 + €€2,3 €€4.1 PPy 5 PPy 5 +
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Figure A.3: The output from Mathematica of the full result for the sum S.

2s?eejzeep4+2t2e€01 3€€2 4-2U% €01 3665 4+25% €€ 4003, -212€€1 4€€3 2 +2U% e 4€€3 7252 €€ €03 4 +
2t2ee;ee34+2U%€e; €034 -4S€E3 4 pe; ,pe, s +4seeyape; 3pe, +4Se€e;3rpe; ,Pe, 1 +4S €L 4Py ,HPEy 5 -
4seeype; 4Pe, 3 +4see;gpe; ,pe, ,-4see;pe; 3pe, 4 +4U€E3 4 PE , PEy 1 -4 UECEy 4P 3Py +4UCES 2 PO 4 PO g +
4t eeyqape, 3pe; -4t €€z pe, 4, pe;  +4uee; 4pe; g3 pe; , -4Ueey 3pe; ,Pe; , +4t €3 4p€, Py, -4t €€1 4Pe, 3PE; ,H +
4t eep s pe, 4 Pe;3 » -4uee; s pe; , Pe3 4 +4ueeq pe; 3 Pe3 4 -4t ees; pe, 1 Pe3 4+ 4t eeq o pe, 3 Pe; 4+ 4t eezq pe; o Pey 1 +
4t eeyape; gpe, -4t eesope; 4pe, -4Ueey 4pe, 3pe,  +4Uees 2 Pe, 4P,y -4 S €€3 4Pe3 ,PE, -8 PEy 4 PE, 3 PEs H PEy g +
8pe; 3Pey 4 Pe3 , PEy q +4S€EC3 2 PE; 4 PEy 1 +BPEy , PE, 3 PE; 4 PEy -4t €81 4PEy 3Py, + 4Tt €€ 3PEy 4 PEy , +AUEES 4Py | POy, +
4ueey 4pe; 3pe, , -4uee; 3pe; 4Pe, , -4Sees4pPe;  Pey , +8pey , Pe, 3Pe;  Pey , -8 Pey 3P, 4 PE; PEy , +4S €81 3 PE; 4 PEY ,H +
8pe; 3pe,  Pes 4P, , -4t ee; ape; ,pe, 3+ 4t eey o pe; 4 Pe, 3 -4Ueey 4pe, 1 Pe, 3 +4UCLL 2 PE, 4 P, 3 +4S €€y 4PCy 3 POy 5+
8pe; ; P8y 4 Pe3 1 P&y 3 +4S €€1 4 P35 Py 3+ 8Py 4 POy 1 PE3 5 POy 3 - 4S €C1 2Py 4 PEy 3-8 PE) 5 PEy 1 PO 4 Py 5

Figure A.4: The output from Mathematica after simplifying the expression in figure A.3.
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Appendix B

Summary of calculated amplitudes

This appendix is a summary of the results in the thesis for amplitudes which have not previ-
ously been calculated. Section B.1 summarizes results for photon amplitudes in six dimensions
while section B.2 summarizes results for scalar amplitudes in four dimensions. The results for
the respective amplitudes are given without any comments but the necessary definitions.

B.1 Summary of photon amplitudes in six dimensions

The results for the six-dimensional amplitudes A(— + ++) and A(— — ++) for four gauge
bosons obtained in section 4.3 are given respectively as

T e o] ES 261 (¢T) o
AT =S o {raoni

8
g— [ (GRYL) + GRYEL)) + () (ik) (kL) + <<z‘><jk><k1>} @i-ﬁj)} ,

(B.1.1)
and
Ak = —”480‘,4 x
ii12 (ki 45 ~2[C]] <C >2
U(;ﬂ){m (k1)* + mﬁ ST

et [2<<j> ) 55y) (ﬁz @ M)

TG TG TP ap
+ ([ig] (kD) (i) [c] + K [¢1)) (5 -)
— [ig) GG (6] (B po [ 1< () (¢ (55

(1) [CK] (5s-75)

[
— [k3] (G1)(CR) [C3] (Bi-pr) — (L] (KD (CT)
(

|—|
H,_/

+ 1¢4] (¢0) <2 pi-pj) (Br-01) + (P-21) (Pi-Dj) + (Pi-p1) (Pj-Br) + (pj-pr) (Pi- pz
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where the sums contain the cyclic permutations of indices given by
0—(27j?k):0—(27374) ) 0-(27j?k):a(47273) ) O-(Z7j7k):a(37472) * (B13)

The tilde symbol above the momenta indicates that the momentum is in the auxiliary dimen-
sions

Pi* Dj = Di Pin (B.1.4)

where n is a Lorentz index for the two auxiliary dimensions taking values (4,5). The dot
product

pi-pj =D Py (B.1.5)

is just a contraction of ordinary four-dimensional Lorentz indices. The momentum bilinears
are defined in terms of spinor indices as

8 8

(ij) = i%a = i es, i) = iaf® =i cap - (B.1.6)

B.2 Summary of scalar amplitudes in four dimensions

The result for the four-dimensional amplitude for four massless scalars as calculated in section
4.4.2 is

A(p1¢2d304) = —% m2a’?s? (B.2.1)
where
s=2p1-p2, (B.2.2)

in terms of the four-momenta for the scalars. The scalars are defined as
1
V2

in terms of gauge field components in the auxiliary dimensions. The result for the four-
dimensional amplitude for six massless scalars as calculated in section 4.4.3 is

A(d1¢2¢3010506) =

. (Pm + pn)"
—2im*a Z Z (pi-pj) (Pm-pn) D7 —4 (D +pj)ypl,um Pk,p
i T Pj

_ LQ(A4+¢A5) b= (A —ids) (B.2.3)

U(i7j7k) a(l,m,n)

(B.2.4)
with the permutations of indices in the sums
o(i,j,k)=0(1,2,3) , o(i,j,k)=0(231), o(ijk)=0(3,12), (B
o(lym,n)=0(1,2,3), o(l,mn)=0(2,3,1), o(l,mmn)=0(3,1,2) (B
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