
 

 

 

F A C U L T Y  O F  S C I E N C E  
U N I V E R S I T Y  O F  C O P E N H A G E N  

Master’s thesis
Mads Brandt

Explicit amplitudes for scattering of open strings
on the worldvolume of a single D-brane

Academic supervisor: Rutger Boels
Co-supervisor: Niels Obers

Thesis submitted: 1st of October, 2009





AbstratMotivated by reent progress in amplitude alulations in Yang-Mills and gravitational the-ories, the goal of this thesis is to alulate expliit open string sattering amplitudes in fourand six dimensions from the Dira-Born-Infeld ation. This is an e�etive ation desribingeletromagneti �elds on the worldvolume of a single D-brane. Sattering amplitudes are im-portant in partile physis and string theory sine they provide a diret onnetion betweentheory and experiment and beause the sattering amplitude is really the measured physialquantity in detetors at partile aelerators as for instane the Large Hadron Collider (LHC)at CERN. This thesis introdues the basi onepts from string theory and the relevant meth-ods from �eld theory used in sattering amplitude alulations are reviewed. Espeially thespinor-heliity formalism is entral and it is introdued in detail in order to streamline on-siderably the alulations in four dimensions. The simple struture in four dimensions invitesan extension of studies into higher dimensions and the spinor-heliity formalism is also em-ployed in a modi�ed form in six dimensions in a searh for an appropriate way of expressingsix-dimensional amplitudes. The amplitudes are alulated for spei� polarizations of exter-nal states with four-dimensional alulations of both four-point and six-point amplitudes andsix-dimensional alulations of four-point amplitudes. A method of evaluating ontrations ofthe eletromagneti �eld strength tensor in terms of traes of blok matries is developed inonnetion with the alulations in six dimensions and also a generi four-point amplitude isalulated in generality without spei�ation of external polarization states and independentof the number of dimensions. In six dimensions, four-point and six-point pure salar ampli-tudes are alulated and the ross setion for sattering of four salars is estimated for theurrent maximal energy at the LHC.
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IntrodutionUni�ation of theories has always been a fundamental onept in theoretial physis. WhenEinstein formulated the theory of general relativity in 1916 it was a suessful generalizationof his theory of speial relativity of 1905 and he kept on pursuing an even more generaltheory in whih he ould formulate equations desribing eletromagnetism as well as gravity.Einstein did not sueed but his strive for uni�ation is harateristi for a physiist's way ofthinking. This is exempli�ed in modern high energy physis where uni�ation plays a entralrole for the understanding of the fundamental partiles and interations observed in nature.Four fundamental interations are observed with a huge di�erene in strength spanning over39 orders of magnitude. One intriguing problem is to understand why the strengths of thefundamental interations are so di�erent. The di�erene in strengths an be illustrated by thefollowing example where the eletromagneti interation is ompared to gravity. One an ruba omb on a piee of lothing to add stati eletriity to the omb surfae. The omb will thenbe able to lift a piee of paper due to the net di�erene in harge between the omb and thepaper and this shows how the eletromagneti attration due to the small net harge di�ereneeasily overomes the gravitational interation between the entire earth and the paper.The relative weakness of gravity is re�eted in the standard model of partile physis whihuni�es all fundamental interations exept gravity. It is believed that both gravitational andquantum e�ets are important at sales near the Plank energy EP ∼ 1019 Gev, determineduniquely by ombining the fundamental physial onstants ~, G, and c, assoiated respetivelywith quantum phenomena and gravity. Although the standard model provides a orret de-sription of nature at more moderate energies it is not a orret theory near the Plank energysine it does not inorporate gravity. The standard model is therefore an example of an ef-fetive theory whih is de�ned in general as a theory with a validity only within some ertainenergy sale. This is manifest in many branhes of physis where the physial understandingof di�erent energy regimes is based on e�etive theories. Although a full desription valid forany energy sale might not exist, the di�erent energy regimes an be very well understood indi-vidually in the frame of e�etive theories. This thesis is no exeption from the omprehensiveuse of e�etive theories sine it is written in the framework of an e�etive theory.E�etive theories an be studied from sattering amplitudes whih are diretly onnetedto experiments performed at partile aelerators. The onnetion between theory and experi-ment goes through the sattering ross setion and this makes sattering amplitudes naturallyinteresting. This thesis is motivated by the reent progress in the �eld of sattering ampli-tude alulations in Yang-Mills and gravitational theories where developments have resultedin new tehnology. The results presented in [1℄ are part of these interesting developmentsand this referene ontains among other things alulations of string theory sattering ampli-tudes in four-dimensions. These amplitudes are alulated from the Dira-Born-Infeld ationwhih is a famous e�etive ation desribing gauge �elds on D-branes in the low-energy limitPage 5



of superstring theory. The alulations are performed with use of the spinor-heliity forma-lism whih in this ontext appears to be the right language for four-dimensional alulationssine the results for the amplitudes and the alulations themselves simplify onsiderably dueto the formalism. Just as the spinor-heliity formalism seems to be the right language forfour-dimensional alulations, another motivation for this thesis is to study a possible similarlanguage in six dimensions in whih alulations and results are more streamlined. In order tolook for traes of the simpli�ations in four dimensions it is therefore interesting to study sat-tering amplitudes in higher dimensions using a modi�ed form of the spinor-heliity formalism.This is addressed among other things in this thesis where the goal is to extend amplitudealulations from four dimensions and to perform amplitude alulations in six dimensionswhih have have not previously been done.The thesis is strutured as follows. Chapter 1 ontains an introdution to the basi on-epts of string theory with fous on quantization of the lassial string. Also the onept ofsupersymmetry and the important objets in the open string setor known as D-branes aredisussed. The use of e�etive theories is disussed along with an introdution to the Dira-Born-Infeld e�etive ation. In hapter 2 the useful spinor heliity formalism is introdued asa ontinuation of a more general disussion of spinors and representations of tensors. Also areview of the basi �eld theory methods used throughout the thesis is presented with fouson the use of funtional methods. These methods and the observations from the �rst twohapters are put to use in hapter 3 where sattering amplitudes with spei� on�gurationof external polarizations are alulated in four dimensions. These alulations are performedalong the lines of [1℄. Chapter 4 ontains alulations of sattering amplitudes in six dimen-sions inluding alulations whih have previously not been performed. These alulations arebased on manipulations of the four-point sattering term in the Dira-Born-Infeld Lagrangianand the developments in this ontext are also disussed in this hapter. Finally, hapter 5ontains a disussion of the results obtained in hapters 3 and 4 along with some generalonluding remarks. Additional details of omputations are found in the �rst appendix. Theseond appendix ontains as a servie to the reader the new results for the amplitudes whihhave not previously been alulated.

Page 6



Chapter 1String theory bakgroundString theory is a huge subjet in theoretial physis and a deep disussion of the �eld isbeyond the sope of this thesis. This setion presents therefore the onepts that are mostimportant in order to plae sattering amplitude alulations in a bigger piture of an e�etivetheory emerging from string theory.String theory is a andidate for a uni�ed theory desribing the fundamental interationsand elementary partiles in nature. If string theory is a more fundamental theory than thestandard model of partile physis, the results of the standard model must emerge somehowfrom it. An interesting aspet in this ontext arises in onnetion with the objets in stringtheory known as D-branes. The standard model is a quantum �eld theory of interating gauge�elds and it is found in string theory that D-branes have gauge �elds living on them. Firstorder orretions to these gauge �elds are studied in this thesis where alulations of satteringamplitudes for photon sattering in the frame of an e�etive theory is the main tool.1.1 E�etive theoriesThe importane of e�etive theories was addressed in the introdution. An example of ane�etive theory is the Fermi theory for β deay whih was developed in 1933 by Enrio Fermias a theory of weak interations. One problem at that time was to desribe the observedontinuous spetrum for the eletron energy in a β-deay proess and in 1930 Wolfgang Paulisuggested the existene of the neutrino in order to solve the problem. A typial β-deayproess ould then be
n→ p+ e− + ν̄e , (1.1.1)aording to the suggestion by Pauli. Fermi assumed in his formulation of the theory thatthe interation responsible for this deay was pointlike. This provided a good qualitativedesription of the deay proess and the theory had great phenomenologial suess. Earlyexperiments for the Fermi theory arried out at energies below 10 Mev were onsistent withthe assumption of a pointlike interation but a deeper struture has been revealed as experi-ments at larger energies have been arried out with newer generations of partile aelerators.Consequently it is known today that the interation is not pointlike and that it takes plaewith an intermediate W− boson deaying into the eletron and the eletron antineutrino. The

W is a heavy partile with mass mW ∼ 80 GeV and it was not disovered until 1983. Thisexample with the Fermi theory illustrates the typial use of an e�etive theory: It provides aPage 7



good approximation at lower energies but beomes insu�ient in order to desribe the deeperstruture at higher energies.In the disussion of low-energy e�etive theories in partile physis it is natural to introduethe propagator whih will be disussed in detail setion 2.2. The propagator in a quantum�eld theory desribes the amplitude for a partile to propagate in spaetime and it is of theform
1

p2 +m2
, (1.1.2)where p is the momentum andm the partile rest mass. In the low-energy limit the momentumis negligible ompared to the rest mass so that

p

m
≪ 1 , (1.1.3)and hene (1.1.2) beomes

1

m2

[

1 − p2

m2
+ O

(
p4

m4

)]

. (1.1.4)This an be understood heuristially from a omparison with the law of inertia in lassialphysis where a larger fore is required in order to aelerate a heavier body. As for a massivepartile in a quantum �eld theory, a su�iently high energy is required in order to �move�the partile and make it take plae in interations. For su�iently low energies the massivepartiles an therefore be ignored so that only massless partiles are onsidered in interations.In this sense one an say that high energy struture is hidden in the e�etive theory desribingthe low-energy limit. The e�etive ation is de�ned in priniple by the funtional integralwhih will be disussed in detail in setion 2.2.4. The ordinary ation is formally replaed bythe e�etive ation
Sfull =

∫

dnxLfull → Seff =

∫

dnxLeff , (1.1.5)in whih only variables important for the partiular sale under study are taken into aount.It should be noted that this proedure is only used in priniple. For pratial purposes, theappropriate e�etive ation is onstruted with desired dependene on relevant variables.1.1.1 Physis at di�erent energy salesAs disussed in the introdution, one problem in physis is to understand why the strengths ofthe four fundamental interations are so di�erent. This is known as the problem of separationof sales. A rough omparison for the oupling onstants for the fundamental interations is
αstrong = 1 , αelectromagnetism ∼ 10−2, αweak ∼ 10−6 , αgravity ∼ 10−39 , (1.1.6)and it is apparent that gravity is by far the weakest of the interations. The strong, the weakand the eletromagneti interation tend to unify at energies Eun ∼ 1014 Gev. This disussioninvolves an interesting aspet of supersymmetry whih is addressed in setion 1.2.4. It shouldbe noted that the omparison of the oupling onstants for the fundamental interations ismore ompliated than what is apparent from (1.1.6). This is beause the interations havePage 8



di�erent ranges so that a omparison of the oupling onstants is only meaningful on a givenenergy. For (1.1.6) the sale is the mass mZ ∼ 91 Gev of the Z boson. This will not bedisussed in further detail.Gravity is so weak that it an be negleted in alulations in the standard model. Howeverit is believed that gravity beomes important in physis at the Plank sale whih is given bythe Plank length de�ned uniquely in terms of the fundamental onstants ~, G and c as
ℓP =

√

~G

c3
∼ 2 × 10−33 cm . (1.1.7)Beause the Plank length is onstruted from the fundamental units assoiated with quantummehanis and gravity it is believed that both interations are important at this sale. ThePlank energy is de�ned uniquely as

EP =

√

~c5

G
= mPc

2 ∼ 1019 Gev , (1.1.8)and it is the natural energy sale assoiated with the Plank length. As both quantum phe-nomena and gravity are important at the Plank sale, a theory whih uni�es these twointerations is neessary in order to desribe physis at this sale. One problem in the uni�a-tion of gravity with the other three fundamental interations is that general relativity is notpower ounting renormalizable beause it has a dimensionfull oupling onstant. This meansthat a theory providing a uni�ed desription of quantum mehanis and gravity annot beonstruted in the most straightforward way.1.1.2 String theory and the standard modelThe standard model of partile physis is the theory whih aounts for the desription ofelementary partiles and their interations. The standard model is able to explain all experi-mentally observed partiles and their interations as an internally onsistent theory of quantum�elds. The theory is a non-Abelian gauge theory with gauge group U(1) × SU(2) × SU(3)and it explains three of the four fundamental interations; the eletromagneti interation, theweak interation and the strong interation. The standard model has proven very suessfuland at the time of writing, no high energy partile experiment has yielded results in disagree-ment with the standard model. However, one piee is still missing in the uni�ed piture asthe standard model annot inlude gravity whih is desribed by the entirely di�erent theoryof general relativity. This is one reason why it is widely believed that the standard model isan e�etive theory desribing the low-energy limit of a more fundamental theory whih alsoinludes gravity. An interesting aspet in this ontext is that string theory ontains naturallya massless spin-2 partile whih is the quantum of gravity, known as the graviton. It is theurrently hypothetial arrier of the gravitational interation just as the photon is the arrierof the eletromagneti interation. String theory is therefore a andidate for suh a morefundamental and unifying theory. It is formulated by the assumption that all partiles andtheir physial properties are vibrations of very tiny physial strings and in this way, both thefermioni partiles that make up matter and bosoni partiles that transmit the fundamen-tal interations are uni�ed. This property that everything is build into the theory from thebeginning is the power of string theory. The simpliity is manifest by a omparison with thestandard model whih has almost 20 adjustable parameters that have to be determined fromexperiments in order to get a onsistent theory. Page 9



1.2 Foundation of string theoryAn interesting historial aspet is assoiated with string theory sine it was not oneived as atheory of strings but emerged as a onsequene of a postulate by Gabrielle Veneziano in 1968.1.2.1 The Veneziano amplitudeIn the late 1960's interations of π-mesons were studied intensively along with satteringamplitudes. Today it is known that the π-meson is a bound state of a quark and an antiquarkbut at that time π-mesons were onsidered to be elementary partiles just as the proton andthe neutron were. For the study of sattering of four partiles it is onvenient to introdue
p1

p2

p3

p4

s−channel

p1 p2

p3 p4

t−channel

Figure 1.1: A sattering proess through the s-hannel. Figure 1.2: A sattering proess through the t-hannel.the Mandelstam variables
s = (p1 + p2)

2 , t = (p1 + p4)
2 , u = (p1 + p3)

2 , (1.2.1)whih for massless partiles beome
s = 2 p1 · p2 , t = 2 p1 · p4 , u = 2 p1 · p3 , (1.2.2)de�ned in terms of the four-momenta of the four interating partiles. The sattering offour partiles an be desribed as taking plae through the s, t or the u-hannel as shown in�gures 1.1 and 1.2 for the �rst two hannels. The physial interpretation of partile satteringthrough the s-hannel is di�erent from that of interations through the t-hannel. However, thetwo interation hannels are just two ways of desribing the same physial interation wherepartiles 1 and 2 interat and produe partile 3 and 4. The poles in the transition amplitudemust therefore be the same regardless of hannel. Veneziano searhed for a mathematialformula whih desribed this kind of interation for π-mesons and he simply wrote down theamplitude

A(p1, p2, p3, p4) = g2
0

∫ 1

0
dxx2α′p1·p2 (1 − x)2α

′p2·p3 , (1.2.3)as a postulate. The pi's are the partile momenta. The Veneziano amplitude an as well berewritten in terms of the β-funtion and the Γ-funtion as
A(s, t) = g2

0

Γ (−α (s)) Γ (−α (t))

Γ (−α (s) − α (t))
= g2

0 β (−α(s) ,−α (t)) , (1.2.4)Page 10



with
α(s) ≡ α′s+ 1 , (1.2.5)and g0 denoting the strength of the interation. It follows from properties of the β-funtionthat the amplitude an be expressed as

A(s, t) = −
∞∑

n=0

(α(s) + 1) (α(s) + 2) · · · (α(s) + n)

n!

1

α(t) − n

= −
∞∑

n=0

(α(t) + 1) (α(t) + 2) · · · (α(t) + n)

n!

1

α(s) − n
, (1.2.6)whih an be found in [2℄. The amplitude postulated by Veneziano resulted in muh ativityin the researh �eld. This researh ulminated in the realization that elementary partilesmodeled as vibrational modes of one-dimensional strings instead of zero-dimensional partilesare subjet to interations desribed exatly by the amplitude written down by Veneziano.The physial interpretation of the theory was due to Yoihiro Nambu, Holger Beh Nielsenand this realization was essentially the birth of string theory.A pole in a sattering amplitude orresponds to the exhange of a physial partile. Thepoles in the Veneziano amplitude an be read of diretly from (1.2.6) and it is apparentthat the amplitude has the same poles in the s-hannel as in the t-hannel. Beause of thissymmetry where the two hannels represent two ways of looking at the same sattering proess,Veneziano's model beame known as the dual resonane model.1.2.2 Construting the string ationThe fundamental assumption in string theory is that the basi objets are tiny strings with aphysial extension in one spatial dimension. This is very di�erent from the notion in quantum�eld theory where partiles are onsidered as zero-dimensional points. The fundamental salein string theory is the length sale of the strings given by the string parameter

α′ ∼ ℓ2P , (1.2.7)with the Plank length given in (1.1.7). This parameter is also known as the slope parameterand it is the only parameter that enters the theory. A good pitorial way to think of stringtheory is to ompare a relativisti tiny string with a lassial guitar string whih has ertainresonant frequenies depending on its length and tension. The di�erent resonanes of a guitarstring are pereived by the human ear as di�erent musial notes whereas the di�erent vibra-tional modes of the relativisti string onstitute partiles and their basi properties. Thismeans that a partile in string theory is just a partiular osillation mode of a string andthat di�erent partiles simply orrespond to di�erent osillation modes. The di�erent vibra-tional modes have di�erent energies whih lead to di�erent masses for the partiles throughEinstein's famous mass-energy relation. Examples of di�erent osillation modes are given in�gure 1.3. All other properties of a partiles suh as harge and spin are also governed by thevibrational patterns of strings. As desribed above, this is exatly the power of string theory.Sine everything is just vibrational modes of the same string, matter and fores are uni�edand all partiles and fores are intrinsially build into the theory from the beginning. Page 11



Figure 1.3: Di�erent string osillation modes. A string an undergo an in�nite number of di�erent resonanesand the length and tension of the string determine whih resonanes are allowed. The onnetion between stringvibrations and partile properties an be illustrated for the mass of a partile. Beause of Einstein's equivalenepriniple between mass and energy, a low osillation mode orresponds to a small mass whereas high energyosillations orrespond to a large partile mass. The leftmost string osillation is the lowest possible osillationmode and it orresponds therefore to the lowest possible partile mass in the string spetrum. The examples inthe middle and to the right orrespond to the next two masses in the spetrum.String theory is formulated by writing down the appropriate ation and quantize it byimposing quantum mehanial momentum and position ommutation relations. In this on-text, the ation for a relativisti point partile is a good starting point for the disussion ofthe string ation. A relativisti point partile propagating in spaetime traes out a worldline whih is parametrized by the proper time of the partile. The proper time τ is a Lorentzinvariant and is onneted to the world line of the point partile by the integral
τ =

∫
dt

γ
=

∫

ds , (1.2.8)with the usual relativisti γ-fator
γ =

1
√

1 − v2
, (1.2.9)where c = 1. From (1.2.8) it follows that the in�nitesimal proper time is onneted to thein�nitesimal line element of the world line by

dτ = ds . (1.2.10)All Lorentz observes must agree on the value of the ation for any world line of the partile.Sine the proper time is a Lorentz invariant and onneted to the world line it is natural toonstrut the ation for the point partile proportional to the proper time. Equation (1.2.8)holds for natural units where length has the inverse dimension of time and in order to ensurethat the point partile ation is dimensionless the proper time is multiplied by the rest masswhih is also a Lorentz invariant. The relativisti point partile ation is hene written as
Srel = −m

∫

ds , (1.2.11)where the minus sign turns out to be orret in order to reover the right expression for thekineti energy when the Lagrangian is expanded in the lassial limit of low veloity. Theation for a one-dimensional string an be onstruted as a generalization of the point partileation. The string propagating in spaetime traes out a two-dimensional world sheet and justas all Lorentz observes will agree on the elapsed proper time of the point partile, all Lorentzobserves will agree on the size of the area of the world sheet traed out by the string. Heneit is natural to onstrut the ation for the string being proportional to the integral over theworld sheet area. To ensure that the ation is dimensionless it must be multiplied with aPage 12



Lorentz invariant quantity with dimension of inverse length squared. The fundamental stringparameter is one suh objet and the resulting ation is known as the Nambu-Goto ation
SNG = − 1

2πα′

∫

dA . (1.2.12)Equation (1.2.12) is fundamental in the sense that it shows how the fundamental string pa-rameter α′ is the only parameter that enters the theory.1.2.3 String quantizationIn order to obtain a quantum theory, the string ation is quantized by imposing quantumommutation relations on the string momentum and position. It should be noted that inpratie, often an ation known as the Polyakov ation will be used instead of the Nambu-Goto ation when a string theory is quantized. These two ations are lassially equivalentbut the Polyakov ation is more onvenient for a quantum formulation. Quantization of thestring ation yields the di�erent osillation modes with orresponding masses in the stringtheory. This is known as the string spetrum. As desribed above, the only parameter of thetheory is the string parameter α′ and one must therefore expet that the mass sale is set bythis parameter. In order to have the right dimension of the mass
m2 ∼ 1

α′
, (1.2.13)must hold. A bosoni string theory is a theory that ontains only bosons. It an be shown thata bosoni string theory requires 26 spaetime dimensions in order to be physially onsistent.Suh a theory an be quantized in four di�erent ways depending on hoie of string boundaryonditions. Strings an be open with free ends or they an be losed with the ends joinedtogether. Furthermore strings an be onsidered orientable or unorientable. An orientablestring has two di�erent diretions to travel along whereas an unorientable string has only onediretion. All bosoni theories inlude a partile known as the tahyon whih has the lowestmass in the string theory spetrum. The mass square is

m2
tachyon = − 1

α′
, (1.2.14)so that the tahyon mass is imaginary. The existene of the tahyon with imaginary masssignals an instability of the theory whih an be seen from the potential for the tahyon �eld

T . The potential is
V (T ) =

1

2
m2 T 2 < 0 , for m2 < 0 , (1.2.15)whih is just a parabola with an unstable maximum. The existene of the tahyon ombinedwith the existene of bosons only are two features in a bosoni string theory that make itunattrative as a andidate for a real theory. The Veneziano amplitude as disussed in setion1.2.1 is interpreted in string theory as the sattering of four open string tahyons.To be onsidered as a theory of everything, string theory must ontain fermions. Fermionsobey Pauli statistis where two idential partiles annot be in the same quantum state. Thisauses fermioni theories to be more ompliated than bosoni theories. It an be shownthat a fermioni theory lives naturally in 10 spaetime dimensions and that a onept knownas supersymmetry is neessary in order to make it physially onsistent. Supersymmetry isa suggested fundamental symmetry in nature between fermions and bosons whih will bedisussed below. Page 13



1.2.4 SupersymmetryNature is onsidered to have a number of symmetries. One example is Einsteins equivalenepriniple aording to whih the physial laws are the same in all loal inertial frames. Besidethe observed symmetries in nature one an think of a possible symmetry whih relates bosonsand fermions. This symmetry is known as supersymmetry (SUSY) and it relates to anyelementary partile a supersymmetri partner with the same mass and a spin quantum numberwhih is dereased by half a unit of spin. Supersymmetry is an independent onept and anexist in nature independent of string theory. However, there is an interesting interplay betweensupersymmetry and string theory sine supersymmetry is neessary in a string theory thatinludes fermions. A string theory with supersymmetry is known as a superstring theory.An interesting aspet in onnetion with supersymmetry is the possible uni�ation of theoupling onstants of the eletromagneti interation, the weak interation and the stronginteration. These oupling onstants depend on the energy as disussed in setion 1.1.1. Asseen in [3, 4, 5℄ the oupling onstants almost unify in the standard model around Eun ∼
1014 GeV. But only almost. If supersymmetry is inluded, it is found that the three ouplingonstants will unify at Eun,SUSY ∼ 1016 Gev whih is known as gauge uni�ation. This isnaturally an indiation for the presene of supersymmetry in nature.As string theory is believed to be a unifying theory, the physis of the standard modelshould emerge from string theory somehow. There has been no experimental evidene ofsupersymmetri properties for the partiles of the standard model. One possible explanationis that if supersymmetry is part of nature it must be spontaneously broken at low energiesby some unknown mehanism. The undisovered supersymmetri partners to the elementarypartiles must therefore be very heavy. Some of these supersymmetri partners have preditedmass ranges whih should be visible at the LHC at CERN and the existene of supersymmetryin nature ould therefore be suggested by future LHC experiments. This is exiting sinesupersymmetry is needed in order to ensure string theories to be physially onsistent.
Figure 1.4: An interation proess between a D-brane and a string. Both ends of the open string are subjetto Neumann boundary onditions on the D-brane. The ends an join to form a losed string whih an leave theD-brane. The proess an as well be reversed so that a losed string hits the D-brane. The losed string setor isnot onsidered so interations like this is ignored.1.2.5 D-branes and gauge theoriesNaturally there is a di�erene between open and losed strings. However, a losed string anbreak up into an open string and onversely the ends of an open string an join to form a losedstring. Only the open string setor will be onsidered in this thesis. The ends of an open stringare naturally subjet to ertain boundary onditions of whih there exist two di�erent types.A string with its endpoints free to move is subjet to Neumann boundary onditions in whihPage 14



ase momentum is onserved at the endpoints. A string having its endpoints �xed is subjet toDirihlet boundary onditions where momentum transfer takes plae at the string endpoints.Objets on whih open strings an end are known as D-branes and play an important role instring theory.A D-brane is de�ned as a hypersurfae onto whih strings an end with Dirihlet boundaryonditions. A D-brane is often written as a Dp-brane where p is an integer and denotes thenumber of spatial dimensions of the hypersurfae. The integer p an take any value from 0 to
d − 1. A D(d− 1)-brane is known as a spae �lling brane and sine superstring theories livenaturally in ten dimensions, a D9-brane is a spae �lling brane in a superstring theory. In thease of a spae �lling brane, the string endpoints are �xed on a hypersurfae whih �lls theentire spae. This orresponds therefore to a free open string subjet to Neumann boundaryonditions. For a general Dp-brane in d dimensions, open strings are subjet to boundaryonditions aording to

p+ 1 diretions with Neumann boundary onditions (1.2.16)
d− (p+ 1) diretions with Dirihlet boundary onditions . (1.2.17)It follows that an open string whih ends on a D3-brane is subjet to Neumann boundaryonditions in 4 dimensions and Dirihlet boundary onditions in 6 dimensions.An arrangement of several losely spaed D-branes enfores some onstraints on whihstring states an be found in a system. For two D-branes lose to eah other, strings anstreth with an endpoint on eah brane. A string strething between the two branes has aertain minimum length whih equals the brane separation. When a string is pulled, energy isadded to the string sine work is done on the string as it is pulled against its tension. Addingenergy to the string is equivalent to adding mass. The separation of the D-branes thus ontrolsthe minimum mass of the resonane modes of open strings. In this sense the arrangement ofD-branes ontrols whih partiles are present in the string theory.The simplest ase ours when a string has both endpoints attahed to the same D-brane.This is shown in �gure 1.5. One an analyze this situation by quantizing the relevant stringation and �nd that the photon is among the partiles of the spetrum where it is reognizedas the lowest osillation mode. In this sense an eletromagneti �eld is living on the D-brane.It is found in general that a Dp-brane has an eletromagneti �eld obeying a p-dimensionalgeneralization of Maxwell's equation living on it. From (1.2.16) and (1.2.17) it is apparent thatthe study of strings with both endpoints on a single D3-brane negleting all string osillationmodes exept for the lowest, leads to eletromagneti interations in 3 + 1 = 4 dimensions.Likewise, the study of open strings with both endpoints on a D5-brane leads to a generalizationof eletromagnetism in six dimensions.The situation an be studied in the more general ase with N losely spaed D-branesand open strings with endpoints on the branes. It an be shown that in the limit where allbranes are put on top of eah other, this orresponds exatly to a U(N) gauge theory whihis therefore in general non-Abelian. The disussion above with one single D-brane is hene aspeial ase with N = 1 whih therefore orresponds to a generalization of eletromagnetismwith gauge group U(1).The e�etive ation desribing eletromagnetism on the worldvolume of a single Dp-braneis

SDp =

∫

dp+1x (LDBI + · · ·) , (1.2.18)Page 15



to leading order where LDBI is the Dira-Born-Infeld Lagrangian. Only the ontributions fromthe DBI-ation will be studied.
Aµ

Figure 1.5: The simple ase where both ends of anopen string are subjet to Neumann boundary ondi-tions on one single D-brane. The lowest osillation modeof the string orresponds to a massless gauge �eld andthe D-brane has therefore an eletromagneti �eld livingon its worldvolume. For a Dp-brane the eletromagneti�eld lives in p+ 1 dimensions.
1.3 String theory and experimentThe link between theory an physial observations in nature goes through experiments andmeasurements. In order to be able to test a theoretial model it has to ontain parameterswhose numerial values an be measured from an experiment. A good theory is even able togive a sharp predition whih an be tested. In turn, the interesting quantities to alulateare those that an atually be experimentally determined or at least be onneted somehowto experiment. The following is a quik omparison of relevant energy sales.1.3.1 Energy salesIn order to study phenomena at the Plank sale, at least naïvely, energies omparable withthe Plank energy (1.1.8) are neessary. The string sale is of the order of the Plank sale andit an therefore in priniple be studied diretly by using energies omparable to the Plankenergy. At the Large Hadron Collider (LHC) at CERN, proton beams will be ollided witha maximal energy of Ebeam ∼ 7 Tev so that the total maximal energy is Emax ∼ 14 Tev. Aomparison yields

Emax

EP
∼ 1.4 × 10−15 , (1.3.1)so the maximal energy at the LHC is roughly 15 orders of magnitude too small for the purposeof string theory experiments. This is naturally a very rough estimate whih however givesa good indiation of how far the string sale is from the available energies in the presentgeneration of partile generators. An interesting estimate an be made for the size of theaelerator ring at the LHC. The radius of the ring is rLHC ∼ 27 km and the maximal possibleenergy is Emax ∼ 14 Tev. By assuming that the maximal energy sales linearly with the radiusof the ring, it an be estimated that an aelerator with a maximal energy Emax = EP equalto the Plank energy would require a ring with radius r ∼ 103 parsec whih is approximatelythirty times smaller than the diameter of the Milky Way.In priniple, there ould be very large unknown fators whih have to be aounted for inan estimate like (1.3.1). This is onsidered in setion 4.5 where an estimate for a ross setionwill be given.Page 16



1.3.2 Interation ross setionsIn the disussion of experiments and string theory it is natural to address the ross-setion.Basially it is a measure of the likelihood of an interation of partiles whih is independentof beam harateristis. More spei�ally, the ross setion is de�ned by onsidering twoylindrial olliding beams of ertain partiles. These beams are referred to respetively as aand b and have the respetive partile number densities ρa and ρb. For eah beam, only a slieof length l is onsidered suh that two bunhes of partiles with respetive lengths la and lbare ollided. If A denotes the area where the two beams ollide, the ross setion is de�nedas the total number of sattering events N divided by the beam quantities
σ =

N

Aρalaρblb
, (1.3.2)where the studied sattering events an be of whatever type desired. From (1.3.2) the rosssetion has dimension

(

[area] [volume]−2 [length]2
)−1

= [area] . (1.3.3)It is interpreted as the e�etive area of the target partile as seen from the inoming partilewith the assumption that the partiles will satter with 100 % ertainty if this area is hit.The de�nition (1.3.2) is symmetri in a and b as it should be sine the sattering proess isnot a�eted by hoie of referene frame.In order to probe the behavior of elementary partiles, beams with well-de�ned partilemomenta are ollided and the �nal-state partiles and their momenta are deteted. Whendoing so, the ross setion beomes in�nitesimal
dσ

d3p1 · · · d3pn
, (1.3.4)and dependent on the momentum of the outgoing partiles. An integration over any smallmomentum d3pi determines the ross setion for sattering into that partiular �nal-statemomentum. The situation simpli�es for the sattering of four partiles due to four-momentumonservation and the two partiles in the �nal state are onstrained in suh a way that onlytwo omponents of the �nal-state momenta are independent. These two omponents an bespei�ed with two spherial angles and the di�erential ross setion is therefore expressedusing the solid angle dΩ. For four idential partiles with idential masses the di�erentialross setion is

dσ

dΩ
=

|A|2
64π2E2

cm

, (1.3.5)and is determined by the enter of mass energy in the ollision and the square of the ampli-tude for the partiular sattering proess. This is essentially the reason why alulations ofsattering amplitudes are so interesting sine it is apparent from (1.3.5) how the satteringamplitude is the diret onnetion between theory and experiment. It is also apparent thatthe ross setion is independent of beam harateristis as it should be. Page 17



1.4 Born-Infeld theoryThe Dira-Born-Infeld ation was disussed brie�y in a string theory ontext in setion 1.2.5as the e�etive ation desribing a gauge �eld living on the worldvolume of a D-brane. Inthis thesis the DBI-ation is used as an e�etive ation from whih sattering amplitudes arealulated. However, this is far from the original purpose for the ation whih was founded byMax Born in 1933 [6℄ and developed further in 1934 in ollaboration with Leopold Infeld [7℄many years before string theory. The Born-Infeld theory was formulated for the purpose ofsolving the problem in ordinary Maxwell theory that a harged point partile has an in�niteself energy at the origin. In 1960 Dira elaborated [8℄ on the original work by Born and Infeldand this is where the name Dira-Born-Infeld (DBI) omes about.1.4.1 Historial motivationAt the time of the paper [7℄ by Born and Infeld the relations between matter and eletromag-neti �elds were interpreted from two opposite viewpoints; the unitarian viewpoint versus thedualisti one. In the unitarian viewpoint, the eletromagneti �elds are assumed to be theonly physial entities and thus partiles are onsidered as singularities of the �elds. Aordingto this viewpoint, the mass of a partile is a derived notion whih is expressed in terms of theenergy of the eletromagneti �eld. The dualisti viewpoint operates with partiles and �eldsas two distint entities where partiles are the soures of the �elds. The partiles are as wellated upon by the �elds. The dualisti viewpoint was widely aepted when the Born-Infeldtheory was formulated. In partiular it was supported by the theory of general relativity aswell as quantum mehanis whih is essentially based on a dualisti point of view. In ordinaryMaxwell theory the dualisti viewpoint su�es as long as the wavelengths of the �elds arelarge ompared to the eletron radius. On smaller length sales the theory breaks down andleads to an in�nite eletri �eld at the origin and thereby an in�nite self energy of a hargedpoint partile. The motivation for the formulation of the modi�ed theory was to avoid thesein�nities whih have later been removed with the priniple of renormalization. Born and Infeldused the priniple of �niteness aording to whih a satisfatory physial theory should notallow any physial quantity to beome in�nite. The in�nite self energy for a harged pointpartile is disussed below.1.4.2 Self energy for a harged point partile in Maxwell theoryThe disussion begins with the operation of dualization whih an be de�ned in four dimensionsas
F̃µν =

i

2
εµνρσF

ρσ . (1.4.1)With the metri (2.4.1) and the onvention that
ε0123 = +1 , (1.4.2)Page 18



the eletromagneti �eld strength tensor and its dual are given expliitly for c = 1 in matrixform as
Fµν =







