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Abstract

General relativity, despite providing an elegant and very satisfactory
classical description of the gravitational interaction, has left us with sev-
eral conceptual physical issues. One of them is related to the existence
of black hole solutions, and the fact that these seem to be naturally en-
dowed, through the laws of black hole mechanics, with a macroscopic
entropy equal to the quarter of the area of their event horizon. It has
therefore since then been a challenge for candidates to a quantum theory
of gravity to reproduce, from first-principles, this entropy by a counting of
microstates. In this thesis we give a review of one such proposal known as
the Kerr/CFT correspondence. We also extend the hidden conformal sym-
metry approach to the case of the five dimensional boosted black string.
Furthermore, we conjecture the existence of hidden conformal symmetry
in D-dimensional boosted black strings. Finally we make a rather raw cal-
culation on the supersymmetric black ring case where we show that admits
a hidden conformal symmetry and compute the microscopic entropy.
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1 Introduction

The main goal of physics is to understand the totality and wholeness of the
Cosmos, that is with our current understanding, to comprehend the various
forces which govern it and shape it. Gravity was the first force to be understood
scientifically by Isaac Newton, published in his most famous book, Principia in
1687, while three more would eventually follow called electromagnetism, weak
and strong force. Newton’s equations, despite being some hundreds of years old,
make such accurate predictions that we still use them today in several fields,
but while these equations described the force of gravity with great accuracy,
there was nothing in them explaining how gravity works, which posed a rather
difficult unsolvable problem to scientists. Almost 250 years passed until our
perspective of how we look gravity underwent a fundamental change. In the
early 1900’s Albert Einstein proposed a new way to look at gravity. He came to
think of the three dimensions of space and a single dimension of time as bound
together in a single fabric of spacetime. Einstein hoped that by understanding
the geometry of this four dimensional spacetime one could easily speak about
things moving in this spacetime fabric. With this new approach the curving
and stretching of the fabric of spacetime caused by heavy objects such as stars
and planets that creates what we feel as gravity. So a new classical theory of
gravity came to overthrow the notions of the past, in what we today know as
the theory of general relativity.

The theory is governed by the Einstein fields equations

Gµν = 8πGTµν , (1)

these equations describe how spacetime is being curved due to the presence of
matter. The left hand side describes the spacetime geometry which is given
by Gµν , called the Einstein tensor, while the right hand side describes the
associated energy-momentum responsible for the spacetime curvature and is
given by Tµν , called the Energy-Momentum tensor. G is Newton’s gravitational
constant.

The Einstein field equations are really difficult and complex to solve with-
out doing suitable approximations, as they are non-linear. However, there have
been cases where solutions to these equations have been provided completely,
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and are called exact solutions. These solutions 1 in four dimensions are fully
characterized by only three parameters, the mass, the angular momentum and
the charge (electric and magnetic) which is known as the no-hair theorem, which
parametrize the solutions into a total four. The first exact solution to Einstein
field equations was the Schwarzschild metric named after Karl Schwarzschild
who found it in 1916. It is the simplest metric in general relativity and describes
the space-time geometry outside a non-charged, perfectly spherical, non-rotating
mass in asymptotically flat empty space. Soon afterwards (1916–1918) an ex-
tension to the solution was found including charge, discovered independently
by Hans Reissner in 1916, Hermann Weyl in 1917 and Gunnar Nordström in
1918, named the Reissner–Nordström metric. The geometry of a stationary, ro-
tating, axisymmetric, uncharged black hole in asymptotically flat empty, space
was discovered unexpectedly by Roy Kerr in 1963 [1], called the Kerr metric.
An own account of Kerr’s discovery can be found in [2]. The extension to a
rotating black hole with charge was found shortly after by Ezra Newman [3]
in 1965, called the Kerr–Newman metric. The above solutions were generated
in empty space (vacuum) 2. For these vacuum field equations we set Tµν = 0,
because the measurement of spacetime geometry is done only outside the mass
in question. These solutions are called black hole solutions since they contain an
event horizon. Black holes are the fascinating objects predicted by the theory,
these objects are so massive that they curve spacetime in such a degree that
they devour everything and even light cannot escape from them.

There is evidence that these black holes do actually form when very massive
stars collapse under their own weight. Observational evidence for black holes
also exist but are not straightforward to obtain. Since radiation cannot escape
the extreme gravitational pull of a black hole, we cannot detect them directly.
Instead we infer their existence by observing high-energy phenomena such as
X-ray emission and jets, and the motions of nearby objects in orbit around the
hidden mass. An added complication is that similar phenomena are observed
around less massive neutron stars and pulsars. Therefore, identification as a
black hole requires astronomers to make an estimate of the mass of the object
and its size. A black hole is confirmed if no other object or group of objects
could be so massive and compact.

With the advent of quantum theory, which was the result of a long and
successful effort of physicists to account correctly for an extremely wide range of
experimental results which the classical theory could not even begin to explain,
physicists came to believe that a full theory of nature should incorporate classical
physics, quantum mechanics and general relativity which would be a theory of
quantum gravity. The task proved more difficult and complex than expected.
The earliest attempts to incorporate Einstein’s gravity with quantum mechanics
failed due to infinite answers that do not made sense. The quest for a quantum
theory of gravity is still an ongoing process today which meets lots of difficulties

1We are referring to solutions that possess a horizon.
2To avoid confusion we should mention that vacuum solutions that include charge are found

by solving the so called Einstein-Maxwell equations where the energy-momentum tensor Tµν
is that of an electromagnetic field in free space.
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and obstacles, even after the advent of string theory which offers some hope.
The truth is that we have not yet understand how to quantise gravity, we have
models to do it but what we actually do is to push these models using classical
gravity down to quantum scale, something we should not be doing if we want a
proper quantum theory of gravity.

Black holes came to be very important objects in the quest of formulating
a theory of quantum gravity. The reason is that, on the one hand quantum
mechanics is important for small scales and it is negligible for large things, most
objects that we deal with are small and light like elementary particles, atoms
etc, so that one can neglect gravity. On the other hand general relativity is
important for big and heavy things for example planets, stars, so that we can
neglect quantum mechanics. Black holes incorporate both regimes they are
small and heavy so in order to fully understand them we will need a theory of
quantum gravity. This make them the perfect objects for theoretical physicists
to study.

Bekenstein [4] and Hawking [5] showed us that black holes are thermody-
namical objects. Introductory reviews of black hole thermodynamics can be
found in, [6], [7], [8], [9], [10], [11]. Bekenstein conjectured that the black hole
entropy was proportional to the area of its event horizon divided by the Planck
area and Hawking calculated the temperature of a black hole. He did that by
quantising the matter on a fixed classical gravitational background and showed
that a black hole would radiate thermally via microscopic processes that occur
just outside the horizon. The net effect is to remove energy from the black hole,
at a very, very slow rate, which results to the evaporation of the black holes! In
reality, a solar mass black hole will take many many times the lifetime of the
Universe to evaporate, but the main point is that this process gives rise to two
related fundamental theoretical problems, the problem of information loss and
the mysterious source of black hole entropy. What we are interested and going
to discuss in this thesis concerns the black hole entropy.

As we know from thermodynamics in less exotic objects a statistical entropy
can be assigned to them. This make us believe that these quantities should
reflect some kind of underlying statistical interpretation of black holes. The
Bekenstein-Hawking entropy, for example, should count the number of micro-
scopic states of the black hole. But “a black hole has no hair”, a classical,
equilibrium black hole is determined completely by its mass, charge, and angu-
lar momentum, with no room for additional microscopic states to account for
thermal behavior. If black hole thermodynamics has a statistical mechanical
origin, the relevant states must therefore be nonclassical. Indeed, they should
be quantum gravitational — the Hawking temperature and Bekenstein-Hawking
entropy depend upon both Planck’s constant and Newton’s constant G. Thus
the problem of black hole statistical mechanics is not just a technical question
about some particular configurations of matter and gravitational fields and we
hope to give us new insight into the profound mysteries of quantum gravity.
Such an interpretation has been achieved with what is known as holographic du-
alities that is relating a theory of gravity, to a quantum theory without gravity
in fewer dimensions.
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The first successful statistical counting of black hole entropy was performed
in string theory for a five dimensional supersymmetric black hole by Andrew
Strominger and Cumrun Vafa [12], by using string theory to identify their mi-
crostates with those of a dual two-dimensional conformal field theory (2D CFT).
The essential strategy for the microscopic entropy counting was to construct a
black hole geometry by D-branes and then to map the problem of the black
hole to a dual boundary field theory on the D-branes. Then by using the BPS
properties, they were able to count the microscopic entropy of the black hole
in the weak coupling field theory. A generalized solution with the same charges
and equal angular momenta in two orthogonal planes by Breckenridge, Myers,
Peet and Vafa (BMPV) can be found in [13]. When the near-horizon limit has
been taken, their work can be viewed as a typical example of the AdS/CFT cor-
respondence [14], [15], [16], which shows that there exists a duality between the
higher dimensional gravity and the CFT living on the boundary in less dimen-
sions, providing that way a powerful tool to study the microscopic statistical
mechanics of the black holes. An introductory review on black holes and black
hole thermodynamics in string theory which heavily relies on supersymmetry
(BPS-branes) can be found in [17].

Soon after it was realized by Strominger [18] that notable features of the con-
struction of [12] and in particular the matching the universality of the 2D CFT
Cardy formula to the universality of the Bekenstein-Hawking area law, followed
largely from a careful analysis performed by Brown and Henneaux in [19]. That
allowed him to compute the microscopic black hole entropy from the asymp-
totic growth of states without the use of string theory or supersymmetry, by
using the fact that quantum gravity on AdS3 is a conformal field theory. Brown
and Henneaux investigated the asymptotic symmetries of the three-dimensional
anti-de Sitter space (AdS3) and found out that it consist of two copies of the
Virasoro algebra with finite central charge, which is the symmetry group of the
two-dimensional conformal field theories (CFTs). Actually when the central
charge in the symmetry algebra of (2+1)-dimensional asymptotically AdS grav-
ity was first discovered, it was considered to be mainly a mathematical curiosity,
that changed when Strominger [18] and Birmingham, Sachs, and Sen [20] inde-
pendently pointed out that this result could be used to compute the asymptotic
density of states. The key to this computation is the Cardy formula [21], [22].

This approach was generalized to four dimensional Kerr black holes by Guica,
Hartman, Song and Strominger [23], who investigated the near-horizon geome-
try of the extremal Kerr (NHEK) black hole which has SL(2,R)× U(1) isome-
tries [24] and considered the asymptotic symmetry following the work by Brown
and Henneaux [19]. Under an appropriate choice of the boundary condition on
the fall-off of the metric they found one copy (chiral) of a Virasoro algebra
as its asymptotic symmetry which was realized from the enhancement of the
U(1) rotational symmetry group. This is actually in contrast to the case of
Godel black hole [25] in which the SL(2,R) isometry is enchanced to a Vira-
soro algebra. The importance of Kerr/CFT correspondence stands in the fact
that the microscopic entropy of a black hole is being calculated for the first
time without the need of string theory or supersymmetry and is actually quite
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physical as is in Einstein gravity. We review the Kerr/CFT correspondence in
section 4. Since the conformal algebra was generated out of the U(1) symmetry,
the question was posed if another conformal algebra could be realized from the
SL(2,R) symmetry that was also found in the near horizon geometry of the ex-
tremal Kerr black hole. It turned out that it could by imposing new asymptotic
condition which is stronger than that the Kerr/CFT correspondence [23] they
enchanced the SL(2,R) symmetry which admitted a Virasoro algebra. This in-
vestigation was done in [26] and also in [27]. However the boundary conditions
were exclusive to each other. The chosen boundary conditions on one didn’t
allow the symmetry on the other. This issue was investigated in [28] were they
proposed new asymptotic boundary conditions which allow both symmetries
(left and right mover). Perturbations of the near-horizon extreme Kerr space-
time were examined in [29]. Higher derivative corrections to the asymptotic
Virasoro symmetry of 4d extremal black holes can be found in [30]. A lot of
work has been done since then to extend this procedure to other examples of
extremal spinning black holes such as to Kerr-Newman-AdS-dS black hole [31].
In the same paper it was proposed that the Frolov-Thorne temperature may be
of the general form TL = 1/2πk in four dimensions. This was then generalized
to higher dimensions in [32] to be T aL = 1/2πka based on all the examples that
have been studied. To 4D [33] as well as in 5D [34] Kaluza-Klein black holes,
to Kerr-Bolt spacetimes [35], to linear dilaton black hole in Einstein-Maxwell-
Dilaton-Axion Gravity [36], to black hole solutions in gauged and ungauged
supergravities [32], to the Kerr/AdS metrics in diverse dimensions [37]. The
Kerr/CFT correspondence has also been extended to five dimensional black
holes such as, to the (charged) Kerr black hole embedded in the five-dimensional
Gödel universe [38], to 5D black holes [39], to minimal supergravity [40]. The
static extremal AdS black hole in diverse dimensions is examined in [41]. The
CFT description for extremal non rotating black holes has been also studied
for the extremal Reissner-Nordstrøm (RN) black hole [42]. Furthermore, the
correspondence has been used in string theory to extremal Kerr-Sen black hole
that appears as solutions in the low energy limit of heterotic string theory in
5D [43] and to D1-D5-P and the BMPV black holes [44], [45]. Finally, it was
shown in [46], that any solutions to vacuum general relativity whose asymptotic
behavior agrees with that of NHEK geometry, also called the extremal Kerr
throat are as well diffeomorphic to the NHEK geometry as well. We have to
note here that the Kerr/CFT correspondence originally proposed in [23] which
afterwards was generalized to other extremal black holes, was done by assuming
that the central charges from non-gravitational fields vanish. The validity of
the above assumption was checked in [47].

It has been expected that the Kerr/CFT correspondence should be true for
general J and M , which could be far away from extreme limit. However, for
generic non-extremal Kerr black holes, the NHEK geometry disappears and it
was not clear how to associate a CFT from the near horizon geometry. In a
paper by Castro, Maloney and Strominger [48] it was argued that the existence
of conformal invariance in a near horizon geometry is not a necessary condition,
instead the existence of a local conformal invariance in the solution space of
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the wave equation for the propagating field is sufficient to ensure a dual CFT
description. We review this new approach in section 5. This approach has
been extended to other kinds of black holes such as to the Schwarzschild black
hole [49], the Kerr-Newman [50] and Kerr-Newman-AdS-dS [51] black holes, the
Dyonic Reissner-Nordstrøm black bole [52], the uplifted 5D Reissner-Nordstrøm
black hole [53], to extremal black holes (Kerr-Newman,RN,warped AdS3,null
warped) [54] while the AdS3 black hole has been examined in [55], to 4D ex-
tremal [56] and non extremal [33] Kaluza-Klein black holes, to extremal [57]
non extremal [58] and AdS-dS [59] Kerr-Bolt spacetimes , to extreme and non-
extreme Einstein-Maxwell-Dilaton-Axion black holes [60], to Kerr-Sen black hole
(coming from heterotic string theory) and Kerr-Newman-Kasuya black hole (ro-
tating, with both electric+magnetic charge) [61], to doubly-spinning 5D Myers-
Perry [62], to the Cvetic-Youm solution (4D BH with 4 charges coming from
string theory) [63], to 5D non-extremal charged rotating black holes in minimal
gauged+ungauged supergravity [64], the BTZ black hole solution of cosmologi-
cal topological massive gravity [65] where they also consider the non relativistic
limit, while a different approach to the analysis of symmetries in the near-
horizon region of black holes can be found in [66].

A new aspect of the hidden conformal symmetry was found in the study of
Kerr-Newman black hole [67], in this paper the method based on the original pa-
per [48] was used to investigate the wave equation which involved three charges,
i.e., mass M , angular momentum J , and charge Q. However, the authors ob-
served that when the quantum number of angular momentum J was taken to
zero and a new vector operator was introduced for the charge Q, another hid-
den conformal symmetry emerged, which called the Q-picture description. In
view of this, the former description was named the J-picture. Investigation
has been done with this viewpoint for the Q-picture of Kerr-Newman-AdS-dS
black Hole [68], as well as for Q-picture for the charged+rotating black hole
solutions in the five dimensional minimal supergravity [69]. Finally the hidden
conformal symmetry has been applied to compute the real-time correlators in
Kerr/CFT, [70], [71]. A short introduction to the two above Kerr/CFT ap-
proaches can be found in the Cargèse Lectures [72] while an investigation of
these two approaches and more specific what happens to the hidden conformal
symmetry as the black hole goes extremal can be found in [73].

In the same spirit as the above we find it interesting to try to extend the
hidden conformal symmetry approach to the case of black rings hoping to give
a more complete picture of hidden conformal symmetry in black holes. Black
rings are actually higher dimensional solutions to the Einstein’s fields equations
found by Emparan and Reall [74]. A comprehensive review on black rings
can be found in [75]. The solution actually contains one angular momentum
setting the other equal to zero (remember that in 4 dimensional space an object
can rotate in two mutually orthogonal planes and thus have two independent
angular momenta). A more general solution containing two angular momenta
was presented in [76]. These objects carry electric charges [77], [78] and magnetic
dipoles [79], the latter usually referred to as dipole charges. A generalized black
ring solution containing the previous solutions as limiting cases was constructed
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in [80]. It is a 7 parameter family of supergravity solutions that describe non-
supersymmetric black rings with three charges, three dipoles and two angular
momenta. The existence of black rings raised the question of whether there
are any supersymmetric black holes in five dimensions other than BMPV, the
supersymmetric black ring solutions was found in [81].

