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Abstra
tMotivated by re
ent progress in amplitude 
al
ulations in Yang-Mills and gravitational the-ories, the goal of this thesis is to 
al
ulate expli
it open string s
attering amplitudes in fourand six dimensions from the Dira
-Born-Infeld a
tion. This is an e�e
tive a
tion des
ribingele
tromagneti
 �elds on the worldvolume of a single D-brane. S
attering amplitudes are im-portant in parti
le physi
s and string theory sin
e they provide a dire
t 
onne
tion betweentheory and experiment and be
ause the s
attering amplitude is really the measured physi
alquantity in dete
tors at parti
le a

elerators as for instan
e the Large Hadron Collider (LHC)at CERN. This thesis introdu
es the basi
 
on
epts from string theory and the relevant meth-ods from �eld theory used in s
attering amplitude 
al
ulations are reviewed. Espe
ially thespinor-heli
ity formalism is 
entral and it is introdu
ed in detail in order to streamline 
on-siderably the 
al
ulations in four dimensions. The simple stru
ture in four dimensions invitesan extension of studies into higher dimensions and the spinor-heli
ity formalism is also em-ployed in a modi�ed form in six dimensions in a sear
h for an appropriate way of expressingsix-dimensional amplitudes. The amplitudes are 
al
ulated for spe
i�
 polarizations of exter-nal states with four-dimensional 
al
ulations of both four-point and six-point amplitudes andsix-dimensional 
al
ulations of four-point amplitudes. A method of evaluating 
ontra
tions ofthe ele
tromagneti
 �eld strength tensor in terms of tra
es of blo
k matri
es is developed in
onne
tion with the 
al
ulations in six dimensions and also a generi
 four-point amplitude is
al
ulated in generality without spe
i�
ation of external polarization states and independentof the number of dimensions. In six dimensions, four-point and six-point pure s
alar ampli-tudes are 
al
ulated and the 
ross se
tion for s
attering of four s
alars is estimated for the
urrent maximal energy at the LHC.
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Introdu
tionUni�
ation of theories has always been a fundamental 
on
ept in theoreti
al physi
s. WhenEinstein formulated the theory of general relativity in 1916 it was a su

essful generalizationof his theory of spe
ial relativity of 1905 and he kept on pursuing an even more generaltheory in whi
h he 
ould formulate equations des
ribing ele
tromagnetism as well as gravity.Einstein did not su

eed but his strive for uni�
ation is 
hara
teristi
 for a physi
ist's way ofthinking. This is exempli�ed in modern high energy physi
s where uni�
ation plays a 
entralrole for the understanding of the fundamental parti
les and intera
tions observed in nature.Four fundamental intera
tions are observed with a huge di�eren
e in strength spanning over39 orders of magnitude. One intriguing problem is to understand why the strengths of thefundamental intera
tions are so di�erent. The di�eren
e in strengths 
an be illustrated by thefollowing example where the ele
tromagneti
 intera
tion is 
ompared to gravity. One 
an ruba 
omb on a pie
e of 
lothing to add stati
 ele
tri
ity to the 
omb surfa
e. The 
omb will thenbe able to lift a pie
e of paper due to the net di�eren
e in 
harge between the 
omb and thepaper and this shows how the ele
tromagneti
 attra
tion due to the small net 
harge di�eren
eeasily over
omes the gravitational intera
tion between the entire earth and the paper.The relative weakness of gravity is re�e
ted in the standard model of parti
le physi
s whi
huni�es all fundamental intera
tions ex
ept gravity. It is believed that both gravitational andquantum e�e
ts are important at s
ales near the Plan
k energy EP ∼ 1019 Gev, determineduniquely by 
ombining the fundamental physi
al 
onstants ~, G, and c, asso
iated respe
tivelywith quantum phenomena and gravity. Although the standard model provides a 
orre
t de-s
ription of nature at more moderate energies it is not a 
orre
t theory near the Plan
k energysin
e it does not in
orporate gravity. The standard model is therefore an example of an ef-fe
tive theory whi
h is de�ned in general as a theory with a validity only within some 
ertainenergy s
ale. This is manifest in many bran
hes of physi
s where the physi
al understandingof di�erent energy regimes is based on e�e
tive theories. Although a full des
ription valid forany energy s
ale might not exist, the di�erent energy regimes 
an be very well understood indi-vidually in the frame of e�e
tive theories. This thesis is no ex
eption from the 
omprehensiveuse of e�e
tive theories sin
e it is written in the framework of an e�e
tive theory.E�e
tive theories 
an be studied from s
attering amplitudes whi
h are dire
tly 
onne
tedto experiments performed at parti
le a

elerators. The 
onne
tion between theory and experi-ment goes through the s
attering 
ross se
tion and this makes s
attering amplitudes naturallyinteresting. This thesis is motivated by the re
ent progress in the �eld of s
attering ampli-tude 
al
ulations in Yang-Mills and gravitational theories where developments have resultedin new te
hnology. The results presented in [1℄ are part of these interesting developmentsand this referen
e 
ontains among other things 
al
ulations of string theory s
attering ampli-tudes in four-dimensions. These amplitudes are 
al
ulated from the Dira
-Born-Infeld a
tionwhi
h is a famous e�e
tive a
tion des
ribing gauge �elds on D-branes in the low-energy limitPage 5



of superstring theory. The 
al
ulations are performed with use of the spinor-heli
ity forma-lism whi
h in this 
ontext appears to be the right language for four-dimensional 
al
ulationssin
e the results for the amplitudes and the 
al
ulations themselves simplify 
onsiderably dueto the formalism. Just as the spinor-heli
ity formalism seems to be the right language forfour-dimensional 
al
ulations, another motivation for this thesis is to study a possible similarlanguage in six dimensions in whi
h 
al
ulations and results are more streamlined. In order tolook for tra
es of the simpli�
ations in four dimensions it is therefore interesting to study s
at-tering amplitudes in higher dimensions using a modi�ed form of the spinor-heli
ity formalism.This is addressed among other things in this thesis where the goal is to extend amplitude
al
ulations from four dimensions and to perform amplitude 
al
ulations in six dimensionswhi
h have have not previously been done.The thesis is stru
tured as follows. Chapter 1 
ontains an introdu
tion to the basi
 
on-
epts of string theory with fo
us on quantization of the 
lassi
al string. Also the 
on
ept ofsupersymmetry and the important obje
ts in the open string se
tor known as D-branes aredis
ussed. The use of e�e
tive theories is dis
ussed along with an introdu
tion to the Dira
-Born-Infeld e�e
tive a
tion. In 
hapter 2 the useful spinor heli
ity formalism is introdu
ed asa 
ontinuation of a more general dis
ussion of spinors and representations of tensors. Also areview of the basi
 �eld theory methods used throughout the thesis is presented with fo
uson the use of fun
tional methods. These methods and the observations from the �rst two
hapters are put to use in 
hapter 3 where s
attering amplitudes with spe
i�
 
on�gurationof external polarizations are 
al
ulated in four dimensions. These 
al
ulations are performedalong the lines of [1℄. Chapter 4 
ontains 
al
ulations of s
attering amplitudes in six dimen-sions in
luding 
al
ulations whi
h have previously not been performed. These 
al
ulations arebased on manipulations of the four-point s
attering term in the Dira
-Born-Infeld Lagrangianand the developments in this 
ontext are also dis
ussed in this 
hapter. Finally, 
hapter 5
ontains a dis
ussion of the results obtained in 
hapters 3 and 4 along with some general
on
luding remarks. Additional details of 
omputations are found in the �rst appendix. These
ond appendix 
ontains as a servi
e to the reader the new results for the amplitudes whi
hhave not previously been 
al
ulated.

Page 6



Chapter 1String theory ba
kgroundString theory is a huge subje
t in theoreti
al physi
s and a deep dis
ussion of the �eld isbeyond the s
ope of this thesis. This se
tion presents therefore the 
on
epts that are mostimportant in order to pla
e s
attering amplitude 
al
ulations in a bigger pi
ture of an e�e
tivetheory emerging from string theory.String theory is a 
andidate for a uni�ed theory des
ribing the fundamental intera
tionsand elementary parti
les in nature. If string theory is a more fundamental theory than thestandard model of parti
le physi
s, the results of the standard model must emerge somehowfrom it. An interesting aspe
t in this 
ontext arises in 
onne
tion with the obje
ts in stringtheory known as D-branes. The standard model is a quantum �eld theory of intera
ting gauge�elds and it is found in string theory that D-branes have gauge �elds living on them. Firstorder 
orre
tions to these gauge �elds are studied in this thesis where 
al
ulations of s
atteringamplitudes for photon s
attering in the frame of an e�e
tive theory is the main tool.1.1 E�e
tive theoriesThe importan
e of e�e
tive theories was addressed in the introdu
tion. An example of ane�e
tive theory is the Fermi theory for β de
ay whi
h was developed in 1933 by Enri
o Fermias a theory of weak intera
tions. One problem at that time was to des
ribe the observed
ontinuous spe
trum for the ele
tron energy in a β-de
ay pro
ess and in 1930 Wolfgang Paulisuggested the existen
e of the neutrino in order to solve the problem. A typi
al β-de
aypro
ess 
ould then be
n→ p+ e− + ν̄e , (1.1.1)a

ording to the suggestion by Pauli. Fermi assumed in his formulation of the theory thatthe intera
tion responsible for this de
ay was pointlike. This provided a good qualitativedes
ription of the de
ay pro
ess and the theory had great phenomenologi
al su

ess. Earlyexperiments for the Fermi theory 
arried out at energies below 10 Mev were 
onsistent withthe assumption of a pointlike intera
tion but a deeper stru
ture has been revealed as experi-ments at larger energies have been 
arried out with newer generations of parti
le a

elerators.Consequently it is known today that the intera
tion is not pointlike and that it takes pla
ewith an intermediate W− boson de
aying into the ele
tron and the ele
tron antineutrino. The

W is a heavy parti
le with mass mW ∼ 80 GeV and it was not dis
overed until 1983. Thisexample with the Fermi theory illustrates the typi
al use of an e�e
tive theory: It provides aPage 7



good approximation at lower energies but be
omes insu�
ient in order to des
ribe the deeperstru
ture at higher energies.In the dis
ussion of low-energy e�e
tive theories in parti
le physi
s it is natural to introdu
ethe propagator whi
h will be dis
ussed in detail se
tion 2.2. The propagator in a quantum�eld theory des
ribes the amplitude for a parti
le to propagate in spa
etime and it is of theform
1

p2 +m2
, (1.1.2)where p is the momentum andm the parti
le rest mass. In the low-energy limit the momentumis negligible 
ompared to the rest mass so that

p

m
≪ 1 , (1.1.3)and hen
e (1.1.2) be
omes

1

m2

[

1 − p2

m2
+ O

(
p4

m4

)]

. (1.1.4)This 
an be understood heuristi
ally from a 
omparison with the law of inertia in 
lassi
alphysi
s where a larger for
e is required in order to a

elerate a heavier body. As for a massiveparti
le in a quantum �eld theory, a su�
iently high energy is required in order to �move�the parti
le and make it take pla
e in intera
tions. For su�
iently low energies the massiveparti
les 
an therefore be ignored so that only massless parti
les are 
onsidered in intera
tions.In this sense one 
an say that high energy stru
ture is hidden in the e�e
tive theory des
ribingthe low-energy limit. The e�e
tive a
tion is de�ned in prin
iple by the fun
tional integralwhi
h will be dis
ussed in detail in se
tion 2.2.4. The ordinary a
tion is formally repla
ed bythe e�e
tive a
tion
Sfull =

∫

dnxLfull → Seff =

∫

dnxLeff , (1.1.5)in whi
h only variables important for the parti
ular s
ale under study are taken into a

ount.It should be noted that this pro
edure is only used in prin
iple. For pra
ti
al purposes, theappropriate e�e
tive a
tion is 
onstru
ted with desired dependen
e on relevant variables.1.1.1 Physi
s at di�erent energy s
alesAs dis
ussed in the introdu
tion, one problem in physi
s is to understand why the strengths ofthe four fundamental intera
tions are so di�erent. This is known as the problem of separationof s
ales. A rough 
omparison for the 
oupling 
onstants for the fundamental intera
tions is
αstrong = 1 , αelectromagnetism ∼ 10−2, αweak ∼ 10−6 , αgravity ∼ 10−39 , (1.1.6)and it is apparent that gravity is by far the weakest of the intera
tions. The strong, the weakand the ele
tromagneti
 intera
tion tend to unify at energies Eun ∼ 1014 Gev. This dis
ussioninvolves an interesting aspe
t of supersymmetry whi
h is addressed in se
tion 1.2.4. It shouldbe noted that the 
omparison of the 
oupling 
onstants for the fundamental intera
tions ismore 
ompli
ated than what is apparent from (1.1.6). This is be
ause the intera
tions havePage 8



di�erent ranges so that a 
omparison of the 
oupling 
onstants is only meaningful on a givenenergy. For (1.1.6) the s
ale is the mass mZ ∼ 91 Gev of the Z boson. This will not bedis
ussed in further detail.Gravity is so weak that it 
an be negle
ted in 
al
ulations in the standard model. Howeverit is believed that gravity be
omes important in physi
s at the Plan
k s
ale whi
h is given bythe Plan
k length de�ned uniquely in terms of the fundamental 
onstants ~, G and c as
ℓP =

√

~G

c3
∼ 2 × 10−33 cm . (1.1.7)Be
ause the Plan
k length is 
onstru
ted from the fundamental units asso
iated with quantumme
hani
s and gravity it is believed that both intera
tions are important at this s
ale. ThePlan
k energy is de�ned uniquely as

EP =

√

~c5

G
= mPc

2 ∼ 1019 Gev , (1.1.8)and it is the natural energy s
ale asso
iated with the Plan
k length. As both quantum phe-nomena and gravity are important at the Plan
k s
ale, a theory whi
h uni�es these twointera
tions is ne
essary in order to des
ribe physi
s at this s
ale. One problem in the uni�
a-tion of gravity with the other three fundamental intera
tions is that general relativity is notpower 
ounting renormalizable be
ause it has a dimensionfull 
oupling 
onstant. This meansthat a theory providing a uni�ed des
ription of quantum me
hani
s and gravity 
annot be
onstru
ted in the most straightforward way.1.1.2 String theory and the standard modelThe standard model of parti
le physi
s is the theory whi
h a

ounts for the des
ription ofelementary parti
les and their intera
tions. The standard model is able to explain all experi-mentally observed parti
les and their intera
tions as an internally 
onsistent theory of quantum�elds. The theory is a non-Abelian gauge theory with gauge group U(1) × SU(2) × SU(3)and it explains three of the four fundamental intera
tions; the ele
tromagneti
 intera
tion, theweak intera
tion and the strong intera
tion. The standard model has proven very su

essfuland at the time of writing, no high energy parti
le experiment has yielded results in disagree-ment with the standard model. However, one pie
e is still missing in the uni�ed pi
ture asthe standard model 
annot in
lude gravity whi
h is des
ribed by the entirely di�erent theoryof general relativity. This is one reason why it is widely believed that the standard model isan e�e
tive theory des
ribing the low-energy limit of a more fundamental theory whi
h alsoin
ludes gravity. An interesting aspe
t in this 
ontext is that string theory 
ontains naturallya massless spin-2 parti
le whi
h is the quantum of gravity, known as the graviton. It is the
urrently hypotheti
al 
arrier of the gravitational intera
tion just as the photon is the 
arrierof the ele
tromagneti
 intera
tion. String theory is therefore a 
andidate for su
h a morefundamental and unifying theory. It is formulated by the assumption that all parti
les andtheir physi
al properties are vibrations of very tiny physi
al strings and in this way, both thefermioni
 parti
les that make up matter and bosoni
 parti
les that transmit the fundamen-tal intera
tions are uni�ed. This property that everything is build into the theory from thebeginning is the power of string theory. The simpli
ity is manifest by a 
omparison with thestandard model whi
h has almost 20 adjustable parameters that have to be determined fromexperiments in order to get a 
onsistent theory. Page 9



1.2 Foundation of string theoryAn interesting histori
al aspe
t is asso
iated with string theory sin
e it was not 
on
eived as atheory of strings but emerged as a 
onsequen
e of a postulate by Gabrielle Veneziano in 1968.1.2.1 The Veneziano amplitudeIn the late 1960's intera
tions of π-mesons were studied intensively along with s
atteringamplitudes. Today it is known that the π-meson is a bound state of a quark and an antiquarkbut at that time π-mesons were 
onsidered to be elementary parti
les just as the proton andthe neutron were. For the study of s
attering of four parti
les it is 
onvenient to introdu
e
p1

p2

p3

p4

s−channel

p1 p2

p3 p4

t−channel

Figure 1.1: A s
attering pro
ess through the s-
hannel. Figure 1.2: A s
attering pro
ess through the t-
hannel.the Mandelstam variables
s = (p1 + p2)

2 , t = (p1 + p4)
2 , u = (p1 + p3)

2 , (1.2.1)whi
h for massless parti
les be
ome
s = 2 p1 · p2 , t = 2 p1 · p4 , u = 2 p1 · p3 , (1.2.2)de�ned in terms of the four-momenta of the four intera
ting parti
les. The s
attering offour parti
les 
an be des
ribed as taking pla
e through the s, t or the u-
hannel as shown in�gures 1.1 and 1.2 for the �rst two 
hannels. The physi
al interpretation of parti
le s
atteringthrough the s-
hannel is di�erent from that of intera
tions through the t-
hannel. However, thetwo intera
tion 
hannels are just two ways of des
ribing the same physi
al intera
tion whereparti
les 1 and 2 intera
t and produ
e parti
le 3 and 4. The poles in the transition amplitudemust therefore be the same regardless of 
hannel. Veneziano sear
hed for a mathemati
alformula whi
h des
ribed this kind of intera
tion for π-mesons and he simply wrote down theamplitude

A(p1, p2, p3, p4) = g2
0

∫ 1

0
dxx2α′p1·p2 (1 − x)2α

′p2·p3 , (1.2.3)as a postulate. The pi's are the parti
le momenta. The Veneziano amplitude 
an as well berewritten in terms of the β-fun
tion and the Γ-fun
tion as
A(s, t) = g2

0

Γ (−α (s)) Γ (−α (t))

Γ (−α (s) − α (t))
= g2

0 β (−α(s) ,−α (t)) , (1.2.4)Page 10



with
α(s) ≡ α′s+ 1 , (1.2.5)and g0 denoting the strength of the intera
tion. It follows from properties of the β-fun
tionthat the amplitude 
an be expressed as

A(s, t) = −
∞∑

n=0

(α(s) + 1) (α(s) + 2) · · · (α(s) + n)

n!

1

α(t) − n

= −
∞∑

n=0

(α(t) + 1) (α(t) + 2) · · · (α(t) + n)

n!

1

α(s) − n
, (1.2.6)whi
h 
an be found in [2℄. The amplitude postulated by Veneziano resulted in mu
h a
tivityin the resear
h �eld. This resear
h 
ulminated in the realization that elementary parti
lesmodeled as vibrational modes of one-dimensional strings instead of zero-dimensional parti
lesare subje
t to intera
tions des
ribed exa
tly by the amplitude written down by Veneziano.The physi
al interpretation of the theory was due to Yoi
hiro Nambu, Holger Be
h Nielsenand this realization was essentially the birth of string theory.A pole in a s
attering amplitude 
orresponds to the ex
hange of a physi
al parti
le. Thepoles in the Veneziano amplitude 
an be read of dire
tly from (1.2.6) and it is apparentthat the amplitude has the same poles in the s-
hannel as in the t-
hannel. Be
ause of thissymmetry where the two 
hannels represent two ways of looking at the same s
attering pro
ess,Veneziano's model be
ame known as the dual resonan
e model.1.2.2 Constru
ting the string a
tionThe fundamental assumption in string theory is that the basi
 obje
ts are tiny strings with aphysi
al extension in one spatial dimension. This is very di�erent from the notion in quantum�eld theory where parti
les are 
onsidered as zero-dimensional points. The fundamental s
alein string theory is the length s
ale of the strings given by the string parameter

α′ ∼ ℓ2P , (1.2.7)with the Plan
k length given in (1.1.7). This parameter is also known as the slope parameterand it is the only parameter that enters the theory. A good pi
torial way to think of stringtheory is to 
ompare a relativisti
 tiny string with a 
lassi
al guitar string whi
h has 
ertainresonant frequen
ies depending on its length and tension. The di�erent resonan
es of a guitarstring are per
eived by the human ear as di�erent musi
al notes whereas the di�erent vibra-tional modes of the relativisti
 string 
onstitute parti
les and their basi
 properties. Thismeans that a parti
le in string theory is just a parti
ular os
illation mode of a string andthat di�erent parti
les simply 
orrespond to di�erent os
illation modes. The di�erent vibra-tional modes have di�erent energies whi
h lead to di�erent masses for the parti
les throughEinstein's famous mass-energy relation. Examples of di�erent os
illation modes are given in�gure 1.3. All other properties of a parti
les su
h as 
harge and spin are also governed by thevibrational patterns of strings. As des
ribed above, this is exa
tly the power of string theory.Sin
e everything is just vibrational modes of the same string, matter and for
es are uni�edand all parti
les and for
es are intrinsi
ally build into the theory from the beginning. Page 11



Figure 1.3: Di�erent string os
illation modes. A string 
an undergo an in�nite number of di�erent resonan
esand the length and tension of the string determine whi
h resonan
es are allowed. The 
onne
tion between stringvibrations and parti
le properties 
an be illustrated for the mass of a parti
le. Be
ause of Einstein's equivalen
eprin
iple between mass and energy, a low os
illation mode 
orresponds to a small mass whereas high energyos
illations 
orrespond to a large parti
le mass. The leftmost string os
illation is the lowest possible os
illationmode and it 
orresponds therefore to the lowest possible parti
le mass in the string spe
trum. The examples inthe middle and to the right 
orrespond to the next two masses in the spe
trum.String theory is formulated by writing down the appropriate a
tion and quantize it byimposing quantum me
hani
al momentum and position 
ommutation relations. In this 
on-text, the a
tion for a relativisti
 point parti
le is a good starting point for the dis
ussion ofthe string a
tion. A relativisti
 point parti
le propagating in spa
etime tra
es out a worldline whi
h is parametrized by the proper time of the parti
le. The proper time τ is a Lorentzinvariant and is 
onne
ted to the world line of the point parti
le by the integral
τ =

∫
dt

γ
=

∫

ds , (1.2.8)with the usual relativisti
 γ-fa
tor
γ =

1
√

1 − v2
, (1.2.9)where c = 1. From (1.2.8) it follows that the in�nitesimal proper time is 
onne
ted to thein�nitesimal line element of the world line by

dτ = ds . (1.2.10)All Lorentz observes must agree on the value of the a
tion for any world line of the parti
le.Sin
e the proper time is a Lorentz invariant and 
onne
ted to the world line it is natural to
onstru
t the a
tion for the point parti
le proportional to the proper time. Equation (1.2.8)holds for natural units where length has the inverse dimension of time and in order to ensurethat the point parti
le a
tion is dimensionless the proper time is multiplied by the rest masswhi
h is also a Lorentz invariant. The relativisti
 point parti
le a
tion is hen
e written as
Srel = −m

∫

ds , (1.2.11)where the minus sign turns out to be 
orre
t in order to re
over the right expression for thekineti
 energy when the Lagrangian is expanded in the 
lassi
al limit of low velo
ity. Thea
tion for a one-dimensional string 
an be 
onstru
ted as a generalization of the point parti
lea
tion. The string propagating in spa
etime tra
es out a two-dimensional world sheet and justas all Lorentz observes will agree on the elapsed proper time of the point parti
le, all Lorentzobserves will agree on the size of the area of the world sheet tra
ed out by the string. Hen
eit is natural to 
onstru
t the a
tion for the string being proportional to the integral over theworld sheet area. To ensure that the a
tion is dimensionless it must be multiplied with aPage 12



Lorentz invariant quantity with dimension of inverse length squared. The fundamental stringparameter is one su
h obje
t and the resulting a
tion is known as the Nambu-Goto a
tion
SNG = − 1

2πα′

∫

dA . (1.2.12)Equation (1.2.12) is fundamental in the sense that it shows how the fundamental string pa-rameter α′ is the only parameter that enters the theory.1.2.3 String quantizationIn order to obtain a quantum theory, the string a
tion is quantized by imposing quantum
ommutation relations on the string momentum and position. It should be noted that inpra
ti
e, often an a
tion known as the Polyakov a
tion will be used instead of the Nambu-Goto a
tion when a string theory is quantized. These two a
tions are 
lassi
ally equivalentbut the Polyakov a
tion is more 
onvenient for a quantum formulation. Quantization of thestring a
tion yields the di�erent os
illation modes with 
orresponding masses in the stringtheory. This is known as the string spe
trum. As des
ribed above, the only parameter of thetheory is the string parameter α′ and one must therefore expe
t that the mass s
ale is set bythis parameter. In order to have the right dimension of the mass
m2 ∼ 1

α′
, (1.2.13)must hold. A bosoni
 string theory is a theory that 
ontains only bosons. It 
an be shown thata bosoni
 string theory requires 26 spa
etime dimensions in order to be physi
ally 
onsistent.Su
h a theory 
an be quantized in four di�erent ways depending on 
hoi
e of string boundary
onditions. Strings 
an be open with free ends or they 
an be 
losed with the ends joinedtogether. Furthermore strings 
an be 
onsidered orientable or unorientable. An orientablestring has two di�erent dire
tions to travel along whereas an unorientable string has only onedire
tion. All bosoni
 theories in
lude a parti
le known as the ta
hyon whi
h has the lowestmass in the string theory spe
trum. The mass square is

m2
tachyon = − 1

α′
, (1.2.14)so that the ta
hyon mass is imaginary. The existen
e of the ta
hyon with imaginary masssignals an instability of the theory whi
h 
an be seen from the potential for the ta
hyon �eld

T . The potential is
V (T ) =

1

2
m2 T 2 < 0 , for m2 < 0 , (1.2.15)whi
h is just a parabola with an unstable maximum. The existen
e of the ta
hyon 
ombinedwith the existen
e of bosons only are two features in a bosoni
 string theory that make itunattra
tive as a 
andidate for a real theory. The Veneziano amplitude as dis
ussed in se
tion1.2.1 is interpreted in string theory as the s
attering of four open string ta
hyons.To be 
onsidered as a theory of everything, string theory must 
ontain fermions. Fermionsobey Pauli statisti
s where two identi
al parti
les 
annot be in the same quantum state. This
auses fermioni
 theories to be more 
ompli
ated than bosoni
 theories. It 
an be shownthat a fermioni
 theory lives naturally in 10 spa
etime dimensions and that a 
on
ept knownas supersymmetry is ne
essary in order to make it physi
ally 
onsistent. Supersymmetry isa suggested fundamental symmetry in nature between fermions and bosons whi
h will bedis
ussed below. Page 13



1.2.4 SupersymmetryNature is 
onsidered to have a number of symmetries. One example is Einsteins equivalen
eprin
iple a

ording to whi
h the physi
al laws are the same in all lo
al inertial frames. Besidethe observed symmetries in nature one 
an think of a possible symmetry whi
h relates bosonsand fermions. This symmetry is known as supersymmetry (SUSY) and it relates to anyelementary parti
le a supersymmetri
 partner with the same mass and a spin quantum numberwhi
h is de
reased by half a unit of spin. Supersymmetry is an independent 
on
ept and 
anexist in nature independent of string theory. However, there is an interesting interplay betweensupersymmetry and string theory sin
e supersymmetry is ne
essary in a string theory thatin
ludes fermions. A string theory with supersymmetry is known as a superstring theory.An interesting aspe
t in 
onne
tion with supersymmetry is the possible uni�
ation of the
oupling 
onstants of the ele
tromagneti
 intera
tion, the weak intera
tion and the strongintera
tion. These 
oupling 
onstants depend on the energy as dis
ussed in se
tion 1.1.1. Asseen in [3, 4, 5℄ the 
oupling 
onstants almost unify in the standard model around Eun ∼
1014 GeV. But only almost. If supersymmetry is in
luded, it is found that the three 
oupling
onstants will unify at Eun,SUSY ∼ 1016 Gev whi
h is known as gauge uni�
ation. This isnaturally an indi
ation for the presen
e of supersymmetry in nature.As string theory is believed to be a unifying theory, the physi
s of the standard modelshould emerge from string theory somehow. There has been no experimental eviden
e ofsupersymmetri
 properties for the parti
les of the standard model. One possible explanationis that if supersymmetry is part of nature it must be spontaneously broken at low energiesby some unknown me
hanism. The undis
overed supersymmetri
 partners to the elementaryparti
les must therefore be very heavy. Some of these supersymmetri
 partners have predi
tedmass ranges whi
h should be visible at the LHC at CERN and the existen
e of supersymmetryin nature 
ould therefore be suggested by future LHC experiments. This is ex
iting sin
esupersymmetry is needed in order to ensure string theories to be physi
ally 
onsistent.
Figure 1.4: An intera
tion pro
ess between a D-brane and a string. Both ends of the open string are subje
tto Neumann boundary 
onditions on the D-brane. The ends 
an join to form a 
losed string whi
h 
an leave theD-brane. The pro
ess 
an as well be reversed so that a 
losed string hits the D-brane. The 
losed string se
tor isnot 
onsidered so intera
tions like this is ignored.1.2.5 D-branes and gauge theoriesNaturally there is a di�eren
e between open and 
losed strings. However, a 
losed string 
anbreak up into an open string and 
onversely the ends of an open string 
an join to form a 
losedstring. Only the open string se
tor will be 
onsidered in this thesis. The ends of an open stringare naturally subje
t to 
ertain boundary 
onditions of whi
h there exist two di�erent types.A string with its endpoints free to move is subje
t to Neumann boundary 
onditions in whi
hPage 14




ase momentum is 
onserved at the endpoints. A string having its endpoints �xed is subje
t toDiri
hlet boundary 
onditions where momentum transfer takes pla
e at the string endpoints.Obje
ts on whi
h open strings 
an end are known as D-branes and play an important role instring theory.A D-brane is de�ned as a hypersurfa
e onto whi
h strings 
an end with Diri
hlet boundary
onditions. A D-brane is often written as a Dp-brane where p is an integer and denotes thenumber of spatial dimensions of the hypersurfa
e. The integer p 
an take any value from 0 to
d − 1. A D(d− 1)-brane is known as a spa
e �lling brane and sin
e superstring theories livenaturally in ten dimensions, a D9-brane is a spa
e �lling brane in a superstring theory. In the
ase of a spa
e �lling brane, the string endpoints are �xed on a hypersurfa
e whi
h �lls theentire spa
e. This 
orresponds therefore to a free open string subje
t to Neumann boundary
onditions. For a general Dp-brane in d dimensions, open strings are subje
t to boundary
onditions a

ording to

p+ 1 dire
tions with Neumann boundary 
onditions (1.2.16)
d− (p+ 1) dire
tions with Diri
hlet boundary 
onditions . (1.2.17)It follows that an open string whi
h ends on a D3-brane is subje
t to Neumann boundary
onditions in 4 dimensions and Diri
hlet boundary 
onditions in 6 dimensions.An arrangement of several 
losely spa
ed D-branes enfor
es some 
onstraints on whi
hstring states 
an be found in a system. For two D-branes 
lose to ea
h other, strings 
anstret
h with an endpoint on ea
h brane. A string stret
hing between the two branes has a
ertain minimum length whi
h equals the brane separation. When a string is pulled, energy isadded to the string sin
e work is done on the string as it is pulled against its tension. Addingenergy to the string is equivalent to adding mass. The separation of the D-branes thus 
ontrolsthe minimum mass of the resonan
e modes of open strings. In this sense the arrangement ofD-branes 
ontrols whi
h parti
les are present in the string theory.The simplest 
ase o

urs when a string has both endpoints atta
hed to the same D-brane.This is shown in �gure 1.5. One 
an analyze this situation by quantizing the relevant stringa
tion and �nd that the photon is among the parti
les of the spe
trum where it is re
ognizedas the lowest os
illation mode. In this sense an ele
tromagneti
 �eld is living on the D-brane.It is found in general that a Dp-brane has an ele
tromagneti
 �eld obeying a p-dimensionalgeneralization of Maxwell's equation living on it. From (1.2.16) and (1.2.17) it is apparent thatthe study of strings with both endpoints on a single D3-brane negle
ting all string os
illationmodes ex
ept for the lowest, leads to ele
tromagneti
 intera
tions in 3 + 1 = 4 dimensions.Likewise, the study of open strings with both endpoints on a D5-brane leads to a generalizationof ele
tromagnetism in six dimensions.The situation 
an be studied in the more general 
ase with N 
losely spa
ed D-branesand open strings with endpoints on the branes. It 
an be shown that in the limit where allbranes are put on top of ea
h other, this 
orresponds exa
tly to a U(N) gauge theory whi
his therefore in general non-Abelian. The dis
ussion above with one single D-brane is hen
e aspe
ial 
ase with N = 1 whi
h therefore 
orresponds to a generalization of ele
tromagnetismwith gauge group U(1).The e�e
tive a
tion des
ribing ele
tromagnetism on the worldvolume of a single Dp-braneis

SDp =

∫

dp+1x (LDBI + · · ·) , (1.2.18)Page 15



to leading order where LDBI is the Dira
-Born-Infeld Lagrangian. Only the 
ontributions fromthe DBI-a
tion will be studied.
Aµ

Figure 1.5: The simple 
ase where both ends of anopen string are subje
t to Neumann boundary 
ondi-tions on one single D-brane. The lowest os
illation modeof the string 
orresponds to a massless gauge �eld andthe D-brane has therefore an ele
tromagneti
 �eld livingon its worldvolume. For a Dp-brane the ele
tromagneti
�eld lives in p+ 1 dimensions.
1.3 String theory and experimentThe link between theory an physi
al observations in nature goes through experiments andmeasurements. In order to be able to test a theoreti
al model it has to 
ontain parameterswhose numeri
al values 
an be measured from an experiment. A good theory is even able togive a sharp predi
tion whi
h 
an be tested. In turn, the interesting quantities to 
al
ulateare those that 
an a
tually be experimentally determined or at least be 
onne
ted somehowto experiment. The following is a qui
k 
omparison of relevant energy s
ales.1.3.1 Energy s
alesIn order to study phenomena at the Plan
k s
ale, at least naïvely, energies 
omparable withthe Plan
k energy (1.1.8) are ne
essary. The string s
ale is of the order of the Plan
k s
ale andit 
an therefore in prin
iple be studied dire
tly by using energies 
omparable to the Plan
kenergy. At the Large Hadron Collider (LHC) at CERN, proton beams will be 
ollided witha maximal energy of Ebeam ∼ 7 Tev so that the total maximal energy is Emax ∼ 14 Tev. A
omparison yields

Emax

EP
∼ 1.4 × 10−15 , (1.3.1)so the maximal energy at the LHC is roughly 15 orders of magnitude too small for the purposeof string theory experiments. This is naturally a very rough estimate whi
h however givesa good indi
ation of how far the string s
ale is from the available energies in the presentgeneration of parti
le generators. An interesting estimate 
an be made for the size of thea

elerator ring at the LHC. The radius of the ring is rLHC ∼ 27 km and the maximal possibleenergy is Emax ∼ 14 Tev. By assuming that the maximal energy s
ales linearly with the radiusof the ring, it 
an be estimated that an a

elerator with a maximal energy Emax = EP equalto the Plan
k energy would require a ring with radius r ∼ 103 parsec whi
h is approximatelythirty times smaller than the diameter of the Milky Way.In prin
iple, there 
ould be very large unknown fa
tors whi
h have to be a

ounted for inan estimate like (1.3.1). This is 
onsidered in se
tion 4.5 where an estimate for a 
ross se
tionwill be given.Page 16



1.3.2 Intera
tion 
ross se
tionsIn the dis
ussion of experiments and string theory it is natural to address the 
ross-se
tion.Basi
ally it is a measure of the likelihood of an intera
tion of parti
les whi
h is independentof beam 
hara
teristi
s. More spe
i�
ally, the 
ross se
tion is de�ned by 
onsidering two
ylindri
al 
olliding beams of 
ertain parti
les. These beams are referred to respe
tively as aand b and have the respe
tive parti
le number densities ρa and ρb. For ea
h beam, only a sli
eof length l is 
onsidered su
h that two bun
hes of parti
les with respe
tive lengths la and lbare 
ollided. If A denotes the area where the two beams 
ollide, the 
ross se
tion is de�nedas the total number of s
attering events N divided by the beam quantities
σ =

N

Aρalaρblb
, (1.3.2)where the studied s
attering events 
an be of whatever type desired. From (1.3.2) the 
rossse
tion has dimension