0 −Ex −Ey −Ez
Ex 0 −Bz By
Ey Bz 0 −Bx
Ez −By Bx 0






, F̃µν = i







0 −Bx −By −Bz
Bx 0 −Ez Ey
By Ez 0 −Ex
Bz −Ey Ex 0






, (1.4.3)in terms of the spatial �eld omponents for the magneti and eletri �elds. By use of theusual three-vetor notation

E = (Ex, Ey, Ez) , E2 = E ·E , E ·B = ExBx + EyBy + EzBz , (1.4.4)the objets C1 and C2 an be onstruted from Fµν and F̃µν as
C1 ≡ −1

4
FµνF

µν =
1

2

(
E2 −B2

)
, C2 ≡ −1

4
Fµν F̃µν = −iE · B , (1.4.5)suh that both objets are fully ontrated and hene Lorentz invariant. The �eld strengthtensor is by itself gauge invariant and both C1 and C2 are therefore gauge invariant. It anbe shown that C1 and C2 are the only independent naturally invariant objets that an beonstruted from Fµν without using its derivatives. This is disussed in A.1 with use of thespinor-heliity formalism from setion 2.1.7. The ordinary Maxwell Lagrangian is

LMaxwell = −1

4
FµνF

µν = C1 , (1.4.6)and in vauum where D = E, the energy density is given by
HMaxwell = E · D− LMaxwell =

1

2

(
E2 +B2

)
, (1.4.7)with D denoting the eletri displaement �eld. In the eletrostati ase B = 0, the energydensity is H ∼ E2 and the self energy of a harged point partile is alulated by integratingthe energy density. In a spherially symmetri �eld from a harged point partile, the eletri�eld an only have radial omponents

E = Er r̂ , (1.4.8)so that Maxwell's equation yields
0 = ∇ · E =

1

r2
∂

∂r
r2Er , (1.4.9)whereby it follows that

|E| ∼ 1

r2
, (1.4.10)for the �eld magnitude as funtion of the distane r from the origin. The self energy is givenby

E =

∫

d3xHMaxwell =
1

2

∫

d3xE2 , (1.4.11)and with the volume element d3 x = r2 sin θ dr dθ dφ the integrand beomes
d3xE2 ∼ dr r2

1

r4
= dr

1

r2
. (1.4.12)This result diverges for small r and it is apparent how the self energy for a harged pointpartile in ordinary Maxwell theory beomes in�nite. Page 19



1.4.3 Modi�ation of ordinary Maxwell theoryThe modi�ation of Maxwell theory aording to Born and Infeld is formulated by replaingthe ordinary Lagrangian (1.4.6) by a new non-linear Lagrangian. This an be done by inorpo-rating a maximal value for the eletri �eld and is another example of an e�etive theory. Thetheory of speial relativity has an inorporated maximal value sine nothing an move with aveloity greater than c. This property is re�eted in the Lagrangian desribing a relativistipoint partile whih is given in (1.2.11). Using (1.2.8) and restoring fators of c yields therelativisti point partile Lagrangian
Lrel = −mc2

√

1 − v2

c2
, (1.4.13)where the maximal possible veloity is vmax = c sine the argument of the square root isrequired positive. This property of maximal veloity in the theory of speial relativity was usedby Born and Infeld as an inspiration. The maximal value for the eletri �eld is inorporatedin the theory by writing the Lagrangian

LMaxwell → L′ = −b2
√

1 − 2C1

b2
+ b2 = −b2

√

1 − E2 −B2

b2
+ b2 , (1.4.14)whih was originally proposed by Born [6℄ in 1934. For B = 0 it follows that

|E| ≤ b , (1.4.15)to ensure a positive argument under the square root. For a small eletri �eld C1 ≪ b2,equation (1.4.14) is expanded as
L′ = −b2

(

1 − C1

b2

)

+ b2 + O
(
C2

1

)
= C1 + O

(
C2

1

)
, (1.4.16)and the Born-Infeld theory resembles the ordinary Maxwell theory in the limit of small �elds,

L′
∣
∣
∣
C1≪b2

∼ LMaxwell . (1.4.17)As was proposed by Born and Infeld [7℄ later in 1934, (1.4.14) an be modi�ed further by theinlusion of one additional term under the square root
LDBI = −b2

√

1 − 2C1

b2
+
C2

2

b4
+ b2 = −b2

√

1 − E2 −B2

b2
− (E · B)2

b4
+ b2 . (1.4.18)This is the Lagrangian known as the Dira-Born-Infeld Lagrangian whih is both Lorentzand gauge invariant sine it is onstruted from C1 and C2. For small �elds C1 and C2 areomparable and hene

LDBI ∼ C1 , (1.4.19)holds in the weak �eld limit just as (1.4.16). The modi�ation from (1.4.14) to (1.4.18) ispreferred beause the latter expression an be generalized. The generalization reads
− det

(

ηµν +
1

b
Fµν

)

= 1 − 2C1

b2
+
C2

2

b4
, (1.4.20)Page 20



whih an be heked expliitly in Mathematia by writing the metri and the �eld strengthtensor expliitly as matries. This partiular omputation an be found in detail in setionA.1. From (1.4.20) it follows that
LDBI = −b2

√

− det

(

ηµν +
1

b
Fµν

)

+ b2 , (1.4.21)whih allows for a generalization to any number of dimensions. It follows straightforwardlyfrom a Lorentz transformation
M →M ′ = ΛMΛT , (1.4.22)with

ΛΛT = 1 , (1.4.23)for the transformation matrix Λ that the determinant (1.4.21) is Lorentz invariant and henealso the DBI Lagrangian.The lassial Maxwell equations inorporate the eletri displaement vetor �eld D andthe auxiliary magneti �eld H in order to desribe eletromagnetism in materials. In a nonlin-ear theory, the vauum itself behaves as some kind of material. Born-Infeld theory desribeseletromagnetism in vauum and sine it is a nonlinear theory there is a nontrivial relationshipbetween E and D. From omputations along the lines of setion 1.4.2 for the displaement�eld D it an be shown [9℄ that the DBI Lagrangian leads to a �nite self energy for a hargedpoint partile as was the original purpose for the modi�ation of the Lagrangian.
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Chapter 2Field theory bakgroundThe low-energy limit of string theory an be viewed e�etively as a quantum �eld theory. Ona low-energy sale, the smallest struture of string theory annot be resolved and string theoryappears therefore e�etively as a quantum �eld theory. Consequently, sattering amplitudesin the next hapters will be alulated by use of perturbative methods from �eld theory.This hapter ontains a disussion of the relevant �eld theory methods used in amplitudealulations. It is disussed how orrelation funtions are omputed by use of Wik ontra-tions and the formalism of funtional integrals are introdued. Furthermore, spinors and inpartiular the spinor-heliity formalism is disussed in detail. The spinor-heliity formalismis a method to express tensors in terms of spinors and it will be useful in expliit alulationsof Wik ontrations in onnetion with sattering amplitudes in the next hapters.2.1 Spinor-heliity formalism in four dimensionsThis setion is based on referenes [10, 11, 12, 13, 14℄ and it deals with the so-alled spinor-heliity formalism, a formalism that enables a translation between tensors and produts of spinvetors. A modern review on the spinor heliity formalism an be found in [15℄. It turns outthat this orrespondene between tensors and spinors is very useful espeially in onnetionwith the study of sattering amplitudes in four dimensions where the alulations simplifywhen tensors are expressed as spinors. The orrespondene is introdued in the followingsetions and it is natural to begin with a disussion of the heliity quantum number.2.1.1 Partile spin and the heliity quantum numberThe spin of a massive partile is found by studying the transformation properties under ro-tations in the rest frame. The angular momentum operator, or the spin operator, in the restframe is denoted by J and it does not have simple transformation properties under Lorentztransformations. It is therefore not the best operator to use in the desription of partilestates. A natural objet to use is the polarization operator
W µ =

1

2
εµνρσPνΣρσ , (2.1.1)with

(Σρσ)µν = i (ηρµησν − ησµηρν) , (2.1.2)Page 22



denoting the generators of Lorentz transformations i.e. boosts and rotations in the vetorrepresentation of the Poinaré algebra. The polarization operator is known as the Pauli-Lubanski vetor and it transforms as a pseudo vetor under Lorentz transformations. Itommutes with the momentum operator
[W µ, P ν ] = 0 , (2.1.3)and it is related to the spin operator by

W 0 = 0 , W 1 = mJ1 , W 2 = mJ2 , W 3 = mJ3 , (2.1.4)where m is the partile mass. The relations (2.1.4) an be obtained expliitly in the rest frame.In a spei� representation the eigenvalues of the square of the Pauli Lubanski vetor are
WµW

µ = −m2j (j + 1) , (2.1.5)in terms of the mass and the partile spin j. It an be shown expliitly that the operator(2.1.5) ommutes with all of the generators of the Lorentz algebra
[

WλW
λ, Pµ

]

=
[

WλW
λ,Σµν

]

= 0 , (2.1.6)whih means that it is a Casimir operator. The other Casimir operator is the invariant massoperator,
PµP

µ = m2 , (2.1.7)so that the eigenvalues of (2.1.5) and (2.1.7) an be used to haraterize an arbitrary physialspin system of elementary partiles. The heliity quantum number an be used instead ofthe spin in the desription of elementary partiles. This is partiularly useful for a masslesspartile where the polarization operator,
W µWµ ∝ m2 = 0 , (2.1.8)does not provide useful information. The heliity operator is de�ned as the projetion of thespin on the diretion of the momentum

H = J · p̂ , (2.1.9)with the unit vetor
p̂ =

p

|p| , (2.1.10)pointing in the propagating diretion of the momentum. An observer of a massive partile willalways be able to perform a boost into a frame in whih the partile momentum is reversed.It follows that the heliity quantum number for a massive partile is not Lorentz invariant butonly invariant under spatial rotations. The situation is di�erent for a massless partile sine ithas no rest frame. An observer annot boost to reverse the diretion of the partile momentumand a massless partile will therefore always appear to spin in the same diretion along itsdiretion of momentum. It follows that the heliity for a massless partile is independent ofPage 23



frame, meaning that it is a Lorentz invariant. A massless partile an be boosted to a framein whih its momentum vetor has the form
pµ = (p, 0, 0, p) . (2.1.11)This vetor is invariant under spatial rotations in the (1, 2) plane and it follows that the littlegroup is SO(2) whih is generated by the angular momentum operator in the 3-diretion. Theangular momentum operator has eigenvalues given by the heliity λ and a massless partilestate an therefore be haraterized with the quantum state

|p, λ〉 , (2.1.12)where λ is the eigenvalue of the heliity operator and p is the eigenvalue of the momentumoperator.2.1.2 Spatial rotationsIn order to express tensors in terms of spinors it is natural to onsider representations. ALorentz transformation on an arbitrary four-vetor will mix all vetor omponents meaningthat the vetor representation of the Lorentz group is irreduible. A tensor with arbitrarilymany indies transforms as
T µ1µ2...µn → T µ

′

1
µ′

2
...µ′n = Λ

µ′
1
µ1

Λ
µ′

2
µ2

· · ·Λµ′nµn
T µ1µ2...µn , (2.1.13)whih is a tensor produt of transformations on eah index. From (2.1.13) it is apparent thatthe tensor representation of the Lorentz group is just a tensor produt of vetor representa-tions. Consequently the vetor representation is said to be the fundamental representationof SO(3, 1). The group of spatial rotations SO(3) is a subgroup of the group of Lorentztransformations. Under spatial rotations governed by SO(3), a tensor representation will belabeled by its angular momentum j and ontain a total number of 2j + 1 states. For SO(3)the angular momentum will be a non-negative integer. A spatial rotation of the four-vetor

vµ =
(
v0,v

) does not mix the spatial omponents with the time omponent whih means thatthe time omponent of the vetor is invariant under spatial rotations and hene has angu-lar momentum j = 0. From the point of view of SO(3) rotations, the four-vetor is then areduible representation sine it an be deomposed into
vµ ∈ 0 ⊕ 1 , (2.1.14)whih is a diret sum of a salar representation with angular momentum j = 0 and a vetorrepresentation with angular momentum j = 1.From non-relativisti quantum mehanis it is known that the tensor representation isnot the only representation of spatial rotations. In partiular the spinorial representation isof physial interest sine fermioni partiles are desribed by spinors whih are the elementsof a spinor representation. The spinor representations are as well labeled by the angularmomentum j whih in this ase take non-zero half-integer values. The group for the spinorrepresentation is SU(2). Both SU(2) and SO(3) have the angular momentum algebra as Liealgebra but the groups are only loally isomorphi sine a rotation of 2π in SU(2) is minus theidentity. In SO(3) a rotation of 2π is idential to the identity. Physial systems with integerPage 24



or half-integer spin an be onstruted as omposite systems of spin j = 1/2 partiles and inpartiular the omposite system
1

2
⊗ 1

2
= 0 ⊕ 1 , (2.1.15)is a diret sum of a salar representation and a vetor representation. The right hand sideof (2.1.15) is equal to that of (2.1.14) and it is apparent how the vetor representation isequivalent to the produt of two spin representations. This equivalene is the starting pointto establish the spinor heliity formalism as the orrespondene between tensors and spinors.2.1.3 Vetor representation and spinor representationThe equivalene disussed above between the vetor representation and the produt of twospin representations is related to the group isomorphism

SO(4) ∼ SU(2) × SU(2) . (2.1.16)To make this expliit, a Lorentz index µ in four dimensions an just as well be written asthe omposite index αα̇ where eah index an take two values. This equivalene between twoways of writing indies an be disussed by onsidering an arbitrarily hosen four-vetor Kµwhih is written as
Kµ =







K0

K1

K2

K3







, (2.1.17)in a partiular referene frame. The four-vetor is fully determined by its four omponents.A hermitian 2 × 2 matrix
M = M† =

[
α β
β∗ δ

]

, (2.1.18)with α = α∗, δ = δ∗ is also fully determined by four independent omponents and it is thereforesuggested that a one-one orrespondene between real world vetors and 2 × 2 hermitianmatries an be established. This is then the orrespondene µ ↔ αα̇ disussed above. Theorrespondene is written as
Kαα̇ ≡ Kµσ

µ
αα̇ , (2.1.19)where σµαα̇ are the Clebsh-Gordan oe�ients for the transition between the vetor represen-tation and the spin representation. The Clebsh-Gordan oe�ients are given by the Paulimatries

(
σ0
)

αα̇
=

[
1 0
0 1

]

,
(
σ1
)

αα̇
=

[
0 −1
−1 0

]

,
(
σ2
)

αα̇
=

[
0 −i
i 0

]

,
(
σ3
)

αα̇
=

[
−1 0
0 1

]

.(2.1.20)This an be seen by onsidering the Lorentz transformation
u′µ = Λ ν

µ uν , (2.1.21)Page 25



expressed in spinor indies
u′αα̇ = u′µ σ

µ
αα̇ = Λ ν

µ uν σ
µ
αα̇ . (2.1.22)Sine the spinor representation is equivalent to the tensor representation, there exist transfor-mation spinors denoted as ζ β

α so that
u′αα̇ = ζ β

α ζ β̇
α̇ uββ̇ = ζ β

α ζ β̇
α̇ uν σ

ν
ββ̇

. (2.1.23)It follows from a omparison of (2.1.22) and (2.1.23) that
Λ ν
µ σµαα̇ = ζ β

α ζ β
α̇ σν

ββ̇
, (2.1.24)whih relates the transformation matrix in tensor indies to the transformation matries inspinor indies. The generalization of (2.1.19) for a tensor with arbitrarily many Lorentz indiesis

Tµ1···µn
σµ1

α1α̇1
· · · σµn

αnα̇n
= Tα1α̇1···αnα̇n

, (2.1.25)where Tα1α̇1···αnα̇n
is an outer produt of n (2 × 2) matries. Equation (2.1.19) has the expliitmatrix form

Kαα̇ =

[
K0 +K3 K1 + iK2

K1 − iK2 K0 −K3

]

, (2.1.26)so that the determinant of the hermitian matrix
det Kαα̇ =

(
K0
)2 −

(
K1
)2 −

(
K2
)2 −

(
K3
)2

= KµK
µ , (2.1.27)is the invariant length of the four-vetor Kµ. As in (2.1.11), for Kµ massless, one an boostto a frame in whih the vetor has omponents

Kµ = (K, 0, 0,K) , (2.1.28)and it is apparent from (2.1.26) that
Kαα̇ =

[
2K 0
0 0

]

=

( √
2K
0

)
( √

2K, 0
)
, (2.1.29)holds when Kµ is massless. It follows that a massless vetor an always be written as theouter produt

Kαα̇ = λαλα̇ . (2.1.30)Writing the general spin vetor
κα =

(
ζ
ξ

)

, (2.1.31)the matrix Q an be onstruted as the outer produt
κακα̇ =

(
ζ
ξ

)
(
ζ∗, ξ∗

)
=

[
ζζ∗ ζξ∗

ξζ∗ ξξ∗

]

≡ Q , (2.1.32)suh that
detQ = ζζ∗ξξ∗ − ξζ∗ζξ∗ = 0 . (2.1.33)This is equivalent to

detKαα̇ = 0 , (2.1.34)for Kµ massless.Page 26



2.1.4 Covariant and ontravariant spinor indiesEquation (2.1.19) has the inversion
Kαα̇ σ

µ,αα̇ = κKµ = Kν σ
ν
αα̇ σ

µ,αα̇ , (2.1.35)suh that
σναα̇ σ

µ,αα̇ = κηµν . (2.1.36)This involves both ovariant and ontravariant spinor indies and it is therefore natural todisuss how spinor indies are raised and lowered. The vertial position of an index is hangedby the metri spinor whih is the spin spae analogue of the metri tensor in spaetime. Themetri tensor ηµν is invariant under Lorentz transformations and it de�nes the invariant innerprodut
aµbµ = aµbνηµν = a′µb′νηµν = a′µb′µ , (2.1.37)between tensors. Furthermore, ηµν ats as the link between ovariant and ontravariant tensorsby raising and lowering Lorentz indies. The element in spin spae whih raises and lowersindies is the metri spinor denoted εαβ . It de�nes the bilinear form
λακ

α = λακβεαβ = λ′ακ
′α = λ′ακ′βεαβ , (2.1.38)for the spinors λ and κ. Spinor produts like (2.1.38) are invariant under SU(2). In tensorlanguage, if tµν denotes the transformation matrix for some oordinate transformation, Kµtransforms as

K ′µ = tµνK
ν , (2.1.39)with an idential transformation in ase of the ovariant tensor Kν . For tensors of moreindies the transformation is just a tensor produt of transformations (2.1.39) for eah index.Similarly the transformation of an arbitrary spinor reads

ζ ′α = Λαβ ζ
β , (2.1.40)and the metri spinor transforms aording to

ε′αβ = Λ γ
α Λ δ

β εγδ . (2.1.41)The metri spinor is required to be invariant under spin transformations
εαβ = ε′αβ

= Λ 0
α Λ 1

β ε01 + Λ 1
α Λ 0

β ε10 , (2.1.42)where the transformation matrix is unimodular.
1 = det Λ = Λ 0

0 Λ 1
1 − Λ 0

1 Λ 1
0 . (2.1.43)If the metri spinor is antisymmetri

ε00 = ε11 = 0 , ε01 = −ε10 , (2.1.44)Page 27



it follows from (2.1.42) that
ε′αβ = ε01

(
Λ 0
α Λ 1

β − Λ 1
α Λ 0

β

)
, (2.1.45)so that an antisymmetri metri spinor is invariant under unimodular spin transformations

εαβ = ε′αβ . (2.1.46)The metri spinor an be written expliitly as
εαβ =

[
0 −1

+1 0

]

, (2.1.47)in matrix form where a hoie of �1� as the entries has been made. Sine εαβ is antisymmetri,the bilinear form (2.1.38) is as well antisymmetri
λακ

α = −λακα , (2.1.48)and it follows that the ontration of a spin vetor with itself neessarily vanishes
λαλ

α = λαλβεαβ = −λαλβεβα = −λαλα = 0 . (2.1.49)As a onsequene of the antisymmetry it is neessary to adopt a sign onvention for theproedure of raising and lowering spinor indies. As indiated in (2.1.38) and (2.1.49) theonvention is that spinor indies desent from left to right suh that
ζα = ζβεβα , ζα = εαβζβ . (2.1.50)For the purpose of determining the expliit matrix expression of the metri spinor with upperindies εαβ it follows from (2.1.50) that

εαβ = εγδ εγα εδβ

= ε01 ε0α ε1β + ε10 ε1α ε0β , (2.1.51)and thereby
ε01 = ε01 = −ε10 . (2.1.52)In terms of matries, εαβ is thereby idential to εαβ . Equivalent relations and matrix expres-sions are found for the spinors εα̇β̇ and, εα̇β̇ in the onjugate spae. A useful result is

εαβ ε
αβ = ε01 ε

01 + ε10 ε
10 = 2 . (2.1.53)2.1.5 Relating the metri tensor to the metri spinorIndividual spinor indies are raised and lowered with the metri spinor just as individualLorentz indies are raised and lowered with the metri tensor. A single Lorentz index µorresponds to a pair of spinor indies αα̇ and a hange in the vertial position of an index µorresponds therefore to a hange in the vertial position of the index pair αα̇. The objet inspin spae whih raises or lowers a pair of indies must therefore be equivalent to the metritensor in spaetime. The purpose of this setion is to determine the relation between thisPage 28



partiular objet in spin spae and the metri tensor in spaetime. The objet εαβ εα̇β̇ issymmetri under (αα̇) ↔
(

ββ̇
) and from

Kαα̇ = εαβ εα̇β̇Kββ̇ , (2.1.54)it is apparent that
ηµν ↔ εαβ εα̇β̇ . (2.1.55)For some onstant C it holds that

ηµνKµKν = C εαβεα̇β̇Kαα̇Kββ̇ , (2.1.56)sine both sides are invariants. The hoie C = 1/2 yields
ηµνKµKν =

1

2

[

2 ε01̇ ε01̇K00̇K11̇ + 2 ε01̇ ε10̇K01̇K10̇

]

=
(
K0
)2 −

(
K1
)2 −

(
K2
)2 −

(
K3
)2

, (2.1.57)by use of (2.1.26). Equation (2.1.56) then beomes
ηµνKµKν =

1

2
εαβ εα̇β̇Kαα̇Kββ̇ =

1

2
KµKν σ

µ
αα̇ σ

ββ̇ , (2.1.58)using (2.1.19) and it is subsequently found that
ηµν =

1

2
σµαα̇ σ

ν,αα̇ . (2.1.59)From the de�nition it holds that
ηαβα̇β̇ = ηµν σ

µ
αα̇ σ

ν
ββ̇

= C̃ εαβ εα̇β̇ , (2.1.60)and ontrating both sides with εαβ εα̇β̇ yields
4C̃ = ηµν σ

µ
αα̇ σ

ν,αα̇ = 8 , (2.1.61)using (2.1.59). The onstant is therefore C̃ = 1/2 and it follows that
εαβ εα̇β̇ =

1

2
ηµν σ

µ
αα̇ σ

ν
ββ̇

. (2.1.62)By onsidering
εαβ εα̇β̇ ε

αβ εα̇β̇ =

(
1

2
ηµν σ

µ
αα̇ σ

ν
ββ̇

)(

κ̃ηλκ σ
λ,αα̇ σκ,ββ̇

)

=
1

2
κ̃ ηµν ηλκ 22ηµλ ηνκ = 2 κ̃ , (2.1.63)it is apparent that κ̃ = 2 and hene

εαβ εα̇β̇ = 2 ηµν σ
µ,αα̇ σν,ββ̇ . (2.1.64)When Lorentz indies are expressed as spinor indies the orrespondene is therefore

ηµν ↔ 2 εαβ εα̇β̇ , ηµν ↔ 1

2
εαβ εα̇β̇ , (2.1.65)whih will beome important in order to obtain the right onstant fators in alulations whenLorentz tensors are translated into spinors. Page 29



Momentum bilinearsFor arbitrary spinors φ and ψ, the momentum bilinears
〈φψ〉 ≡ φα̇ψα̇ = φα̇ψβ̇εβ̇α̇ , [φψ] ≡ φαψ

α = φαψβεαβ , (2.1.66)de�nes respetively the holomorphi spinor produt and the anti-holomorphi spinor produt.If pµ and kµ are both massless pµpµ = kµk
µ = 0, it follows that

(pµ + kµ)2 = 2pµkνη
µν = 2κακα̇λβλβ̇

1

2
εαβεα̇β̇ . (2.1.67)The dot produt of two massless four-vetors an thereby be expressed in terms of spinorbilinears as

2 p · k = 〈λκ〉 [κλ] , (2.1.68)with
kαα̇ = λαλα̇ , pαα̇ = κακα̇ . (2.1.69)Dot produts of massless momenta as (2.1.68) will be written with the notation

2 pi · pj = 〈ij〉 [ji] . (2.1.70)2.1.6 Symmetry properties of spinorsThis setion ontains a disussion of spinors with ertain symmetri properties. In partiularspinors whih are antisymmetri in some indies are onsidered and it is found that thesespinors an be expressed in a simpler form. This is useful in order to express the eletromag-neti �eld strength tensor in spinor indies.If M is an arbitrary antisymmetri 2 × 2 matrix it is of the form
M =

[
0 a
−a 0

]

= a

[
0 1
−1 0

]

, (2.1.71)and it is proportional to the matrix form (2.1.47) of εαβ . It is apparent from (2.1.71) thatthe matrix on the right hand side is neessarily proportional to any antisymmetri 2 × 2matrix. In the spae of 2 × 2 matries, the matrix on the right hand side is therefore theonly antisymmetri one up to a onstant. In terms of indies, this property is manifest suhthat any objet whih is antisymmetri in two indies e.g. (α, β) must be proportional tothe metri spinor εαβ in the same two indies. For an arbitrary antisymmetri spinor Sαβ itfollows therefore that
Sαβ = S[αβ] = κ εαβ , (2.1.72)where [ · · · ] denotes antisymmetrization as in (2.4.5). Contrating with εαβ determines theonstant

κ =
1

2
S α
α , (2.1.73)Page 30



and Sαβ an subsequently be written as
Sαβ =

1

2
εαβ S

γ
γ . (2.1.74)The spinor with only two indies is a speial ase of the general piture. A spinor witharbitrarily many indies with a ertain antisymmetry in two of the indies may be expressedin a way analogous to (2.1.74). In order to �nd this expression and as a ontinuation of thedisussion of antisymmetri spinors, the Shouten identity for produts of metri spinors willnow be derived.Symmetry onsiderations leads to

εαβ εγδ − εδβ εγα = κ εαδ εβγ . (2.1.75)By onstrution, the left hand side is antisymmetri under (α↔ δ) and as well under (β ↔ γ).The right hand side has the same antisymmetri properties and (2.1.75) holds for some ap-propriate numerial onstant κ. Contrating (2.1.75) with εαβ εγδ yields κ = −1 and thereby
εαβ εγδ + εαγ εδβ + εαδ εβγ = 0 . (2.1.76)This is known as the Shouten identity and an as well be obtained from the antisymmetri-zation εα[β εγδ]. In this ase the antisymmetrization is performed over three indies takingonly two values and the result neessarily vanishes. Equation (2.1.76) an be heked diretlyby some expliit hoie of index values or by a ontration with any of the spinors εαβ , εαγ ,

εαδ , εβγ or εβδ . Contrating (2.1.76) with upper indies with εφα εψβ leads to
εαβ ε

γδ = εα
γεβ

δ − εα
δεβ

γ , (2.1.77)whih will be useful in the derivation of an expression similar to (2.1.74) but for spinors witharbitrarily many indies. The spinor
S···γδ··· = S···[γδ]··· , (2.1.78)is de�ned with arbitrarily many indies represented by the dots and with the expliit propertythat it is antisymmetri in the indies (γ, δ). A ontration of (2.1.77) with S···γδ··· yields

S···αβ··· =
1

2
εαβ S···γ

γ
··· , (2.1.79)whih is the generalization of (2.1.74) for more than two indies.In general, an arbitrary square matrix N an be expanded as a sum of its symmetri andantisymmetri omponents as

N = N (s) + N (a) , (2.1.80)where the symmetri and antisymmetri omponents are given respetively
N (s) =

1

2

(
N + N T

)
, N (a) =

1

2

(
N −N T

)
. (2.1.81)It follows from (2.1.25) that an arbitrary seond-rank tensor ξµν is written as

ξµν ↔ ξαα̇ββ̇ , (2.1.82)Page 31



in spinor indies as an outer produt of two 2 × 2 matries. For an outer produt of twomatries N1 and N2, an expansion of eah of the matries in symmetri and antisymmetriomponents as (2.1.80) leads to
N1N2 = N (s)

1 N (s)
2 + N (a)

1 N (a)
2 + N (s)

1 N (a)
2 + N (a)

1 N (s)
2 , (2.1.83)with four possibilities for ombining the symmetri and antisymmetri omponents. Viewing

ξαα̇ββ̇ as an outer produt of two matries allows an expression of the form (2.1.83) suh thatthe spinor an be expanded as
ξαβα̇β̇ = ξ(αβ)(α̇β̇) + ξ[αβ][α̇β̇] + ξ(αβ)[α̇β̇] + ξ[αβ](α̇β̇) , (2.1.84)in terms of the four possible ways of ombining symmetrization and antisymmetrization overthe indies. The notation (· · ·) denotes symmetrization. Employing (2.1.79) for the antisym-metri elements in (2.1.84) leads to

ξαβα̇β̇ = ξ(αβ)(α̇β̇) +
1

4
εαβ εα̇β̇ ξ

γ
γ

γ̇
γ̇ +

1

2
εα̇β̇ ξ(αβ)γ̇

γ̇ +
1

2
εαβ ξγ

γ
(α̇β̇) . (2.1.85)If ξµν is an antisymmetri tensor it holds that

ξαβα̇β̇ = −ξβαβ̇α̇ . (2.1.86)It is apparent from (2.1.85) that eah of the �rst two terms are symmetri under the interhange
(αβ) ↔

(

α̇β̇
) whereas the last two terms onsidered as one single objet are antisymmetriunder this interhange of indies. The �rst two terms onstitute therefore the vanishingsymmetri part of the tensor while the last two terms onstitute the antisymmetri part of

ξαβα̇β̇ . The tensor ξµν an hene be written in spinor indies as
ξαβα̇β̇ =

1

2
εα̇β̇ ξ(αβ)γ̇

γ̇ +
1

2
εαβ ξγ

γ
(α̇β̇)

≡ εα̇β̇ φαβ + εαβ ψα̇β̇ , (2.1.87)with φαβ and ψα̇β̇ symmetri.2.1.7 Spinor expression for the �eld strength tensorThe Dira-Born-Infeld ation is build from the eletromagneti �eld strength tensor and itsdual. It is of interest to study these two objets in spinor indies sine alulations of satteringamplitudes from the Dira-Born-Infeld ation are simpli�ed if the �eld strengths are expressedthis way. The dual of the eletromagneti �eld strength tensor is de�ned in four dimensionsusing the totally antisymmetri four-dimensional tensor εµνρσ . In order to express the dual ofthe �eld strength in spinor indies it is therefore natural to study the totally antisymmetrifour-dimensional tensor εαα̇ββ̇γγ̇δδ̇ in spinor indies. The orrespondene is
εαα̇ββ̇γγ̇δδ̇ = εµνρσ σ

µ
αα̇ σ

ν
ββ̇
σργγ̇ σ

σ
δδ̇
, (2.1.88)but it an be useful to instead onsider another approah. Equation (2.1.76) an be used tohek expliitly that

(

εαγ εβδ εα̇δ̇ εγ̇β̇ − εαδ εγβ εα̇γ̇ εβ̇δ̇

)

=
(

εαβ εγδ εα̇δ̇ εγ̇β̇ − εαδ εγβ εα̇β̇ εγ̇δ̇

)

=
(

εαγ εβδ εα̇β̇ εγ̇δ̇ − εαβ εγδ εβ̇δ̇ εα̇γ̇

)

, (2.1.89)Page 32



holds. The braket on the left hand side is antisymmetri under the interhange of indies
(αα̇) ↔

(

ββ̇
) as well as under the interhange (γγ̇) ↔

(

δδ̇
). The upper braket on the righthand side is antisymmetri under the interhange of indies (αα̇) ↔ (γγ̇) and as well under

(

ββ̇
)

↔
(

δδ̇
) Finally, the lower braket on the right hand side is antisymmetri under theinterhange (αα̇) ↔

(

δδ̇
) and as well under (ββ̇)↔ (γγ̇). It follows that
εµνρσ ↔ C

(

εαγ εβδ εα̇δ̇ εγ̇β̇ − εαδ εγβ εα̇γ̇ εβ̇δ̇

)

, (2.1.90)holds beause the braket has the orret antisymmetri properties in all indies. It is observedthat
εµνρσ ελκτυ η

µλ ηνκ ηρτ ησυ = −24 , (2.1.91)with
ε0123 = − ε0123 = + 1 , (2.1.92)whih is used below. Evaluating expliitly the self ontration of the braket without theonstant C on the left hand side of (2.1.89) yields

(

εαγ εβδ εα̇δ̇ εγ̇β̇ − εαδ εγβ εα̇γ̇ εβ̇δ̇

) 1

24

(

εαγ εβδ εα̇δ̇ εγ̇β̇ − εαδ εγβ εα̇γ̇ εβ̇δ̇
)