The thesis is organized as follows. In section 2 we review some basic elements
of two dimensional conformal field theory and make a derivation of the Cardy
formula which is the basic tool we use later on in order to calculate the statistical
entropy of black holes. In section 3 we present a small introduction on black
holes and black hole thermodynamics and focus on the Kerr black hole as it
is the main object under investigation. In section 4 we review the Kerr/CFT
correspondence and in section 5 we review the Hidden Conformal Symmetry
in Kerr Black Hole. In section 6 we discuss black rings and how they are
connected with boosted black strings. We review the construction of a boosted
black string and show that it admits a hidden conformal symmetry. We also take
a look at the supersymmetric black ring case and show that it admits a hidden
conformal symmetry as well and calculate the microscopic entropy. In section 7
we examine higher dimensional boosted black strings where we conjecture that
hidden conformal symmetry in any dimension of boosted black string should
exist.

2 Conformal Field Theory (CFT)

In this section we try to give a brief review on some elements of conformal field
theory that will cover the essentials in order to understand the concept of the
Kerr/CFT correspondence that will follow. Most of the material can be found in
standard reviews and lectures i.e. Ginsparg lectures [82], Polchinski lectures [83]
and books such as Di Francesco [84], Kaku [85] and Ketov [86].

2.1 Two dimensional conformal field theory

Conformal Field Theory is a field theory which is invariant under conformal
transformations. A conformal transformation is a change in coordinates xµ →
x̃µ such that the metric tensor is invariant up to a scale change:

gµν → g′µν = Ω(x)gµν (2.2)

Or to put it in other words, a conformal transformation is a transformation
between two spaces M with metric element ds and M ′ with metric ds′ such
that ds′2 = Ωds2 ↔ gµν → g′µν = Ω(x)gµν . Here Ω is a local rescaling of
distances independent of their direction, local because as we see the Ω factor
is position dependent. These are consequently the coordinate transformations
that preserve the angle cos(θ) = u · w/(u2w2)1/2 between two vectors u,w
(where u · w = gµνu

µwν) and as a consequence conformal field theories care
about angles and not distances. The epithet conformal derives from that fact,
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meaning that the transformation does not affect the angle between two arbitrary
curves crossing each other at some point in space, despite a local dilation.

These transformations form a group, known as the conformal group. The
infinitesimal generators of the conformal group can be determined by considering
an infinitesimal coordinate transformation xµ → xµ + εµ, under which

gµν =⇒ g′µν = gµν − (∂µεν + ∂νεµ). (2.3)

To satisfy (2.2) we must require that

∂µεν + ∂νεµ =
2
d

(∂ · ε)ηµν . (2.4)

Let us now see how we get to the results (2.3) and (2.4). The metric gµν defines
an invariant line element ds2 = gµνdx

µdxν and under a change of coordinates
from xµ → x′µ the metric tensor changes as

gµν(x)→ g′µν(x′) =
∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ(x), (2.5)

so under an infinitesimal coordinate transformation xµ → xµ + εµ we will have

∂x′µ

∂xρ
= δµρ + ∂ρε

µ.

So we get this but looking at how our metric tensor transforms we actually need
their inverses and then plug them in.

We can proceed now to find the inverses of ∂x′µ

∂xρ which must satisfy

∂x′µ

∂xρ
∂xρ

∂x′ν
= δµν =⇒ (δµρ + ∂ρε

µ)(δρν − ∂νερ) = δµν + ∂νε
µ − ∂νεµ = δµν . (2.6)

It has to be noted here that in the above calculation we considered terms up to
first order. We can now replace our results meaning (δρν −∂νερ) and (δσµ −∂µεσ)
back and get

gµν(x)→ g′µν(x′) =
∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ(x) = gµν − (∂µεν + ∂νεµ), (2.7)

where (∂µεν + ∂νεµ) is the infinitesimal change of the metric δgµν after the
transformation.

Thus,

g′µν = gµν + δgµν = Ω(x)gµν(x) ⇐⇒ δgµν = (Ω− 1)gµν
⇐⇒ δgµν = f(x)gµν(x)
⇐⇒ ∂µεν + ∂νεµ = f(x)gµν(x). (2.8)

Here Ω(x) = ef(x), which for very small f(x)→ Ω(x) = 1 + f(x).
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The factor f(x) is determined by taking the trace on both sides as can be
seen below,

gµν∂µεν + gµν∂νεµ = f(x)gµν(x)gµν(x) ⇐⇒ ∂ε+ ∂ε = f(x)gµν (x)
⇐⇒ 2∂ε = f(x)d

⇐⇒ f(x) =
2∂ρερ

d
. (2.9)

It is only left now to replace (2.9) to (2.8) and get (2.4).
Considering now two dimensions (d = 2) and setting for simplicity gµν = ηµν

3 we get from (2.8):
• For µ, ν = 1

∂1ε1 + ∂1ε1 = (∂1ε1 + ∂2ε2)η11 ⇐⇒ 2∂1ε1 = ∂1ε1 + ∂2ε2

⇐⇒ ∂1ε1 = ∂2ε2 (2.10)

• For µ = 1, ν = 2

∂1ε2 + ∂2ε1 = (∂1ε1 + ∂2ε2)η12 ⇐⇒ ∂1ε2 + ∂2ε1 = 0
⇐⇒ ∂1ε2 = −∂2ε1 (2.11)

In equations (2.10) and (2.11) we recognize the Cauchy-Riemann equations,
something which motivates us to use complex coordinates,

z = σ1 + iσ2, z̄ = σ1 − iσ2

and write
ε(z) = ε1 + iε2, ε̄(z) = ε1 − iε2

Thus two dimensional conformal transformations coincide with analytic coordi-
nate transformations

z −→ z′ = f(z), z̄ −→ z̄′ = f̄(z̄),

the local conformal algebra of which is infinite dimensional.
The conformal transformation now becomes

z → z′ = z + ε(z), ε(z) =
∞∑

n=−∞
cnz

n+1, z̄ −→ z̄′ = z̄ + ε̄(z̄),

where by hypothesis ε(z) is an arbitrary analytical function and thus can be
represented by an infinite Laurent series. If we consider an infinitesimal change
given by εn(z) = −zn+1 and ε̄n(z̄) = −z̄m+1 we can compute the generators of
that particular transformation which are

Ln = −zn+1∂z, L̄n = −z̄n+1∂z̄. (2.12)

3We are using the Euclidean metric.
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Doing a check to see if our generators generate correctly our transformation
(that is the infinitesimal change) we have

Ln · z = −zn+1∂z · z = −zn+1 = εn(z)

and
L̄n · z = −z̄n+1∂z̄ · z = −z̄n+1∂z̄ = ε̄n(z̄)

The commutation relations of these generators form an algebra

[Lm, Ln] = (m− n)Lm+n, [L̄m, L̄n] = (m− n)L̄m+n, [Lm, L̄n] = 0 (2.13)

Lets see the computation in more detail before we comment on the result,

[Ln, Lm] = LnLm − LmLn =
= (−zn+1∂z)(−zm+1∂z)− (−zm+1∂z)(−zn+1∂z) =
= zn+1∂z(zm+1∂z)− zm+1∂z(zn+1∂z) =
= zn+1[(∂zzm+1)∂z + zm+1∂2

z ]− zm+1[(∂zzn+1)∂z + zn+1∂2
z ] =

= zn+1(m+ 1)zm∂z − zm+1(n+ 1)zn∂z =
= (m+ 1)zm+n+1∂z − (n+ 1)zm+n+1∂z =
= (m− n)zm+n+1∂z = (n−m)Lm+n,

where in the last line we used Lm+n = zm+n+1∂z, which is justified by looking
at (2.12).

This is the two dimensional local conformal algebra, also called the Witt
algebra. We also notice that the two algebras {Ln} and {L̄n} commute mean-
ing that they are independent something which justifies the use of z and z̄ as
independent coordinates. We have to note at this point that we are still in
the classical case. In the quantum case the algebra (2.13) will be corrected by
including an extra term proportional to a central charge and will become the
Virasoro algebra. So as we see in two dimensions something quite remarkable
happens in the conformal group, because the number of generators has become
infinite, which corresponds to an infinite number of conserved charges something
which in general simplifies a lot our life. Each of these two infinite-dimensional
algebras contain a finite subalgebra generated by L−1, L0, L1. This is the sub-
algebra associated with the global conformal group. Indeed from the definition
(2.12) it is manifest that L−1 = −∂z generates translations on the complex
plane, that L0 = −z∂z generates scale transformations and rotations and that
L1 = −z2∂z generates special conformal transformations. The generators that
preserve the real surface σ1, σ2 ∈ R are the linear combinations:

Ln + L̄n and i(Ln − L̄n)

In particular L0 + L̄0 generates dilations on the real surface, and i(L0 − L̄0)
generates rotations.

To the question why is all that useful, we can answer that since the number of
generators in the two dimensional local conformal algebra is infinite, thus having
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an infinite number of symmetries, it should imply/impose severe restrictions on
the conformally invariant field theories in two dimensions, thus simplifying them
to a great degree, and that is what our story is all about.

2.2 Energy-Momentum Tensor

The energy momentum tensor is of particular importance in conformal field
theory. Considering the CFT to be coupled to the 2d metric gµν so its action
has the form S(φi, g) we can use the definition suggested by general relativity

Tµν = − 4π
√
g

∂S

∂gµν
, (2.14)

which satisfies
∂νTµν = 0, T rTµν = 0.

The first statement states that the energy-momentum tensor is conserved while
the second statement states that is traceless which implies that S(φi, g) is scale
invariant. So it is symmetric and covariantly conserved and traceless in any d of
CFT. The tracelessness of the energy momentum tensor implies the invariance
of the action under conformal transformations.
• Traceleness of Tµν in 2D
On an euclidean plane parametrized by complex coordinates z, z̄ with the line
element ds2 = dzdz̄ the conservation of the energy-momentum tensor takes the
form

∂νT
µν =⇒ ∂z̄Tzz + ∂zTz̄z = 0, ∂zTz̄z̄ + ∂z̄Tzz̄ = 0,

while the scale invariance condition Tµµ = 0 in complex coordinates becomes

Tzz̄ = Tz̄z = 0.

Lets do a small check why Tµµ = 0,

Tµµ = gµνTνµ = gzzTzz + gzz̄Tzz̄ + gz̄zTz̄z + gz̄z̄Tz̄z̄

= 0Tzz + 2Tzz̄ + 2Tz̄z + 0Tz̄z̄
= 4Tzz̄ = 0,

where

gzz̄ =
(

0 1
2

1
2 0

)
(2.15)

hence

gzz̄ =
(

0 2
2 0

)
(2.16)

with this convention the measure of the factor is dzdz̄ = 2dσ1dσ2. Therefore the
energy-momentum tensor can be split into a holomorphic and antiholomorphic
part in any two dimensional CFT

Tzz ≡ T (z), Tz̄z̄ ≡ T̄ (z̄). (2.17)
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The holomorphic and anti-holomorphic parts of a field are related by complex
conjugation in Euclidean space, whereas in Minkowski space they correspond
to left-moving modes and right-moving modes which are independent from each
other. We give the definition of such functions in appendix A.

2.3 Quantum conformal invariance

So far our discussion had been entirely classical. We can continue now to the
quantum aspects of the theory.

2.3.1 OPE and Fields in a CFT

Instead of trying to solve the problem piecemeal with pertubative (or even non-
peturbative) methods based on a local action, some people proposed a program
designed to solve the whole problem at once — that is to calculate all the
correlations between all the fields — based on criteria of self consistency and
symmetry, by carrying out the so called bootstrap program. The key ingredient
to this approach is the assumption that the product of local quantum operators
can always be expressed as a linear combination of well-defined local operators.
The bootstrap approach based on the operator product expansion (or opera-
tor algebra) was proposed by Polyakov in [87] which was based on previous
work done by Belavin, Polyakov and Zamolodchikov [88]. The operator prod-
uct expansion (OPE) is actually a statement about what happens as two local
operators approach each other. Then the OPE is:

Oi(z, z̄)Oj(w, w̄) =
∑

Ckij [(z − w), (z̄ − w̄)]Ok(w, w̄), (2.18)

where k runs over the set of all operators and Ckij are a set of functions which
depend only on the separation between the two operators (in a way they encode
the information of how the operators approach each other).

Let us take now as a local operator the energy-momentum tensor. For rea-
sons of analyticity and dimensionality the corresponding TT OPE has the gen-
eral form

T (z)T (w) =
c/2

(z − w)4
+

2T (w)
(z − w)2

+
∂T (w)
z − w

+ · · · (2.19)

and similarly for T̄ T̄ OPE,

T̄ (z̄)T̄ (w̄) =
c̃/2

(z̄ − w̄)4
+

2T̄ (w̄)
(z̄ − w̄)2

+
∂̄T̄ (w̄)
z̄ − w̄

+ · · · (2.20)

The constants c and c̃ are called the central charges and usually referred as
left-moving and right-moving central charges.

We can take as an example the free scalar field and its corresponding energy-
momentum tensor and work out the corresponding OPE. The energy-momentum
tensor is given by the below relation, which is derived in detail in the appendix
B and it is

T = − 1
α′
∂X∂X. (2.21)
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In what follows we take the product of two energy-momentum tensors evaluated
at different points:

T (z)T (w) =
1
α′2

: ∂X(z)∂X(z) :: ∂X(w)∂X(w) : (2.22)

and try to expand it over a basis of local operator. By using the Wick theorem
we get that the above expression is equivalent to

=
1
α′2

(
: ∂X(z)∂X(z) :: ∂X(w)∂X(w) : + : ∂X(z)∂X(z) :: ∂X(w)∂X(w) :

+ : ∂X(z)∂X(z) :: ∂X(w)∂X(w) : + : ∂X(z)∂X(z) :: ∂X(w)∂X(w) :

+ : ∂X(z)∂X(z) :: ∂X(w)∂X(w) : + : ∂X(z)∂X(z) :: ∂X(w)∂X(w) :
)

Thus we conclude that

T (z)T (w) =
2
α′2

(
α′

2
1

(z − w)2

)2

− 4
α′2

α′

2
: ∂X(z)∂X(w) :

(z − w)2
+ · · ·

=
1/2

(z − w)4
+

2T (w)
(z − w)2

− 2
α′
∂2X(z)∂X(w) :

(z − w)
+ · · ·

=
1/2

(z − w)4
+

2T (w)
(z − w)2

+
∂T (w)
z − w

+ · · · (2.23)

The dots are for the non-singular terms which include the totally normal ordered
term, we discuss normal ordering in appendix C. We will be back to see what
this result is telling us, when we first talk about fields in conformal field theory,
something we do in the next subsection.

2.3.2 Fields

By field in conformal field theories we are referring to local operators. Actually
the term fields corresponds to any local expression that we can write down.
Taking a single boson φ, its derivative ∂µφ or a composite operator such as the
energy-momentum tensor or eiφ, are all called fields in the context of conformal
field theory. These fields can be distinguished depending on their transformation
properties.

Considering that a conformal field theory has a set of fields {Ai} which in
general are infinite in number and contain all the derivatives of the fields Ai(x),
there exists a subset of fields {φj} = {Ai} which can think of as a basis, from
where we can generate all other fields. These fields are called quasi-primary and
are all the fields which under a conformal map z → z′ = w(z), z̄ → z̄′ = w̄(z̄)
transform as:

φ′(w, w̄) =
(
dw

dz

)−h(
dw̄

dz̄

)−h̄
φ(z, z̄) (2.24)
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where h and h̃ are called conformal weights and are real-valued numbers. They
show how operators transform under rotations and scalings. For a given field of
scaling dimension ∆ and spin s

∆ = h+ h̃, s = h− h̃, (2.25)

we define the holomorphic h and its antiholomorphic counterpart h̃ as:

h =
1
2

(∆ + s), h̃ =
1
2

(∆− s).

Here spin s is not to be related to quantum mechanical spin. For example,
under rotation z ← zeiθ, φj(z, z̄) = eisjθφj , we say that φj has conformal spin
sj . The scaling dimension is the familiar dimension that we usually associate
to fields and operators by dimensional analysis.

A field with the above transformation in two dimensions is also called pri-
mary field when in addition its OPE truncates at order (z − w)−2 or similarly
(z̄ − w̄)−2 there are no higher singularities. Considering this last statement it
holds that all primary fields are quasi-primary but not the reverse. An example
of this, is the energy-momentum tensor which is a quasi primary field of weight
(h, h̃) = (2, 0) but not a primary field because it fails the primary test due to
the (z − w)−4 term as can be seen from (2.23). The rest of the conformal field
theory fields are called secondary or descendant fields.