(

[area] [volume]−2 [length]2
)−1

= [area] . (1.3.3)It is interpreted as the e�e
tive area of the target parti
le as seen from the in
oming parti
lewith the assumption that the parti
les will s
atter with 100 % 
ertainty if this area is hit.The de�nition (1.3.2) is symmetri
 in a and b as it should be sin
e the s
attering pro
ess isnot a�e
ted by 
hoi
e of referen
e frame.In order to probe the behavior of elementary parti
les, beams with well-de�ned parti
lemomenta are 
ollided and the �nal-state parti
les and their momenta are dete
ted. Whendoing so, the 
ross se
tion be
omes in�nitesimal
dσ

d3p1 · · · d3pn
, (1.3.4)and dependent on the momentum of the outgoing parti
les. An integration over any smallmomentum d3pi determines the 
ross se
tion for s
attering into that parti
ular �nal-statemomentum. The situation simpli�es for the s
attering of four parti
les due to four-momentum
onservation and the two parti
les in the �nal state are 
onstrained in su
h a way that onlytwo 
omponents of the �nal-state momenta are independent. These two 
omponents 
an bespe
i�ed with two spheri
al angles and the di�erential 
ross se
tion is therefore expressedusing the solid angle dΩ. For four identi
al parti
les with identi
al masses the di�erential
ross se
tion is

dσ

dΩ
=

|A|2
64π2E2

cm

, (1.3.5)and is determined by the 
enter of mass energy in the 
ollision and the square of the ampli-tude for the parti
ular s
attering pro
ess. This is essentially the reason why 
al
ulations ofs
attering amplitudes are so interesting sin
e it is apparent from (1.3.5) how the s
atteringamplitude is the dire
t 
onne
tion between theory and experiment. It is also apparent thatthe 
ross se
tion is independent of beam 
hara
teristi
s as it should be. Page 17



1.4 Born-Infeld theoryThe Dira
-Born-Infeld a
tion was dis
ussed brie�y in a string theory 
ontext in se
tion 1.2.5as the e�e
tive a
tion des
ribing a gauge �eld living on the worldvolume of a D-brane. Inthis thesis the DBI-a
tion is used as an e�e
tive a
tion from whi
h s
attering amplitudes are
al
ulated. However, this is far from the original purpose for the a
tion whi
h was founded byMax Born in 1933 [6℄ and developed further in 1934 in 
ollaboration with Leopold Infeld [7℄many years before string theory. The Born-Infeld theory was formulated for the purpose ofsolving the problem in ordinary Maxwell theory that a 
harged point parti
le has an in�niteself energy at the origin. In 1960 Dira
 elaborated [8℄ on the original work by Born and Infeldand this is where the name Dira
-Born-Infeld (DBI) 
omes about.1.4.1 Histori
al motivationAt the time of the paper [7℄ by Born and Infeld the relations between matter and ele
tromag-neti
 �elds were interpreted from two opposite viewpoints; the unitarian viewpoint versus thedualisti
 one. In the unitarian viewpoint, the ele
tromagneti
 �elds are assumed to be theonly physi
al entities and thus parti
les are 
onsidered as singularities of the �elds. A

ordingto this viewpoint, the mass of a parti
le is a derived notion whi
h is expressed in terms of theenergy of the ele
tromagneti
 �eld. The dualisti
 viewpoint operates with parti
les and �eldsas two distin
t entities where parti
les are the sour
es of the �elds. The parti
les are as wella
ted upon by the �elds. The dualisti
 viewpoint was widely a

epted when the Born-Infeldtheory was formulated. In parti
ular it was supported by the theory of general relativity aswell as quantum me
hani
s whi
h is essentially based on a dualisti
 point of view. In ordinaryMaxwell theory the dualisti
 viewpoint su�
es as long as the wavelengths of the �elds arelarge 
ompared to the ele
tron radius. On smaller length s
ales the theory breaks down andleads to an in�nite ele
tri
 �eld at the origin and thereby an in�nite self energy of a 
hargedpoint parti
le. The motivation for the formulation of the modi�ed theory was to avoid thesein�nities whi
h have later been removed with the prin
iple of renormalization. Born and Infeldused the prin
iple of �niteness a

ording to whi
h a satisfa
tory physi
al theory should notallow any physi
al quantity to be
ome in�nite. The in�nite self energy for a 
harged pointparti
le is dis
ussed below.1.4.2 Self energy for a 
harged point parti
le in Maxwell theoryThe dis
ussion begins with the operation of dualization whi
h 
an be de�ned in four dimensionsas
F̃µν =

i

2
εµνρσF

ρσ . (1.4.1)With the metri
 (2.4.1) and the 
onvention that
ε0123 = +1 , (1.4.2)Page 18



the ele
tromagneti
 �eld strength tensor and its dual are given expli
itly for c = 1 in matrixform as
Fµν =







0 −Ex −Ey −Ez
Ex 0 −Bz By
Ey Bz 0 −Bx
Ez −By Bx 0






, F̃µν = i







0 −Bx −By −Bz
Bx 0 −Ez Ey
By Ez 0 −Ex
Bz −Ey Ex 0






, (1.4.3)in terms of the spatial �eld 
omponents for the magneti
 and ele
tri
 �elds. By use of theusual three-ve
tor notation

E = (Ex, Ey, Ez) , E2 = E ·E , E ·B = ExBx + EyBy + EzBz , (1.4.4)the obje
ts C1 and C2 
an be 
onstru
ted from Fµν and F̃µν as
C1 ≡ −1

4
FµνF

µν =
1

2

(
E2 −B2

)
, C2 ≡ −1

4
Fµν F̃µν = −iE · B , (1.4.5)su
h that both obje
ts are fully 
ontra
ted and hen
e Lorentz invariant. The �eld strengthtensor is by itself gauge invariant and both C1 and C2 are therefore gauge invariant. It 
anbe shown that C1 and C2 are the only independent naturally invariant obje
ts that 
an be
onstru
ted from Fµν without using its derivatives. This is dis
ussed in A.1 with use of thespinor-heli
ity formalism from se
tion 2.1.7. The ordinary Maxwell Lagrangian is

LMaxwell = −1

4
FµνF

µν = C1 , (1.4.6)and in va
uum where D = E, the energy density is given by
HMaxwell = E · D− LMaxwell =

1

2

(
E2 +B2

)
, (1.4.7)with D denoting the ele
tri
 displa
ement �eld. In the ele
trostati
 
ase B = 0, the energydensity is H ∼ E2 and the self energy of a 
harged point parti
le is 
al
ulated by integratingthe energy density. In a spheri
ally symmetri
 �eld from a 
harged point parti
le, the ele
tri
�eld 
an only have radial 
omponents

E = Er r̂ , (1.4.8)so that Maxwell's equation yields
0 = ∇ · E =

1

r2
∂

∂r
r2Er , (1.4.9)whereby it follows that

|E| ∼ 1

r2
, (1.4.10)for the �eld magnitude as fun
tion of the distan
e r from the origin. The self energy is givenby

E =

∫

d3xHMaxwell =
1

2

∫

d3xE2 , (1.4.11)and with the volume element d3 x = r2 sin θ dr dθ dφ the integrand be
omes
d3xE2 ∼ dr r2

1

r4
= dr

1

r2
. (1.4.12)This result diverges for small r and it is apparent how the self energy for a 
harged pointparti
le in ordinary Maxwell theory be
omes in�nite. Page 19



1.4.3 Modi�
ation of ordinary Maxwell theoryThe modi�
ation of Maxwell theory a

ording to Born and Infeld is formulated by repla
ingthe ordinary Lagrangian (1.4.6) by a new non-linear Lagrangian. This 
an be done by in
orpo-rating a maximal value for the ele
tri
 �eld and is another example of an e�e
tive theory. Thetheory of spe
ial relativity has an in
orporated maximal value sin
e nothing 
an move with avelo
ity greater than c. This property is re�e
ted in the Lagrangian des
ribing a relativisti
point parti
le whi
h is given in (1.2.11). Using (1.2.8) and restoring fa
tors of c yields therelativisti
 point parti
le Lagrangian
Lrel = −mc2

√

1 − v2

c2
, (1.4.13)where the maximal possible velo
ity is vmax = c sin
e the argument of the square root isrequired positive. This property of maximal velo
ity in the theory of spe
ial relativity was usedby Born and Infeld as an inspiration. The maximal value for the ele
tri
 �eld is in
orporatedin the theory by writing the Lagrangian

LMaxwell → L′ = −b2
√

1 − 2C1

b2
+ b2 = −b2

√

1 − E2 −B2

b2
+ b2 , (1.4.14)whi
h was originally proposed by Born [6℄ in 1934. For B = 0 it follows that

|E| ≤ b , (1.4.15)to ensure a positive argument under the square root. For a small ele
tri
 �eld C1 ≪ b2,equation (1.4.14) is expanded as
L′ = −b2

(

1 − C1

b2

)

+ b2 + O
(
C2

1

)
= C1 + O

(
C2

1

)
, (1.4.16)and the Born-Infeld theory resembles the ordinary Maxwell theory in the limit of small �elds,

L′
∣
∣
∣
C1≪b2

∼ LMaxwell . (1.4.17)As was proposed by Born and Infeld [7℄ later in 1934, (1.4.14) 
an be modi�ed further by thein
lusion of one additional term under the square root
LDBI = −b2

√

1 − 2C1

b2
+
C2

2

b4
+ b2 = −b2

√

1 − E2 −B2

b2
− (E · B)2

b4
+ b2 . (1.4.18)This is the Lagrangian known as the Dira
-Born-Infeld Lagrangian whi
h is both Lorentzand gauge invariant sin
e it is 
onstru
ted from C1 and C2. For small �elds C1 and C2 are
omparable and hen
e

LDBI ∼ C1 , (1.4.19)holds in the weak �eld limit just as (1.4.16). The modi�
ation from (1.4.14) to (1.4.18) ispreferred be
ause the latter expression 
an be generalized. The generalization reads
− det

(

ηµν +
1

b
Fµν

)

= 1 − 2C1

b2
+
C2

2

b4
, (1.4.20)Page 20



whi
h 
an be 
he
ked expli
itly in Mathemati
a by writing the metri
 and the �eld strengthtensor expli
itly as matri
es. This parti
ular 
omputation 
an be found in detail in se
tionA.1. From (1.4.20) it follows that
LDBI = −b2

√

− det

(

ηµν +
1

b
Fµν

)

+ b2 , (1.4.21)whi
h allows for a generalization to any number of dimensions. It follows straightforwardlyfrom a Lorentz transformation
M →M ′ = ΛMΛT , (1.4.22)with

ΛΛT = 1 , (1.4.23)for the transformation matrix Λ that the determinant (1.4.21) is Lorentz invariant and hen
ealso the DBI Lagrangian.The 
lassi
al Maxwell equations in
orporate the ele
tri
 displa
ement ve
tor �eld D andthe auxiliary magneti
 �eld H in order to des
ribe ele
tromagnetism in materials. In a nonlin-ear theory, the va
uum itself behaves as some kind of material. Born-Infeld theory des
ribesele
tromagnetism in va
uum and sin
e it is a nonlinear theory there is a nontrivial relationshipbetween E and D. From 
omputations along the lines of se
tion 1.4.2 for the displa
ement�eld D it 
an be shown [9℄ that the DBI Lagrangian leads to a �nite self energy for a 
hargedpoint parti
le as was the original purpose for the modi�
ation of the Lagrangian.
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Chapter 2Field theory ba
kgroundThe low-energy limit of string theory 
an be viewed e�e
tively as a quantum �eld theory. Ona low-energy s
ale, the smallest stru
ture of string theory 
annot be resolved and string theoryappears therefore e�e
tively as a quantum �eld theory. Consequently, s
attering amplitudesin the next 
hapters will be 
al
ulated by use of perturbative methods from �eld theory.This 
hapter 
ontains a dis
ussion of the relevant �eld theory methods used in amplitude
al
ulations. It is dis
ussed how 
orrelation fun
tions are 
omputed by use of Wi
k 
ontra
-tions and the formalism of fun
tional integrals are introdu
ed. Furthermore, spinors and inparti
ular the spinor-heli
ity formalism is dis
ussed in detail. The spinor-heli
ity formalismis a method to express tensors in terms of spinors and it will be useful in expli
it 
al
ulationsof Wi
k 
ontra
tions in 
onne
tion with s
attering amplitudes in the next 
hapters.2.1 Spinor-heli
ity formalism in four dimensionsThis se
tion is based on referen
es [10, 11, 12, 13, 14℄ and it deals with the so-
alled spinor-heli
ity formalism, a formalism that enables a translation between tensors and produ
ts of spinve
tors. A modern review on the spinor heli
ity formalism 
an be found in [15℄. It turns outthat this 
orresponden
e between tensors and spinors is very useful espe
ially in 
onne
tionwith the study of s
attering amplitudes in four dimensions where the 
al
ulations simplifywhen tensors are expressed as spinors. The 
orresponden
e is introdu
ed in the followingse
tions and it is natural to begin with a dis
ussion of the heli
ity quantum number.2.1.1 Parti
le spin and the heli
ity quantum numberThe spin of a massive parti
le is found by studying the transformation properties under ro-tations in the rest frame. The angular momentum operator, or the spin operator, in the restframe is denoted by J and it does not have simple transformation properties under Lorentztransformations. It is therefore not the best operator to use in the des
ription of parti
lestates. A natural obje
t to use is the polarization operator
W µ =

1

2
εµνρσPνΣρσ , (2.1.1)with

(Σρσ)µν = i (ηρµησν − ησµηρν) , (2.1.2)Page 22



denoting the generators of Lorentz transformations i.e. boosts and rotations in the ve
torrepresentation of the Poin
aré algebra. The polarization operator is known as the Pauli-Lubanski ve
tor and it transforms as a pseudo ve
tor under Lorentz transformations. It
ommutes with the momentum operator
[W µ, P ν ] = 0 , (2.1.3)and it is related to the spin operator by

W 0 = 0 , W 1 = mJ1 , W 2 = mJ2 , W 3 = mJ3 , (2.1.4)where m is the parti
le mass. The relations (2.1.4) 
an be obtained expli
itly in the rest frame.In a spe
i�
 representation the eigenvalues of the square of the Pauli Lubanski ve
tor are
WµW

µ = −m2j (j + 1) , (2.1.5)in terms of the mass and the parti
le spin j. It 
an be shown expli
itly that the operator(2.1.5) 
ommutes with all of the generators of the Lorentz algebra
[

WλW
λ, Pµ

]

=
[

WλW
λ,Σµν

]

= 0 , (2.1.6)whi
h means that it is a Casimir operator. The other Casimir operator is the invariant massoperator,
PµP

µ = m2 , (2.1.7)so that the eigenvalues of (2.1.5) and (2.1.7) 
an be used to 
hara
terize an arbitrary physi
alspin system of elementary parti
les. The heli
ity quantum number 
an be used instead ofthe spin in the des
ription of elementary parti
les. This is parti
ularly useful for a masslessparti
le where the polarization operator,
W µWµ ∝ m2 = 0 , (2.1.8)does not provide useful information. The heli
ity operator is de�ned as the proje
tion of thespin on the dire
tion of the momentum

H = J · p̂ , (2.1.9)with the unit ve
tor
p̂ =

p

|p| , (2.1.10)pointing in the propagating dire
tion of the momentum. An observer of a massive parti
le willalways be able to perform a boost into a frame in whi
h the parti
le momentum is reversed.It follows that the heli
ity quantum number for a massive parti
le is not Lorentz invariant butonly invariant under spatial rotations. The situation is di�erent for a massless parti
le sin
e ithas no rest frame. An observer 
annot boost to reverse the dire
tion of the parti
le momentumand a massless parti
le will therefore always appear to spin in the same dire
tion along itsdire
tion of momentum. It follows that the heli
ity for a massless parti
le is independent ofPage 23



frame, meaning that it is a Lorentz invariant. A massless parti
le 
an be boosted to a framein whi
h its momentum ve
tor has the form
pµ = (p, 0, 0, p) . (2.1.11)This ve
tor is invariant under spatial rotations in the (1, 2) plane and it follows that the littlegroup is SO(2) whi
h is generated by the angular momentum operator in the 3-dire
tion. Theangular momentum operator has eigenvalues given by the heli
ity λ and a massless parti
lestate 
an therefore be 
hara
terized with the quantum state

|p, λ〉 , (2.1.12)where λ is the eigenvalue of the heli
ity operator and p is the eigenvalue of the momentumoperator.2.1.2 Spatial rotationsIn order to express tensors in terms of spinors it is natural to 
onsider representations. ALorentz transformation on an arbitrary four-ve
tor will mix all ve
tor 
omponents meaningthat the ve
tor representation of the Lorentz group is irredu
ible. A tensor with arbitrarilymany indi
es transforms as
T µ1µ2...µn → T µ

′

1
µ′

2
...µ′n = Λ

µ′
1
µ1

Λ
µ′

2
µ2

· · ·Λµ′nµn
T µ1µ2...µn , (2.1.13)whi
h is a tensor produ
t of transformations on ea
h index. From (2.1.13) it is apparent thatthe tensor representation of the Lorentz group is just a tensor produ
t of ve
tor representa-tions. Consequently the ve
tor representation is said to be the fundamental representationof SO(3, 1). The group of spatial rotations SO(3) is a subgroup of the group of Lorentztransformations. Under spatial rotations governed by SO(3), a tensor representation will belabeled by its angular momentum j and 
ontain a total number of 2j + 1 states. For SO(3)the angular momentum will be a non-negative integer. A spatial rotation of the four-ve
tor

vµ =
(
v0,v

) does not mix the spatial 
omponents with the time 
omponent whi
h means thatthe time 
omponent of the ve
tor is invariant under spatial rotations and hen
e has angu-lar momentum j = 0. From the point of view of SO(3) rotations, the four-ve
tor is then aredu
ible representation sin
e it 
an be de
omposed into
vµ ∈ 0 ⊕ 1 , (2.1.14)whi
h is a dire
t sum of a s
alar representation with angular momentum j = 0 and a ve
torrepresentation with angular momentum j = 1.From non-relativisti
 quantum me
hani
s it is known that the tensor representation isnot the only representation of spatial rotations. In parti
ular the spinorial representation isof physi
al interest sin
e fermioni
 parti
les are des
ribed by spinors whi
h are the elementsof a spinor representation. The spinor representations are as well labeled by the angularmomentum j whi
h in this 
ase take non-zero half-integer values. The group for the spinorrepresentation is SU(2). Both SU(2) and SO(3) have the angular momentum algebra as Liealgebra but the groups are only lo
ally isomorphi
 sin
e a rotation of 2π in SU(2) is minus theidentity. In SO(3) a rotation of 2π is identi
al to the identity. Physi
al systems with integerPage 24



or half-integer spin 
an be 
onstru
ted as 
omposite systems of spin j = 1/2 parti
les and inparti
ular the 
omposite system
1

2
⊗ 1

2
= 0 ⊕ 1 , (2.1.15)is a dire
t sum of a s
alar representation and a ve
tor representation. The right hand sideof (2.1.15) is equal to that of (2.1.14) and it is apparent how the ve
tor representation isequivalent to the produ
t of two spin representations. This equivalen
e is the starting pointto establish the spinor heli
ity formalism as the 
orresponden
e between tensors and spinors.2.1.3 Ve
tor representation and spinor representationThe equivalen
e dis
ussed above between the ve
tor representation and the produ
t of twospin representations is related to the group isomorphism

SO(4) ∼ SU(2) × SU(2) . (2.1.16)To make this expli
it, a Lorentz index µ in four dimensions 
an just as well be written asthe 
omposite index αα̇ where ea
h index 
an take two values. This equivalen
e between twoways of writing indi
es 
an be dis
ussed by 
onsidering an arbitrarily 
hosen four-ve
tor Kµwhi
h is written as
Kµ =







K0

K1

K2

K3







, (2.1.17)in a parti
ular referen
e frame. The four-ve
tor is fully determined by its four 
omponents.A hermitian 2 × 2 matrix
M = M† =

[
α β
β∗ δ

]

, (2.1.18)with α = α∗, δ = δ∗ is also fully determined by four independent 
omponents and it is thereforesuggested that a one-one 
orresponden
e between real world ve
tors and 2 × 2 hermitianmatri
es 
an be established. This is then the 
orresponden
e µ ↔ αα̇ dis
ussed above. The
orresponden
e is written as
Kαα̇ ≡ Kµσ

µ
αα̇ , (2.1.19)where σµαα̇ are the Clebs
h-Gordan 
oe�
ients for the transition between the ve
tor represen-tation and the spin representation. The Clebs
h-Gordan 
oe�
ients are given by the Paulimatri
es

(
σ0
)

αα̇
=

[
1 0
0 1

]

,
(
σ1
)

αα̇
=

[
0 −1
−1 0

]

,
(
σ2
)

αα̇
=

[
0 −i
i 0

]

,
(
σ3
)

αα̇
=

[
−1 0
0 1

]

.(2.1.20)This 
an be seen by 
onsidering the Lorentz transformation
u′µ = Λ ν

µ uν , (2.1.21)Page 25



expressed in spinor indi
es
u′αα̇ = u′µ σ

µ
αα̇ = Λ ν

µ uν σ
µ
αα̇ . (2.1.22)Sin
e the spinor representation is equivalent to the tensor representation, there exist transfor-mation spinors denoted as ζ β

α so that
u′αα̇ = ζ β

α ζ β̇
α̇ uββ̇ = ζ β

α ζ β̇
α̇ uν σ

ν
ββ̇

. (2.1.23)It follows from a 
omparison of (2.1.22) and (2.1.23) that
Λ ν
µ σµαα̇ = ζ β

α ζ β
α̇ σν

ββ̇
, (2.1.24)whi
h relates the transformation matrix in tensor indi
es to the transformation matri
es inspinor indi
es. The generalization of (2.1.19) for a tensor with arbitrarily many Lorentz indi
esis

Tµ1···µn
σµ1

α1α̇1
· · · σµn

αnα̇n
= Tα1α̇1···αnα̇n

, (2.1.25)where Tα1α̇1···αnα̇n
is an outer produ
t of n (2 × 2) matri
es. Equation (2.1.19) has the expli
itmatrix form

Kαα̇ =

[
K0 +K3 K1 + iK2

K1 − iK2 K0 −K3

]

, (2.1.26)so that the determinant of the hermitian matrix
det Kαα̇ =

(
K0
)2 −

(
K1
)2 −

(
K2
)2 −

(
K3
)2

= KµK
µ , (2.1.27)is the invariant length of the four-ve
tor Kµ. As in (2.1.11), for Kµ massless, one 
an boostto a frame in whi
h the ve
tor has 
omponents

Kµ = (K, 0, 0,K) , (2.1.28)and it is apparent from (2.1.26) that
Kαα̇ =

[
2K 0
0 0

]

=

( √
2K
0

)
( √

2K, 0
)
, (2.1.29)holds when Kµ is massless. It follows that a massless ve
tor 
an always be written as theouter produ
t

Kαα̇ = λαλα̇ . (2.1.30)Writing the general spin ve
tor
κα =

(
ζ
ξ

)

, (2.1.31)the matrix Q 
an be 
onstru
ted as the outer produ
t
κακα̇ =

(
ζ
ξ

)
(
ζ∗, ξ∗

)
=

[
ζζ∗ ζξ∗

ξζ∗ ξξ∗

]

≡ Q , (2.1.32)su
h that
detQ = ζζ∗ξξ∗ − ξζ∗ζξ∗ = 0 . (2.1.33)This is equivalent to

detKαα̇ = 0 , (2.1.34)for Kµ massless.Page 26



2.1.4 Covariant and 
ontravariant spinor indi
esEquation (2.1.19) has the inversion
Kαα̇ σ

µ,αα̇ = κKµ = Kν σ
ν
αα̇ σ

µ,αα̇ , (2.1.35)su
h that
σναα̇ σ

µ,αα̇ = κηµν . (2.1.36)This involves both 
ovariant and 
ontravariant spinor indi
es and it is therefore natural todis
uss how spinor indi
es are raised and lowered. The verti
al position of an index is 
hangedby the metri
 spinor whi
h is the spin spa
e analogue of the metri
 tensor in spa
etime. Themetri
 tensor ηµν is invariant under Lorentz transformations and it de�nes the invariant innerprodu
t
aµbµ = aµbνηµν = a′µb′νηµν = a′µb′µ , (2.1.37)between tensors. Furthermore, ηµν a
ts as the link between 
ovariant and 
ontravariant tensorsby raising and lowering Lorentz indi
es. The element in spin spa
e whi
h raises and lowersindi
es is the metri
 spinor denoted εαβ . It de�nes the bilinear form
λακ

α = λακβεαβ = λ′ακ
′α = λ′ακ′βεαβ , (2.1.38)for the spinors λ and κ. Spinor produ
ts like (2.1.38) are invariant under SU(2). In tensorlanguage, if tµν denotes the transformation matrix for some 
oordinate transformation, Kµtransforms as

K ′µ = tµνK
ν , (2.1.39)with an identi
al transformation in 
ase of the 
ovariant tensor Kν . For tensors of moreindi
es the transformation is just a tensor produ
t of transformations (2.1.39) for ea
h index.Similarly the transformation of an arbitrary spinor reads

ζ ′α = Λαβ ζ
β , (2.1.40)and the metri
 spinor transforms a

ording to

ε′αβ = Λ γ
α Λ δ

β εγδ . (2.1.41)The metri
 spinor is required to be invariant under spin transformations
εαβ = ε′αβ

= Λ 0
α Λ 1

β ε01 + Λ 1
α Λ 0

β ε10 , (2.1.42)where the transformation matrix is unimodular.
1 = det Λ = Λ 0

0 Λ 1
1 − Λ 0

1 Λ 1
0 . (2.1.43)If the metri
 spinor is antisymmetri


ε00 = ε11 = 0 , ε01 = −ε10 , (2.1.44)Page 27



it follows from (2.1.42) that
ε′αβ = ε01

(
Λ 0
α Λ 1

β − Λ 1
α Λ 0

β

)
, (2.1.45)so that an antisymmetri
 metri
 spinor is invariant under unimodular spin transformations

εαβ = ε′αβ . (2.1.46)The metri
 spinor 
an be written expli
itly as
εαβ =

[
0 −1

+1 0

]

, (2.1.47)in matrix form where a 
hoi
e of �1� as the entries has been made. Sin
e εαβ is antisymmetri
,the bilinear form (2.1.38) is as well antisymmetri

λακ

α = −λακα , (2.1.48)and it follows that the 
ontra
tion of a spin ve
tor with itself ne
essarily vanishes
λαλ

α = λαλβεαβ = −λαλβεβα = −λαλα = 0 . (2.1.49)As a 
onsequen
e of the antisymmetry it is ne
essary to adopt a sign 
onvention for thepro
edure of raising and lowering spinor indi
es. As indi
ated in (2.1.38) and (2.1.49) the
onvention is that spinor indi
es des
ent from left to right su
h that
ζα = ζβεβα , ζα = εαβζβ . (2.1.50)For the purpose of determining the expli
it matrix expression of the metri
 spinor with upperindi
es εαβ it follows from (2.1.50) that

εαβ = εγδ εγα εδβ

= ε01 ε0α ε1β + ε10 ε1α ε0β , (2.1.51)and thereby
ε01 = ε01 = −ε10 . (2.1.52)In terms of matri
es, εαβ is thereby identi
al to εαβ . Equivalent relations and matrix expres-sions are found for the spinors εα̇β̇ and, εα̇β̇ in the 
onjugate spa
e. A useful result is

εαβ ε
αβ = ε01 ε

01 + ε10 ε
10 = 2 . (2.1.53)2.1.5 Relating the metri
 tensor to the metri
 spinorIndividual spinor indi
es are raised and lowered with the metri
 spinor just as individualLorentz indi
es are raised and lowered with the metri
 tensor. A single Lorentz index µ
orresponds to a pair of spinor indi
es αα̇ and a 
hange in the verti
al position of an index µ
orresponds therefore to a 
hange in the verti
al position of the index pair αα̇. The obje
t inspin spa
e whi
h raises or lowers a pair of indi
es must therefore be equivalent to the metri
tensor in spa
etime. The purpose of this se
tion is to determine the relation between thisPage 28



parti
ular obje
t in spin spa
e and the metri
 tensor in spa
etime. The obje
t εαβ εα̇β̇ issymmetri
 under (αα̇) ↔
(

ββ̇
) and from

Kαα̇ = εαβ εα̇β̇Kββ̇ , (2.1.54)it is apparent that
ηµν ↔ εαβ εα̇β̇ . (2.1.55)For some 
onstant C it holds that

ηµνKµKν = C εαβεα̇β̇Kαα̇Kββ̇ , (2.1.56)sin
e both sides are invariants. The 
hoi
e C = 1/2 yields
ηµνKµKν =

1

2

[

2 ε01̇ ε01̇K00̇K11̇ + 2 ε01̇ ε10̇K01̇K10̇

]

=
(
K0
)2 −

(
K1
)2 −

(
K2
)2 −

(
K3
)2

, (2.1.57)by use of (2.1.26). Equation (2.1.56) then be
omes
ηµνKµKν =

1

2
εαβ εα̇β̇Kαα̇Kββ̇ =

1

2
KµKν σ

µ
αα̇ σ

ββ̇ , (2.1.58)using (2.1.19) and it is subsequently found that
ηµν =

1

2
σµαα̇ σ

ν,αα̇ . (2.1.59)From the de�nition it holds that
ηαβα̇β̇ = ηµν σ

µ
αα̇ σ

ν
ββ̇

= C̃ εαβ εα̇β̇ , (2.1.60)and 
ontra
ting both sides with εαβ εα̇β̇ yields
4C̃ = ηµν σ

µ
αα̇ σ

ν,αα̇ = 8 , (2.1.61)using (2.1.59). The 
onstant is therefore C̃ = 1/2 and it follows that
εαβ εα̇β̇ =

1

2
ηµν σ

µ
αα̇ σ

ν
ββ̇

. (2.1.62)By 
onsidering
εαβ εα̇β̇ ε

αβ εα̇β̇ =

(
1

2
ηµν σ

µ
αα̇ σ

ν
ββ̇

)(

κ̃ηλκ σ
λ,αα̇ σκ,ββ̇

)

=
1

2
κ̃ ηµν ηλκ 22ηµλ ηνκ = 2 κ̃ , (2.1.63)it is apparent that κ̃ = 2 and hen
e

εαβ εα̇β̇ = 2 ηµν σ
µ,αα̇ σν,ββ̇ . (2.1.64)When Lorentz indi
es are expressed as spinor indi
es the 
orresponden
e is therefore

ηµν ↔ 2 εαβ εα̇β̇ , ηµν ↔ 1

2
εαβ εα̇β̇ , (2.1.65)whi
h will be
ome important in order to obtain the right 
onstant fa
tors in 
al
ulations whenLorentz tensors are translated into spinors. Page 29



Momentum bilinearsFor arbitrary spinors φ and ψ, the momentum bilinears
〈φψ〉 ≡ φα̇ψα̇ = φα̇ψβ̇εβ̇α̇ , [φψ] ≡ φαψ

α = φαψβεαβ , (2.1.66)de�nes respe
tively the holomorphi
 spinor produ
t and the anti-holomorphi
 spinor produ
t.If pµ and kµ are both massless pµpµ = kµk
µ = 0, it follows that

(pµ + kµ)2 = 2pµkνη
µν = 2κακα̇λβλβ̇

1

2
εαβεα̇β̇ . (2.1.67)The dot produ
t of two massless four-ve
tors 
an thereby be expressed in terms of spinorbilinears as

2 p · k = 〈λκ〉 [κλ] , (2.1.68)with
kαα̇ = λαλα̇ , pαα̇ = κακα̇ . (2.1.69)Dot produ
ts of massless momenta as (2.1.68) will be written with the notation

2 pi · pj = 〈ij〉 [ji] . (2.1.70)2.1.6 Symmetry properties of spinorsThis se
tion 
ontains a dis
ussion of spinors with 
ertain symmetri
 properties. In parti
ularspinors whi
h are antisymmetri
 in some indi
es are 
onsidered and it is found that thesespinors 
an be expressed in a simpler form. This is useful in order to express the ele
tromag-neti
 �eld strength tensor in spinor indi
es.If M is an arbitrary antisymmetri
 2 × 2 matrix it is of the form
M =

[
0 a
−a 0

]

= a

[
0 1
−1 0

]

, (2.1.71)and it is proportional to the matrix form (2.1.47) of εαβ . It is apparent from (2.1.71) thatthe matrix on the right hand side is ne
essarily proportional to any antisymmetri
 2 × 2matrix. In the spa
e of 2 × 2 matri
es, the matrix on the right hand side is therefore theonly antisymmetri
 one up to a 
onstant. In terms of indi
es, this property is manifest su
hthat any obje
t whi
h is antisymmetri
 in two indi
es e.g. (α, β) must be proportional tothe metri
 spinor εαβ in the same two indi
es. For an arbitrary antisymmetri
 spinor Sαβ itfollows therefore that
Sαβ = S[αβ] = κ εαβ , (2.1.72)where [ · · · ] denotes antisymmetrization as in (2.4.5). Contra
ting with εαβ determines the
onstant

κ =
1

2
S α
α , (2.1.73)Page 30



and Sαβ 
an subsequently be written as
Sαβ =

1

2
εαβ S

γ
γ . (2.1.74)The spinor with only two indi
es is a spe
ial 
ase of the general pi
ture. A spinor witharbitrarily many indi
es with a 
ertain antisymmetry in two of the indi
es may be expressedin a way analogous to (2.1.74). In order to �nd this expression and as a 
ontinuation of thedis
ussion of antisymmetri
 spinors, the S
houten identity for produ
ts of metri
 spinors willnow be derived.Symmetry 
onsiderations leads to

εαβ εγδ − εδβ εγα = κ εαδ εβγ . (2.1.75)By 
onstru
tion, the left hand side is antisymmetri
 under (α↔ δ) and as well under (β ↔ γ).The right hand side has the same antisymmetri
 properties and (2.1.75) holds for some ap-propriate numeri
al 
onstant κ. Contra
ting (2.1.75) with εαβ εγδ yields κ = −1 and thereby
εαβ εγδ + εαγ εδβ + εαδ εβγ = 0 . (2.1.76)This is known as the S
houten identity and 
an as well be obtained from the antisymmetri-zation εα[β εγδ]. In this 
ase the antisymmetrization is performed over three indi
es takingonly two values and the result ne
essarily vanishes. Equation (2.1.76) 
an be 
he
ked dire
tlyby some expli
it 
hoi
e of index values or by a 
ontra
tion with any of the spinors εαβ , εαγ ,

εαδ , εβγ or εβδ . Contra
ting (2.1.76) with upper indi
es with εφα εψβ leads to
εαβ ε

γδ = εα
γεβ

δ − εα
δεβ

γ , (2.1.77)whi
h will be useful in the derivation of an expression similar to (2.1.74) but for spinors witharbitrarily many indi
es. The spinor
S···γδ··· = S···[γδ]··· , (2.1.78)is de�ned with arbitrarily many indi
es represented by the dots and with the expli
it propertythat it is antisymmetri
 in the indi
es (γ, δ). A 
ontra
tion of (2.1.77) with S···γδ··· yields

S···αβ··· =
1

2
εαβ S···γ

γ
··· , (2.1.79)whi
h is the generalization of (2.1.74) for more than two indi
es.In general, an arbitrary square matrix N 
an be expanded as a sum of its symmetri
 andantisymmetri
 
omponents as

N = N (s) + N (a) , (2.1.80)where the symmetri
 and antisymmetri
 
omponents are given respe
tively
N (s) =

1

2

(
N + N T

)
, N (a) =

1

2

(
N −N T

)
. (2.1.81)It follows from (2.1.25) that an arbitrary se
ond-rank tensor ξµν is written as

ξµν ↔ ξαα̇ββ̇ , (2.1.82)Page 31



in spinor indi
es as an outer produ
t of two 2 × 2 matri
es. For an outer produ
t of twomatri
es N1 and N2, an expansion of ea
h of the matri
es in symmetri
 and antisymmetri

omponents as (2.1.80) leads to
N1N2 = N (s)

1 N (s)
2 + N (a)

1 N (a)
2 + N (s)

1 N (a)
2 + N (a)

1 N (s)
2 , (2.1.83)with four possibilities for 
ombining the symmetri
 and antisymmetri
 
omponents. Viewing

ξαα̇ββ̇ as an outer produ
t of two matri
es allows an expression of the form (2.1.83) su
h thatthe spinor 
an be expanded as
ξαβα̇β̇ = ξ(αβ)(α̇β̇) + ξ[αβ][α̇β̇] + ξ(αβ)[α̇β̇] + ξ[αβ](α̇β̇) , (2.1.84)in terms of the four possible ways of 
ombining symmetrization and antisymmetrization overthe indi
es. The notation (· · ·) denotes symmetrization. Employing (2.1.79) for the antisym-metri
 elements in (2.1.84) leads to

ξαβα̇β̇ = ξ(αβ)(α̇β̇) +
1

4
εαβ εα̇β̇ ξ

γ
γ

γ̇
γ̇ +

1

2
εα̇β̇ ξ(αβ)γ̇

γ̇ +
1

2
εαβ ξγ

γ
(α̇β̇) . (2.1.85)If ξµν is an antisymmetri
 tensor it holds that

ξαβα̇β̇ = −ξβαβ̇α̇ . (2.1.86)It is apparent from (2.1.85) that ea
h of the �rst two terms are symmetri
 under the inter
hange
(αβ) ↔