=
1

16
(2 × 16 − 2 × 4) =

24

16
, (2.1.93)with the fator 1/24 originating from the four metri tensors in (2.1.91). Hene

C2 = −16 , C = 4i , (2.1.94)where a hoie of the positive solution has been made. The expression for εµνρσ in spinorindies is therefore
εαα̇ββ̇γγ̇δδ̇ = 4i

(

εαγ εβδ εα̇δ̇ εγ̇β̇ − εαδ εγβ εα̇γ̇ εβ̇δ̇

)

, (2.1.95)whih will be used in the disussion of the dual of the eletromagneti �eld strength in spinorindies.The eletromagneti �eld strength tensor is real and antisymmetri and an be writtenon the form (2.1.87). For an antisymmetri rank-two tensor in four dimensions, the dual isde�ned in (1.4.1) as the ontration of the tensor with the total antisymmetri symbol. Itfollows from (2.1.87) that the dual of Fµν is given in spinor indies as
F̃αβα̇β̇ =

i

2
4i
(

εαγ εβδ εα̇δ̇ εγ̇β̇ − εαδ εγβ εα̇γ̇ εβ̇δ̇

) 1

4

(

εγ̇δ̇ φγδ + εγδ ψγ̇δ̇
)

= εαβ ψα̇β̇ − εα̇β̇ φαβ . (2.1.96)The �eld strength itself is given as
Fαβα̇β̇ = εαβ ψα̇β̇ + εα̇β̇ φαβ , (2.1.97)Page 33



and in terms of
ψα̇β̇ = +Fα̇β̇ , φαβ = −Fαβ , (2.1.98)the �eld strength and its dual an be rewritten as
Fαβα̇β̇ = εαβ

+Fα̇β̇ + εα̇β̇
−Fαβ , (2.1.99)

F̃αβα̇β̇ = εαβ
+Fα̇β̇ − εα̇β̇

−Fαβ , (2.1.100)whih is nothing but a resaling orresponding to the normalization
+Fµν ↔

√
2εαβ

+Fα̇β̇ . (2.1.101)Sine +Fαβ and −Fα̇β̇ are symmetri, the right hand sides of (2.1.99) and (2.1.100) are learlyantisymmetri under the interhange (αα̇ ↔ ββ̇
) as they should be. This partiular antisym-metri form ould have been guessed based on pure antisymmetry onsiderations. It followsfrom (2.1.99) for the selfdual and anti-selfdual that

+Fα̇β̇ =
1

2
Fµν σ

µ
αα̇ σ

ν
ββ̇
εαβ =

1

2
Fαβα̇β̇ ε

αβ , −Fαβ =
1

2
Fµν σ

µ
αα̇ σ

ν
ββ̇
εα̇β̇ =

1

2
Fαβα̇β̇ ε

α̇β̇ ,(2.1.102)whih will be used later in manipulations of the Dira-Born-Infeld ation and in spei�alulations of sattering amplitudes.2.1.8 Massive vetorsEquation (2.1.30) was obtained for a massless vetor Kαα̇ and it is natural also to onsiderthe general ase where Kαα̇ is massive. The result will be used later in hapter 4. For anymassive vetor pµ, one an onstrut the vetor
bµ = pµ − p2

2 p · q q
µ , (2.1.103)in terms of the massless vetor qµ and with

p · q 6= 0 . (2.1.104)It follows from
b2 = p2 − 2

p2

2 p · q q
µpµ = 0 , (2.1.105)that bµ is massless and hene it an be onsidered as the massless part of p

bµ → p♭µ . (2.1.106)Rearranging (2.1.103) yields in spinor indies
pαα̇ = λαλα̇ − p2

2 p · q ζαζα̇ , (2.1.107)Page 34



where
λαλα̇ = p♭αα̇ ↔ p♭µ , ζαζα̇ = qαα̇ ↔ qµ , (2.1.108)are massless spinors. It should be noted that in the ase where pµ is massless, (2.1.107) reduesproperly

pαα̇ = λαλα̇ , (2.1.109)in agreement with (2.1.30). It is observed that
p · q =

1

2
pαα̇ζ

αζ α̇ =
1

2
λαλα̇ζ

αζ α̇ = p♭ · q , (2.1.110)whih an be substituted in the denominator in (2.1.107).2.1.9 Polarization vetorsFrom (2.2.63) the polarization vetor enters the amplitude alulations as
A =

1

2
ε±αα̇A

αα̇ . (2.1.111)For on-shell photon �elds in four dimensions the orresponding polarization vetors are
ε+αα̇ =

√
2
ζαλα̇
[ζλ]

, ε−αα̇ =
√

2
ζα̇λα
〈ζλ〉 , (2.1.112)where the spinor λ is the orresponding photon momentum as in (2.1.109) and ζ is a masslessspinor whih an be hosen freely due to the freedom of on-shell gauge transformations [15℄.The spinor expression for the polarization vetors an be found expliitly as in [16℄ howeverhere it will only be heked that (2.1.112) are both transverse to the momentum and thata ontration of two polarization vetors of the same kind vanishes. The transversality isapparent from

1

2
λαλα̇

(√
2
ζαλα̇
[ζλ]

)

=
1

2
λαλα̇

(√
2
ζα̇λα
〈ζλ〉

)

= 0 , (2.1.113)while
1

2
ε+i,αα̇ ε

+,αα̇
j =

ζαλi,α̇
[ζλi]

ζαλα̇j
[ζλj]

=
1

2
ε−i,αα̇ ε

−,αα̇
j =

ζα̇λi,α
〈ζλi〉

ζ α̇λα̇j
〈ζλj〉

= 0 , (2.1.114)shows how the ontration of two polarization vetors of the same polarization state van-ishes. This is the ase even for di�erent partiles. The square root in (2.1.112) ensures thenormalization
1

2
ε+αα̇ ε

−,αα̇ =
ζαλα̇
[ζλ]

ζ α̇λα

〈ζλ〉 = 1 . (2.1.115)In Lorentz indies the polarization vetors an be written in the light one frame as
ε+,µ =

1√
2







0
1
−i
0







, ε−,µ =
1√
2







0
1
+i
0







, (2.1.116)Page 35



whih beomes
ε+αα̇ =

√
2

[
0 1
0 0

]

, ε−αα̇ =
√

2

[
0 0
1 0

]

, (2.1.117)in spinor notation.2.2 Field theoretial methodsThe fundamental objets, i.e. the strings in a string theory have �nite size of the order of thePlank length ℓP ≃ 10−33 cm. This is a ruial di�erene between string theory and quantum�eld theory where partiles are point like. Small distanes orrespond to high energies and ifa string theory is studied in the low energy limit, the �nite extension of the strings is invisiblesuh that the string theory therefore appears to be equivalent to a quantum �eld theory. In thisase, the string theory an be studied by using quantum �eld theory as an e�etive theory inthe low-energy limit so that omputations are performed with quantum �eld theory methods.This setion presents the important onepts whih will be used in omputations in hapters3 and 4. The disussion in the subsequent setions 2.2.1 - 2.2.6 are based on [17, 18, 19, 20℄.2.2.1 Propagators and integration ontoursThe propagator is a entral objet in omputations in a �eld theory. The notion of thepropagator will be disussed in this setion where the Klein-Gordon �eld is used as an example.In partiular the Feynman propagator will be disussed sine it is useful in perturbativealulations for interating �elds.In the Heisenberg piture the Klein Gordon �eld has the expansion
φ(x) =

∫
d3p

(2π)3
1

√
2Ep

(

ape
−ip·x + a†pe

+ip·x
)

, (2.2.1)where ap and a†p are the usual time independent ladder operators ating on the quantumstates of the Hilbert spae. The vauum state in this spae is denoted by |0〉 and in the freeKlein-Gordon theory the amplitude for a partile to propagate from the spaetime point y tothe spaetime point x is determined by the vauum expetation value
D(x− y) ≡ 〈0|φ(x)φ(y) |0〉 , (2.2.2)where D(x− y) is referred to as the propagator. The objet φ(x)φ(y) ontains four produtsof ladder operators but sine it is plaed inside two vauum states the term

〈0|apa†q|0〉 = (2π)3 δ(3)(p− q) , (2.2.3)is the only one whih is nonzero. This normalization and the three-dimensional delta funtionyields for the propagator
D(x− y) =

∫
d3p

(2π)3
1

2Ep

e−ip·(x−y) . (2.2.4)Page 36



In order to study di�erent propagators it is observed that a four-dimensional momentumintegral an be expressed as
∫

d4p

(2π)4
i

p2 −m2
e−ip·(x−y) =

∫
d3p

(2π)3
e+ip·(x−y)

∫ +∞

−∞

dp0

2π

i

(p0 + Ep) (p0 − Ep)
e−ip

0(x0−y0) ,(2.2.5)using the relativisti relation
m2 = E2

p − |p|2 , (2.2.6)suh that
p2 −m2 =

(
p0
)2 − E2

p =
(
p0 − Ep

) (
p0 +Ep

)
. (2.2.7)The p0 integral in (2.2.5) has poles at p0 = ±Ep and it an be evaluated as a ontour integralin the omplex plane for some appropriate hoie of integration ontour. In the spei� asewhere x0 > y0 the ontour shown in �gure 2.1 is used and aording to Jordan's lemma theonvergene of the exponential on the integration ontour is ensured by losing it in the lowerhalf plane. This integration piks up both poles and the integral gives

∫ +∞

−∞

dp0

2π

i

(p0 + Ep) (p0 −Ep)
e−ip

0(x0−y0) =
1

2Ep

e−iEp(x0−y0) +
1

− 2Ep

e+Ep(x0−y0) .(2.2.8)A substitution of (2.2.8) into (2.2.5) with a shift p → −p in integration variable for the seondterm yields
∫

d4p

(2π)4
i

p2 −m2
e−p·(x−y) =

∫
d3p

(2π)3
1

2Ep

[

e−ip·(x−y) − e+ip·(x−y)
]

, (2.2.9)sine Ep = E−p. In the ase x0 < y0 the integral is zero beause the integration ontour
− Ep + EpFigure 2.1: The integration ontour for the p0-integration orresponding to the retarded propagator. For

x0 > y0 the integration ontour an be losed in the lower half plane to pik up both poles. For x0 < y0 theontour has to be losed in the upper half plane and the integration is zero.has to be losed in the upper half plane and hene enloses no poles. The right hand side of(2.2.9) is equal to the vauum expetation value of the ommutator
〈0| [φ(x) , φ(y)] |0〉 = [φ(x) , φ(y)] , (2.2.10)Page 37



whih is a omplex number and an be evaluated from (2.2.1). The normalization 〈0|0〉 = 1has been used. In terms of the Heaviside step funtion
θ(x) =

{
1 , for x > 0
0 , for x < 0 ,

(2.2.11)the expetation value (2.2.10) de�nes the retarded propagator as
DR(x− y) ≡ θ

(
x0 − y0

)
〈0| [φ(x) , φ(y)] |0〉 , (2.2.12)whih is the right hand side of (2.2.9) sine the integral is zero for x0 < y0 as disussed above.The result of the Klein-Gordon operator ating on (2.2.12) an be obtained as

(
∂2 +m2

)
DR(x− y) = − iδ(4)(x− y) , (2.2.13)whih shows that the retarded propagator is a Green's funtion for the Klein-Gordon operator.If the retarded propagator is Fourier expanded and ated on by the Klein-Gordon operator itfollows that

DR(x− y) =

∫
d4p

(2π)4
i

p2 −m2
e−ip·(x−y) , (2.2.14)with the same presription for going around the two poles. Other presriptions for the in-tegration an be hosen and for the ase x0 < y0 the ontour is losed in the upper halfplane piking up both poles. The propagator assoiated with this presription is known as theadvaned propagator.When interating �elds in perturbation theory will be disussed in setion 2.2.2 it turnsout that a more physial presription for the integration ontour is the Feynman presriptionin whih the assoiated propagator is ausal. This is not the ase for neither the retarded orthe advaned propagator as both have support outside the light one. As is the ase for theretarded propagator also the advaned propagator and the Feynman propagator are Green'sfuntions with di�erent boundary onditions for the Klein-Gordon operator. The Feynmanpresription is written in terms of time ordering whih is de�ned for two �elds φ(x) and φ(y)as

T{φ(x)φ(y)} =

{
φ(x)φ(y) , for x0 > y0

φ(y)φ(x) , for x0 < y0

= θ
(
x0 − y0

)
φ(x)φ(y) + θ

(
y0 − x0

)
φ(y)φ(x) , (2.2.15)plaing the �eld with the latest time to the left. In (2.2.15) time ordering is written for justtwo �elds but the operation has a straightforward generalization to an arbitrary number of�elds. The Feynman presription is assoiated with the Feynman propagator

DF (x− y) = 〈0|T{φ(x)φ(y)} |0〉 =

∫
d4p

(2π)4
ie−ip·(x−y)

p2 −m2 + iε
, (2.2.16)where the inlusion of the term iε with in�nitesimal ε is a onvenient way to rememberthe ontour presription. The integral should be evaluated in the limit ε → 0 whereby thedenominator in (2.2.16) beomes

(
p0 + Ep − iε̃

) (
p0 − Ep + iε̃

)
=
(
p0 + Ep

) (
p0 − Ep

)
+ iε , (2.2.17)Page 38



with
ε = 2ε̃Ep , (2.2.18)negleting seond order terms in ε. The poles are displaed in�nitesimally from the real axisto positions at p0 = ± (E − iε̃) suh that the ontour of the integration along the real axisruns below and above the poles respetively. An expliit evaluation of the p0 integral in theFeynman propagator aording to the presription shown on �gure 2.2.2 yields

DF (x− y) =

{
D(x− y) , for x0 > y0

D(y − x) , for x0 < y0 ,
(2.2.19)by a omparison with (2.2.4). For the integral x0 < y0 the integration variable has to beshifted p → −p as was the ase above.

− Ep

+ EpFigure 2.2: The Feynman presription for the p0-integration in the omplex plane. The integration ontour islosed in the lower half plane for x0 > y0 whereas the ontour is losed in the upper half plane for x0 < y0.2.2.2 Field interationsIn order to alulate real physial quantities suh as ross setions of partile sattering oneneeds to ompute amplitudes for ertain interation proesses. An essential part of an am-plitude is the orrelation funtion whih orrelates �elds on spaetime and has the physialinterpretation of the amplitude for a partile to propagate between two spaetime points. Thetwo-point orrelation funtion of the free theory has already been disussed above and is justthe Feynman propagator. In this setion the general orrelation funtion, i.e. the time orderedexpetation value of �elds between vauum states of the interating theory will be expressedas a time ordered expetation value of interating �elds between vauum states of the freetheory. Using φ4-theory as an example, interations are inluded in the theory as a orretionto the non-interating Hamiltonian
H = H0 +Hinteraction , (2.2.20)with

Hinteraction =

∫

d3x
λ

4!
φ4 , (2.2.21)suh that the interation an be evaluated perturbatively as a power series in λ. The �eldsand the states in the free theory an be manipulated straightforwardly whereas the interating�elds and states are harder to manipulate. The �elds and states of the interating theory aretherefore expressed perturbatively in terms of �elds and states of the free theory. Page 39



The interation Hamiltonian enters the interating theory in two plaes namely in the �eldoperator itself and in the vauum state |Ω〉 of the interating �eld. The Heisenberg �eld inthe interating theory is de�ned as
φ(x) = eiHtφ(x) e−iHt , (2.2.22)with the Hamiltonian (2.2.20). What is known as the interating �eld is de�ned subsequentlyas

φ(x) |λ=0 ≡ φI(x) = eiH0(t−t0)φ(t0,x) e+iH0(t−t0) , (2.2.23)whih an be onstruted expliitly as an expansion using reation and annihilation operatorsas in (2.2.1). When λ = 0, H beomes H0 and there is no interation. But as λ is assumedto be a small parameter, (2.2.23) is still an expression for the important part of the timedependene of the interating �eld. Sine Hinteraction is taken as a small perturbation it an beassumed that the vauum states |Ω〉 and |0〉 have some overlap whih is a ruial assumptionin order to relate the vauum expetation value to the general expetation value. It is foundthat
〈Ω|T{φ(x1)φ(x2)} |Ω〉 =

〈0|T
{
φI(x1)φI(x2) exp

[
−i
∫

dtHinteraction

]}
|0〉

〈0|T
{
exp

[
−i
∫

dtHinteraction

]}
|0〉 , (2.2.24)and hene that

〈Ω|T{φ(x1) · · · φ(xn)} |Ω〉 → 〈0|T{φI(x1) · · ·φI(xn)} |0〉 , (2.2.25)holds. This should be understood in the sense that evaluating a n-point orrelation funtionof Heisenberg �elds in the interating theory orresponds to evaluating a n-point orrelationfuntion of interating �elds as de�ned in (2.2.23) in the free theory. That the right handside of (2.2.25) is a vauum expetation value means that the Feynman propagator enters inomputations of suh orrelation funtions. This is an important observation whih will bedisussed in the next setion.2.2.3 Wik ontrationsInterations will naturally always involve the interation �eld. For notational reasons theinteration subsript φI(x) will be dropped on �elds in the following though the �elds arestill interating �elds as (2.2.23). When omputing orrelation funtions of interating �elds,Wik's theorem is useful sine it expresses a given orrelation funtion as produts of Feynmanpropagators.In order to establish the relation between orrelation funtions and the Feynman propa-gator the operation of normal ordering of operators and the ontration of two �elds will bede�ned. However the �rst step is to split up the operator of the interation �eld into positiveand negative frequeny parts as
φ(x) = φ+(x) + φ−(x) , (2.2.26)suh that.

0 = φ+(x) |0〉 = 〈0|φ−(x) . (2.2.27)Page 40



For x0 > y0 the time ordered produt of two �elds an be written with a ommutator as
T{φ(x1)φ(x2)} =

[
φ+(x1) , φ

−(x2)
]
+ φ−(x2)φ

+(x1)

+ φ+(x1)φ
+(x2) + φ−(x1)φ

+(x2) + φ−(x1)φ
−(x2) , (2.2.28)while the time ordered produt for x0 < y0 gives the same result but with x and y interhangedin the ommutator. The operation of normal ordering is de�ned as

: apa
†
qa

†
k
as : = a†qa

†
k
apas , (2.2.29)where respetively the reation and annihilation operators ommute mutually and their orderis therefore irrelevant. An important observation is that the vauum expetation value of aolletion of normal ordered operators is zero. In (2.2.28) all terms exept the ommutatorare normal ordered whih means that the ommutator is the only nonzero ontribution of thevauum expetation value of the time ordered produt of two �elds.The Wik ontration of two �elds is de�ned as

φ(x)φ(y) =

{
[φ+(x) , φ−(y)] , for x0 > y0

[φ+(y) , φ−(x)] , for x0 < y0 ,
(2.2.30)and it is seen that

DF (x− y) = φ(x)φ(y) . (2.2.31)From (2.2.28) the relation between time ordering and normal ordering an be written in termsof a �eld ontration as
T{φ(x)φ(y)} = : φ(x)φ(y) : + φ(x)φ(y) , (2.2.32)whih an be generalized to an arbitrary number of �elds

T{φ(x1) · · ·φ(xn)} = : φ(x1) · · ·φ(xn) : +
∑

(all possible contractions) , (2.2.33)where the sum ontains a term for eah way of ontrating the �elds. An example with four�elds is onvenient in order to show the struture
T{φaφbφcφd} = : φaφbφcφd : + (Dab : φcφd :) + (Dac : φbφd :) + (Dad : φbφc :)

+ (Dbc : φaφd :) + (Dbd : φaφc :) + (Dcd : φaφb :)

+DabDcd +DacDbd +DadDbc , (2.2.34)whih is a useful result. If the vauum expetation value of (2.2.34) is evaluated, only the threefully ontrated terms in the last line survive. The onlusion is that orrelation funtions areomputed by evaluating all possible full Wik ontrations of the involved �elds. The termsthat are not fully ontrated simply vanish in the vauum expetation value.2.2.4 Path integral formulationA quantum theory is the result of a quantization of a lassial theory aording to some quan-tization proedure. The same theory an be quantized in di�erent ways and one speaks ofdi�erent formulations of the same theory. Usually ordinary quantum mehanis is formulatedPage 41



using the proedure of anonial quantization where the lassial variables suh as positionand momentum are promoted to quantum mehanial operators. An alternative formulationof a quantum theory is the path integral formulation in whih a ertain lassial theory isquantized using path integrals. The path integral formulation an be used for quantum me-hanis as well as for quantum �eld theories and it is due to Rihard Feynman based on earlierwork by Paul Dira. In this formulation the �elds in a quantum �eld theory remain ordinaryfuntions instead of operators. The reation and annihilation operators in the anonial quan-tization provide a good understanding of the notion of partiles whih is not the ase for thepath integral. However, the path integral formulation has ertain advantages. This omesabout beause the anonial quantization uses the Hamiltonian formalism where time has aspeial role and Lorentz invariane is therefore broken. In the path integral formulation of aquantum �eld theory, the Lagrangian is used instead of the Hamiltonian as the most funda-mental way of speifying the theory. There is nothing speial about time in the Lagrangianand it has therefore a build in manifest Lorentz invariane. Furthermore, the path integralmethod preserves all other symmetries whih the Lagrangian may have. With the path in-tegral method, omputations an be done diretly from the Lagrangian without invoking theHamiltonian. The Hamiltonian dynamis are therefore taken to be de�ned by the path integralof the Lagrangian.A natural way to introdue the path integral is to onsider a double slit experiment wherea quantum mehanial partile propagates from a soure to a detetor. Along the way ofpropagation the partile passes a sreen with two losely spaed slits in it; a double slit. In alassial desription of the propagation path the partile passes the double slit through eitherone or the other of the two slits whereas quantum mehanis has a fundamentally di�erentinterpretation in terms of wave funtions. The partile is desribed by a wave funtion andas a wave it propagates through both slits to reate an interferene pattern with itself onthe detetor. This interferene pattern is determined by the superposition of the two waveontributions from the slits. Sine in this partiular ase only two possible propagation pathsexist, only two ontributions in the superposition sum are present. In general the number ofpossible paths an be in�nite in whih ase the spae of paths beomes ontinuous and thedisrete total sum of superposition ontributions beomes an integral over all possible paths.This integral is exatly the path integral.The path integral provides the transition amplitude A(xi, xf ; t) for some partile to prop-agate from a spaetime point xi to the point xf and it is the ontinuous limit of the sum ofamplitudes for eah of all possible paths on whih the partile an propagate. The total sumof amplitudes is basially the sum of di�erent phases for the di�erent paths and hene thetotal propagation amplitude is written in terms of the path integral as
A(xi, xf ; t) =

∑

eiφ →
∫

Dx(t) eiφ , (2.2.35)where the arrow indiates the ontinuous limit. The integration measure Dx(t) states thatthe integration is over the ontinuous spae of all the oordinate funtions that onnet thepoints xi and xf . Eah oordinate funtion is a funtion of time.The path integral an be viewed as part of a generalization of alulus from spaes ofnumbers to spaes of funtions. In this sense, a funtional is de�ned as a funtion thatmaps funtions into numbers. The path integral assoiates a omplex number with eahfuntion x(t) and the path integral is therefore a funtional. In the lassial limit the transitionamplitude should have only one ontribution from the path integral namely the lassial path.Page 42



Considering the lassial limit of (2.2.35) using a physiist hand waving arguments motivates
∫

Dx(t) eiφ =

∫

Dx(t) e(i/~)S[x(t)] , (2.2.36)in the sense that the lassial limit orresponds formally to
S[x (t)] ≫ ~ , or ~ → 0 , (2.2.37)suh that the integrand on the right hand side of (2.2.36) osillates wildly in the lassial limit.These wild osillations integrate to zero and hene the lassial path an be identi�ed as theontribution to the transition amplitude with a stationary phase. Mathematially speakingthis argumentation is poor but from a physial point of view it makes sense. Aording to theation priniple, the lassial path is the path for whih the ation is a stationary minimum andthis is exatly the reason why the phase is identi�ed with the ation as in (2.2.36). It an beheked expliitly that the right hand side of this expression provides the orret interferenepattern for the double slit experiment.The generalization of the path integral formulation to an in�nite number of paths x(t) isarried out by disretizing the time interval and approximating the path in eah time intervalby a straight line. In eah time interval an integration over the oordinate is performed andthe general form of the path integral is found as the limit where the number of time stepsbeomes in�nite and the length of eah step approahes zero. This proedure will not bedisussed in further detail here.When the funtional integral formalism is applied to a quantum �eld theory of real salar�elds it turns out that orrelation funtions for the interating theory an be omputed in away whih has a ertain similarity to (2.2.24). The two point orrelation funtion is omputedas the path integral

〈Ω|T {φ(x1)φ(x2)} |Ω〉 =

∫

Dφφ(x1)φ(x2) exp

[

i

∫

d4xL
]

∫

Dφ exp

[

i

∫

d4xL
] , (2.2.38)and it is noted that the path integral depends on the Lagrangian rather than on the Hamil-tonian as disussed above. The Wik ontration as disussed in setion 2.2.3 is de�ned interms of the path integral

φ(x1)φ(x2) =

∫

Dφφ(x1)φ(x2) exp

[

i

∫

d4xL0

]

∫

Dφ exp

[

i

∫

d4xL0

] = DF (x1 − x2) , (2.2.39)by onsidering the non-interating Klein-Gordon �eld. In fat, di�erent n-point funtions forthe free theory an be omputed using path integrals with the rules of Gaussian integrationand the result is the same as obtained with Wik's theorem.2.2.5 Funtional methodsAnother method to ompute orrelation funtions is the formal one of funtional di�erentiationof the generating funtional. This method is onvenient when the non-interating LagrangianPage 43



is replaed by an interating one. The generating funtional for a salar �eld is de�ned as
Z [J ] =

∫

Dφ exp

[

i

∫

d4x [L + J(x)φ(x)]

]

, (2.2.40)with the inlusion of the soure term J(x)φ(x) in the exponential. Funtional di�erentiationan be viewed as a ontinuous generalization of di�erentiation of disrete vetors and it isde�ned in four dimensions as
δ

δJ(x)
J(y) = δ(4)(x− y) , (2.2.41)suh that

δ

δJ(y)

∫

d4xJ(x)φ(x) = φ(y) . (2.2.42)The two-point orrelation funtion in the free theory is then omputed by di�erentiating thegenerating funtional with respet to the soure as
〈0|T{φ(x1)φ(x2)} |0〉 =

1

Z0

(

−i δ

δJ(x1)

)(

−i δ

δJ(x2)

)

Z[J ]
∣
∣
∣
J=0

, (2.2.43)with
Z0 = Z[J = 0] =

∫

Dφ exp

[

i

∫

d4xL
]

. (2.2.44)The soure is put J = 0 after the di�erentiations have been arried out. Equation (2.2.43) isjust a speial ase of the generalization
〈0|T{φ(x1) · · ·φ(xn)} |0〉 =

1

Z0

(

−i δ

δJ(x1)

)

· · ·
(

−i δ

δJ(xn)

)

Z[J ]
∣
∣
∣
J=0

=

∫

Dφφ(x1) · · ·φ(xn) exp

[

i

∫

d4xL
]

∫

Dφ exp

[

i

∫

d4xL
] , (2.2.45)whih is a basi formula for omputations. The �elds on the left hand side are operators andhene this formula onnets the operator formalism with the path integral formalism.For the free Klein Gordon Lagrangian

L0 =
1

2
∂µφ∂

µφ+
1

2
m2φ2 , (2.2.46)the integral in the exponent of (2.2.40) an be rewritten by a partial integration as

∫

d4x
1

2

[
∂µφ∂

µφ+m2φ2 + Jφ
]

=

∫

d4x
1

2

[
φ
(
−∂2 +m2

)
φ+ Jφ

]
. (2.2.47)By substituting the shifted �eld

φ′(x) = φ(x) − i

∫

d4y DF (x− y)J(y) , (2.2.48)Page 44



into (2.2.47), using that the Feynman propagator is a Green's funtion of the Klein-Gordonoperator and hanging integration variable bak to φ(x) yields for the free �eld generatingfuntional
Z[J ] = Z0 exp

[

−1

2

∫

d4xd4y J(x)DF (x− y) J(y)

]

. (2.2.49)It follows that
(

−i δ

δJ(x1)

)(

−i δ

δJ(x2)

)

Z[J ]
∣
∣
∣
J=0

= Z0DF (x1 − x2) , (2.2.50)and hene
DF (x1 − x2) =

∫
Dφφ(x1)φ(x2) exp

[

i

∫

d4xL0

]

∫
Dφ exp

[

i

∫

d4xL0

] . (2.2.51)This is in agreement with (2.2.45).The interation part of the theory is introdued as a perturbation to the free theory. Onean onsider φ4-theory as an example in whih the interation omes from the term
V (φ) =

λ

4!
φ4 , (2.2.52)in the Lagrangian where λ is a small parameter. That λ is small allows for the expansion

exp

[

i

∫

d4xL
]

= exp

[

i

∫

d4xL0

](

1 − i

∫

d4x
λ

4!
φ4

)

, (2.2.53)of the exponential whih should be performed in both the numerator and denominator inthe four-point equivalent to (2.2.51) in the interating theory. The expansion (2.2.53) of thedenominator does only ontribute with vauum diagrams whih are not relevant when onlytree-level diagrams will be studied.After the introdution of funtional methods, this is the plae for a omment in onnetionwith setion 1.1 on e�etive theories. In this ontext the path integral is used in the de�nitionof the e�etive ation. The massive �elds whih are negleted in the e�etive theory are saidto be integrated out in the low-energy e�etive theory. This proedure is outlined in thefollowing. Symbolially φ represents all the �elds in a partiular theory suh that
φ = {φ0, φm} , (2.2.54)with φ0 representing a massless �eld and φm representing all massive �elds. The generatingfuntional Z is used in alulations of expetation values as disussed above and in terms ofthe φ-�elds

Z =

∫

Dφ eiS[φ] =

∫

Dφ0Dφm φ0 φme
iS[φ0,φm] , (2.2.55)is a trivial expansion. In the low-energy limit, the interations of the massive �elds arenegleted so that the integration is independent of the massive �elds

Z = C

∫

Dφ0 φ0 e
iSeff [φ0] . (2.2.56)Hene the massive �elds have been integrated out and the theory is desribed in the low-energylimit by the e�etive ation as a funtion only of the massless �eld. Page 45



2.2.6 LSZ redution formalismIn priniple, the Lagrangian for some physial theory provides all information on the dynam-is of the system. It has been disussed above how the path integral formalism with theLagrangian is a neat way of omputing relevant physial quantities. However the way fromthe Lagrangian of a partiular theory to atual preditions of measurable physial quantities isstill not straightforward. The LSZ redution formalism is a useful step on this way. The nameis due to the three German physiist Harry Lehmann, Kurt Symanzik and Wolfhart Zimmer-mann and the redution formula is basially a way of relating the sattering amplitude forsome interation of partiles to the vauum expetation value of a time ordered produt of�elds.The sattering matrix, or S-matrix, is de�ned as
S = 1 + iT , (2.2.57)and it relates the initial and �nal states in a partile interation. It is a unitary matrix thatonnets the asymptoti partile states before and after the interation. The �1� is just a trivialpart representing no interation while the �iT � part governs the interation. The S-matrixelement

out〈p1 · · ·pn|S |k1 · · ·km〉in , (2.2.58)appears in measurable physial quantities like the ross setion and the LSZ formalism relatesthis matrix element to the vauum expetation value
〈0|T{φ(x1) · · ·φ(xn)φ(y1) · · · φ(y2)} |0〉 , (2.2.59)whih an be alulated. In a general form the LSZ-formula is written in momentum spae as

m∏

i=1

∫

dnxi e
−iki·xi

4∏

j=1

∫

d4yj e
+ipj ·yj〈0|T{φ(x1) · · ·φ(xn)φ(y1) · · ·φ(y2)} |0〉

=

(
m∏

i=1

i

k2
i −m2

)



n∏

j=1

i

p2
j −m2



 out〈p1 · · ·pn|S |k1 · · ·km〉in , (2.2.60)and it serves to represent the unknown interations in terms of well-known free asymptoti�elds at time t = ±∞. The intermediate states between the asymptoti states are de�nedo� mass shell but as time approahes in�nity the interating partiles go on shell and theybeome free. In this limit where the interating theory beomes a free theory, the �elds arewritten as
φ(x) → φin(x) as t→ −∞ ,

φ(x) → φout(x) as t→ + ∞ . (2.2.61)For interations with four partiles (2.2.60) redues to
out〈p1p2|S |k1k2〉in =

(
p2
1 −m2

) (
p2
2 −m2

) (
k2
1 −m2

) (
k2
2 −m2

)

×
∫

d4x1 d4x2 d4y1 d4y2 e
−ik1·x1e−ik2·x2eip1·y1eip2·y2〈0|T{φ(x1)φ(x2)φ(y1)φ(y2)} |0〉 ,(2.2.62)where in partiular the appearane of the squared momenta is of interest and will be disussedbelow.Page 46



2.2.7 Contrations of massless vetor �eldsIn the subsequent setions the LSZ redution formula has a entral role and is used extensivelyin omputations of photon amplitudes. This setion presents the notation and basi methodswhih will be used for the omputations.Interations will be studied at tree-level and the inoming �elds will be photon �elds
A±
i = ε±,µi Aµ(xi) , (2.2.63)with polarization vetor εµi projeting out a ertain polarization state. For the photon �eldamplitudes the notation

〈A1 · · ·An〉 = 〈0|T {A1 · · ·An} |0〉 , (2.2.64)will be used. The path integral formalism an be generalized to any �eld theory and thereforeequation (2.2.45) will be the main expression with the salar �elds replaed by photon �elds.When only interations at tree-level are onsidered, the photon four-point funtion is
〈AiAjAkAl〉 =

δ4

δJ(xi) J(xj)J(xk) J(xl)

∫

DA exp

[

i

∫

d4x (L + JA)

] ∣
∣
∣
J=0

, (2.2.65)where the Lagrangian is not spei�ed. In the partiular ase of interest, the interations aregoverned by the Dira-Born-Infeld Lagrangian LDBI whih was disussed in setion 1.4 andwill be again in setion 3.1.2. From (2.2.65) using L → LDBI it follows that
〈

A(xi)A(xj)A(xk)A(xl)
〉

=

∫

DA (εµi Aµ(xi))
(
ενjAν(xj)

) (
ερkAρ(xk)

)
(εσl Aσ(xl)) exp

[

i

∫

d4xLDBI

]