2.4 Radial Quantization and Virasoro algebra

We have to keep in mind that the theories we are considering are defined in
Euclidean space, and usually obtained after a Wick rotation (t = −iτ) from
Minkowski space. We can remind here that in Euclidean geometry there is no
real-time, Wick rotation provides us with a trick to get from Minkowski space to
Euclidean by going to an imaginary time. Then we go to the complex plane to
use some of its properties and for computational simplicity one can separate into
holomorphic and antiholomorphic parts. One more thing that we do to make
our life easier is to make another map, by a conformal transformation of the
complex plane itself. This will serve as way to quantize the CFT. This procedure
for defining a quantum theory on the plane is known as radial quantization.

Begin with Euclidean space in two dimensions

(x1, x2).

We compactify the coordinate, x1 = x1 + 2π (which means it is convenient to
make the space direction finite by imposing periodic boundary conditions in the
x1 direction). This defines a cylinder in the x1, x2 coordinates. The cylinder
can be described by a single complex coordinate w = x1 + ix2. We then map
the cylinder onto the complex plane w → z = e−iw. If we consider x2 to be
a time coordinate τ we see now that time runs radially out from the origin.
The remote past τ = −∞ is situated at the origin z = 0 whereas the remote
future τ =∞ lies at the point of infinity at the Riemann sphere, Furthermore,
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constant time slices on the cylinder are mapped to circles of constant radius on
the z-plane.

Radial quantization is quite handy in order to discuss states in CFT. It is
particularly useful for two dimensional conformal field theory in the Euclidean
regime since it facilitates use of the full power of contour integrals and complex
analysis to analyze short distance expansions, conserved charges, etc. When
discussing about states we usually need to know where they live and how they
evolve. For example in quantum field theory we quantize a theory by parametriz-
ing the plane by Cartesian coordinates (t, x), The states live on spatial slices
while their evolution is being governed by the Hamiltonian operator which gen-
erates time translations.

Now by conformal mapping the cylinder into the plane once can say that
we get a different/alternate configuration. On the cylinder the states live on
spatial slices of constant x2 and evolve by the Hamiltonian

H = ∂x2 (2.26)

While on the plane the states live on circles of constant radius x2 and their
evolution is governed by the dilation operator

D = z∂ + z̄∂̄ (2.27)

So actually the analogue of the Hamiltonian is the dilation operator (the dilation
operator is the generator of scale transformations) on the plane. One more
difference that we need to mention in this method of quantizing a theory is that
time-ordering on the cylinder becomes radial ordering on the plane. Operators
in correlation functions are ordered so that those at larger radial distance are
moved to the left.

2.4.1 Virasoro generators

The generators of infinitesimal conformal transformations can be defined in
terms of T (z), as:

Ln =
∮

dz

2πi
zn+1T (z), L̄n =

∮
dz̄

2πi
z̄n+1T̄ (z̄) (2.28)

Lets see how this comes about. Under the transformation of T to the plane we
get:

Tcyl(w) = −z2Tplane(z) +
c

24
(2.29)

where the Schwarzian calculated to be S(z, w) = 1
2 .

The Schwarzian is defined to be

S(z̃, z) =
(
∂3z̃

∂z3

)(
∂z̃

∂z

)−1

− 3
2

(
∂2z̃

∂z2

)2(
∂z̃

∂z

)−2

(2.30)

Its key property is that it preserves the group structure of successive conformal
transformations. A conformal transformation incorporates both a coordinate
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transformation and a Weyl transformation (local rescaling of the metric tensor).
In our case the mapping of T from the cylinder to the plane is a conformal one
and such transformation is preserved by the Schwarzian.

We can Fourier expand T so that:

Tcyl(w) = −
∞∑

m=−∞
Lme

imw +
c

24
(2.31)

and by plugging in (2.31) to (2.29) we have the relation

Tplane(z) =
∞∑

m=−∞

Lm
zm+2

. (2.32)

An analytical derivation of the above can be found in the Appendix D.
We can now invert (2.32) so that

Ln =
∮

dz

2πi
zn+1T (z), (2.33)

which is relation (2.28). The antiholomorphic part is obtained in the same way
except that now we replace with bars wherever needed.

Since we have the generators we would like to compute their algebra as usual
given by [Lm, Ln]. We can think of Lm as a contour integral over

∮
dz and Ln

as a contour integral over
∮
dw, where both contours are evaluated around zero

and z and w are coordinates on the complex plane.

[Lm, Ln] = LmLn − LnLm

=
∮

dz

2πi
zm+1T (z)

∮
dz

2πi
wn+1T (w)

−
∮

dw

2πi
zn+1T (w)

∮
dz

2πi
wm+1T (z) =

=
(∮

dz

2πi

∮
dw

2πi
)−

∮
dw

2πi

∮
dz

2πi

)
zm+1wn+1T (z)T (w) =

we write now the two integrals as one, by doing the z-integration around a fixed
point w, so

=
∮

dw

2πi

∮
w

dz

2πi
zm+1wn+1T (z)T (w) =

=
∮

dw

2πi

∮
w

dz

2πi
zm+1wn+1

(
c/2

(z − w)4
+

2T (w)
(z − w)2

+
∂T (w)
z − w

+ · · ·
)

using the residue theorem

=
∮

dw

2πi
wn+1Res

[
zm+1

(
c/2

(z − w)4
+

2T (w)
(z − w)2

+
∂T (w)
z − w

+ · · ·
)]
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To compute the residue at the pole z = w, we first need to Taylor expand zm+1

around the point w, so,

zm+1 = wm+1 + (m+ 1)wm(z − w) +
1
2
m(m+ 1)wm−1(z − w)2+

1
6
m(m2 − 1)wm−2(z − w)3 + · · ·

by substituting our Taylor expanded zm+1 and doing the multiplications we get

wm+1

[
c

2(z − w)4
+

2T (w)
(z − w)2

+
∂T (w)
z − w

]
+ wm(m+ 1)

[
c

2(z − w)3
+

2T (w)
z − w

]
+

+
1
2
m(m+ 1)wm−1

[
c

2(z − w)2

]
+

1
6
m(m2 − 1)wm−2

[
c

2(z − w)

]
where we have neglected all terms without a pole. In order to compute the
residue we will use the formulas for simple and for higher order poles, given by:

Res(f, w) = limz→w(z − w)f(z)

and

Res(f, w) =
1

(m− 1)!
limz→w

dm−1

dzm−1
(z − w)mf(z),

m denotes the order of the pole. We can proceed now to compute the residue
which picks up contribution from each of the three terms,

=
∮

dw

2πi
wn+1

[
wm+1∂T (w) + 2wm(m+ 1)T (w) +

c

12
m(m2 − 1)wm−2

]
what is left now is to do the integration over w which will give:

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0 (2.34)

also similarly for
[Ln, L̄m] = 0 (2.35)

and
[L̄n, L̄m] = (n−m)L̄n+m +

c

12
n(n2 − 1)δn+m,0 (2.36)

The algebra in (2.34) is known as the Virasoro algebra. Where as mentioned
above c is a real valued number, called the central charge or the conformal
anomaly which also has its antiholomorphic countepart c̄. The central charge is
actually determined by the short distance behaviour of the theory and not from
symmetry considerations and actually depends on which CFT the T is computed
for. For example, the central charge for the free boson field equals to c = 1 which
can be seen by looking at (2.23), while for the free fermion field c = 1/2 . Thus,
it can be thought as a measure of the number of degrees of freedom. Looking
at (2.34) one can notice that if this term is absent, the algebra is identical to
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the classical one. Strictly speaking such a constant term should not be allowed
in the algebra for the fact that the commutator between two elements of the
algebra must be an element of the algebra. So we cannot actually see c as a
number but as an operator which commutes with any element of the algebra.
But it follows that on any representation of the algebra this operator has a
constant value.

2.4.2 c For Free Fermion Field

In this section we are going to show that the value of the central charge for a
free fermion field is c = 1

2 , as we have already stated at the end of section 2.4.1.
Free fermions are described by the two-dimensional action

S =
1

8π

∫
d2z(ψ∂̄ψ + ψ̄∂ψ̄), (2.37)

where we are in Euclidean space and are using complex coordinates. The energy-
momentum tensor components for the above action is

T (z) =
1
2

: ψ(z)∂ψ(z) : (2.38)

T̄ (z̄) =
1
2

: ψ̄(z̄)∂̄ψ̄(z̄) : (2.39)

It is straightforward to derive the OPEs

ψ(z)ψ(w) = − 1
z − w

(2.40)

ψ̄(z̄)ψ̄(w̄) = − 1
z̄ − w̄

(2.41)

and by following the same steps as we did for the free boson field, but instead
replacing now with the fermion field we find

T (w)T (z) =
1
4

(w − z)4
+ · · · (2.42)

From which we can see that the c = 1
2 . Also compute the corresponding OPE

for

T (w)ψ(z) =
1
2

(w − z)2
ψ(z) + · · · (2.43)

from which can see that the fermion field has conformal weight equal to 1
2 .

2.5 The Cardy Formula

The Cardy formula [21, 22], gives us the asymptotic density of states in a two-
dimensional conformal field theory which is determined by only a few features
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of the symmetry algebra, independent of any details of the dynamics. That is,
the central charge c and the ground state conformal weight ∆0.

In our case the formula is used in order to compute the entropy of the black
hole by counting microstates. The advantage of the Cardy formula is that
while it let us count states, it does not require detailed knowledge of the states
being counted. Actually the above statement which is the strong point of Cardy
formula, is also its main weakness, although we can count microstates without a
full quantum theory of gravity the actual states remain disguised. Nevertheless
these results suggest an interesting effective description of a black hole entropy.
In what follows we represent a derivation of the Cardy formula.

We begin with a conformal field theory (CFT) with central charge c, with
the standard Virasoro algebra (2.34).

Now the partition function on the torus of modulus τ = τ1 + iτ2 is

Z(τ, τ) = Tre2πiτL0e−2πiτL0 =
∑

ρ(∆,∆)e2πi∆τe−2πi∆τ . (2.44)

The trace over Hilbert space , means the addition of all the states of the theory,
where ρ(∆,∆) stands for the density of states. Cardy’s basic result is that the
below quantity is modular invariant

Z0(τ, τ) = Tre2πi(L0− c
24 )τe−2πi(L0− c

24 )τ . (2.45)

. We remind that c is a real number, that is the reason for no over-line. In
particular, Z0 is invariant under the transformation τ → −1/τ . We can extract
now ρ(∆,∆) from Z by contour integration. Treat τ and τ as independent
complex variables (this is not necessary but it simplifies the computation), and
let q = e2πiτ and q = e2πiτ , so

ρ(∆,∆) =
1

(2πi)2

∫
dq

q∆+1

dq

q∆+1
Z(q, q), (2.46)

where the integrals are along contours that enclose q = 0 and q̄ = 0.
The basic trick is to note that (compare (2.44) and (2.45) and write the one

in terms of the other)

Z0(τ, τ) = Tre2πi(L0− c
24 )τe−2πi(L0− c

24 )τ = Z(τ, τ)q−
c
24 q

c
24 . (2.47)

Using (2.47) we can rewrite (2.46) as

ρ(∆,∆) =
1

(2πi)2

∫
dq

q∆+1

dq

q∆+1
Z0(τ, τ)q

c
24 q−

c
24 . (2.48)

Our next step is to use the modular invariance under τ → −1/τ in order to
rewrite the contour integral in a form suitable for a saddle point approximation.
Our expressions for q and q become:

q = e2πiτ −→ q̃ = e−
2πi
τ (2.49)
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q = e2πiτ −→ q̃ = e−
2πi
τ (2.50)

For simplicity let us continue our calculations with one complex variable τ . So
we can write

ρ(∆) =
1

2πi

∫
dq

q∆+1
Z0(−1/τ)q

c
24 (2.51)

and according to expression (2.47)

Z0(−1/τ) = q̃−
c
24Z(−1/τ) (2.52)

so we can substitute to (2.51)

ρ(∆) =
1

2πi

∫
dq

q∆+1
q̃−

c
24Z(−1/τ)q

c
24 . (2.53)

Substituting the expression we have for q and q̃ (also for q and q̃ which, as
stated before, we disregard for simplicity) we get

ρ(∆) =
1

2πi

∫
e−2πiτ(∆+1)e−

2πi
τ (− c

24 )e2πiτ( c24 )Z(−1/τ)2πie2πiτdτ

=
1

2πi

∫
e−2πiτ(∆+1)e

2πic
24τ e

2πicτ
24 Z(−1/τ)2πie2πiτdτ

=
∫
e−2πiτ∆e

2πic
24τ e

2πicτ
24 Z(−1/τ)dτ (2.54)

where we changed variables as dq = 2πie2πiτdτ . By construction, Z(−1/τ)
approaches a constant, ρ(∆0), for large τ2 , so the integral (2.54) can safely be
evaluated by steepest descents provided that the imaginary part of τ is large at
the saddle point. The key to a saddle point approximation is to separate the
integrand into a rapidly varying phase and a slowly varying prefactor. We have
to find the extremum of the exponent, which we do by taking the derivative
df/dτ = 0 where f(τ) we define as:

f(τ) = −τ∆ +
c

24τ
+ τ

( c
24

)
(2.55)

(for simplicity we have omitted the (2πi)’s from our above expression) df/dτ =
0→ df/dτ = −∆− 1

τ2 ( c24 ) + c
24 = 0

=⇒ τ =
√

c

−24∆ + c
→ τ ≈ i

√
c

24∆
. (2.56)

Where c on the denominator can be neglected as ∆ is taken to be large.
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Substituting (2.56) back into the integral (2.44) we get:

ρ(∆) ≈ exp
{
−2πi∆i

√
c

24∆

}
exp

{
2πic

24i
√

c
24∆

}
exp

{
2πici

√
c

24∆

24

}
· Z(

−1/i
√

c
24∆

)
≈ exp

{
2π

√
c∆
24

}
exp

{
2πc
24

√
24∆
c

}
exp

{
−2πc

24

√
c

24∆

}
Z(i∞)

≈ exp

{
2π

√
c∆
24

}
exp

{
2π

√
c∆
24

}
Z(i∞)

≈ exp

{
4π

√
c∆
24

}
−→ ρ(∆) ≈ exp

{
2π

√
c∆
6

}
(2.57)

Where the third exponent of our expression becomes one as the power goes to
zero due to the large ∆. Relation (2.57) is giving us the asymptotic growth of
states in a two-dimensional conformal field theory for large ∆.

In order now to compute the statistical entropy of a system we take the
logarithm of the expression (2.57) so:

log ρ(∆) = 2π

√
c∆
6

=⇒ S = 2π

√
c∆
6
, (2.58)

where from statistical mechanics we used the relationship that in the micro-
canonical ensemble the logarithm of the number of microstates (Ω) of a system
gives us the entropy (S) of the system, S = log Ω.

Lets try to sum up the above in a few lines. We considered a two-dimensional
conformal field theory, which really, is a theory invariant under diffeormophisms
and Weyl transformations, and chose complex coordinates z and z̄. Such a
theory is characterized by a pair of Virasoro algebras, one for left moving modes
and one for right moving modes, and states which fall into representations of
these algebras. Since the plane is conformal we transformed our theory to
one on a cylinder, the central term is a conformal anomaly, but its effect on
such transformation is simply to shift the stress-energy tensor (2.29). To count
states we use a trick, we first compute the partition function, and then obtain
the density of states from Legendre transformation. Therefore continue our
theory to imaginary time and compactify the cylinder to a torus of modulus
of modulus τ relation (2.44), from there we determined Z which allowed us
to extract the density of states ρ(∆, ∆̄) by means of a contour integral. The
derivation of the Cardy formula starts with observation (2.45) and in particular
that Z0 is invariant under the transformation τ → −1/τ . Using this invariance
we wrote Z(τ) in terms of Z(−1/τ) and a rapidly varying phase, and used the
method of steepest descents to extract ρ(∆, ∆̄). It should be stressed that the
transformation from the plane to the cylinder and the continuation to imaginary
time are merely tricks to obtain the density of states, we are not assuming any
fundamental role for compact spaces or Euclidean signature.
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Logarithmic corrections to the entropy by the same method can be found
in [89], while a similar proof using the method of steepest descents can be found
in [90].

3 Black Holes

In this section we are going to discuss the fascinating objects we call black holes,
which are the essential object of our study in this thesis. There is a plethora
of ways that one can learn about black holes. There is an extensive literature
which discusses black holes, internet lectures and introductory reviews that one
can look into. Here a small sample of the things that I mostly looked into in
order to create this section [91], [92], [93], [94].

3.1 What is a black hole

Black holes are extremely dense objects that have such an intense gravitational
pull that even light cannot escape from them. One can imagine a point like
object with infinite mass density thus infinite gravitational pull. They are be-
lieved to reside in the center of many galaxies and actually these objects lead to
conflicts and paradoxes, between our two separate theories of nature, one for the
very small, quantum mechanics, and one for the very large, general relativity.
Established principles crash at their presence but it is there where progress is
made. Since black holes are objects that belong to both regimes, physicists have
no alternative but to combine these two different theories together.