(

α̇β̇
) whereas the last two terms 
onsidered as one single obje
t are antisymmetri
under this inter
hange of indi
es. The �rst two terms 
onstitute therefore the vanishingsymmetri
 part of the tensor while the last two terms 
onstitute the antisymmetri
 part of

ξαβα̇β̇ . The tensor ξµν 
an hen
e be written in spinor indi
es as
ξαβα̇β̇ =

1

2
εα̇β̇ ξ(αβ)γ̇

γ̇ +
1

2
εαβ ξγ

γ
(α̇β̇)

≡ εα̇β̇ φαβ + εαβ ψα̇β̇ , (2.1.87)with φαβ and ψα̇β̇ symmetri
.2.1.7 Spinor expression for the �eld strength tensorThe Dira
-Born-Infeld a
tion is build from the ele
tromagneti
 �eld strength tensor and itsdual. It is of interest to study these two obje
ts in spinor indi
es sin
e 
al
ulations of s
atteringamplitudes from the Dira
-Born-Infeld a
tion are simpli�ed if the �eld strengths are expressedthis way. The dual of the ele
tromagneti
 �eld strength tensor is de�ned in four dimensionsusing the totally antisymmetri
 four-dimensional tensor εµνρσ . In order to express the dual ofthe �eld strength in spinor indi
es it is therefore natural to study the totally antisymmetri
four-dimensional tensor εαα̇ββ̇γγ̇δδ̇ in spinor indi
es. The 
orresponden
e is
εαα̇ββ̇γγ̇δδ̇ = εµνρσ σ

µ
αα̇ σ

ν
ββ̇
σργγ̇ σ

σ
δδ̇
, (2.1.88)but it 
an be useful to instead 
onsider another approa
h. Equation (2.1.76) 
an be used to
he
k expli
itly that

(

εαγ εβδ εα̇δ̇ εγ̇β̇ − εαδ εγβ εα̇γ̇ εβ̇δ̇

)

=
(

εαβ εγδ εα̇δ̇ εγ̇β̇ − εαδ εγβ εα̇β̇ εγ̇δ̇

)

=
(

εαγ εβδ εα̇β̇ εγ̇δ̇ − εαβ εγδ εβ̇δ̇ εα̇γ̇

)

, (2.1.89)Page 32



holds. The bra
ket on the left hand side is antisymmetri
 under the inter
hange of indi
es
(αα̇) ↔

(

ββ̇
) as well as under the inter
hange (γγ̇) ↔

(

δδ̇
). The upper bra
ket on the righthand side is antisymmetri
 under the inter
hange of indi
es (αα̇) ↔ (γγ̇) and as well under

(

ββ̇
)

↔
(

δδ̇
) Finally, the lower bra
ket on the right hand side is antisymmetri
 under theinter
hange (αα̇) ↔

(

δδ̇
) and as well under (ββ̇)↔ (γγ̇). It follows that
εµνρσ ↔ C

(

εαγ εβδ εα̇δ̇ εγ̇β̇ − εαδ εγβ εα̇γ̇ εβ̇δ̇

)

, (2.1.90)holds be
ause the bra
ket has the 
orre
t antisymmetri
 properties in all indi
es. It is observedthat
εµνρσ ελκτυ η

µλ ηνκ ηρτ ησυ = −24 , (2.1.91)with
ε0123 = − ε0123 = + 1 , (2.1.92)whi
h is used below. Evaluating expli
itly the self 
ontra
tion of the bra
ket without the
onstant C on the left hand side of (2.1.89) yields

(

εαγ εβδ εα̇δ̇ εγ̇β̇ − εαδ εγβ εα̇γ̇ εβ̇δ̇

) 1

24

(

εαγ εβδ εα̇δ̇ εγ̇β̇ − εαδ εγβ εα̇γ̇ εβ̇δ̇
)

=
1

16
(2 × 16 − 2 × 4) =

24

16
, (2.1.93)with the fa
tor 1/24 originating from the four metri
 tensors in (2.1.91). Hen
e

C2 = −16 , C = 4i , (2.1.94)where a 
hoi
e of the positive solution has been made. The expression for εµνρσ in spinorindi
es is therefore
εαα̇ββ̇γγ̇δδ̇ = 4i

(

εαγ εβδ εα̇δ̇ εγ̇β̇ − εαδ εγβ εα̇γ̇ εβ̇δ̇

)

, (2.1.95)whi
h will be used in the dis
ussion of the dual of the ele
tromagneti
 �eld strength in spinorindi
es.The ele
tromagneti
 �eld strength tensor is real and antisymmetri
 and 
an be writtenon the form (2.1.87). For an antisymmetri
 rank-two tensor in four dimensions, the dual isde�ned in (1.4.1) as the 
ontra
tion of the tensor with the total antisymmetri
 symbol. Itfollows from (2.1.87) that the dual of Fµν is given in spinor indi
es as
F̃αβα̇β̇ =

i

2
4i
(

εαγ εβδ εα̇δ̇ εγ̇β̇ − εαδ εγβ εα̇γ̇ εβ̇δ̇

) 1

4

(

εγ̇δ̇ φγδ + εγδ ψγ̇δ̇
)

= εαβ ψα̇β̇ − εα̇β̇ φαβ . (2.1.96)The �eld strength itself is given as
Fαβα̇β̇ = εαβ ψα̇β̇ + εα̇β̇ φαβ , (2.1.97)Page 33



and in terms of
ψα̇β̇ = +Fα̇β̇ , φαβ = −Fαβ , (2.1.98)the �eld strength and its dual 
an be rewritten as
Fαβα̇β̇ = εαβ

+Fα̇β̇ + εα̇β̇
−Fαβ , (2.1.99)

F̃αβα̇β̇ = εαβ
+Fα̇β̇ − εα̇β̇

−Fαβ , (2.1.100)whi
h is nothing but a res
aling 
orresponding to the normalization
+Fµν ↔

√
2εαβ

+Fα̇β̇ . (2.1.101)Sin
e +Fαβ and −Fα̇β̇ are symmetri
, the right hand sides of (2.1.99) and (2.1.100) are 
learlyantisymmetri
 under the inter
hange (αα̇ ↔ ββ̇
) as they should be. This parti
ular antisym-metri
 form 
ould have been guessed based on pure antisymmetry 
onsiderations. It followsfrom (2.1.99) for the selfdual and anti-selfdual that

+Fα̇β̇ =
1

2
Fµν σ

µ
αα̇ σ

ν
ββ̇
εαβ =

1

2
Fαβα̇β̇ ε

αβ , −Fαβ =
1

2
Fµν σ

µ
αα̇ σ

ν
ββ̇
εα̇β̇ =

1

2
Fαβα̇β̇ ε

α̇β̇ ,(2.1.102)whi
h will be used later in manipulations of the Dira
-Born-Infeld a
tion and in spe
i�

al
ulations of s
attering amplitudes.2.1.8 Massive ve
torsEquation (2.1.30) was obtained for a massless ve
tor Kαα̇ and it is natural also to 
onsiderthe general 
ase where Kαα̇ is massive. The result will be used later in 
hapter 4. For anymassive ve
tor pµ, one 
an 
onstru
t the ve
tor
bµ = pµ − p2

2 p · q q
µ , (2.1.103)in terms of the massless ve
tor qµ and with

p · q 6= 0 . (2.1.104)It follows from
b2 = p2 − 2

p2

2 p · q q
µpµ = 0 , (2.1.105)that bµ is massless and hen
e it 
an be 
onsidered as the massless part of p

bµ → p♭µ . (2.1.106)Rearranging (2.1.103) yields in spinor indi
es
pαα̇ = λαλα̇ − p2

2 p · q ζαζα̇ , (2.1.107)Page 34



where
λαλα̇ = p♭αα̇ ↔ p♭µ , ζαζα̇ = qαα̇ ↔ qµ , (2.1.108)are massless spinors. It should be noted that in the 
ase where pµ is massless, (2.1.107) redu
esproperly

pαα̇ = λαλα̇ , (2.1.109)in agreement with (2.1.30). It is observed that
p · q =

1

2
pαα̇ζ

αζ α̇ =
1

2
λαλα̇ζ

αζ α̇ = p♭ · q , (2.1.110)whi
h 
an be substituted in the denominator in (2.1.107).2.1.9 Polarization ve
torsFrom (2.2.63) the polarization ve
tor enters the amplitude 
al
ulations as
A =

1

2
ε±αα̇A

αα̇ . (2.1.111)For on-shell photon �elds in four dimensions the 
orresponding polarization ve
tors are
ε+αα̇ =

√
2
ζαλα̇
[ζλ]

, ε−αα̇ =
√

2
ζα̇λα
〈ζλ〉 , (2.1.112)where the spinor λ is the 
orresponding photon momentum as in (2.1.109) and ζ is a masslessspinor whi
h 
an be 
hosen freely due to the freedom of on-shell gauge transformations [15℄.The spinor expression for the polarization ve
tors 
an be found expli
itly as in [16℄ howeverhere it will only be 
he
ked that (2.1.112) are both transverse to the momentum and thata 
ontra
tion of two polarization ve
tors of the same kind vanishes. The transversality isapparent from

1

2
λαλα̇

(√
2
ζαλα̇
[ζλ]

)

=
1

2
λαλα̇

(√
2
ζα̇λα
〈ζλ〉

)

= 0 , (2.1.113)while
1

2
ε+i,αα̇ ε

+,αα̇
j =

ζαλi,α̇
[ζλi]

ζαλα̇j
[ζλj]

=
1

2
ε−i,αα̇ ε

−,αα̇
j =

ζα̇λi,α
〈ζλi〉

ζ α̇λα̇j
〈ζλj〉

= 0 , (2.1.114)shows how the 
ontra
tion of two polarization ve
tors of the same polarization state van-ishes. This is the 
ase even for di�erent parti
les. The square root in (2.1.112) ensures thenormalization
1

2
ε+αα̇ ε

−,αα̇ =
ζαλα̇
[ζλ]

ζ α̇λα

〈ζλ〉 = 1 . (2.1.115)In Lorentz indi
es the polarization ve
tors 
an be written in the light 
one frame as
ε+,µ =

1√
2







0
1
−i
0







, ε−,µ =
1√
2







0
1
+i
0







, (2.1.116)Page 35



whi
h be
omes
ε+αα̇ =

√
2

[
0 1
0 0

]

, ε−αα̇ =
√

2

[
0 0
1 0

]

, (2.1.117)in spinor notation.2.2 Field theoreti
al methodsThe fundamental obje
ts, i.e. the strings in a string theory have �nite size of the order of thePlan
k length ℓP ≃ 10−33 cm. This is a 
ru
ial di�eren
e between string theory and quantum�eld theory where parti
les are point like. Small distan
es 
orrespond to high energies and ifa string theory is studied in the low energy limit, the �nite extension of the strings is invisiblesu
h that the string theory therefore appears to be equivalent to a quantum �eld theory. In this
ase, the string theory 
an be studied by using quantum �eld theory as an e�e
tive theory inthe low-energy limit so that 
omputations are performed with quantum �eld theory methods.This se
tion presents the important 
on
epts whi
h will be used in 
omputations in 
hapters3 and 4. The dis
ussion in the subsequent se
tions 2.2.1 - 2.2.6 are based on [17, 18, 19, 20℄.2.2.1 Propagators and integration 
ontoursThe propagator is a 
entral obje
t in 
omputations in a �eld theory. The notion of thepropagator will be dis
ussed in this se
tion where the Klein-Gordon �eld is used as an example.In parti
ular the Feynman propagator will be dis
ussed sin
e it is useful in perturbative
al
ulations for intera
ting �elds.In the Heisenberg pi
ture the Klein Gordon �eld has the expansion
φ(x) =

∫
d3p

(2π)3
1

√
2Ep

(

ape
−ip·x + a†pe

+ip·x
)

, (2.2.1)where ap and a†p are the usual time independent ladder operators a
ting on the quantumstates of the Hilbert spa
e. The va
uum state in this spa
e is denoted by |0〉 and in the freeKlein-Gordon theory the amplitude for a parti
le to propagate from the spa
etime point y tothe spa
etime point x is determined by the va
uum expe
tation value
D(x− y) ≡ 〈0|φ(x)φ(y) |0〉 , (2.2.2)where D(x− y) is referred to as the propagator. The obje
t φ(x)φ(y) 
ontains four produ
tsof ladder operators but sin
e it is pla
ed inside two va
uum states the term

〈0|apa†q|0〉 = (2π)3 δ(3)(p− q) , (2.2.3)is the only one whi
h is nonzero. This normalization and the three-dimensional delta fun
tionyields for the propagator
D(x− y) =

∫
d3p

(2π)3
1

2Ep

e−ip·(x−y) . (2.2.4)Page 36



In order to study di�erent propagators it is observed that a four-dimensional momentumintegral 
an be expressed as
∫

d4p

(2π)4
i

p2 −m2
e−ip·(x−y) =

∫
d3p

(2π)3
e+ip·(x−y)

∫ +∞

−∞

dp0

2π

i

(p0 + Ep) (p0 − Ep)
e−ip

0(x0−y0) ,(2.2.5)using the relativisti
 relation
m2 = E2

p − |p|2 , (2.2.6)su
h that
p2 −m2 =

(
p0
)2 − E2

p =
(
p0 − Ep

) (
p0 +Ep

)
. (2.2.7)The p0 integral in (2.2.5) has poles at p0 = ±Ep and it 
an be evaluated as a 
ontour integralin the 
omplex plane for some appropriate 
hoi
e of integration 
ontour. In the spe
i�
 
asewhere x0 > y0 the 
ontour shown in �gure 2.1 is used and a

ording to Jordan's lemma the
onvergen
e of the exponential on the integration 
ontour is ensured by 
losing it in the lowerhalf plane. This integration pi
ks up both poles and the integral gives

∫ +∞

−∞

dp0

2π

i

(p0 + Ep) (p0 −Ep)
e−ip

0(x0−y0) =
1

2Ep

e−iEp(x0−y0) +
1

− 2Ep

e+Ep(x0−y0) .(2.2.8)A substitution of (2.2.8) into (2.2.5) with a shift p → −p in integration variable for the se
ondterm yields
∫

d4p

(2π)4
i

p2 −m2
e−p·(x−y) =

∫
d3p

(2π)3
1

2Ep

[

e−ip·(x−y) − e+ip·(x−y)
]

, (2.2.9)sin
e Ep = E−p. In the 
ase x0 < y0 the integral is zero be
ause the integration 
ontour
− Ep + EpFigure 2.1: The integration 
ontour for the p0-integration 
orresponding to the retarded propagator. For

x0 > y0 the integration 
ontour 
an be 
losed in the lower half plane to pi
k up both poles. For x0 < y0 the
ontour has to be 
losed in the upper half plane and the integration is zero.has to be 
losed in the upper half plane and hen
e en
loses no poles. The right hand side of(2.2.9) is equal to the va
uum expe
tation value of the 
ommutator
〈0| [φ(x) , φ(y)] |0〉 = [φ(x) , φ(y)] , (2.2.10)Page 37



whi
h is a 
omplex number and 
an be evaluated from (2.2.1). The normalization 〈0|0〉 = 1has been used. In terms of the Heaviside step fun
tion
θ(x) =

{
1 , for x > 0
0 , for x < 0 ,

(2.2.11)the expe
tation value (2.2.10) de�nes the retarded propagator as
DR(x− y) ≡ θ

(
x0 − y0

)
〈0| [φ(x) , φ(y)] |0〉 , (2.2.12)whi
h is the right hand side of (2.2.9) sin
e the integral is zero for x0 < y0 as dis
ussed above.The result of the Klein-Gordon operator a
ting on (2.2.12) 
an be obtained as

(
∂2 +m2

)
DR(x− y) = − iδ(4)(x− y) , (2.2.13)whi
h shows that the retarded propagator is a Green's fun
tion for the Klein-Gordon operator.If the retarded propagator is Fourier expanded and a
ted on by the Klein-Gordon operator itfollows that

DR(x− y) =

∫
d4p

(2π)4
i

p2 −m2
e−ip·(x−y) , (2.2.14)with the same pres
ription for going around the two poles. Other pres
riptions for the in-tegration 
an be 
hosen and for the 
ase x0 < y0 the 
ontour is 
losed in the upper halfplane pi
king up both poles. The propagator asso
iated with this pres
ription is known as theadvan
ed propagator.When intera
ting �elds in perturbation theory will be dis
ussed in se
tion 2.2.2 it turnsout that a more physi
al pres
ription for the integration 
ontour is the Feynman pres
riptionin whi
h the asso
iated propagator is 
ausal. This is not the 
ase for neither the retarded orthe advan
ed propagator as both have support outside the light 
one. As is the 
ase for theretarded propagator also the advan
ed propagator and the Feynman propagator are Green'sfun
tions with di�erent boundary 
onditions for the Klein-Gordon operator. The Feynmanpres
ription is written in terms of time ordering whi
h is de�ned for two �elds φ(x) and φ(y)as

T{φ(x)φ(y)} =

{
φ(x)φ(y) , for x0 > y0

φ(y)φ(x) , for x0 < y0

= θ
(
x0 − y0

)
φ(x)φ(y) + θ

(
y0 − x0

)
φ(y)φ(x) , (2.2.15)pla
ing the �eld with the latest time to the left. In (2.2.15) time ordering is written for justtwo �elds but the operation has a straightforward generalization to an arbitrary number of�elds. The Feynman pres
ription is asso
iated with the Feynman propagator

DF (x− y) = 〈0|T{φ(x)φ(y)} |0〉 =

∫
d4p

(2π)4
ie−ip·(x−y)

p2 −m2 + iε
, (2.2.16)where the in
lusion of the term iε with in�nitesimal ε is a 
onvenient way to rememberthe 
ontour pres
ription. The integral should be evaluated in the limit ε → 0 whereby thedenominator in (2.2.16) be
omes

(
p0 + Ep − iε̃

) (
p0 − Ep + iε̃

)
=
(
p0 + Ep

) (
p0 − Ep

)
+ iε , (2.2.17)Page 38



with
ε = 2ε̃Ep , (2.2.18)negle
ting se
ond order terms in ε. The poles are displa
ed in�nitesimally from the real axisto positions at p0 = ± (E − iε̃) su
h that the 
ontour of the integration along the real axisruns below and above the poles respe
tively. An expli
it evaluation of the p0 integral in theFeynman propagator a

ording to the pres
ription shown on �gure 2.2.2 yields

DF (x− y) =

{
D(x− y) , for x0 > y0

D(y − x) , for x0 < y0 ,
(2.2.19)by a 
omparison with (2.2.4). For the integral x0 < y0 the integration variable has to beshifted p → −p as was the 
ase above.

− Ep

+ EpFigure 2.2: The Feynman pres
ription for the p0-integration in the 
omplex plane. The integration 
ontour is
losed in the lower half plane for x0 > y0 whereas the 
ontour is 
losed in the upper half plane for x0 < y0.2.2.2 Field intera
tionsIn order to 
al
ulate real physi
al quantities su
h as 
ross se
tions of parti
le s
attering oneneeds to 
ompute amplitudes for 
ertain intera
tion pro
esses. An essential part of an am-plitude is the 
orrelation fun
tion whi
h 
orrelates �elds on spa
etime and has the physi
alinterpretation of the amplitude for a parti
le to propagate between two spa
etime points. Thetwo-point 
orrelation fun
tion of the free theory has already been dis
ussed above and is justthe Feynman propagator. In this se
tion the general 
orrelation fun
tion, i.e. the time orderedexpe
tation value of �elds between va
uum states of the intera
ting theory will be expressedas a time ordered expe
tation value of intera
ting �elds between va
uum states of the freetheory. Using φ4-theory as an example, intera
tions are in
luded in the theory as a 
orre
tionto the non-intera
ting Hamiltonian
H = H0 +Hinteraction , (2.2.20)with

Hinteraction =

∫

d3x
λ

4!
φ4 , (2.2.21)su
h that the intera
tion 
an be evaluated perturbatively as a power series in λ. The �eldsand the states in the free theory 
an be manipulated straightforwardly whereas the intera
ting�elds and states are harder to manipulate. The �elds and states of the intera
ting theory aretherefore expressed perturbatively in terms of �elds and states of the free theory. Page 39



The intera
tion Hamiltonian enters the intera
ting theory in two pla
es namely in the �eldoperator itself and in the va
uum state |Ω〉 of the intera
ting �eld. The Heisenberg �eld inthe intera
ting theory is de�ned as
φ(x) = eiHtφ(x) e−iHt , (2.2.22)with the Hamiltonian (2.2.20). What is known as the intera
ting �eld is de�ned subsequentlyas

φ(x) |λ=0 ≡ φI(x) = eiH0(t−t0)φ(t0,x) e+iH0(t−t0) , (2.2.23)whi
h 
an be 
onstru
ted expli
itly as an expansion using 
reation and annihilation operatorsas in (2.2.1). When λ = 0, H be
omes H0 and there is no intera
tion. But as λ is assumedto be a small parameter, (2.2.23) is still an expression for the important part of the timedependen
e of the intera
ting �eld. Sin
e Hinteraction is taken as a small perturbation it 
an beassumed that the va
uum states |Ω〉 and |0〉 have some overlap whi
h is a 
ru
ial assumptionin order to relate the va
uum expe
tation value to the general expe
tation value. It is foundthat
〈Ω|T{φ(x1)φ(x2)} |Ω〉 =

〈0|T
{
φI(x1)φI(x2) exp

[
−i
∫

dtHinteraction

]}
|0〉

〈0|T
{
exp

[
−i
∫

dtHinteraction

]}
|0〉 , (2.2.24)and hen
e that

〈Ω|T{φ(x1) · · · φ(xn)} |Ω〉 → 〈0|T{φI(x1) · · ·φI(xn)} |0〉 , (2.2.25)holds. This should be understood in the sense that evaluating a n-point 
orrelation fun
tionof Heisenberg �elds in the intera
ting theory 
orresponds to evaluating a n-point 
orrelationfun
tion of intera
ting �elds as de�ned in (2.2.23) in the free theory. That the right handside of (2.2.25) is a va
uum expe
tation value means that the Feynman propagator enters in
omputations of su
h 
orrelation fun
tions. This is an important observation whi
h will bedis
ussed in the next se
tion.2.2.3 Wi
k 
ontra
tionsIntera
tions will naturally always involve the intera
tion �eld. For notational reasons theintera
tion subs
ript φI(x) will be dropped on �elds in the following though the �elds arestill intera
ting �elds as (2.2.23). When 
omputing 
orrelation fun
tions of intera
ting �elds,Wi
k's theorem is useful sin
e it expresses a given 
orrelation fun
tion as produ
ts of Feynmanpropagators.In order to establish the relation between 
orrelation fun
tions and the Feynman propa-gator the operation of normal ordering of operators and the 
ontra
tion of two �elds will bede�ned. However the �rst step is to split up the operator of the intera
tion �eld into positiveand negative frequen
y parts as
φ(x) = φ+(x) + φ−(x) , (2.2.26)su
h that.

0 = φ+(x) |0〉 = 〈0|φ−(x) . (2.2.27)Page 40



For x0 > y0 the time ordered produ
t of two �elds 
an be written with a 
ommutator as
T{φ(x1)φ(x2)} =

[
φ+(x1) , φ

−(x2)
]
+ φ−(x2)φ

+(x1)

+ φ+(x1)φ
+(x2) + φ−(x1)φ

+(x2) + φ−(x1)φ
−(x2) , (2.2.28)while the time ordered produ
t for x0 < y0 gives the same result but with x and y inter
hangedin the 
ommutator. The operation of normal ordering is de�ned as

: apa
†
qa

†
k
as : = a†qa

†
k
apas , (2.2.29)where respe
tively the 
reation and annihilation operators 
ommute mutually and their orderis therefore irrelevant. An important observation is that the va
uum expe
tation value of a
olle
tion of normal ordered operators is zero. In (2.2.28) all terms ex
ept the 
ommutatorare normal ordered whi
h means that the 
ommutator is the only nonzero 
ontribution of theva
uum expe
tation value of the time ordered produ
t of two �elds.The Wi
k 
ontra
tion of two �elds is de�ned as

φ(x)φ(y) =

{
[φ+(x) , φ−(y)] , for x0 > y0

[φ+(y) , φ−(x)] , for x0 < y0 ,
(2.2.30)and it is seen that

DF (x− y) = φ(x)φ(y) . (2.2.31)From (2.2.28) the relation between time ordering and normal ordering 
an be written in termsof a �eld 
ontra
tion as
T{φ(x)φ(y)} = : φ(x)φ(y) : + φ(x)φ(y) , (2.2.32)whi
h 
an be generalized to an arbitrary number of �elds

T{φ(x1) · · ·φ(xn)} = : φ(x1) · · ·φ(xn) : +
∑

(all possible contractions) , (2.2.33)where the sum 
ontains a term for ea
h way of 
ontra
ting the �elds. An example with four�elds is 
onvenient in order to show the stru
ture
T{φaφbφcφd} = : φaφbφcφd : + (Dab : φcφd :) + (Dac : φbφd :) + (Dad : φbφc :)

+ (Dbc : φaφd :) + (Dbd : φaφc :) + (Dcd : φaφb :)

+DabDcd +DacDbd +DadDbc , (2.2.34)whi
h is a useful result. If the va
uum expe
tation value of (2.2.34) is evaluated, only the threefully 
ontra
ted terms in the last line survive. The 
on
lusion is that 
orrelation fun
tions are
omputed by evaluating all possible full Wi
k 
ontra
tions of the involved �elds. The termsthat are not fully 
ontra
ted simply vanish in the va
uum expe
tation value.2.2.4 Path integral formulationA quantum theory is the result of a quantization of a 
lassi
al theory a

ording to some quan-tization pro
edure. The same theory 
an be quantized in di�erent ways and one speaks ofdi�erent formulations of the same theory. Usually ordinary quantum me
hani
s is formulatedPage 41



using the pro
edure of 
anoni
al quantization where the 
lassi
al variables su
h as positionand momentum are promoted to quantum me
hani
al operators. An alternative formulationof a quantum theory is the path integral formulation in whi
h a 
ertain 
lassi
al theory isquantized using path integrals. The path integral formulation 
an be used for quantum me-
hani
s as well as for quantum �eld theories and it is due to Ri
hard Feynman based on earlierwork by Paul Dira
. In this formulation the �elds in a quantum �eld theory remain ordinaryfun
tions instead of operators. The 
reation and annihilation operators in the 
anoni
al quan-tization provide a good understanding of the notion of parti
les whi
h is not the 
ase for thepath integral. However, the path integral formulation has 
ertain advantages. This 
omesabout be
ause the 
anoni
al quantization uses the Hamiltonian formalism where time has aspe
ial role and Lorentz invarian
e is therefore broken. In the path integral formulation of aquantum �eld theory, the Lagrangian is used instead of the Hamiltonian as the most funda-mental way of spe
ifying the theory. There is nothing spe
ial about time in the Lagrangianand it has therefore a build in manifest Lorentz invarian
e. Furthermore, the path integralmethod preserves all other symmetries whi
h the Lagrangian may have. With the path in-tegral method, 
omputations 
an be done dire
tly from the Lagrangian without invoking theHamiltonian. The Hamiltonian dynami
s are therefore taken to be de�ned by the path integralof the Lagrangian.A natural way to introdu
e the path integral is to 
onsider a double slit experiment wherea quantum me
hani
al parti
le propagates from a sour
e to a dete
tor. Along the way ofpropagation the parti
le passes a s
reen with two 
losely spa
ed slits in it; a double slit. In a
lassi
al des
ription of the propagation path the parti
le passes the double slit through eitherone or the other of the two slits whereas quantum me
hani
s has a fundamentally di�erentinterpretation in terms of wave fun
tions. The parti
le is des
ribed by a wave fun
tion andas a wave it propagates through both slits to 
reate an interferen
e pattern with itself onthe dete
tor. This interferen
e pattern is determined by the superposition of the two wave
ontributions from the slits. Sin
e in this parti
ular 
ase only two possible propagation pathsexist, only two 
ontributions in the superposition sum are present. In general the number ofpossible paths 
an be in�nite in whi
h 
ase the spa
e of paths be
omes 
ontinuous and thedis
rete total sum of superposition 
ontributions be
omes an integral over all possible paths.This integral is exa
tly the path integral.The path integral provides the transition amplitude A(xi, xf ; t) for some parti
le to prop-agate from a spa
etime point xi to the point xf and it is the 
ontinuous limit of the sum ofamplitudes for ea
h of all possible paths on whi
h the parti
le 
an propagate. The total sumof amplitudes is basi
ally the sum of di�erent phases for the di�erent paths and hen
e thetotal propagation amplitude is written in terms of the path integral as
A(xi, xf ; t) =

∑

eiφ →
∫

Dx(t) eiφ , (2.2.35)where the arrow indi
ates the 
ontinuous limit. The integration measure Dx(t) states thatthe integration is over the 
ontinuous spa
e of all the 
oordinate fun
tions that 
onne
t thepoints xi and xf . Ea
h 
oordinate fun
tion is a fun
tion of time.The path integral 
an be viewed as part of a generalization of 
al
ulus from spa
es ofnumbers to spa
es of fun
tions. In this sense, a fun
tional is de�ned as a fun
tion thatmaps fun
tions into numbers. The path integral asso
iates a 
omplex number with ea
hfun
tion x(t) and the path integral is therefore a fun
tional. In the 
lassi
al limit the transitionamplitude should have only one 
ontribution from the path integral namely the 
lassi
al path.Page 42



Considering the 
lassi
al limit of (2.2.35) using a physi
ist hand waving arguments motivates
∫

Dx(t) eiφ =

∫

Dx(t) e(i/~)S[x(t)] , (2.2.36)in the sense that the 
lassi
al limit 
orresponds formally to
S[x (t)] ≫ ~ , or ~ → 0 , (2.2.37)su
h that the integrand on the right hand side of (2.2.36) os
illates wildly in the 
lassi
al limit.These wild os
illations integrate to zero and hen
e the 
lassi
al path 
an be identi�ed as the
ontribution to the transition amplitude with a stationary phase. Mathemati
ally speakingthis argumentation is poor but from a physi
al point of view it makes sense. A

ording to thea
tion prin
iple, the 
lassi
al path is the path for whi
h the a
tion is a stationary minimum andthis is exa
tly the reason why the phase is identi�ed with the a
tion as in (2.2.36). It 
an be
he
ked expli
itly that the right hand side of this expression provides the 
orre
t interferen
epattern for the double slit experiment.The generalization of the path integral formulation to an in�nite number of paths x(t) is
arried out by dis
retizing the time interval and approximating the path in ea
h time intervalby a straight line. In ea
h time interval an integration over the 
oordinate is performed andthe general form of the path integral is found as the limit where the number of time stepsbe
omes in�nite and the length of ea
h step approa
hes zero. This pro
edure will not bedis
ussed in further detail here.When the fun
tional integral formalism is applied to a quantum �eld theory of real s
alar�elds it turns out that 
orrelation fun
tions for the intera
ting theory 
an be 
omputed in away whi
h has a 
ertain similarity to (2.2.24). The two point 
orrelation fun
tion is 
omputedas the path integral

〈Ω|T {φ(x1)φ(x2)} |Ω〉 =

∫

Dφφ(x1)φ(x2) exp

[

i

∫

d4xL
]

∫

Dφ exp

[

i

∫

d4xL
] , (2.2.38)and it is noted that the path integral depends on the Lagrangian rather than on the Hamil-tonian as dis
ussed above. The Wi
k 
ontra
tion as dis
ussed in se
tion 2.2.3 is de�ned interms of the path integral

φ(x1)φ(x2) =

∫

Dφφ(x1)φ(x2) exp

[

i

∫

d4xL0

]

∫

Dφ exp

[

i

∫

d4xL0

] = DF (x1 − x2) , (2.2.39)by 
onsidering the non-intera
ting Klein-Gordon �eld. In fa
t, di�erent n-point fun
tions forthe free theory 
an be 
omputed using path integrals with the rules of Gaussian integrationand the result is the same as obtained with Wi
k's theorem.2.2.5 Fun
tional methodsAnother method to 
ompute 
orrelation fun
tions is the formal one of fun
tional di�erentiationof the generating fun
tional. This method is 
onvenient when the non-intera
ting LagrangianPage 43



is repla
ed by an intera
ting one. The generating fun
tional for a s
alar �eld is de�ned as
Z [J ] =

∫

Dφ exp

[

i

∫

d4x [L + J(x)φ(x)]

]

, (2.2.40)with the in
lusion of the sour
e term J(x)φ(x) in the exponential. Fun
tional di�erentiation
an be viewed as a 
ontinuous generalization of di�erentiation of dis
rete ve
tors and it isde�ned in four dimensions as
δ

δJ(x)
J(y) = δ(4)(x− y) , (2.2.41)su
h that

δ

δJ(y)

∫

d4xJ(x)φ(x) = φ(y) . (2.2.42)The two-point 
orrelation fun
tion in the free theory is then 
omputed by di�erentiating thegenerating fun
tional with respe
t to the sour
e as
〈0|T{φ(x1)φ(x2)} |0〉 =

1

Z0

(

−i δ

δJ(x1)

)(

−i δ

δJ(x2)

)

Z[J ]
∣
∣
∣
J=0

, (2.2.43)with
Z0 = Z[J = 0] =

∫

Dφ exp

[

i

∫

d4xL
]

. (2.2.44)The sour
e is put J = 0 after the di�erentiations have been 
arried out. Equation (2.2.43) isjust a spe
ial 
ase of the generalization
〈0|T{φ(x1) · · ·φ(xn)} |0〉 =

1

Z0

(

−i δ

δJ(x1)

)

· · ·
(

−i δ

δJ(xn)

)

Z[J ]
∣
∣
∣
J=0

=

∫

Dφφ(x1) · · ·φ(xn) exp

[

i

∫

d4xL
]

∫

Dφ exp

[

i

∫

d4xL
] , (2.2.45)whi
h is a basi
 formula for 
omputations. The �elds on the left hand side are operators andhen
e this formula 
onne
ts the operator formalism with the path integral formalism.For the free Klein Gordon Lagrangian

L0 =
1

2
∂µφ∂

µφ+
1

2
m2φ2 , (2.2.46)the integral in the exponent of (2.2.40) 
an be rewritten by a partial integration as

∫

d4x
1

2

[
∂µφ∂

µφ+m2φ2 + Jφ
]

=

∫

d4x
1

2

[
φ
(
−∂2 +m2

)
φ+ Jφ

]
. (2.2.47)By substituting the shifted �eld

φ′(x) = φ(x) − i

∫

d4y DF (x− y)J(y) , (2.2.48)Page 44



into (2.2.47), using that the Feynman propagator is a Green's fun
tion of the Klein-Gordonoperator and 
hanging integration variable ba
k to φ(x) yields for the free �eld generatingfun
tional
Z[J ] = Z0 exp

[

−1

2

∫

d4xd4y J(x)DF (x− y) J(y)

]

. (2.2.49)It follows that
(

−i δ

δJ(x1)

)(

−i δ

δJ(x2)

)

Z[J ]
∣
∣
∣
J=0

= Z0DF (x1 − x2) , (2.2.50)and hen
e
DF (x1 − x2) =

∫
Dφφ(x1)φ(x2) exp

[

i

∫

d4xL0

]

∫
Dφ exp

[

i

∫

d4xL0

] . (2.2.51)This is in agreement with (2.2.45).The intera
tion part of the theory is introdu
ed as a perturbation to the free theory. One
an 
onsider φ4-theory as an example in whi
h the intera
tion 
omes from the term
V (φ) =

λ

4!
φ4 , (2.2.52)in the Lagrangian where λ is a small parameter. That λ is small allows for the expansion

exp

[

i

∫

d4xL
]

= exp

[

i

∫

d4xL0

](

1 − i

∫

d4x
λ

4!
φ4

)

, (2.2.53)of the exponential whi
h should be performed in both the numerator and denominator inthe four-point equivalent to (2.2.51) in the intera
ting theory. The expansion (2.2.53) of thedenominator does only 
ontribute with va
uum diagrams whi
h are not relevant when onlytree-level diagrams will be studied.After the introdu
tion of fun
tional methods, this is the pla
e for a 
omment in 
onne
tionwith se
tion 1.1 on e�e
tive theories. In this 
ontext the path integral is used in the de�nitionof the e�e
tive a
tion. The massive �elds whi
h are negle
ted in the e�e
tive theory are saidto be integrated out in the low-energy e�e
tive theory. This pro
edure is outlined in thefollowing. Symboli
ally φ represents all the �elds in a parti
ular theory su
h that
φ = {φ0, φm} , (2.2.54)with φ0 representing a massless �eld and φm representing all massive �elds. The generatingfun
tional Z is used in 
al
ulations of expe
tation values as dis
ussed above and in terms ofthe φ-�elds

Z =

∫

Dφ eiS[φ] =

∫

Dφ0Dφm φ0 φme
iS[φ0,φm] , (2.2.55)is a trivial expansion. In the low-energy limit, the intera
tions of the massive �elds arenegle
ted so that the integration is independent of the massive �elds