= εµi ε
ν
j ε

ρ
k ε

σ
l i

∫

d4x

∫

DAAi,µAj,νAk,ρAl,σLDBI , (2.2.66)where in the last step the exponential has been expanded to �rst nontrivial order. The expan-sion parameter in the DBI-Lagrangian is the inverse string tension α′. Sine the Lagrangianis a funtion of �eld strength tensors
Fµν = ∂µAν − ∂νAµ , (2.2.67)it is seen from (2.2.51) that (2.2.66) will be evaluated by performing Wik ontrations ofphoton �elds

〈Ai,µAj,ν〉 = Ai,µAj,ν = Dµν(xi − xj) , (2.2.68)where Dµν(xi − xj) is the photon propagator. The photon propagator is found from the ationintegral for the free eletromagneti �eld whih an be written as
Sem,free =

∫

d4x

(

−1

4
FµνF

µν

)

=
1

2

∫

d4xAµ
[
∂2ηµν − ∂µ∂ν

]
Aν , (2.2.69)by a partial integration. A Fourier transformation yields

Sem,free =
1

2

∫

d4x Ãµ(k)
[
−k2ηµν + kµkν

]
Ãν(−k) , (2.2.70)Page 47



and the photon propagator is de�ned in position and momentum spae by
(
∂2ηµν − ∂µ∂ν

)
Dνρ(x− y) = iδ(4)(x− y) δµρ , (2.2.71)

(
−k2ηµν + kµkν

)
D̃νρ(k) = iδµν , (2.2.72)as the inverse of the operator on the right hand side of (2.2.69) and (2.2.70) respetively. Itis observed that

(
−k2ηµν + kµkν

)
kµ = 0 , (2.2.73)so that

Ãµ(k) = kµa(k) , (2.2.74)is a zero mode of D̃νρ for any salar funtion a(k). The 4 × 4 matrix in (2.2.73) is thereforesingular and (2.2.72) has no solution for the propagator. This problem of inverting the photonpropagator arises beause a gauge transformation is not physial and the funtional integrationof the free eletromagneti ation is therefore performed over a ontinuous in�nity of physiallyequivalent states. The solution is to hange the integrand in order to perform the funtionalintegration suh that eah physial state is ounted only one. To break the gauge invarianethe Lagrangian for the free eletromagneti �eld is modi�ed into
Lem,free = −1

4
FµνF

µν − 1

2ξ
∂µA

µ∂νA
ν , (2.2.75)by adding the gauge �xing term. The photon propagator then beomes

Dµν(k) =
−i
k2

(

ηµν − (1 − ξ)
kµkν
k2

)

, (2.2.76)with di�erent hoies of gauge orresponding to di�erent values for the parameter ξ. Thehoie ξ = 1 orresponds to the Feynman-t' Hooft gauge in whih the photon propagatortakes the simple form
Dµν(k) = − i

k2
ηµν . (2.2.77)Using (2.2.77) for the photon propagator yields for a ontration of a photon �eld with a �eldstrength tensor

A±
i Fµν = (−i)

(

pi,µAνAi,ρ − pi,νAµAi,ρ

)

ε±,ρi

= − 1

p2

(

pi,µ ε
±
i,ν − pi,ν ε

±
i,µ

)

, (2.2.78)where ∂µ = −ipµ has been used. The four-point funtion for photons is omputed by evalu-ating all possible full Wik ontrations of four photon �elds and from (2.2.78) it is seen thatthe expetation value has the form
〈AiAjAkAl〉 →

1

p2
i

1

p2
j

1

p2
k

1

p2
l

. (2.2.79)Page 48



The amplitude is obtained when this expetation value is substituted into (2.2.62) wherebyan exat anellation of the momentum poles takes plae. Hene the useful result
A±
i Fµν =

〈

A±
i

∣
∣
∣Fµν

〉

→ −
(

pi,µ ε
±
i,ν − pi,ν ε

±
i,µ

)

, (2.2.80)is obtained for a ontration of a photon �eld into a �eld strength tensor. This result is alsofound in [21℄. For the four-point funtion, omputations will have the general form
〈AiAjAkAl|F 4〉 = lim

p→0
p2
i p

2
j p

2
k p

2
l ε

µ
i ε

ν
j ε

ρ
k ε

σ
l

∫

DAAi,µAj,νAk,ρAl,σ eiS , (2.2.81)where all the poles oming from the photon propagators of the Wik ontrations are anelledby the fators of p2. The F 4 in the expetation value indiates that the four-point funtionis ontrolled by terms in the ation with a struture of four �eld strengths. This struturealso inludes selfdual and anti-selfdual �eld strengths as disussed in setion 2.1.7. The limitmeans that the partiles are on shell after the interation. Equation (2.2.81) will be the basisfor omputations of amplitudes throughout the remaining hapters.2.3 Compati�ation and dimensional redutionThis setion disusses the onept of ompati�ation and the related proedure of dimensionalredution. A dimensional redution of a �eld theory under study is basially a rede�nition ofthe theory in a lower number of dimensions. If the theory is formulated in d dimensions itan be dimensionally redued to d̃ = d− n dimensions by taking all �elds to be independentof the oordinates in the extra n dimensions. In terms of the ation integral the dimensionalredution from 10 to 4 dimensions may be desribed as the proedure
S =

∫

d10xL(x1 · · · , x10) →
∫

d10xL (x1, x2, x3, x4) = C
∫

d4xL (x1, x2, x3, x4) , (2.3.1)where the Lagrangian is taken to depend only on the four dimensions into whih all dynamivariables suh as momenta and polarization vetors are embedded. The Lagrangian as there-fore independent of the six auxiliary dimensions and the integral an be fatorized as abovewhere the overall onstant C does not matter.A ompati�ation of a given theory means that it is hanged with respet to one dimen-sion. Stritly speaking, a dimensional redution is then the limit of a ompati�ation wherethe size of a ompati�ed dimension goes to zero. When a theory is ompati�ed, one in�nitedimension is taken to be �nite and often also periodi. Figure 2.3 shows an example wherea theory is formulated on the full spae M × C and where the dimension C is ompat. Inthe limit where the size of the ompat dimension goes to zero, the theory an be desribede�etively as a theory in the spae M independently of C. Compati�ation is an importantonept in onnetion to string theory. String theory operates with ten spaetime dimensionsand the universe appears to have four dimensions. In order to have a string theory whihis onsistent with observations, it is therefore neessary to explain why the extra dimensionsare not observed. A possible explanation is that the extra dimensions are ompat and sosmall that their existene an not be resolved from experiments. A �eld in a ompat periodidimension an always be written as a Fourier series
φ(x) =

∑

n

Ane
(2πin/L)x , (2.3.2)Page 49



M × C

M

Figure 2.3: The priniple of ompati�ation. A the-ory is formulated on the full ombined spae M × Cwhere C is ompat. Upon a ompati�ation of the fullspae, the theory is reformulated as an e�etive theoryon the spae M .where L is the size of the dimension and n is an integer. The momentum is therefore
p ∼ n~

L
, (2.3.3)whereby

E ∼ p→ ∞ , for L→ 0 . (2.3.4)In the speial ase n = 0, the �eld (2.3.2) is independent of the x-oordinate and thus in-dependent of the ompat dimension. For n 6= 0 it is apparent that the energy approahesin�nity as the size of the dimension beomes very small. The onlusion is that if the ompatdimension is very small it takes an in�nite energy to resolve it. The ompat dimension antherefore be negleted whih is the idea of dimensional redution.The idea of ompati�ation goes bak to Theodor Kaluza in 1921 where he sought for auni�ed formulation of gravity and eletromagnetism by extending gravity to �ve-dimensionalspaetime. Oskar Klein ontinued the work and proposed in 1926 that the extra dimension wastiny and urled up. The result is known as Kaluza-Klein theory and is a �ve dimensional puregravity whih is ompati�ed to four dimensions. The ompati�ation an be outlined bythe following where M,N are Lorentz indies in �ve dimension. The metri in �ve dimensionsan be written
gMN = gµν + 2g5µ + g55 , (2.3.5)where gµν represents the four-dimensional gravitational �eld, g5µ represents the eletromag-neti �eld and g55 is a four-dimensional salar. The �ve-dimensional gravity theory is therebyompati�ed to a four-dimensional gravity theory oupled to eletromagnetism and a salar.2.4 Notation and onventionsThis setion is a brief presentation of onventions and notation used throughout the thesis.Choie of metriThe metri for the �at spaetime is hosen to be mostly negative and reads on matrix form

ηµν = ηµν =







+1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1






. (2.4.1)Page 50



Natural units and dimensionsUnless otherwise is stated, the natural units
~ = c = 1 , (2.4.2)are used. From the relations

E = ~ω , E2 =
(
mc2

)2
+ p2c2 , (2.4.3)it follows that the dimension of length equals the dimension of time and that energy, massand momentum have the same dimension. The dimensions of energy and time are inverse ofeah other and therefore

[energy] = [mass] = [momentum] = [length]−1 = [time]−1 . (2.4.4)Symmetrization and antisymmetrizationThe operations of symmetrization and antisymmetrization are de�ned respetively as
A(µν) =

1

2
(Aµν +Aνµ) , A[µν] =

1

2
(Aµν −Aµν) , (2.4.5)for two indies. The operations an be generalized to arbitrarily many indies. Aordingto (2.4.5), if Pµν is some fully antisymmetri rank-two tensor and Qµν is a fully symmetrirank-two tensor the tensors an be written

Pµν = P[µν] , Qµν = Q(µν) . (2.4.6)Indies and dimensionsLorentz tensors appear with di�erent indies aording to their dimensionality. Capital Latinletters, (M,N,R, . . .), denote six-dimensional Lorentz indies taking values (0, 1, 2, 3, 4, 5)while Greek letters (µ, ν, ρ, . . .) denote the usual four-dimensional Lorentz indies taking val-ues, (0, 1, 2, 3). Latin letters (m,n, r, . . .), denote the auxiliary two dimensions in Lorentzspae-time and thus take the values (4, 5). An arbitrary tensor in six-dimensional spaetimean therefore be written as
YMN = Yµν + Ymn + Yµn + Ymν . (2.4.7)Spinors have dotted or undotted indies (α, β, γ, . . .) and (α̇, β̇, γ̇, . . .) denoted with Greekletters. These indies take values (1, 2).Inner produtsInner produts are denoted
a · b = aµbν , ã · b̃ = ambm , (2.4.8)where espeially the ã · b̃ is used in alulations in six dimensions. Page 51



Sattering amplitudesFor sattering amplitudes the notation
A(external fields) →

〈

external fields
∣
∣
∣ internal fields

〉

, (2.4.9)will our. The arrow simply indiates that the amplitude under study is onstruted from allpossible wik ontrations on the right hand side but that front fators of π and α′ are absentin that partiular expression.
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Chapter 3Vetor boson amplitudes in fourdimensionsIn this hapter the developments from hapters 1 and 2 will be put to use. The Dira-Born-Infeld ation will be the starting point as it is the e�etive ation desribing �rst orderorretions to eletromagneti �elds on a D-brane. Photon sattering amplitudes will bealulated in four dimensions and in this ontext, the spinor-heliity formalism from setion2.1 is entral. Both four-point and six-point amplitudes will be alulated. The �rst part of thehapter involves alulations of amplitudes with spei� on�gurations of external partileswhereas the seond part involves more general omputations where a sattering amplitude isalulated as a generi result without onsidering any spei� external polarizations. This isalso a step towards a higher number of dimensions and in partiular studies of amplitudes insix dimensions whih are addressed in the next hapter.3.1 Employing spinor-heliityAmplitude alulations are basially just Wik ontrations of external �elds into �eld strengthtensors. When the �eld strength tensor is split into its selfdual and anti-selfdual omponentsand expressed in spinor indies, it turns out that the ontration of an external photon �eldinto the �eld strength tensor simpli�es. The subjets disussed in this hapter have previouslybeen disussed in [1℄ where also the sattering amplitudes have been alulated.3.1.1 Dimensional onsiderationsResults for amplitudes will be expressed in terms of momentum produts as de�ned in setion2.1.8. Before going into amplitude alulations it is onvenient with an analysis of dimensionsof units. The relation for massless partiles
2 pi · pj = [ij] 〈ji〉 , (3.1.1)as in (2.1.70) leads to a relation for momentum bilinears so that the objets
〈ij〉 , [ij] , p , (3.1.2)have the same dimensionality
[p] = [Energy] . (3.1.3)Page 53



The string parameter α′ ∼ l2 is assoiated with the square of the fundamental length of astring and it follows that the dimension of the string parameter is the inverse of momentumsquared
[
α′
]

= [l]2 = [p]−2 . (3.1.4)Amplitude alulations yield terms ontaining objets as (3.1.2) whih are multiplied by fatorsof (πα′)n. An amplitude has to be dimensionless and it is apparent for instane that thedi�erent terms
1

[ζ1]
〈jk〉 (pi ·pj) 〈jk〉〈ζi〉 , 〈jk〉2 [ζ1] 〈ζ1〉

[ζi]2
p̃2
i , p4 , (3.1.5)have the same dimensionality and must be multiplied by a fator (πα′)2 in order to be dimen-sionless.3.1.2 Dira-Born-Infeld in four dimensionsThe Dira-Born-Infeld ation in ten dimensions has the form [1, 22℄

SDBI = −1 +
1

π2gsα′5

∫

d10x
√

− det (ηMN + πα′FMN ) . (3.1.6)As in [1℄ the string oupling onstant is put gs = 1 and the term �−1� is dropped from theation sine this term is irrelevant for partile interations. Along the lines of the disussionin setion 2.3 the DBI-ation an be dimensionally redued suh that the integration measureis simply taken d10x → d4x and the indies are taken as ordinary four-dimensional Lorentzindies M → µ. It follows from setion 1.4.3 that the ation takes the form
− det

(
ηµν + πα′Fµν

)
= 1 +

π2α′2

2
FµνF

µν +
π4α′4

16

(

Fµν F̃
µν
)2

. (3.1.7)The right hand side an be expressed in terms of selfdual and anti-selfdual omponents of the�eld strength tensor and for this purpose (2.1.102) is useful. An expliit alulation for eahof the relevant ontrations yields
FµνF

µν =
1

4

(

εαβ
+Fα̇β̇ + εα̇β̇

−Fαβ

)(

εαβ+F α̇β̇ + εα̇β̇−Fαβ
)

=
1

2

(
+F 2 + −F 2

)
, (3.1.8)and

(

Fµν F̃
µν
)2

=

[
1

4

(

εαβ
+Fα̇β̇ + εα̇β̇

−Fαβ

)(

εαβ+F α̇β̇ − εα̇β̇−Fαβ
)]2

=
1

4

[
+F 4 + −F 4 − 2

(
+F 2−F 2

)]
, (3.1.9)whereby the determinant takes the form

− det
(
ηµν + πα′Fµν

)
=

1 +
π2α′2

4

[
+F 2 + −F 2

]
+
π4α′4

64

[
+F 4 + −F 4 − 2

(
+F 2−F 2

)]
. (3.1.10)Page 54



The determinant is a funtion of the string parameter whih is small and the square root of thedeterminant an therefore be expanded as a Taylor series in α′. In pratie the determinantis expanded in Mathematia by expliitly onstruting (3.1.10). To tenth order the Taylorexpansion in α′ beomes
√

− det (ηµν + πα′Fµν) = 1 +
π2α′2

4
+F 2 − π4α′4

32
+F 2−F 2 +

π6α′6

256

(
+F 4−F 2 + −F 4+F 2

)

− π8α′8

2048

(
+F 6−F 2 + −F 6+F 2 + 3+F 4−F 4

)
+ O

(
α′10

)
,(3.1.11)where the topologial density 1/4Fµν F̃

µν = 1/8
(
+F 2 − −F 2

) has been added after the expan-sion has been performed. Sine the topologial density is a total derivative it an be added inthe ation without a�eting the equations of motion. Adding the topologial density anelsa −F 2-term in (3.1.11).Equation (3.1.11) is the starting point for sattering amplitude alulations and it anbe read of for instane that the four-point amplitude is ontrolled entirely by the term
(
π4α′4/32

)
+F 2−F 2. Before turning into expliit amplitude omputations it is appropriateto examine more generally the Wik ontrations of external �elds and F±.3.1.3 Wik ontrations of �eld strengthsExternal ontrationsFrom (2.1.102) the selfdual and the anti-selfdual omponents of the �eld strength are givenrespetively as

+Fα̇β̇ =
1

2
εαβ

(

∂αα̇Aββ̇ − ∂ββ̇Aαα̇

)

=
1

2

(

∂αα̇A
α
β̇

+ ∂αβ̇A
α
α̇

)

, (3.1.12)
−Fαβ =

1

2
εα̇β̇

(

∂αα̇Aββ̇ − ∂ββ̇Aαα̇

)

=
1

2

(

∂αα̇A
α̇
β + ∂βα̇A

α̇
α

)

, (3.1.13)whih is also found in [23℄. Equation (2.2.77) beomes simply
〈Aαβ̇Aββ̇ 〉 = − 2

i

p2
εαβεα̇β̇ , (3.1.14)in spinor indies and the ontration of a photon �eld as (2.1.111) with plus-heliity quantumnumber into a selfdual �eld strength is found as

A+ +Fα̇β̇ ≡ +Fα̇β̇
[
A+
]

=
1

22
i
(
ε+
)γγ̇
(

∂αα̇A
α
β̇
Aγγ̇ + ∂αβ̇A

α
α̇Aγγ̇

)

=
i

4
(−i) (−2i)

(√
2
ζγλγ̇

[ζλ]

)(

pαα̇ ε
α
γ εβ̇γ̇ + pαβ̇ ε

α
γ εα̇γ̇

)

= i
√

2λα̇λβ̇ . (3.1.15)It has been used that
∂µ = −ipµ ↔ −ipαα̇ , (3.1.16)Page 55



and a fator of 1/p2 has been omitted in (3.1.15) beause it is anelled by the LSZ formulafrom (2.2.61). Sine (3.1.15) is a tree-level alulation with partiles on mass shell
pαα̇ = λαλα̇ , (3.1.17)holds by (2.1.30) for massless partiles. Calulations similar to the steps involved in (3.1.15)lead to an analogous result for the ontration of a photon �eld with minus-heliity quantumnumber into an anti-selfdual �eld strength

A− −Fαβ ≡ −Fαβ
[
A−
]

= −i
√

2λαλβ , (3.1.18)where the sign is the opposite ompared to [1℄. A ontration of a photon �eld with minus-heliity quantum number into a selfdual �eld strength spinor yields the substitution
ζγλγ̇

[ζλ]
→ ζ γ̇λγ

〈ζγ〉 , (3.1.19)in the seond line of (3.1.15). Hene the vanishing ontration λαλα is obtained and onse-quently
A− +Fα̇β̇ ≡ +Fα̇β̇

[
A−
]

= 0 , (3.1.20)holds. The opposite result for the ontration of a photon �eld with plus-heliity into an anti-selfdual �eld strength spinor is obtained using (3.1.19) with a reversed arrow in the alulationtowards (3.1.18). Analogously the vanishing ontration λα̇λα̇ is obtained in this ase and
A+ −Fαβ ≡ −Fαβ

[
A+
]

= 0 , (3.1.21)follows. Equations (3.1.15), (3.1.18), (3.1.20) and (3.1.21) are on-shell relations useful for thealulations of four-point amplitudes diretly from the ation where only external ontrationsour.Internal ontrationsIn order to alulate six-point amplitudes it is neessary to onsider internal ontrationsbetween �eld strength spinors. In this ase the involved partiles are o�-shell and (3.1.20)and (3.1.21) are therefore not valid. Instead the internal ontrations has to be worked outexpliitly. The internal ontration between two �eld strengths of di�erent types is
+Fα̇β̇

−Fαβ =

(−i)2 (−2i)
1

4

1

p2

(

pγα̇ pαδ̇ ε
γ
β ε

δ̇
β̇

+ pγα̇ pβδ̇ ε
γ
α ε

δ̇
β̇

+ pγβ̇ pαδ̇ ε
γ
β ε

δ̇
α̇ + pγβ̇ pβδ̇ ε

γ
α ε

δ̇
α̇

)

= − i

p2

(

pαβ̇pβα̇ + pαα̇pββ̇

)

, (3.1.22)as is alulated in detail in (A.1.22). It should be notied that the internal ontration of �eldstrengths of opposite type is nonloal as this ontration ontains a pole in the propagatingPage 56



momentum. The internal ontration of two selfdual �eld strength spinors is
+Fα̇β̇

+Fγ̇δ̇ =

(−i)2 (−2i)
1

4

1

p2

(

pαα̇ pβγ̇ ε
αβ εβ̇δ̇ + pαα̇ pβδ̇ ε

αβ εβ̇γ̇ + pαβ̇pβγ̇ ε
αβ εα̇δ̇ + pαβ̇ pβδ̇, ε

αβ εα̇γ̇

)

,(3.1.23)where the struture of eah of the terms in the braket is the same. Eah term is antisymmetriin the two dotted indies so that for instane
pαα̇ pβγ̇ ε

αβ = −pαγ̇ pβα̇ εαβ = κ εα̇γ̇ . (3.1.24)This leads to
2κ = pαα̇ pβγ̇ ε

αβ εα̇γ̇ = 2 p2 , (3.1.25)when ontrated with εα̇γ̇ . Substituting κ = p2 in (3.1.24) and using this in (3.1.23) yields
+Fα̇β̇

+Fγ̇δ̇ = i
(

εα̇γ̇ εβ̇δ̇ + εα̇δ̇ εβ̇γ̇

)

. (3.1.26)The internal ontration between two anti-selfdual �eld strengths an be worked out using thesame steps that lead to (3.1.26) and it follows that
−Fαβ

−Fγδ = i (εαγ εβδ + εαδ εβγ) . (3.1.27)From (3.1.26) and (3.1.27) it is apparent that the internal ontration of two �eld strengthsof the same type is loal sine the pole fators are anelled. The anellation of pole fatorsour o�-shell and hene this loal property does not depend on any on-shell onditions.3.2 Sattering amplitudes with spei�ed external polarizationsThe developments in the previous setion will now be employed in amplitude alulationswhere four-point and six-point amplitudes will be omputed.3.2.1 Four-point amplitudesEquations (3.1.15), (3.1.18), (3.1.20) and (3.1.21) serve as the basis for alulations of four-point sattering amplitudes. Contrations between external states and verties simplify onsid-erably aording to these equations and ertain vanishing amplitudes an be read of diretlyfrom the expanded ation. Sine the four-point amplitude is ontrolled solely by the term
(
−π2α′2/32

)
+F 2−F 2 in (3.1.11) it an be dedued right away that the following four-pointamplitudes neessarily vanish

A
(
1+2+3+4+

)
= A

(
1−2−3−4−

)
= A

(
1−2+3+4+

)
= A

(
1+2−3−4−

)
= 0 . (3.2.1)As an example the �rst amplitude in (3.2.1) is alulated

A
(
1+2+3+4+

)
→
〈

A+A+A+A+
∣
∣
∣
+Fα̇β̇

+F α̇β̇ −Fαβ
−Fαβ

〉

, (3.2.2)Page 57



and it is apparent that (3.1.21) will appear in all possible full ontrations. Likewise it an bededued that the seond amplitude in (3.2.1) ontains (3.1.20) in all ontrations while eahof the last two amplitudes in (3.2.1) respetively ontain both (3.1.20) and (3.1.21). From theabove disussion it an be onluded that the four-point amplitude
A
(
1+2+3−4−

)
→
〈

A+A+A−A−
∣
∣
∣
+Fα̇β̇

+F α̇β̇ −Fαβ
−Fαβ

〉

, (3.2.3)is the only one whih is nonzero. In order to evaluate this amplitude expliitly with the rightnumerial onstants, (3.1.20) and (3.1.21) with upper indies
+F α̇β̇

[
A−
]

= i
√

2λα̇λβ̇ , −Fαβ
[
A−
]

= −i
√

2λαλβ , (3.2.4)are used and the result is
A
(
1+2+3−4−

)
=

(

−π
2α′2

32

)(

4 i2 (−i)2
(√

2
)4

1α̇ 1β̇ 2α̇ 2β̇ 3α 3β 4α 4β
)

= −π
2α′2

2
〈12〉2 [34]2 , (3.2.5)where the proper numerial front fator from the ation has been taken into aount. Thefator �4� omes about beause all the possible four Wik ontrations are idential.3.2.2 Six-point amplitudesIn alulations of the six-point amplitudes two ontributions have to be taken into aount.One ontribution is the diret one from the vertex (π6α′6/256

) (
+F 4−F 2 + −F 4+F 2

) in theation while the other ontribution onsists of two four-point verties ontrolled by the squareof the term (
−π2α′2/32

)
+F 2−F 2 where two four-point verties are ontrated. This latterterm originates from the seond order ontribution in the expansion series of the exponentiatedation whih involves internal ontrations of �eld strengths. Therefore (3.1.22), (3.1.26) and(3.1.27) will be used. It an be read of diretly from the ation that the amplitudes

A
(
1+2+3+4+5+6+

)
= A

(
1−2−3−4−5−6−

)
= A

(
1+2−3−4−5−6−

)
= A

(
1−2+3+4+5+6+

)

= 0 , (3.2.6)vanish. This is simply due to the fat that the ation does not ontain any verties with thestruture
±F ±F ±F ±F ±F ∓F , ∓F ∓F ∓F ∓F ∓F ±F , (3.2.7)or

±F ±F ±F ±F ±F ±F . (3.2.8)Furthermore, no vertex with this struture is found when internal ontrations of �eld strengthsare arried out on the seond-order terms in the expansion of the ation.In general, the n-point amplitude
A
(
1+2+3− · · · n−

)
, (3.2.9)Page 58



is known as a maximally heliity violating amplitude (MHV) sine in Yang-Mills theory itviolates onservation of heliity [24℄ to the maximum possible extend at tree level. Thepartiular amplitude from the DBI-ation
A
(
1+2+3−4−5−6−

)
, (3.2.10)is therefore an example of an MHV amplitude and it is evaluated by the Wik ontrations

〈

1+2+3−4−5−6−
∣
∣
∣
+F 2+F 2−F 2−F 2

〉

, (3.2.11)of the squared term from the ation. In this ase it is apparent that one internal ontrationof two selfdual �eld strengths must be performed in order to obtain a nonzero full ontration.Equation (3.1.26) yields
+Fα̇β̇

+F α̇β̇ +Fγ̇δ̇
+F γ̇δ̇ = 2i+Fα̇β̇

+F α̇β̇ , (3.2.12)for an internal ontration of selfdual �eld strengths. Sine four idential internal ontrationsof the selfdual �eld strengths an be made, a fator of four is obtained and
〈

1+2+3−4−5−6−
∣
∣
∣
+F 2+F 2−F 2−F 2

〉

= 8i
〈

1+2+3−4−5−6−
∣
∣
∣
+F 2−F 4

〉

, (3.2.13)holds for an internal ontration of selfdual �eld strengths. The internal struture of the on-tribution from the two four-point verties is idential to that of the diret ontribution +F 2−F 4and these two ontributions only di�er by a onstant. The prefator of the ontribution fromthe two four-point verties is
1

2

(

− i
π2α′2

32

)2

8i = − i
π4α′4

256
, (3.2.14)where the fator 1/2 is from the expansion of the ation and the fator 8i is from (3.2.13).Equation (3.2.14) is exatly idential to the prefator of the term in the ation with six �eldsbut with the opposite sign. The sum of these two ontributions is exatly the amplitude(3.2.10) whih therefore vanishes

A
(
1+2+3−4−5−6−

)
= 0 . (3.2.15)It is interesting that the six-point ontribution exatly anels the ontribution from theontration of two four-point verties.The six-point heliity onserving NMHV amplitude

A
(
1+2+3+4−5−6−

)
, (3.2.16)has only one ontribution whih is the one where two �eld strengths of the opposite type areontrated between two four-point verties. There exist nine possible permutations of partileswhere two are shown in �gures 3.1 and 3.2. The partiular on�guration of external partilesin �gure 3.1 orresponds to the propagating momentum

pαα̇ = (1 + 2 + 4)αα̇ , (3.2.17)Page 59
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Figure 3.1: A ontration of two four-point ver-ties. The ontration for this on�guration of ex-ternal partiles is alulated in (3.2.18). 1
+
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Figure 3.2: A ontration of two four-point ver-ties with another on�guration of partiles om-pared to �gure 3.1.and it follows from (3.1.22) that the partiular full ontration beomes
+Fα̇β̇

−Fαβ
+F α̇β̇

[
A+

3

]
+Fγ̇δ̇

[
A+

1

]
+F γ̇δ̇

[
A+

2

]
−Fαβ

[
A−

4

]
−Fγδ

[
A−

5

]
−F γδ

[
A−

6

]

= − i

p2

(

pαα̇ pββ̇ + pαβ̇ pβα̇

)

3α̇ 3β̇ 1γ̇ 1δ̇ 2γ̇ 2δ̇ 4α 4β 5γ 5δ 6γ 6δ

= − 2i

p2
〈12〉2 [56]2 4α4βpαα̇ pββ̇3

α̇3β̇

= − 2i

(p1 + p2 + p4)
2 〈12〉2 [56]2 ([4 | (1 + 2 + 4) |3〉)2 , (3.2.18)where the notational abbreviation

[i |k|l〉 = iαjαα̇k
α̇ , (3.2.19)is used. The full amplitude is a sum of the nine permutations of (3.2.18) and reads

A
(
1+2+3+4−5−6−

)
=

1

4

(

− i
π4α′4

128

)
∑

σ(l,m,n)

∑

σ(i,j,k)

〈lm〉2 [ij]2
([k | (l +m+ k) |n〉)2

(pl + pm + pk)
2 ,(3.2.20)where the sums are performed over the permutations of indies

σ (l,m, n) = σ (1, 2, 3) , σ (l,m, n) = σ (2, 3, 1) , σ (l,m, n) = σ (3, 2, 1) , (3.2.21)
σ (i, j, k) = σ (4, 5, 6) , σ (i, j, k) = σ (5, 6, 4) , σ (i, j, k) = σ (4, 5, 6) . (3.2.22)The numerial fator in (3.2.20) is alulated as

1

2

(

− i
π2α′2

32

)2 (√
2
)6

(2i) =

(

− i
π4α′4

128

)

, (3.2.23)whih is in agreement with [1℄ apart from a fator i.3.3 A step towards six dimensionsThe previous setion ontains alulations of amplitudes in four dimensions. Amplitudes insix dimensions are not alulated in a similar straightforward way and it is neessary withsome preliminary onsiderations.Page 60



3.3.1 Dira-Born-Infeld in higher dimensionsThe approah to alulate six-dimensional sattering amplitudes begins with the Dira-Born-Infeld Lagrangian. In four dimensions it an be expanded [22℄ as
LDBI = I2 + I4

[
1 + O

(
F 2
)]

, (3.3.1)with abbreviations
I2 =

1

4
FµνF

µν , (3.3.2)
I4 = −1

8

[

FµνF
νρFρσF

σµ − 1

4
(FµνF

µν)2
]

= −1

8

(
+F
)2 (−F

)2
, (3.3.3)where the string tension T has been put equal to one,

T =
1

2πα′
≡ 1 . (3.3.4)In an arbitrary number of dimensions (3.3.1) is instead

LDBI = I2 + I4 + O
(
F 6
)
, (3.3.5)with the same abbreviations used. That (3.3.5) holds has been heked expliitly by writingthe �eld strengths as matries in Mathematia. This is disussed in appendix A.1.Whether four, six or any number of dimensions are onsidered, espeially the I4 term is ofinterest sine it ontains produts of four �eld strengths and hene it ontrols the four-pointamplitudes at tree-level. In the following the onstant will be ignored and

I ′4 ≡ FµνF
νρFρσF

σµ − 1

4
FµνF

µνFρσF
ρσ , (3.3.6)will be studied. The operation of dualization was de�ned in four dimensions in (1.4.1) and theselfdual +F and anti-selfdual −F omponents of the �eld strength tensor was introdued in3.1.2. The rightmost equality in (3.3.3) holds in four dimensions but it has no straightforwardgeneralization to higher dimensions. In six dimensions one would de�ne the dual of FMN as

F̃MNRS =
i

2
εMNRSKLF

KL , (3.3.7)whih is obviously not a two-form. In order to obtain a two-form (3.3.7) must be ontratedinto some antisymmetri objet with two indies and the dual will then depend on this par-tiular objet. The onlusion is that the dual in six dimensions is not uniquely de�ned.The simpliity of alulations in four dimensions as a onsequene of the use of the dual antherefore not be transferred to six dimensions.A general four-point amplitude with unspei�ed external polarizationsThe purpose of this setion is to alulate the photon four-point sattering amplitude as ageneral result in terms of generi polarization vetors. Only tree-level amplitudes will bestudied and hene only external ontrations are taken into aount. Page 61



3.3.2 Construting the amplitudeThe result
ε±i · ε±j = 0 , (3.3.8)is important in alulations of sattering amplitudes with spei� external polarizations. How-ever, when an amplitude is alulated in generality as a funtion of generi polarization ve-tors, (3.3.8) annot be used sine, in general, all dot produts of polarization vetors arenon-vanishing. The general amplitude is alulated from the four-point term

I ′4 = FMNF
NRFRSF

RM − 1

4
FMNF

MNFRSF
RS , (3.3.9)in the Dira-Born-Infeld Lagrangian as disussed in the previous setion.The general alulation an be outlined as a proess of three steps. Step one is to omputeone arbitrarily hosen full ontration. Step two is to onstrut in Mathematia the result ofthis omputation as generi momenta and polarization tensors with indies and then performthe summation over all possible permutations of these indies. Step three is to employ mo-mentum onservation to simplify the expression. These three steps are desribed below. Theamplitude is omputed by the Wik ontrations of (3.3.9)

A(AiAjAkAl) → εαi ε
β
j ε

γ
k ε

δ
l

〈

Ai,αAj,βAk,γAl,δ

∣
∣
∣FµνF

νρFρσF
σµ − 1

4
FµνF

µνFρσF
ρσ
〉

= εαi ε
β
j ε

γ
k ε

δ
l

[〈

Ai,αAj,βAk,γAl,δ

∣
∣
∣FµνF

νρFρσF
σµ
〉

−1

4

〈

Ai,αAj,βAk,γAl,δ

∣
∣
∣FµνF

µνFρσF
ρσ
〉]

, (3.3.10)suggesting that eah of the two terms in (3.3.10) are treated separately. For eah of the twoterms one arbitrarily hosen full ontration
χ(ijkl) ≡ εαi ε