A black hole has two important spacetime features. The first is what we
call the singularity, a spacetime point with infinite curvature (where curvature
is measured by the Riemann tensor), and the second the event horizon, which
is considered as the critical limit from which whatever crosses it ends up at
the singularity. That is because within the event horizon the escape velocity
exceeds the speed of light (vesc > c) and since special relativity taught us that
nothing can move faster than the speed of light an object is trapped forever.
At the event horizon the escape velocity is equal to the speed of light (vesc = c)
while outside the event horizon vesc < c and an object is able to escape. One
can already establish this by using Newtonian physics, the escape velocity from
a spherical mass M of radius R satisfies 1

2v
2
esc = GM/R, or vesc =

√
2GM/R

(independent of the mass of the escaping object, by equivalence of inertial and
gravitational masses). vesc exceeds the speed of light if R < Rs := 2GM/c2 .
The radius Rs is called the “Schwarzschild radius” for the mass M .

Black holes are actually solutions to Einstein’s equations of motion. These
black holes solutions in (3 + 1)-dimensional Einstein-Maxwell theory, are fully
characterized by a very small number of parameters, rather than the potentially
infinite set of parameters characterizing, say, a planet. They are characterized
by, mass, as measured by the black hole’s effect on orbiting bodies etc, charge
(electric and magnetic), as measured by the strength of the electric force, and
angular momentum(spin) meaning how fast the black hole is spinning (rotating).

24



It is common to say that a black hole has ’no-hair’, which expresses the above
statements, known as the no hair theorem.

We can have a better picture of the above statement if we think that once
matter disappears behind a horizon, an exterior observer sees almost nothing
of its individual properties. One can no longer for example make distinctions
between protons, electrons etc. A huge amount of information is thus lost and
the mass, angular momentum and charge completely determine the external
field. These parameters play a role in changing the structure of these black
objects. The mass M develops an event horizon and the charge Q allows a black
object to interact with gauge field. The angular momentum (J 6= 0) induces a
strong frame dragging and develops an ergo-region around its event horizon.

Below we classify black holes according to the parameters that distinguish
them:

Table 1: Types of black holes in 4D

Non-rotating (J = 0) Rotating (J 6= 0)
Uncharged (Q = 0) Schwarzschild Kerr
Charged (Q 6= 0) Reissner-Nordstrom Kerr-Newman

What we are going to discuss about in this thesis will also concern Kerr
black holes, which are black holes with angular momentum and no-charge and
as all black holes will be completely determined by their mass (M) and angular
momentum (J).

Exact black hole solutions in higher dimensions have also been obtained,
these solutions are more exotic in comparison with the four dimensional ones,
in the sense that they come with more complicated structure. The idea was
actually first entertained by Kaluza [95] and Klein [96]. One may ask why we
should spend time and energy to find these solutions. In response to that we
can say that string theory which is a strong candidate for quantum gravity and
a unified theory of nature requires various dimensions in spacetimes in order
to study gravity. Furthermore these solutions might give us insights and infor-
mation so to understand better the solutions that we consider more physical,
the four dimensional ones. As an example to our second argument we actually
found out that the universality characteristics that Einstein gravity solutions
share, that is the spherical topology of their horizons and that their properties
are uniquely determined by their conserved charges, can not be extend to higher
dimensions, except in static case [97]. To be more precise in five dimensions,
the Einstein theory allows not only the existence of Kerr-like black holes with
topology S3 , the Myers-Perry black hole [98], but also black holes with topol-
ogy S1 × S2, found by Emparan and Reall [74] and called rotating black rings.
Which really means that for same J and M we can get different solutions which
corresponds to different black holes. We will talk about black rings in section 6.
The uniqueness theorems in four dimensional spacetimes for the vacuum black
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hole solutions have been established in [99], [100], [101], [102], [103] while for a
comprehensive review one can look at [104].

3.2 Black hole thermodynamics

An object with entropy is microscopically, random, like a hot gas. A known
configuration of classical fields has zero entropy, there is nothing random about
electric or magnetic fields, or gravitational waves. Since black holes are exact
solutions of Einstein equations, they were thought not to have any entropy
either.

Let us consider first Hawking’s area theorem [105] and the relation to the
second law of thermodynamics. The area theorem states: If spacetime on and
outside the future event horizon is a regular predictable space, and the stress
tensor satisfies the null energy condition Tµνkµkν ≥ 0 for arbitrary null kµ, then
the area of the event horizon is non-decreasing. Bekenstein [4] observed that
there was a close analogy between this result and the second law of thermody-
namics and argued that black holes should be assigned an entropy proportional
to the area of the event horizon. Black Holes are in fact thermodynamic objects,
the close mathematical analogy between black holes and thermodynamics can
be seen in the below table 4.

Table 2: Relation between thermodynamics and black holes
Thermodynamic Black Hole

Zeroth Law T constant throughout κ constant over horizon
body in equilibrium of stationary black holes

First Law dE = TdS + work terms dM = 1
8πκdA+ ΩHdJ + ΦHdQ

Second Law δS ≥ 0 dA ≥ 0
Third Law Impossible to achieve T = 0 Impossible to achieve κ = 0

by a physical process by a physical process

Here T denotes the temperature, E is the energy, S is the entropy, κ is the
surface gravity, M is the mass, A is the horizon area(surface area), J is the
angular momentum, Ω is the angular velocity and Φ is the electric potential.
The subscript H, on Ω and Φ stands for the horizon. Actually κ, Ω and Φ are
defined locally on the horizon, but they are always constant over the horizon
of a stationary black hole. Identifying the thermodynamic quantities energy,
entropy, temperature with the black hole mass, area, surface gravity one can
write:

E ↔M, S ↔ A

8πa
, T ↔ κa (3.1)

where a is a constant number, the value of which we are going to determine in a
bit. We should note that, we take the area of the black hole as a measure of its
entropy, entropy in the sense of inaccessibility of information about its internal
configuration.

4Table 2 can originally be found in [91].
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Let us see now what table 2 is telling us: The zeroth law of thermodynamics
states that in thermal equilibrium the temperature is constant throughout the
system. The analogous statement for black holes is that stationary black holes
have constant surface gravity on the entire horizon. The first law of thermody-
namics says that the two equations at table 2 are equivalent, where ΩHdJ and
ΦHdQ can be thought of as work done to the black hole, for instance throwing
rocks into it. The second law of thermodynamics, states that, for a closed sys-
tem the entropy never decreases, the analogous statement for black holes is that
the area of the horizon never decreases. The third Law of thermodynamics,
states that it is impossible to achieve T = 0 in any physical process or that
entropy must go to zero S → 0 as the temperature goes to zero T → 0, for black
holes this does not quite work, it turns out that κ = 0 corresponds to extremal
black holes, which do not necessarily have a vanishing area A (but this does not
lead to any contradictions since the third law is not truly fundamental it only
applies to some situations/systems).

The thermodynamic temperature of a black hole in classical general relativity
is absolute zero, since a black hole is a perfect absorber and thus does not emit
anything. A black hole of given mass, angular momentum, and charge can have
a large number of different unobservable internal configurations which reflect the
possible different initial configurations of the matter which collapsed to produce
the hole. The logarithm of this number can be regarded as the entropy of the
black hole and is a measure of the amount of information about the initial state
which was lost in the formation of the black hole. If one makes the hypothesis
that the entropy is finite, one can deduce that the black holes must emit thermal
radiation at some non-zero temperature. Hawking showed that quantum fields
in a fixed classical gravitational background (a black hole background) allow
the hole to radiate at temperature:

TH =
~κ
2π
. (3.2)

From this expression we can also conjecture that κ does physically represent
the thermodynamic temperature of a black hole. The above result is quite
fascinating, it tells us that black holes glow, they give off radiation, they give
off energy and in that process they evaporate. The implications of this are
quite staggering as after a period of time a black hole will evaporate through
a quantum mechanical effect. Here is where there also exists a big conflict, a
paradox, that we do not quite yet understand, that is. General relativity says
that things that fall into a black hole they end up at the singularity where
they are destroyed, quantum mechanics says that things are eventually being
radiated out.

By combining now the first law from table 2 with the Hawking tempera-
ture (3.2) one gets the expression for the black hole entropy or also called the
Bekestein-Hawking entropy

S =
A

4~G
, (3.3)

where A is the surface area of the event horizon of the black hole. Thus the
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amount of information that a black hole can hold is analogue to the surface area
of the black hole. Lets see the calculation in more detail:

TdS =
κ

8πG
dA =⇒ ~κ

2π
dS =

κ

8πG
dA

=⇒ S =
A

4G~

a result which also fixes the value of our constant a in (3.1). As we see the
Bekestein-Hawking entropy depends on both Planck’s constant and Newton’s
constant, it is thus inherently quantum gravitational.

3.3 The Kerr Black Hole

A Kerr black hole is a rotating black hole (its angular momentum J 6= 0). A
rotating body bulges along its equatorial plane due to the centrifugal forces
generated by the rotation, so it cannot be described by the Schwarzschild solu-
tion which assumes spherical symmetry. What we actually need is a stationary
(time independent — for a time independent rotation of the star — but not
invariant under time-reversal) vacuum solution to the field equations that has
axial symmetry about the z-axis which at great distances from the star resumes
flat space (asymptotically flat). The Kerr metric is actually an exact solution
of the Einstein field equations of general relativity, which is quite remarkable
given that these equations are highly non-linear which makes exact solutions
very difficult to find.

3.3.1 The Kerr metric

As we already have stated the gravitational field of a rotating black hole is
given by the Kerr metric which has properties of being axially symmetric and
stationary. This metric in Boyer-Lindquist coordinates takes the form:

ds2 = −∆
ρ2

(dt−α sin2 θdφ)2 +
sin2 θ

ρ2
((r2 +α2)dφ−αdt)2 +

ρ2

∆
dr2 +ρ2dθ2, (3.4)

where
∆ ≡ r2 − 2Mr + α2, ρ2 ≡ r2 + α2 cos2 θ

and
J = Mα.

The two constants M and α parametrize the possible solutions, α is the angular
momentum per unit mass and M is the geometric mass. What we notice from
(3.4) is as α→ 0 the Kerr metric reduces to the Schwarzschild metric. And if we
keep α fixed and let M → 0 we recover flat spacetime in ellipsoidal coordinates.
The cross-term dφdt has the effect of ’dragging’ this inertial space along with
the rotating body, just as water is being dragged along by the surface of a
spinning ball. The effect is called ’dragging of inertial frames’ and the gyroscopic
precession it produces is called ’Lense-Thirring effect’ [106], [107], [108]. The
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Kerr metric has two Killing vectors, since the metric coefficients are independent
of t and φ, both K = ∂t and R = ∂φ are killing vectors. Although the Kerr
metric can be written in a number of different ways 5 a particular reason that
why we use these coordinates could be that they minimize the number of off-
diagonal terms of the metric, there is now only one off diagonal component
which particularly helps in analyzing the asymptotic behavior and in trying to
understand the key difference between an event horizon and an ergosphere. We
can also notice that the form of the metric in (3.4) exhibits symmetry under
time reversal, the transformation (t −→ −t) also changes the rotation direction
for example the sign of the angular momentum (α −→ −α). The horizon radius
is located at

r+ = M +
√
M2 − α2 (3.5)

The horizon radius is found by letting ∆ = 0 and solving quadratically, from
where we acquire two values for r, which are r± = M ±

√
M2 − α2, from which

we ignore the r− as is found inside the ’real’ horizon. For α = 0, r+ becomes
r = 2M which is the Schwarzschild radius while r− becomes r = 0.

As we see there are three possible cases. One case is where M2 > a2, which is
considered to be the realistic case. Another case is where M = α or J = M2, in
which case we impose an enormous angular momentum and it is what we call the
extremal case in which the event horizons coincide at r = M . Finally the case
where M2 < a2 which features a naked singularity as the horizons disappear (the
metric is regular except at ρ = 0 where there is the ring singularity) something
that we do not believe it exist in nature, thus unphysical.

There exists a true curvature singularity at ρ = 0, which is possible for r = 0
and θ = π

2 . This singularity6 is not a point in space but rather a disc. We can
think of it as the rotation stretched the Schwarzschild singularity into spreading
it out over a ring.

The angular velocity at the horizon of a Kerr black hole is given by

ΩH =
α

r2
+ + α2

, (3.6)

It can be found by calculating the quantity Ω = − gtφ
gφφ

which plays the role
of ’generalized angular velocity of rotation of the ergosphere’ relative to the
external reference system.

The area is
A = 8π[M [M + (M2 − α2)1/2], (3.7)

which is computed by integrating the surface of the Kerr horizon r+ = M +√
M2 − a2.
5A brief introduction to the mathematics and physics of the Kerr spacetime and rotating

black holes, touching on the most common coordinate representations of the spacetime metric
and the key features of the geometry can be found in [109].

6To distinguish between coordinate and curvature singlarities, we can examine the square
Riemann tensor (RabcdR

abcd) of the Kerr spacetime.
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The surface gravity for a Kerr black hole takes the form

κ =
(M2 − α2)1/2

2M [M + (M2 − α2)1/2]
. (3.8)

A definition for κ is the magnitude of acceleration with respect to Killing time,
of a stationary zero angular momentum test particle just outside the horizon. It
is the same as the force per unit mass that must be applied at infinity in order
to hold the particle on its path.

Finally by making use of (3.2) can calculate the temperature of the Kerr
black hole

TH =
~
√

(M2 − α2)
4πMr+

. (3.9)

3.3.2 The extreme Kerr black hole

The extremal case is recovered when mass and angular momentum are related
by M2 = α2, imposing this on (3.6), (3.7), (3.8) and (3.9) our values become:

The angular velocity at the horizon becomes

ΩH =
1

2M
, (3.10)

the area is
A = 8πM2, (3.11)

while the surface gravity is now zero

κ = 0. (3.12)

Finally the temperature of the extremal Kerr solution is

TH = 0, (3.13)

as can easily be read from (3.12).

4 The Kerr/CFT correspondence

The Kerr/CFT correspondence proposed in [23] claims that there exists a corre-
spondence between four dimensional Kerr black holes and conformal field theory
in two dimensions. In other words we have two theories, the first general relativ-
ity and the second conformal field theory which we try to relate. This concept
is known as holographic dualities, relating a theory of gravity, to a quantum
theory without gravity in fewer dimensions. Now in order to do that we have
to find a ’place’ where these two theories correlate and that is happening in our
case in the near horizon area of an extremal Kerr black hole. Now where do we
base this conjecture, meaning that an extremal Kerr black hole is holographi-
cally dual to a two dimesional CFT? As we will see, it is based on the fact that
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the Cardy formula reproduces the gravitational entropy by counting microstates
(microscopic degrees of freedom) which agrees with the Bekestein-Hawking en-
tropy. It is important to note here that, it is an assumption that the underlying
theory is unitary, else we could not use the generic results in two dimensional
conformal field theory [110]. The approach would not be possible without the
work of Brown and Henneaux [19]. They analyzed the asymptotic symmetries
of general relativity in (2+1)-dimensional asymptotically anti-de Sitter space,
they found a pair of commuting Virasoro algebras—the symmetry group of a
two-dimensional conformal field theory—with central charges

c± =
3R
2G

.

Here R is the AdS curvature. To obtain this result, Brown and Henneaux
imposed boundary conditions

gµν =

 gtt = − r2

R2 +O(1) gtr = O( 1
r3 ) gtφ = O(1)

grr = R2

r2 +O
(

1
r4

)
grφ = O

(
1
r3

)
gφφ = r2 +O(1)

 ,

at spatial infinity.
The behavior is preserved under the coordinate transformations

t→ t+ ξt, r → r + ξr, φ→ φ+ ξφ

and the Killing vector fields ξan, where a = t, r, φ satisfied the commutation
relations of

[ξm, ξn] = −i(m− n)ξm+n.

The result actually showed that the AdS3 was endowed with the 2D conformal
symmetry on the boundary. After that they evaluated the central extension of
the Virasoro algebras by using the Hamiltonian formalism, calculated the vari-
ation of the Hamiltonian, and added a surface term to obtain correct equations
of motion and from that surface term they obtained a global charge, possible to
evaluate the central charge. The generator of isometry (Hamiltonian) consists
of the constraint part together with appropriate surface term

H[ξ] =
∫
d2x(ξ0H0 + ξiHi) +Q[ξ],

the algebraic structure of the symmetric transformation group is given by the
generators Poisson bracket

{H[ξ],H[η]}P = H
[
[ξ, η]

]
+K[ξ, η],

from which the evaluation of the last term K[ξ, η] will give the central extension
to the algebra.

The Kerr/CFT correspondence begins by approximating the extremal Kerr
metric near the horizon as the “near-horizon extremal Kerr” (NHEK) metric,
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which appeared in the work of Bardeen and Horowitz [24], where a warped AdS3

is found. A warped AdS3 is similar to AdS3 and breaks SL(2,R) × SL(2,R)
isometry group of AdS3 down to SL(2,R) × U(1). Applying the analysis of
Brown and Henneaux [19] to the case of warped AdS3, the asymptotic symmetry
group (ASG)7 of the spacetime is examined. It is shown that the U(1) isometry
can be enhanced to a copy of Virasoro algebra, whose quantum version gives
rise to a central charge cL = 12J with J being the angular momentum of the
black hole. From the Frolov-Thorne vacuum for extreme Kerr, it turns out that
the dual CFT has a nonvanishing left temperature TL = 1

2π . Then it is shown
that the Bekenstein-Hawking entropy can be reproduced exactly by using the
Cardy formula, which motivated the conjecture that the extreme Kerr black
hole is dual to a two-dimensional CFT.