Z = C

∫

Dφ0 φ0 e
iSeff [φ0] . (2.2.56)Hen
e the massive �elds have been integrated out and the theory is des
ribed in the low-energylimit by the e�e
tive a
tion as a fun
tion only of the massless �eld. Page 45



2.2.6 LSZ redu
tion formalismIn prin
iple, the Lagrangian for some physi
al theory provides all information on the dynam-i
s of the system. It has been dis
ussed above how the path integral formalism with theLagrangian is a neat way of 
omputing relevant physi
al quantities. However the way fromthe Lagrangian of a parti
ular theory to a
tual predi
tions of measurable physi
al quantities isstill not straightforward. The LSZ redu
tion formalism is a useful step on this way. The nameis due to the three German physi
ist Harry Lehmann, Kurt Symanzik and Wolfhart Zimmer-mann and the redu
tion formula is basi
ally a way of relating the s
attering amplitude forsome intera
tion of parti
les to the va
uum expe
tation value of a time ordered produ
t of�elds.The s
attering matrix, or S-matrix, is de�ned as
S = 1 + iT , (2.2.57)and it relates the initial and �nal states in a parti
le intera
tion. It is a unitary matrix that
onne
ts the asymptoti
 parti
le states before and after the intera
tion. The �1� is just a trivialpart representing no intera
tion while the �iT � part governs the intera
tion. The S-matrixelement

out〈p1 · · ·pn|S |k1 · · ·km〉in , (2.2.58)appears in measurable physi
al quantities like the 
ross se
tion and the LSZ formalism relatesthis matrix element to the va
uum expe
tation value
〈0|T{φ(x1) · · ·φ(xn)φ(y1) · · · φ(y2)} |0〉 , (2.2.59)whi
h 
an be 
al
ulated. In a general form the LSZ-formula is written in momentum spa
e as

m∏

i=1

∫

dnxi e
−iki·xi

4∏

j=1

∫

d4yj e
+ipj ·yj〈0|T{φ(x1) · · ·φ(xn)φ(y1) · · ·φ(y2)} |0〉

=

(
m∏

i=1

i

k2
i −m2

)



n∏

j=1

i

p2
j −m2



 out〈p1 · · ·pn|S |k1 · · ·km〉in , (2.2.60)and it serves to represent the unknown intera
tions in terms of well-known free asymptoti
�elds at time t = ±∞. The intermediate states between the asymptoti
 states are de�nedo� mass shell but as time approa
hes in�nity the intera
ting parti
les go on shell and theybe
ome free. In this limit where the intera
ting theory be
omes a free theory, the �elds arewritten as
φ(x) → φin(x) as t→ −∞ ,

φ(x) → φout(x) as t→ + ∞ . (2.2.61)For intera
tions with four parti
les (2.2.60) redu
es to
out〈p1p2|S |k1k2〉in =

(
p2
1 −m2

) (
p2
2 −m2

) (
k2
1 −m2

) (
k2
2 −m2

)

×
∫

d4x1 d4x2 d4y1 d4y2 e
−ik1·x1e−ik2·x2eip1·y1eip2·y2〈0|T{φ(x1)φ(x2)φ(y1)φ(y2)} |0〉 ,(2.2.62)where in parti
ular the appearan
e of the squared momenta is of interest and will be dis
ussedbelow.Page 46



2.2.7 Contra
tions of massless ve
tor �eldsIn the subsequent se
tions the LSZ redu
tion formula has a 
entral role and is used extensivelyin 
omputations of photon amplitudes. This se
tion presents the notation and basi
 methodswhi
h will be used for the 
omputations.Intera
tions will be studied at tree-level and the in
oming �elds will be photon �elds
A±
i = ε±,µi Aµ(xi) , (2.2.63)with polarization ve
tor εµi proje
ting out a 
ertain polarization state. For the photon �eldamplitudes the notation

〈A1 · · ·An〉 = 〈0|T {A1 · · ·An} |0〉 , (2.2.64)will be used. The path integral formalism 
an be generalized to any �eld theory and thereforeequation (2.2.45) will be the main expression with the s
alar �elds repla
ed by photon �elds.When only intera
tions at tree-level are 
onsidered, the photon four-point fun
tion is
〈AiAjAkAl〉 =

δ4

δJ(xi) J(xj)J(xk) J(xl)

∫

DA exp

[

i

∫

d4x (L + JA)

] ∣
∣
∣
J=0

, (2.2.65)where the Lagrangian is not spe
i�ed. In the parti
ular 
ase of interest, the intera
tions aregoverned by the Dira
-Born-Infeld Lagrangian LDBI whi
h was dis
ussed in se
tion 1.4 andwill be again in se
tion 3.1.2. From (2.2.65) using L → LDBI it follows that
〈

A(xi)A(xj)A(xk)A(xl)
〉

=

∫

DA (εµi Aµ(xi))
(
ενjAν(xj)

) (
ερkAρ(xk)

)
(εσl Aσ(xl)) exp

[

i

∫

d4xLDBI

]

= εµi ε
ν
j ε

ρ
k ε

σ
l i

∫

d4x

∫

DAAi,µAj,νAk,ρAl,σLDBI , (2.2.66)where in the last step the exponential has been expanded to �rst nontrivial order. The expan-sion parameter in the DBI-Lagrangian is the inverse string tension α′. Sin
e the Lagrangianis a fun
tion of �eld strength tensors
Fµν = ∂µAν − ∂νAµ , (2.2.67)it is seen from (2.2.51) that (2.2.66) will be evaluated by performing Wi
k 
ontra
tions ofphoton �elds

〈Ai,µAj,ν〉 = Ai,µAj,ν = Dµν(xi − xj) , (2.2.68)where Dµν(xi − xj) is the photon propagator. The photon propagator is found from the a
tionintegral for the free ele
tromagneti
 �eld whi
h 
an be written as
Sem,free =

∫

d4x

(

−1

4
FµνF

µν

)

=
1

2

∫

d4xAµ
[
∂2ηµν − ∂µ∂ν

]
Aν , (2.2.69)by a partial integration. A Fourier transformation yields

Sem,free =
1

2

∫

d4x Ãµ(k)
[
−k2ηµν + kµkν

]
Ãν(−k) , (2.2.70)Page 47



and the photon propagator is de�ned in position and momentum spa
e by
(
∂2ηµν − ∂µ∂ν

)
Dνρ(x− y) = iδ(4)(x− y) δµρ , (2.2.71)

(
−k2ηµν + kµkν

)
D̃νρ(k) = iδµν , (2.2.72)as the inverse of the operator on the right hand side of (2.2.69) and (2.2.70) respe
tively. Itis observed that

(
−k2ηµν + kµkν

)
kµ = 0 , (2.2.73)so that

Ãµ(k) = kµa(k) , (2.2.74)is a zero mode of D̃νρ for any s
alar fun
tion a(k). The 4 × 4 matrix in (2.2.73) is thereforesingular and (2.2.72) has no solution for the propagator. This problem of inverting the photonpropagator arises be
ause a gauge transformation is not physi
al and the fun
tional integrationof the free ele
tromagneti
 a
tion is therefore performed over a 
ontinuous in�nity of physi
allyequivalent states. The solution is to 
hange the integrand in order to perform the fun
tionalintegration su
h that ea
h physi
al state is 
ounted only on
e. To break the gauge invarian
ethe Lagrangian for the free ele
tromagneti
 �eld is modi�ed into
Lem,free = −1

4
FµνF

µν − 1

2ξ
∂µA

µ∂νA
ν , (2.2.75)by adding the gauge �xing term. The photon propagator then be
omes

Dµν(k) =
−i
k2

(

ηµν − (1 − ξ)
kµkν
k2

)

, (2.2.76)with di�erent 
hoi
es of gauge 
orresponding to di�erent values for the parameter ξ. The
hoi
e ξ = 1 
orresponds to the Feynman-t' Hooft gauge in whi
h the photon propagatortakes the simple form
Dµν(k) = − i

k2
ηµν . (2.2.77)Using (2.2.77) for the photon propagator yields for a 
ontra
tion of a photon �eld with a �eldstrength tensor

A±
i Fµν = (−i)

(

pi,µAνAi,ρ − pi,νAµAi,ρ

)

ε±,ρi

= − 1

p2

(

pi,µ ε
±
i,ν − pi,ν ε

±
i,µ

)

, (2.2.78)where ∂µ = −ipµ has been used. The four-point fun
tion for photons is 
omputed by evalu-ating all possible full Wi
k 
ontra
tions of four photon �elds and from (2.2.78) it is seen thatthe expe
tation value has the form
〈AiAjAkAl〉 →

1

p2
i

1

p2
j

1

p2
k

1

p2
l

. (2.2.79)Page 48



The amplitude is obtained when this expe
tation value is substituted into (2.2.62) wherebyan exa
t 
an
ellation of the momentum poles takes pla
e. Hen
e the useful result
A±
i Fµν =

〈

A±
i

∣
∣
∣Fµν

〉

→ −
(

pi,µ ε
±
i,ν − pi,ν ε

±
i,µ

)

, (2.2.80)is obtained for a 
ontra
tion of a photon �eld into a �eld strength tensor. This result is alsofound in [21℄. For the four-point fun
tion, 
omputations will have the general form
〈AiAjAkAl|F 4〉 = lim

p→0
p2
i p

2
j p

2
k p

2
l ε

µ
i ε

ν
j ε

ρ
k ε

σ
l

∫

DAAi,µAj,νAk,ρAl,σ eiS , (2.2.81)where all the poles 
oming from the photon propagators of the Wi
k 
ontra
tions are 
an
elledby the fa
tors of p2. The F 4 in the expe
tation value indi
ates that the four-point fun
tionis 
ontrolled by terms in the a
tion with a stru
ture of four �eld strengths. This stru
turealso in
ludes selfdual and anti-selfdual �eld strengths as dis
ussed in se
tion 2.1.7. The limitmeans that the parti
les are on shell after the intera
tion. Equation (2.2.81) will be the basisfor 
omputations of amplitudes throughout the remaining 
hapters.2.3 Compa
ti�
ation and dimensional redu
tionThis se
tion dis
usses the 
on
ept of 
ompa
ti�
ation and the related pro
edure of dimensionalredu
tion. A dimensional redu
tion of a �eld theory under study is basi
ally a rede�nition ofthe theory in a lower number of dimensions. If the theory is formulated in d dimensions it
an be dimensionally redu
ed to d̃ = d− n dimensions by taking all �elds to be independentof the 
oordinates in the extra n dimensions. In terms of the a
tion integral the dimensionalredu
tion from 10 to 4 dimensions may be des
ribed as the pro
edure
S =

∫

d10xL(x1 · · · , x10) →
∫

d10xL (x1, x2, x3, x4) = C
∫

d4xL (x1, x2, x3, x4) , (2.3.1)where the Lagrangian is taken to depend only on the four dimensions into whi
h all dynami
variables su
h as momenta and polarization ve
tors are embedded. The Lagrangian as there-fore independent of the six auxiliary dimensions and the integral 
an be fa
torized as abovewhere the overall 
onstant C does not matter.A 
ompa
ti�
ation of a given theory means that it is 
hanged with respe
t to one dimen-sion. Stri
tly speaking, a dimensional redu
tion is then the limit of a 
ompa
ti�
ation wherethe size of a 
ompa
ti�ed dimension goes to zero. When a theory is 
ompa
ti�ed, one in�nitedimension is taken to be �nite and often also periodi
. Figure 2.3 shows an example wherea theory is formulated on the full spa
e M × C and where the dimension C is 
ompa
t. Inthe limit where the size of the 
ompa
t dimension goes to zero, the theory 
an be des
ribede�e
tively as a theory in the spa
e M independently of C. Compa
ti�
ation is an important
on
ept in 
onne
tion to string theory. String theory operates with ten spa
etime dimensionsand the universe appears to have four dimensions. In order to have a string theory whi
his 
onsistent with observations, it is therefore ne
essary to explain why the extra dimensionsare not observed. A possible explanation is that the extra dimensions are 
ompa
t and sosmall that their existen
e 
an not be resolved from experiments. A �eld in a 
ompa
t periodi
dimension 
an always be written as a Fourier series
φ(x) =

∑

n

Ane
(2πin/L)x , (2.3.2)Page 49



M × C

M

Figure 2.3: The prin
iple of 
ompa
ti�
ation. A the-ory is formulated on the full 
ombined spa
e M × Cwhere C is 
ompa
t. Upon a 
ompa
ti�
ation of the fullspa
e, the theory is reformulated as an e�e
tive theoryon the spa
e M .where L is the size of the dimension and n is an integer. The momentum is therefore
p ∼ n~

L
, (2.3.3)whereby

E ∼ p→ ∞ , for L→ 0 . (2.3.4)In the spe
ial 
ase n = 0, the �eld (2.3.2) is independent of the x-
oordinate and thus in-dependent of the 
ompa
t dimension. For n 6= 0 it is apparent that the energy approa
hesin�nity as the size of the dimension be
omes very small. The 
on
lusion is that if the 
ompa
tdimension is very small it takes an in�nite energy to resolve it. The 
ompa
t dimension 
antherefore be negle
ted whi
h is the idea of dimensional redu
tion.The idea of 
ompa
ti�
ation goes ba
k to Theodor Kaluza in 1921 where he sought for auni�ed formulation of gravity and ele
tromagnetism by extending gravity to �ve-dimensionalspa
etime. Oskar Klein 
ontinued the work and proposed in 1926 that the extra dimension wastiny and 
urled up. The result is known as Kaluza-Klein theory and is a �ve dimensional puregravity whi
h is 
ompa
ti�ed to four dimensions. The 
ompa
ti�
ation 
an be outlined bythe following where M,N are Lorentz indi
es in �ve dimension. The metri
 in �ve dimensions
an be written
gMN = gµν + 2g5µ + g55 , (2.3.5)where gµν represents the four-dimensional gravitational �eld, g5µ represents the ele
tromag-neti
 �eld and g55 is a four-dimensional s
alar. The �ve-dimensional gravity theory is thereby
ompa
ti�ed to a four-dimensional gravity theory 
oupled to ele
tromagnetism and a s
alar.2.4 Notation and 
onventionsThis se
tion is a brief presentation of 
onventions and notation used throughout the thesis.Choi
e of metri
The metri
 for the �at spa
etime is 
hosen to be mostly negative and reads on matrix form

ηµν = ηµν =







+1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1






. (2.4.1)Page 50



Natural units and dimensionsUnless otherwise is stated, the natural units
~ = c = 1 , (2.4.2)are used. From the relations

E = ~ω , E2 =
(
mc2

)2
+ p2c2 , (2.4.3)it follows that the dimension of length equals the dimension of time and that energy, massand momentum have the same dimension. The dimensions of energy and time are inverse ofea
h other and therefore

[energy] = [mass] = [momentum] = [length]−1 = [time]−1 . (2.4.4)Symmetrization and antisymmetrizationThe operations of symmetrization and antisymmetrization are de�ned respe
tively as
A(µν) =

1

2
(Aµν +Aνµ) , A[µν] =

1

2
(Aµν −Aµν) , (2.4.5)for two indi
es. The operations 
an be generalized to arbitrarily many indi
es. A

ordingto (2.4.5), if Pµν is some fully antisymmetri
 rank-two tensor and Qµν is a fully symmetri
rank-two tensor the tensors 
an be written

Pµν = P[µν] , Qµν = Q(µν) . (2.4.6)Indi
es and dimensionsLorentz tensors appear with di�erent indi
es a

ording to their dimensionality. Capital Latinletters, (M,N,R, . . .), denote six-dimensional Lorentz indi
es taking values (0, 1, 2, 3, 4, 5)while Greek letters (µ, ν, ρ, . . .) denote the usual four-dimensional Lorentz indi
es taking val-ues, (0, 1, 2, 3). Latin letters (m,n, r, . . .), denote the auxiliary two dimensions in Lorentzspa
e-time and thus take the values (4, 5). An arbitrary tensor in six-dimensional spa
etime
an therefore be written as
YMN = Yµν + Ymn + Yµn + Ymν . (2.4.7)Spinors have dotted or undotted indi
es (α, β, γ, . . .) and (α̇, β̇, γ̇, . . .) denoted with Greekletters. These indi
es take values (1, 2).Inner produ
tsInner produ
ts are denoted
a · b = aµbν , ã · b̃ = ambm , (2.4.8)where espe
ially the ã · b̃ is used in 
al
ulations in six dimensions. Page 51



S
attering amplitudesFor s
attering amplitudes the notation
A(external fields) →

〈

external fields
∣
∣
∣ internal fields

〉

, (2.4.9)will o

ur. The arrow simply indi
ates that the amplitude under study is 
onstru
ted from allpossible wi
k 
ontra
tions on the right hand side but that front fa
tors of π and α′ are absentin that parti
ular expression.
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Chapter 3Ve
tor boson amplitudes in fourdimensionsIn this 
hapter the developments from 
hapters 1 and 2 will be put to use. The Dira
-Born-Infeld a
tion will be the starting point as it is the e�e
tive a
tion des
ribing �rst order
orre
tions to ele
tromagneti
 �elds on a D-brane. Photon s
attering amplitudes will be
al
ulated in four dimensions and in this 
ontext, the spinor-heli
ity formalism from se
tion2.1 is 
entral. Both four-point and six-point amplitudes will be 
al
ulated. The �rst part of the
hapter involves 
al
ulations of amplitudes with spe
i�
 
on�gurations of external parti
leswhereas the se
ond part involves more general 
omputations where a s
attering amplitude is
al
ulated as a generi
 result without 
onsidering any spe
i�
 external polarizations. This isalso a step towards a higher number of dimensions and in parti
ular studies of amplitudes insix dimensions whi
h are addressed in the next 
hapter.3.1 Employing spinor-heli
ityAmplitude 
al
ulations are basi
ally just Wi
k 
ontra
tions of external �elds into �eld strengthtensors. When the �eld strength tensor is split into its selfdual and anti-selfdual 
omponentsand expressed in spinor indi
es, it turns out that the 
ontra
tion of an external photon �eldinto the �eld strength tensor simpli�es. The subje
ts dis
ussed in this 
hapter have previouslybeen dis
ussed in [1℄ where also the s
attering amplitudes have been 
al
ulated.3.1.1 Dimensional 
onsiderationsResults for amplitudes will be expressed in terms of momentum produ
ts as de�ned in se
tion2.1.8. Before going into amplitude 
al
ulations it is 
onvenient with an analysis of dimensionsof units. The relation for massless parti
les
2 pi · pj = [ij] 〈ji〉 , (3.1.1)as in (2.1.70) leads to a relation for momentum bilinears so that the obje
ts
〈ij〉 , [ij] , p , (3.1.2)have the same dimensionality
[p] = [Energy] . (3.1.3)Page 53



The string parameter α′ ∼ l2 is asso
iated with the square of the fundamental length of astring and it follows that the dimension of the string parameter is the inverse of momentumsquared
[
α′
]

= [l]2 = [p]−2 . (3.1.4)Amplitude 
al
ulations yield terms 
ontaining obje
ts as (3.1.2) whi
h are multiplied by fa
torsof (πα′)n. An amplitude has to be dimensionless and it is apparent for instan
e that thedi�erent terms
1

[ζ1]
〈jk〉 (pi ·pj) 〈jk〉〈ζi〉 , 〈jk〉2 [ζ1] 〈ζ1〉

[ζi]2
p̃2
i , p4 , (3.1.5)have the same dimensionality and must be multiplied by a fa
tor (πα′)2 in order to be dimen-sionless.3.1.2 Dira
-Born-Infeld in four dimensionsThe Dira
-Born-Infeld a
tion in ten dimensions has the form [1, 22℄

SDBI = −1 +
1

π2gsα′5

∫

d10x
√

− det (ηMN + πα′FMN ) . (3.1.6)As in [1℄ the string 
oupling 
onstant is put gs = 1 and the term �−1� is dropped from thea
tion sin
e this term is irrelevant for parti
le intera
tions. Along the lines of the dis
ussionin se
tion 2.3 the DBI-a
tion 
an be dimensionally redu
ed su
h that the integration measureis simply taken d10x → d4x and the indi
es are taken as ordinary four-dimensional Lorentzindi
es M → µ. It follows from se
tion 1.4.3 that the a
tion takes the form
− det

(
ηµν + πα′Fµν

)
= 1 +

π2α′2

2
FµνF

µν +
π4α′4

16

(

Fµν F̃
µν
)2

. (3.1.7)The right hand side 
an be expressed in terms of selfdual and anti-selfdual 
omponents of the�eld strength tensor and for this purpose (2.1.102) is useful. An expli
it 
al
ulation for ea
hof the relevant 
ontra
tions yields
FµνF

µν =
1

4

(

εαβ
+Fα̇β̇ + εα̇β̇

−Fαβ

)(

εαβ+F α̇β̇ + εα̇β̇−Fαβ
)

=
1

2

(
+F 2 + −F 2

)
, (3.1.8)and

(

Fµν F̃
µν
)2

=

[
1

4

(

εαβ
+Fα̇β̇ + εα̇β̇

−Fαβ

)(

εαβ+F α̇β̇ − εα̇β̇−Fαβ
)]2

=
1

4

[
+F 4 + −F 4 − 2

(
+F 2−F 2

)]
, (3.1.9)whereby the determinant takes the form

− det
(
ηµν + πα′Fµν

)
=

1 +
π2α′2

4

[
+F 2 + −F 2

]
+
π4α′4

64

[
+F 4 + −F 4 − 2

(
+F 2−F 2

)]
. (3.1.10)Page 54



The determinant is a fun
tion of the string parameter whi
h is small and the square root of thedeterminant 
an therefore be expanded as a Taylor series in α′. In pra
ti
e the determinantis expanded in Mathemati
a by expli
itly 
onstru
ting (3.1.10). To tenth order the Taylorexpansion in α′ be
omes
√

− det (ηµν + πα′Fµν) = 1 +
π2α′2

4
+F 2 − π4α′4

32
+F 2−F 2 +

π6α′6

256

(
+F 4−F 2 + −F 4+F 2

)

− π8α′8

2048

(
+F 6−F 2 + −F 6+F 2 + 3+F 4−F 4

)
+ O

(
α′10

)
,(3.1.11)where the topologi
al density 1/4Fµν F̃

µν = 1/8
(
+F 2 − −F 2

) has been added after the expan-sion has been performed. Sin
e the topologi
al density is a total derivative it 
an be added inthe a
tion without a�e
ting the equations of motion. Adding the topologi
al density 
an
elsa −F 2-term in (3.1.11).Equation (3.1.11) is the starting point for s
attering amplitude 
al
ulations and it 
anbe read of for instan
e that the four-point amplitude is 
ontrolled entirely by the term
(
π4α′4/32

)
+F 2−F 2. Before turning into expli
it amplitude 
omputations it is appropriateto examine more generally the Wi
k 
ontra
tions of external �elds and F±.3.1.3 Wi
k 
ontra
tions of �eld strengthsExternal 
ontra
tionsFrom (2.1.102) the selfdual and the anti-selfdual 
omponents of the �eld strength are givenrespe
tively as

+Fα̇β̇ =
1

2
εαβ

(

∂αα̇Aββ̇ − ∂ββ̇Aαα̇

)

=
1

2

(

∂αα̇A
α
β̇

+ ∂αβ̇A
α
α̇

)

, (3.1.12)
−Fαβ =

1

2
εα̇β̇

(

∂αα̇Aββ̇ − ∂ββ̇Aαα̇

)

=
1

2

(

∂αα̇A
α̇
β + ∂βα̇A

α̇
α

)

, (3.1.13)whi
h is also found in [23℄. Equation (2.2.77) be
omes simply
〈Aαβ̇Aββ̇ 〉 = − 2

i

p2
εαβεα̇β̇ , (3.1.14)in spinor indi
es and the 
ontra
tion of a photon �eld as (2.1.111) with plus-heli
ity quantumnumber into a selfdual �eld strength is found as

A+ +Fα̇β̇ ≡ +Fα̇β̇
[
A+
]

=
1

22
i
(
ε+
)γγ̇
(

∂αα̇A
α
β̇
Aγγ̇ + ∂αβ̇A

α
α̇Aγγ̇

)

=
i

4
(−i) (−2i)

(√
2
ζγλγ̇

[ζλ]

)(

pαα̇ ε
α
γ εβ̇γ̇ + pαβ̇ ε

α
γ εα̇γ̇

)

= i
√

2λα̇λβ̇ . (3.1.15)It has been used that
∂µ = −ipµ ↔ −ipαα̇ , (3.1.16)Page 55



and a fa
tor of 1/p2 has been omitted in (3.1.15) be
ause it is 
an
elled by the LSZ formulafrom (2.2.61). Sin
e (3.1.15) is a tree-level 
al
ulation with parti
les on mass shell
pαα̇ = λαλα̇ , (3.1.17)holds by (2.1.30) for massless parti
les. Cal
ulations similar to the steps involved in (3.1.15)lead to an analogous result for the 
ontra
tion of a photon �eld with minus-heli
ity quantumnumber into an anti-selfdual �eld strength

A− −Fαβ ≡ −Fαβ
[
A−
]

= −i
√

2λαλβ , (3.1.18)where the sign is the opposite 
ompared to [1℄. A 
ontra
tion of a photon �eld with minus-heli
ity quantum number into a selfdual �eld strength spinor yields the substitution
ζγλγ̇

[ζλ]
→ ζ γ̇λγ

〈ζγ〉 , (3.1.19)in the se
ond line of (3.1.15). Hen
e the vanishing 
ontra
tion λαλα is obtained and 
onse-quently
A− +Fα̇β̇ ≡ +Fα̇β̇

[
A−
]

= 0 , (3.1.20)holds. The opposite result for the 
ontra
tion of a photon �eld with plus-heli
ity into an anti-selfdual �eld strength spinor is obtained using (3.1.19) with a reversed arrow in the 
al
ulationtowards (3.1.18). Analogously the vanishing 
ontra
tion λα̇λα̇ is obtained in this 
ase and
A+ −Fαβ ≡ −Fαβ

[
A+
]

= 0 , (3.1.21)follows. Equations (3.1.15), (3.1.18), (3.1.20) and (3.1.21) are on-shell relations useful for the
al
ulations of four-point amplitudes dire
tly from the a
tion where only external 
ontra
tionso

ur.Internal 
ontra
tionsIn order to 
al
ulate six-point amplitudes it is ne
essary to 
onsider internal 
ontra
tionsbetween �eld strength spinors. In this 
ase the involved parti
les are o�-shell and (3.1.20)and (3.1.21) are therefore not valid. Instead the internal 
ontra
tions has to be worked outexpli
itly. The internal 
ontra
tion between two �eld strengths of di�erent types is
+Fα̇β̇

−Fαβ =

(−i)2 (−2i)
1

4

1

p2

(

pγα̇ pαδ̇ ε
γ
β ε

δ̇
β̇

+ pγα̇ pβδ̇ ε
γ
α ε

δ̇
β̇

+ pγβ̇ pαδ̇ ε
γ
β ε

δ̇
α̇ + pγβ̇ pβδ̇ ε

γ
α ε

δ̇
α̇

)

= − i

p2

(

pαβ̇pβα̇ + pαα̇pββ̇

)

, (3.1.22)as is 
al
ulated in detail in (A.1.22). It should be noti
ed that the internal 
ontra
tion of �eldstrengths of opposite type is nonlo
al as this 
ontra
tion 
ontains a pole in the propagatingPage 56



momentum. The internal 
ontra
tion of two selfdual �eld strength spinors is
+Fα̇β̇

+Fγ̇δ̇ =

(−i)2 (−2i)
1

4

1

p2

(

pαα̇ pβγ̇ ε
αβ εβ̇δ̇ + pαα̇ pβδ̇ ε

αβ εβ̇γ̇ + pαβ̇pβγ̇ ε
αβ εα̇δ̇ + pαβ̇ pβδ̇, ε

αβ εα̇γ̇

)

,(3.1.23)where the stru
ture of ea
h of the terms in the bra
ket is the same. Ea
h term is antisymmetri
in the two dotted indi
es so that for instan
e
pαα̇ pβγ̇ ε

αβ = −pαγ̇ pβα̇ εαβ = κ εα̇γ̇ . (3.1.24)This leads to
2κ = pαα̇ pβγ̇ ε

αβ εα̇γ̇ = 2 p2 , (3.1.25)when 
ontra
ted with εα̇γ̇ . Substituting κ = p2 in (3.1.24) and using this in (3.1.23) yields
+Fα̇β̇

+Fγ̇δ̇ = i
(

εα̇γ̇ εβ̇δ̇ + εα̇δ̇ εβ̇γ̇

)

. (3.1.26)The internal 
ontra
tion between two anti-selfdual �eld strengths 
an be worked out using thesame steps that lead to (3.1.26) and it follows that
−Fαβ

−Fγδ = i (εαγ εβδ + εαδ εβγ) . (3.1.27)From (3.1.26) and (3.1.27) it is apparent that the internal 
ontra
tion of two �eld strengthsof the same type is lo
al sin
e the pole fa
tors are 
an
elled. The 
an
ellation of pole fa
torso

ur o�-shell and hen
e this lo
al property does not depend on any on-shell 
onditions.3.2 S
attering amplitudes with spe
i�ed external polarizationsThe developments in the previous se
tion will now be employed in amplitude 
al
ulationswhere four-point and six-point amplitudes will be 
omputed.3.2.1 Four-point amplitudesEquations (3.1.15), (3.1.18), (3.1.20) and (3.1.21) serve as the basis for 
al
ulations of four-point s
attering amplitudes. Contra
tions between external states and verti
es simplify 
onsid-erably a

ording to these equations and 
ertain vanishing amplitudes 
an be read of dire
tlyfrom the expanded a
tion. Sin
e the four-point amplitude is 
ontrolled solely by the term
(
−π2α′2/32

)
+F 2−F 2 in (3.1.11) it 
an be dedu
ed right away that the following four-pointamplitudes ne
essarily vanish

A
(
1+2+3+4+

)
= A

(
1−2−3−4−

)
= A

(
1−2+3+4+

)
= A

(
1+2−3−4−

)
= 0 . (3.2.1)As an example the �rst amplitude in (3.2.1) is 
al
ulated

A
(
1+2+3+4+

)
→
〈

A+A+A+A+
∣
∣
∣
+Fα̇β̇

+F α̇β̇ −Fαβ
−Fαβ

〉

, (3.2.2)Page 57



and it is apparent that (3.1.21) will appear in all possible full 
ontra
tions. Likewise it 
an bededu
ed that the se
ond amplitude in (3.2.1) 
ontains (3.1.20) in all 
ontra
tions while ea
hof the last two amplitudes in (3.2.1) respe
tively 
ontain both (3.1.20) and (3.1.21). From theabove dis
ussion it 
an be 
on
luded that the four-point amplitude
A
(
1+2+3−4−

)
→
〈

A+A+A−A−
∣
∣
∣
+Fα̇β̇

+F α̇β̇ −Fαβ
−Fαβ

〉

, (3.2.3)is the only one whi
h is nonzero. In order to evaluate this amplitude expli
itly with the rightnumeri
al 
onstants, (3.1.20) and (3.1.21) with upper indi
es
+F α̇β̇

[
A−
]

= i
√

2λα̇λβ̇ , −Fαβ
[
A−
]

= −i
√

2λαλβ , (3.2.4)are used and the result is
A
(
1+2+3−4−

)
=

(

−π
2α′2

32

)(

4 i2 (−i)2
(√

2
)4

1α̇ 1β̇ 2α̇ 2β̇ 3α 3β 4α 4β
)

= −π
2α′2

2
〈12〉2 [34]2 , (3.2.5)where the proper numeri
al front fa
tor from the a
tion has been taken into a

ount. Thefa
tor �4� 
omes about be
ause all the possible four Wi
k 
ontra
tions are identi
al.3.2.2 Six-point amplitudesIn 
al
ulations of the six-point amplitudes two 
ontributions have to be taken into a

ount.One 
ontribution is the dire
t one from the vertex (π6α′6/256

) (
+F 4−F 2 + −F 4+F 2

) in thea
tion while the other 
ontribution 
onsists of two four-point verti
es 
ontrolled by the squareof the term (
−π2α′2/32

)
+F 2−F 2 where two four-point verti
es are 
ontra
ted. This latterterm originates from the se
ond order 
ontribution in the expansion series of the exponentiateda
tion whi
h involves internal 
ontra
tions of �eld strengths. Therefore (3.1.22), (3.1.26) and(3.1.27) will be used. It 
an be read of dire
tly from the a
tion that the amplitudes

A
(
1+2+3+4+5+6+

)
= A

(
1−2−3−4−5−6−

)
= A

(
1+2−3−4−5−6−

)
= A

(
1−2+3+4+5+6+

)

= 0 , (3.2.6)vanish. This is simply due to the fa
t that the a
tion does not 
ontain any verti
es with thestru
ture
±F ±F ±F ±F ±F ∓F , ∓F ∓F ∓F ∓F ∓F ±F , (3.2.7)or

±F ±F ±F ±F ±F ±F . (3.2.8)Furthermore, no vertex with this stru
ture is found when internal 
ontra
tions of �eld strengthsare 
arried out on the se
ond-order terms in the expansion of the a
tion.In general, the n-point amplitude
A
(
1+2+3− · · · n−

)
, (3.2.9)Page 58



is known as a maximally heli
ity violating amplitude (MHV) sin
e in Yang-Mills theory itviolates 
onservation of heli
ity [24℄ to the maximum possible extend at tree level. Theparti
ular amplitude from the DBI-a
tion
A
(
1+2+3−4−5−6−

)
, (3.2.10)is therefore an example of an MHV amplitude and it is evaluated by the Wi
k 
ontra
tions

〈

1+2+3−4−5−6−
∣
∣
∣
+F 2+F 2−F 2−F 2

〉

, (3.2.11)of the squared term from the a
tion. In this 
ase it is apparent that one internal 
ontra
tionof two selfdual �eld strengths must be performed in order to obtain a nonzero full 
ontra
tion.Equation (3.1.26) yields
+Fα̇β̇

+F α̇β̇ +Fγ̇δ̇
+F γ̇δ̇ = 2i+Fα̇β̇

+F α̇β̇ , (3.2.12)for an internal 
ontra
tion of selfdual �eld strengths. Sin
e four identi
al internal 
ontra
tionsof the selfdual �eld strengths 
an be made, a fa
tor of four is obtained and
〈

1+2+3−4−5−6−
∣
∣
∣
+F 2+F 2−F 2−F 2

〉

= 8i
〈

1+2+3−4−5−6−
∣
∣
∣
+F 2−F 4

〉

, (3.2.13)holds for an internal 
ontra
tion of selfdual �eld strengths. The internal stru
ture of the 
on-tribution from the two four-point verti
es is identi
al to that of the dire
t 
ontribution +F 2−F 4and these two 
ontributions only di�er by a 
onstant. The prefa
tor of the 
ontribution fromthe two four-point verti
es is
1

2

(

− i
π2α′2

32

)2

8i = − i
π4α′4

256
, (3.2.14)where the fa
tor 1/2 is from the expansion of the a
tion and the fa
tor 8i is from (3.2.13).Equation (3.2.14) is exa
tly identi
al to the prefa
tor of the term in the a
tion with six �eldsbut with the opposite sign. The sum of these two 
ontributions is exa
tly the amplitude(3.2.10) whi
h therefore vanishes

A
(
1+2+3−4−5−6−

)
= 0 . (3.2.15)It is interesting that the six-point 
ontribution exa
tly 
an
els the 
ontribution from the
ontra
tion of two four-point verti
es.The six-point heli
ity 
onserving NMHV amplitude

A
(
1+2+3+4−5−6−

)
, (3.2.16)has only one 
ontribution whi
h is the one where two �eld strengths of the opposite type are
ontra
ted between two four-point verti
es. There exist nine possible permutations of parti
leswhere two are shown in �gures 3.1 and 3.2. The parti
ular 
on�guration of external parti
lesin �gure 3.1 
orresponds to the propagating momentum

pαα̇ = (1 + 2 + 4)αα̇ , (3.2.17)Page 59



1
+

2
+

4
−

6
−

5
−

3
+

Figure 3.1: A 
ontra
tion of two four-point ver-ti
es. The 
ontra
tion for this 
on�guration of ex-ternal parti
les is 
al
ulated in (3.2.18). 1
+

3
+

6
−

5
−

4
−

2
+

Figure 3.2: A 
ontra
tion of two four-point ver-ti
es with another 
on�guration of parti
les 
om-pared to �gure 3.1.and it follows from (3.1.22) that the parti
ular full 
ontra
tion be
omes
+Fα̇β̇

−Fαβ
+F α̇β̇

[
A+

3

]
+Fγ̇δ̇

[
A+

1

]
+F γ̇δ̇

[
A+

2

]
−Fαβ

[
A−

4

]
−Fγδ

[
A−

5

]
−F γδ

[
A−

6

]

= − i

p2

(

pαα̇ pββ̇ + pαβ̇ pβα̇

)

3α̇ 3β̇ 1γ̇ 1δ̇ 2γ̇ 2δ̇ 4α 4β 5γ 5δ 6γ 6δ

= − 2i

p2
〈12〉2 [56]2 4α4βpαα̇ pββ̇3

α̇3β̇

= − 2i

(p1 + p2 + p4)
2 〈12〉2 [56]2 ([4 | (1 + 2 + 4) |3〉)2 , (3.2.18)where the notational abbreviation