β
j ε

γ
k ε

δ
lAi,αAj,βAk,γAl,δFµνF

νρFρσF
σµ , (3.3.11)and

ω(ijkl) ≡ εαi ε
β
j ε

γ
k ε

δ
lAi,αAj,βAk,γAl,δFµνF

µνFρσF
ρσ , (3.3.12)is labeled aording to (3.3.11) and (3.3.12). Both objets χ(ijkl) and ω(ijkl) onsist of sixteenterms and an be evaluated respetively as

χ(ijkl) = (pi ·εl) (pj ·εi) (pk ·εj) (pl ·εk) + (pi ·pl) (pj ·εi) (pk ·εl) (εj ·εk)
− (pk ·pl) (pi ·εl) (pj ·εi) (εk ·εj) − (pi ·pl) (pj ·εi) (pk ·εj) (εk ·εl)

+ (pi ·εj) (pj ·pk) (pl ·εk) (εi ·εl) + (pi ·εj) (pj ·εk) (pk ·εl) (pl ·εi)
− (pk ·pl) (pi ·εj) (pj ·εk) (εi ·εl) − (pi ·εj) (pj ·pk) (pl ·εi) (εk ·εl)
− (pi ·pj) (pk ·εj) (pl ·εk) (εi ·εl) − (pi ·pj) (pk ·εl) (pl ·εi) (εk ·εj)

+ (pi ·pj) (pk ·pl)
(
εi ·εl

)
(εk ·εj) + (pi ·pj)

(
pk ·εj

)
(pl ·εi) (εk ·εl)

− (pi ·εl) (pl ·εk) (pj ·pk) (εi ·εj) − (pi ·pl) (pj ·εk) (pk ·εl) (εi ·εj)
+ (pk ·pl) (pi ·εl) (pj ·εk) (εi ·εj) + (pi ·pl) (pj ·pk) (εi ·εj) (εk ·εl) ,(3.3.13)Page 62



and
ω(ijkl) = 4

[

(pi ·pj) (pk ·pl) (εi ·εj) (εk ·εl) + (pi ·εj) (pj ·εi) (pk ·εl) (pl ·εk)

− (pk ·pl) (pi ·εj) (pj ·εi) (εk ·εl) − (pi ·pj) (pk ·εl) (pl ·εk) (εi ·εj)
]

. (3.3.14)Interhanging the ontrations of Ai and Aj in (3.3.11) simply interhanges the indies i and
j in (3.3.13). A similar struture is found for (3.3.12) and (3.3.14) and the full amplitude in(3.3.10) an therefore be written formally as the sum over all possible permutations of theindies i, j, k, l as

A(AiAjAkAl) =
∑

σ(i,j,k,l)

(

χ(ijkl) −
1

4
ω(ijkl)

)

≡ S , (3.3.15)ontaining 4! ontributions of the form (3.3.13) and just as many of the form (3.3.14). Itfollows that 24× (16 + 4) = 480 is the total number of terms in the sum whih will be referredto as S. In order to evaluate and simplify S, the full expressions for χ(ijkl) and ω(ijkl) areonstruted individually in Mathematia suh that for instane the seond term in (3.3.13) iswritten as
(pi ·pl) (pj ·εi) (pk ·εl) (εj ·εk) → (pp)i,l (pe)j,i (pe)k,l (ee)j,k , (3.3.16)with eah dot produt represented as one variable having two indies. The name of eahvariable arries the information of whether the dot produt is between two momentum vetors,two polarization vetors or between one momentum vetor and one polarization vetor. Thesum S is expliitly evaluated in Mathematia and the output is shown in �gure A.3. As aonsequene of the de�nitions of variables1 (3.3.16) Mathematia distinguishes between termssuh that

(pp)i,j 6= (pp)j,i , (ee)i,j 6= (ee)j,i , (3.3.17)even though these terms are idential. To obtain the proper anellation of terms, the opera-tion
(pp)j,i → (pp)i,j , (ee)j,i → (ee)i,j , (3.3.18)is performed for every ombination of the indies i, j, k and l. The Mandelstam variables from(1.2.2) are

s = 2 p1 · p2 , t = 2 p1 · p4 , u = 2 p1 · p3 , (3.3.19)and due to onservation of momentum
s+ t+ u = 0 , (3.3.20)holds. This simpli�es S into a form of 60 term as shown in �gure A.4.1This de�nition ould have been done more lever to avoid the problems desribed along (3.3.13). Page 63



3.3.3 Simplifying the overall sum of ontributionsOne �nds from the Mathematia output that all the terms in S an be grouped into one ofthree distint ategories with ertain harateristis. The �rst ategory onsists of nine termswith the struture
s2 (ε1 ·ε2) (ε3 ·ε4) , (3.3.21)of two dot produts between polarization vetors and the square of a Mandelstam variable.The seond ategory onsists of 42 terms with the struture

u (ε2 ·ε3) (p1 ·ε4) (p3 ·ε1) , (3.3.22)having one Mandelstam variable, one dot produt between polarization vetors and two dotproduts between a momentum vetor and a polarization vetor. The third ategory onsistsof 9 terms with the struture
(p1 ·ε2)(p2 ·ε1)(p3 ·ε4)(p4 ·ε3) or (p1 ·ε2)(p2 ·ε3)(p3 ·ε4)(p4 ·ε1) , (3.3.23)of four dot produts between one momentum vetor and one polarization vetor. In thefollowing eah ategory of terms will be onsidered individually in order to simplify S.Terms from the �rst ategoryThe nine terms in this ategory are manipulated using the rearrangement of (3.3.20)

s2 = (t+ u)2 = t2 + u2 + 2tu , (3.3.24)whereby the three terms with the ommon oe�ient (ε1 ·ε2) (ε3 ·ε4) an be rewritten as
(ε1 ·ε2) (ε3 ·ε4)

[
−2s2 + 2t2 + 2u2

]
= − 4 (ε1 ·ε2) (ε3 ·ε4) tu . (3.3.25)Equation (3.3.24) is symmetri in s, t and u and hene the method leading to (3.3.25) an beapplied straightforwardly to the three terms proportional to (ε1 ·ε3) (ε2 ·ε4) as well as for thethree terms proportional to (ε1 ·ε4) (ε2 ·ε3). This yields for the six remaining terms

(ε1 ·ε3) (ε2 ·ε4)
[
2s2 + 2t2 − 2u2

]
= − 4 (ε1 ·ε3) (ε2 ·ε4) st , (3.3.26)

(ε1 ·ε4) (ε2 ·ε3)
[
2s2 − 2t2 + 2u2

]
= − 4 (ε1 ·ε4) (ε2 ·ε3) su , (3.3.27)suh that the original nine terms have been rewritten as the three terms on the right handsides of (3.3.25)�(3.3.27).Terms from the seond ategoryThe four di�erent polarization vetors form six di�erent dot produts eah being a ommonfator in seven terms in the seond ategory. In order to show how simpli�ations our, theseven terms proportional to (ε1 ·ε2) are onsidered. Substituting s from (3.3.20) yields thePage 64



expansion
4
[

− s(p1 ·ε4) (p2 ·ε3) − s (p1 ·ε3) (p2 ·ε4) + u (p1 ·ε3) (p3 ·ε4) + t (p2 ·ε3) (p3 ·ε4)

+ t (p1 ·ε4) (p4 ·ε3) + u (p2 ·ε4) (p4 ·ε3) − s (p3 ·ε4) (p4 ·ε3)
]

= 4t
[

(p2 ·ε3) (p3 ·ε4) + (p1 ·ε4) (p4 ·ε3) + (p1 ·ε4) (p2 ·ε3)

+ (p1 ·ε3) (p2 ·ε4) + (p3 ·ε4) (p4 ·ε3)
]

+ 4u
[

(p1 ·ε3) (p3 ·ε4) + (p2 ·ε4) (p4 ·ε3) + (p1 ·ε4) (p2 ·ε3)

+ (p1 ·ε3) (p2 ·ε4) + (p3 ·ε4) (p4 ·ε3)
]

, (3.3.28)for the seven terms proportional to (ε1 ·ε2). Considering expliitly in (3.3.28) the sum of termnumber one, two, three and �ve in the square braket proportional to 4t gives
(p2 ·ε3) (p3 ·ε4) + (p1 ·ε4) (p4 ·ε3) + (p1 ·ε4) (p2 ·ε3) + (p3 ·ε4) (p4 ·ε3)

= εµ3ε
ν
4 (p2,µp3,ν + p4,µp1,ν + p2,µp1,ν + p4,µp3,ν)

= εµ3ε
ν
4 (p2,µ + p4,µ) (p1,ν + p3,ν)

= εµ3ε
ν
4 ( − p1,µ − p3,µ) ( − p2,ν − p4,ν)

= εµ3ε
ν
4 p1,µ p2,ν

= (p1 ·ε3) (p2 ·ε4) , (3.3.29)where momentum onservation has been employed along with transversality of the momentum.It is apparent that the right hand side of (3.3.29) is idential to term number four in the squarebraket proportional to 4t in (3.3.28).Idential manipulations are used in the square braket proportional to 4u in (3.3.28) andhene the sum of term number one, two, four and �ve is
(p1 ·ε3) (p3 ·ε4) + (p2 ·ε4) (p4 ·ε3) + (p1 ·ε3) (p2 ·ε4) + (p3 ·ε4) (p4 ·ε3)

= εµ3ε
ν
4 (p1,µp3,ν + p4,µp2,ν + p1,µp2,ν + p4,µp3,ν)

= εµ3ε
ν
4 (p1,µ + p4,µ)

(
p3,ν + p2

2,ν

)

= εµ3ε
ν
4 ( − p2,µ + p3,µ) ( − p1,ν − p4,ν)

= εµ3ε
ν
4 p2,µ p1,ν

= (p2 ·ε3) (p1 ·ε4) , (3.3.30)whih is idential to term number four in the square braket. From (3.3.29) and (3.3.30) it ispossible to rewrite (3.3.28) in the muh more ompat form
4t
[

(p2 ·ε3) (p3 ·ε4) + (p1 ·ε4) (p4 ·ε3) + (p1 ·ε4) (p2 ·ε3)

+ (p1 ·ε3) (p2 ·ε4) + (p3 ·ε4) (p4 ·ε3)
]

+ 4u
[

(p1 ·ε3) (p3 ·ε4) + (p2 ·ε4) (p4 ·ε3) + (p1 ·ε4) (p2 ·ε3)

+ (p1 ·ε3) (p2 ·ε4) + (p3 ·ε4) (p4 ·ε3)
]

= 8t (p1 ·ε3) (p2 ·ε4) + 8u (p2 ·ε3) (p1 ·ε4) , (3.3.31)Page 65



whih is the �nal simpli�ation.Only seven terms have been onsidered in the manipulations (3.3.28) � (3.3.31) but theremaining 35 terms in this ategory an be manipulated in the same way. For eah of thedot produts (ε1 ·ε3),(ε1 ·ε4),(ε2 ·ε3),(ε2 ·ε4),(ε3 ·ε4) respetively, an expression equivalent to(3.3.31) an be obtained for the seven terms proportional to this partiular dot produt andhene the 42 terms in the seond ategory are redued to 12 terms.Terms from the third ategoryConservation of momentum yields
(p4 ·ε2) (p3 ·ε1) = (p1 ·ε2) (p2 ·ε1) + (p1 ·ε2) (p4 ·ε1) + (p3 ·ε2) (p2 ·ε1) + (p3 ·ε2) (p4 ·ε1) ,(3.3.32)
(p4 ·ε3) (p2 ·ε1) = (p1 ·ε3) (p3 ·ε1) + (p1 ·ε3) (p4 ·ε1) + (p2 ·ε3) (p3 ·ε1) + (p2 ·ε3) (p4 ·ε1) ,(3.3.33)whih will be used to expand the nine terms of the third ategory. For onveniene and tointrodue a ertain labeling the nine terms are written expliitly

− (p1 ·ε4)(p4 ·ε1)(p2 ·ε3)(p3 ·ε2)
︸ ︷︷ ︸

α1

− (p1 ·ε3)(p3 ·ε1)(p2 ·ε4)(p4 ·ε2)
︸ ︷︷ ︸

β1

− (p1 ·ε2)(p2 ·ε1)(p3 ·ε4)(p4 ·ε3)
︸ ︷︷ ︸

γ1

+ (p1 ·ε3)(p3 ·ε2)(p2 ·ε4)(p4 ·ε1)
︸ ︷︷ ︸

β2

+ (p1 ·ε2)(p2 ·ε3)(p3 ·ε4)(p4 ·ε1)
︸ ︷︷ ︸

γ2

+ (p1 ·ε4)(p4 ·ε2)(p2 ·ε3)(p3 ·ε1)
︸ ︷︷ ︸

α2

+ (p1 ·ε3)(p3 ·ε4) (p4 ·ε2)
(
p2 ·ε1

)

︸ ︷︷ ︸

β3

+ (p1 ·ε2)(p2 ·ε4)(p4 ·ε3)(p3 ·ε1)
︸ ︷︷ ︸

γ3

+ (p1 ·ε4)(p4 ·ε3)(p3 ·ε2)(p2 ·ε1)
︸ ︷︷ ︸

α3

.(3.3.34)Substituting (3.3.32) and (3.3.33) respetively in the expressions for α2 and α3, the sum of
α1, α2 and α3 beomes

− (p1 ·ε4)(p4 ·ε1)(p2 ·ε3)(p3 ·ε2) + (p1 ·ε4)(p4 ·ε2)(p2 ·ε3)(p3 ·ε1)
+ (p1 ·ε4)(p4 ·ε3)(p3 ·ε2)(p2 ·ε1)

= (p1 ·ε4)
{

(p2 ·ε3) (p3 ·ε2) [(p4 ·ε1) + (p2 ·ε1) + (p3 ·ε1)]
+ (p2 ·ε3) (p1 ·ε2) (p4 ·ε1) + (p2 ·ε3) (p1 ·ε2) (p2 ·ε1)

+ (p3 ·ε2) (p1 ·ε3) (p4 ·ε1) + (p3 ·ε2) (p1 ·ε3) (p3 ·ε1)
}

= (p1 ·ε4) εµ1εν2ερ3 [p4,µ p1,ν p2,ρ + p2,µ p1,ν p2,ρ + p4,µ p3,ν p1,ρ + p3,µ p3,ν p1,ρ]

= (p1 ·ε4) εµ1εν2ερ3 [(p4,µ + p2,µ) p1,ν p2,ν + (p4,µ + p3,µ) p3,ν p1,ρ]

= − (p1 ·ε4) εµ1εν2ε
ρ
3 [p3,µ p1,ν p2,ρ + p2,µ p3,ν p1,ρ] , (3.3.35)where momentum onservation has been used in ombination with transversality to obtain

(p4 ·ε1) + (p2 ·ε1) + (p3 ·ε1) = −p1 ·ε1 = 0 . (3.3.36)Page 66



An idential proedure an be used for the sum of β1, β2, β3 as well as for the sum of γ1, γ2, γ3.For the sum of β1, β2, β3, the terms β2 and β3 are expanded and expliit alulations yield
− (p1 ·ε3)(p3 ·ε1)(p2 ·ε4)(p4 ·ε2) + (p1 ·ε3)(p3 ·ε2)(p2 ·ε4)(p4 ·ε1)

+
(
p1 ·ε3

)(
p3 ·ε4

) (
p4 ·ε2

)(
p2 ·ε1

)

= − (p1 ·ε3) εµ1εν2ερ4 [p2,µ p4,ν p1,ρ + p4,µ p1,νp2,ρ] . (3.3.37)For the sum of γ1, γ2 and γ3 it is found that
− (p1 ·ε2)(p2 ·ε1)(p3 ·ε4)(p4 ·ε3) + (p1 ·ε2)(p2 ·ε3)(p3 ·ε4)(p4 ·ε1)

+ (p1 ·ε2)(p2 ·ε4)(p4 ·ε3)(p3 ·ε1)
= − (p1 ·ε2) εµ1εν3ε

ρ
4 [p3,µ p4,ν p1,ρ + p4,µ p1,ν p3,ρ] , (3.3.38)in a similar way. Equations (3.3.35), (3.3.37) and (3.3.38) are summed up to give

− εµ1ε
ν
2ε
ρ
3ε
σ
4 [p3,µp1,νp2,ρp1,σ + p2,µp3,νp1,ρp1,σ] − εµ1ε

ν
2ε
ρ
3ε
σ
4 [p2,µp4,νp1,ρp1,σ + p4,µp1,νp1,ρp2,σ]

− εµ1ε
ν
2ε
ρ
3ε
σ
4 [p3,µp1,νp4,ρp1,σ + p4,µp1,νp1,ρp3,σ]

= −εµ1εν2ερ3εσ4 [p3,µp1,ν (p2,ρ + p4,ρ) p1,σ + p2,µ (p3,ν + p4,ν) p1,ρp1,σ + p4,µp1,νp1,ρ (p2,σ + p3,σ)]

= +εµ1ε
ν
2ε
ρ
3ε
σ
4 [p3,µp1,ν (p1,ρ + p3,ρ) p1,σ + p2,µ (p1,ν + p2,ν) p1,ρp1,σ + p4,µp1,νp1,ρ (p1,σ + p4,σ)]

= ε1µε2 νε3 ρε4 σ [p3,µp1,νp1,ρp1,σ + p2,µp1,νp1,ρp1,σ + p4,µp1,νp1,ρp1,σ]

= − εµ1ε
ν
2ε
ρ
3ε
σ
4p

µ
1p

ν
1p
ρ
1p
σ
1

= 0 , (3.3.39)suh that the nine terms (3.3.34) add to zero.Colleting the pieesThe entire amplitude an be written in terms of the ontributions (3.3.25)�(3.3.27) togetherwith six ontributions of the form (3.3.31) where eah ontribution is multiplied be the ap-propriate dot produt of polarization vetors. The �nal result for the amplitude is
A (AiAjAjAk)

= − 4
[

(ε1 ·ε2)(ε3 ·ε4) tu+ (ε1 ·ε3)(ε2 ·ε4) st+ (ε1 ·ε4)(ε2 ·ε3) su
]

+ 8s
[

(p1 ·ε3)(p4 ·ε2)(ε1 ·ε4) + (p1 ·ε4)(p3 ·ε2)(ε1 ·ε3)

+ (p2 ·ε4)(p3 ·ε1)(ε2 ·ε3) + (p2 ·ε3)(p4 ·ε1)(ε2 ·ε4)
]

+ 8t
[

(p1 ·ε2)(p3 ·ε4)(ε1 ·ε3) + (p1 ·ε3)(p2 ·ε4)(ε1 ·ε2)

+ (p3 ·ε1)(p4 ·ε2)(ε3 ·ε4) + (p2 ·ε1)(p4 ·ε3)(ε2 ·ε4)
]

+ 8u
[

(p1 ·ε2)(p4 ·ε3)(ε1 ·ε4) + (p1 ·ε4)(p2 ·ε3)(ε1 ·ε2)

+ (p4 ·ε1)(p3 ·ε2)(ε3 ·ε4) + (p2 ·ε1)(p3 ·ε4)(ε2 ·ε3)
]

, (3.3.40)whih is idential to the �kinemati fator� alulated in [25℄ apart from an overall multi-pliative fator of 16. Furthermore, (3.3.40) is found in [26℄. The di�erent overall fator isPage 67



due to di�erent hoies of onventions regarding normalization of the string parameter α′. Itfollows diretly from (3.3.40) ombined with (2.1.114) that the amplitudes A(±±±±) van-ish identially regardless of dimension. This an interesting result whih is in agreement with(3.2.1).In higher dimensions one an hose spei� polarization vetors and ompute diretlyfrom (3.3.40). However, another approah starting from the Dira-Born-Infeld ation is usedin order to gain more insight in the six-dimensional ase. This approah will be the topifor the next hapter where one must expet that the A(±±±±) amplitude vanishes due to(3.3.40).
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Chapter 4Vetor boson amplitudes in sixdimensionsIn the previous hapter, various sattering amplitudes were alulated in four dimensions withdiligent use of the spinor-heliity formalism. The alulations were streamlined onsiderablydue to the formalism. This hapter presents alulations of amplitudes in six dimensions wherethe situation is more ompliated. A �rst observation is that the spinor-heliity formalismis not generalized straightforwardly to six dimensions and this suggests another approah.However, the four-dimensional spinor-heliity formalism will still be used to express the fourdimensional part of six-dimensional amplitudes. This approah is based on some simplifyingassumptions and the use of auxiliary dimensions. In fat it is part of the disussion of theappropriate language in six dimensions as addressed in the introdution.4.1 Six dimensions from a four-dimensional perspetiveThe topi of the subsequent setions is to alulate di�erent sattering amplitudes in six di-mensions. The external states of these amplitudes are spei�ed whih in this sense is muhalong the lines of setion 3.2 where spei� amplitudes were alulated in four dimensions.However, in order to take the step from four to six dimensions some developments are re-quired. These developments will be made below and are introdued in order to simplify thealulations. The general expression (3.3.40) will be left and instead the situation will beonsidered more spei� using a bottom-up approah. One similarity however is that (3.3.6)is still the interesting term to onsider.4.1.1 Auxiliary dimensionsThe overall motivation for the developments mentioned above is to simplify the alulationsby removing some degrees of freedom. The problem under onsideration is six-dimensionaland one an think of the four and �ve-diretions as being auxiliary dimensions with respetto the usual four dimensions. Introduing suitable onstraints on vetor omponents in theauxiliary dimensions will result in a splitting of the auxiliary dimensions from the usual fourdimensions and in this way the overall kinematis an be treated in a simpler way. One anthink of the auxiliary dimensions in terms of a sattering experiment in N dimensions. Thesattered beams an be prepared in a suitable way so that momentum and polarization vetorsPage 69



are embedded in m dimensions where N > m. Of ourse momentum an be sattered intothe N −m dimensions as long as overall momentum is onserved but these dimensions are insome sense auxiliary to the m dimensions.Two di�erent approahes will be taken in the ontext desribed above and eah of themuses its own onstraint in the auxiliary dimensions. Sattering amplitudes in setions 4.3and 4.4 are alulated using the di�erent approahes respetively. These two approahes aredisussed below.4.1.2 Constraining gauge �eld omponentsIn the �rst approah, sattering amplitudes in six dimensions will be alulated under theonstraint
A4 = A5 = 0 , (4.1.1)on the gauge �eld omponents in the auxiliary dimensions. This onstraint is used in (3.3.6)where it leads to a simpli�ation of this term. The simpli�ation does not our straight-forwardly but is obtained by writing the �eld strength tensors as expliit matries. Thisproedure is disussed below in setion 4.2.1If one studies the four and �ve diretions as two extra dimensions with respet to the usualfour dimensions it is onvenient to express the momentum square of the usual four diretionsin terms of momentum omponents in the extra diretions. From a massless momentum vetor

0 = p2 =
(
p0
)2 −

(
p1
)2 −

(
p2
)2 −

(
p3
)2 −

(
p4
)2 −

(
p5
)2

, (4.1.2)one an de�ne the momentum square
p2
(d=4) ≡ p̃2 =

(
p0
)2 −

(
p1
)2 −

(
p2
)2 −

(
p3
)2

= +
(
p4
)2

+
(
p5
)2

. (4.1.3)This de�nition suggests a four-dimensional interpretation. Let pM be the momentum vetorfor a massless partile in six dimensions. By (4.1.3) it follows then that the same partile anbe onsidered from a four-dimensional perspetive as massive with
m2

(4d) =
(
p4
)2

+
(
p5
)2

. (4.1.4)The momentum vetor in four dimensions should therefore be expressed as a massive spinoraording to (2.1.107).Another simpli�ation used in this approah is regarding polarization of the satteredphotons. A massless partile in d dimensions has d − 2 physial degrees of freedom beauseone degree of freedom is removed by the equations of motion and one is removed by the gaugeondition. These degrees of freedom are re�eted by a photon in four dimensions having twopossible polarization states. In six dimensions, a photon has four possible polarization statesof whih two are the same as the four-dimensional states. The simpli�ation used is to ignorethe two extra polarization states in six dimensions. In this way the photon in six dimensionsan be desribed using the same polarization vetors as in four dimensions. This turns out tobe useful sine the spinor-heliity formalism an then be used to desribe the four-dimensionalparts of results obtained in six-dimensional alulations.Page 70



4.1.3 Constraining momentum omponentsThe seond approah uses the assumption to neglet momentum omponents in the auxiliarydimensions
p4 = p5 = 0 . (4.1.5)This onstraint leads to an interesting four-dimensional perspetive on the �elds in the theory.In order to see this, the Lagrangian for the free eletromagneti �eld

L(6d)
em

(
AM

)
=

1

4
FMNF

MN , (4.1.6)is onsidered in six dimensions. The six-dimensional indies an be deomposed simply intolower-dimensional indies so that the �eld strength tensor beomes
FMN = Fµν + Fmn + Fµn + Fmν , (4.1.7)and subsequently

FMNF
MN = FµνF

µν + 2F45F
45 + 2Fµ4F

µ4 + 2Fµ5F
µ5 . (4.1.8)For the ase (4.1.5) the �eld strength omponents are

F45 = 0 , FµiF
µi = + ∂µAi∂

µAi = − ∂µAi∂
µAi , (4.1.9)for the metri (2.4.1) generalized to six dimensions. Equation (4.1.8) beomes

FMNF
MN = FµνF

µν − 4 ∂µφ∂
µφ̄ , (4.1.10)for the de�nitions of salars

φ ≡ 1√
2

(A4 + iA5) , φ̄ ≡ 1√
2

(A4 − iA5) , (4.1.11)with the inversion
A4 =

1√
2

(
φ+ φ̄

)
, A5 = − i√

2

(
φ− φ̄

)
. (4.1.12)It follows from (4.1.10) that the requirement (4.1.5) turns the six-dimensional Lagrangianwith six-dimensional gauge �elds into a Lagrangian with four-dimensional gauge �elds andtwo omplex salars

L(6d)
em

(
AM

)
→ L(4d)

em

(
Aµ, φ, φ̄

)
. (4.1.13)This is exatly the four-dimensional perspetive on the theory as onsidered above whihwill be used in setion 4.4 where sattering amplitudes involving the salars (4.1.11) will bealulated. Page 71



4.2 Preparing amplitude alulationsThe �rst amplitude alulations will be based on the gauge �eld onstraint (4.1.1) as disussedabove. The four-point amplitudes are ontrolled by the term
I ′4 = FMNF

NRFRSF
RM − 1

4
FMNF

MNFRSF
RS , (4.2.1)whih an be simpli�ed by the gauge �eld onstraint in the auxiliary dimensions. In order tosimplify (4.2.1) it is useful to write the �eld strengths expliitly as blok matries. This is donein order to split the usual four-dimensional part of the tensor from the part in the auxiliarydimensions and it leads to an expression for (4.2.1) whih is suitable for Wik ontrations.4.2.1 Deomposing the �eld strength tensorWhen the �eld strengths are onsidered as matries the two terms on the right hand side of(4.2.1) are written as the traes

FMNF
NRFRSF

SM = FMNF
N
RF

R
SF

S
M = TrF 4 , (4.2.2)

FMNF
MNFRSF

RS =
(
− FMNF

N
M

) (
− FRSF

S
R

)
= + Tr2F 2 , (4.2.3)of ordinary matrix produts. In order to simplify (4.2.2) and (4.2.3) the matrix expressionfor the �eld strength tensor will be deomposed into blok matries. This is straightforwardsine an arbitrary matrix an be interpreted as a blok matrix where the entries are groupedaording to a ertain blok struture. In six dimensions the eletromagneti �eld strengthtensor an be written as the 6 × 6 blok matrix

FMN =

[ A(4×4) B(4×2)

−BT(2×4) D(2×2)

]

, (4.2.4)with the dimensionality of eah of the matries A,B and D written expliitly. The notationof (4.2.4) is obviously insu�ient sine Aµ
ν , Bµn and Dm

n have Lorentz indies. In terms ofthese indies (4.2.4) beomes expliitly
FMN =

[
Aµ

ν Bµn
−B m

ν Dm
n

]

, (4.2.5)where the matries are
Bµn =







∂0A4 − ∂4A0 ∂0A5 − ∂5A0

∂1A4 − ∂4A1 ∂1A5 − ∂5A1

∂2A4 − ∂4A2 ∂2A5 − ∂5A2

∂3A4 − ∂4A3 ∂3A5 − ∂5A3






, Dmn =

[
0 ∂4A5 − ∂5A4

∂5A4 − ∂4A5 0

]

, (4.2.6)and
Aµ

ν = (4d)Fµν ≡ fµν , (4.2.7)is just the usual four-dimensional �eld strength.Page 72



4.2.2 Tensor ontrations as traes of matrix produtsIn matrix notation
F 2 = FMNF

N
R = (FF )MR , (4.2.8)and from (4.2.5) the produts of �eld strength matries in (4.2.2) and (4.2.3) are

F 2 =

[
A B

−BT D

] [
A B

−BT D

]

=

[
A2 − BBT AB + BD

−BTA−DBT −BTB + D2

]

, (4.2.9)and
F 4 =

[
A2 − BBT AB + BD

−BTA−DBT −BTB + D2

] [
A2 − BBT AB + BD

−BTA−DBT −BTB + D2

]

=

[
φ χ
ψ ω

]

, (4.2.10)with the abbreviations
φ = A4 + BBTBBT −A2BBT − BBTA2 −ABBTA− BD2BT −ABDBT − BDBTA , (4.2.11)
ω = −BTA2B −DBTBD − BTABD −DBTAB + BTBBTB + D4 − BTBD2 −D2BTB ,(4.2.12)
χ = A3B − BBTBD + A2BD − BBTA2 + ABDB + BD3 + ABD2 − BDBTB , (4.2.13)
ψ = −BTA3 + DBTBBT −DBTA2 + BTBBTA− BTABBT −D3BT + BTBDBT −D2BTA .(4.2.14)This is nothing but a deomposition whih by itself provides no simpli�ation. The ruialstep is to use (4.1.1) whereby

Dmn = 0 , (4.2.15)and hene (4.2.9) and (4.2.10) simplify.The trae of a produt of arbitrary n × n matries is yli in the order of matries andby (4.2.15) the trae of (4.2.9) beomes
TrF 2 = TrA2 − 2TrBBT . (4.2.16)The trae of (4.2.10) is

TrF 4 = Trφ+ Trω

= TrA4 − 4TrA2BBT + 2TrBBTBBT , (4.2.17)from (4.2.11) together with (4.2.12). Squaring (4.2.16) yields
Tr2F 2 = Tr2A2 + 4TrBBT TrBBT − 4TrA2 TrBBT , (4.2.18)and by (4.2.2), (4.2.3), (4.2.17) and (4.2.18), equation (4.2.1) beomes

I ′4 = TrF 4 − 1

4
TrF 2

= TrA4 − 1

4
Tr2A2 + 2TrBBTBBT − 4TrA2BBT − TrBBT TrBBT + TrA2 TrBBT .(4.2.19)Page 73



The matrix A is exatly the four-dimensional part of FMN and hene
TrA4 − 1

4
Tr2A2 = FµνF

νρFρσF
σµ − 1

4
FµνF

µνFρσF
ρσ =

(
+F
)2 (−F

)2
, (4.2.20)holds for the four-dimensional matries. Subsequently (4.2.19) beomes

I ′4 =
(
+F
)2 (−F

)2
+ 2

(
BBT

)µ

ν

(
BBT

)ν

µ
− 4FµνF

ν
ρ

(
BBT

)ρ

µ

−
(
BBT

)µ

µ

(
BBT

)ν

ν
− Fµν F

µν
(
BBT

)λ

λ
, (4.2.21)whih appears almost as a four-dimensional expression beause only four-dimensional Lorentzindies are present. The dependene on the auxiliary two dimensions is in the matrix produt

BBT where for instane
(
BBT

)ρ

σ
= Bρn

(
BT
)

nσ
= BρnBσn . (4.2.22)By (4.1.1) equation (4.2.22) beomes

(
BBT

)ρ

σ
= ∂nAρ∂nAσ , (4.2.23)whih will be used in setion 4.3 in order to ompute Wik ontrations of ertain external�elds into (4.2.21).4.3 Amplitudes with gauge �eld onstraintsThis setion ontains the alulations based on the developments in setion 4.2. Four-pointamplitudes with spei� on�guration of external polarization will be alulated with theuse of the onstraints disussed in setion 4.1.2. The alulated amplitudes are A(+ + + +),

A(− + + +), A(−− + +). The expliit expression of the term I ′4 in (4.2.21) is the startingpoint for all amplitudes alulations in this setion. For onveniene and to make referenesto ertain terms easier throughout the alulations, the expression (4.2.20) is written again as
I ′4 =

(
+F
)2 (−F

)2

︸ ︷︷ ︸

χ1

+2
(
BBT

)µ

ν

(
BBT

)ν

µ
︸ ︷︷ ︸

χ2

−4 FµνF
ν
ρ

(
BBT

)ρ

µ
︸ ︷︷ ︸

χ3

−
(
BBT

)µ

µ

(
BBT

)ν

ν
︸ ︷︷ ︸

χ4

+Fµν F
µν
(
BBT

)λ

λ
︸ ︷︷ ︸

χ5

, (4.3.1)where a labeling of terms is inluded. For eah of the χi-terms all non-vanishing Wik on-trations have to be alulated. This is done below for eah of the amplitudes. Before theamplitudes are alulated expliitly, it is natural to evaluate some partiular Wik ontrationswhih are relevant for the omputations.4.3.1 Relevant Wik ontrationsThe results obtained in (3.1.15) and (3.1.18) will still be used in the six-dimensional alula-tions. This is due to the disussion in setion 4.1.2 of polarization states in six dimensions.The outome is that sine the two extra polarization states in six dimensions are negleted,Page 74



the four-dimensional spinor-heliity formalism an be used to desribe the non-auxiliary di-mensions in the six-dimensional problem.The ontration of a (+) photon �eld and a selfdual �eld strength is
A++Fα̇β̇ =

1

22
(−2i) (−i)

√
2
ζγλγ̇

[ζλ]

(

pαα̇ ε
α
γ εβ̇γ̇ + pαβ̇ ε

α
γ εα̇γ̇

)

, (4.3.2)where the fator of 1/p2 from the photon propagator is anelled due to (2.2.80) and has beenomitted. Contrating the �rst term in the braket of (4.3.2) with the numerator yields
ζγλγ̇ pγα̇ = ζγλγ̇

(

λγλα̇ +
p̃2

2 p♭ · q ζγζα̇
)