4.1 Near horizon of an extremal black hole

As mentioned above, since we are interested in the near horizon limit of an
extremal Kerr black hole, (following the work of Bardeen and Horowitz [24]),
we define new (dimensionless) coordinates for metric (3.4)

t =
λt̂

2M
, y =

λM

r̂ −M
, φ = φ̂− t̂

2M
(4.1)

and zoom into the region r = M (where horizon is located) by taking the limit
λ −→ 0 keeping (t, y, φ, θ) fixed (λ is a scaling parameter). The result is the
near-horizon extreme Kerr (NHEK) geometry in Poincaré-type coordinates (also
called the throat geometry)

ds2 = 2GJΩ2

(
−dt2 + dy2

y2
+ dθ2 + Λ2(dφ+

dt

y
)2

)
, (4.2)

where

Ω2 ≡ 1 + cos2 θ

2
, Λ ≡ 2 sin θ

1 + cos2 θ
. (4.3)

Here φ and θ take values φ ∼ φ+ 2π and 0 ≤ θ ≤ π, respectively.
The coordinates (4.2) cover only part of the NHEK geometry. Global coor-

dinates are given by

y = (cos τ
√

1 + r2 + r)−1, (4.4)

t = y sin τ
√

1 + r2, (4.5)

φ = φ+
(

cos τ + r sin τ
1 + sin τ

√
1 + r2

)
. (4.6)

7Asymptotic symmetries are generated by the diffeomorphisms whose action on the metric
generates metric fluctuations compatible with the chosen boundary conditions. To be a well-
defined charge in the asymptotic limit, the underlying integral must be finite as r → ∞. If
the charge vanishes, the asymptotic symmetry is rendered trivial. The asymptotic symmetry
group is generated by the diffeomorphisms whose charges are well-defined meaning allowed by
the boundary conditions and non-vanishing.
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The metric (4.2) is then

ds̄2 = 2GJΩ2

(
−(1 + r2)dτ2 +

dr2

1 + r2
+ dθ2 + Λ2(dφ+ rdτ)2

)
. (4.7)

The NHEK geometry has a SL(2,R)×U(1) isometry group as remarked by [24].
The rotational U(1) isometry is generated by the Killing vector

ζ0 = −∂φ, (4.8)

while the SL(2,R) isometry group is generated by the Killing vectors

J1 = 2 sin τ
r√

1 + r2
∂τ − 2 cos τ

√
1 + r2∂r +

2 sin τ√
1 + r2

∂φ, (4.9)

J2 = −2 cos τ
r√

1 + r2
∂τ − 2 sin τ

√
1 + r2∂r −

2 cos τ√
1 + r2

∂φ, (4.10)

J3 = 2∂τ . (4.11)

Let us summarize what we have done so far. We took the Kerr metric and
from there we went to the extremal Kerr metric by setting M2 = α2. After
that we searched for the near horizon limit of that metric which was obtained
in (4.2) and considering global coordinates we ended up at metric (4.7), which
has SL(2,R) × U(1) isometries, generated by the Killing vectors (4.8)-(4.11).
As a next step, we will impose boundary conditions on the fall off metric which
will allow us to enhance the U(1) symmetry group, which will allow us to start
using two dimensional conformal field theory tools, as we will see in the next
section.

4.2 Boundary conditions

Following the work by Brown and Henneaux [19] we need to impose some bound-
ary condition on the asymptotic variation of the metric and single out the desired
ASG which is the one that preserves this boundary condition nontrivially. Sup-
posing that the metric is perturbed as g′µν = gµν + hµν , where gµν is (4.7) and
hµν stands for the deviation from the background metric (4.7). The boundary
conditions are specified for the fluctuations at r =∞.

The chosen boundary conditions in the basis (τ, r, θ, φ) are

hµν =


hττ = O(r2) hτr = O( 1

r2 ) hτθ = O
(

1
r

)
hτφ = O(1)

hrτ = hτr hrr = O
(

1
r3

)
hrθ = O

(
1
r2

)
hrφ =

(
1
r

)
hθτ = hτθ hθr = hrθ hθθ = O

(
1
r

)
hθφ = O

(
1
r

)
hφτ = hτφ hφr = hrφ hφθ = hθφ hφφ = O(1)

 ,

(4.12)
We may note here that the deviations hττ and hφφ are of the same order as
the leading terms in the background metric (4.7), which is a bit unusual in the
sense that is quite different from the analysis made in the AdS3 case studied
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in [19] where all the deviations are subleading. We also have to note here that
the boundary conditions are purely a postulate and are not derived from some-
where. A physical approach for deriving the boundary conditions, rather than
postulating them a priori, was proposed by Porfyriadis and Wilczek [111], where
by requiring finiteness of the boundary effective action(s) for certain asymptotic
transformations, they are able to derive the Virasoro algebra and central charge
associated with the boundary of AdS3 .

The diffeomorphisms which preserve the boundary conditions (4.12) require
that

Lξgµν ∼ hµν (4.13)

and are of the form

ξ = [−rε′(φ)+O(1)]∂r+[C+O
(

1
r3

)
]∂τ+[ε(φ)+O

(
1
r2

)
]∂φ+O

(
1
r

)
∂θ (4.14)

where ε(φ) is an arbitrary smooth function of φ and C is an arbitrary constant.
The above does not contain the SL(2, R) isometry subgroup of the background
NHEK geometry, but still contains a U(1) isometry subgroup generated by

ζε = ε(φ)∂φ − rε′(φ)∂r. (4.15)

These diffeomorphism generators preserve the chosen boundary conditions and
since ε(φ) is arbitrary function and φ is periodic φ ∼ φ+2π we can mode expand
εn(φ) = −e−inφ, where n is an integer. Thus we have an infinite number of
generators generated by ζ(n) = ζ(εn), which under the Lie brackets generate
the Virasoro algebra

i[ζm, ζn]L.B = (m− n)ζm+n. (4.16)

So as we see the appropriate choice of boundary conditions on the asymptotic
behaviour of the metric allowed to enhance the U(1) symmetry of the SL(2, R)R
x U(1)L isometry group into a Virasoro algebra without central charge.

Finally the NHEK metric (4.7) transforms under (4.15) as

δεds̄
2 = 4JGΩ2

(
r2(1− Λ2)∂φεdτ2 −

r∂2
φε

1 + r2
dφdr + Λ2∂φεdφ

2 − ∂φε

(1 + r2)2
dr2

)
.

(4.17)
A detailed calculation can be found in the Appendix E. We should remind that
one can calculate such transformations (infinitesimal changes on the metric) by
acting with the Lie derivative Lξ8 on the corresponding metric by using

Lξgµν(x) = ξλ∂λgµν(x) + gαν(x)∂µξα + gµβ(x)∂νξβ = 0, (4.18)

a relation known as the Killing equation. Or similarly

Lξgµν(x) = ∇µξν +∇νξµ = 0, (4.19)
8the Lie derivative, Lξ, generalizes the simple derivative. It is a generalization of the

differentiation procedure in curved space. The Lie derivative in flat space is trivial and reduces
to the simple derivative. In the case where we hit a metric with a Lie derivative and we get
zero, Lξgµν = 0, then the vector is a Killing vector, while in any other case is just a vector.
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where ∇µ is the covariant derivative and ξ is the vector. In our case the vector
(4.15), is

ξ =


0

−rε′(φ)
0
ε(φ)

 . (4.20)

The next step, is to obtain asymptotic charges associated with asymptotic sym-
metries, and then a Dirac algebra for these asymptotic charges. This is the
subject of our next section.

4.3 Central Charge in The Virasoro Algebra

In this section we are going to calculate the central charge using the formalism
developed in [112], [113] which covariantize the calculation done by Brown and
Henneaux [19]. To such an asymptotic symmetry generator ζ, one can associate
the conserved charge

δQζ [g] =
1

8πG

∫
∂Σ

kζ [h, g], (4.21)

where the integral is over the boundary of a spatial slice ∂Σ that extends to
infinity and the two-form kζ is defined for a perturbation hµν around the back-
ground metric gµν by

kζ [h, g] = − 1
4
εαβµν [ζνDµh− ζνDσh

µσ + ζσDνhµσ +
1
2
hDνζµ

− hνσDσζ
µ +

1
2
hµν(Dµζσ +Dσζ

µ)]dxa ∧ dxβ (4.22)

where Dµ is a covariant derivative on the background geometry, g = detgµν and
h = gµνhµν. The Dirac bracket algebra of the asymptotic symmetry group is
computed by varying the charges and includes a central term.

{Qζm , Qζn}D.B = Q[ζm,ζn] +
1

8πG

∫
∂Σ

kζm [Lζn ḡ, ḡ], (4.23)

where Lζ is the Lie derivative of gµν with respect to ζ. The finiteness of Qn is
being ensured by the boundary conditions (4.12). All trivial asymptotic symme-
tries are associated with vanishing charges as it should. The central extensions
are non-trivial because they cannot be absorbed into the normalizations of the
generators.

Having the near-horizon metric (4.7) and the Asymptotic Group Generators
(ASG) (4.15) we compute

Lζn ḡττ = 4GJΩ2(1− Λ2)r2ine−inφ (4.24)

Lζn ḡrφ = −2GJΩ2r

1 + r2
n2e−inφ (4.25)

Lζn ḡφφ = 4GJΛ2Ω2ine−inφ (4.26)

Lζn ḡrr = − 4GJΩ2

(1 + r2)2
ine−inφ. (4.27)
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Substituting back to (4.22) it follows from (4.21) that

1
8πG

∫
∂Σ

kζm [Lζn ḡ, ḡ] = −iJ(m3 + 2m)δm+n. (4.28)

By defining the dimensionless quantum versions of the conserved charges by

~Ln ≡ Qζn +
3J
2
δn (4.29)

and replacing the Dirac brackets by commutators as {., .}D.B → − 1
~ [., .]. The

quantum charge algebra is then

[Lm, Ln] = (m− n)Lm+n +
J

~
m(m2 − 1)δm+n. (4.30)

From this we can read off the central charge for extreme Kerr

cL =
12J
~
. (4.31)

One can see that c depends on J , which implies that for each value of J we
get a different conformal field theory. This may not be important for extremal
rotating black holes, which have a vanishing Hawking temperature and do not
undergo Hawking radiation. But considering as for instance, in [48] which we are
going to discuss in the next section —that a single conformal field theory also
describes nonextremal black holes with the same angular momentum. Then
Hawking radiation, which will typically change the value of J , will take us
from one conformal dual to another. This suggests that a full treatment of
Hawking radiation, including its back-reaction on the black hole, may involve
flows between conformal field theories.

4.4 Conformal Temperature

In order to be able to use the Cardy formula to calculate the statistical entropy
we need to assign a temperature to the extremal Kerr black hole. As has already
been stated the temperature for an extremal Kerr black hole is zero TH = 0.
However this is not the relevant temperature for our conformal algebra and we
need to adapt the ideas of Frolov and Thorne [114, 115, 116], in order to define
a quantum theory in the extremal black hole geometry, and to associate a non-
zero temperature with the vacuum state. Now near the horizon, the analogue
of the Hartle-Hawking vacuum is the Frolov-Thorne vacuum. For a scalar field
we can mode expand and write

Φ = e−iωt̂+imφ̂f(r, θ), (4.32)

where ω and m stand for the asymptotic energy and angular momentum re-
spectively. The vacuum is given by a density matrix with Boltzmann weighting
factor

e−(ω−mΩH)/TH . (4.33)
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We can notice that by setting ΩH = 0 we recover the Hartle-Hawking vacuum.
However this expression for the density matrix is not suitable since TH = 0.

The problem can be solved by re-writing the above in terms of NHEK coor-
dinates, defining the frequencies nL, nR and temperatures TL, TR and taking
the extremal limit (in which TH → 0) after the procedure. Using the relation
between Boyer-Lindquist coordinates and NHEK coordinates

t =
λt̂

2M
and φ = φ̂− t̂

2M
, (4.34)

we can write

e−iωt̂+imφ̂ = e−
i
λ (2Mω−m)t+imφ = e−inR+inLφ, (4.35)

where we set
nL ≡ m, and nR ≡

1
λ

(2Mω −m). (4.36)

In terms of these variables the Boltzmann factor (4.33) is

e−(ω−mΩH)/TH = e
−nLTL−

nR
TR , (4.37)

where the dimensionless left and right temperatures are

TL =
r+ −M

2π(r+ − α)
, TR =

r+ −M
2πλr+

. (4.38)

By looking at the temperature in the extremal limit M2 = GJ the above be-
comes

TL =
1

2π
, TR = 0. (4.39)

As we see it turns out that the dual CFT has a nonvanishing left temperature
TL = 1/2π. The right temperature measures deviations from extremality which
justifies why TR = 0 at the extreme limit.

4.5 Bekenstein-Hawking entropy and Cardy formula for
extremal Kerr

Having found the temperature of the extremal Kerr black hole

TL =
1

2π
(4.40)

and shown that the central charge of the CFT is

cL =
12J
~
, (4.41)

we have all the ingredients we need to compute the statistical entropy by using
the Cardy formula

Scardy =
π2

3
cLTL. (4.42)
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The relation (4.42) is not exactly of the form of (2.58) we computed at subsection
2.5, we show how they are connected in the Appendix F.

By plugging in (4.40) and (4.41) we acquire the microscopic entropy for the
extreme Kerr black hole

Scardy =
2πJ

~
, (4.43)

this exactly matches with the Bekenstein-Hawking entropy

SBH =
Area
4G

=
2πJ

~
=
π2

3
cLTL = SCFT (4.44)

As we see in the above, the main goal, which was to compute the black hole
entropy by counting microstates has been accomplished. The Kerr/CFT corre-
spondence, has been expanded to many other black holes, which for all the mi-
croscopic entropy was successfully compute. While the details may differ a bit,
most derivations of black hole/CFT duality are based on finding an appropriate
boundary and imposing boundary conditions that specify properties of the black
hole, then determining how these boundary conditions affect the symmetries of
general relativity meaning the algebra of diffeomorphisms, subsequently look
for a preferred subalgebra of diffeomorphism and finally use standard methods
from conformal field theory.

Although this method is quite successful it actually tell us nothing about
quantum gravitational states at all, which make us to conjecture, that the ap-
proach is not yet complete, but in its own domain of validity seems to work
quite well. Lastly we should note that since the central charge is fixed by the
angular momentum, each extremal Kerr black hole corresponds to an unique
CFT, thus the extremal Kerr solution should be regarded as the vacuum state
of the CFT.

5 Hidden Conformal Symmetry

In this section we are going to calculate the microscopic entropy for a non-
extremal Kerr black hole via a different approach which makes use of the exis-
tence of a hidden conformal symmetry which is essential to set up a CFT dual
to nonextremal Kerr black hole.

5.1 Hidden conformal symmetry of the Kerr B.H

In the Kerr/CFT correspondence we saw that an extreme Kerr black hole in the
near horizon limit is holographically dual to a two-dimensional conformal field
theory. We would like to show in this section that the same correspondence
can be obtained away from the extreme Kerr limit. Away from extremality
though the near horizon limit is now just Rindler space thus we do not get
the necessary AdS3 geometry which will allow us to set up the mechanism (the
tools) of conformal symmetry (conformal invariance) to compute the statistical
entropy of the Kerr black hole as we did in section 4.
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Another approach was proposed by Castro, Maloney and Strominger in [48].
The conformal invariance is being obtained by looking at the near region of the
Kerr black hole and how a scalar field is propagating in that region which is
giving us the conformal (symmetry) invariance. That is why the term hidden
symmetry is used. The conformal symmetry does not show up from the be-
ginning at the Kerr metric but actually is being recovered by looking at the
equation of motion of a scalar field in a Kerr background where the equation is
separable and by taking the near region limit we see the existence of the con-
formal symmetry.
Let us see how this is achieved in steps:
• For the Kerr metric we use (3.4) where

∆ ≡ r2 − 2Mr + α2, ρ2 ≡ r2 + α2 cos2 θ.

The inner and outer horizons are located as already mentioned in section 3.3 at
r± = M ±

√
M2 − a2

• The Klein-Gordon equation for a massless scalar field is given by:

1√
−g

∂µ(
√
−ggµν∂νΦ) = 0. (5.1)

One can get to the above equation by taking the Lagrangian for the free massless
scalar field and plugging it in the Euler-Lagrange equations of motion which in
their turn can be obtained by variation of the action. We show this in appendix
G.

Expanding the massless scalar field in eigenmodes we have:

Φ(t, r, θ, φ) = e−iωt+imφΦ(r, θ) (5.2)

The reason why we choose to expand in these eigenmodes (t and φ) and not for
example in r and or θ is connected with the fact that our Kerr metric possesses
two Killing vectors, ∂t and ∂φ (no t or φ dependence).
• The next step is to plug (3.4) into (5.1) using (5.2) relation for the field Φ.

After some computations and manipulations we can bring the result to a form
looking like

∂r(∆∂rΦ(r, θ)) +
(2Mr+ω − αm)2

(r − r+)(r+ − r−)
Φ(r, θ)− (2Mr−ω − αm)2

(r − r−)(r+ − r−)
Φ(r, θ)

+(r2 + α2cos2θ + 2M(r + 2M))ω2Φ(r, θ) +
1

sinθ
∂θ(sinθ∂θΦ(r, θ))

− m2

sin2θ
Φ(r, θ) + a2cos2θω2Φ(r, θ) = 0.