[i |k|l〉 = iαjαα̇k
α̇ , (3.2.19)is used. The full amplitude is a sum of the nine permutations of (3.2.18) and reads

A
(
1+2+3+4−5−6−

)
=

1

4

(

− i
π4α′4

128

)
∑

σ(l,m,n)

∑

σ(i,j,k)

〈lm〉2 [ij]2
([k | (l +m+ k) |n〉)2

(pl + pm + pk)
2 ,(3.2.20)where the sums are performed over the permutations of indi
es

σ (l,m, n) = σ (1, 2, 3) , σ (l,m, n) = σ (2, 3, 1) , σ (l,m, n) = σ (3, 2, 1) , (3.2.21)
σ (i, j, k) = σ (4, 5, 6) , σ (i, j, k) = σ (5, 6, 4) , σ (i, j, k) = σ (4, 5, 6) . (3.2.22)The numeri
al fa
tor in (3.2.20) is 
al
ulated as

1

2

(

− i
π2α′2

32

)2 (√
2
)6

(2i) =

(

− i
π4α′4

128

)

, (3.2.23)whi
h is in agreement with [1℄ apart from a fa
tor i.3.3 A step towards six dimensionsThe previous se
tion 
ontains 
al
ulations of amplitudes in four dimensions. Amplitudes insix dimensions are not 
al
ulated in a similar straightforward way and it is ne
essary withsome preliminary 
onsiderations.Page 60



3.3.1 Dira
-Born-Infeld in higher dimensionsThe approa
h to 
al
ulate six-dimensional s
attering amplitudes begins with the Dira
-Born-Infeld Lagrangian. In four dimensions it 
an be expanded [22℄ as
LDBI = I2 + I4

[
1 + O

(
F 2
)]

, (3.3.1)with abbreviations
I2 =

1

4
FµνF

µν , (3.3.2)
I4 = −1

8

[

FµνF
νρFρσF

σµ − 1

4
(FµνF

µν)2
]

= −1

8

(
+F
)2 (−F

)2
, (3.3.3)where the string tension T has been put equal to one,

T =
1

2πα′
≡ 1 . (3.3.4)In an arbitrary number of dimensions (3.3.1) is instead

LDBI = I2 + I4 + O
(
F 6
)
, (3.3.5)with the same abbreviations used. That (3.3.5) holds has been 
he
ked expli
itly by writingthe �eld strengths as matri
es in Mathemati
a. This is dis
ussed in appendix A.1.Whether four, six or any number of dimensions are 
onsidered, espe
ially the I4 term is ofinterest sin
e it 
ontains produ
ts of four �eld strengths and hen
e it 
ontrols the four-pointamplitudes at tree-level. In the following the 
onstant will be ignored and

I ′4 ≡ FµνF
νρFρσF

σµ − 1

4
FµνF

µνFρσF
ρσ , (3.3.6)will be studied. The operation of dualization was de�ned in four dimensions in (1.4.1) and theselfdual +F and anti-selfdual −F 
omponents of the �eld strength tensor was introdu
ed in3.1.2. The rightmost equality in (3.3.3) holds in four dimensions but it has no straightforwardgeneralization to higher dimensions. In six dimensions one would de�ne the dual of FMN as

F̃MNRS =
i

2
εMNRSKLF

KL , (3.3.7)whi
h is obviously not a two-form. In order to obtain a two-form (3.3.7) must be 
ontra
tedinto some antisymmetri
 obje
t with two indi
es and the dual will then depend on this par-ti
ular obje
t. The 
on
lusion is that the dual in six dimensions is not uniquely de�ned.The simpli
ity of 
al
ulations in four dimensions as a 
onsequen
e of the use of the dual 
antherefore not be transferred to six dimensions.A general four-point amplitude with unspe
i�ed external polarizationsThe purpose of this se
tion is to 
al
ulate the photon four-point s
attering amplitude as ageneral result in terms of generi
 polarization ve
tors. Only tree-level amplitudes will bestudied and hen
e only external 
ontra
tions are taken into a

ount. Page 61



3.3.2 Constru
ting the amplitudeThe result
ε±i · ε±j = 0 , (3.3.8)is important in 
al
ulations of s
attering amplitudes with spe
i�
 external polarizations. How-ever, when an amplitude is 
al
ulated in generality as a fun
tion of generi
 polarization ve
-tors, (3.3.8) 
annot be used sin
e, in general, all dot produ
ts of polarization ve
tors arenon-vanishing. The general amplitude is 
al
ulated from the four-point term

I ′4 = FMNF
NRFRSF

RM − 1

4
FMNF

MNFRSF
RS , (3.3.9)in the Dira
-Born-Infeld Lagrangian as dis
ussed in the previous se
tion.The general 
al
ulation 
an be outlined as a pro
ess of three steps. Step one is to 
omputeone arbitrarily 
hosen full 
ontra
tion. Step two is to 
onstru
t in Mathemati
a the result ofthis 
omputation as generi
 momenta and polarization tensors with indi
es and then performthe summation over all possible permutations of these indi
es. Step three is to employ mo-mentum 
onservation to simplify the expression. These three steps are des
ribed below. Theamplitude is 
omputed by the Wi
k 
ontra
tions of (3.3.9)

A(AiAjAkAl) → εαi ε
β
j ε

γ
k ε

δ
l

〈

Ai,αAj,βAk,γAl,δ

∣
∣
∣FµνF

νρFρσF
σµ − 1

4
FµνF

µνFρσF
ρσ
〉

= εαi ε
β
j ε

γ
k ε

δ
l

[〈

Ai,αAj,βAk,γAl,δ

∣
∣
∣FµνF

νρFρσF
σµ
〉

−1

4

〈

Ai,αAj,βAk,γAl,δ

∣
∣
∣FµνF

µνFρσF
ρσ
〉]

, (3.3.10)suggesting that ea
h of the two terms in (3.3.10) are treated separately. For ea
h of the twoterms one arbitrarily 
hosen full 
ontra
tion
χ(ijkl) ≡ εαi ε

β
j ε

γ
k ε

δ
lAi,αAj,βAk,γAl,δFµνF

νρFρσF
σµ , (3.3.11)and

ω(ijkl) ≡ εαi ε
β
j ε

γ
k ε

δ
lAi,αAj,βAk,γAl,δFµνF

µνFρσF
ρσ , (3.3.12)is labeled a

ording to (3.3.11) and (3.3.12). Both obje
ts χ(ijkl) and ω(ijkl) 
onsist of sixteenterms and 
an be evaluated respe
tively as

χ(ijkl) = (pi ·εl) (pj ·εi) (pk ·εj) (pl ·εk) + (pi ·pl) (pj ·εi) (pk ·εl) (εj ·εk)
− (pk ·pl) (pi ·εl) (pj ·εi) (εk ·εj) − (pi ·pl) (pj ·εi) (pk ·εj) (εk ·εl)

+ (pi ·εj) (pj ·pk) (pl ·εk) (εi ·εl) + (pi ·εj) (pj ·εk) (pk ·εl) (pl ·εi)
− (pk ·pl) (pi ·εj) (pj ·εk) (εi ·εl) − (pi ·εj) (pj ·pk) (pl ·εi) (εk ·εl)
− (pi ·pj) (pk ·εj) (pl ·εk) (εi ·εl) − (pi ·pj) (pk ·εl) (pl ·εi) (εk ·εj)

+ (pi ·pj) (pk ·pl)
(
εi ·εl

)
(εk ·εj) + (pi ·pj)

(
pk ·εj

)
(pl ·εi) (εk ·εl)

− (pi ·εl) (pl ·εk) (pj ·pk) (εi ·εj) − (pi ·pl) (pj ·εk) (pk ·εl) (εi ·εj)
+ (pk ·pl) (pi ·εl) (pj ·εk) (εi ·εj) + (pi ·pl) (pj ·pk) (εi ·εj) (εk ·εl) ,(3.3.13)Page 62



and
ω(ijkl) = 4

[

(pi ·pj) (pk ·pl) (εi ·εj) (εk ·εl) + (pi ·εj) (pj ·εi) (pk ·εl) (pl ·εk)

− (pk ·pl) (pi ·εj) (pj ·εi) (εk ·εl) − (pi ·pj) (pk ·εl) (pl ·εk) (εi ·εj)
]

. (3.3.14)Inter
hanging the 
ontra
tions of Ai and Aj in (3.3.11) simply inter
hanges the indi
es i and
j in (3.3.13). A similar stru
ture is found for (3.3.12) and (3.3.14) and the full amplitude in(3.3.10) 
an therefore be written formally as the sum over all possible permutations of theindi
es i, j, k, l as

A(AiAjAkAl) =
∑

σ(i,j,k,l)

(

χ(ijkl) −
1

4
ω(ijkl)

)

≡ S , (3.3.15)
ontaining 4! 
ontributions of the form (3.3.13) and just as many of the form (3.3.14). Itfollows that 24× (16 + 4) = 480 is the total number of terms in the sum whi
h will be referredto as S. In order to evaluate and simplify S, the full expressions for χ(ijkl) and ω(ijkl) are
onstru
ted individually in Mathemati
a su
h that for instan
e the se
ond term in (3.3.13) iswritten as
(pi ·pl) (pj ·εi) (pk ·εl) (εj ·εk) → (pp)i,l (pe)j,i (pe)k,l (ee)j,k , (3.3.16)with ea
h dot produ
t represented as one variable having two indi
es. The name of ea
hvariable 
arries the information of whether the dot produ
t is between two momentum ve
tors,two polarization ve
tors or between one momentum ve
tor and one polarization ve
tor. Thesum S is expli
itly evaluated in Mathemati
a and the output is shown in �gure A.3. As a
onsequen
e of the de�nitions of variables1 (3.3.16) Mathemati
a distinguishes between termssu
h that

(pp)i,j 6= (pp)j,i , (ee)i,j 6= (ee)j,i , (3.3.17)even though these terms are identi
al. To obtain the proper 
an
ellation of terms, the opera-tion
(pp)j,i → (pp)i,j , (ee)j,i → (ee)i,j , (3.3.18)is performed for every 
ombination of the indi
es i, j, k and l. The Mandelstam variables from(1.2.2) are

s = 2 p1 · p2 , t = 2 p1 · p4 , u = 2 p1 · p3 , (3.3.19)and due to 
onservation of momentum
s+ t+ u = 0 , (3.3.20)holds. This simpli�es S into a form of 60 term as shown in �gure A.4.1This de�nition 
ould have been done more 
lever to avoid the problems des
ribed along (3.3.13). Page 63



3.3.3 Simplifying the overall sum of 
ontributionsOne �nds from the Mathemati
a output that all the terms in S 
an be grouped into one ofthree distin
t 
ategories with 
ertain 
hara
teristi
s. The �rst 
ategory 
onsists of nine termswith the stru
ture
s2 (ε1 ·ε2) (ε3 ·ε4) , (3.3.21)of two dot produ
ts between polarization ve
tors and the square of a Mandelstam variable.The se
ond 
ategory 
onsists of 42 terms with the stru
ture

u (ε2 ·ε3) (p1 ·ε4) (p3 ·ε1) , (3.3.22)having one Mandelstam variable, one dot produ
t between polarization ve
tors and two dotprodu
ts between a momentum ve
tor and a polarization ve
tor. The third 
ategory 
onsistsof 9 terms with the stru
ture
(p1 ·ε2)(p2 ·ε1)(p3 ·ε4)(p4 ·ε3) or (p1 ·ε2)(p2 ·ε3)(p3 ·ε4)(p4 ·ε1) , (3.3.23)of four dot produ
ts between one momentum ve
tor and one polarization ve
tor. In thefollowing ea
h 
ategory of terms will be 
onsidered individually in order to simplify S.Terms from the �rst 
ategoryThe nine terms in this 
ategory are manipulated using the rearrangement of (3.3.20)

s2 = (t+ u)2 = t2 + u2 + 2tu , (3.3.24)whereby the three terms with the 
ommon 
oe�
ient (ε1 ·ε2) (ε3 ·ε4) 
an be rewritten as
(ε1 ·ε2) (ε3 ·ε4)

[
−2s2 + 2t2 + 2u2

]
= − 4 (ε1 ·ε2) (ε3 ·ε4) tu . (3.3.25)Equation (3.3.24) is symmetri
 in s, t and u and hen
e the method leading to (3.3.25) 
an beapplied straightforwardly to the three terms proportional to (ε1 ·ε3) (ε2 ·ε4) as well as for thethree terms proportional to (ε1 ·ε4) (ε2 ·ε3). This yields for the six remaining terms

(ε1 ·ε3) (ε2 ·ε4)
[
2s2 + 2t2 − 2u2

]
= − 4 (ε1 ·ε3) (ε2 ·ε4) st , (3.3.26)

(ε1 ·ε4) (ε2 ·ε3)
[
2s2 − 2t2 + 2u2

]
= − 4 (ε1 ·ε4) (ε2 ·ε3) su , (3.3.27)su
h that the original nine terms have been rewritten as the three terms on the right handsides of (3.3.25)�(3.3.27).Terms from the se
ond 
ategoryThe four di�erent polarization ve
tors form six di�erent dot produ
ts ea
h being a 
ommonfa
tor in seven terms in the se
ond 
ategory. In order to show how simpli�
ations o

ur, theseven terms proportional to (ε1 ·ε2) are 
onsidered. Substituting s from (3.3.20) yields thePage 64



expansion
4
[

− s(p1 ·ε4) (p2 ·ε3) − s (p1 ·ε3) (p2 ·ε4) + u (p1 ·ε3) (p3 ·ε4) + t (p2 ·ε3) (p3 ·ε4)

+ t (p1 ·ε4) (p4 ·ε3) + u (p2 ·ε4) (p4 ·ε3) − s (p3 ·ε4) (p4 ·ε3)
]

= 4t
[

(p2 ·ε3) (p3 ·ε4) + (p1 ·ε4) (p4 ·ε3) + (p1 ·ε4) (p2 ·ε3)

+ (p1 ·ε3) (p2 ·ε4) + (p3 ·ε4) (p4 ·ε3)
]

+ 4u
[

(p1 ·ε3) (p3 ·ε4) + (p2 ·ε4) (p4 ·ε3) + (p1 ·ε4) (p2 ·ε3)

+ (p1 ·ε3) (p2 ·ε4) + (p3 ·ε4) (p4 ·ε3)
]

, (3.3.28)for the seven terms proportional to (ε1 ·ε2). Considering expli
itly in (3.3.28) the sum of termnumber one, two, three and �ve in the square bra
ket proportional to 4t gives
(p2 ·ε3) (p3 ·ε4) + (p1 ·ε4) (p4 ·ε3) + (p1 ·ε4) (p2 ·ε3) + (p3 ·ε4) (p4 ·ε3)

= εµ3ε
ν
4 (p2,µp3,ν + p4,µp1,ν + p2,µp1,ν + p4,µp3,ν)

= εµ3ε
ν
4 (p2,µ + p4,µ) (p1,ν + p3,ν)

= εµ3ε
ν
4 ( − p1,µ − p3,µ) ( − p2,ν − p4,ν)

= εµ3ε
ν
4 p1,µ p2,ν

= (p1 ·ε3) (p2 ·ε4) , (3.3.29)where momentum 
onservation has been employed along with transversality of the momentum.It is apparent that the right hand side of (3.3.29) is identi
al to term number four in the squarebra
ket proportional to 4t in (3.3.28).Identi
al manipulations are used in the square bra
ket proportional to 4u in (3.3.28) andhen
e the sum of term number one, two, four and �ve is
(p1 ·ε3) (p3 ·ε4) + (p2 ·ε4) (p4 ·ε3) + (p1 ·ε3) (p2 ·ε4) + (p3 ·ε4) (p4 ·ε3)

= εµ3ε
ν
4 (p1,µp3,ν + p4,µp2,ν + p1,µp2,ν + p4,µp3,ν)

= εµ3ε
ν
4 (p1,µ + p4,µ)

(
p3,ν + p2

2,ν

)

= εµ3ε
ν
4 ( − p2,µ + p3,µ) ( − p1,ν − p4,ν)

= εµ3ε
ν
4 p2,µ p1,ν

= (p2 ·ε3) (p1 ·ε4) , (3.3.30)whi
h is identi
al to term number four in the square bra
ket. From (3.3.29) and (3.3.30) it ispossible to rewrite (3.3.28) in the mu
h more 
ompa
t form
4t
[

(p2 ·ε3) (p3 ·ε4) + (p1 ·ε4) (p4 ·ε3) + (p1 ·ε4) (p2 ·ε3)

+ (p1 ·ε3) (p2 ·ε4) + (p3 ·ε4) (p4 ·ε3)
]

+ 4u
[

(p1 ·ε3) (p3 ·ε4) + (p2 ·ε4) (p4 ·ε3) + (p1 ·ε4) (p2 ·ε3)

+ (p1 ·ε3) (p2 ·ε4) + (p3 ·ε4) (p4 ·ε3)
]

= 8t (p1 ·ε3) (p2 ·ε4) + 8u (p2 ·ε3) (p1 ·ε4) , (3.3.31)Page 65



whi
h is the �nal simpli�
ation.Only seven terms have been 
onsidered in the manipulations (3.3.28) � (3.3.31) but theremaining 35 terms in this 
ategory 
an be manipulated in the same way. For ea
h of thedot produ
ts (ε1 ·ε3),(ε1 ·ε4),(ε2 ·ε3),(ε2 ·ε4),(ε3 ·ε4) respe
tively, an expression equivalent to(3.3.31) 
an be obtained for the seven terms proportional to this parti
ular dot produ
t andhen
e the 42 terms in the se
ond 
ategory are redu
ed to 12 terms.Terms from the third 
ategoryConservation of momentum yields
(p4 ·ε2) (p3 ·ε1) = (p1 ·ε2) (p2 ·ε1) + (p1 ·ε2) (p4 ·ε1) + (p3 ·ε2) (p2 ·ε1) + (p3 ·ε2) (p4 ·ε1) ,(3.3.32)
(p4 ·ε3) (p2 ·ε1) = (p1 ·ε3) (p3 ·ε1) + (p1 ·ε3) (p4 ·ε1) + (p2 ·ε3) (p3 ·ε1) + (p2 ·ε3) (p4 ·ε1) ,(3.3.33)whi
h will be used to expand the nine terms of the third 
ategory. For 
onvenien
e and tointrodu
e a 
ertain labeling the nine terms are written expli
itly

− (p1 ·ε4)(p4 ·ε1)(p2 ·ε3)(p3 ·ε2)
︸ ︷︷ ︸

α1

− (p1 ·ε3)(p3 ·ε1)(p2 ·ε4)(p4 ·ε2)
︸ ︷︷ ︸

β1

− (p1 ·ε2)(p2 ·ε1)(p3 ·ε4)(p4 ·ε3)
︸ ︷︷ ︸

γ1

+ (p1 ·ε3)(p3 ·ε2)(p2 ·ε4)(p4 ·ε1)
︸ ︷︷ ︸

β2

+ (p1 ·ε2)(p2 ·ε3)(p3 ·ε4)(p4 ·ε1)
︸ ︷︷ ︸

γ2

+ (p1 ·ε4)(p4 ·ε2)(p2 ·ε3)(p3 ·ε1)
︸ ︷︷ ︸

α2

+ (p1 ·ε3)(p3 ·ε4) (p4 ·ε2)
(
p2 ·ε1

)

︸ ︷︷ ︸

β3

+ (p1 ·ε2)(p2 ·ε4)(p4 ·ε3)(p3 ·ε1)
︸ ︷︷ ︸

γ3

+ (p1 ·ε4)(p4 ·ε3)(p3 ·ε2)(p2 ·ε1)
︸ ︷︷ ︸

α3

.(3.3.34)Substituting (3.3.32) and (3.3.33) respe
tively in the expressions for α2 and α3, the sum of
α1, α2 and α3 be
omes

− (p1 ·ε4)(p4 ·ε1)(p2 ·ε3)(p3 ·ε2) + (p1 ·ε4)(p4 ·ε2)(p2 ·ε3)(p3 ·ε1)
+ (p1 ·ε4)(p4 ·ε3)(p3 ·ε2)(p2 ·ε1)

= (p1 ·ε4)
{

(p2 ·ε3) (p3 ·ε2) [(p4 ·ε1) + (p2 ·ε1) + (p3 ·ε1)]
+ (p2 ·ε3) (p1 ·ε2) (p4 ·ε1) + (p2 ·ε3) (p1 ·ε2) (p2 ·ε1)

+ (p3 ·ε2) (p1 ·ε3) (p4 ·ε1) + (p3 ·ε2) (p1 ·ε3) (p3 ·ε1)
}

= (p1 ·ε4) εµ1εν2ερ3 [p4,µ p1,ν p2,ρ + p2,µ p1,ν p2,ρ + p4,µ p3,ν p1,ρ + p3,µ p3,ν p1,ρ]

= (p1 ·ε4) εµ1εν2ερ3 [(p4,µ + p2,µ) p1,ν p2,ν + (p4,µ + p3,µ) p3,ν p1,ρ]

= − (p1 ·ε4) εµ1εν2ε
ρ
3 [p3,µ p1,ν p2,ρ + p2,µ p3,ν p1,ρ] , (3.3.35)where momentum 
onservation has been used in 
ombination with transversality to obtain

(p4 ·ε1) + (p2 ·ε1) + (p3 ·ε1) = −p1 ·ε1 = 0 . (3.3.36)Page 66



An identi
al pro
edure 
an be used for the sum of β1, β2, β3 as well as for the sum of γ1, γ2, γ3.For the sum of β1, β2, β3, the terms β2 and β3 are expanded and expli
it 
al
ulations yield
− (p1 ·ε3)(p3 ·ε1)(p2 ·ε4)(p4 ·ε2) + (p1 ·ε3)(p3 ·ε2)(p2 ·ε4)(p4 ·ε1)

+
(
p1 ·ε3

)(
p3 ·ε4

) (
p4 ·ε2

)(
p2 ·ε1

)

= − (p1 ·ε3) εµ1εν2ερ4 [p2,µ p4,ν p1,ρ + p4,µ p1,νp2,ρ] . (3.3.37)For the sum of γ1, γ2 and γ3 it is found that
− (p1 ·ε2)(p2 ·ε1)(p3 ·ε4)(p4 ·ε3) + (p1 ·ε2)(p2 ·ε3)(p3 ·ε4)(p4 ·ε1)

+ (p1 ·ε2)(p2 ·ε4)(p4 ·ε3)(p3 ·ε1)
= − (p1 ·ε2) εµ1εν3ε

ρ
4 [p3,µ p4,ν p1,ρ + p4,µ p1,ν p3,ρ] , (3.3.38)in a similar way. Equations (3.3.35), (3.3.37) and (3.3.38) are summed up to give

− εµ1ε
ν
2ε
ρ
3ε
σ
4 [p3,µp1,νp2,ρp1,σ + p2,µp3,νp1,ρp1,σ] − εµ1ε

ν
2ε
ρ
3ε
σ
4 [p2,µp4,νp1,ρp1,σ + p4,µp1,νp1,ρp2,σ]

− εµ1ε
ν
2ε
ρ
3ε
σ
4 [p3,µp1,νp4,ρp1,σ + p4,µp1,νp1,ρp3,σ]

= −εµ1εν2ερ3εσ4 [p3,µp1,ν (p2,ρ + p4,ρ) p1,σ + p2,µ (p3,ν + p4,ν) p1,ρp1,σ + p4,µp1,νp1,ρ (p2,σ + p3,σ)]

= +εµ1ε
ν
2ε
ρ
3ε
σ
4 [p3,µp1,ν (p1,ρ + p3,ρ) p1,σ + p2,µ (p1,ν + p2,ν) p1,ρp1,σ + p4,µp1,νp1,ρ (p1,σ + p4,σ)]

= ε1µε2 νε3 ρε4 σ [p3,µp1,νp1,ρp1,σ + p2,µp1,νp1,ρp1,σ + p4,µp1,νp1,ρp1,σ]

= − εµ1ε
ν
2ε
ρ
3ε
σ
4p

µ
1p

ν
1p
ρ
1p
σ
1

= 0 , (3.3.39)su
h that the nine terms (3.3.34) add to zero.Colle
ting the pie
esThe entire amplitude 
an be written in terms of the 
ontributions (3.3.25)�(3.3.27) togetherwith six 
ontributions of the form (3.3.31) where ea
h 
ontribution is multiplied be the ap-propriate dot produ
t of polarization ve
tors. The �nal result for the amplitude is
A (AiAjAjAk)

= − 4
[

(ε1 ·ε2)(ε3 ·ε4) tu+ (ε1 ·ε3)(ε2 ·ε4) st+ (ε1 ·ε4)(ε2 ·ε3) su
]

+ 8s
[

(p1 ·ε3)(p4 ·ε2)(ε1 ·ε4) + (p1 ·ε4)(p3 ·ε2)(ε1 ·ε3)

+ (p2 ·ε4)(p3 ·ε1)(ε2 ·ε3) + (p2 ·ε3)(p4 ·ε1)(ε2 ·ε4)
]

+ 8t
[

(p1 ·ε2)(p3 ·ε4)(ε1 ·ε3) + (p1 ·ε3)(p2 ·ε4)(ε1 ·ε2)

+ (p3 ·ε1)(p4 ·ε2)(ε3 ·ε4) + (p2 ·ε1)(p4 ·ε3)(ε2 ·ε4)
]

+ 8u
[

(p1 ·ε2)(p4 ·ε3)(ε1 ·ε4) + (p1 ·ε4)(p2 ·ε3)(ε1 ·ε2)

+ (p4 ·ε1)(p3 ·ε2)(ε3 ·ε4) + (p2 ·ε1)(p3 ·ε4)(ε2 ·ε3)
]

, (3.3.40)whi
h is identi
al to the �kinemati
 fa
tor� 
al
ulated in [25℄ apart from an overall multi-pli
ative fa
tor of 16. Furthermore, (3.3.40) is found in [26℄. The di�erent overall fa
tor isPage 67



due to di�erent 
hoi
es of 
onventions regarding normalization of the string parameter α′. Itfollows dire
tly from (3.3.40) 
ombined with (2.1.114) that the amplitudes A(±±±±) van-ish identi
ally regardless of dimension. This an interesting result whi
h is in agreement with(3.2.1).In higher dimensions one 
an 
hose spe
i�
 polarization ve
tors and 
ompute dire
tlyfrom (3.3.40). However, another approa
h starting from the Dira
-Born-Infeld a
tion is usedin order to gain more insight in the six-dimensional 
ase. This approa
h will be the topi
for the next 
hapter where one must expe
t that the A(±±±±) amplitude vanishes due to(3.3.40).
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Chapter 4Ve
tor boson amplitudes in sixdimensionsIn the previous 
hapter, various s
attering amplitudes were 
al
ulated in four dimensions withdiligent use of the spinor-heli
ity formalism. The 
al
ulations were streamlined 
onsiderablydue to the formalism. This 
hapter presents 
al
ulations of amplitudes in six dimensions wherethe situation is more 
ompli
ated. A �rst observation is that the spinor-heli
ity formalismis not generalized straightforwardly to six dimensions and this suggests another approa
h.However, the four-dimensional spinor-heli
ity formalism will still be used to express the fourdimensional part of six-dimensional amplitudes. This approa
h is based on some simplifyingassumptions and the use of auxiliary dimensions. In fa
t it is part of the dis
ussion of theappropriate language in six dimensions as addressed in the introdu
tion.4.1 Six dimensions from a four-dimensional perspe
tiveThe topi
 of the subsequent se
tions is to 
al
ulate di�erent s
attering amplitudes in six di-mensions. The external states of these amplitudes are spe
i�ed whi
h in this sense is mu
halong the lines of se
tion 3.2 where spe
i�
 amplitudes were 
al
ulated in four dimensions.However, in order to take the step from four to six dimensions some developments are re-quired. These developments will be made below and are introdu
ed in order to simplify the
al
ulations. The general expression (3.3.40) will be left and instead the situation will be
onsidered more spe
i�
 using a bottom-up approa
h. One similarity however is that (3.3.6)is still the interesting term to 
onsider.4.1.1 Auxiliary dimensionsThe overall motivation for the developments mentioned above is to simplify the 
al
ulationsby removing some degrees of freedom. The problem under 
onsideration is six-dimensionaland one 
an think of the four and �ve-dire
tions as being auxiliary dimensions with respe
tto the usual four dimensions. Introdu
ing suitable 
onstraints on ve
tor 
omponents in theauxiliary dimensions will result in a splitting of the auxiliary dimensions from the usual fourdimensions and in this way the overall kinemati
s 
an be treated in a simpler way. One 
anthink of the auxiliary dimensions in terms of a s
attering experiment in N dimensions. Thes
attered beams 
an be prepared in a suitable way so that momentum and polarization ve
torsPage 69



are embedded in m dimensions where N > m. Of 
ourse momentum 
an be s
attered intothe N −m dimensions as long as overall momentum is 
onserved but these dimensions are insome sense auxiliary to the m dimensions.Two di�erent approa
hes will be taken in the 
ontext des
ribed above and ea
h of themuses its own 
onstraint in the auxiliary dimensions. S
attering amplitudes in se
tions 4.3and 4.4 are 
al
ulated using the di�erent approa
hes respe
tively. These two approa
hes aredis
ussed below.4.1.2 Constraining gauge �eld 
omponentsIn the �rst approa
h, s
attering amplitudes in six dimensions will be 
al
ulated under the
onstraint
A4 = A5 = 0 , (4.1.1)on the gauge �eld 
omponents in the auxiliary dimensions. This 
onstraint is used in (3.3.6)where it leads to a simpli�
ation of this term. The simpli�
ation does not o

ur straight-forwardly but is obtained by writing the �eld strength tensors as expli
it matri
es. Thispro
edure is dis
ussed below in se
tion 4.2.1If one studies the four and �ve dire
tions as two extra dimensions with respe
t to the usualfour dimensions it is 
onvenient to express the momentum square of the usual four dire
tionsin terms of momentum 
omponents in the extra dire
tions. From a massless momentum ve
tor

0 = p2 =
(
p0
)2 −

(
p1
)2 −

(
p2
)2 −

(
p3
)2 −

(
p4
)2 −

(
p5
)2

, (4.1.2)one 
an de�ne the momentum square
p2
(d=4) ≡ p̃2 =

(
p0
)2 −

(
p1
)2 −

(
p2
)2 −

(
p3
)2

= +
(
p4
)2

+
(
p5
)2

. (4.1.3)This de�nition suggests a four-dimensional interpretation. Let pM be the momentum ve
torfor a massless parti
le in six dimensions. By (4.1.3) it follows then that the same parti
le 
anbe 
onsidered from a four-dimensional perspe
tive as massive with
m2

(4d) =
(
p4
)2

+
(
p5
)2

. (4.1.4)The momentum ve
tor in four dimensions should therefore be expressed as a massive spinora

ording to (2.1.107).Another simpli�
ation used in this approa
h is regarding polarization of the s
atteredphotons. A massless parti
le in d dimensions has d − 2 physi
al degrees of freedom be
auseone degree of freedom is removed by the equations of motion and one is removed by the gauge
ondition. These degrees of freedom are re�e
ted by a photon in four dimensions having twopossible polarization states. In six dimensions, a photon has four possible polarization statesof whi
h two are the same as the four-dimensional states. The simpli�
ation used is to ignorethe two extra polarization states in six dimensions. In this way the photon in six dimensions
an be des
ribed using the same polarization ve
tors as in four dimensions. This turns out tobe useful sin
e the spinor-heli
ity formalism 
an then be used to des
ribe the four-dimensionalparts of results obtained in six-dimensional 
al
ulations.Page 70



4.1.3 Constraining momentum 
omponentsThe se
ond approa
h uses the assumption to negle
t momentum 
omponents in the auxiliarydimensions
p4 = p5 = 0 . (4.1.5)This 
onstraint leads to an interesting four-dimensional perspe
tive on the �elds in the theory.In order to see this, the Lagrangian for the free ele
tromagneti
 �eld

L(6d)
em

(
AM

)
=

1

4
FMNF

MN , (4.1.6)is 
onsidered in six dimensions. The six-dimensional indi
es 
an be de
omposed simply intolower-dimensional indi
es so that the �eld strength tensor be
omes
FMN = Fµν + Fmn + Fµn + Fmν , (4.1.7)and subsequently

FMNF
MN = FµνF

µν + 2F45F
45 + 2Fµ4F

µ4 + 2Fµ5F
µ5 . (4.1.8)For the 
ase (4.1.5) the �eld strength 
omponents are

F45 = 0 , FµiF
µi = + ∂µAi∂

µAi = − ∂µAi∂
µAi , (4.1.9)for the metri
 (2.4.1) generalized to six dimensions. Equation (4.1.8) be
omes

FMNF
MN = FµνF

µν − 4 ∂µφ∂
µφ̄ , (4.1.10)for the de�nitions of s
alars

φ ≡ 1√
2

(A4 + iA5) , φ̄ ≡ 1√
2

(A4 − iA5) , (4.1.11)with the inversion
A4 =

1√
2

(
φ+ φ̄

)
, A5 = − i√

2

(
φ− φ̄

)
. (4.1.12)It follows from (4.1.10) that the requirement (4.1.5) turns the six-dimensional Lagrangianwith six-dimensional gauge �elds into a Lagrangian with four-dimensional gauge �elds andtwo 
omplex s
alars

L(6d)
em

(
AM

)
→ L(4d)

em

(
Aµ, φ, φ̄

)
. (4.1.13)This is exa
tly the four-dimensional perspe
tive on the theory as 
onsidered above whi
hwill be used in se
tion 4.4 where s
attering amplitudes involving the s
alars (4.1.11) will be
al
ulated. Page 71



4.2 Preparing amplitude 
al
ulationsThe �rst amplitude 
al
ulations will be based on the gauge �eld 
onstraint (4.1.1) as dis
ussedabove. The four-point amplitudes are 
ontrolled by the term
I ′4 = FMNF

NRFRSF
RM − 1

4
FMNF

MNFRSF
RS , (4.2.1)whi
h 
an be simpli�ed by the gauge �eld 
onstraint in the auxiliary dimensions. In order tosimplify (4.2.1) it is useful to write the �eld strengths expli
itly as blo
k matri
es. This is donein order to split the usual four-dimensional part of the tensor from the part in the auxiliarydimensions and it leads to an expression for (4.2.1) whi
h is suitable for Wi
k 
ontra
tions.4.2.1 De
omposing the �eld strength tensorWhen the �eld strengths are 
onsidered as matri
es the two terms on the right hand side of(4.2.1) are written as the tra
es

FMNF
NRFRSF

SM = FMNF
N
RF

R
SF

S
M = TrF 4 , (4.2.2)

FMNF
MNFRSF

RS =
(
− FMNF

N
M

) (
− FRSF

S
R

)
= + Tr2F 2 , (4.2.3)of ordinary matrix produ
ts. In order to simplify (4.2.2) and (4.2.3) the matrix expressionfor the �eld strength tensor will be de
omposed into blo
k matri
es. This is straightforwardsin
e an arbitrary matrix 
an be interpreted as a blo
k matrix where the entries are groupeda

ording to a 
ertain blo
k stru
ture. In six dimensions the ele
tromagneti
 �eld strengthtensor 
an be written as the 6 × 6 blo
k matrix

FMN =

[ A(4×4) B(4×2)

−BT(2×4) D(2×2)

]

, (4.2.4)with the dimensionality of ea
h of the matri
es A,B and D written expli
itly. The notationof (4.2.4) is obviously insu�
ient sin
e Aµ
ν , Bµn and Dm

n have Lorentz indi
es. In terms ofthese indi
es (4.2.4) be
omes expli
itly
FMN =

[
Aµ

ν Bµn
−B m

ν Dm
n

]

, (4.2.5)where the matri
es are
Bµn =







∂0A4 − ∂4A0 ∂0A5 − ∂5A0

∂1A4 − ∂4A1 ∂1A5 − ∂5A1

∂2A4 − ∂4A2 ∂2A5 − ∂5A2

∂3A4 − ∂4A3 ∂3A5 − ∂5A3






, Dmn =

[
0 ∂4A5 − ∂5A4

∂5A4 − ∂4A5 0

]

, (4.2.6)and
Aµ

ν = (4d)Fµν ≡ fµν , (4.2.7)is just the usual four-dimensional �eld strength.Page 72



4.2.2 Tensor 
ontra
tions as tra
es of matrix produ
tsIn matrix notation
F 2 = FMNF

N
R = (FF )MR , (4.2.8)and from (4.2.5) the produ
ts of �eld strength matri
es in (4.2.2) and (4.2.3) are

F 2 =

[
A B

−BT D

] [
A B

−BT D

]

=

[
A2 − BBT AB + BD

−BTA−DBT −BTB + D2

]

, (4.2.9)and
F 4 =

[
A2 − BBT AB + BD

−BTA−DBT −BTB + D2

] [
A2 − BBT AB + BD

−BTA−DBT −BTB + D2

]

=

[
φ χ
ψ ω

]