= [λζ]λα̇λβ̇ , (4.3.3)whih is also the result when the numerator is ontrated with the rightmost term in thebrakets. Similar alulations for the ontration A−−Fα̇β̇ yield in six dimensions
+Fα̇β̇

[
A+
]

6d
= i

√
2λα̇λβ̇ , (4.3.4)

−Fαβ
[
A−
]

6d
= −i

√
2λαλβ . (4.3.5)It is important to note that

A−+Fα̇β̇ 6= 0 , (4.3.6)
A+−Fα̇β̇ 6= 0 , (4.3.7)hold in the six-dimensional ase. The ontration (4.3.6) is omputed by substituting
ζγλγ̇

[ζλ]
→ ζ γ̇λγ

〈ζγ〉 , (4.3.8)in (4.3.2) whih yields
1

〈ζλ〉

[(

λαλα̇ +
p̃2

2 p♭ · q ζαζα̇
)

ζβ̇λ
α +

(

λαλβ̇ +
p̃2

2 p♭ · q ζαζβ̇
)

ζα̇λ
α

]

= 2
[ζλ]

〈ζλ〉
p̃2

2 p♭ · q ζα̇ζβ̇ .(4.3.9)It follows from (2.1.68) that
[ζλ]

2 p♭ · q =
1

〈λζ〉 , (4.3.10)whereby
+Fα̇β̇

[
A−
]

6d
= i

√
2
p̃2

〈ζλ〉2 ζα̇ζβ̇ , (4.3.11)is obtained using (4.3.2) and (4.3.9). The opposite relation is derived in a similar fashion andreads
−Fαβ

[
A+
]

6d
= −i

√
2
p̃2

[ζλ]2
ζαζβ . (4.3.12)Expressions (4.3.4), (4.3.5), (4.3.11) and (4.3.12) will be used in the following in alulationsof the terms (4.3.1). Page 75



The amplitude A(+ + + +)The all-plus amplitude
A(+ + + +) →

〈

A+
1 A

+
2 A

+
3 A

+
4

∣
∣
∣ I ′4

〉

, (4.3.13)is the most simple amplitude and aording to the general amplitude (3.3.40) it is expetedto vanish. It follows from (4.2.23) that
(
BBT

)

µν

(
BBT

)µν
= ∂mAµ∂mAν∂

nAµ∂nA
ν , (4.3.14)so that

〈

I ′4

∣
∣
∣χ2

〉

=
〈

I ′4

∣
∣
∣χ4

〉

=
〈

I ′4

∣
∣
∣χ5

〉

= 0 , (4.3.15)beause of metri ontrations whih lead to ontrations of polarization vetors of the sametype. The result
〈

I ′4

∣
∣
∣χ1

〉

= 0 , (4.3.16)follows straightforwardly sine it is idential to (3.2.1). By (2.2.80) and (4.2.23) it follows thatall ontrations of the term χ3 in the all-plus amplitude is of the form
(

pµi ε
ν
i − pνi ε

µ
j

)

(pj,ν εj,ρ − pj,ρ εj,ν) p
n
k pl,n ε

ρ
k ε

µ
l , (4.3.17)where signs have been ignored. In the ase of four idential polarizations

ε±i , ε±j , ε±k , ε±l , (4.3.18)equation (4.3.17) vanishes due to (2.1.114) and hene
〈

I ′4

∣
∣
∣χ3

〉

= 0 . (4.3.19)It has thus been found that
A(+ + + +) = 0 , (4.3.20)as expeted.The amplitude A(− + + +)The amplitude with one polarization di�erent vanishes in four dimensions. The situationis di�erent in six dimensions as will be found below. The amplitude is alulated from allpossible Wik ontrations

A(− + + +) →
〈

A−
1 A

+
2 A

+
3 A

+
4

∣
∣
∣ I ′4

〉

, (4.3.21)of (4.3.1).Page 76



4.3.2 Computing χi termsThe Wik ontrations of external �elds into (4.3.1) are onsidered term by term and will beolleted after all terms have been alulated.The terms χ2 and χ4First, the χ2 term given by (4.3.14) is onsidered. In order to support the following argument,the external photon �elds are written as
ερi ε

σ
j ε

κ
k ε

λ
l Aρ(pi)Aσ(pj)Aκ(pk)Aλ(pl) , (4.3.22)without speifying the polarizations. Independent of the way the external photon �elds areontrated into (4.3.14), a fator of metri tensors with the struture
ηλµηκνη

ν
ρ η

µ
σ = ησληρκ , (4.3.23)will be the outome. From (4.3.23) it follows that any full Wik ontration will ontain twodot produts of polarization vetors

(εi · εk) (εj · εl) , (4.3.24)for some permutation of the indies. Sine there are three external �elds with polarization
(+) and one �eld with polarization (−), every possible Wik ontration will produe a dotprodut ε+i · ε+j = 0 of two polarization vetors with idential polarization and therefore allontrations of the χ2 term must neessarily vanish. The term χ4 is expliitly expressed as

(
BBT

)µ

µ

(
BBT

)ν

ν
= ∂nAµ∂nAµ∂

mAν∂mAν , (4.3.25)and idential arguments show that all ontrations into χ4 vanish as well so that
〈

I ′4

∣
∣
∣χ2

〉

=
〈

I ′4

∣
∣
∣χ4

〉

= 0 , (4.3.26)holds.The term χ1The Wik ontrations of the term χ1 are omputed straightforwardly as follows. Contratingthe external �eld A− into one of the +F �eld strengths will fore two ontrations of a A+into a −F . This partiular ontration involves
ζαζβζ

αζβ = 0 , (4.3.27)and hene vanishes. By this argument it an be onluded that the only non-vanishing fullontration has the external �eld A− ontrated into one −F �eld strength. Employing theformulae derived above yields an expliit ontration
A−

1 A
+
2 A

+
3 A

+
4

∣
∣
∣
+F+F−F−F =

(

i
√

2
)4

[1α1β]

[
p̃2
2

[ζ 2]2
ζαζβ

] [

3α̇3β̇

] [

4α̇4β̇
]

= 4 〈34〉2 [ζ 1]2

[ζ 2]2
p̃2
2 , (4.3.28)Page 77



where the square brakets respetively ontain the results from eah of the ontrations ofexternal photon �elds into �eld strengths. It is apparent from (4.3.28) that neither of thepartile permutations (A−
1 ↔ A+

2

) or (A+
3 ↔ A+

4

) will alter the result of the ontration andhene a symmetry fator of four is obtained. The remaining two possible distint ontrationsare obtained by permuting (A+
2 ↔ A+

3

) and (A+
2 ↔ A+

4

) respetively. In eah of the alula-tions, a symmetry fator of four is obtained as is the ase above. The full expression for thesum of all full ontrations of the term χ1 beomes
〈

A−
1 A

+
2 A

+
3 A

+
4

∣
∣
∣
+F 2 −F 2

〉

= 16

(

〈34〉2 [ζ1]2

[ζ2]2
p̃2
2 + 〈24〉2 [ζ1]2

[ζ3]2
p̃2
3 + 〈23〉2 [ζ1]2

[ζ4]2
p̃2
4

)

= 16 [ζ1]2
(〈34〉2

[ζ2]2
p̃2
2 +

〈24〉2
[ζ3]2

p̃2
3 +

〈23〉2
[ζ4]2

p̃2
4

)

. (4.3.29)As ould be expeted, the result is symmetri under permutations of partile momenta 1, 2and 3.The term χ5The term χ5 ontains the trae
(
BBT

)λ

λ
= ∂nAλ∂nAλ . (4.3.30)Contrating two photon �elds Ai and Aj into this term will produe the dot produt εi · εjwhih vanish if the two photon �elds are identially polarized. In order to obtain a nonzeroontration the two photon �elds whih are ontrated into (4.3.30) must therefore have op-posite polarizations. Hene the two remaining Wik ontrations for the term χ5 must be ofthe type

A+
i Fµν = −

(

pi,µ ε
+
i,ν − pi,ν ε

+
i,µ

)

. (4.3.31)Furthermore it is obtained that
A+
i A

+
j FµνF

µν = − 2 pµj ε
+
i,µ p

ν
i ε

+
j,ν , (4.3.32)due to the vanishing dot produts ε+i · ε+j . In terms of spinor indies it an be obtained that

pµj ε
+
i,µ =

1

2
εαβεα̇β̇

(

λj,βλj,β̇ +
p̃2
j

2 p♭ · ζ ζβζβ̇

)

√
2
ζαλi,α̇
[ζλi]

=
1√
2

[ζλj]

[ζλi]
〈λjλi〉 , (4.3.33)suh that (4.3.32) beomes

A+
i A

+
j FµνF

µν = 〈λiλj〉2 , (4.3.34)Page 78



in terms of spinor produts. A ontration of the photon �elds A+ and A− into BBT λ
λ isgiven by

A−
i A

+
j ∂

nAλ∂nAλ = pni pj,n ε
−
i,µ ε

+,µ
j , (4.3.35)whih involves a ontration of polarization vetors that an be expressed in terms of spinorproduts as

ε−i,µ ε
+,µ
j =

1

2
εαβεβ̇α̇

√
2
ζβ̇λi,β

〈ζλi〉
√

2
ζαλj,α̇
[ζλj]

=
[ζλi] 〈ζλj〉
〈ζλi〉 [ζλj]

. (4.3.36)Both equations (4.3.32) and (4.3.35) are symmetri in the Wik ontrations and thereforea symmetry fator of four is obtained. It follows from (4.3.34) ombined with (4.3.35) and(4.3.36) that
A−
i A

+
j A

+
k A

+
l

∣
∣
∣FµνF

µν∂nAλ∂nAλ = 〈λkλl〉2
〈ζλj〉 [ζλi]

〈ζλi〉 [ζλj]
pni pj,n , (4.3.37)whih is one of three possible di�erent full ontrations. The full sum of all full ontrations isobtained by putting i = 1 and permuting the values (2, 3, 4) between the indies (j, k, l) withthe result

〈

I4

∣
∣
∣χ5

〉

= 4

[

〈34〉2 〈ζ2〉 [ζ1]

〈ζ1〉 [ζ2]
(p̃1 ·p̃2) + 〈24〉2 〈ζ3〉 [ζ1]

〈ζ1〉 [ζ3]
(p̃1 ·p̃3) + 〈23〉2 〈ζ4〉 [ζ1]

〈ζ1〉 [ζ4]
(p̃1 ·p̃4)

]

= 4
[ζ1]

〈ζ1〉

[

〈34〉2 〈ζ2〉
[ζ2]

(p̃1 ·p̃2) + 〈24〉2 〈ζ3〉
[ζ3]

(p̃1 ·p̃3) + 〈23〉2 〈ζ4〉
[ζ4]

(p̃1 ·p̃4)

]

, (4.3.38)where the dot produts of momenta have been written as
p̃i ·p̃j = pni pj,n = p4

i pj,4 + p5
i pj,5 . (4.3.39)The term χ3The alulations onneted to the χ3-term are a bit more ompliated. As this term doesnot ontain neither the trae of BBT or (BBT )2 it is not as straightforward as for the other

χi-terms above to determine the vanishing ontrations. Therefore a more systemati studyof all the possible ontrations is needed.As a method to perform Wik ontrations in a systemati way, the following alulationswill distinguish between two types of ontrations. One type of ontrations has two A+photon �elds ontrated into FµνFνρ whereas the other type of ontrations has one A+ �eldand one A− �eld ontrated into FµνFνρ. The �rst type of full ontrations will be referred toas T1 while the seond type will be referred to as T2. The T1-type of ontrations is evaluatedas
FµνFνρ

(
BBT

)ρ

µ
→
[

pµk ε
+,ν
k − pνk ε

+,µ
] [

pl,ν ε
+
l,ρ − pl,ρ ε

+
l,ν

]

pni ε
±,ρ
i pj,n ε

∓
j,µ , (4.3.40)Page 79



where the arrow represent one possible ontration and where the notation of the two po-larization vetors on the right indiates the two possible on�gurations of polarization. Therelation (4.2.23) has been used and fators of i as well as signs have been omitted. Equation(4.3.40) is equivalent to (4.3.17). Due to the mutual ontrations of polarization vetors, oneterm vanishes when the two square brakets are expanded and one more term is anelledfrom the ontration of the polarization vetors to the right. This takes plae independentlyof whih of the two possible polarizations is hosen. Hene (4.3.40) redues to
→
(

pµk ε
+,ν
k pl,ν ε

+
l,ρ + pνk ε

+,µ
k pl,ρ ε

+
l,ν

)

pni ε
±,ρ
i pj,n ε

∓
j,µ . (4.3.41)One of the terms in the parenthesis neessarily vanishes when ontrated with the two polar-ization vetors to the right; whih one depends again on the on�guration of polarizations. Itfollows from (4.3.41) that

A−
i A

+
j A

+
k A

+
l

∣
∣
∣FµνFνρ ∂

nAρ∂nAµ = A−
i A

+
j A

+
k A

+
l

∣
∣
∣FµνFνρ ∂

nAρ∂nAµ , (4.3.42)is valid. If one partiular full Wik ontration is onsidered, this ontration is idential tothe full ontration where the four individual ontrations are interhanged two by two in suha way that the new full ontration is still of the type T1.The sum of all possible full Wik ontrations of the type T1 an now be obtained from(4.3.40) by evaluating this expression for all possible permutations of this type of ontrations.This sum is
Σ1 = 2

{

(p̃1 ·p̃2)
[

(ε1 ·ε4)(p4 ·ε3)(p3 ·ε2) + (ε1 ·ε3)(p3 ·ε4)(p4 ·ε2)
]

+ (p̃1 ·p̃3)
[

(ε1 ·ε2)(p2 ·ε4)(p4 ·ε3) + (ε1 ·ε4)(p4 ·ε2)(p2 ·ε3)
]

+ (p̃1 ·p̃4)
[

(ε1 ·ε2)(p2 ·ε3)(p3 ·ε4) + (ε1 ·ε3)(p3 ·ε2)(p2 ·ε4)
]}

, (4.3.43)where the fator of two stems from (4.3.42) and the terms have been ordered with mutualdot produts of momentum vetors as the ommon fators. Again the short hand notation(4.3.39) has been used. Employing (4.3.33) and (4.3.36) leads to an expression for (4.3.43) interms of spinor produts
Σ1 =

[ζ1]

〈ζ1〉

{

(p̃1 ·p̃2)
〈34〉
[ζ2]

[〈23〉〈ζ4〉 + 〈42〉〈ζ3〉] + (p̃1 ·p̃3)
〈24〉
[ζ3]

[〈43〉〈ζ2〉 + 〈32〉〈ζ4〉]

+ (p̃1 ·p̃4)
〈23〉
[ζ4]

[〈42〉〈ζ3〉 + 〈34〉〈ζ2〉]
}

, (4.3.44)with a little fatorization ourring.The evaluation of ontrations of the type T2 goes on as follows. Analogously to (4.3.40),the arrow indiates that one possible ontration is evaluated and it follows that
FµνFνρ (BO)ρµ →

(

pµi ε
±,ν
i pj,ν ε

∓
j,ρ + pνi ε

±,µ
i pj,ρ ε

∓
j,ν − pµi ε

±,ν
i pj,ρ ε

∓
j,ν

)

pnk ε
+,ρ
k pl,n ε

+
l,µ .(4.3.45)Page 80



In (4.3.45) the term
−pνi

(
ε±
)µ

i
pjν
(
ε∓
)

j,ρ
, (4.3.46)has been omitted sine it neessarily vanishes in the ontration with the polarization vetorsto the right independent of the on�guration of polarizations. Either the �rst or the seondterm in the braket will vanish depending on the on�guration of polarizations. Beause twoterms in the braket survive the mutual ontrations of polarization vetors, the total sum Σ2of full ontrations of the type T2 ontains twie as many terms as the sum Σ1. The twelvedi�erent full ontrations are alulated by onsidering respetively all terms with the sameommon fator of a ertain momentum vetor dot produt. If the terms are as well olletedwith these dot produts of momentum vetors as ommon fators, the sum is

Σ2 = 2
{

(p̃2 ·p̃3)
[

− (ε1 ·ε4)(p1 ·ε3)(p4 ·ε2) − (ε1 ·ε4)(p1 ·ε2)(p4 ·ε3)

+ (ε1 ·ε3)(p1 ·ε4)(p4 ·ε2) + (ε1 ·ε2)(p1 ·ε4)(p4 ·ε3)
]

(p̃2 ·p̃4)
[

− (ε1 ·ε3)(p1 ·ε4)(p3 ·ε2) − (ε1 ·ε3)(p1 ·ε2)(p3 ·ε4)

+ (ε1 ·ε4)(p1 ·ε3)(p3 ·ε2) + (ε1 ·ε2)(p1 ·ε3)(p3 ·ε4)
]

(p̃3 ·p̃4)
[

− (ε1 ·ε2)(p1 ·ε4)(p2 ·ε3) − (ε1 ·ε2)(p1 ·ε3)(p2 ·ε4)

+ (ε1 ·ε3)(p1 ·ε2)(p2 ·ε4) + (ε1 ·ε4)(p1 ·ε2)(p2 ·ε3)
]}

. (4.3.47)Rewriting this result in terms of spinor produts yields
Σ2 =

[ζ1]2

〈ζ1〉

{

(p̃2 ·p̃3)
1

[ζ2] [ζ3]

[

−〈ζ4〉(〈24〉〈31〉 + 〈21〉〈34〉) + 〈ζ3〉〈24〉〈41〉 + 〈ζ2〉〈34〉〈41〉
]

+ (p̃2 ·p̃4)
1

[ζ2] [ζ4]

[

−〈ζ3〉(〈23〉〈41〉 + 〈21〉〈43〉) + 〈ζ4〉〈23〉〈31〉 + 〈ζ2〉〈43〉〈31〉
]

+ (p̃3 ·p̃4)
1

[ζ3] [ζ4]

[

−〈ζ2〉(〈32〉〈41〉 + 〈42〉〈31〉) + 〈ζ3〉〈12〉〈24〉 + 〈ζ4〉〈32〉〈21〉
]}

.(4.3.48)The results obtained in (4.3.29) (4.3.38), (4.3.44) and (4.3.48) are olleted and determine the�nal result for the amplitude as
A
(
1−i+j+k+

)
=
π4α′4

8

[ζ1]

〈ζ1〉
∑

σ(i,j,k)

1

[ζi]

{

+4 〈jk〉2 [ζ1] 〈ζ1〉
[ζi]

p̃2
i

+
[ζi]

[ζj]

[

−〈ζk〉 ( 〈ik〉〈j1〉 + 〈jk〉〈i1〉 ) + 〈ζj〉〈ik〉〈k1〉 + 〈ζi〉〈jk〉〈k1〉
]

(p̃i ·p̃j)
}

,(4.3.49)where the sum ontains three yli permutations of indies given by
σ (i, j, k) = σ (2, 3, 4) , σ (i, j, k) = σ (4, 2, 3) , σ (i, j, k) = σ (3, 4, 2) , (4.3.50)so that the amplitude ontains three ontributions of the form on the right hand side of(4.3.49). One term has anelled out due to the Shouten identity (2.1.76). The details in thisalulation an be found in appendix A.1. Page 81



The term whih has been anelled is the fatorized sum of the respetive ontributionsfrom the ontrations of the term χ5 and the term Σ1. These two sums have the ommonfator �4�. For the term Σ1 this fator originates from the original expression (4.3.1) whereasthe fator omes about as a symmetry fator from the ontrations of the term χ5. Theremaining terms in (4.3.49) are respetively the ontributions from the ontrations of theterm χ1 and Σ2. Not muh fatorization our for these two terms.It is interesting to onsider the amplitude (4.3.49) in the four-dimensional limit wheremomentum omponents in the auxiliary dimensions are put to zero
p4 = p5 = 0 . (4.3.51)This orresponds to

p̃2
i = p̃i · p̃j = 0 , (4.3.52)for momenta in the auxiliary dimensions and it follows that

A(− + + +)
∣
∣
∣
d=4

= 0 . (4.3.53)This is in agreement with (3.2.1) as it should be in the four-dimensional limit. The resultfor the amplitude (4.3.49) is also written in apendix B.1 where the new amplitude results areolleted.The amplitude A(−− + +)In this setion the symmetri four-point amplitude
A (−− ++) →

〈

A−
1 A

−
2 A

+
3 A

+
4

∣
∣
∣ I4

〉

, (4.3.54)having two (−) polarization photons and two (+) polarization photons will be omputed in sixdimensions. The same onstraints on the gauge �eld omponents in the auxiliary dimensions asdisussed in setion 4.1.2 will be used. As in the previous setion, the amplitude is omputedfrom (4.3.1). In order to distinguish present alulations from alulations in the previoussetion the �ve terms in the expression will be labeled as χ̃i.4.3.3 Computing χ̃i termsAs in setion 4.3.2 the Wik ontrations of external �elds into (4.3.1) will be onsidered termby term.The term χ̃1The �rst observation for the term χ̃1 is that a ontration of both A+ �elds respetively into ananti-selfdual �eld strength produes ζαζβζαζβ and thus vanishes. The ontration of both A−�elds respetively into a selfdual �eld strength vanishes as well sine this ontration produes
ζα̇ζβ̇ζ

α̇ζ β̇. The simplest nonzero ontration is therefore when eah A+ is ontrated into a
+F and eah A− is ontrated into a −F whih gives

(

−i
√

2
)4

(1α1β)
(

2α2β
)(

3α̇3β̇

)(

4α̇4β̇
)

= 4 [12]2 〈34〉2 . (4.3.55)Page 82



This ontration is symmetri in the interhange of the two A− �elds as well as the two A+�elds and hene a symmetry fator of four is obtained. The remaining nonzero ontrationsof the χ1-term are of the form
A−

1 A
−
2 A

+
3 A

+
4

∣
∣
∣
+Fα̇β̇

+F α̇β̇−Fαβ
−Fαβ

=

(

i
√

2
p̃2
1

〈ζ1〉2
ζα̇ζβ̇

)(

−i
√

2 2α2β

)(

i
√

2 3α̇3β̇
)(

−i
√

2
p̃2
4

[ζ4]2
ζαζβ

)

= + 4 p̃2
1 p̃

2
4

[ζ2]2 〈ζ3〉2
〈ζ1〉2 [ζ4]2

, (4.3.56)whih is symmetri under interhange of the ontrations of (A−
1 ↔ A+

3

) as well as under
(
A−

2 ↔ A+
4

). Hene there exist four ontributions of the form (4.3.56). The remaining on-trations are obtained from permutations of the �elds in (4.3.56) suh that the ontributionfrom the term χ̃1 is
〈

χ̃1

〉

= 16 [12]2 〈34〉2

+ 16

[

p̃2
1 p̃

2
4

[ζ2]2 〈ζ3〉2
〈ζ1〉2 [ζ4]2

+ p̃2
1 p̃

2
3

[ζ2]2 〈ζ4〉2
〈ζ1〉2 [ζ3]2

+ p̃2
2 p̃

2
4

[ζ1]2 〈ζ3〉2
〈ζ2〉2 [ζ4]2

+ p̃2
2 p̃

2
3

[ζ1]2 〈ζ4〉2
〈ζ2〉2 [ζ3]2

]

.(4.3.57)The terms χ̃2 and χ̃4For the term χ̃2, ombinatoris for the ontration of photon �elds into
(
BBT

)µ

ν

(
BBT

)ν

µ
= + ∂mAµ∂mAν∂

nAν∂nAµ , (4.3.58)have to be onsidered. Beause of the given polarization of the external �elds the only nonzeroontrations of polarization vetors are (ε1 ·ε3), (ε1 ·ε4),(ε2 ·ε3) and (ε2 ·ε4) suh that only fourdi�erent nonzero full ontrations exist. These are given by
〈(

BBT
)µ

ν

(
BBT

)ν

µ

〉

= 4 (ε1 ·ε3) (ε2 ·ε4) [(p̃1 ·p̃2) (p̃3 ·p̃4) + (p̃1 ·p̃4) (p̃2 ·p̃3)]

+ 4 (ε1 ·ε4) (ε2 ·ε3) [(p̃1 ·p̃2) (p̃3 ·p̃4) + (p̃1 ·p̃3) (p̃2 ·p̃4)] , (4.3.59)with the symmetry fator of four appearing. For the term χ̃4 given by
(
BBT

)µ

µ

(
BBT

)ν

ν
= + ∂mAµ∂mAµ∂

nAν∂nAν , (4.3.60)there exist only two distint nonzero full ontrations. With the appropriate symmetry fatorthese ontrations read
〈(

BBT
)µ

µ

(
BBT

)ν

ν

〉

= 8 [(p̃1 ·p̃3)(p̃2 ·p̃4)(ε1 ·ε3)(ε2 ·ε4) + (p̃1 ·p̃4)(p̃2 ·p̃3)(ε1 ·ε4)(ε2 ·ε3)] .(4.3.61)Using (4.3.36) the ontrations of polarization vetors an written in terms of spinor produtsas
(
ε−1 ·ε+3

)(
ε−2 ·ε+4

)
=

[ζ1] 〈ζ3〉
〈ζ1〉 [ζ3]

[ζ2] 〈ζ4〉
〈ζ2〉 [ζ4]

,
(
ε−1 ·ε+4

)(
ε−2 ·ε+3

)
=

[ζ1] 〈ζ4〉
〈ζ1〉 [ζ4]

[ζ2] 〈ζ3〉
〈ζ2〉 [ζ3]

, (4.3.62)Page 83



and therefore
(
ε−1 ·ε+3

)(
ε−2 ·ε−4

)
−
(
ε−1 ·ε+4

)(
ε−2 ·ε+3

)
= 0 . (4.3.63)The �nal result for the ontrations is obtained as

〈

2
(
BBT

)µ

ν

(
BBT

)ν

µ
−
(
BBT

)µ

µ

(
BBT

)ν

ν

〉

= 16 (p̃1 ·p̃2)(p̃3 ·p̃4)
[ζ1] [ζ2] 〈ζ3〉〈ζ4〉
〈ζ1〉〈ζ2〉 [ζ3] [ζ4]

, (4.3.64)where the rightmost term in eah square braket of (4.3.59) is anelled against (4.3.61) dueto the fator �2� in (4.3.1).The term χ̃5From
(
BBT

)λ

λ
= ∂nAλ∂nAλ , (4.3.65)it follows that the ontration of two identially polarized photon �elds into (BBT )λ

λ
ne-essarily vanish. Therefore all nonzero full ontrations have one A+ �eld and one A− �eldontrated respetively into a �eld strength Fµν . Writing the �eld strengths in terms of selfdualand anti-selfdual omponents as

FµνF
µν
(
BBT

)λ

λ
=
(
+F 2 + −F 2

) (
BBT

)λ

λ
, (4.3.66)leads to the onlusion that all nonzero ontrations are of the form

+Fα̇β̇
[
A+
k

]
+F α̇β̇

[
A−
i

]
(p̃j ·p̃l) (εj ·εl) + −Fαβ

[
A+
k

]
−Fαβ

[
A−
i

]
(p̃j ·p̃l) (εj ·εl) . (4.3.67)One partiular full ontration for the +F 2 (BO)λλ part is evaluated as

A−
1 A

−
2 A

+
3 A

+
4

∣
∣
∣
+Fα̇β̇

+F α̇β̇pnAλpnAλ = 2 p̃1
2 〈ζ3〉2
〈ζ1〉2

[ζ2] 〈ζ4〉
〈ζ2〉 [ζ4]

(p̃2 ·p̃4) , (4.3.68)with the same result if the respetive ontrations of �elds A−
1 and A+

3 are interhanged. Thisresult is again obtained if the ontrations of the �elds A−
2 and A−

4 are interhanged and henea symmetry fator of 4 exists.Performing all possible permutations of ontrations of the form (4.3.68) for both the +F 2part and the −F 2 in (4.3.66) yields the result
〈

A−
1 A

−
2 A

+
3 A

+
4

∣
∣
∣FµνF

µν
(
BBT

)λ

λ

〉

= 8

{

[ζ1] 〈ζ3〉
〈ζ1〉 [ζ3]

(p̃1 ·p̃3)

[

p̃2
2

〈ζ4〉2
〈ζ2〉2

+ p̃2
4

[ζ2]2

[ζ4]2

]

+
[ζ1] 〈ζ4〉
〈ζ1〉 [ζ4]

(p̃1 ·p̃4)

[

p̃2
2

〈ζ3〉2
〈ζ2〉2

+ p̃2
3

[ζ2]2

[ζ3]2

]

+
[ζ2] 〈ζ3〉
〈ζ2〉 [ζ3]

(p̃2 ·p̃3)

[

p̃2
1

〈ζ4〉2
〈ζ1〉2

+ p̃2
4

[ζ1]2

[ζ4]2

]

+
[ζ2] 〈ζ4〉
〈ζ2〉 [ζ4]

(p̃2 ·p̃4)

[

p̃2
1

〈ζ3〉2
〈ζ1〉2

+ p̃2
3

[ζ1]2

[ζ3]2

]}

,(4.3.69)where the struture of (4.3.67) is apparent.Page 84



The term χ̃3As was the ase for the amplitude A (− + + +) the term χ̃3 is the most ompliated. Beauseof its struture of one long trae, many full ontrations are nonzero and must therefore beomputed. The expansion of the χ̃3 term has the struture
FµνFνρ

(
BBT

)ρ

µ
→ (pµενpνερ + pνεµpρεν − pµενpρεν − pνεµpνερ) p

mερpmεµ , (4.3.70)for some full Wik ontration. The way to ompute all nonzero ontributions is simply toonsider every single term of (4.3.70). It is apparent that the two terms to the left gives iden-tial ontributions while the rightmost term has the simplest struture. The entire expressionfor the sum of all nonzero ontrations is presented in (A.1.27) whereas the expression belowis written on a more ompat form as a sum of four permutations of indies. The result is
〈

A−
1 A

−
2 A

+
3 A

+
4

∣
∣
∣FµνFνρ

(
BBT

)ρ

µ

〉

=
∑

σ(i,j,k,l)

{

2 (εi ·εk)
[ (

(pi ·εj) (pk ·εl) + (pk ·εj) (pi ·εl)
)

(p̃j ·p̃l) − (pi ·εj) (pj ·εl) (p̃k ·p̃l)

− (pl ·εj) (pi ·εl) (p̃j ·p̃k) − (pk ·εj) (pj ··εl) (p̃i ·p̃l) − (pl ·εj) (pk ·εl) (p̃i ·p̃j)
]

+ (εi ·εk) (εj ·εl)
[

(pi ·pj) (p̃k ·p̃l) + (pi ·pl) (p̃j ·p̃k) + (pj ·pk) (p̃i ·p̃l) + (pk ·pl) (p̃i ·p̃j)
]}

,(4.3.71)with the four di�erent permutations given as
σ (i, j, k, l) = σ (1, 2, 3, 4) , σ (i, j, k, l) = σ (1, 2, 4, 3) ,

σ (i, j, k, l) = σ (2, 1, 3, 4) , σ (i, j, k, l) = σ (2, 1, 4, 3) . (4.3.72)The dot produts an be expressed as spinor produts suh that the right hand side of (4.3.71)reads
∑

σ(i,i,k,l)

[ζi] 〈ζk〉
〈ζi〉 [ζk] 〈ζj〉 [ζl]

[ (

[ij] 〈kl〉〈ζi〉 [ζk] + [kj] 〈il〉〈ζk〉 [ζi]
)

(p̃j ·p̃l)

− [ij] 〈jl〉〈ζi〉 [ζj] (p̃k ·p̃l) − [lj] 〈il〉〈ζl〉 [ζi] (p̃j ·p̃k)
− [kj] 〈jl〉〈ζk〉 [ζj] (p̃i ·p̃l) − [lj] 〈kl〉〈ζl〉 [ζk] (p̃i ·p̃j)

+ [ζj] 〈ζl〉
(

(pi ·pj) (p̃k ·p̃l) + (pk ·pl) (p̃i ·p̃j) + (pi ·pl) (p̃j ·p̃k) + (pj ·pk) (p̃i ·p̃l)
)]

,(4.3.73)with the same permutations (4.3.72) appearing in the sum.Colleting resultsColleting the previous results from expressions (4.3.57), (4.3.64), (4.3.69) and (4.3.73) andintroduing the appropriate numerial fators provides the �nal result for the symmetriPage 85



amplitude
A
(
i−j−k+l+

)
= −π

4α′4

8
×

∑

σ(i,j,k,l)

{

[ij]2 〈kl〉2 + 4 p̃2
i p̃

2
j

[ζj]2 〈ζk〉2
〈ζi〉2 [ζl]2

+
[ζi] 〈ζk〉

〈ζi〉 [ζk] 〈ζj〉 [ζl]

[

2〈ζj〉 [ζl] (p̃i ·p̃j)
(

p̃2
j

〈ζl〉2
〈ζj〉2

+ p̃2
l

[ζj]2

[ζl]2

)

+
(

[ij] 〈kl〉〈ζi〉 [ζk] + [kj] 〈il〉〈ζk〉 [ζi]
)

(p̃j ·p̃l)
− [ij] 〈jl〉〈ζi〉 [ζj] (p̃k ·p̃l) − [lj] 〈il〉〈ζl〉 [ζi] (p̃j ·p̃k)
− [kj] 〈jl〉〈ζk〉 [ζj] (p̃i ·p̃l) − [lj] 〈kl〉〈ζl〉 [ζk] (p̃i ·p̃j)

+ [ζj] 〈ζl〉
(

2 (pi ·pj) (p̃k ·p̃l) + (pk ·pl) (p̃i ·p̃j) + (pi ·pl) (p̃j ·p̃k) + (pj ·pk) (p̃i ·p̃l)
)]}

,(4.3.74)with the same permutations as in (4.3.72). The origin for eah of the terms in the expressionabove is rather lear exept for the term with the fator of �2� in the last braket. Thispartiular term originates from (4.3.64).It should be mentioned that sine the respetive momenta pµi , are massive when onsideredfrom a four-dimensional perspetive, the dot produts (pi ·pj) annot be written as spinorproduts. In partiular
pMi pj,M = pµi pj,µ − pmi kj,m = pi · pj − p̃i · p̃j , (4.3.75)so that

pi · pj 6= p̃i · p̃j . (4.3.76)This fat an be eluidated from a onsideration of the two massive four-dimensional vetors
aµ and bµ. These vetors an be written aording to the massive deomposition (2.1.107) inLorentz indies

aµ = a♭µ +
a2

2 a♭ · q qµ , bµ = b♭µ +
b2

2 b♭ · q qµ , (4.3.77)where the vetor qµ is massless. The dot produt between a and b is then
a · b = a♭ · b♭ +

a2
(
b♭ · q

)2
+ b2

(
a♭ · q

)2

2
(
a♭ · q

) (
b♭ · q

) . (4.3.78)As was the ase for the amplitudes A(+ + + +) and A(− + + +), it is natural to onsiderthe four-dimensional limit of (4.3.74). Again this orresponds to (4.3.52) and it follows that
A(−− + +)