(5.3)

The above equation is separable[
1

sin θ
∂θ(sin θ∂θ)−

m2

sin2 θ
+ ω2α2 cos2 θ

]
S(θ) = −KlS(θ) (5.4)
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and [
∂r∆∂r +

(2Mr+ω − αm)2

(r − r+)(r+ − r−)
Φ− (2Mr−ω − αm)2

(r − r−)(r+ − r−)

+(r2 + 2M(r + 2M))ω2

]
R(r) = KlR(r)

(5.5)

The separation of variables is being done in two steps in equation (5.3). In
step one we set: Φ(r, θ) = R(r)S(θ) and at step two we divide by: R(r)S(θ).
The result is to take two separate equations, meaning one that depends only on
variable r eq.(5.5) and one that depends only on variable θ eq.(5.4).

Both equations are solved by Heun functions which are not among the usual
special functions and the separation constants Kl are eigenvalues on the sphere
and are known only numerically. So actually we do not get something that we
can work on from there. But looking at (5.4) we see that if we are able somehow
to neglect the ω2 term we see that we will have the Laplacian on a 2-sphere from
which we will know what our separation constants are and then we can take a
second look at the radial equation (5.5).
• The ω2 term can be neglected by taking what we call the near region limit

which is not the same as taking the near horizon limit (except in some particular
cases i.e. an extremal kerr black hole).

Looking at (5.3) this can only happen if:

ωM � 1,

meaning that the wavelength of the scalar excitation is large compared to the
radius of the curvature and then study its behavior at the near region limit
which is dictated by

r � 1
ω
.

In that region the angular equation (5.4) is being reduced to the Laplacian on
a 2-sphere:[

1
sin θ

∂θ(sin θ∂θ)−
m2

sin2 θ

]
S(θ) = −KlS(θ), l = −m, ...,m. (5.6)

Where the m2 term is really the coefficient that comes from our expanded field
(6.20) upon differentiation over φ. The solutions eimφ are spherical harmonics
and the separation constants are

Kl = l(l + 1).

It has to be noted here that for spherical harmonics in higher dimensions the
eigenvalues follow, Kl = −l(l + n − 2). The radial wave equation (5.5) in that
limit reduces to:[

∂r∆∂r +
(2Mr+ω − αm)2

(r − r+)(r+ − r−)
Φ− (2Mr−ω − αm)2

(r − r−)(r+ − r−)

]
R(r) = KlR(r), (5.7)
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which is solved by hypergeometric functions. As hypergeometric functions trans-
form in representations of SL(2, R), this suggests the existence of a hidden
conformal symmetry.

What we need to stress here is that the conformal invariance (symmetry)
is not coming from the spacetime geometry as for example in the case of [23],
but rather emerges from the scalar field as it propagates in the near region of
the Kerr black hole. Now the above equation can be rewritten as the quadratic
Casimir of an SL(2,R) × SL(2,R) algebra. This is being accomplished by
introducing a set of ”conformal coordinates”9 and defining some vector fields as
the generators of the algebra, which is the subject of the next section.

5.2 SL(2, R)× SL(2, R)

In this section, we will show that for the massless scalar particle, there exists a
hidden SL(2,R)× SL(2,R) conformal symmetry acting on the solution space.

For this purpose it is convenient to adopt conformal coordinates

ω+ =
√
r − r+

r − r−
e2πTRφ

ω− =
√
r − r+

r − r−
e2πTLφ+ t

2M (5.8)

y =
√
r+ − r−
r − r−

eπ(TL+TR)φ+ t
4M

where
TR ≡

r+ − r−
4πα

, TR ≡
r+ + r−

4πα
, (5.9)

here r+, r− are the horizon of the Kerr black hole. We have to note here that the
conformal coordinates would not work for an extremal Kerr black hole, because
in that case r− = r+ and the coordinate y = 0 and not well defined. This issue
of hidden conformal symmetry in extremal black holes is examined in [54].

Next with (ω±, y) we define locally two sets of vector fields

H1 = i∂+, (5.10)

H0 = i(ω+∂+ +
1
2
y∂y), (5.11)

H−1 = i(ω+2∂+ + ω+y∂y − y2∂−) (5.12)

and

H̄1 = i∂−, (5.13)

H̄0 = i(ω−∂− +
1
2
y∂y), (5.14)

H̄−1 = i(ω−2∂− + ω−y∂y − y2∂+) (5.15)

9Conformal coordinates are used such us for example the metric can be written as ds2 =
eu(dx2 + dy2).
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These vector fields are constructed by brute force so as to satisfy the SL(2,R)
Lie Bracket algebra,

[H0, H±] = ∓iH±1, [H−1, H1] = −2iH0 (5.16)

and similarly
[H̄0, H̄±] = ∓iH̄±1, [H̄−1, H̄1] = −2iH̄0. (5.17)

The SL(2,R) quadratic Casimir 10 is defined to be

H2 = −H2
0 +

1
2

(H1H−1 +H−1H1) (5.18)

=
1
4

(y2∂2
y − y∂y) + y2∂+∂−

and similarly for H̄2 = −H̄2
0 + 1

2 (H̄1H̄−1 + H̄−1H̄1).
In terms of (t, r, φ) coordinates, the vector fields are

H1 = ie−2πTRφ

(
∆1/2∂r +

1
2πTR

r −M
∆1/2

∂φ +
2TL
TR

Mr − α2

∆1/2
∂t

)
H0 =

i

2πTR
∂φ + 2iM

TL
TR

∂t (5.19)

H−1 = ie2πTRφ

(
−∆1/2∂r +

1
2πTR

r −M
∆1/2

∂φ +
2TL
TR

Mr − α2

∆1/2
∂t

)
and

H̄1 = ie−2πTLφ+ t
2M

(
∆1/2∂r −

α

∆1/2
∂φ − 2M

r

∆1/2
∂t

)
H̄0 = −2iM∂t (5.20)

H̄−1 = ie2πTLφ− t
2M

(
−∆1/2∂r −

α

∆1/2
∂φ − 2M

r

∆1/2
∂t

)
.

After computing the Casimir we find that

H2 = ∂r∆∂r +
(2Mr+∂t + α∂φ)2

(r − r+)(r+ − r−)
+

(2Mr−∂t + α∂φ)2

(r − r−)(r+ − r−)
, (5.21)

which matches the radial wave equation (5.5) and so we can write

H2Φ = H̄2Φ = l(l + 1)Φ. (5.22)

So what is done here is that the scalar Laplacian has reduced to the SL(2,R)
Casimir. Therefore, the solution of the scalar field in the Kerr geometry in
the near region forms representations of SL(2,R). The SL(2,R)L × SL(2,R)R
conformal weights of the field Φ are

(hL, hR) = (l, l). (5.23)

It has to noted here that these SL(2,R) are not globally defined because they are
broken under the periodic angular identification φ ∼ φ+ 2π. As a consequence
these symmetries cannot be used to generate new global solutions from old ones.

10We define the quadratic Casimir in Appendix (H).
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5.3 Kerr/CFT entropy

In order to be able to calculate the microscopic entropy of the Kerr black hole we
make use of the Cardy formula which we assume it for the dual two dimensional
conformal field theory. Knowing the values of the conformal temperatures TL
and TR (5.9) and the central charges whose derivation has been completed for
the extreme Kerr in [23,26,117] and are

cL = cR = 12J. (5.24)

we can then plug in to the Cardy formula given by the relation

Scardy =
π2

3
(cLTL + cRTR). (5.25)

so to obtain the microscopic entropy. So plugging (5.24) and (5.9)we get

Scardy =
π2

3

(
6JM
4πα

+
6J
√
M2 − α2

4πα

)
⇐⇒ Scardy = 2πMr+, (5.26)

a result which exactly matches with the Bekenstein-Hawking entropy

SBH =
Area

4
=

8πMr+

4
⇐⇒ SBH = 2πMr+. (5.27)

Bare in mind that we have set ~ = 1.

6 Hidden conformal symmetry of black rings

In this section we examine the five dimensional black rings. It would be quite
interesting to see if a black ring/CFT correspondence is possible. We hope that
by extending the Kerr/CFT will give a more complete picture of this black
hole/CFT correspondence. We do that by following the hidden conformal sym-
metry approach originally introduced in [48] and discussed in section 5.

It happens that by limiting the black ring solution and following the hidden
conformal symmetry method we again obtain a hypergeometric solution to the
radial equation. This suggests a hidden conformal symmetry and it is our hope
to show that this stands, by defining vector fields and computing the quadratic
Casimir. Furthemore we take a look on the supersymmetric case of black ring
examined in [118] where we calculate the Laplacian for a massless scalar field
and perform a calculation of the quadratic Casimir by using the Killing vectors
(we actually manipulate them a bit to serve our purpose) that the authors give.
We are not discussing supersymmetric solutions here or give any information
how to obtain them, we rather make a raw calculation on an already given
metric. We show that the quadratic Casimir agrees with the radial equation,
thus admitting a conformal symmetry.
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6.1 What is a black ring

A black ring is a five-dimensional black hole with an event horizon of topology
S1 × S2. This is prevented in four-dimensions where the black hole’s horizon
can only have the topology of S2 [105]. A black ring was obtained in general
relativity as a solution to Einstein’s fields equations by first doing a suitable
ansatz by Emparan and Reall [74]. Heuristically a black ring can be the result
of bending a black string into the shape of a circle and spinning it up to balance
forces.

The metric for a black ring is given in [75] and is

ds2 = −F (y)
F (x)

(
dt− CR1 + y

F (y)
dψ

)2

+
R2

(x− y)2
F (x)

[
G(y)
F (y)

dψ2 − dy2

G(y)
+

dx2

G(x)
+
G(x)
F (x)

dφ2

]
(6.1)

where
F (ξ) = 1 + λξ, G(ξ) = (1− ξ2)(1 + νξ) (6.2)

and

C =

√
λ(λ− ν)

1 + λ

1− λ
. (6.3)

The coordinate system that is used is a somewhat unfamiliar, but in this system
the black ring takes its simplest form. The construction can be found in [75].

Here λ and ν are dimensionless parameters and must lie in the range

0 < ν ≤ λ < 1, (6.4)

ν characterizes the shape while λ the rotation velocity of the ring. For ν → 0
the ring becomes increasingly thin, for ν → 1 the ring flattens along the plane
of rotation while for ν = 1 the solution is same as for a naked singularity. In
the case where both λ and ν vanish we recover flat spacetime (λ and ν are
interconnected with relation (6.9) for regular solution as we will see below). R
is the radius of the black ring and sets the scale for the solution, when this
radius goes to zero the black ring reduces to the Myers-Perry black hole [98],
while in the infinite radius limit it yields a boosted black string. The black ring
has a curvature singularity at y = 1/λ, the regular event horizon is at y = 1/ν
while the ergosphere is located at y ± ∞. The solution is asymptotically flat
with the spatial infinity being located at x = −1 and y = −1.

The above metric can be re-written in (r, θ) coordinates as

ds2 = − f̂
ĝ

dt− rH sinhσ coshσ

√
R+ rH cosh2 σ

R− rH cosh2 σ

r
R − 1

rf̂
Rdψ

2

+
ĝ

(1 + r cos θ
R )2

[
f

f̂

(
1− r2

R2

)
R2dψ2

+
dr2

(1− r2

R2 )f
+
r2

g
dθ2 +

g

ĝ
r2 sin2 θdφ2

]
(6.5)

44



where

f = 1− rH
r
, f̂ = 1− rH cosh2 σ

r
(6.6)

and

g = 1 +
rH
R

cos θ, ĝ = 1 +
rH cosh2 σ

R
cos θ. (6.7)

Here σ is called the boost parameter and R is identified with the radius (S1

radius) of the ring when the geometry described by the metric (6.5) is free of
conical singularities. The curvature singularity lies at r = 0 while the regular
event horizon is located at r = rH where rH is identified with the S2 radius. In
the above there is a redefinition of parameters (ν, λ)→ (rH , σ) as

ν =
rH
R
, λ =

rH cosh2 σ

R
. (6.8)

Both metrics (6.1),(6.5) are not regular, they contain conical singularities. In
order to make the metrics regular, in the first case we have to set the value

λ =
2ν

1 + ν2
, (6.9)

whereas in the second metric

| sinhσ| → 1, (6.10)

or equivalently the velocity |υ| → 1/
√

2. By using the trigonometric relation
cosh2 σ − sinh2 σ = 1, one can find that for the regular metric cosh2 σ = 2.

6.2 What is a black string

A neutral black string in five dimensions is constructed as the direct product of
the Schwarzschild solution and a line, so the geometry of the horizon is R× S2

The metric of the Schwarzschild black hole solution in (3+1) dimensions is given
by

ds2 = −
(

1− rH
r

)
dt2 +

1
1− rH

r

dr2 + r2(dθ2 + sin2 dφ2), (6.11)

where rH stands for the horizon radius. We can go to the Schwarzschild black
string (static black string) by adding a dimension in the above metric and have
(4+1) dimensions, then we get

ds2 = −
(

1− rH
r

)
dt2 +

1
1− rH

r

dr2 + r2(dθ2 + sin2 dφ2) + dψ2. (6.12)

From here we can obtain the boosted black string solution by boosting (6.12)
in the ψ-direction with the velocity υ = tanh ξ with the coordinate transform

ξ =
(

t′

ψ′

)
=
(

cosh ξ − sinh ξ
− sinh ξ cosh ξ

)(
t
ψ

)
(6.13)
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which will give us the metric for the boosted black string in five dimensions

ds2 =−
(

1− cosh2 σ
rH
r

)
dt2 + 2

rH
r

coshσ sinhσdtdψ

+
(

1 + sinh2 σ
rH
r

)
dψ2 +

(
1− rH

r

)−1

dr2 + r2(dθ2 + sin2 dφ2).
(6.14)

A generalized version of (6.14) in D-dimensions is given by

ds2 =−

(
1− cosh2 σ

rd−3
H

rd−3

)
dt2 + 2

rd−3
H

rd−3
coshσ sinhσdtdψ

+

(
1 + sinh2 σ

rd−3
H

rd−3

)
dψ2 +

(
1−

rd−3
H

rd−3

)−1

dr2 + r2dΩ2
d−3

(6.15)

which can be found in [119]. Here D = d + 1 where D states the number of
dimensions.

6.3 The black ring as a boosted black string

The rotating black ring becomes a boosted black string in the ultraspinning
limit. At that limit the black ring becomes very thin. What we mean by that
is to take the black ring metric as is given in (6.5) and impose some limits.
Considering the large radius R limit

r, rH , rH cosh2 σ � R. (6.16)

The expressions we have for g and ĝ (6.7) become,

g ≡ 1, ĝ ≡ 1 (6.17)

and by redefining ψ → ψ/R, the metric (6.5) becomes

ds2 =− f̂
(
dt− rH sinhσ coshσ

(−1)

rf̂
dψ

)2

+
f̂

f
dψ2 + f−1dr2 + r2dθ2 + r2 sin2 θdφ2.

(6.18)

Which is the metric for a boosted black ring in the ψ-direction with boost
parameter σ. What we actually do by taking (6.16) is to make the black ring
really thin and then we zoom in (r � R) to the near horizon area. As a result
we do not see any bending (curvature) anymore and because the ring is spinning
the result is a black string with momenta, thus a boosted black string.

The metric (6.18) can be brought to a form that exactly matches11 the metric
in [120],

ds2 = −f̂
(
dt− rH sinh 2σ

2rf̂
dψ

)2

+
f̂

f
dψ2 +

1
f
dr2 + r2dΩ2

2. (6.19)

11In order to exactly match the ‘signs‘ between the two metrics we set σ = −σ on (6.18).
That way the (sinh) changes sign but not the (cosh). It is perfectly fine to do that as it only
changes the direction of the boost.
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Actually the metric given in (6.14) is the same to the above (6.19), one can see
that by using trigonometric identities. How these two are connected is shown
in the Appendix I.

6.4 Hidden conformal symmetry for a boosted black string

In this section we are going to calculate the Laplacian of a massless scalar for
a 5D boosted black string in the same spirit as done in section 5. As we have
already seen the metric for a boosted black string can be obtained either by
adding one dimension to the Schwarzschild metric (say ẑ) and boosting it along
that direction or by taking certain limits on a 5D black ring.

The boosted black ring metric is given by (6.14) while the Klein-Gordon
equation for a massless scalar field Φ is given by (5.1).