, (4.2.10)with the abbreviations
φ = A4 + BBTBBT −A2BBT − BBTA2 −ABBTA− BD2BT −ABDBT − BDBTA , (4.2.11)
ω = −BTA2B −DBTBD − BTABD −DBTAB + BTBBTB + D4 − BTBD2 −D2BTB ,(4.2.12)
χ = A3B − BBTBD + A2BD − BBTA2 + ABDB + BD3 + ABD2 − BDBTB , (4.2.13)
ψ = −BTA3 + DBTBBT −DBTA2 + BTBBTA− BTABBT −D3BT + BTBDBT −D2BTA .(4.2.14)This is nothing but a de
omposition whi
h by itself provides no simpli�
ation. The 
ru
ialstep is to use (4.1.1) whereby

Dmn = 0 , (4.2.15)and hen
e (4.2.9) and (4.2.10) simplify.The tra
e of a produ
t of arbitrary n × n matri
es is 
y
li
 in the order of matri
es andby (4.2.15) the tra
e of (4.2.9) be
omes
TrF 2 = TrA2 − 2TrBBT . (4.2.16)The tra
e of (4.2.10) is

TrF 4 = Trφ+ Trω

= TrA4 − 4TrA2BBT + 2TrBBTBBT , (4.2.17)from (4.2.11) together with (4.2.12). Squaring (4.2.16) yields
Tr2F 2 = Tr2A2 + 4TrBBT TrBBT − 4TrA2 TrBBT , (4.2.18)and by (4.2.2), (4.2.3), (4.2.17) and (4.2.18), equation (4.2.1) be
omes

I ′4 = TrF 4 − 1

4
TrF 2

= TrA4 − 1

4
Tr2A2 + 2TrBBTBBT − 4TrA2BBT − TrBBT TrBBT + TrA2 TrBBT .(4.2.19)Page 73



The matrix A is exa
tly the four-dimensional part of FMN and hen
e
TrA4 − 1

4
Tr2A2 = FµνF

νρFρσF
σµ − 1

4
FµνF

µνFρσF
ρσ =

(
+F
)2 (−F

)2
, (4.2.20)holds for the four-dimensional matri
es. Subsequently (4.2.19) be
omes

I ′4 =
(
+F
)2 (−F

)2
+ 2

(
BBT

)µ

ν

(
BBT

)ν

µ
− 4FµνF

ν
ρ

(
BBT

)ρ

µ

−
(
BBT

)µ

µ

(
BBT

)ν

ν
− Fµν F

µν
(
BBT

)λ

λ
, (4.2.21)whi
h appears almost as a four-dimensional expression be
ause only four-dimensional Lorentzindi
es are present. The dependen
e on the auxiliary two dimensions is in the matrix produ
t

BBT where for instan
e
(
BBT

)ρ

σ
= Bρn

(
BT
)

nσ
= BρnBσn . (4.2.22)By (4.1.1) equation (4.2.22) be
omes

(
BBT

)ρ

σ
= ∂nAρ∂nAσ , (4.2.23)whi
h will be used in se
tion 4.3 in order to 
ompute Wi
k 
ontra
tions of 
ertain external�elds into (4.2.21).4.3 Amplitudes with gauge �eld 
onstraintsThis se
tion 
ontains the 
al
ulations based on the developments in se
tion 4.2. Four-pointamplitudes with spe
i�
 
on�guration of external polarization will be 
al
ulated with theuse of the 
onstraints dis
ussed in se
tion 4.1.2. The 
al
ulated amplitudes are A(+ + + +),

A(− + + +), A(−− + +). The expli
it expression of the term I ′4 in (4.2.21) is the startingpoint for all amplitudes 
al
ulations in this se
tion. For 
onvenien
e and to make referen
esto 
ertain terms easier throughout the 
al
ulations, the expression (4.2.20) is written again as
I ′4 =

(
+F
)2 (−F

)2

︸ ︷︷ ︸

χ1

+2
(
BBT

)µ

ν

(
BBT

)ν

µ
︸ ︷︷ ︸

χ2

−4 FµνF
ν
ρ

(
BBT

)ρ

µ
︸ ︷︷ ︸

χ3

−
(
BBT

)µ

µ

(
BBT

)ν

ν
︸ ︷︷ ︸

χ4

+Fµν F
µν
(
BBT

)λ

λ
︸ ︷︷ ︸

χ5

, (4.3.1)where a labeling of terms is in
luded. For ea
h of the χi-terms all non-vanishing Wi
k 
on-tra
tions have to be 
al
ulated. This is done below for ea
h of the amplitudes. Before theamplitudes are 
al
ulated expli
itly, it is natural to evaluate some parti
ular Wi
k 
ontra
tionswhi
h are relevant for the 
omputations.4.3.1 Relevant Wi
k 
ontra
tionsThe results obtained in (3.1.15) and (3.1.18) will still be used in the six-dimensional 
al
ula-tions. This is due to the dis
ussion in se
tion 4.1.2 of polarization states in six dimensions.The out
ome is that sin
e the two extra polarization states in six dimensions are negle
ted,Page 74



the four-dimensional spinor-heli
ity formalism 
an be used to des
ribe the non-auxiliary di-mensions in the six-dimensional problem.The 
ontra
tion of a (+) photon �eld and a selfdual �eld strength is
A++Fα̇β̇ =

1

22
(−2i) (−i)

√
2
ζγλγ̇

[ζλ]

(

pαα̇ ε
α
γ εβ̇γ̇ + pαβ̇ ε

α
γ εα̇γ̇

)

, (4.3.2)where the fa
tor of 1/p2 from the photon propagator is 
an
elled due to (2.2.80) and has beenomitted. Contra
ting the �rst term in the bra
ket of (4.3.2) with the numerator yields
ζγλγ̇ pγα̇ = ζγλγ̇

(

λγλα̇ +
p̃2

2 p♭ · q ζγζα̇
)

= [λζ]λα̇λβ̇ , (4.3.3)whi
h is also the result when the numerator is 
ontra
ted with the rightmost term in thebra
kets. Similar 
al
ulations for the 
ontra
tion A−−Fα̇β̇ yield in six dimensions
+Fα̇β̇

[
A+
]

6d
= i

√
2λα̇λβ̇ , (4.3.4)

−Fαβ
[
A−
]

6d
= −i

√
2λαλβ . (4.3.5)It is important to note that

A−+Fα̇β̇ 6= 0 , (4.3.6)
A+−Fα̇β̇ 6= 0 , (4.3.7)hold in the six-dimensional 
ase. The 
ontra
tion (4.3.6) is 
omputed by substituting
ζγλγ̇

[ζλ]
→ ζ γ̇λγ

〈ζγ〉 , (4.3.8)in (4.3.2) whi
h yields
1

〈ζλ〉

[(

λαλα̇ +
p̃2

2 p♭ · q ζαζα̇
)

ζβ̇λ
α +

(

λαλβ̇ +
p̃2

2 p♭ · q ζαζβ̇
)

ζα̇λ
α

]

= 2
[ζλ]

〈ζλ〉
p̃2

2 p♭ · q ζα̇ζβ̇ .(4.3.9)It follows from (2.1.68) that
[ζλ]

2 p♭ · q =
1

〈λζ〉 , (4.3.10)whereby
+Fα̇β̇

[
A−
]

6d
= i

√
2
p̃2

〈ζλ〉2 ζα̇ζβ̇ , (4.3.11)is obtained using (4.3.2) and (4.3.9). The opposite relation is derived in a similar fashion andreads
−Fαβ

[
A+
]

6d
= −i

√
2
p̃2

[ζλ]2
ζαζβ . (4.3.12)Expressions (4.3.4), (4.3.5), (4.3.11) and (4.3.12) will be used in the following in 
al
ulationsof the terms (4.3.1). Page 75



The amplitude A(+ + + +)The all-plus amplitude
A(+ + + +) →

〈

A+
1 A

+
2 A

+
3 A

+
4

∣
∣
∣ I ′4

〉

, (4.3.13)is the most simple amplitude and a

ording to the general amplitude (3.3.40) it is expe
tedto vanish. It follows from (4.2.23) that
(
BBT

)

µν

(
BBT

)µν
= ∂mAµ∂mAν∂

nAµ∂nA
ν , (4.3.14)so that

〈

I ′4

∣
∣
∣χ2

〉

=
〈

I ′4

∣
∣
∣χ4

〉

=
〈

I ′4

∣
∣
∣χ5

〉

= 0 , (4.3.15)be
ause of metri
 
ontra
tions whi
h lead to 
ontra
tions of polarization ve
tors of the sametype. The result
〈

I ′4

∣
∣
∣χ1

〉

= 0 , (4.3.16)follows straightforwardly sin
e it is identi
al to (3.2.1). By (2.2.80) and (4.2.23) it follows thatall 
ontra
tions of the term χ3 in the all-plus amplitude is of the form
(

pµi ε
ν
i − pνi ε

µ
j

)

(pj,ν εj,ρ − pj,ρ εj,ν) p
n
k pl,n ε

ρ
k ε

µ
l , (4.3.17)where signs have been ignored. In the 
ase of four identi
al polarizations

ε±i , ε±j , ε±k , ε±l , (4.3.18)equation (4.3.17) vanishes due to (2.1.114) and hen
e
〈

I ′4

∣
∣
∣χ3

〉

= 0 . (4.3.19)It has thus been found that
A(+ + + +) = 0 , (4.3.20)as expe
ted.The amplitude A(− + + +)The amplitude with one polarization di�erent vanishes in four dimensions. The situationis di�erent in six dimensions as will be found below. The amplitude is 
al
ulated from allpossible Wi
k 
ontra
tions

A(− + + +) →
〈

A−
1 A

+
2 A

+
3 A

+
4

∣
∣
∣ I ′4

〉

, (4.3.21)of (4.3.1).Page 76



4.3.2 Computing χi termsThe Wi
k 
ontra
tions of external �elds into (4.3.1) are 
onsidered term by term and will be
olle
ted after all terms have been 
al
ulated.The terms χ2 and χ4First, the χ2 term given by (4.3.14) is 
onsidered. In order to support the following argument,the external photon �elds are written as
ερi ε

σ
j ε

κ
k ε

λ
l Aρ(pi)Aσ(pj)Aκ(pk)Aλ(pl) , (4.3.22)without spe
ifying the polarizations. Independent of the way the external photon �elds are
ontra
ted into (4.3.14), a fa
tor of metri
 tensors with the stru
ture
ηλµηκνη

ν
ρ η

µ
σ = ησληρκ , (4.3.23)will be the out
ome. From (4.3.23) it follows that any full Wi
k 
ontra
tion will 
ontain twodot produ
ts of polarization ve
tors

(εi · εk) (εj · εl) , (4.3.24)for some permutation of the indi
es. Sin
e there are three external �elds with polarization
(+) and one �eld with polarization (−), every possible Wi
k 
ontra
tion will produ
e a dotprodu
t ε+i · ε+j = 0 of two polarization ve
tors with identi
al polarization and therefore all
ontra
tions of the χ2 term must ne
essarily vanish. The term χ4 is expli
itly expressed as

(
BBT

)µ

µ

(
BBT

)ν

ν
= ∂nAµ∂nAµ∂

mAν∂mAν , (4.3.25)and identi
al arguments show that all 
ontra
tions into χ4 vanish as well so that
〈

I ′4

∣
∣
∣χ2

〉

=
〈

I ′4

∣
∣
∣χ4

〉

= 0 , (4.3.26)holds.The term χ1The Wi
k 
ontra
tions of the term χ1 are 
omputed straightforwardly as follows. Contra
tingthe external �eld A− into one of the +F �eld strengths will for
e two 
ontra
tions of a A+into a −F . This parti
ular 
ontra
tion involves
ζαζβζ

αζβ = 0 , (4.3.27)and hen
e vanishes. By this argument it 
an be 
on
luded that the only non-vanishing full
ontra
tion has the external �eld A− 
ontra
ted into one −F �eld strength. Employing theformulae derived above yields an expli
it 
ontra
tion
A−

1 A
+
2 A

+
3 A

+
4

∣
∣
∣
+F+F−F−F =

(

i
√

2
)4

[1α1β]

[
p̃2
2

[ζ 2]2
ζαζβ

] [

3α̇3β̇

] [

4α̇4β̇
]

= 4 〈34〉2 [ζ 1]2

[ζ 2]2
p̃2
2 , (4.3.28)Page 77



where the square bra
kets respe
tively 
ontain the results from ea
h of the 
ontra
tions ofexternal photon �elds into �eld strengths. It is apparent from (4.3.28) that neither of theparti
le permutations (A−
1 ↔ A+

2

) or (A+
3 ↔ A+

4

) will alter the result of the 
ontra
tion andhen
e a symmetry fa
tor of four is obtained. The remaining two possible distin
t 
ontra
tionsare obtained by permuting (A+
2 ↔ A+

3

) and (A+
2 ↔ A+

4

) respe
tively. In ea
h of the 
al
ula-tions, a symmetry fa
tor of four is obtained as is the 
ase above. The full expression for thesum of all full 
ontra
tions of the term χ1 be
omes
〈

A−
1 A

+
2 A

+
3 A

+
4

∣
∣
∣
+F 2 −F 2

〉

= 16

(

〈34〉2 [ζ1]2

[ζ2]2
p̃2
2 + 〈24〉2 [ζ1]2

[ζ3]2
p̃2
3 + 〈23〉2 [ζ1]2

[ζ4]2
p̃2
4

)

= 16 [ζ1]2
(〈34〉2

[ζ2]2
p̃2
2 +

〈24〉2
[ζ3]2

p̃2
3 +

〈23〉2
[ζ4]2

p̃2
4

)

. (4.3.29)As 
ould be expe
ted, the result is symmetri
 under permutations of parti
le momenta 1, 2and 3.The term χ5The term χ5 
ontains the tra
e
(
BBT

)λ

λ
= ∂nAλ∂nAλ . (4.3.30)Contra
ting two photon �elds Ai and Aj into this term will produ
e the dot produ
t εi · εjwhi
h vanish if the two photon �elds are identi
ally polarized. In order to obtain a nonzero
ontra
tion the two photon �elds whi
h are 
ontra
ted into (4.3.30) must therefore have op-posite polarizations. Hen
e the two remaining Wi
k 
ontra
tions for the term χ5 must be ofthe type

A+
i Fµν = −

(

pi,µ ε
+
i,ν − pi,ν ε

+
i,µ

)

. (4.3.31)Furthermore it is obtained that
A+
i A

+
j FµνF

µν = − 2 pµj ε
+
i,µ p

ν
i ε

+
j,ν , (4.3.32)due to the vanishing dot produ
ts ε+i · ε+j . In terms of spinor indi
es it 
an be obtained that

pµj ε
+
i,µ =

1

2
εαβεα̇β̇

(

λj,βλj,β̇ +
p̃2
j

2 p♭ · ζ ζβζβ̇

)

√
2
ζαλi,α̇
[ζλi]

=
1√
2

[ζλj]

[ζλi]
〈λjλi〉 , (4.3.33)su
h that (4.3.32) be
omes

A+
i A

+
j FµνF

µν = 〈λiλj〉2 , (4.3.34)Page 78



in terms of spinor produ
ts. A 
ontra
tion of the photon �elds A+ and A− into BBT λ
λ isgiven by

A−
i A

+
j ∂

nAλ∂nAλ = pni pj,n ε
−
i,µ ε

+,µ
j , (4.3.35)whi
h involves a 
ontra
tion of polarization ve
tors that 
an be expressed in terms of spinorprodu
ts as

ε−i,µ ε
+,µ
j =

1

2
εαβεβ̇α̇

√
2
ζβ̇λi,β

〈ζλi〉
√

2
ζαλj,α̇
[ζλj]

=
[ζλi] 〈ζλj〉
〈ζλi〉 [ζλj]

. (4.3.36)Both equations (4.3.32) and (4.3.35) are symmetri
 in the Wi
k 
ontra
tions and thereforea symmetry fa
tor of four is obtained. It follows from (4.3.34) 
ombined with (4.3.35) and(4.3.36) that
A−
i A

+
j A

+
k A

+
l

∣
∣
∣FµνF

µν∂nAλ∂nAλ = 〈λkλl〉2
〈ζλj〉 [ζλi]

〈ζλi〉 [ζλj]
pni pj,n , (4.3.37)whi
h is one of three possible di�erent full 
ontra
tions. The full sum of all full 
ontra
tions isobtained by putting i = 1 and permuting the values (2, 3, 4) between the indi
es (j, k, l) withthe result

〈

I4

∣
∣
∣χ5

〉

= 4

[

〈34〉2 〈ζ2〉 [ζ1]

〈ζ1〉 [ζ2]
(p̃1 ·p̃2) + 〈24〉2 〈ζ3〉 [ζ1]

〈ζ1〉 [ζ3]
(p̃1 ·p̃3) + 〈23〉2 〈ζ4〉 [ζ1]

〈ζ1〉 [ζ4]
(p̃1 ·p̃4)

]

= 4
[ζ1]

〈ζ1〉

[

〈34〉2 〈ζ2〉
[ζ2]

(p̃1 ·p̃2) + 〈24〉2 〈ζ3〉
[ζ3]

(p̃1 ·p̃3) + 〈23〉2 〈ζ4〉
[ζ4]

(p̃1 ·p̃4)

]

, (4.3.38)where the dot produ
ts of momenta have been written as
p̃i ·p̃j = pni pj,n = p4

i pj,4 + p5
i pj,5 . (4.3.39)The term χ3The 
al
ulations 
onne
ted to the χ3-term are a bit more 
ompli
ated. As this term doesnot 
ontain neither the tra
e of BBT or (BBT )2 it is not as straightforward as for the other

χi-terms above to determine the vanishing 
ontra
tions. Therefore a more systemati
 studyof all the possible 
ontra
tions is needed.As a method to perform Wi
k 
ontra
tions in a systemati
 way, the following 
al
ulationswill distinguish between two types of 
ontra
tions. One type of 
ontra
tions has two A+photon �elds 
ontra
ted into FµνFνρ whereas the other type of 
ontra
tions has one A+ �eldand one A− �eld 
ontra
ted into FµνFνρ. The �rst type of full 
ontra
tions will be referred toas T1 while the se
ond type will be referred to as T2. The T1-type of 
ontra
tions is evaluatedas
FµνFνρ

(
BBT

)ρ

µ
→
[

pµk ε
+,ν
k − pνk ε

+,µ
] [

pl,ν ε
+
l,ρ − pl,ρ ε

+
l,ν

]

pni ε
±,ρ
i pj,n ε

∓
j,µ , (4.3.40)Page 79



where the arrow represent one possible 
ontra
tion and where the notation of the two po-larization ve
tors on the right indi
ates the two possible 
on�gurations of polarization. Therelation (4.2.23) has been used and fa
tors of i as well as signs have been omitted. Equation(4.3.40) is equivalent to (4.3.17). Due to the mutual 
ontra
tions of polarization ve
tors, oneterm vanishes when the two square bra
kets are expanded and one more term is 
an
elledfrom the 
ontra
tion of the polarization ve
tors to the right. This takes pla
e independentlyof whi
h of the two possible polarizations is 
hosen. Hen
e (4.3.40) redu
es to
→
(

pµk ε
+,ν
k pl,ν ε

+
l,ρ + pνk ε

+,µ
k pl,ρ ε

+
l,ν

)

pni ε
±,ρ
i pj,n ε

∓
j,µ . (4.3.41)One of the terms in the parenthesis ne
essarily vanishes when 
ontra
ted with the two polar-ization ve
tors to the right; whi
h one depends again on the 
on�guration of polarizations. Itfollows from (4.3.41) that

A−
i A

+
j A

+
k A

+
l

∣
∣
∣FµνFνρ ∂

nAρ∂nAµ = A−
i A

+
j A

+
k A

+
l

∣
∣
∣FµνFνρ ∂

nAρ∂nAµ , (4.3.42)is valid. If one parti
ular full Wi
k 
ontra
tion is 
onsidered, this 
ontra
tion is identi
al tothe full 
ontra
tion where the four individual 
ontra
tions are inter
hanged two by two in su
ha way that the new full 
ontra
tion is still of the type T1.The sum of all possible full Wi
k 
ontra
tions of the type T1 
an now be obtained from(4.3.40) by evaluating this expression for all possible permutations of this type of 
ontra
tions.This sum is
Σ1 = 2

{

(p̃1 ·p̃2)
[

(ε1 ·ε4)(p4 ·ε3)(p3 ·ε2) + (ε1 ·ε3)(p3 ·ε4)(p4 ·ε2)
]

+ (p̃1 ·p̃3)
[

(ε1 ·ε2)(p2 ·ε4)(p4 ·ε3) + (ε1 ·ε4)(p4 ·ε2)(p2 ·ε3)
]

+ (p̃1 ·p̃4)
[

(ε1 ·ε2)(p2 ·ε3)(p3 ·ε4) + (ε1 ·ε3)(p3 ·ε2)(p2 ·ε4)
]}

, (4.3.43)where the fa
tor of two stems from (4.3.42) and the terms have been ordered with mutualdot produ
ts of momentum ve
tors as the 
ommon fa
tors. Again the short hand notation(4.3.39) has been used. Employing (4.3.33) and (4.3.36) leads to an expression for (4.3.43) interms of spinor produ
ts
Σ1 =

[ζ1]

〈ζ1〉

{

(p̃1 ·p̃2)
〈34〉
[ζ2]

[〈23〉〈ζ4〉 + 〈42〉〈ζ3〉] + (p̃1 ·p̃3)
〈24〉
[ζ3]

[〈43〉〈ζ2〉 + 〈32〉〈ζ4〉]

+ (p̃1 ·p̃4)
〈23〉
[ζ4]

[〈42〉〈ζ3〉 + 〈34〉〈ζ2〉]
}

, (4.3.44)with a little fa
torization o

urring.The evaluation of 
ontra
tions of the type T2 goes on as follows. Analogously to (4.3.40),the arrow indi
ates that one possible 
ontra
tion is evaluated and it follows that
FµνFνρ (BO)ρµ →

(

pµi ε
±,ν
i pj,ν ε

∓
j,ρ + pνi ε

±,µ
i pj,ρ ε

∓
j,ν − pµi ε

±,ν
i pj,ρ ε

∓
j,ν

)

pnk ε
+,ρ
k pl,n ε

+
l,µ .(4.3.45)Page 80



In (4.3.45) the term
−pνi

(
ε±
)µ

i
pjν
(
ε∓
)

j,ρ
, (4.3.46)has been omitted sin
e it ne
essarily vanishes in the 
ontra
tion with the polarization ve
torsto the right independent of the 
on�guration of polarizations. Either the �rst or the se
ondterm in the bra
ket will vanish depending on the 
on�guration of polarizations. Be
ause twoterms in the bra
ket survive the mutual 
ontra
tions of polarization ve
tors, the total sum Σ2of full 
ontra
tions of the type T2 
ontains twi
e as many terms as the sum Σ1. The twelvedi�erent full 
ontra
tions are 
al
ulated by 
onsidering respe
tively all terms with the same
ommon fa
tor of a 
ertain momentum ve
tor dot produ
t. If the terms are as well 
olle
tedwith these dot produ
ts of momentum ve
tors as 
ommon fa
tors, the sum is

Σ2 = 2
{

(p̃2 ·p̃3)
[

− (ε1 ·ε4)(p1 ·ε3)(p4 ·ε2) − (ε1 ·ε4)(p1 ·ε2)(p4 ·ε3)

+ (ε1 ·ε3)(p1 ·ε4)(p4 ·ε2) + (ε1 ·ε2)(p1 ·ε4)(p4 ·ε3)
]

(p̃2 ·p̃4)
[

− (ε1 ·ε3)(p1 ·ε4)(p3 ·ε2) − (ε1 ·ε3)(p1 ·ε2)(p3 ·ε4)

+ (ε1 ·ε4)(p1 ·ε3)(p3 ·ε2) + (ε1 ·ε2)(p1 ·ε3)(p3 ·ε4)
]

(p̃3 ·p̃4)
[

− (ε1 ·ε2)(p1 ·ε4)(p2 ·ε3) − (ε1 ·ε2)(p1 ·ε3)(p2 ·ε4)

+ (ε1 ·ε3)(p1 ·ε2)(p2 ·ε4) + (ε1 ·ε4)(p1 ·ε2)(p2 ·ε3)
]}

. (4.3.47)Rewriting this result in terms of spinor produ
ts yields
Σ2 =

[ζ1]2

〈ζ1〉

{

(p̃2 ·p̃3)
1

[ζ2] [ζ3]

[

−〈ζ4〉(〈24〉〈31〉 + 〈21〉〈34〉) + 〈ζ3〉〈24〉〈41〉 + 〈ζ2〉〈34〉〈41〉
]

+ (p̃2 ·p̃4)
1

[ζ2] [ζ4]

[

−〈ζ3〉(〈23〉〈41〉 + 〈21〉〈43〉) + 〈ζ4〉〈23〉〈31〉 + 〈ζ2〉〈43〉〈31〉
]

+ (p̃3 ·p̃4)
1

[ζ3] [ζ4]

[

−〈ζ2〉(〈32〉〈41〉 + 〈42〉〈31〉) + 〈ζ3〉〈12〉〈24〉 + 〈ζ4〉〈32〉〈21〉
]}

.(4.3.48)The results obtained in (4.3.29) (4.3.38), (4.3.44) and (4.3.48) are 
olle
ted and determine the�nal result for the amplitude as
A
(
1−i+j+k+

)
=
π4α′4

8

[ζ1]

〈ζ1〉
∑

σ(i,j,k)

1

[ζi]

{

+4 〈jk〉2 [ζ1] 〈ζ1〉
[ζi]

p̃2
i

+
[ζi]

[ζj]

[

−〈ζk〉 ( 〈ik〉〈j1〉 + 〈jk〉〈i1〉 ) + 〈ζj〉〈ik〉〈k1〉 + 〈ζi〉〈jk〉〈k1〉
]

(p̃i ·p̃j)
}

,(4.3.49)where the sum 
ontains three 
y
li
 permutations of indi
es given by
σ (i, j, k) = σ (2, 3, 4) , σ (i, j, k) = σ (4, 2, 3) , σ (i, j, k) = σ (3, 4, 2) , (4.3.50)so that the amplitude 
ontains three 
ontributions of the form on the right hand side of(4.3.49). One term has 
an
elled out due to the S
houten identity (2.1.76). The details in this
al
ulation 
an be found in appendix A.1. Page 81



The term whi
h has been 
an
elled is the fa
torized sum of the respe
tive 
ontributionsfrom the 
ontra
tions of the term χ5 and the term Σ1. These two sums have the 
ommonfa
tor �4�. For the term Σ1 this fa
tor originates from the original expression (4.3.1) whereasthe fa
tor 
omes about as a symmetry fa
tor from the 
ontra
tions of the term χ5. Theremaining terms in (4.3.49) are respe
tively the 
ontributions from the 
ontra
tions of theterm χ1 and Σ2. Not mu
h fa
torization o

ur for these two terms.It is interesting to 
onsider the amplitude (4.3.49) in the four-dimensional limit wheremomentum 
omponents in the auxiliary dimensions are put to zero
p4 = p5 = 0 . (4.3.51)This 
orresponds to

p̃2
i = p̃i · p̃j = 0 , (4.3.52)for momenta in the auxiliary dimensions and it follows that

A(− + + +)
∣
∣
∣
d=4

= 0 . (4.3.53)This is in agreement with (3.2.1) as it should be in the four-dimensional limit. The resultfor the amplitude (4.3.49) is also written in apendix B.1 where the new amplitude results are
olle
ted.The amplitude A(−− + +)In this se
tion the symmetri
 four-point amplitude
A (−− ++) →

〈

A−
1 A

−
2 A

+
3 A

+
4

∣
∣
∣ I4

〉

, (4.3.54)having two (−) polarization photons and two (+) polarization photons will be 
omputed in sixdimensions. The same 
onstraints on the gauge �eld 
omponents in the auxiliary dimensions asdis
ussed in se
tion 4.1.2 will be used. As in the previous se
tion, the amplitude is 
omputedfrom (4.3.1). In order to distinguish present 
al
ulations from 
al
ulations in the previousse
tion the �ve terms in the expression will be labeled as χ̃i.4.3.3 Computing χ̃i termsAs in se
tion 4.3.2 the Wi
k 
ontra
tions of external �elds into (4.3.1) will be 
onsidered termby term.The term χ̃1The �rst observation for the term χ̃1 is that a 
ontra
tion of both A+ �elds respe
tively into ananti-selfdual �eld strength produ
es ζαζβζαζβ and thus vanishes. The 
ontra
tion of both A−�elds respe
tively into a selfdual �eld strength vanishes as well sin
e this 
ontra
tion produ
es
ζα̇ζβ̇ζ

α̇ζ β̇. The simplest nonzero 
ontra
tion is therefore when ea
h A+ is 
ontra
ted into a
+F and ea
h A− is 
ontra
ted into a −F whi
h gives

(

−i
√

2
)4

(1α1β)
(

2α2β
)(

3α̇3β̇

)(

4α̇4β̇
)

= 4 [12]2 〈34〉2 . (4.3.55)Page 82



This 
ontra
tion is symmetri
 in the inter
hange of the two A− �elds as well as the two A+�elds and hen
e a symmetry fa
tor of four is obtained. The remaining nonzero 
ontra
tionsof the χ1-term are of the form
A−

1 A
−
2 A

+
3 A

+
4

∣
∣
∣
+Fα̇β̇

+F α̇β̇−Fαβ
−Fαβ

=

(

i
√

2
p̃2
1

〈ζ1〉2
ζα̇ζβ̇

)(

−i
√

2 2α2β

)(

i
√

2 3α̇3β̇
)(

−i
√

2
p̃2
4

[ζ4]2
ζαζβ

)

= + 4 p̃2
1 p̃

2
4

[ζ2]2 〈ζ3〉2
〈ζ1〉2 [ζ4]2

, (4.3.56)whi
h is symmetri
 under inter
hange of the 
ontra
tions of (A−
1 ↔ A+

3

) as well as under
(
A−

2 ↔ A+
4

). Hen
e there exist four 
ontributions of the form (4.3.56). The remaining 
on-tra
tions are obtained from permutations of the �elds in (4.3.56) su
h that the 
ontributionfrom the term χ̃1 is
〈

χ̃1

〉

= 16 [12]2 〈34〉2

+ 16

[

p̃2
1 p̃

2
4

[ζ2]2 〈ζ3〉2
〈ζ1〉2 [ζ4]2

+ p̃2
1 p̃

2
3

[ζ2]2 〈ζ4〉2
〈ζ1〉2 [ζ3]2

+ p̃2
2 p̃

2
4

[ζ1]2 〈ζ3〉2
〈ζ2〉2 [ζ4]2

+ p̃2
2 p̃

2
3

[ζ1]2 〈ζ4〉2
〈ζ2〉2 [ζ3]2

]

.(4.3.57)The terms χ̃2 and χ̃4For the term χ̃2, 
ombinatori
s for the 
ontra
tion of photon �elds into
(
BBT

)µ

ν

(
BBT

)ν

µ
= + ∂mAµ∂mAν∂

nAν∂nAµ , (4.3.58)have to be 
onsidered. Be
ause of the given polarization of the external �elds the only nonzero
ontra
tions of polarization ve
tors are (ε1 ·ε3), (ε1 ·ε4),(ε2 ·ε3) and (ε2 ·ε4) su
h that only fourdi�erent nonzero full 
ontra
tions exist. These are given by
〈(

BBT
)µ

ν

(
BBT

)ν

µ

〉

= 4 (ε1 ·ε3) (ε2 ·ε4) [(p̃1 ·p̃2) (p̃3 ·p̃4) + (p̃1 ·p̃4) (p̃2 ·p̃3)]

+ 4 (ε1 ·ε4) (ε2 ·ε3) [(p̃1 ·p̃2) (p̃3 ·p̃4) + (p̃1 ·p̃3) (p̃2 ·p̃4)] , (4.3.59)with the symmetry fa
tor of four appearing. For the term χ̃4 given by
(
BBT

)µ

µ

(
BBT

)ν

ν
= + ∂mAµ∂mAµ∂

nAν∂nAν , (4.3.60)there exist only two distin
t nonzero full 
ontra
tions. With the appropriate symmetry fa
torthese 
ontra
tions read
〈(

BBT
)µ

µ

(
BBT

)ν

ν

〉

= 8 [(p̃1 ·p̃3)(p̃2 ·p̃4)(ε1 ·ε3)(ε2 ·ε4) + (p̃1 ·p̃4)(p̃2 ·p̃3)(ε1 ·ε4)(ε2 ·ε3)] .(4.3.61)Using (4.3.36) the 
ontra
tions of polarization ve
tors 
an written in terms of spinor produ
tsas
(
ε−1 ·ε+3

)(
ε−2 ·ε+4

)
=

[ζ1] 〈ζ3〉
〈ζ1〉 [ζ3]

[ζ2] 〈ζ4〉
〈ζ2〉 [ζ4]

,
(
ε−1 ·ε+4

)(
ε−2 ·ε+3

)
=

[ζ1] 〈ζ4〉
〈ζ1〉 [ζ4]

[ζ2] 〈ζ3〉
〈ζ2〉 [ζ3]

, (4.3.62)Page 83



and therefore
(
ε−1 ·ε+3

)(
ε−2 ·ε−4

)
−
(
ε−1 ·ε+4

)(
ε−2 ·ε+3

)
= 0 . (4.3.63)The �nal result for the 
ontra
tions is obtained as

〈

2
(
BBT

)µ

ν

(
BBT

)ν

µ
−
(
BBT

)µ

µ

(
BBT

)ν

ν

〉

= 16 (p̃1 ·p̃2)(p̃3 ·p̃4)
[ζ1] [ζ2] 〈ζ3〉〈ζ4〉
〈ζ1〉〈ζ2〉 [ζ3] [ζ4]

, (4.3.64)where the rightmost term in ea
h square bra
ket of (4.3.59) is 
an
elled against (4.3.61) dueto the fa
tor �2� in (4.3.1).The term χ̃5From
(
BBT

)λ

λ
= ∂nAλ∂nAλ , (4.3.65)it follows that the 
ontra
tion of two identi
ally polarized photon �elds into (BBT )λ

λ
ne
-essarily vanish. Therefore all nonzero full 
ontra
tions have one A+ �eld and one A− �eld
ontra
ted respe
tively into a �eld strength Fµν . Writing the �eld strengths in terms of selfdualand anti-selfdual 
omponents as

FµνF
µν
(
BBT

)λ

λ
=
(
+F 2 + −F 2

) (
BBT

)λ

λ
, (4.3.66)leads to the 
on
lusion that all nonzero 
ontra
tions are of the form

+Fα̇β̇
[
A+
k

]
+F α̇β̇

[
A−
i

]
(p̃j ·p̃l) (εj ·εl) + −Fαβ

[
A+
k

]
−Fαβ

[
A−
i

]
(p̃j ·p̃l) (εj ·εl) . (4.3.67)One parti
ular full 
ontra
tion for the +F 2 (BO)λλ part is evaluated as

A−
1 A

−
2 A

+
3 A

+
4

∣
∣
∣
+Fα̇β̇

+F α̇β̇pnAλpnAλ = 2 p̃1
2 〈ζ3〉2
〈ζ1〉2

[ζ2] 〈ζ4〉
〈ζ2〉 [ζ4]

(p̃2 ·p̃4) , (4.3.68)with the same result if the respe
tive 
ontra
tions of �elds A−
1 and A+

3 are inter
hanged. Thisresult is again obtained if the 
ontra
tions of the �elds A−
2 and A−

4 are inter
hanged and hen
ea symmetry fa
tor of 4 exists.Performing all possible permutations of 
ontra
tions of the form (4.3.68) for both the +F 2part and the −F 2 in (4.3.66) yields the result
〈

A−
1 A

−
2 A

+
3 A

+
4

∣
∣
∣FµνF

µν
(
BBT

)λ

λ

〉

= 8

{

[ζ1] 〈ζ3〉
〈ζ1〉 [ζ3]

(p̃1 ·p̃3)

[

p̃2
2

〈ζ4〉2
〈ζ2〉2

+ p̃2
4

[ζ2]2

[ζ4]2

]

+
[ζ1] 〈ζ4〉
〈ζ1〉 [ζ4]

(p̃1 ·p̃4)

[

p̃2
2

〈ζ3〉2
〈ζ2〉2

+ p̃2
3

[ζ2]2

[ζ3]2

]

+
[ζ2] 〈ζ3〉
〈ζ2〉 [ζ3]

(p̃2 ·p̃3)

[

p̃2
1

〈ζ4〉2
〈ζ1〉2

+ p̃2
4

[ζ1]2

[ζ4]2

]

+
[ζ2] 〈ζ4〉
〈ζ2〉 [ζ4]

(p̃2 ·p̃4)

[

p̃2
1

〈ζ3〉2
〈ζ1〉2

+ p̃2
3

[ζ1]2

[ζ3]2

]}

,(4.3.69)where the stru
ture of (4.3.67) is apparent.Page 84



The term χ̃3As was the 
ase for the amplitude A (− + + +) the term χ̃3 is the most 
ompli
ated. Be
auseof its stru
ture of one long tra
e, many full 
ontra
tions are nonzero and must therefore be
omputed. The expansion of the χ̃3 term has the stru
ture
FµνFνρ