∣
∣
∣
d=4

= −π
4α′4

8

∑

σ(i,j,k,l)

[ij]2 〈kl〉2 = −π
4α′4

2
[12]2 〈34〉4 , (4.3.79)Page 86



whih is in agreement with (3.2.5) apart from the interhange (1, 2) ↔ (3, 4) of partiles.This is simply beause the two amplitudes have opposite ordering of partiles. It is reassuringthat the result in the four-dimensional limit redues properly to the result obtained from thealulations in four dimensions. The result for the amplitude (4.3.74) is as well written inappendix B.1 where the results for the amplitudes whih have previously not been alulatedare olleted.4.4 Amplitudes with momentum onstraintsIn setion 4.3 four-point sattering amplitudes in six dimensions have been studied with aonstraint on the gauge �eld in the auxiliary dimensions. The topi of this setion is satteringamplitudes where instead the momentum omponents have been onstrained in the auxiliarydimensions. This is the approah disussed in setion 4.1.3. It follows from (4.1.13) thatthe onstraint (4.1.5) leads to a four-dimensional gauge �eld and two omplex salars in fourdimensions. The amplitudes for the sattering of theses salars is exatly what will be studiedin this setion. The study will be limited to the amplitudes whih only involve salars and nogauge �elds.4.4.1 Construting the Lagrangian for salar interationsThe starting point is to onsider the DBI-Lagrangian in six dimensions
L =

1

π2α′2

√

− det (ηMN + πα′FMN ) . (4.4.1)Mathematia is used to expliitly onstrut the �eld strength tensor and the metri as matriesand the determinant an be evaluated in full generality. This yields a lot of interation termsontrolling di�erent amplitudes
A(Ai, Aj · · ·) , A

(
Ai, · · · , φ, φ̄, · · ·

)
, A

(
φ, φ̄, · · ·

)
. (4.4.2)The hoie is made to onsider only pure salar interations. This means that all ross termsin the Lagrangian will be negleted and only terms with the struture

(
∂µφ∂µφ̄

)
, (4.4.3)will be onsidered. The sum of the (6 × 6) matries ηMN and πα′FMN is

ηMN + πα′FMN =

πα′












(πα′)−1 F01 F02 F03 ∂0A4 ∂0A5

−F01 − (πα′)−1 F12 F13 ∂1A4 ∂1A5

−F02 −F12 − (πα′)−1 F23 ∂2A4 ∂2A5

−F03 −F13 −F23 − (πα′)−1 ∂3A4 ∂3A5

−∂0A4 −∂1A4 −∂2A4 −∂3A4 − (πα′)−1 0

−∂0A5 −∂1A5 −∂2A5 −∂3A5 0 − (πα′)−1












, (4.4.4)with the use of (4.1.5). Negleting the ross terms in the evaluation of the determinant isequivalent to putting every entry of the (4 × 4) matrix
Fµν = 0 , (4.4.5)Page 87



and hene (4.4.4) beomes
ηMN + πα′FMN =

πα′












(πα′)−1 0 0 0 ∂0A4 ∂0A5

0 − (πα′)−1 0 0 ∂1A4 ∂1A5

0 0 − (πα′)−1 0 ∂2A4 ∂2A5

0 0 0 − (πα′)−1 ∂3A4 ∂3A5

−∂0A4 −∂1A4 −∂2A4 −∂3A4 − (πα′)−1 0

−∂0A5 −∂1A5 −∂2A5 −∂3A5 0 − (πα′)−1












. (4.4.6)The determinant of this expression is evaluated by Mathematia with the result
− det (ηMN + πα′FMN

)
=

1 − 2π2α′2
(
∂φ0∂0φ̄− ∂1φ∂1φ̄− ∂2φ∂2φ̄− ∂3φ∂3φ̄

)

+ π4α′4
(
− 2∂0φ∂1φ∂0φ̄∂1φ̄− 2∂0φ∂2φ∂0φ̄∂2φ̄− 2∂0φ∂3φ∂0φ̄∂3φ̄

+ 2∂1φ∂2φ∂1φ̄∂2φ̄+ 2∂1φ∂3φ∂1φ̄∂3φ̄+ 2∂2φ∂3φ∂2φ̄∂3φ̄
)

− π4α′4
(
− ∂0φ∂0φ∂1φ̄∂1φ̄− ∂0φ∂0φ∂2φ̄∂2φ̄− ∂0φ∂0φ∂3φ̄∂3φ̄

− ∂1φ∂1φ∂0φ̄∂0φ̄+ ∂1φ∂1φ∂2φ̄∂2φ̄+ ∂1φ∂1φ∂3φ̄∂3φ̄

− ∂2φ∂2φ∂0φ̄∂0φ̄+ ∂2φ∂2φ∂1φ̄∂1φ̄+ ∂2φ∂2φ∂3φ̄∂3φ̄

− ∂3φ∂3φ∂0φ̄∂0φ̄+ ∂3φ∂3φ∂1φ̄∂1φ̄+ ∂3φ∂3φ∂2φ̄∂2φ̄
)
. (4.4.7)By experimentation it is then obtained that

− det
(
ηMN + πα′FµN

)
= 1 − 2π2α′2∂µφ∂

µφ̄

+ π4α′4 ∂µφ∂
µφ̄∂νφ∂

ν φ̄− π4α′4∂µφ∂
µφ∂ν φ̄∂

ν φ̄ , (4.4.8)holds sine anellations between the two terms in the seond line of (4.4.8) take plae. Uponintroduing the abbreviations
a ≡ ∂µφ∂

µφ̄ , b ≡ ∂µφ∂
µφ̄∂νφ∂

ν φ̄ , c ≡ ∂µφ∂
µφ∂ν φ̄∂

ν φ̄ , (4.4.9)the Lagrangian (− det (ηMN + πα′FµN ))1/2 an be expanded as a Taylor series in α′ as
Lsalar =

1

π2α′2

√

− det (ηMN + πα′FµN )

=
1

π2α′2

[

1 − π2α′2a+
1

2
π4α′4

(
−a2 + b− c

)
+

1

2
π6α′6

(
−a3 + ab− ac

)
+ O

(
α′8
)
]

,(4.4.10)with the use of Mathematia. From (4.4.9) it is apparent that a2 = b and a3 = ab suh that(4.4.10) simpli�es and is given to order α′6 as
Lsalar =

1

π2α′2
− ∂µφ∂

µφ̄− 1

2
π2α′2∂µφ∂

µφ∂ν φ̄∂
ν φ̄

− 1

2
π4α′4∂µφ∂

µφ̄∂νφ∂
νφ∂λφ̄∂

λφ̄+ O
(
α′8
)
, (4.4.11)where the expressions for a, b and c have been substituted bak. From (4.4.11) the kinetiterm ∂µφ∂

µφ̄ is reognized. As well is the interation term for the four point amplitude andthe term ontributing diretly to the the six point amplitude. These terms will be disussedseparately below.Page 88



4.4.2 Salar four-point amplitudesThe expanded Lagrangian (4.4.11) provides the salar amplitudes for four partile and sixpartile sattering. The four-point amplitude is provided diretly by the Lagrangian and willbe alulated below while only the diret ontribution to the six-point amplitude is present. Inorder to evaluate the full six-point amplitude one has also to take into aount the ontributionfrom the seond order expansion of the ation.In the Wik ontrations of salar �elds, a partiular salar �eld must be ontratedinto a onjugate �eld. This requirement limits the number of possible ontrations in theomputation of amplitudes. The salar four-point amplitude
A
(
φ1φ2φ̄3φ̄4

)
=

1

2
π2α′2

〈

φ1φ2φ̄3φ̄4

∣
∣
∣∂µφ∂

µφ∂ν φ̄∂
ν φ̄
〉

, (4.4.12)is evaluated diretly by the full ontration
φ1φ2φ̄3φ̄4

∣
∣
∣∂µφ∂

µφ∂ν φ̄∂
ν φ̄ = i (p1 ·p2) (p3 ·p4) = i (p1 ·p2)

2 , (4.4.13)sine this is the only ontribution beause of the requirement from above. The full ontration(4.4.13) has a symmetry fator of four and the four point amplitude is therefore given by
A
(
φ1φ2φ̄3φ̄4

)
= − i

2
π2α′2

〈

φ1φ2φ̄3φ̄4

∣
∣
∣∂µφ∂

µφ∂ν φ̄∂
ν φ̄
〉

= − i

2
π2α′2s2 , (4.4.14)in terms of Mandelstam variables. This result is also found in appendix B.2.4.4.3 Salar six-point amplitudesAt tree level, the six-point salar amplitude

A
(
φ1φ2φ3φ̄4φ̄5φ̄6

)
= A0

(
φ1φ2φ3φ̄4φ̄5φ̄6

)
+ Apole(φ1φ2φ3φ̄4φ̄5φ̄6

)
, (4.4.15)has two ontributions as indiated above. The �rst ontribution A0 is the diret one fromthe term in (4.4.11) onsisting of six salar �elds. This ontribution is alulated diretlyfrom the ation and the diagram for this interation is shown in �gure 4.1. The seondontribution Apole is from the square of the term in (4.4.11) onsisting of four salar �elds.This squared ontribution originates from the seond order term in the Taylor expansion ofthe exponentiated ation. This ontribution is a ontration of two four point verties andhene it involves a pole in the propagating momentum. The diagram for the interation isshown for one of the possible permutations of partiles in �gure 4.2.The diret ontribution to the amplitudeThe diret ontribution A0

(
φ1φ2φ3φ̄4φ̄5φ̄6

) is evaluated by the systemati study of all possibleWik ontrations of the objet
φ1φ2φ3φ̄4φ̄5φ̄6

∣
∣
∣∂µφ∂

µφ̄∂νφ∂
νφ∂λφ̄∂

λφ̄ , (4.4.16)Page 89



with one partiular full ontration given as
φ1φ2φ3φ̄4φ̄5φ̄6

∣
∣
∣∂µφ∂

µφ̄∂νφ∂
νφ∂λφ̄∂

λφ̄ = i (p1 ·p4) (p2 ·p3) (p5 ·p6) . (4.4.17)Interhanging the respetive ontrations of �elds φ2 and φ3 does not alter the right hand sideof (4.4.16) and neither does an interhange of the ontrations of φ̄5 and φ̄6. The right handside is onsequently the result of four di�erent full ontrations.The remaining eight full ontrations are obtained by interhanging ontrations of �elds
(φ1 ↔ φ2),(φ1 ↔ φ3),(φ̄4 ↔ φ̄5

),(φ̄4 ↔ φ̄6

) and the result is given by
A0

(
φ1φ2φ3φ̄4φ̄5φ̄6

)

= −2i π4α′4
{

(p1 ·p2) [(p3 ·p4)(p5 ·p6) + (p3 ·p5)(p4 ·p6) + (p3 ·p6)(p4 ·p5)]

+ (p1 ·p3) [(p2 ·p4)(p5 ·p6) + (p2 ·p5)(p4 ·p6) + (p2 ·p6)(p4 ·p5)]

+ (p2 ·p3) [(p1 ·p4)(p5 ·p6) + (p1 ·p5)(p4 ·p6) + (p1 ·p6)(p4 ·p5)]
}

, (4.4.18)where the symmetry fator has been inluded.
φ1

φ2

φ3
φ̄4

φ̄5

φ̄6Figure 4.1: The diret ontribution to the six-pointsalar amplitude. φ1

φ2

φ̄4

φ̄6

φ̄5

φ3

Figure 4.2: A ontration of to four-point salar ver-ties with a spei� on�guration of partiles. The on-tration is alulated in (4.4.23).The indiret ontribution to the amplitudeThe pole ontribution to the six point amplitude is ontrolled by the seond order term in theexpansion
eiS = exp

[

i

∫

ddxL
]

= 1 + i

∫

ddxL − 1

2

(∫

ddxL
)2

+ O
(

(iS)3
)

, (4.4.19)suh that the external �elds are ontrated into the term given expliitly by
− 1

2

(

∂µφ(x) ∂µφ(x) ∂ν φ̄(x) ∂ν φ̄(x)
)(

∂λφ(y) ∂λφ(y) ∂κφ̄(y) ∂κφ̄(y)
)

. (4.4.20)Sine this six partile vertex is a ontration of two four partile verties, the partiles havedependene on two distint spae time points x and y. This dependene plays a role for theinternal ontrations of �elds and has been emphasized above. With the abbreviation
φ(x) = φx , (4.4.21)Page 90



the pole ontribution an be written formally as
Apole(φ1φ2φ3φ̄4φ̄5φ̄6

)
→
∑〈

φ1φ2φ3φ̄4φ̄5φ̄6

∣
∣
∣ ∂µφx∂µφx∂

ν φ̄x∂ν φ̄x∂
λφy∂λφy∂

κφ̄y∂κφ̄y

〉

,(4.4.22)where the summation is performed over all possible permutations of full ontrations betweenexternal and internal �elds in ombination with all possible ways of performing one singleinternal ontration without generating a loop.Loops are generated from internal ontrations between a φx and a φ̄x and hene only in-ternal ontrations between a φx and a φ̄y are onsidered in order to onstrain the alulationsto non-loop level. There exist sixteen of these internal ontrations and sine they all havethe same struture, a symmetry fator of 16 is obtained.In order to illustrate the struture of the ontrations in (4.4.22), one partiular term inthe sum is evaluated expliitly as
φ1φ2φ3φ̄4φ̄5φ̄6

∣
∣
∣∂µφx∂µφx∂

ν φ̄x∂ν φ̄x∂
λφy∂λφy∂

κφ̄y∂κφ̄y

= (p1 ·p2) (p5 ·p6) p4 · (p1 + p2) p3 · (p5 + p6)
i

(p1 + p2 + p4)
2 , (4.4.23)with a pole in the propagating momentum. As is the ase for the ontrations in (4.4.16),the diagram for the ontrations above has a symmetry fator of four suh that the totalsymmetry fator is 64. This omes about when the symmetry fators for the internal andexternal ontrations are ombined.Summing up the ontributionsWhen the remaining eight full ontrations in (4.4.22) are alulated and all the nine ontri-butions are summed, the pole part of the amplitude takes the form

Apole(φ1φ2φ3φ̄4φ̄5φ̄6

)
=

+ 8i π4α′4

{

(p1 ·p2) (p1 + p2)
µ p3,ν

[
(p5 ·p6) p4,µ (p5 + p6)

ν

(p1 + p2 + p4)
2

+
(p4 ·p6) p5,µ (p4 + p6)

ν

(p1 + p2 + p5)
2 +

(p4 ·p5) p6,µ (p4 + p5)
ν

(p1 + p2 + p6)
2

]

+ (p1 ·p3) (p1 + p3)
µ p2,ν

[
(p5 ·p6) p4,µ (p5 + p6)

ν

(p1 + p3 + p4)
2

+
(p4 ·p6) p5,µ (p4 + p6)

ν

(p1 + p3 + p5)
2 +

(p4 ·p5) p6,µ (p4 + p5)
ν

(p1 + p3 + p6)
2

]

+ (p2 ·p3) (p2 + p3)
µ p1,ν

[
(p5 ·p6) p4,µ (p5 + p6)

ν

(p2 + p3 + p4)
2

+
(p4 ·p6) p5,µ (p4 + p6)

ν

(p2 + p3 + p5)
2 +

(p4 ·p5) p6,µ (p4 + p5)
ν

(p2 + p3 + p6)
2

]}

.(4.4.24)Page 91



In order to write the the full amplitude in a more ompat form, the results from (4.4.18)and (4.4.24) are respetively expressed as a sum of three terms suh that the full six pointamplitude reads
A
(
φ1φ2φ3φ̄4φ̄5φ̄6

)
=

A0

(
φ1φ2φ3φ̄4φ̄5φ̄6

)
+ Apole (φ1φ2φ3φ̄4φ̄5φ̄6

)
=

− 2i π4α′4
∑

σ(i,j,k)

∑

σ(l,m,n)

(pi ·pj) (pm ·pn) pk,µ pµl

+ 8iπ4α′4
∑

σ(i,j,k)

∑

σ(l,m,n)

(pi ·pj) (pm ·pn)
1

(pi + pj + pl)
2 (pi + pj)

µ pl,µ (pm + pn)
ν pk,ν ,(4.4.25)with the permutations

σ (i, j, k) = σ (1, 2, 3) , σ (i, j, k) = σ (2, 3, 1) , σ (i, j, k) = σ (3, 1, 2) , (4.4.26)
σ (l,m, n) = σ (1, 2, 3) , σ (l,m, n) = σ (2, 3, 1) , σ (l,m, n) = σ (3, 1, 2) . (4.4.27)As should be the ase, it is notied that the amplitude has an apparent symmetry underany permutation of momenta (1, 2, 3) as well as the momenta (4, 5, 6). As the last step, theexpression (4.4.25) an be fatorized further and the �nal result for the full six-point amplitudetakes the more ompat form

A
(
φ1φ2φ3φ̄4φ̄5φ̄6

)
=

− 2i π2α′4
∑

σ(i,j,k)

∑

σ(l,m,n)

(pi ·pj) (pm ·pn)
[

pµl − 4 (pi + pj)
ν pl,ν

(pm + pn)
µ

(pi + pj + pl)
2

]

pk,µ ,(4.4.28)with the same permutations (4.4.26) and (4.4.27). This result is also part of the summary inappendix B.2.4.4.4 Manipulations of pole termsAlthough the expression (4.4.28) provides the six point salar amplitude in a ompat form,it is interesting to study a little bit further the result (4.4.25). Sine all partiles are massless,the ontrations of momenta satisfy
(pi + pj)

µ pk,µ = (pi + pj + pk)
µ pk,µ , (4.4.29)whih suggests that (4.4.24) an be manipulated in a way that allows some pole free terms tobe extrated. The motivation for this is to obtain some anellation of pole free terms when(4.4.18) and (4.4.24) are added.From (4.4.29) it follows that

(p1 + p2)
µ p4,µ p3,ν (p5 + p6)

ν = − (p3 + p5 + p6)
µ p4,µ (p1 + p2 + p4)

2

− (p3 + p5 + p6)
µ p4,µ (p5 + p6)ν (p1 + p2 + p4)

ν , (4.4.30)where momentum onservation has been used. When (4.4.30) is substituted in the leftmostterm in the �rst square braket of (4.4.24) the result is two terms where the pole is anelledPage 92



in the �rst. The middle and the rightmost term an as well be rewritten by a substitution ofthe same relation (4.4.30) with suitable momentum vetors. The resultant expression for theontents of the �rst square braket upon these three substitutions beomes
(p1 · p2) (p1 + p2)

µ p3,ν

[
(p5 ·p6) p4,µ (p5 + p6)

ν

(p1 + p2 + p4)
2 +

(p4 ·p6) p5,µ (p4 + p6)
ν

(p1 + p2 + p5)
2

+
(p4 ·p5) p6,µ (p4 + p5)

ν

(p1 + p2 + p6)
2

]

=(p1 ·p2)
[

− (p5 ·p6)(p3 + p5 + p6) · p4 − (p4 ·p6)(p3 + p4 + p6) · p5

− (p4 ·p5)(p3 + p4 + p5) · p6

]

+ (p1 ·p2) (p1 + p2)
µ

[
(p5 ·p6) (p5 + p6)ν (p1 + p2 + p4)

ν p4,µ

(p1 + p2 + p4)
2

+
(p4 ·p6) (p4 + p6)ν (p1 + p2 + p5)

ν p5,µ

(p1 + p2 + p5)
2

+
(p4 ·p5) (p4 + p5)ν (p1 + p2 + p6)

ν p6,µ

(p1 + p2 + p6)
2

]

. (4.4.31)When the prefator 8π4α′4 is inluded and (4.4.31) and (4.4.18) are added together it is foundthat the �rst line of (4.4.18) ombines with the pole free terms of (4.4.31). The proedure ofrewritings as desribed above is now employed on the remaining six terms of (4.4.24). Thisyields the expressions (A.1.28) and (A.1.29) whih are equivalent to (4.4.31) with permutationsin momentum vetors p1, p2 and p3. The expression for the amplitude when the pole termsand the pole free terms have been ombined is
A
(
φ1φ2φ3φ̄4φ̄5φ̄6

)
=

+ 8π4α′4
∑

σ(i,j,k)

∑

σ(l,m,n)

(pi ·pj) (pm ·pn)
(

pi + pj −
2

8
pk

)µ

pl,µ

+ 8π4α′4
∑

σ(i,j,k)

∑

σ(l,m,n)

(pi ·pj) (pm ·pn) (pm + pn)ν
(pi + pj + pl)

ν

(pi + pj + pl)
2 (pi + pj)

µ pl,µ,(4.4.32)whih an then be expressed in a slightly more ompat way as
A
(
φ1φ2φ3φ̄4φ̄5φ̄6

)
=

+ 8π4α′4
∑

σ(i,j,k)

∑

σ(l,m,n)

(pi ·pj) (pm ·pn)

×
[(

pi + pj −
2

8
pk

)µ

+
(pm + pn)ν (pi + pj + pl)

ν

(pi + pj + pl)
2 (pi + pj)

µ

]

pl,µ, (4.4.33)where the sums are again over permutations (4.4.26) and (4.4.27). The expressions aboveontain the rather awkward fator of 2/8 whih ours as a onsequene of the di�erent frontfators of A0 and Apole. From the alulations leading to (4.4.32) and (4.4.33) it is apparentthat, if the respetive front fators of (4.4.18) and (4.4.24) had been idential, instead aPage 93



�1� would be the fator of pk in the two expressions above. This omes about beause theontribution Apole in ase of idential front fators is entirely anelled against the pole freepart of (4.4.24). It is most easily realized by a omparison of the expression (4.4.18) with(4.4.31), (A.1.28) and (A.1.29) from where the anellation of (4.4.18) in ase of identialfront fators is manifest.4.5 Cross setion for salarsThe results obtained in setion 4.4.2 an be used in an estimate of the di�erential ross setionfor the sattering of four salar partiles. The omputations are based on the disussion ofthe ross setion in setion 1.3.2.The di�erential ross setion for the sattering of four massless salars is alulated bysubstituting (4.4.14) in (1.3.5). The result is
dσ

dΩ
=

π2

256
α′4s3 , (4.5.1)where the s-variable has been used for the enter of mass energy

s = E2
cm . (4.5.2)It is noted that (4.5.1) has the orret dimension of area. Beause of the α′4 dependene,the di�erential ross setion is inredibly small. The enter of mass energy in (4.5.1) anbe ontrolled in an experiment and in priniple, the enter of mass energy an be inreasedsu�iently in order to ompare with the α′4 fator. It is reassuring to see that the di�erentialross setion involves only the string parameter and the enter of mass energy in the satteringsine this was addressed in setion 1.3.1.The numerial value of the di�erential ross setion an be determined from a very roughestimate. In this estimate the maximal energy Emax ∼ 14 Tev at the LHC will be used as theenter of mass energy. In natural units the seond and the metre is related by

s ∼ 3 · 108 m , (4.5.3)whih yields
eV ∼ 1

2
· 107 m , (4.5.4)from the value of Plank's redued onstant. Using

Ecm ∼ 14 · 1012 eV , (4.5.5)as disussed in setion 1.3.1 gives
dσ

dΩ
∼ α′4s3 ∼

(
10−35 m

)8 (
107 · 1012 m

)6
= 10−166 m2 , (4.5.6)as a very rough estimate for the salar di�erential ross setion with a enter of mass energyequal to the maximal energy at the LHC. This is indeed astronomially small as ould beexpeted from the disussion of energy estimates in setion 1.3.1.Page 94



Chapter 5Disussion and onlusionsThe goal of the thesis was to alulate amplitudes in six dimensions as a ontinuation ofthe work in [1℄. On one hand, the motivation was to ompute the amplitudes simply tosee what they look like and in order to ompare with the four-dimensional amplitudes. Onthe other hand, the purpose was to study whether the spinor-heliity formalism is suited foralulations in six dimensions and, at least naïvely, to gain simpli�ations in six-dimensionalamplitudes similar to the simpli�ations in four-dimensional amplitudes due to the spinor-heliity formalism.The results obtained in setion 3.2 were alulated along the lines of [1℄ with diligent useof the spinor-heliity formalism as a very important ingredient. Due to the formalism, it anbe read o� diretly from the ation that the only non-vanishing four-point amplitude is thesymmetri one A(+ + −−). One interesting result from this setion is that the amplitude
A(+ + −−−−) vanishes. The amplitude has a diret ontribution from a six-point vertexand a ontribution from a ontration of two four-point verties and these two ontributionsturn out to be exatly equal and with opposite signs. It is not a priori obvious that thisshould be the ase. The most important onlusion however from this setion is to note howsimple the alulations turn out due to the use of the spinor-heliity formalism. This is alsothe invitation to approah six-dimensional alulations.The generi amplitude A (AiAjAjAk) was alulated as an intermediate step between theexpliit four-dimensional and six-dimensional alulations and it was alulated without useof the spinor-heliity formalism. The alulation is in priniple simple but it involves a largeamount of terms whih makes it omplex in pratie. However, the �nal result turns out tobe simple and this might be an indiation that an overall simpli�ation should be possiblealso in higher dimensions than four. Furthermore it is reassuring to see that this amplitudevanishes for the ase of four idential polarizations beause this is onsistent with the resultsfor the spei� alulations of amplitudes in setions 3.2 and 4.3.The latter setion ontains the six-dimensional results for the amplitudes A(+ + + +),
A(− + + +) and A (−− + +) whih have not previously been alulated in this way. Thismakes these amplitudes interesting by themselves. Moreover it is reassuring that all threeamplitudes redue to the results obtained in setion 3.2 in the four-dimensional limit. All thenew amplitudes have been olleted in appendix B as a summary of the results in the thesiswhih have not previously been alulated. It is important to stress that the amplitudes insix dimensions have been alulated with the use of the onstraint A4 = A5 = 0 on thegauge �eld in the auxiliary dimensions and also with restritions on the number of onsideredPage 95



polarizations. Although these onstraints simplify the alulations onsiderably, the resultsfor the amplitudes are still ompliated. Espeially the result for the symmetri amplitude
A(−− + +) is ompliated and involves omprehensive alulations. However, had thesesimpli�ations not been inluded, the results for the amplitudes would have been even moreompliated.It is interesting to note the apparent existene of a ertain hierarhy of amplitudes. Theamplitude A(+ + −−) is the only non-zero four-point amplitude in four dimensions whereasboth A(− + + +) and A(−− + +) are non-zero in six dimensions. This illustrates a ertainordering in omplexity and indiates that there might be some deeper struture of simpli-�ations to be found. However, the di�erene in omplexity when going from four to sixdimensions in this form is manifest and the results in the thesis indiate strongly that theused approah is not really the way to go for the purpose of six-dimensional alulations. Theamplitude hierarhy suggests that simpli�ations as in four dimensions exist also in higherdimensions but at this point it is not at all obvious how these simpli�ations should be imple-mented. The most important lesson learned in this thesis is therefore that the generalizationto higher dimensions is not so straightforward. However, the results in the thesis indiate thatthere exist a deeper struture in the amplitudes from whih simpli�ations might be disov-ered. One approah is to onstrut a six-dimensional spinor-heliity formalism as in [16, 27℄and implement this formalism in six-dimensional omputations. This an be onsidered asjust one of many invitations for further studies in the interesting �eld of sattering amplitudealulations in the frame of e�etive theories.
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Appendix AComputational detailsA.1 Results of omputationsLorentz invariants from the �eld strengthIn setion 1.4.2 it is disussed that
C1 = −1

4
FµνF

µν , C2 = −1

4
Fµν F̃

µν , (A.1.1)are the only Lorentz invariants objets that an be onstruted from Fµν . Equations (2.1.99)and (2.1.100) an be used to show that this is the ase. It is observed that
+F β̇

α̇
+Fβ̇γ̇ = +Fα̇δ̇

+Fβ̇γ̇ ε
β̇δ̇ = −+F β̇

γ̇
+Fβ̇α̇ , (A.1.2)and hene

+F β̇
α̇

+Fβ̇γ̇ = κεα̇γ̇ . (A.1.3)The onstant κ is determined by
εγ̇α̇ +F β̇

α̇
+Fβ̇γ̇ = κ εγ̇α̇ εα̇γ̇ , (A.1.4)and it follows that

κ = − 1

2
+F 2 , (A.1.5)and therefore

+F β̇
α̇

+Fβ̇γ̇ = − 1

2
+F 2 εα̇γ̇ ,

−F β
α

−Fβγ = − 1

2
−F 2 εαγ . (A.1.6)A Lorentz invariant objet must have all indies ontrated and it an be dedued from(A.1.6) that everything Lorentz invariant whih an be onstruted from Fµν must thereforebe proportional to +F and −F . This shows that (A.1.1) are the only possible Lorentz invariantsup to onstants. Page 97



Manipulations of the DBI-LagrangianThe following is an expliit alulation inspired by [22℄. The purpose is to alulate therelevant determinant in the Dira-Born-Infeld Lagrangian,
LDBI =

√

− det (ηµν + Fµν) , (A.1.7)and hek the agreement with the expression
LDBI = I2 + I4

[
1 + O

(
F 2
)]

, (A.1.8)as in (3.3.1) with I2 and I4 given in (3.3.2) and (3.3.3). In order to evaluate the determinantof (A.1.7), the metri ηµν and the �eld strength tensor Fµν are onstruted expliitly inMathematia. In partiular the �eld strength is onstruted as the antisymmetri matrix
Fµν =







0 a b c
−a 0 d e
−b −d 0 f
−c −e −f 0






, (A.1.9)with lower indies. The dual is onstruted as a table in Mathematia aording to thede�nition

F̃µν =
i

2
εµνρσFρσ , (A.1.10)by using the previously onstruted Fµν . Hene the dual is onstruted with upper indies as

F̃µν =







0 if −ie id
−if 0 ic −ib
ie −ic 0 ia
−id ib −ia 0






. (A.1.11)It has then been heked expliitly that

− det (ηµν + Fµν) = 1 +
1

2
FµνF

µν +
1

16
FµνF

µνFρσF
ρσ , (A.1.12)with a di�erent sign in front of the rightmost term ompared to [22℄. This is due to thede�nition of the dual whih inludes �i� in the de�nition. This alulation from Mathematiaappears in �gure A.1 from whih it is apparent that (A.1.12) holds. Sine the �eld strength

In[114]:= -Det@Η + FD

Out[114]= 1 - a2 - b2 - c2 + d2 - c2 d2 + 2 b c d e + e2 - b2 e2 - 2 a c d f + 2 a b e f + f2 - a2 f2

In[131]:= Expand@1 - 1 � 2 * Tr@F.Η.F.ΗD + 1 � 16 HTr@F.FdualDL^2D

Out[131]= 1 - a2 - b2 - c2 + d2 - c2 d2 + 2 b c d e + e2 - b2 e2 - 2 a c d f + 2 a b e f + f2 - a2 f2

In[132]:= Expand@H1 - 1 � 4 Tr@F.FdualDL^2 + 1 � 4 H-Tr@F.Η.F.ΗD - Tr@Fdual.Η.Fdual.ΗD + 2 Tr@F.FdualDLD

Out[132]= 1 - a2 - b2 - c2 + d2 - c2 d2 + 2 b c d e + e2 - b2 e2 - 2 a c d f + 2 a b e f + f2 - a2 f2Figure A.1: The Mathematia alulation whih shows that (A.1.12) holds.Page 98



tensor onstruted in (A.1.9) has been hosen to have lower indies, the evaluation in Mathe-matia is performed as
FµνF

µν = −FµνηνκFκληλµ = − TrFηFη , (A.1.13)with the rightmost expression written in matrix notation using the matries as de�ned inMathematia. In the same way the trae of the �eld strength and its dual is just
Fµν F̃

µν = − TrFF̃ , (A.1.14)sine the dual as de�ned in (A.1.11) has been hosen to have upper indies. Furthermore, ithas been heked expliitly that
(

1 +
1

4
Fµν F̃

µν

)2

+
1

4

(

Fµν − F̃µν

)2
= − det (ηµν + Fµν) , (A.1.15)where the alulation of the left hand side appears in �gure A.1. With the de�nitions

I2 =
1

4
FµνF

µν , I4 = −1

8

[

FµνF
νρFρσF

σµ − 1

4
FµνF

µνFρσF
ρσ

]

, (A.1.16)it has been heked expliitly that
− det (ηµν + Fµν) = (1 + I2)

2 + 2I4 , (A.1.17)with alulations and de�nitions of I2 and I4 in Mathematia appearing in �gure A.2. For the
In[154]:= i2 = -1 � 4 Tr@F.Η.F.ΗD;

In[155]:= i4 = -1 � 8 H Tr@F.Η.F.Η.F.Η.F.ΗD - 4 i2^2 L;

In[157]:= S = Expand@H1 + i2L^2 + 2 * i4D

Out[157]= 1 - a2 - b2 - c2 + d2 - c2 d2 + 2 b c d e + e2 - b2 e2 - 2 a c d f + 2 a b e f + f2 - a2 f2

In[158]:= -Det@Η + FD - S

Out[158]= 0Figure A.2: The Mathematia alulation whih shows that (A.1.17) holds.leftmost term in the de�nition of I4, the Mathematia input is written in matrix notation as
FµνF

νρFρσF
σµ = + TrFηFηFηFη . (A.1.18)An expansion of the square root of (A.1.17) in α′ yields

√

(1 + I2)
2 + 2I4 − 1 = I2 + I4

[
1 + O

(
F 2
)]

, (A.1.19)whih is used in (3.3.1).Internal �eld strength ontrationsThe following is a more detailed alulation of the internal ontrations of �eld strength spinorsleading to (3.1.22). By writing
∂αα̇ = −ipαα̇ , (A.1.20)Page 99



it follows that
+Fα̇β̇

−Fαβ =

1

4
(−i)2

(

pγα̇ pαγ̇ A
γ

β̇
A γ̇
β + pγα̇ pβγ̇ A

γ

β̇
A γ̇
α + pγβ̇ pαγ̇ A

γ
α̇A

γ̇
β + pγβ̇ pβγ̇ A

γ
α̇A

γ̇
α

)