Expanding now our massless scalar field in eigenmodes we have

Φ(t, r, θ, φ, ψ) = e−iωt+imφ+iβψΦ(r, θ). (6.20)

Following the same steps as in section 5, we get the Laplacian,[
r2(r − rH + rH cosh2 σ)ω2

r − rH
+

2r2rH coshσ sinhσβω
r − rH

+
r2(−r + rH cosh2 σ)β2

r − rH

]
Φ(r, θ) + (r − rH)∂rΦ(r, θ)

+ r∂rΦ(r, θ, φ) + r(r − rH)∂2
rΦ(r, θ) +

cos θ
sin θ

∂θΦ(r, θ) + ∂2
θΦ(r, θ)

− m2

sin2 θ
Φ(r, θ) = 0,

(6.21)

which can write slightly more compactly as[
r2(r − rH + rH cosh2 σ)ω2

r − rH
+

2r2rH coshσ sinhσβω
r − rH

+
r2(−r + rH cosh2 σ)β2

r − rH

]
Φ(r, θ) + ∂r(∆∂rΦ(r, θ))

+∇S2Φ(r, θ) = 0, (6.22)

where ∆ = r2 − rrH and ∇S2 is the Laplacian on a 2-sphere. Equation (6.22)
is separable and by using the separation of variables method, can be separated
into a radial and an angular part Φ(r, θ) = R(r)S(θ),[

r2(r − rH + rH cosh2 σ)ω2

r − rH
+

2r2rH coshσ sinhσβω
r − rH

+
r2(−r + rH cosh2 σ)β2

r − rH
+ (r − rH)∂r

+r∂r + r(r − rH)∂2
r

]
R(r) = KlR(r) (6.23)
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and [
1

sin θ
∂θ(sin θ∂θ)−

m2

sin2 θ

]
S(θ) = −KlS(θ). (6.24)

The separation constants are Kl = l(l+ 1). The radial equation is being solved
by Heun functions.

6.4.1 The near region solution

Now we will look in the near region of the boosted black string which is achieved
by taking r− rH � 1

ω . In this computation we will use the radial equation (18)
from [120] to take the limit as we want to be consistent with that paper at this
point, which comes from computing the Laplacian for a massless scalar field on
(6.19).

We assume ωrH � 1 and define a new variable

z = 1− rH
r
. (6.25)

The radial wave equation (6.24) is written as

z(1− z)∂2
zΦ + (1− z)∂zΦ +

[
− l(l + 1)

1− z
+

1− z
z

Y 2

]
Φ = 0, (6.26)

where Y ≡ rH coshσ(ω−β tanhσ). The above equation is being found in [120].
If we instead use equation (6.23) to take the limit we end up with

z(1− z)∂2
zΦ + (1− z)∂zΦ +

[
− l(l + 1)

1− z
+

1
z
Y 2

]
Φ = 0, (6.27)

Both equations are solved by hypergeometric functions. It is rather interest-
ing that we get two slightly different radial equations, it poses some questions
as, is one radial more correct than the other? We are going to discuss a bit
about this in the conclusion section 8.

Let us continue this section by using (6.26). As hypergeometric functions
transform in representations of SL(2,R), this suggests the existence of a hidden
conformal symmetry, which we will examine below. The whole concept is to try
to find three vector fields that will obey the SL(2,R) Lie bracket algebra (5.16)
of which the quadratic Casimir given by (5.18) will agree with the Laplacian
(6.26).

In order to achieve this we first multiply (6.26) with, (1− z), so as

z(1− z)2∂2
zΦ + (1− z)2∂zΦ +

(
(1− z)2

z
Y 2

)
Φ = l(l + 1)Φ. (6.28)

In order to manufacture our vector fields we try to simplify a bit the term
z(1−z)2∂2

zΦ+(1−z)2∂zΦ and thus we try to define a new variable. To do that
we do the following, first we set

z(1− z)2∂2
zΦ + (1− z)2∂zΦ = ∂y(∆(y)∂y)Φ (6.29)
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where
∂y =

∂z

∂y

∂

∂z

and

∂2
y = ∂y∂y = ∂y

(
∂z

∂y

∂

∂z

)
=
∂2z

∂y2
∂z +

(
∂z

∂y

)2

∂2
z .

Working the right side of (6.29) we get,[
∆′
∂z

∂y
+ ∆

∂2z

∂y2

]
∂z + ∆

(
∂z

∂y

)2

∂2
z ,

we equalize with (6.29) and we get a set of equations

∆
∂2z

∂y2
+ ∆′

∂z

∂y
= (1− z)2

∆
(
∂z

∂y

)2

= z(1− z)2.

Solving this system, we obtain

z =
−1 + C1y + C2

C1y + C2
, ∆ =

z − 2z2 + z3

(∂yz)2
,

where C1 and C2 are coefficients which we set C1 = 1 and C2 = 0 and by
replacing we get

z = 1− 1
y
, ∆ = y2 − y. (6.30)

Thus equation (6.28) can be written now as[
∂y(∆∂y) +

1
∆
r2
H cosh2 σ(ω − β tanhσ)2

]
Φ = l(l + 1)Φ, (6.31)

where ∆ = y2 − y. A verification that the above coordinate transformation is
correct, can be done by working backwards, by using z = 1− 1

y and ∂y = ∂z
∂y

∂
∂z =

1
y2 ∂z. The form of (6.31) is more convenient, in order for us to construct the
vector fields. This is the subject of the next section.

6.4.2 Constructing the SL(2,R)

In this section we describe the SL(2,R) symmetry of the boosted black string.
In terms of (y, ψ, t) we define the vector fields

H1 = ie
− 1

2
t

rH cosh σ

(
∆1/2∂y +

(1− 2y)rH sinhσ
∆1/2

∂ψ +
(2y − 1)rH coshσ

∆1/2
∂t

)
H0 = −2irH sinhσ∂ψ + 2irH coshσ∂t (6.32)

H−1 = ie
1
2

t
rH cosh σ

(
−∆1/2∂y +

(1− 2y)rH sinhσ
∆1/2

∂ψ +
(2y − 1)rH coshσ

∆1/2
∂t

)
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These obey the SL(2,R) Lie bracket algebra (5.16). The SL(2,R) quadratic
casimir is given by (5.18).

Computing it become

H = ∂y∆∂y −
1
∆
r2
H cosh2 σ(∂t − tanhσ∂ψ)2. (6.33)

The scalar wave equation (6.31) can be written as

H2Φ = l(l + 1)Φ. (6.34)

From the periodicity of the euclideanized time (t→ iτ) direction τ → τ + β
where β = 1/T we can read the temperature T = (4πrH coshσ)−1 which agrees
with the boosted black string temperature given in [120].

Here we expect to have one sector of the SL(2,R) similarly to the Schwarzschild
case [49]. At this point it would also be interesting to see if we can construct
the vector fields corresponding to equation (6.27). We believe it is possible and
will probably present it in future work.

6.5 Near the horizon of a supersymmetric black ring

Taking the metric of a supersymmetric black ring in the near horizon limit as
given by [118], we try to evaluate the Laplacian for a free massless scalar field
in the same spirit as in [48].

The near horizon limit of the black ring solution is:

ds2 = −p2

(
dr2

4r2
+
L2

p2
dψ2 +

Lr

p
dtdψ

)
− p2

4
(dθ2 + sin2 θdφ2), (6.35)

which is the product of a locally AdS3 with radius p and an S2 with radius p
2 .

The range of coordinates are

0 ≤ r ≤ ∞, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π, 0 ≤ ψ ≤ 2π. (6.36)

The Klein-Gordon equation for a massless scalar field Φ is given by (5.1). Ex-
panding the massless scalar field in eigenmodes we have

Φ(t, r, θ, ψ, φ) = e−iωt+imφ+iβψΦ(r, θ).

Calculating the above we get an equation looking like this

ω2

r2
Φ(r, θ) +

pβω

rL
Φ(r, θ) + 2r∂rΦ(r, θ) + r2∂2

rΦ(r, θ)

+
cos θ
sin θ

∂θΦ(r, θ) + ∂2
θ −

m2

sin2 θ
Φ(r, θ) = 0,

which can re-write a bit more nicely as

ω2

r2
Φ(r, θ) +

pβω

rL
Φ(r, θ) + ∂r(∆∂rΦ(r, θ)) +∇S2Φ(r, θ) = 0,
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where ∆ = r2 and ∇S2 is the Laplacian on a 2-sphere. The above equation can
be separated into a radial part and an angular part, by using the separation of
variables 12method. By doing the necessary manipulations we get two equations,
a radial and an angular part,

ω2

r2
R(r) +

pβω

rL
R(r) + ∂r(∆∂rR(r)) = KlR(r) (6.37)

and
1

sin θ
∂θ(sin θ∂θS(θ))− m2

sin2 θ
S(θ) = −KlS(θ) (6.38)

The solutions are spherical harmonics and the separation constants are Kl =
l(l + 1). The radial equation is solved by Whittaker functions, which are a
modified form of the confluent hypergeometric functions to make the formulas
involving the solutions more symmetric. This makes good sense as we are in
the supersymmetric case of black ring. Would like to make two comments as
opposed to [48], in that case was used the Kerr metric and after computing
the Laplacian, the near-region limit was taken from where the hypergeometic
functions emerged which led us to the conjecture of an SL(2,R). In this case is
not needed to take the near-region limit as from start we took the near horizon
limit of the supersymetric black ring. Furthermore we find Whittaker functions
which can be explained by the fact that there is more symmetry now. The
question here is does such a function admits an SL(2,R) symmetry?

Let us find out by computing the commutation relations of the Killing vectors
given in [118] and the Casimir operator. The commutation relations of which
may show us if we are on the right track. These Killing vectors are the result
of the AdS2 × S1 geometry which appears in the near horizon limit of the five
dimensional black ring solution of N = 2 supergravity. Recall that the Killing
vectors can be found by using the Killing equation (4.18) which should give zero
as a result Lξgµν(x) = 0.

The vectors are

H1 = i
√

2∂t
H0 = it∂t − ir∂r (6.39)

H−1 =
i
√

2
2

(
(t2 + r−2)∂t − rt∂r −

p

2Lr
∂ψ

)
and

H̄1 = ie−
2L
p ψ

(
1
r
∂t − r∂r −

p

2L
∂ψ

)
H̄0 = i

p

2L
∂ψ (6.40)

H̄−1 = ie
2L
p ψ

(
1
r
∂t + r∂r −

p

2L
∂ψ

)
.

12A more detailed view of this method can be found in section 5.
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The commutation relations are satisfying

[H0, H1] = −iH1, [H0, H−1] = iH−1, [H−1, H1] = −2iH0

and similarly for (H̄0, H̄1, H̄−1), which is an SL(2,R) Lie bracket algebra.
The quadratic Casimir of which is given by the relation (5.18) After com-

puting it we find

H = −∂
2
t

r2
+
p∂ψ∂t
rL

+ ∂r(∆∂r), (6.41)

which matches the radial equation (6.37). Which now can be written as

H2Φ = H̄2Φ = l(l + 1)Φ. (6.42)

It has to be mentioned that some minor changes were needed in order to get
the correct result in respect with the original Killing vectors [118]. In (6.39) an
‘i‘ was added to each vector and a normalization constant

√
2 to H1 and H−1

while in (6.40) we again added an ‘i‘ to each vector plus a term p
2L to H̄0.

Since we are dealing with a sypersymmetric black hole which demands for
the black hole to be extremal, the dual CFT is chiral in the sense that only one
sector has nonvanishing temperature and the other sector is completely cooled
down without excitation. Furthermore the generators are globally defined under
the angular identification ψ ∼ ψ + 2π, something which was not true in the
hidden Kerr 5 case which under the angular identification φ ∼ φ + 2π breaks
SL(2,R)L × SL(2,R)R.

We can go on to calculate the statistical entropy now by using the Cardy
formula (4.42). The temperature can be read from the vector fields (6.40) and
it is TL = L/πp13 and the central charge is given in [118] and it is c = 6p3.
Thus the statistical entropy

Smic = 2πLp2 = Smac, (6.43)

which exactly matches the macroscopic entropy.

7 Higher Dimensional Boosted Black Strings

In this section we examine boosted black strings in higher dimensions. Since
the 5D boosted black ring admits a conformal symmetry it is interesting to
see if higher dimensional versions share this symmetry. We start by using the
metric for a D-dimensional boosted black string along the ψ-direction, which
is given in [119] and calculate the Laplacian of a scalar field for boosted black
strings in 6,7 and 8 dimensions. The equations are separable and by taking the
near region limit where we find solutions as hypergeometric functions. From
this we conjecture that the same results would apply to any dimension and we
construct generalized versions of our results. This is done in section 7.1 while
the raw calculations can be seen in subsections 7.2, 7.3 and 7.4.

13In [118] the temperature is given by T = 1/2πe0 where e0 must take the value e0 = p/2L
so to compute the correct entropy.

52



7.1 Boosted black string in D-dimensions—Generalizing
the procedure

The metric for a boosted black string in any dimension is given by (6.15). The
expression for the n-sphere metric can be found in the appendix J.

As we will show below a generalized expression for the radial equation can
be written for the D-dimensional boosted black string for D ≥ 6 and is[

r2(rd−3 − rd−3
H + rd−3

H cosh2 σ)ω2

rd−3 − rd−3
H

+
2r2rd−3

H coshσ sinhσβω
rd−3 − rd−3

H

+
r2(−rd−3 + rd−3

H cosh2 σ)β2

rd−3 − rd−3
H

+
rd−3 − rd−3

H

rd−4
∂r + (d− 3)r∂r

+
(rd−3 − rd−3

H )
rd−5

∂2
r

]
R(r) = KlR(r).

(7.1)

The above generalization follows from the pattern that the radial equations show
in the below calculations for 6,7 and 8 dimensions and is rooted in the initial
metric (6.15) we used.

7.1.1 The near region limit

The near region limit is recovered by focusing in the vinicity of the horizon,
r − rH � 1/ω. We assume ωrH � 1 and define a new variable

z = 1−
rd−3
H

rd−3
(7.2)

The radial wave equation (7.1) is now written as

(D−4)2z(1−z)∂2
zΨ+(D−4)2(1−z)∂zΨ+

[
− l(l + n− 2)

1− z
+

1
z
Y 2

]
Ψ = 0 (7.3)

where we defined Y ≡ rH coshσ(ω+β tanhσ). Equation (7.3) is hypergeometric
and its solutions are hypergeometric functions. As we have already stated this
functions admit an SL(2,R) symmetry group which suggests the existense of
conformal symmetry. This is the starting point in the hidden conformal sym-
metry approach in order to compute the microscopic entropy for these objects.
In the sections below we provide the detailed calculations that eventually led us
to conjecture the generalized expressions (7.1) and (7.3).

7.2 Six-dimensional boosted black string

For D = 6 =⇒ d = 5, so from (6.15) we have

ds2 =−
(

1− cosh2 σ
r2
H

r2

)
dt2 + 2

r2
H

r2
coshσ sinhσdtdψ

+
(

1 + sinh2 σ
r2
H

r2

)
dψ2 +

(
1− r2

H

r2

)−1

dr2 + r2dΩ2
3,

(7.4)
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where dΩ2
3 is the volume element on a 3-sphere. Plugging in the above to the

expression for the equation of motion for a massless scalar field Φ (5.1) which
we have expanded into its eigenmodes

Φ(t, r, θ, φ, ζ, ψ) = e−iωt+imζ+iβψΦ(r, θ, φ),

we come up with the expression,[
r2(r2 − r2

H + r2
H cosh2 σ)ω2

r2 − r2
H

+
2r2r2

H coshσ sinhσβω
r2 − r2

H

+

+
r2(−r2 + r2

H cosh2 σ)β2

r2 − r2
H

]
Φ(r, θ, φ) +

r2 − r2
H

r
∂rΦ(r, θ, φ)

+ 2r∂rΦ(r, θ, φ) + (r2 − r2
H)∂2

rΦ(r, θ, φ) +∇S3Φ(r, θ, φ) = 0,

(7.5)

where ∇S3 is the Laplacian on a 3-sphere. Equation (7.5) is separable, and can
be separated by using the separation of variables method into a radial and an
angular part Φ(r, θ, φ) = R(r)S(θ, φ)[

r2(r2 − r2
H + r2

H cosh2 σ)ω2

r2 − r2
H

+
2r2r2

H coshσ sinhσβω
r2 − r2

H

+
r2(−r2 + r2

H cosh2 σ)β2

r2 − r2
H

+
r2 − r2

H

r
∂r + 2r∂r

+ (r2 − r2
H)∂2

r

]
R(r) = KlR(r)

(7.6)

and»
1

sin2 θ
∂θ(sin

2 θ∂θ) +
1

sin2 θ sinφ
∂φ(sinφ∂φ)− m2

sin2 θ sin2 φ

–
S(θ, φ) = −KlS(θ, φ).(7.7)

The separation constants are Kl = l(l+ 2). The radial equation is being solved
by Heun functions as in the case of 5D black rings.