(
BBT

)ρ

µ
→ (pµενpνερ + pνεµpρεν − pµενpρεν − pνεµpνερ) p

mερpmεµ , (4.3.70)for some full Wi
k 
ontra
tion. The way to 
ompute all nonzero 
ontributions is simply to
onsider every single term of (4.3.70). It is apparent that the two terms to the left gives iden-ti
al 
ontributions while the rightmost term has the simplest stru
ture. The entire expressionfor the sum of all nonzero 
ontra
tions is presented in (A.1.27) whereas the expression belowis written on a more 
ompa
t form as a sum of four permutations of indi
es. The result is
〈

A−
1 A

−
2 A

+
3 A

+
4

∣
∣
∣FµνFνρ

(
BBT

)ρ

µ

〉

=
∑

σ(i,j,k,l)

{

2 (εi ·εk)
[ (

(pi ·εj) (pk ·εl) + (pk ·εj) (pi ·εl)
)

(p̃j ·p̃l) − (pi ·εj) (pj ·εl) (p̃k ·p̃l)

− (pl ·εj) (pi ·εl) (p̃j ·p̃k) − (pk ·εj) (pj ··εl) (p̃i ·p̃l) − (pl ·εj) (pk ·εl) (p̃i ·p̃j)
]

+ (εi ·εk) (εj ·εl)
[

(pi ·pj) (p̃k ·p̃l) + (pi ·pl) (p̃j ·p̃k) + (pj ·pk) (p̃i ·p̃l) + (pk ·pl) (p̃i ·p̃j)
]}

,(4.3.71)with the four di�erent permutations given as
σ (i, j, k, l) = σ (1, 2, 3, 4) , σ (i, j, k, l) = σ (1, 2, 4, 3) ,

σ (i, j, k, l) = σ (2, 1, 3, 4) , σ (i, j, k, l) = σ (2, 1, 4, 3) . (4.3.72)The dot produ
ts 
an be expressed as spinor produ
ts su
h that the right hand side of (4.3.71)reads
∑

σ(i,i,k,l)

[ζi] 〈ζk〉
〈ζi〉 [ζk] 〈ζj〉 [ζl]

[ (

[ij] 〈kl〉〈ζi〉 [ζk] + [kj] 〈il〉〈ζk〉 [ζi]
)

(p̃j ·p̃l)

− [ij] 〈jl〉〈ζi〉 [ζj] (p̃k ·p̃l) − [lj] 〈il〉〈ζl〉 [ζi] (p̃j ·p̃k)
− [kj] 〈jl〉〈ζk〉 [ζj] (p̃i ·p̃l) − [lj] 〈kl〉〈ζl〉 [ζk] (p̃i ·p̃j)

+ [ζj] 〈ζl〉
(

(pi ·pj) (p̃k ·p̃l) + (pk ·pl) (p̃i ·p̃j) + (pi ·pl) (p̃j ·p̃k) + (pj ·pk) (p̃i ·p̃l)
)]

,(4.3.73)with the same permutations (4.3.72) appearing in the sum.Colle
ting resultsColle
ting the previous results from expressions (4.3.57), (4.3.64), (4.3.69) and (4.3.73) andintrodu
ing the appropriate numeri
al fa
tors provides the �nal result for the symmetri
Page 85



amplitude
A
(
i−j−k+l+

)
= −π

4α′4

8
×

∑

σ(i,j,k,l)

{

[ij]2 〈kl〉2 + 4 p̃2
i p̃

2
j

[ζj]2 〈ζk〉2
〈ζi〉2 [ζl]2

+
[ζi] 〈ζk〉

〈ζi〉 [ζk] 〈ζj〉 [ζl]

[

2〈ζj〉 [ζl] (p̃i ·p̃j)
(

p̃2
j

〈ζl〉2
〈ζj〉2

+ p̃2
l

[ζj]2

[ζl]2

)

+
(

[ij] 〈kl〉〈ζi〉 [ζk] + [kj] 〈il〉〈ζk〉 [ζi]
)

(p̃j ·p̃l)
− [ij] 〈jl〉〈ζi〉 [ζj] (p̃k ·p̃l) − [lj] 〈il〉〈ζl〉 [ζi] (p̃j ·p̃k)
− [kj] 〈jl〉〈ζk〉 [ζj] (p̃i ·p̃l) − [lj] 〈kl〉〈ζl〉 [ζk] (p̃i ·p̃j)

+ [ζj] 〈ζl〉
(

2 (pi ·pj) (p̃k ·p̃l) + (pk ·pl) (p̃i ·p̃j) + (pi ·pl) (p̃j ·p̃k) + (pj ·pk) (p̃i ·p̃l)
)]}

,(4.3.74)with the same permutations as in (4.3.72). The origin for ea
h of the terms in the expressionabove is rather 
lear ex
ept for the term with the fa
tor of �2� in the last bra
ket. Thisparti
ular term originates from (4.3.64).It should be mentioned that sin
e the respe
tive momenta pµi , are massive when 
onsideredfrom a four-dimensional perspe
tive, the dot produ
ts (pi ·pj) 
annot be written as spinorprodu
ts. In parti
ular
pMi pj,M = pµi pj,µ − pmi kj,m = pi · pj − p̃i · p̃j , (4.3.75)so that

pi · pj 6= p̃i · p̃j . (4.3.76)This fa
t 
an be elu
idated from a 
onsideration of the two massive four-dimensional ve
tors
aµ and bµ. These ve
tors 
an be written a

ording to the massive de
omposition (2.1.107) inLorentz indi
es

aµ = a♭µ +
a2

2 a♭ · q qµ , bµ = b♭µ +
b2

2 b♭ · q qµ , (4.3.77)where the ve
tor qµ is massless. The dot produ
t between a and b is then
a · b = a♭ · b♭ +

a2
(
b♭ · q

)2
+ b2

(
a♭ · q

)2

2
(
a♭ · q

) (
b♭ · q

) . (4.3.78)As was the 
ase for the amplitudes A(+ + + +) and A(− + + +), it is natural to 
onsiderthe four-dimensional limit of (4.3.74). Again this 
orresponds to (4.3.52) and it follows that
A(−− + +)

∣
∣
∣
d=4

= −π
4α′4

8

∑

σ(i,j,k,l)

[ij]2 〈kl〉2 = −π
4α′4

2
[12]2 〈34〉4 , (4.3.79)Page 86



whi
h is in agreement with (3.2.5) apart from the inter
hange (1, 2) ↔ (3, 4) of parti
les.This is simply be
ause the two amplitudes have opposite ordering of parti
les. It is reassuringthat the result in the four-dimensional limit redu
es properly to the result obtained from the
al
ulations in four dimensions. The result for the amplitude (4.3.74) is as well written inappendix B.1 where the results for the amplitudes whi
h have previously not been 
al
ulatedare 
olle
ted.4.4 Amplitudes with momentum 
onstraintsIn se
tion 4.3 four-point s
attering amplitudes in six dimensions have been studied with a
onstraint on the gauge �eld in the auxiliary dimensions. The topi
 of this se
tion is s
atteringamplitudes where instead the momentum 
omponents have been 
onstrained in the auxiliarydimensions. This is the approa
h dis
ussed in se
tion 4.1.3. It follows from (4.1.13) thatthe 
onstraint (4.1.5) leads to a four-dimensional gauge �eld and two 
omplex s
alars in fourdimensions. The amplitudes for the s
attering of theses s
alars is exa
tly what will be studiedin this se
tion. The study will be limited to the amplitudes whi
h only involve s
alars and nogauge �elds.4.4.1 Constru
ting the Lagrangian for s
alar intera
tionsThe starting point is to 
onsider the DBI-Lagrangian in six dimensions
L =

1

π2α′2

√

− det (ηMN + πα′FMN ) . (4.4.1)Mathemati
a is used to expli
itly 
onstru
t the �eld strength tensor and the metri
 as matri
esand the determinant 
an be evaluated in full generality. This yields a lot of intera
tion terms
ontrolling di�erent amplitudes
A(Ai, Aj · · ·) , A

(
Ai, · · · , φ, φ̄, · · ·

)
, A

(
φ, φ̄, · · ·

)
. (4.4.2)The 
hoi
e is made to 
onsider only pure s
alar intera
tions. This means that all 
ross termsin the Lagrangian will be negle
ted and only terms with the stru
ture

(
∂µφ∂µφ̄

)
, (4.4.3)will be 
onsidered. The sum of the (6 × 6) matri
es ηMN and πα′FMN is

ηMN + πα′FMN =

πα′












(πα′)−1 F01 F02 F03 ∂0A4 ∂0A5

−F01 − (πα′)−1 F12 F13 ∂1A4 ∂1A5

−F02 −F12 − (πα′)−1 F23 ∂2A4 ∂2A5

−F03 −F13 −F23 − (πα′)−1 ∂3A4 ∂3A5

−∂0A4 −∂1A4 −∂2A4 −∂3A4 − (πα′)−1 0

−∂0A5 −∂1A5 −∂2A5 −∂3A5 0 − (πα′)−1












, (4.4.4)with the use of (4.1.5). Negle
ting the 
ross terms in the evaluation of the determinant isequivalent to putting every entry of the (4 × 4) matrix
Fµν = 0 , (4.4.5)Page 87



and hen
e (4.4.4) be
omes
ηMN + πα′FMN =

πα′












(πα′)−1 0 0 0 ∂0A4 ∂0A5

0 − (πα′)−1 0 0 ∂1A4 ∂1A5

0 0 − (πα′)−1 0 ∂2A4 ∂2A5

0 0 0 − (πα′)−1 ∂3A4 ∂3A5

−∂0A4 −∂1A4 −∂2A4 −∂3A4 − (πα′)−1 0

−∂0A5 −∂1A5 −∂2A5 −∂3A5 0 − (πα′)−1












. (4.4.6)The determinant of this expression is evaluated by Mathemati
a with the result
− det (ηMN + πα′FMN

)
=

1 − 2π2α′2
(
∂φ0∂0φ̄− ∂1φ∂1φ̄− ∂2φ∂2φ̄− ∂3φ∂3φ̄

)

+ π4α′4
(
− 2∂0φ∂1φ∂0φ̄∂1φ̄− 2∂0φ∂2φ∂0φ̄∂2φ̄− 2∂0φ∂3φ∂0φ̄∂3φ̄

+ 2∂1φ∂2φ∂1φ̄∂2φ̄+ 2∂1φ∂3φ∂1φ̄∂3φ̄+ 2∂2φ∂3φ∂2φ̄∂3φ̄
)

− π4α′4
(
− ∂0φ∂0φ∂1φ̄∂1φ̄− ∂0φ∂0φ∂2φ̄∂2φ̄− ∂0φ∂0φ∂3φ̄∂3φ̄

− ∂1φ∂1φ∂0φ̄∂0φ̄+ ∂1φ∂1φ∂2φ̄∂2φ̄+ ∂1φ∂1φ∂3φ̄∂3φ̄

− ∂2φ∂2φ∂0φ̄∂0φ̄+ ∂2φ∂2φ∂1φ̄∂1φ̄+ ∂2φ∂2φ∂3φ̄∂3φ̄

− ∂3φ∂3φ∂0φ̄∂0φ̄+ ∂3φ∂3φ∂1φ̄∂1φ̄+ ∂3φ∂3φ∂2φ̄∂2φ̄
)
. (4.4.7)By experimentation it is then obtained that

− det
(
ηMN + πα′FµN

)
= 1 − 2π2α′2∂µφ∂

µφ̄

+ π4α′4 ∂µφ∂
µφ̄∂νφ∂

ν φ̄− π4α′4∂µφ∂
µφ∂ν φ̄∂

ν φ̄ , (4.4.8)holds sin
e 
an
ellations between the two terms in the se
ond line of (4.4.8) take pla
e. Uponintrodu
ing the abbreviations
a ≡ ∂µφ∂

µφ̄ , b ≡ ∂µφ∂
µφ̄∂νφ∂

ν φ̄ , c ≡ ∂µφ∂
µφ∂ν φ̄∂

ν φ̄ , (4.4.9)the Lagrangian (− det (ηMN + πα′FµN ))1/2 
an be expanded as a Taylor series in α′ as
Ls
alar =

1

π2α′2

√

− det (ηMN + πα′FµN )

=
1

π2α′2

[

1 − π2α′2a+
1

2
π4α′4

(
−a2 + b− c

)
+

1

2
π6α′6

(
−a3 + ab− ac

)
+ O

(
α′8
)
]

,(4.4.10)with the use of Mathemati
a. From (4.4.9) it is apparent that a2 = b and a3 = ab su
h that(4.4.10) simpli�es and is given to order α′6 as
Ls
alar =

1

π2α′2
− ∂µφ∂

µφ̄− 1

2
π2α′2∂µφ∂

µφ∂ν φ̄∂
ν φ̄

− 1

2
π4α′4∂µφ∂

µφ̄∂νφ∂
νφ∂λφ̄∂

λφ̄+ O
(
α′8
)
, (4.4.11)where the expressions for a, b and c have been substituted ba
k. From (4.4.11) the kineti
term ∂µφ∂

µφ̄ is re
ognized. As well is the intera
tion term for the four point amplitude andthe term 
ontributing dire
tly to the the six point amplitude. These terms will be dis
ussedseparately below.Page 88



4.4.2 S
alar four-point amplitudesThe expanded Lagrangian (4.4.11) provides the s
alar amplitudes for four parti
le and sixparti
le s
attering. The four-point amplitude is provided dire
tly by the Lagrangian and willbe 
al
ulated below while only the dire
t 
ontribution to the six-point amplitude is present. Inorder to evaluate the full six-point amplitude one has also to take into a

ount the 
ontributionfrom the se
ond order expansion of the a
tion.In the Wi
k 
ontra
tions of s
alar �elds, a parti
ular s
alar �eld must be 
ontra
tedinto a 
onjugate �eld. This requirement limits the number of possible 
ontra
tions in the
omputation of amplitudes. The s
alar four-point amplitude
A
(
φ1φ2φ̄3φ̄4

)
=

1

2
π2α′2

〈

φ1φ2φ̄3φ̄4

∣
∣
∣∂µφ∂

µφ∂ν φ̄∂
ν φ̄
〉

, (4.4.12)is evaluated dire
tly by the full 
ontra
tion
φ1φ2φ̄3φ̄4

∣
∣
∣∂µφ∂

µφ∂ν φ̄∂
ν φ̄ = i (p1 ·p2) (p3 ·p4) = i (p1 ·p2)

2 , (4.4.13)sin
e this is the only 
ontribution be
ause of the requirement from above. The full 
ontra
tion(4.4.13) has a symmetry fa
tor of four and the four point amplitude is therefore given by
A
(
φ1φ2φ̄3φ̄4

)
= − i

2
π2α′2

〈

φ1φ2φ̄3φ̄4

∣
∣
∣∂µφ∂

µφ∂ν φ̄∂
ν φ̄
〉

= − i

2
π2α′2s2 , (4.4.14)in terms of Mandelstam variables. This result is also found in appendix B.2.4.4.3 S
alar six-point amplitudesAt tree level, the six-point s
alar amplitude

A
(
φ1φ2φ3φ̄4φ̄5φ̄6

)
= A0

(
φ1φ2φ3φ̄4φ̄5φ̄6

)
+ Apole(φ1φ2φ3φ̄4φ̄5φ̄6

)
, (4.4.15)has two 
ontributions as indi
ated above. The �rst 
ontribution A0 is the dire
t one fromthe term in (4.4.11) 
onsisting of six s
alar �elds. This 
ontribution is 
al
ulated dire
tlyfrom the a
tion and the diagram for this intera
tion is shown in �gure 4.1. The se
ond
ontribution Apole is from the square of the term in (4.4.11) 
onsisting of four s
alar �elds.This squared 
ontribution originates from the se
ond order term in the Taylor expansion ofthe exponentiated a
tion. This 
ontribution is a 
ontra
tion of two four point verti
es andhen
e it involves a pole in the propagating momentum. The diagram for the intera
tion isshown for one of the possible permutations of parti
les in �gure 4.2.The dire
t 
ontribution to the amplitudeThe dire
t 
ontribution A0

(
φ1φ2φ3φ̄4φ̄5φ̄6

) is evaluated by the systemati
 study of all possibleWi
k 
ontra
tions of the obje
t
φ1φ2φ3φ̄4φ̄5φ̄6

∣
∣
∣∂µφ∂

µφ̄∂νφ∂
νφ∂λφ̄∂

λφ̄ , (4.4.16)Page 89



with one parti
ular full 
ontra
tion given as
φ1φ2φ3φ̄4φ̄5φ̄6

∣
∣
∣∂µφ∂

µφ̄∂νφ∂
νφ∂λφ̄∂

λφ̄ = i (p1 ·p4) (p2 ·p3) (p5 ·p6) . (4.4.17)Inter
hanging the respe
tive 
ontra
tions of �elds φ2 and φ3 does not alter the right hand sideof (4.4.16) and neither does an inter
hange of the 
ontra
tions of φ̄5 and φ̄6. The right handside is 
onsequently the result of four di�erent full 
ontra
tions.The remaining eight full 
ontra
tions are obtained by inter
hanging 
ontra
tions of �elds
(φ1 ↔ φ2),(φ1 ↔ φ3),(φ̄4 ↔ φ̄5

),(φ̄4 ↔ φ̄6

) and the result is given by
A0

(
φ1φ2φ3φ̄4φ̄5φ̄6

)

= −2i π4α′4
{

(p1 ·p2) [(p3 ·p4)(p5 ·p6) + (p3 ·p5)(p4 ·p6) + (p3 ·p6)(p4 ·p5)]

+ (p1 ·p3) [(p2 ·p4)(p5 ·p6) + (p2 ·p5)(p4 ·p6) + (p2 ·p6)(p4 ·p5)]

+ (p2 ·p3) [(p1 ·p4)(p5 ·p6) + (p1 ·p5)(p4 ·p6) + (p1 ·p6)(p4 ·p5)]
}

, (4.4.18)where the symmetry fa
tor has been in
luded.
φ1

φ2

φ3
φ̄4

φ̄5

φ̄6Figure 4.1: The dire
t 
ontribution to the six-points
alar amplitude. φ1

φ2

φ̄4

φ̄6

φ̄5

φ3

Figure 4.2: A 
ontra
tion of to four-point s
alar ver-ti
es with a spe
i�
 
on�guration of parti
les. The 
on-tra
tion is 
al
ulated in (4.4.23).The indire
t 
ontribution to the amplitudeThe pole 
ontribution to the six point amplitude is 
ontrolled by the se
ond order term in theexpansion
eiS = exp

[

i

∫

ddxL
]

= 1 + i

∫

ddxL − 1

2

(∫

ddxL
)2

+ O
(

(iS)3
)

, (4.4.19)su
h that the external �elds are 
ontra
ted into the term given expli
itly by
− 1

2

(

∂µφ(x) ∂µφ(x) ∂ν φ̄(x) ∂ν φ̄(x)
)(

∂λφ(y) ∂λφ(y) ∂κφ̄(y) ∂κφ̄(y)
)

. (4.4.20)Sin
e this six parti
le vertex is a 
ontra
tion of two four parti
le verti
es, the parti
les havedependen
e on two distin
t spa
e time points x and y. This dependen
e plays a role for theinternal 
ontra
tions of �elds and has been emphasized above. With the abbreviation
φ(x) = φx , (4.4.21)Page 90



the pole 
ontribution 
an be written formally as
Apole(φ1φ2φ3φ̄4φ̄5φ̄6

)
→
∑〈

φ1φ2φ3φ̄4φ̄5φ̄6

∣
∣
∣ ∂µφx∂µφx∂

ν φ̄x∂ν φ̄x∂
λφy∂λφy∂

κφ̄y∂κφ̄y

〉

,(4.4.22)where the summation is performed over all possible permutations of full 
ontra
tions betweenexternal and internal �elds in 
ombination with all possible ways of performing one singleinternal 
ontra
tion without generating a loop.Loops are generated from internal 
ontra
tions between a φx and a φ̄x and hen
e only in-ternal 
ontra
tions between a φx and a φ̄y are 
onsidered in order to 
onstrain the 
al
ulationsto non-loop level. There exist sixteen of these internal 
ontra
tions and sin
e they all havethe same stru
ture, a symmetry fa
tor of 16 is obtained.In order to illustrate the stru
ture of the 
ontra
tions in (4.4.22), one parti
ular term inthe sum is evaluated expli
itly as
φ1φ2φ3φ̄4φ̄5φ̄6

∣
∣
∣∂µφx∂µφx∂

ν φ̄x∂ν φ̄x∂
λφy∂λφy∂

κφ̄y∂κφ̄y

= (p1 ·p2) (p5 ·p6) p4 · (p1 + p2) p3 · (p5 + p6)
i

(p1 + p2 + p4)
2 , (4.4.23)with a pole in the propagating momentum. As is the 
ase for the 
ontra
tions in (4.4.16),the diagram for the 
ontra
tions above has a symmetry fa
tor of four su
h that the totalsymmetry fa
tor is 64. This 
omes about when the symmetry fa
tors for the internal andexternal 
ontra
tions are 
ombined.Summing up the 
ontributionsWhen the remaining eight full 
ontra
tions in (4.4.22) are 
al
ulated and all the nine 
ontri-butions are summed, the pole part of the amplitude takes the form

Apole(φ1φ2φ3φ̄4φ̄5φ̄6

)
=

+ 8i π4α′4

{

(p1 ·p2) (p1 + p2)
µ p3,ν

[
(p5 ·p6) p4,µ (p5 + p6)

ν

(p1 + p2 + p4)
2

+
(p4 ·p6) p5,µ (p4 + p6)

ν

(p1 + p2 + p5)
2 +

(p4 ·p5) p6,µ (p4 + p5)
ν

(p1 + p2 + p6)
2

]

+ (p1 ·p3) (p1 + p3)
µ p2,ν

[
(p5 ·p6) p4,µ (p5 + p6)

ν

(p1 + p3 + p4)
2

+
(p4 ·p6) p5,µ (p4 + p6)

ν

(p1 + p3 + p5)
2 +

(p4 ·p5) p6,µ (p4 + p5)
ν

(p1 + p3 + p6)
2

]

+ (p2 ·p3) (p2 + p3)
µ p1,ν

[
(p5 ·p6) p4,µ (p5 + p6)

ν

(p2 + p3 + p4)
2

+
(p4 ·p6) p5,µ (p4 + p6)

ν

(p2 + p3 + p5)
2 +

(p4 ·p5) p6,µ (p4 + p5)
ν

(p2 + p3 + p6)
2

]}

.(4.4.24)Page 91



In order to write the the full amplitude in a more 
ompa
t form, the results from (4.4.18)and (4.4.24) are respe
tively expressed as a sum of three terms su
h that the full six pointamplitude reads
A
(
φ1φ2φ3φ̄4φ̄5φ̄6

)
=

A0

(
φ1φ2φ3φ̄4φ̄5φ̄6

)
+ Apole (φ1φ2φ3φ̄4φ̄5φ̄6

)
=

− 2i π4α′4
∑

σ(i,j,k)

∑

σ(l,m,n)

(pi ·pj) (pm ·pn) pk,µ pµl

+ 8iπ4α′4
∑

σ(i,j,k)

∑

σ(l,m,n)

(pi ·pj) (pm ·pn)
1

(pi + pj + pl)
2 (pi + pj)

µ pl,µ (pm + pn)
ν pk,ν ,(4.4.25)with the permutations

σ (i, j, k) = σ (1, 2, 3) , σ (i, j, k) = σ (2, 3, 1) , σ (i, j, k) = σ (3, 1, 2) , (4.4.26)
σ (l,m, n) = σ (1, 2, 3) , σ (l,m, n) = σ (2, 3, 1) , σ (l,m, n) = σ (3, 1, 2) . (4.4.27)As should be the 
ase, it is noti
ed that the amplitude has an apparent symmetry underany permutation of momenta (1, 2, 3) as well as the momenta (4, 5, 6). As the last step, theexpression (4.4.25) 
an be fa
torized further and the �nal result for the full six-point amplitudetakes the more 
ompa
t form

A
(
φ1φ2φ3φ̄4φ̄5φ̄6

)
=

− 2i π2α′4
∑

σ(i,j,k)

∑

σ(l,m,n)

(pi ·pj) (pm ·pn)
[

pµl − 4 (pi + pj)
ν pl,ν

(pm + pn)
µ

(pi + pj + pl)
2

]

pk,µ ,(4.4.28)with the same permutations (4.4.26) and (4.4.27). This result is also part of the summary inappendix B.2.4.4.4 Manipulations of pole termsAlthough the expression (4.4.28) provides the six point s
alar amplitude in a 
ompa
t form,it is interesting to study a little bit further the result (4.4.25). Sin
e all parti
les are massless,the 
ontra
tions of momenta satisfy
(pi + pj)

µ pk,µ = (pi + pj + pk)
µ pk,µ , (4.4.29)whi
h suggests that (4.4.24) 
an be manipulated in a way that allows some pole free terms tobe extra
ted. The motivation for this is to obtain some 
an
ellation of pole free terms when(4.4.18) and (4.4.24) are added.From (4.4.29) it follows that

(p1 + p2)
µ p4,µ p3,ν (p5 + p6)

ν = − (p3 + p5 + p6)
µ p4,µ (p1 + p2 + p4)

2

− (p3 + p5 + p6)
µ p4,µ (p5 + p6)ν (p1 + p2 + p4)

ν , (4.4.30)where momentum 
onservation has been used. When (4.4.30) is substituted in the leftmostterm in the �rst square bra
ket of (4.4.24) the result is two terms where the pole is 
an
elledPage 92



in the �rst. The middle and the rightmost term 
an as well be rewritten by a substitution ofthe same relation (4.4.30) with suitable momentum ve
tors. The resultant expression for the
ontents of the �rst square bra
ket upon these three substitutions be
omes
(p1 · p2) (p1 + p2)

µ p3,ν

[
(p5 ·p6) p4,µ (p5 + p6)

ν

(p1 + p2 + p4)
2 +

(p4 ·p6) p5,µ (p4 + p6)
ν

(p1 + p2 + p5)
2

+
(p4 ·p5) p6,µ (p4 + p5)

ν

(p1 + p2 + p6)
2

]

=(p1 ·p2)
[

− (p5 ·p6)(p3 + p5 + p6) · p4 − (p4 ·p6)(p3 + p4 + p6) · p5

− (p4 ·p5)(p3 + p4 + p5) · p6

]

+ (p1 ·p2) (p1 + p2)
µ

[
(p5 ·p6) (p5 + p6)ν (p1 + p2 + p4)

ν p4,µ

(p1 + p2 + p4)
2

+
(p4 ·p6) (p4 + p6)ν (p1 + p2 + p5)

ν p5,µ

(p1 + p2 + p5)
2

+
(p4 ·p5) (p4 + p5)ν (p1 + p2 + p6)

ν p6,µ

(p1 + p2 + p6)
2

]

. (4.4.31)When the prefa
tor 8π4α′4 is in
luded and (4.4.31) and (4.4.18) are added together it is foundthat the �rst line of (4.4.18) 
ombines with the pole free terms of (4.4.31). The pro
edure ofrewritings as des
ribed above is now employed on the remaining six terms of (4.4.24). Thisyields the expressions (A.1.28) and (A.1.29) whi
h are equivalent to (4.4.31) with permutationsin momentum ve
tors p1, p2 and p3. The expression for the amplitude when the pole termsand the pole free terms have been 
ombined is
A
(
φ1φ2φ3φ̄4φ̄5φ̄6

)
=

+ 8π4α′4
∑

σ(i,j,k)

∑

σ(l,m,n)

(pi ·pj) (pm ·pn)
(

pi + pj −
2

8
pk

)µ

pl,µ

+ 8π4α′4
∑

σ(i,j,k)

∑

σ(l,m,n)

(pi ·pj) (pm ·pn) (pm + pn)ν
(pi + pj + pl)

ν

(pi + pj + pl)
2 (pi + pj)

µ pl,µ,(4.4.32)whi
h 
an then be expressed in a slightly more 
ompa
t way as
A
(
φ1φ2φ3φ̄4φ̄5φ̄6

)
=

+ 8π4α′4
∑

σ(i,j,k)

∑

σ(l,m,n)

(pi ·pj) (pm ·pn)

×
[(

pi + pj −
2

8
pk

)µ

+
(pm + pn)ν (pi + pj + pl)

ν

(pi + pj + pl)
2 (pi + pj)

µ

]

pl,µ, (4.4.33)where the sums are again over permutations (4.4.26) and (4.4.27). The expressions above
ontain the rather awkward fa
tor of 2/8 whi
h o

urs as a 
onsequen
e of the di�erent frontfa
tors of A0 and Apole. From the 
al
ulations leading to (4.4.32) and (4.4.33) it is apparentthat, if the respe
tive front fa
tors of (4.4.18) and (4.4.24) had been identi
al, instead aPage 93



�1� would be the fa
tor of pk in the two expressions above. This 
omes about be
ause the
ontribution Apole in 
ase of identi
al front fa
tors is entirely 
an
elled against the pole freepart of (4.4.24). It is most easily realized by a 
omparison of the expression (4.4.18) with(4.4.31), (A.1.28) and (A.1.29) from where the 
an
ellation of (4.4.18) in 
ase of identi
alfront fa
tors is manifest.4.5 Cross se
tion for s
alarsThe results obtained in se
tion 4.4.2 
an be used in an estimate of the di�erential 
ross se
tionfor the s
attering of four s
alar parti
les. The 
omputations are based on the dis
ussion ofthe 
ross se
tion in se
tion 1.3.2.The di�erential 
ross se
tion for the s
attering of four massless s
alars is 
al
ulated bysubstituting (4.4.14) in (1.3.5). The result is
dσ

dΩ
=

π2

256
α′4s3 , (4.5.1)where the s-variable has been used for the 
enter of mass energy

s = E2
cm . (4.5.2)It is noted that (4.5.1) has the 
orre
t dimension of area. Be
ause of the α′4 dependen
e,the di�erential 
ross se
tion is in
redibly small. The 
enter of mass energy in (4.5.1) 
anbe 
ontrolled in an experiment and in prin
iple, the 
enter of mass energy 
an be in
reasedsu�
iently in order to 
ompare with the α′4 fa
tor. It is reassuring to see that the di�erential
ross se
tion involves only the string parameter and the 
enter of mass energy in the s
atteringsin
e this was addressed in se
tion 1.3.1.The numeri
al value of the di�erential 
ross se
tion 
an be determined from a very roughestimate. In this estimate the maximal energy Emax ∼ 14 Tev at the LHC will be used as the
enter of mass energy. In natural units the se
ond and the metre is related by

s ∼ 3 · 108 m , (4.5.3)whi
h yields
eV ∼ 1

2
· 107 m , (4.5.4)from the value of Plan
k's redu
ed 
onstant. Using

Ecm ∼ 14 · 1012 eV , (4.5.5)as dis
ussed in se
tion 1.3.1 gives
dσ

dΩ
∼ α′4s3 ∼

(
10−35 m

)8 (
107 · 1012 m

)6
= 10−166 m2 , (4.5.6)as a very rough estimate for the s
alar di�erential 
ross se
tion with a 
enter of mass energyequal to the maximal energy at the LHC. This is indeed astronomi
ally small as 
ould beexpe
ted from the dis
ussion of energy estimates in se
tion 1.3.1.Page 94



Chapter 5Dis
ussion and 
on
lusionsThe goal of the thesis was to 
al
ulate amplitudes in six dimensions as a 
ontinuation ofthe work in [1℄. On one hand, the motivation was to 
ompute the amplitudes simply tosee what they look like and in order to 
ompare with the four-dimensional amplitudes. Onthe other hand, the purpose was to study whether the spinor-heli
ity formalism is suited for
al
ulations in six dimensions and, at least naïvely, to gain simpli�
ations in six-dimensionalamplitudes similar to the simpli�
ations in four-dimensional amplitudes due to the spinor-heli
ity formalism.The results obtained in se
tion 3.2 were 
al
ulated along the lines of [1℄ with diligent useof the spinor-heli
ity formalism as a very important ingredient. Due to the formalism, it 
anbe read o� dire
tly from the a
tion that the only non-vanishing four-point amplitude is thesymmetri
 one A(+ + −−). One interesting result from this se
tion is that the amplitude
A(+ + −−−−) vanishes. The amplitude has a dire
t 
ontribution from a six-point vertexand a 
ontribution from a 
ontra
tion of two four-point verti
es and these two 
ontributionsturn out to be exa
tly equal and with opposite signs. It is not a priori obvious that thisshould be the 
ase. The most important 
on
lusion however from this se
tion is to note howsimple the 
al
ulations turn out due to the use of the spinor-heli
ity formalism. This is alsothe invitation to approa
h six-dimensional 
al
ulations.The generi
 amplitude A (AiAjAjAk) was 
al
ulated as an intermediate step between theexpli
it four-dimensional and six-dimensional 
al
ulations and it was 
al
ulated without useof the spinor-heli
ity formalism. The 
al
ulation is in prin
iple simple but it involves a largeamount of terms whi
h makes it 
omplex in pra
ti
e. However, the �nal result turns out tobe simple and this might be an indi
ation that an overall simpli�
ation should be possiblealso in higher dimensions than four. Furthermore it is reassuring to see that this amplitudevanishes for the 
ase of four identi
al polarizations be
ause this is 
onsistent with the resultsfor the spe
i�
 
al
ulations of amplitudes in se
tions 3.2 and 4.3.The latter se
tion 
ontains the six-dimensional results for the amplitudes A(+ + + +),
A(− + + +) and A (−− + +) whi
h have not previously been 
al
ulated in this way. Thismakes these amplitudes interesting by themselves. Moreover it is reassuring that all threeamplitudes redu
e to the results obtained in se
tion 3.2 in the four-dimensional limit. All thenew amplitudes have been 
olle
ted in appendix B as a summary of the results in the thesiswhi
h have not previously been 
al
ulated. It is important to stress that the amplitudes insix dimensions have been 
al
ulated with the use of the 
onstraint A4 = A5 = 0 on thegauge �eld in the auxiliary dimensions and also with restri
tions on the number of 
onsideredPage 95



polarizations. Although these 
onstraints simplify the 
al
ulations 
onsiderably, the resultsfor the amplitudes are still 
ompli
ated. Espe
ially the result for the symmetri
 amplitude
A(−− + +) is 
ompli
ated and involves 
omprehensive 
al
ulations. However, had thesesimpli�
ations not been in
luded, the results for the amplitudes would have been even more
ompli
ated.It is interesting to note the apparent existen
e of a 
ertain hierar
hy of amplitudes. Theamplitude A(+ + −−) is the only non-zero four-point amplitude in four dimensions whereasboth A(− + + +) and A(−− + +) are non-zero in six dimensions. This illustrates a 
ertainordering in 
omplexity and indi
ates that there might be some deeper stru
ture of simpli-�
ations to be found. However, the di�eren
e in 
omplexity when going from four to sixdimensions in this form is manifest and the results in the thesis indi
ate strongly that theused approa
h is not really the way to go for the purpose of six-dimensional 
al
ulations. Theamplitude hierar
hy suggests that simpli�
ations as in four dimensions exist also in higherdimensions but at this point it is not at all obvious how these simpli�
ations should be imple-mented. The most important lesson learned in this thesis is therefore that the generalizationto higher dimensions is not so straightforward. However, the results in the thesis indi
ate thatthere exist a deeper stru
ture in the amplitudes from whi
h simpli�
ations might be dis
ov-ered. One approa
h is to 
onstru
t a six-dimensional spinor-heli
ity formalism as in [16, 27℄and implement this formalism in six-dimensional 
omputations. This 
an be 
onsidered asjust one of many invitations for further studies in the interesting �eld of s
attering amplitude
al
ulations in the frame of e�e
tive theories.
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Appendix AComputational detailsA.1 Results of 
omputationsLorentz invariants from the �eld strengthIn se
tion 1.4.2 it is dis
ussed that
C1 = −1

4
FµνF

µν , C2 = −1

4
Fµν F̃

µν , (A.1.1)are the only Lorentz invariants obje
ts that 
an be 
onstru
ted from Fµν . Equations (2.1.99)and (2.1.100) 
an be used to show that this is the 
ase. It is observed that
+F β̇

α̇
+Fβ̇γ̇ = +Fα̇δ̇

+Fβ̇γ̇ ε
β̇δ̇ = −+F β̇

γ̇
+Fβ̇α̇ , (A.1.2)and hen
e

+F β̇
α̇

+Fβ̇γ̇ = κεα̇γ̇ . (A.1.3)The 
onstant κ is determined by
εγ̇α̇ +F β̇

α̇
+Fβ̇γ̇ = κ εγ̇α̇ εα̇γ̇ , (A.1.4)and it follows that

κ = − 1

2
+F 2 , (A.1.5)and therefore

+F β̇
α̇

+Fβ̇γ̇ = − 1

2
+F 2 εα̇γ̇ ,

−F β
α

−Fβγ = − 1

2
−F 2 εαγ . (A.1.6)A Lorentz invariant obje
t must have all indi
es 
ontra
ted and it 
an be dedu
ed from(A.1.6) that everything Lorentz invariant whi
h 
an be 
onstru
ted from Fµν must thereforebe proportional to +F and −F . This shows that (A.1.1) are the only possible Lorentz invariantsup to 
onstants. Page 97