.(A.1.21)The Wik ontrations yield
+Fα̇β̇

−Fαβ = −1

4

(−2i)

p2

(

pγα̇ pαγ̇ ε
γ
β ε

γ̇

β̇
+ pγα̇ pβγ̇ ε

γ
α ε

γ̇

β̇
+ pγβ̇ pαγ̇ ε

γ
β ε

γ̇
α̇ + pγβ̇ pβγ̇ ε

γ
α ε

γ̇
α̇

)

= +
i

2p2

(

−pβα̇ pαβ̇ − pαα̇ pββ̇ − pββ̇ pαα̇ − pαβ̇ pβα̇

)

= − i

p2

(

pαβ̇ pβα̇ + pαα̇ pββ̇

)

, (A.1.22)whih is the result (3.1.22).Detailed alulations with the Shouten identityThe result (4.3.49) has been simpli�ed by use of the Shouten identity. Before the simpli�a-tion, the term reads
A(− + + +) =

π4α′4

8
×

4
[ζ1]

〈ζ1〉
∑

σ(i,j,k)

1

[ζi]

{

〈jk〉 (p1 ·pi) [〈jk〉〈ζi〉 + 〈ij〉〈ζk〉 + 〈ki〉〈ζj〉] + 4 〈jk〉2 [ζ1] 〈ζ1〉
[ζi]

p̃2
i

+
[ζi]

[ζj]

[

−〈ζk〉 ( 〈ik〉〈j1〉 + 〈jk〉〈i1〉 ) + 〈ζj〉〈ik〉〈k1〉 + 〈ζi〉〈jk〉〈k1〉
]

(pi ·pj)
}

,(A.1.23)where the sum ontains three yli permutations of indies given by
σ (i, j, k) = σ (2, 3, 4) , σ (i, j, k) = σ (4, 2, 3) , σ (i, j, k) = σ (3, 4, 2) . (A.1.24)Equation (2.1.76) has been used in (A.1.23) as

〈jk〉〈ζi〉 + 〈ij〉〈ζk〉 + 〈ki〉〈ζj〉 = jα̇kγ̇ζ β̇iδ̇εγ̇α̇εδ̇β̇ + jγ̇iα̇ζ β̇kδ̇εγ̇α̇εδ̇β̇ + jδ̇kα̇ζ β̇iγ̇εδ̇β̇εγ̇α̇

= jα̇kγ̇ζ β̇iδ̇
(

εγ̇α̇εδ̇β̇ + εα̇δ̇εγ̇β̇ + εα̇β̇εδ̇γ̇

)

= 0 , (A.1.25)where the braket vanishes. The expression (A.1.23) is hene redued to (4.3.49) whih is theresult for the six-dimensional amplitude A(− + + +).An expliit term in the amplitude A(−− + +)The following is the expanded form of (4.3.71) for all Wik ontrations into the χ̃3 term
FµνFνρ

(
BBT

)ρ

µ
, (A.1.26)Page 100



for the six-dimensional amplitude A(−− + +). The expression is
〈

A−
1 A

−
2 A

+
3 A

+
4

∣
∣
∣FµνFνρ

(
BBT

)ρ

µ

〉

=

2
{

(ε1 ·ε3)
[

((p1 ·ε2) (p3 ·ε4) + (p1 ·ε4) (p3 ·ε2)) (p̃2 ·p̃4) − (p1 ·ε2) (p2 ·ε4) (p̃3 ·p̃4)

− (p1 ·ε4) (p4 ·ε2) (p̃2 ·p̃3) − (p3 ·ε2) (p2 ·ε4) (p̃1 ·p̃4) − (p3 ·ε4) (p4 ·ε2) (p̃1 ·p̃2)
]

+ (ε1 ·ε4)
[

((p1 ·ε2) (p4 ·ε3) + (p4 ·ε2) (p1 ·ε3)) (p̃2 ·p̃3) − (p1 ·ε2) (p2 ·ε3) (p̃3 ·p̃4)

− (p1 ·ε3) (p3 ·ε2) (p̃2 ·p̃4) − (p4 ·ε2) (p2 ·ε3) (p̃1 ·p̃3) − (p4 ·ε3) (p3 ·ε2) (p̃1 ·p̃2)
]

+ (ε2 ·ε3)
[

((p2 ·ε4) (p3 ·ε1) + (p3 ·ε4) (p2 ·ε1)) (p̃1 ·p̃4) − (p2 ·ε1) (p1 ·ε4) (p̃3 ·p̃4)

− (p2 ·ε4) (p4 ·ε1) (p̃1 ·p̃3) − (p3 ·ε1) (p1 ·ε4) (p̃2 ·p̃4) − (p3 ·ε4) (p4 ·ε1) (p̃1 ·p̃2)
]

+ (ε2 ·ε4)
[

((p2 ·ε1) (p4 ·ε3) + (p2 ·ε3) (p4 ·ε1)) (p̃1 ·p̃3) − (p2 ·ε1) (p1 ·ε3) (p̃3 ·p̃4)

− (p2 ·ε3) (p3 ·ε1) (p̃1 ·p̃4) − (p4 ·ε1) (p1 ·ε3) (p̃2 ·p̃3) − (p4 ·ε3) (p3 ·ε1) (p̃1 ·p̃2)
]

+ (ε1 ·ε3) (ε2 ·ε4)
[

(p1 ·p2) (p̃3 ·p̃4) + (p1 ·p4) (p̃2 ·p̃3) + (p2 ·p3) (p̃1 ·p̃4) + (p3 ·p4) (p̃1 ·p̃2)
]

+ (ε1 ·ε4) (ε2 ·ε3)
[

(p1 ·p2) (p̃3 ·p̃4) + (p1 ·p3) (p̃2 ·p̃4) + (p2 ·p4) (p̃1 ·p̃3) + (p3 ·p4) (p̃1 ·p̃2)
]}

.(A.1.27)Rewriting salar termsThis setion ontains the remaining pole terms from setion 4.4.4. The terms are the middleand last term from (4.4.24) whih are rewritten as in (4.4.31). The �rst term beomes
(p1 · p3) (p1 + p3)

µ p2,ν

[
(p5 ·p6) p4,µ (p5 + p6)

ν

(p1 + p3 + p4)
2 +

(p4 ·p6) p5,µ (p4 + p6)
ν

(p1 + p3 + p5)
2

+
(p4 ·p5) p6,µ (p4 + p5)

ν

(p1 + p3 + p6)
2

]

= (p1 ·p3)
[

− (p5 ·p6)(p2 + p5 + p6) · p4 − (p4 ·p6)(p2 + p4 + p6) · p5

− (p4 ·p5)(p2 + p4 + p5) · p6

]

+ (p1 ·p3) (p1 + p3)
µ

[
(p5 ·p6) (p5 + p6)ν (p1 + p3 + p4)

ν p4,µ

(p1 + p3 + p4)
2

+
(p4 ·p6) (p4 + p6)ν (p1 + p3 + p5)

ν p5,µ

(p1 + p3 + p5)
2

+
(p4 ·p5) (p4 + p5)ν (p1 + p3 + p6)

ν p6,µ

(p1 + p3 + p6)
2

]

, (A.1.28)Page 101



and the seond term reads
(p2 · p3) (p2 + p3)

µ p1,ν

[
(p5 ·p6) p4,µ (p5 + p6)

ν

(p2 + p3 + p4)
2 +

(p4 ·p6) p5,µ (p4 + p6)
ν

(p2 + p3 + p5)
2

+
(p4 ·p5) p6,µ (p4 + p5)

ν

(p2 + p− 3 + p6)
2

]

= (p2 ·p3)
[

− (p5 ·p6)(p1 + p5 + p6) · p4 − (p4 ·p6)(p1 + p4 + p6) · p5

− (p4 ·p5)(p1 + p4 + p5) · p6

]

+ (p2 ·p3) (p2 + p3)
µ

[
(p5 ·p6) (p5 + p6)ν (p2 + p3 + p4)

ν p4,µ

(p2 + p3 + p4)
2

+
(p4 ·p6) (p4 + p6)ν (p2 + p3 + p5)

ν p5,µ

(p2 + p3 + p5)
2

+
(p4 ·p5) (p4 + p5)ν (p2 + p3 + p6)

ν p6,µ

(p2 + p3 + p6)
2

]

, (A.1.29)after the rewriting.
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Mathematia output from alulations in setion 3.3.2Figure A.3 shows the output fromMathematia for the full sum S in (3.3.15) for the alulationof the generi amplitude A(AiAjAkAl). Figure A.4 shows the output from Mathematia after
S has been simpli�ed at the end of setion 3.3.2 by employing momentum onservation.Theontent in �gure A.4 is the starting point for the simpli�ations of S disussed in setion 3.3.3that ends with (3.3.40) as the �nal result.
-8 pe1,4 pe2,3 pe3,2 pe4,1 + 8 pe1,3 pe2,4 pe3,2 pe4,1 + 8 pe1,2 pe2,3 pe3,4 pe4,1 + 8 pe1,4 pe2,3 pe3,1 pe4,2 - 8 pe1,3 pe2,4 pe3,1 pe4,2 +

8 pe1,3 pe2,1 pe3,4 pe4,2 + 8 pe1,2 pe2,4 pe3,1 pe4,3 + 8 pe1,4 pe2,1 pe3,2 pe4,3 - 8 pe1,2 pe2,1 pe3,4 pe4,3 + 2 ee3,4 pe3,2 pe4,1 pp1,2 +

2 ee4,3 pe3,2 pe4,1 pp1,2 - ee2,3 pe3,4 pe4,1 pp1,2 - 3 ee3,2 pe3,4 pe4,1 pp1,2 + 2 ee3,4 pe3,1 pe4,2 pp1,2 + 2 ee4,3 pe3,1 pe4,2 pp1,2 -

3 ee1,3 pe3,4 pe4,2 pp1,2 - ee3,1 pe3,4 pe4,2 pp1,2 - ee2,4 pe3,1 pe4,3 pp1,2 - 3 ee4,2 pe3,1 pe4,3 pp1,2 - 3 ee1,4 pe3,2 pe4,3 pp1,2 - ee4,1 pe3,2 pe4,3 pp1,2 +

4 ee1,2 pe3,4 pe4,3 pp1,2 + 2 ee2,4 pe2,3 pe4,1 pp1,3 + 2 ee4,2 pe2,3 pe4,1 pp1,3 - 3 ee2,3 pe2,4 pe4,1 pp1,3 - ee3,2 pe2,4 pe4,1 pp1,3 -

ee3,4 pe2,1 pe4,2 pp1,3 - 3 ee4,3 pe2,1 pe4,2 pp1,3 - 3 ee1,4 pe2,3 pe4,2 pp1,3 - ee4,1 pe2,3 pe4,2 pp1,3 + 4 ee1,3 pe2,4 pe4,2 pp1,3 +

2 ee2,4 pe2,1 pe4,3 pp1,3 + 2 ee4,2 pe2,1 pe4,3 pp1,3 - 3 ee1,2 pe2,4 pe4,3 pp1,3 - ee2,1 pe2,4 pe4,3 pp1,3 - 3 ee2,4 pe2,3 pe3,1 pp1,4 -

ee4,2 pe2,3 pe3,1 pp1,4 + 2 ee2,3 pe2,4 pe3,1 pp1,4 + 2 ee3,2 pe2,4 pe3,1 pp1,4 - 3 ee3,4 pe2,1 pe3,2 pp1,4 - ee4,3 pe2,1 pe3,2 pp1,4 +

4 ee1,4 pe2,3 pe3,2 pp1,4 - 3 ee1,3 pe2,4 pe3,2 pp1,4 - ee3,1 pe2,4 pe3,2 pp1,4 + 2 ee2,3 pe2,1 pe3,4 pp1,4 + 2 ee3,2 pe2,1 pe3,4 pp1,4 -

3 ee1,2 pe2,3 pe3,4 pp1,4 - ee2,1 pe2,3 pe3,4 pp1,4 + 2 ee3,4 pe3,2 pe4,1 pp2,1 + 2 ee4,3 pe3,2 pe4,1 pp2,1 - 3 ee2,3 pe3,4 pe4,1 pp2,1 -

ee3,2 pe3,4 pe4,1 pp2,1 + 2 ee3,4 pe3,1 pe4,2 pp2,1 + 2 ee4,3 pe3,1 pe4,2 pp2,1 - ee1,3 pe3,4 pe4,2 pp2,1 - 3 ee3,1 pe3,4 pe4,2 pp2,1 -

3 ee2,4 pe3,1 pe4,3 pp2,1 - ee4,2 pe3,1 pe4,3 pp2,1 - ee1,4 pe3,2 pe4,3 pp2,1 - 3 ee4,1 pe3,2 pe4,3 pp2,1 + 4 ee2,1 pe3,4 pe4,3 pp2,1 - ee3,4 pe1,2 pe4,1 pp2,3 -

3 ee4,3 pe1,2 pe4,1 pp2,3 - 3 ee2,4 pe1,3 pe4,1 pp2,3 - ee4,2 pe1,3 pe4,1 pp2,3 + 4 ee2,3 pe1,4 pe4,1 pp2,3 + 2 ee1,4 pe1,3 pe4,2 pp2,3 +

2 ee4,1 pe1,3 pe4,2 pp2,3 - 3 ee1,3 pe1,4 pe4,2 pp2,3 - ee3,1 pe1,4 pe4,2 pp2,3 + 2 ee1,4 pe1,2 pe4,3 pp2,3 + 2 ee4,1 pe1,2 pe4,3 pp2,3 -

ee1,2 pe1,4 pe4,3 pp2,3 - 3 ee2,1 pe1,4 pe4,3 pp2,3 - 2 ee1,4 ee2,3 pp1,4 pp2,3 + 2 ee1,3 ee2,4 pp1,4 pp2,3 + ee1,2 ee3,4 pp1,4 pp2,3 + ee2,1 ee4,3 pp1,4 pp2,3 -

3 ee3,4 pe1,2 pe3,1 pp2,4 - ee4,3 pe1,2 pe3,1 pp2,4 + 4 ee2,4 pe1,3 pe3,1 pp2,4 - 3 ee2,3 pe1,4 pe3,1 pp2,4 - ee3,2 pe1,4 pe3,1 pp2,4 -

3 ee1,4 pe1,3 pe3,2 pp2,4 - ee4,1 pe1,3 pe3,2 pp2,4 + 2 ee1,3 pe1,4 pe3,2 pp2,4 + 2 ee3,1 pe1,4 pe3,2 pp2,4 + 2 ee1,3 pe1,2 pe3,4 pp2,4 +

2 ee3,1 pe1,2 pe3,4 pp2,4 - ee1,2 pe1,3 pe3,4 pp2,4 - 3 ee2,1 pe1,3 pe3,4 pp2,4 + 2 ee1,4 ee2,3 pp1,3 pp2,4 - 2 ee1,3 ee2,4 pp1,3 pp2,4 +

ee2,1 ee3,4 pp1,3 pp2,4 + ee1,2 ee4,3 pp1,3 pp2,4 + 2 ee2,4 pe2,3 pe4,1 pp3,1 + 2 ee4,2 pe2,3 pe4,1 pp3,1 - ee2,3 pe2,4 pe4,1 pp3,1 - 3 ee3,2 pe2,4 pe4,1 pp3,1 -

3 ee3,4 pe2,1 pe4,2 pp3,1 - ee4,3 pe2,1 pe4,2 pp3,1 - ee1,4 pe2,3 pe4,2 pp3,1 - 3 ee4,1 pe2,3 pe4,2 pp3,1 + 4 ee3,1 pe2,4 pe4,2 pp3,1 +

2 ee2,4 pe2,1 pe4,3 pp3,1 + 2 ee4,2 pe2,1 pe4,3 pp3,1 - ee1,2 pe2,4 pe4,3 pp3,1 - 3 ee2,1 pe2,4 pe4,3 pp3,1 + ee1,4 ee2,3 pp2,4 pp3,1 -

2 ee2,4 ee3,1 pp2,4 pp3,1 + 2 ee2,1 ee3,4 pp2,4 pp3,1 + ee3,2 ee4,1 pp2,4 pp3,1 - 3 ee3,4 pe1,2 pe4,1 pp3,2 - ee4,3 pe1,2 pe4,1 pp3,2 - ee2,4 pe1,3 pe4,1 pp3,2 -

3 ee4,2 pe1,3 pe4,1 pp3,2 + 4 ee3,2 pe1,4 pe4,1 pp3,2 + 2 ee1,4 pe1,3 pe4,2 pp3,2 + 2 ee4,1 pe1,3 pe4,2 pp3,2 - ee1,3 pe1,4 pe4,2 pp3,2 -

3 ee3,1 pe1,4 pe4,2 pp3,2 + 2 ee1,4 pe1,2 pe4,3 pp3,2 + 2 ee4,1 pe1,2 pe4,3 pp3,2 - 3 ee1,2 pe1,4 pe4,3 pp3,2 - ee2,1 pe1,4 pe4,3 pp3,2 +

ee1,3 ee2,4 pp1,4 pp3,2 - 2 ee1,4 ee3,2 pp1,4 pp3,2 + 2 ee1,2 ee3,4 pp1,4 pp3,2 + ee3,1 ee4,2 pp1,4 pp3,2 + 4 ee3,4 pe1,2 pe2,1 pp3,4 -

3 ee2,4 pe1,3 pe2,1 pp3,4 - ee4,2 pe1,3 pe2,1 pp3,4 - ee2,3 pe1,4 pe2,1 pp3,4 - 3 ee3,2 pe1,4 pe2,1 pp3,4 - 3 ee1,4 pe1,2 pe2,3 pp3,4 -

ee4,1 pe1,2 pe2,3 pp3,4 + 2 ee1,2 pe1,4 pe2,3 pp3,4 + 2 ee2,1 pe1,4 pe2,3 pp3,4 - ee1,3 pe1,2 pe2,4 pp3,4 - 3 ee3,1 pe1,2 pe2,4 pp3,4 +

2 ee1,2 pe1,3 pe2,4 pp3,4 + 2 ee2,1 pe1,3 pe2,4 pp3,4 + ee2,4 ee3,1 pp1,2 pp3,4 + 2 ee1,4 ee3,2 pp1,2 pp3,4 - 2 ee1,2 ee3,4 pp1,2 pp3,4 +

ee1,3 ee4,2 pp1,2 pp3,4 + 2 ee2,4 ee3,1 pp2,1 pp3,4 + ee1,4 ee3,2 pp2,1 pp3,4 - 2 ee2,1 ee3,4 pp2,1 pp3,4 + ee2,3 ee4,1 pp2,1 pp3,4 - ee2,4 pe2,3 pe3,1 pp4,1 -

3 ee4,2 pe2,3 pe3,1 pp4,1 + 2 ee2,3 pe2,4 pe3,1 pp4,1 + 2 ee3,2 pe2,4 pe3,1 pp4,1 - ee3,4 pe2,1 pe3,2 pp4,1 - 3 ee4,3 pe2,1 pe3,2 pp4,1 +

4 ee4,1 pe2,3 pe3,2 pp4,1 - ee1,3 pe2,4 pe3,2 pp4,1 - 3 ee3,1 pe2,4 pe3,2 pp4,1 + 2 ee2,3 pe2,1 pe3,4 pp4,1 + 2 ee3,2 pe2,1 pe3,4 pp4,1 -

ee1,2 pe2,3 pe3,4 pp4,1 - 3 ee2,1 pe2,3 pe3,4 pp4,1 + ee1,3 ee2,4 pp2,3 pp4,1 - 2 ee2,3 ee4,1 pp2,3 pp4,1 + ee3,1 ee4,2 pp2,3 pp4,1 + 2 ee2,1 ee4,3 pp2,3 pp4,1 +

ee1,2 ee3,4 pp3,2 pp4,1 - 2 ee3,2 ee4,1 pp3,2 pp4,1 + 2 ee3,1 ee4,2 pp3,2 pp4,1 + ee2,1 ee4,3 pp3,2 pp4,1 - ee3,4 pe1,2 pe3,1 pp4,2 - 3 ee4,3 pe1,2 pe3,1 pp4,2 +

4 ee4,2 pe1,3 pe3,1 pp4,2 - ee2,3 pe1,4 pe3,1 pp4,2 - 3 ee3,2 pe1,4 pe3,1 pp4,2 - ee1,4 pe1,3 pe3,2 pp4,2 - 3 ee4,1 pe1,3 pe3,2 pp4,2 +

2 ee1,3 pe1,4 pe3,2 pp4,2 + 2 ee3,1 pe1,4 pe3,2 pp4,2 + 2 ee1,3 pe1,2 pe3,4 pp4,2 + 2 ee3,1 pe1,2 pe3,4 pp4,2 - 3 ee1,2 pe1,3 pe3,4 pp4,2 -

ee2,1 pe1,3 pe3,4 pp4,2 + ee1,4 ee2,3 pp1,3 pp4,2 + ee3,2 ee4,1 pp1,3 pp4,2 - 2 ee1,3 ee4,2 pp1,3 pp4,2 + 2 ee1,2 ee4,3 pp1,3 pp4,2 + ee2,1 ee3,4 pp3,1 pp4,2 +

2 ee3,2 ee4,1 pp3,1 pp4,2 - 2 ee3,1 ee4,2 pp3,1 pp4,2 + ee1,2 ee4,3 pp3,1 pp4,2 + 4 ee4,3 pe1,2 pe2,1 pp4,3 - ee2,4 pe1,3 pe2,1 pp4,3 - 3 ee4,2 pe1,3 pe2,1 pp4,3 -

3 ee2,3 pe1,4 pe2,1 pp4,3 - ee3,2 pe1,4 pe2,1 pp4,3 - ee1,4 pe1,2 pe2,3 pp4,3 - 3 ee4,1 pe1,2 pe2,3 pp4,3 + 2 ee1,2 pe1,4 pe2,3 pp4,3 + 2 ee2,1 pe1,4 pe2,3 pp4,3 -

3 ee1,3 pe1,2 pe2,4 pp4,3 - ee3,1 pe1,2 pe2,4 pp4,3 + 2 ee1,2 pe1,3 pe2,4 pp4,3 + 2 ee2,1 pe1,3 pe2,4 pp4,3 + ee1,4 ee3,2 pp1,2 pp4,3 + ee2,3 ee4,1 pp1,2 pp4,3 +

2 ee1,3 ee4,2 pp1,2 pp4,3 - 2 ee1,2 ee4,3 pp1,2 pp4,3 + ee2,4 ee3,1 pp2,1 pp4,3 + 2 ee2,3 ee4,1 pp2,1 pp4,3 + ee1,3 ee4,2 pp2,1 pp4,3 - 2 ee2,1 ee4,3 pp2,1 pp4,3Figure A.3: The output from Mathematia of the full result for the sum S.
2 s2 ee1,3 ee2,4 + 2 t

2 ee1,3 ee2,4 - 2 u
2 ee1,3 ee2,4 + 2 s

2 ee1,4 ee3,2 - 2 t
2 ee1,4 ee3,2 + 2 u

2 ee1,4 ee3,2 - 2 s
2 ee1,2 ee3,4 +

2 t2 ee1,2 ee3,4 + 2 u
2 ee1,2 ee3,4 - 4 s ee3,4 pe1,2 pe2,1 + 4 s ee2,4 pe1,3 pe2,1 + 4 s ee3,2 pe1,4 pe2,1 + 4 s ee1,4 pe1,2 pe2,3 -

4 s ee1,2 pe1,4 pe2,3 + 4 s ee1,3 pe1,2 pe2,4 - 4 s ee1,2 pe1,3 pe2,4 + 4 u ee3,4 pe1,2 pe3,1 - 4 u ee2,4 pe1,3 pe3,1 + 4 u ee3,2 pe1,4 pe3,1 +

4 t ee2,4 pe2,3 pe3,1 - 4 t ee3,2 pe2,4 pe3,1 + 4 u ee1,4 pe1,3 pe3,2 - 4 u ee1,3 pe1,4 pe3,2 + 4 t ee3,4 pe2,1 pe3,2 - 4 t ee1,4 pe2,3 pe3,2 +

4 t ee1,3 pe2,4 pe3,2 - 4 u ee1,3 pe1,2 pe3,4 + 4 u ee1,2 pe1,3 pe3,4 - 4 t ee3,2 pe2,1 pe3,4 + 4 t ee1,2 pe2,3 pe3,4 + 4 t ee3,4 pe1,2 pe4,1 +

4 t ee2,4 pe1,3 pe4,1 - 4 t ee3,2 pe1,4 pe4,1 - 4 u ee2,4 pe2,3 pe4,1 + 4 u ee3,2 pe2,4 pe4,1 - 4 s ee3,4 pe3,2 pe4,1 - 8 pe1,4 pe2,3 pe3,2 pe4,1 +

8 pe1,3 pe2,4 pe3,2 pe4,1 + 4 s ee3,2 pe3,4 pe4,1 + 8 pe1,2 pe2,3 pe3,4 pe4,1 - 4 t ee1,4 pe1,3 pe4,2 + 4 t ee1,3 pe1,4 pe4,2 + 4 u ee3,4 pe2,1 pe4,2 +

4 u ee1,4 pe2,3 pe4,2 - 4 u ee1,3 pe2,4 pe4,2 - 4 s ee3,4 pe3,1 pe4,2 + 8 pe1,4 pe2,3 pe3,1 pe4,2 - 8 pe1,3 pe2,4 pe3,1 pe4,2 + 4 s ee1,3 pe3,4 pe4,2 +

8 pe1,3 pe2,1 pe3,4 pe4,2 - 4 t ee1,4 pe1,2 pe4,3 + 4 t ee1,2 pe1,4 pe4,3 - 4 u ee2,4 pe2,1 pe4,3 + 4 u ee1,2 pe2,4 pe4,3 + 4 s ee2,4 pe3,1 pe4,3 +

8 pe1,2 pe2,4 pe3,1 pe4,3 + 4 s ee1,4 pe3,2 pe4,3 + 8 pe1,4 pe2,1 pe3,2 pe4,3 - 4 s ee1,2 pe3,4 pe4,3 - 8 pe1,2 pe2,1 pe3,4 pe4,3Figure A.4: The output from Mathematia after simplifying the expression in �gure A.3.
Page 103



Appendix BSummary of alulated amplitudesThis appendix is a summary of the results in the thesis for amplitudes whih have not previ-ously been alulated. Setion B.1 summarizes results for photon amplitudes in six dimensionswhile setion B.2 summarizes results for salar amplitudes in four dimensions. The results forthe respetive amplitudes are given without any omments but the neessary de�nitions.B.1 Summary of photon amplitudes in six dimensionsThe results for the six-dimensional amplitudes A(− + + +) and A(−− + +) for four gaugebosons obtained in setion 4.3 are given respetively as
A
(
i−j+k+l+

)
=
π4α′4

8

[ζ1]

〈ζ1〉
∑

σ(i,j,k)

1

[ζi]

{

+4 〈jk〉2 [ζ1] 〈ζ1〉
[ζi]

p̃2
i

+
[ζi]

[ζj]

[

−〈ζk〉 ( 〈ik〉〈j1〉 + 〈jk〉〈i1〉 ) + 〈ζj〉〈ik〉〈k1〉 + 〈ζi〉〈jk〉〈k1〉
]

(p̃i ·p̃j)
}

,(B.1.1)and
A
(
i−j−k+l+

)
= −π

4α′4

8
×

∑

σ(i,j,k,l)

{

[ij]2 〈kl〉2 + 4 p̃2
i p̃

2
j

[ζj]2 〈ζk〉2
〈ζi〉2 [ζl]2

+
[ζi] 〈ζk〉

〈ζi〉 [ζk] 〈ζj〉 [ζl]

[

2〈ζj〉 [ζl] (p̃i ·p̃j)
(

p̃2
j

〈ζl〉2
〈ζj〉2 + p̃2

l

[ζj]2

[ζl]2

)

+
(

[ij] 〈kl〉〈ζi〉 [ζk] + [kj] 〈il〉〈ζk〉 [ζi]
)

(p̃j ·p̃l)
− [ij] 〈jl〉〈ζi〉 [ζj] (p̃k ·p̃l) − [lj] 〈il〉〈ζl〉 [ζi] (p̃j ·p̃k)
− [kj] 〈jl〉〈ζk〉 [ζj] (p̃i ·p̃l) − [lj] 〈kl〉〈ζl〉 [ζk] (p̃i ·p̃j)

+ [ζj] 〈ζl〉
(

2 (pi ·pj) (p̃k ·p̃l) + (pk ·pl) (p̃i ·p̃j) + (pi ·pl) (p̃j ·p̃k) + (pj ·pk) (p̃i ·p̃l)
)]}

,(B.1.2)Page 104



where the sums ontain the yli permutations of indies given by
σ (i, j, k) = σ (2, 3, 4) , σ (i, j, k) = σ (4, 2, 3) , σ (i, j, k) = σ (3, 4, 2) . (B.1.3)The tilde symbol above the momenta indiates that the momentum is in the auxiliary dimen-sions

p̃i · p̃j = pni pj,n , (B.1.4)where n is a Lorentz index for the two auxiliary dimensions taking values (4, 5). The dotprodut
pi · pj = pµi pj,µ , (B.1.5)is just a ontration of ordinary four-dimensional Lorentz indies. The momentum bilinearsare de�ned in terms of spinor indies as

〈ij〉 = iα̇jα̇ = iα̇jβ̇εβ̇α̇ , [ij] = iαj
α = iαjβεαβ . (B.1.6)B.2 Summary of salar amplitudes in four dimensionsThe result for the four-dimensional amplitude for four massless salars as alulated in setion4.4.2 is

A
(
φ1φ2φ̄3φ̄4

)
= − i

2
π2α′2s2 , (B.2.1)where

s = 2 p1 · p2 , (B.2.2)in terms of the four-momenta for the salars. The salars are de�ned as
φ ≡ 1√

2
(A4 + iA5) , φ̄ ≡ 1√

2
(A4 − iA5) , (B.2.3)in terms of gauge �eld omponents in the auxiliary dimensions. The result for the four-dimensional amplitude for six massless salars as alulated in setion 4.4.3 is

A
(
φ1φ2φ3φ̄4φ̄5φ̄6

)
=

− 2i π2α′4
∑

σ(i,j,k)

∑

σ(l,m,n)

(pi ·pj) (pm ·pn)
[

pµl − 4 (pi + pj)
ν pl,ν

(pm + pn)
µ

(pi + pj + pl)
2

]

pk,µ ,(B.2.4)with the permutations of indies in the sums
σ (i, j, k) = σ (1, 2, 3) , σ (i, j, k) = σ (2, 3, 1) , σ (i, j, k) = σ (3, 1, 2) , (B.2.5)

σ (l,m, n) = σ (1, 2, 3) , σ (l,m, n) = σ (2, 3, 1) , σ (l,m, n) = σ (3, 1, 2) . (B.2.6)Page 105



Bibliography[1℄ Rutger Boels, Kasper J. Larsen, Niels A. Obers, Marel Vonk. MHV, CSW and BCFW:Field Theory Strutures in String Theory Amplitudes. 2008. [hep-th/0808.2598℄.[2℄ M.B. Green, J.H. Shwarz, E. Witten. Superstring theory. Cambridge University Press,seond edition, 1987.[3℄ D.I. Kazakov. Beyond the standard model (In searh of supersymmetry). 2001. [hep-ph/0012288v2℄.[4℄ The partile data group. Grand uni�ed theories. http://pdg.lbl.gov/, 2005.http://pdg.lbl.gov/2009/reviews/rpp2009-rev-guts.pdf.[5℄ Robert. N. Cahn. The Eighteen Arbitrary Parameters of the Standard Model in your Ev-eryday Life. http://www.hep.yorku.a/menary/mis/eighteen_parameters_of_sm.ps.[6℄ M. Born. On the Quantum Theory of the Eletromagneti Field. 1934. Pro. Roy. So.143.[7℄ M. Born & L. Infeld. Foundations of the new Field Theory. 1934. Pro. Roy. So. 144.[8℄ P.A.M. Dira. A Reformulation of the Born-Infeld Eletrodynamis. 1960. Pro. Roy.So. 257.[9℄ Barton Zwiebah. A First Course in String Theory. Cambridge University Press, 2004.[10℄ S. A. Hugget & K. P. Tod. An Introdution To Twister Theory. Cambridge UniversityPress, seond edition, 1994.[11℄ Roger Penrose & Wolfgang Rindler. Spinors And Spaetime; Two-spinor Calulus andRelativisti Fields, volume one. Cambridge University Press, seond edition, 1984.[12℄ W. L. Bade & Herbert Jehle. An Introdution to Spinors. 1953. Rev. Mod. Phys. 25.[13℄ Stefan Dittmaier. Weyl-van der Waerden formalism for heliity amplitudes of massivepartiles. 1998. Phys. Rev. D59.[14℄ Otto Laporte & George E. Uhlenbek. Appliation of Spinor Analysis to the Maxwell andDira Equations. (1931). Phys. Rev. 37.[15℄ Lane J. Dixon. Calulating Sattering Amplitudes E�iently. 1996. [hep-ph/9601359℄.[16℄ Rutger Boels. Covariant representation theory of the Poinaré algebra and some of itsextensions. 2009. [hep-th/09080738℄.Page 106



[17℄ Mihael E. Peskin & Daniel V. Shroeder. An Introdution to Quantum Field Theory.Westview Press, 1995.[18℄ Walter Greiner & Joahim Reinhardt. Field Quantization. Springer, 1996.[19℄ Mihele Maggiore. A Modern Introdution to Quantum Field Theory. Oxford UniversityPress, 2005.[20℄ Mihio Kaku. Quantum Field Theory. Oxford University Press, 1994.[21℄ Edward Witten. Perturbative Gauge Theory as a String Theory in Twistor Spae. 2003.[hep-th/0312171℄.[22℄ A.A. Tseytlin. Born-Infeld ation, supersymmetry and string theory. 1999. [hep-th/9908105℄.[23℄ Rutger Boels & Christian Shwinn. Deriving CSW rules for massive salar legs and pureYang-Mills loops. 2008. [hep-th/0805.1197℄.[24℄ Stephen J. Parke and T. R. Taylor. Amplitude for n-Gluon Sattering. 1986. Phys. Rev.Lett. 56.[25℄ John H. Shwarz. Superstring Theory. (1982). Phys. Rep. 49.[26℄ H. Kawai, D.C. Lewellen, S.-H.H. Tye. A relation between amplitudes of losed and openstrings. 1985. Nul. Phys. B269.[27℄ Cli�ord Cheung & Donald O'Connell. Amplitudes in Spinor-Heliity in Six Dimensions.2009. [hep-th/0902.0981℄.

Page 107