Manipulations of the DBI-LagrangianThe following is an expli
it 
al
ulation inspired by [22℄. The purpose is to 
al
ulate therelevant determinant in the Dira
-Born-Infeld Lagrangian,
LDBI =

√

− det (ηµν + Fµν) , (A.1.7)and 
he
k the agreement with the expression
LDBI = I2 + I4

[
1 + O

(
F 2
)]

, (A.1.8)as in (3.3.1) with I2 and I4 given in (3.3.2) and (3.3.3). In order to evaluate the determinantof (A.1.7), the metri
 ηµν and the �eld strength tensor Fµν are 
onstru
ted expli
itly inMathemati
a. In parti
ular the �eld strength is 
onstru
ted as the antisymmetri
 matrix
Fµν =







0 a b c
−a 0 d e
−b −d 0 f
−c −e −f 0






, (A.1.9)with lower indi
es. The dual is 
onstru
ted as a table in Mathemati
a a

ording to thede�nition

F̃µν =
i

2
εµνρσFρσ , (A.1.10)by using the previously 
onstru
ted Fµν . Hen
e the dual is 
onstru
ted with upper indi
es as

F̃µν =







0 if −ie id
−if 0 ic −ib
ie −ic 0 ia
−id ib −ia 0






. (A.1.11)It has then been 
he
ked expli
itly that

− det (ηµν + Fµν) = 1 +
1

2
FµνF

µν +
1

16
FµνF

µνFρσF
ρσ , (A.1.12)with a di�erent sign in front of the rightmost term 
ompared to [22℄. This is due to thede�nition of the dual whi
h in
ludes �i� in the de�nition. This 
al
ulation from Mathemati
aappears in �gure A.1 from whi
h it is apparent that (A.1.12) holds. Sin
e the �eld strength

In[114]:= -Det@Η + FD

Out[114]= 1 - a2 - b2 - c2 + d2 - c2 d2 + 2 b c d e + e2 - b2 e2 - 2 a c d f + 2 a b e f + f2 - a2 f2

In[131]:= Expand@1 - 1 � 2 * Tr@F.Η.F.ΗD + 1 � 16 HTr@F.FdualDL^2D

Out[131]= 1 - a2 - b2 - c2 + d2 - c2 d2 + 2 b c d e + e2 - b2 e2 - 2 a c d f + 2 a b e f + f2 - a2 f2

In[132]:= Expand@H1 - 1 � 4 Tr@F.FdualDL^2 + 1 � 4 H-Tr@F.Η.F.ΗD - Tr@Fdual.Η.Fdual.ΗD + 2 Tr@F.FdualDLD

Out[132]= 1 - a2 - b2 - c2 + d2 - c2 d2 + 2 b c d e + e2 - b2 e2 - 2 a c d f + 2 a b e f + f2 - a2 f2Figure A.1: The Mathemati
a 
al
ulation whi
h shows that (A.1.12) holds.Page 98



tensor 
onstru
ted in (A.1.9) has been 
hosen to have lower indi
es, the evaluation in Mathe-mati
a is performed as
FµνF

µν = −FµνηνκFκληλµ = − TrFηFη , (A.1.13)with the rightmost expression written in matrix notation using the matri
es as de�ned inMathemati
a. In the same way the tra
e of the �eld strength and its dual is just
Fµν F̃

µν = − TrFF̃ , (A.1.14)sin
e the dual as de�ned in (A.1.11) has been 
hosen to have upper indi
es. Furthermore, ithas been 
he
ked expli
itly that
(

1 +
1

4
Fµν F̃

µν

)2

+
1

4

(

Fµν − F̃µν

)2
= − det (ηµν + Fµν) , (A.1.15)where the 
al
ulation of the left hand side appears in �gure A.1. With the de�nitions

I2 =
1

4
FµνF

µν , I4 = −1

8

[

FµνF
νρFρσF

σµ − 1

4
FµνF

µνFρσF
ρσ

]

, (A.1.16)it has been 
he
ked expli
itly that
− det (ηµν + Fµν) = (1 + I2)

2 + 2I4 , (A.1.17)with 
al
ulations and de�nitions of I2 and I4 in Mathemati
a appearing in �gure A.2. For the
In[154]:= i2 = -1 � 4 Tr@F.Η.F.ΗD;

In[155]:= i4 = -1 � 8 H Tr@F.Η.F.Η.F.Η.F.ΗD - 4 i2^2 L;

In[157]:= S = Expand@H1 + i2L^2 + 2 * i4D

Out[157]= 1 - a2 - b2 - c2 + d2 - c2 d2 + 2 b c d e + e2 - b2 e2 - 2 a c d f + 2 a b e f + f2 - a2 f2

In[158]:= -Det@Η + FD - S

Out[158]= 0Figure A.2: The Mathemati
a 
al
ulation whi
h shows that (A.1.17) holds.leftmost term in the de�nition of I4, the Mathemati
a input is written in matrix notation as
FµνF

νρFρσF
σµ = + TrFηFηFηFη . (A.1.18)An expansion of the square root of (A.1.17) in α′ yields

√

(1 + I2)
2 + 2I4 − 1 = I2 + I4

[
1 + O

(
F 2
)]

, (A.1.19)whi
h is used in (3.3.1).Internal �eld strength 
ontra
tionsThe following is a more detailed 
al
ulation of the internal 
ontra
tions of �eld strength spinorsleading to (3.1.22). By writing
∂αα̇ = −ipαα̇ , (A.1.20)Page 99



it follows that
+Fα̇β̇

−Fαβ =

1

4
(−i)2

(

pγα̇ pαγ̇ A
γ

β̇
A γ̇
β + pγα̇ pβγ̇ A

γ

β̇
A γ̇
α + pγβ̇ pαγ̇ A

γ
α̇A

γ̇
β + pγβ̇ pβγ̇ A

γ
α̇A

γ̇
α

)

.(A.1.21)The Wi
k 
ontra
tions yield
+Fα̇β̇

−Fαβ = −1

4

(−2i)

p2

(

pγα̇ pαγ̇ ε
γ
β ε

γ̇

β̇
+ pγα̇ pβγ̇ ε

γ
α ε

γ̇

β̇
+ pγβ̇ pαγ̇ ε

γ
β ε

γ̇
α̇ + pγβ̇ pβγ̇ ε

γ
α ε

γ̇
α̇

)

= +
i

2p2

(

−pβα̇ pαβ̇ − pαα̇ pββ̇ − pββ̇ pαα̇ − pαβ̇ pβα̇

)

= − i

p2

(

pαβ̇ pβα̇ + pαα̇ pββ̇

)

, (A.1.22)whi
h is the result (3.1.22).Detailed 
al
ulations with the S
houten identityThe result (4.3.49) has been simpli�ed by use of the S
houten identity. Before the simpli�
a-tion, the term reads
A(− + + +) =

π4α′4

8
×

4
[ζ1]

〈ζ1〉
∑

σ(i,j,k)

1

[ζi]

{

〈jk〉 (p1 ·pi) [〈jk〉〈ζi〉 + 〈ij〉〈ζk〉 + 〈ki〉〈ζj〉] + 4 〈jk〉2 [ζ1] 〈ζ1〉
[ζi]

p̃2
i

+
[ζi]

[ζj]

[

−〈ζk〉 ( 〈ik〉〈j1〉 + 〈jk〉〈i1〉 ) + 〈ζj〉〈ik〉〈k1〉 + 〈ζi〉〈jk〉〈k1〉
]

(pi ·pj)
}

,(A.1.23)where the sum 
ontains three 
y
li
 permutations of indi
es given by
σ (i, j, k) = σ (2, 3, 4) , σ (i, j, k) = σ (4, 2, 3) , σ (i, j, k) = σ (3, 4, 2) . (A.1.24)Equation (2.1.76) has been used in (A.1.23) as

〈jk〉〈ζi〉 + 〈ij〉〈ζk〉 + 〈ki〉〈ζj〉 = jα̇kγ̇ζ β̇iδ̇εγ̇α̇εδ̇β̇ + jγ̇iα̇ζ β̇kδ̇εγ̇α̇εδ̇β̇ + jδ̇kα̇ζ β̇iγ̇εδ̇β̇εγ̇α̇

= jα̇kγ̇ζ β̇iδ̇
(

εγ̇α̇εδ̇β̇ + εα̇δ̇εγ̇β̇ + εα̇β̇εδ̇γ̇

)

= 0 , (A.1.25)where the bra
ket vanishes. The expression (A.1.23) is hen
e redu
ed to (4.3.49) whi
h is theresult for the six-dimensional amplitude A(− + + +).An expli
it term in the amplitude A(−− + +)The following is the expanded form of (4.3.71) for all Wi
k 
ontra
tions into the χ̃3 term
FµνFνρ

(
BBT

)ρ

µ
, (A.1.26)Page 100



for the six-dimensional amplitude A(−− + +). The expression is
〈

A−
1 A

−
2 A

+
3 A

+
4

∣
∣
∣FµνFνρ

(
BBT

)ρ

µ

〉

=

2
{

(ε1 ·ε3)
[

((p1 ·ε2) (p3 ·ε4) + (p1 ·ε4) (p3 ·ε2)) (p̃2 ·p̃4) − (p1 ·ε2) (p2 ·ε4) (p̃3 ·p̃4)

− (p1 ·ε4) (p4 ·ε2) (p̃2 ·p̃3) − (p3 ·ε2) (p2 ·ε4) (p̃1 ·p̃4) − (p3 ·ε4) (p4 ·ε2) (p̃1 ·p̃2)
]

+ (ε1 ·ε4)
[

((p1 ·ε2) (p4 ·ε3) + (p4 ·ε2) (p1 ·ε3)) (p̃2 ·p̃3) − (p1 ·ε2) (p2 ·ε3) (p̃3 ·p̃4)

− (p1 ·ε3) (p3 ·ε2) (p̃2 ·p̃4) − (p4 ·ε2) (p2 ·ε3) (p̃1 ·p̃3) − (p4 ·ε3) (p3 ·ε2) (p̃1 ·p̃2)
]

+ (ε2 ·ε3)
[

((p2 ·ε4) (p3 ·ε1) + (p3 ·ε4) (p2 ·ε1)) (p̃1 ·p̃4) − (p2 ·ε1) (p1 ·ε4) (p̃3 ·p̃4)

− (p2 ·ε4) (p4 ·ε1) (p̃1 ·p̃3) − (p3 ·ε1) (p1 ·ε4) (p̃2 ·p̃4) − (p3 ·ε4) (p4 ·ε1) (p̃1 ·p̃2)
]

+ (ε2 ·ε4)
[

((p2 ·ε1) (p4 ·ε3) + (p2 ·ε3) (p4 ·ε1)) (p̃1 ·p̃3) − (p2 ·ε1) (p1 ·ε3) (p̃3 ·p̃4)

− (p2 ·ε3) (p3 ·ε1) (p̃1 ·p̃4) − (p4 ·ε1) (p1 ·ε3) (p̃2 ·p̃3) − (p4 ·ε3) (p3 ·ε1) (p̃1 ·p̃2)
]

+ (ε1 ·ε3) (ε2 ·ε4)
[

(p1 ·p2) (p̃3 ·p̃4) + (p1 ·p4) (p̃2 ·p̃3) + (p2 ·p3) (p̃1 ·p̃4) + (p3 ·p4) (p̃1 ·p̃2)
]

+ (ε1 ·ε4) (ε2 ·ε3)
[

(p1 ·p2) (p̃3 ·p̃4) + (p1 ·p3) (p̃2 ·p̃4) + (p2 ·p4) (p̃1 ·p̃3) + (p3 ·p4) (p̃1 ·p̃2)
]}

.(A.1.27)Rewriting s
alar termsThis se
tion 
ontains the remaining pole terms from se
tion 4.4.4. The terms are the middleand last term from (4.4.24) whi
h are rewritten as in (4.4.31). The �rst term be
omes
(p1 · p3) (p1 + p3)

µ p2,ν

[
(p5 ·p6) p4,µ (p5 + p6)

ν

(p1 + p3 + p4)
2 +

(p4 ·p6) p5,µ (p4 + p6)
ν

(p1 + p3 + p5)
2

+
(p4 ·p5) p6,µ (p4 + p5)

ν

(p1 + p3 + p6)
2

]

= (p1 ·p3)
[

− (p5 ·p6)(p2 + p5 + p6) · p4 − (p4 ·p6)(p2 + p4 + p6) · p5

− (p4 ·p5)(p2 + p4 + p5) · p6

]

+ (p1 ·p3) (p1 + p3)
µ

[
(p5 ·p6) (p5 + p6)ν (p1 + p3 + p4)

ν p4,µ

(p1 + p3 + p4)
2

+
(p4 ·p6) (p4 + p6)ν (p1 + p3 + p5)

ν p5,µ

(p1 + p3 + p5)
2

+
(p4 ·p5) (p4 + p5)ν (p1 + p3 + p6)

ν p6,µ

(p1 + p3 + p6)
2

]

, (A.1.28)Page 101



and the se
ond term reads
(p2 · p3) (p2 + p3)

µ p1,ν

[
(p5 ·p6) p4,µ (p5 + p6)

ν

(p2 + p3 + p4)
2 +

(p4 ·p6) p5,µ (p4 + p6)
ν

(p2 + p3 + p5)
2

+
(p4 ·p5) p6,µ (p4 + p5)

ν

(p2 + p− 3 + p6)
2

]

= (p2 ·p3)
[

− (p5 ·p6)(p1 + p5 + p6) · p4 − (p4 ·p6)(p1 + p4 + p6) · p5

− (p4 ·p5)(p1 + p4 + p5) · p6

]

+ (p2 ·p3) (p2 + p3)
µ

[
(p5 ·p6) (p5 + p6)ν (p2 + p3 + p4)

ν p4,µ

(p2 + p3 + p4)
2

+
(p4 ·p6) (p4 + p6)ν (p2 + p3 + p5)

ν p5,µ

(p2 + p3 + p5)
2

+
(p4 ·p5) (p4 + p5)ν (p2 + p3 + p6)

ν p6,µ

(p2 + p3 + p6)
2

]

, (A.1.29)after the rewriting.
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Mathemati
a output from 
al
ulations in se
tion 3.3.2Figure A.3 shows the output fromMathemati
a for the full sum S in (3.3.15) for the 
al
ulationof the generi
 amplitude A(AiAjAkAl). Figure A.4 shows the output from Mathemati
a after
S has been simpli�ed at the end of se
tion 3.3.2 by employing momentum 
onservation.The
ontent in �gure A.4 is the starting point for the simpli�
ations of S dis
ussed in se
tion 3.3.3that ends with (3.3.40) as the �nal result.
-8 pe1,4 pe2,3 pe3,2 pe4,1 + 8 pe1,3 pe2,4 pe3,2 pe4,1 + 8 pe1,2 pe2,3 pe3,4 pe4,1 + 8 pe1,4 pe2,3 pe3,1 pe4,2 - 8 pe1,3 pe2,4 pe3,1 pe4,2 +

8 pe1,3 pe2,1 pe3,4 pe4,2 + 8 pe1,2 pe2,4 pe3,1 pe4,3 + 8 pe1,4 pe2,1 pe3,2 pe4,3 - 8 pe1,2 pe2,1 pe3,4 pe4,3 + 2 ee3,4 pe3,2 pe4,1 pp1,2 +

2 ee4,3 pe3,2 pe4,1 pp1,2 - ee2,3 pe3,4 pe4,1 pp1,2 - 3 ee3,2 pe3,4 pe4,1 pp1,2 + 2 ee3,4 pe3,1 pe4,2 pp1,2 + 2 ee4,3 pe3,1 pe4,2 pp1,2 -

3 ee1,3 pe3,4 pe4,2 pp1,2 - ee3,1 pe3,4 pe4,2 pp1,2 - ee2,4 pe3,1 pe4,3 pp1,2 - 3 ee4,2 pe3,1 pe4,3 pp1,2 - 3 ee1,4 pe3,2 pe4,3 pp1,2 - ee4,1 pe3,2 pe4,3 pp1,2 +

4 ee1,2 pe3,4 pe4,3 pp1,2 + 2 ee2,4 pe2,3 pe4,1 pp1,3 + 2 ee4,2 pe2,3 pe4,1 pp1,3 - 3 ee2,3 pe2,4 pe4,1 pp1,3 - ee3,2 pe2,4 pe4,1 pp1,3 -

ee3,4 pe2,1 pe4,2 pp1,3 - 3 ee4,3 pe2,1 pe4,2 pp1,3 - 3 ee1,4 pe2,3 pe4,2 pp1,3 - ee4,1 pe2,3 pe4,2 pp1,3 + 4 ee1,3 pe2,4 pe4,2 pp1,3 +

2 ee2,4 pe2,1 pe4,3 pp1,3 + 2 ee4,2 pe2,1 pe4,3 pp1,3 - 3 ee1,2 pe2,4 pe4,3 pp1,3 - ee2,1 pe2,4 pe4,3 pp1,3 - 3 ee2,4 pe2,3 pe3,1 pp1,4 -

ee4,2 pe2,3 pe3,1 pp1,4 + 2 ee2,3 pe2,4 pe3,1 pp1,4 + 2 ee3,2 pe2,4 pe3,1 pp1,4 - 3 ee3,4 pe2,1 pe3,2 pp1,4 - ee4,3 pe2,1 pe3,2 pp1,4 +

4 ee1,4 pe2,3 pe3,2 pp1,4 - 3 ee1,3 pe2,4 pe3,2 pp1,4 - ee3,1 pe2,4 pe3,2 pp1,4 + 2 ee2,3 pe2,1 pe3,4 pp1,4 + 2 ee3,2 pe2,1 pe3,4 pp1,4 -

3 ee1,2 pe2,3 pe3,4 pp1,4 - ee2,1 pe2,3 pe3,4 pp1,4 + 2 ee3,4 pe3,2 pe4,1 pp2,1 + 2 ee4,3 pe3,2 pe4,1 pp2,1 - 3 ee2,3 pe3,4 pe4,1 pp2,1 -

ee3,2 pe3,4 pe4,1 pp2,1 + 2 ee3,4 pe3,1 pe4,2 pp2,1 + 2 ee4,3 pe3,1 pe4,2 pp2,1 - ee1,3 pe3,4 pe4,2 pp2,1 - 3 ee3,1 pe3,4 pe4,2 pp2,1 -

3 ee2,4 pe3,1 pe4,3 pp2,1 - ee4,2 pe3,1 pe4,3 pp2,1 - ee1,4 pe3,2 pe4,3 pp2,1 - 3 ee4,1 pe3,2 pe4,3 pp2,1 + 4 ee2,1 pe3,4 pe4,3 pp2,1 - ee3,4 pe1,2 pe4,1 pp2,3 -

3 ee4,3 pe1,2 pe4,1 pp2,3 - 3 ee2,4 pe1,3 pe4,1 pp2,3 - ee4,2 pe1,3 pe4,1 pp2,3 + 4 ee2,3 pe1,4 pe4,1 pp2,3 + 2 ee1,4 pe1,3 pe4,2 pp2,3 +

2 ee4,1 pe1,3 pe4,2 pp2,3 - 3 ee1,3 pe1,4 pe4,2 pp2,3 - ee3,1 pe1,4 pe4,2 pp2,3 + 2 ee1,4 pe1,2 pe4,3 pp2,3 + 2 ee4,1 pe1,2 pe4,3 pp2,3 -

ee1,2 pe1,4 pe4,3 pp2,3 - 3 ee2,1 pe1,4 pe4,3 pp2,3 - 2 ee1,4 ee2,3 pp1,4 pp2,3 + 2 ee1,3 ee2,4 pp1,4 pp2,3 + ee1,2 ee3,4 pp1,4 pp2,3 + ee2,1 ee4,3 pp1,4 pp2,3 -

3 ee3,4 pe1,2 pe3,1 pp2,4 - ee4,3 pe1,2 pe3,1 pp2,4 + 4 ee2,4 pe1,3 pe3,1 pp2,4 - 3 ee2,3 pe1,4 pe3,1 pp2,4 - ee3,2 pe1,4 pe3,1 pp2,4 -

3 ee1,4 pe1,3 pe3,2 pp2,4 - ee4,1 pe1,3 pe3,2 pp2,4 + 2 ee1,3 pe1,4 pe3,2 pp2,4 + 2 ee3,1 pe1,4 pe3,2 pp2,4 + 2 ee1,3 pe1,2 pe3,4 pp2,4 +

2 ee3,1 pe1,2 pe3,4 pp2,4 - ee1,2 pe1,3 pe3,4 pp2,4 - 3 ee2,1 pe1,3 pe3,4 pp2,4 + 2 ee1,4 ee2,3 pp1,3 pp2,4 - 2 ee1,3 ee2,4 pp1,3 pp2,4 +

ee2,1 ee3,4 pp1,3 pp2,4 + ee1,2 ee4,3 pp1,3 pp2,4 + 2 ee2,4 pe2,3 pe4,1 pp3,1 + 2 ee4,2 pe2,3 pe4,1 pp3,1 - ee2,3 pe2,4 pe4,1 pp3,1 - 3 ee3,2 pe2,4 pe4,1 pp3,1 -

3 ee3,4 pe2,1 pe4,2 pp3,1 - ee4,3 pe2,1 pe4,2 pp3,1 - ee1,4 pe2,3 pe4,2 pp3,1 - 3 ee4,1 pe2,3 pe4,2 pp3,1 + 4 ee3,1 pe2,4 pe4,2 pp3,1 +

2 ee2,4 pe2,1 pe4,3 pp3,1 + 2 ee4,2 pe2,1 pe4,3 pp3,1 - ee1,2 pe2,4 pe4,3 pp3,1 - 3 ee2,1 pe2,4 pe4,3 pp3,1 + ee1,4 ee2,3 pp2,4 pp3,1 -

2 ee2,4 ee3,1 pp2,4 pp3,1 + 2 ee2,1 ee3,4 pp2,4 pp3,1 + ee3,2 ee4,1 pp2,4 pp3,1 - 3 ee3,4 pe1,2 pe4,1 pp3,2 - ee4,3 pe1,2 pe4,1 pp3,2 - ee2,4 pe1,3 pe4,1 pp3,2 -

3 ee4,2 pe1,3 pe4,1 pp3,2 + 4 ee3,2 pe1,4 pe4,1 pp3,2 + 2 ee1,4 pe1,3 pe4,2 pp3,2 + 2 ee4,1 pe1,3 pe4,2 pp3,2 - ee1,3 pe1,4 pe4,2 pp3,2 -

3 ee3,1 pe1,4 pe4,2 pp3,2 + 2 ee1,4 pe1,2 pe4,3 pp3,2 + 2 ee4,1 pe1,2 pe4,3 pp3,2 - 3 ee1,2 pe1,4 pe4,3 pp3,2 - ee2,1 pe1,4 pe4,3 pp3,2 +

ee1,3 ee2,4 pp1,4 pp3,2 - 2 ee1,4 ee3,2 pp1,4 pp3,2 + 2 ee1,2 ee3,4 pp1,4 pp3,2 + ee3,1 ee4,2 pp1,4 pp3,2 + 4 ee3,4 pe1,2 pe2,1 pp3,4 -

3 ee2,4 pe1,3 pe2,1 pp3,4 - ee4,2 pe1,3 pe2,1 pp3,4 - ee2,3 pe1,4 pe2,1 pp3,4 - 3 ee3,2 pe1,4 pe2,1 pp3,4 - 3 ee1,4 pe1,2 pe2,3 pp3,4 -

ee4,1 pe1,2 pe2,3 pp3,4 + 2 ee1,2 pe1,4 pe2,3 pp3,4 + 2 ee2,1 pe1,4 pe2,3 pp3,4 - ee1,3 pe1,2 pe2,4 pp3,4 - 3 ee3,1 pe1,2 pe2,4 pp3,4 +

2 ee1,2 pe1,3 pe2,4 pp3,4 + 2 ee2,1 pe1,3 pe2,4 pp3,4 + ee2,4 ee3,1 pp1,2 pp3,4 + 2 ee1,4 ee3,2 pp1,2 pp3,4 - 2 ee1,2 ee3,4 pp1,2 pp3,4 +

ee1,3 ee4,2 pp1,2 pp3,4 + 2 ee2,4 ee3,1 pp2,1 pp3,4 + ee1,4 ee3,2 pp2,1 pp3,4 - 2 ee2,1 ee3,4 pp2,1 pp3,4 + ee2,3 ee4,1 pp2,1 pp3,4 - ee2,4 pe2,3 pe3,1 pp4,1 -

3 ee4,2 pe2,3 pe3,1 pp4,1 + 2 ee2,3 pe2,4 pe3,1 pp4,1 + 2 ee3,2 pe2,4 pe3,1 pp4,1 - ee3,4 pe2,1 pe3,2 pp4,1 - 3 ee4,3 pe2,1 pe3,2 pp4,1 +

4 ee4,1 pe2,3 pe3,2 pp4,1 - ee1,3 pe2,4 pe3,2 pp4,1 - 3 ee3,1 pe2,4 pe3,2 pp4,1 + 2 ee2,3 pe2,1 pe3,4 pp4,1 + 2 ee3,2 pe2,1 pe3,4 pp4,1 -

ee1,2 pe2,3 pe3,4 pp4,1 - 3 ee2,1 pe2,3 pe3,4 pp4,1 + ee1,3 ee2,4 pp2,3 pp4,1 - 2 ee2,3 ee4,1 pp2,3 pp4,1 + ee3,1 ee4,2 pp2,3 pp4,1 + 2 ee2,1 ee4,3 pp2,3 pp4,1 +

ee1,2 ee3,4 pp3,2 pp4,1 - 2 ee3,2 ee4,1 pp3,2 pp4,1 + 2 ee3,1 ee4,2 pp3,2 pp4,1 + ee2,1 ee4,3 pp3,2 pp4,1 - ee3,4 pe1,2 pe3,1 pp4,2 - 3 ee4,3 pe1,2 pe3,1 pp4,2 +

4 ee4,2 pe1,3 pe3,1 pp4,2 - ee2,3 pe1,4 pe3,1 pp4,2 - 3 ee3,2 pe1,4 pe3,1 pp4,2 - ee1,4 pe1,3 pe3,2 pp4,2 - 3 ee4,1 pe1,3 pe3,2 pp4,2 +

2 ee1,3 pe1,4 pe3,2 pp4,2 + 2 ee3,1 pe1,4 pe3,2 pp4,2 + 2 ee1,3 pe1,2 pe3,4 pp4,2 + 2 ee3,1 pe1,2 pe3,4 pp4,2 - 3 ee1,2 pe1,3 pe3,4 pp4,2 -

ee2,1 pe1,3 pe3,4 pp4,2 + ee1,4 ee2,3 pp1,3 pp4,2 + ee3,2 ee4,1 pp1,3 pp4,2 - 2 ee1,3 ee4,2 pp1,3 pp4,2 + 2 ee1,2 ee4,3 pp1,3 pp4,2 + ee2,1 ee3,4 pp3,1 pp4,2 +

2 ee3,2 ee4,1 pp3,1 pp4,2 - 2 ee3,1 ee4,2 pp3,1 pp4,2 + ee1,2 ee4,3 pp3,1 pp4,2 + 4 ee4,3 pe1,2 pe2,1 pp4,3 - ee2,4 pe1,3 pe2,1 pp4,3 - 3 ee4,2 pe1,3 pe2,1 pp4,3 -

3 ee2,3 pe1,4 pe2,1 pp4,3 - ee3,2 pe1,4 pe2,1 pp4,3 - ee1,4 pe1,2 pe2,3 pp4,3 - 3 ee4,1 pe1,2 pe2,3 pp4,3 + 2 ee1,2 pe1,4 pe2,3 pp4,3 + 2 ee2,1 pe1,4 pe2,3 pp4,3 -

3 ee1,3 pe1,2 pe2,4 pp4,3 - ee3,1 pe1,2 pe2,4 pp4,3 + 2 ee1,2 pe1,3 pe2,4 pp4,3 + 2 ee2,1 pe1,3 pe2,4 pp4,3 + ee1,4 ee3,2 pp1,2 pp4,3 + ee2,3 ee4,1 pp1,2 pp4,3 +

2 ee1,3 ee4,2 pp1,2 pp4,3 - 2 ee1,2 ee4,3 pp1,2 pp4,3 + ee2,4 ee3,1 pp2,1 pp4,3 + 2 ee2,3 ee4,1 pp2,1 pp4,3 + ee1,3 ee4,2 pp2,1 pp4,3 - 2 ee2,1 ee4,3 pp2,1 pp4,3Figure A.3: The output from Mathemati
a of the full result for the sum S.
2 s2 ee1,3 ee2,4 + 2 t

2 ee1,3 ee2,4 - 2 u
2 ee1,3 ee2,4 + 2 s

2 ee1,4 ee3,2 - 2 t
2 ee1,4 ee3,2 + 2 u

2 ee1,4 ee3,2 - 2 s
2 ee1,2 ee3,4 +

2 t2 ee1,2 ee3,4 + 2 u
2 ee1,2 ee3,4 - 4 s ee3,4 pe1,2 pe2,1 + 4 s ee2,4 pe1,3 pe2,1 + 4 s ee3,2 pe1,4 pe2,1 + 4 s ee1,4 pe1,2 pe2,3 -

4 s ee1,2 pe1,4 pe2,3 + 4 s ee1,3 pe1,2 pe2,4 - 4 s ee1,2 pe1,3 pe2,4 + 4 u ee3,4 pe1,2 pe3,1 - 4 u ee2,4 pe1,3 pe3,1 + 4 u ee3,2 pe1,4 pe3,1 +

4 t ee2,4 pe2,3 pe3,1 - 4 t ee3,2 pe2,4 pe3,1 + 4 u ee1,4 pe1,3 pe3,2 - 4 u ee1,3 pe1,4 pe3,2 + 4 t ee3,4 pe2,1 pe3,2 - 4 t ee1,4 pe2,3 pe3,2 +

4 t ee1,3 pe2,4 pe3,2 - 4 u ee1,3 pe1,2 pe3,4 + 4 u ee1,2 pe1,3 pe3,4 - 4 t ee3,2 pe2,1 pe3,4 + 4 t ee1,2 pe2,3 pe3,4 + 4 t ee3,4 pe1,2 pe4,1 +

4 t ee2,4 pe1,3 pe4,1 - 4 t ee3,2 pe1,4 pe4,1 - 4 u ee2,4 pe2,3 pe4,1 + 4 u ee3,2 pe2,4 pe4,1 - 4 s ee3,4 pe3,2 pe4,1 - 8 pe1,4 pe2,3 pe3,2 pe4,1 +

8 pe1,3 pe2,4 pe3,2 pe4,1 + 4 s ee3,2 pe3,4 pe4,1 + 8 pe1,2 pe2,3 pe3,4 pe4,1 - 4 t ee1,4 pe1,3 pe4,2 + 4 t ee1,3 pe1,4 pe4,2 + 4 u ee3,4 pe2,1 pe4,2 +

4 u ee1,4 pe2,3 pe4,2 - 4 u ee1,3 pe2,4 pe4,2 - 4 s ee3,4 pe3,1 pe4,2 + 8 pe1,4 pe2,3 pe3,1 pe4,2 - 8 pe1,3 pe2,4 pe3,1 pe4,2 + 4 s ee1,3 pe3,4 pe4,2 +

8 pe1,3 pe2,1 pe3,4 pe4,2 - 4 t ee1,4 pe1,2 pe4,3 + 4 t ee1,2 pe1,4 pe4,3 - 4 u ee2,4 pe2,1 pe4,3 + 4 u ee1,2 pe2,4 pe4,3 + 4 s ee2,4 pe3,1 pe4,3 +

8 pe1,2 pe2,4 pe3,1 pe4,3 + 4 s ee1,4 pe3,2 pe4,3 + 8 pe1,4 pe2,1 pe3,2 pe4,3 - 4 s ee1,2 pe3,4 pe4,3 - 8 pe1,2 pe2,1 pe3,4 pe4,3Figure A.4: The output from Mathemati
a after simplifying the expression in �gure A.3.
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Appendix BSummary of 
al
ulated amplitudesThis appendix is a summary of the results in the thesis for amplitudes whi
h have not previ-ously been 
al
ulated. Se
tion B.1 summarizes results for photon amplitudes in six dimensionswhile se
tion B.2 summarizes results for s
alar amplitudes in four dimensions. The results forthe respe
tive amplitudes are given without any 
omments but the ne
essary de�nitions.B.1 Summary of photon amplitudes in six dimensionsThe results for the six-dimensional amplitudes A(− + + +) and A(−− + +) for four gaugebosons obtained in se
tion 4.3 are given respe
tively as
A
(
i−j+k+l+

)
=
π4α′4

8

[ζ1]

〈ζ1〉
∑

σ(i,j,k)

1

[ζi]

{

+4 〈jk〉2 [ζ1] 〈ζ1〉
[ζi]

p̃2
i

+
[ζi]

[ζj]

[

−〈ζk〉 ( 〈ik〉〈j1〉 + 〈jk〉〈i1〉 ) + 〈ζj〉〈ik〉〈k1〉 + 〈ζi〉〈jk〉〈k1〉
]

(p̃i ·p̃j)
}

,(B.1.1)and
A
(
i−j−k+l+

)
= −π

4α′4

8
×

∑

σ(i,j,k,l)

{

[ij]2 〈kl〉2 + 4 p̃2
i p̃

2
j

[ζj]2 〈ζk〉2
〈ζi〉2 [ζl]2

+
[ζi] 〈ζk〉

〈ζi〉 [ζk] 〈ζj〉 [ζl]

[

2〈ζj〉 [ζl] (p̃i ·p̃j)
(

p̃2
j

〈ζl〉2
〈ζj〉2 + p̃2

l

[ζj]2

[ζl]2

)

+
(

[ij] 〈kl〉〈ζi〉 [ζk] + [kj] 〈il〉〈ζk〉 [ζi]
)

(p̃j ·p̃l)
− [ij] 〈jl〉〈ζi〉 [ζj] (p̃k ·p̃l) − [lj] 〈il〉〈ζl〉 [ζi] (p̃j ·p̃k)
− [kj] 〈jl〉〈ζk〉 [ζj] (p̃i ·p̃l) − [lj] 〈kl〉〈ζl〉 [ζk] (p̃i ·p̃j)

+ [ζj] 〈ζl〉
(

2 (pi ·pj) (p̃k ·p̃l) + (pk ·pl) (p̃i ·p̃j) + (pi ·pl) (p̃j ·p̃k) + (pj ·pk) (p̃i ·p̃l)
)]}

,(B.1.2)Page 104



where the sums 
ontain the 
y
li
 permutations of indi
es given by
σ (i, j, k) = σ (2, 3, 4) , σ (i, j, k) = σ (4, 2, 3) , σ (i, j, k) = σ (3, 4, 2) . (B.1.3)The tilde symbol above the momenta indi
ates that the momentum is in the auxiliary dimen-sions

p̃i · p̃j = pni pj,n , (B.1.4)where n is a Lorentz index for the two auxiliary dimensions taking values (4, 5). The dotprodu
t
pi · pj = pµi pj,µ , (B.1.5)is just a 
ontra
tion of ordinary four-dimensional Lorentz indi
es. The momentum bilinearsare de�ned in terms of spinor indi
es as

〈ij〉 = iα̇jα̇ = iα̇jβ̇εβ̇α̇ , [ij] = iαj
α = iαjβεαβ . (B.1.6)B.2 Summary of s
alar amplitudes in four dimensionsThe result for the four-dimensional amplitude for four massless s
alars as 
al
ulated in se
tion4.4.2 is

A
(
φ1φ2φ̄3φ̄4

)
= − i

2
π2α′2s2 , (B.2.1)where

s = 2 p1 · p2 , (B.2.2)in terms of the four-momenta for the s
alars. The s
alars are de�ned as
φ ≡ 1√

2
(A4 + iA5) , φ̄ ≡ 1√

2
(A4 − iA5) , (B.2.3)in terms of gauge �eld 
omponents in the auxiliary dimensions. The result for the four-dimensional amplitude for six massless s
alars as 
al
ulated in se
tion 4.4.3 is

A
(
φ1φ2φ3φ̄4φ̄5φ̄6

)
=

− 2i π2α′4
∑

σ(i,j,k)

∑

σ(l,m,n)

(pi ·pj) (pm ·pn)
[

pµl − 4 (pi + pj)
ν pl,ν

(pm + pn)
µ

(pi + pj + pl)
2

]

pk,µ ,(B.2.4)with the permutations of indi
es in the sums
σ (i, j, k) = σ (1, 2, 3) , σ (i, j, k) = σ (2, 3, 1) , σ (i, j, k) = σ (3, 1, 2) , (B.2.5)

σ (l,m, n) = σ (1, 2, 3) , σ (l,m, n) = σ (2, 3, 1) , σ (l,m, n) = σ (3, 1, 2) . (B.2.6)Page 105
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