The near region limit is taken as in (7.1.1). We define z = 1 − r2
H

r2 and the
radial equation (7.6) is reduced to

4z(1− z)∂2
zΨ + 4(1− z)∂zΨ +

[
− l(l + 2)

1− z
+

1
z
Y 2

]
Ψ = 0 (7.8)

7.3 Seven-dimensional boosted black string

For D = 7 =⇒ d = 6, so from (6.15) we have

ds2 =−
(

1− cosh2 σ
r3
H

r3

)
dt2 + 2

r3
H

r3
coshσ sinhσdtdψ+(

1 + sinh2 σ
r3
H

r3

)
dψ2 +

(
1− r3

H

r3

)−1

dr2 + r2dΩ2
4,

(7.9)
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where dΩ2
4 is the metric on a 4-sphere. Plugging in the above to the expression

for the equation of motion for a massless scalar field Φ (5.1), which we have
expanded into its eigenmodes

Φ(t, r, θ, φ, ζ, κ, ψ) = e−iωt+imκ+iβψΦ(r, θ, φ, ζ),

we get the equation[
r2(r3 − r3

H + r3
H cosh2 σ)ω2

r3 − r3
H

+
2r2r3

H coshσ sinhσβω
r3 − r3

H

+

r2(−r3 + r3
H cosh2 σ)β2

r3 − r3
H

]
Φ +

r3 − r3
H

r2
∂rΦ + 3r∂rΦ+

(r3 − r3
H)

r
∂2
r +∇S4Φ = 0,

(7.10)

where ∇S4 is the Laplacian on a 4-sphere. Equation (7.10) is separable, and
can be separated by using the separation of variables method into a radial and
an angular part Φ(r, θ, φ, ζ) = R(r)S(θ, φ, ζ)[

r2(r3 − r3
H + r3

H cosh2 σ)ω2

r3 − r3
H

+
2r2r3

H coshσ sinhσβω
r3 − r3

H

+
r2(−r3 + r3

H cosh2 σ)β2

r3 − r3
H

+
r3 − r3

H

r2
∂r + 3r∂r

+
(r3 − r3

H)
r

∂2
r

]
R(r) = KlR(r)

(7.11)

and»
1

sin3 θ
∂θ(sin

3 θ∂θ) +
1

sin2 θ sin2 φ
∂φ(sin2 φ∂φ) +

1

sin2 θ sin2 φ sin ζ
∂ζ(sin ζ∂z)

− m2

sin2 θ sin2 φ sin2 ζ

–
S(θ, φ, ζ) = −KlS(θ, φ, ζ)

(7.12)

The separation constants are Kl = l(l + 3).
The near region limit is taken as in (7.1.1). We define z = 1 − r3

H

r3 and the
radial equation (7.11) is reduced to

9z(1− z)∂2
zΨ + 9(1− z)∂zΨ +

[
− l(l + 3)

1− z
+

1
z
Y 2

]
Ψ = 0 (7.13)

7.4 Eight-dimensional boosted black string

For D = 8 =⇒ d = 7, so from (6.15) we have

ds2 =−
(

1− cosh2 σ
r4
H

r4

)
dt2 + 2

r4
H

r4
coshσ sinhσdtdψ

+
(

1 + sinh2 σ
r4
H

r4

)
dψ2 +

(
1− r4

H

r4

)−1

dr2 + r2dΩ2
5,

(7.14)
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where dΩ2
5 is the metric on a 5-sphere. Plugging in the above to the expression

for the equation of motion for a massless scalar field Φ (5.1), which we have
expanded into its eigenmodes

Φ(t, r, θ, φ, ζ, κ, η, ψ) = e−iωt+imη+iβψΦ(r, θ, φ, ζ, κ),

we get the equation[
r2(r4 − r4

H + r4
H cosh2 σ)ω2

r4 − r4
H

+
2r2r4

H coshσ sinhσβω
r4 − r4

H

+
r2(−r4 + r4

H cosh2 σ)β2

r4 − r4
H

]
Φ +

r4 − r4
H

r3
∂rΦ + 4r∂rΦ

+
(r4 − r4

H)
r2

∂2
r +∇S5Φ = 0,

(7.15)

where ∇S5 is the Laplacian on a 5-sphere. Equation (7.15) is separable, and
can be separated by using the separation of variables method into a radial and
an angular part Φ(r, θ, φ, ζ, κ) = R(r)S(θ, φ, ζ, κ)[

r2(r4 − r4
H + r4

H cosh2 σ)ω2

r4 − r4
H

+
2r2r4

H coshσ sinhσβω
r4 − r4

H

+
r2(−r4 + r4

H cosh2 σ)β2

r4 − r4
H

+
r4 − r4

H

r3
∂r + 4r∂r

+
(r4 − r4

H)
r2

∂2
r

]
R(r) = KlR(r)

(7.16)

and[
1

sin4 θ
∂θ(sin4 θ∂θ) +

1
sin2 θ sin3 φ

∂φ(sin3 φ∂φ)

+
1

sin2 θ sin2 φ sin2 ζ
∂ζ(sin2 ζ∂z) +

1
sin2 θ sin2 φ sin2 ζ sinκ

∂κ(sinκ)

− m2

sin2 θ sin2 φ sin2 ζ sin2 κ

]
S(θ, φ, ζ, κ) = −KlS(θ, φ, ζ, κ).

(7.17)

The separation constants are Kl = l(l + 4).
The near region limit is taken as in (7.1.1). We define z = 1 − r4

H

r4 and the
radial equation (7.16) is reduced to

16z(1− z)∂2
zΨ + 16(1− z)∂zΨ +

[
− l(l + 4)

1− z
+

1
z
Y 2

]
Ψ = 0 (7.18)

8 Conclusions and Open Questions

Although gravity was the first force to be understood and formulated, it still
keeps its secrets well hidden from the human mind. General relativity is viewed
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as an effective field theory which mainly follows from its lack of renormalizability
and the existence of singularities. This suggests that a proper understanding
of gravity requires the identification of the relevant degrees of freedom in the
ultraviolet (UV). Quantum gravity though is a poorly understood subject. A
way to motivate it is to appeal to the universal link between statistical mechanics
and thermodynamics when studying the black hole-thermodynamics relation.

Thermodynamics is a branch of physics relatively independent of the mi-
croscopic details of the system under consideration. The birth of statistical
mechanics, initiated with Boltzmann’s work explaining the properties of macro-
scopic systems in thermal equilibrium in terms of the statistical averages of their
microscopic degrees of freedom. In black hole physics, it has long been believed
that the information loss about the true microscopic state of the system, respon-
sible for the existence of entropy, is fully localised at the curvature singularity
lying deep in the interior of the black hole. This expectation is challenged by the
holographic principle. Information takes space, and for a black hole, it involves
a classical scale, the horizon scale. This suggests that information about the
state of the black hole, even if typically encoded in Planck scale physics, may
be spread over macroscopic scales, such as the horizon scale, instead of being
merely localised at the singularity. The description of the microscopics and semi
classical methods have recently been developed for extremal and non extremal
black holes in an attempt to understand more realistic black holes by explaining
their macroscopic entropy given by the Bekenstein-Hawking formula

SBH =
A

4~G
,

in terms of degrees of freedom on a two dimensional CFT living on the bound-
ary of the black hole horizon, whose number of independent quantum states is
controlled at large temperatures by the cardy formula

SCFT =
π2

3
(cLTL + cRTR).

The main purpose of this thesis was to examine these methods by reviewing the
original papers [23] and [48] in section 4 and 5. Furthermore we found interesting
to extend the procedure and check if it is also true for black rings in the limit
R→∞ and in the supersymmetric black ring case. Furthermore we continued
and conjectured that the boosted black ring admits conformal invariance in any
dimension. Our thought was that maybe by contributing a bit to the Kerr/CFT
14 correspondence idea will eventually give us more information about the deeper
mysteries of such a correspondence and understand it better. What we did
not do in the above is to calculate the microscopical entropy which naturally
would be the next step after showing like we did that a conformal invariance is
present at the solution space of the massless scalar field on the background under
consideration (except in the supersymmetric case of black ring where SCFT was
computed and matched SBH).

14Actually would be more precise at present to rename Kerr/CFT correspondence into
NHEK/CFT correspondence.
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The assignment of entropy to a classical spacetime raises the question as
for what the microscopic degrees of freedom responsible for the entropy are, for
example what the analogue of the molecules in a gas is for spacetime!

Considering this is a great step that gives us more evidence that a formula-
tion of quantum theory of gravity should exist, the Kerr/CFT correspondence
has not addressed more information about the dual CFT in addition to the
central charge. Therefore, new schemes should be developed to understand the
properties of the CFT and dynamics behind this duality. We get no information
of what is the CFT and what/where are the microstates, these are open ques-
tions that beg for an answer. Another question arises from the use of Cardy
formula and how legitimate it is under these circumstances. In order to use the
Cardy formula modular invariance and T � c is required. In the Kerr/CFT case
we assume the modular invariance part but there is a conflict arising from the
second requirement since 1

2π � c. But the Cardy formula works fine and thus
there must exist a deep reason for it. An argument to the applicability of Cardy
formula in the Kerr/CFT regime was tried in [121] where they showed that the
comparison of the entropy of the extreme Kerr black hole and the entropy in
the CFT can be understood within the Cardy regime by considering a D0-D6
system with the same entropic properties. That way they justified the calcula-
tion of the entropy and provided a string theory embedding of the Kerr/CFT
correspondence. Considering the above one can ask how solid is this matching
between gravity and the CFT (the extreme Kerr as a CFT). Several supporting
evidence exist towards that direction. One comes from the extension of the
procedure to other black holes as we have already mentioned in the introduc-
tion. Also it has been shown in a variety of contexts [122,123,124,125] that the
Kerr scattering amplitudes which have been computed in [126,127,128,129,130]
correspond exactly to the finite temperature CFT correlators.

Considering the hidden symmetry approach several questions are looking for
an answer. Where did the hidden conformal symmetry come from and why does
the Cardy formula work? Is there a generalization of the standard ASG analysis
which can be applied to the r � 1

ω near-region to explain the hidden conformal
symmetry?

One of the fantastic features of the Kerr/CFT correspondence though, is that
it applies to real world. Kerr black holes have been observed in the universe,
data is being continuously collected and analyzed. The observational data may
as well give us the push we need to complete and have a deeper understanding
of the theoretical structure.

In the boosted black string case we showed the existence of a conformal sym-
metry. It would be interesting to continue and compute the statistical entropy
by using the Cardy formula and see if it matches the macroscopic entropy, but
the central charge is missing from the picture. It has not been calculated un-
til now for this particular case. One way maybe to do this is if we knew how
to define the stress tensor of the dual CFT in similar manner to that of the
AdS/CFT correspondence [131]. In the case of the generalized expressions we
presented in this thesis for the boosted black string in section 7, we believe that
a construction of the Casimir as a next step is possible in each dimension and
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maybe a generalized version of the SL(2,R) vectors in D-dimensions should also
be possible.

Another very interesting question that came out from this thesis, is that we
obtained two slightly different radial equations when took the near region limit
of the boosted black string. That is from radial equation (18) from [120] we got
(6.26) and from radial equation (6.23) we got (6.27). This is the outcome of
the different terms ignored in each case. Both equations though are solved by
hypergeometric functions. Which is really more ‘correct‘ between the two? We
think it is something that should be investigated further. Another case that we
find that should be investigated is the neutral black ring, given by the metric
(6.1) or in (r, θ) coordinates by (6.5). It will be the case of future work.

Lastly we would like to mention the universality problem. The microscopic
origin of the Bekenstein-Hawking entropy of black holes is one of the most
intriguing challenges for modern theoretical physics. Its solution is not only
important for delivering a microscopic basis for black hole thermodynamics but
it also represents one crucial test, that any quantum theory of gravity has to
pass. It has been tackled using many different frameworks and approaches such
as String theory, AdS/CFT correspondence, asymptotic symmetries, D-branes,
induced gravity and entanglement entropy, loop quantum gravity. Many of these
approaches reproduce the Bekestein-Hawking black hole entropy, some exactly,
some up to some numerical constant in such a good way that this success is
considered by some physicists almost as a problem [132]. This universality may
suggest that some underlying feature of the classical theory may control the
quantum density of states.

A On Holomorphic and anti-Holomorphic func-
tions

A holomorphic function, is actually a synonym for analytic function. Is a
complex-valued function of one or more complex variables that is complex dif-
ferentiable in a neighbourhood of everypoint in its domain. The existence of
complex derivative is a very strong condition, for it implies that any holomor-
phic function is actually infinite differentiable and equal to its own Taylor series.

Definition Let f : Ω→ C and a ∈ Ω. We say f is holomorphic at a if

lim
z→a

f(z)− f(a)
z − a

, exists.

This is the same as the definition of the derivative for real functions, except that
all of the quantities are complex. Since if limit exists they are unique, we can
give this one the name f ′(a), called the derivative of f at a. If f is holomorphic
at every point of Ω, we say it is holomorphic on Ω. In this case we denote the
derivative by f ′. If we wish to take several derivatives we denote by f (k), the
kth derivative of f . The antiholomorphic function can be seen as the reflection
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of a holomorphic function for instance,

Holomorphic − antiholomorphic
left moving − right moving

x-axis − reflection of x-axis

Lastly, if a function is both holomorphic and antiholomorphic, then it is constant
on any connected component(space) of its domain.

B Energy-momentum Tensor for the Free Scalar
Field

In this section we are going to show how the energy-momentum tensor for the
2D free scalar field is derived. The action for a free scalar field is given by

S =
1

4πα′

∫
d2σ∂αX∂

αX =
1

4πα′

∫
d2σ
√
ggαβ∂αX∂βX (B.1)

where 1
4πα′ is a normalization term which contains conventions originating from

string theory, α′ is the Regge-slope parameter related to the string tension and
string length via Ts = 1

2πα′ and ls =
√
α′, finally

√
g =
√
detg is added because

we went into curved space.
Now by definition we have

Tαβ = − 4π
√
g

∂S

∂gαβ
= − 4π
√
g

∂

∂gαβ

(
1

4πα′
√
ggγδ∂γX∂δX

)
= − 4π
√
g

1
4πα′

∂

∂gαβ
(√
ggγδ∂γX∂δX

)
= − 1
√
gα′

∂

∂gαβ
(√
ggγδ∂γX∂δX

)
= − 1
√
gα′

(
∂
√
g

∂gαβ

)
gγδ∂γX∂δX −

1
α′

(
∂gγδ

∂gαβ

)
∂γX∂δX

= − 1
√
gα′

(
−1

2
√
ggαβ

)
∂γX∂

γX − 1
α′
∂αX∂βX

=
1

2α′
gαβ∂γ∂

γ − 1
α′
∂αX∂βX =

= − 1
α′

(
∂αX∂βX −

1
2
δαβ(∂X)2

)
.

(B.2)

In the first line of the calculation we have changed some dummy indices so not
to conflict with indices of the term

(
∂

∂gαβ

)
. For the first parentheses in the

third line we vary the formula g = detgµν = etrlngµν which gives

δg = δ(etrlngµν ) = etrlngµν trδlngµν = ggµνδgµν
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so

δg = ggµνδgµν thus δ
√
|g| = 1

2

√
|g|gµνδgµν ⇒

δ
√
g

δgµν
=

1
2

√
|g|gµν

the minus sign (−) is being picked up because we need to raise indices δ
√
|g| =

1
2

√
|g|gµνδgµν = − 1

2

√
|g|gµνδgµν . For the second parentheses in the same line

we use the relation ∂gγδ

∂gαβ
= 1

2 (δγαδ
δ
β + δδβδ

γ
α).

The energy momentum tensor (B.2) takes a simpler form in complex coor-
dinates

T = − 1
α′
∂X∂X and T̄ = − 1

α′
∂̄X∂̄X (B.3)

The equation of motion for X is ∂∂̄X = 0. The general solution decomposes as,

X(z, z̄) = X(z) + X̄(z̄). (B.4)

When evaluated on this solution, T and T̄ become holomorphic and anti-holomorphic
functions respectively.

C Operator Ordering

In the Hamiltonian formalism, the transition from classical mechanics to quan-
tum mechanics is achieved by promoting observables to operators which are not
necessarily commuting. Consequently, the Hamiltonian of a classical system is
supposed to go over the quantum operator

H(x, p)→ H(xop, pop)

classically we know that
xp = px

Therefore the order of these operators does not matter. Quantum mechanically
however these terms do not commute so the order of these operators is quite
crucial and it is not clear what such a term ought to correspond in the quantum
theory. This is the operator ordering problem and one perscription to deal
with is the Normal Ordering or Wick Ordering in which in the case of x’s
and p’s, orders the products such that the momenta stand to the left of the
positions or using another example, one might think a product of quantum fields
and equivalently their creation and annihilation operators, where all creation
operators are placed to the left of the annihilation operators in the product.

We denote a Normal ordered operator by : :, for example

: α̂α̂† := α̂†α̂

In quantum field theory normal ordering is the trick used in order to get rid
of the infinite energy of a field’s grounds energy (the expectation value of the
fields ground state). Because of the fact that any normal ordered operator has
a vacuum expectation value of zero

〈0| : Ô : |0〉 = 0 (C.1)
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D Conformal transformation of T — from the
cylinder to the plane

In this section we provide a derivation of (2.32)

− z2Tplane +
c

24
= −

∞∑
m=−∞

Lme
imW +

c

24
⇐⇒

Tplane(z) =
1
z2

∞∑
m=−∞

Lme
imw ⇐⇒

Tplane(z) =
1

e−2iw

∞∑
m=−∞

Lme
imw ⇐⇒

Tplane(z) =
∞∑

m=−∞

1
z2
Lmz

−m ⇐⇒ Tplane(z) =
∞∑

m=−∞

Lm
z2zm

Tplane(z) =
∞∑

m=−∞

Lm
zm+2

(D.1)

Where we used z = e−iw in order to go from the 3rd to the 4th line, this relation
is due to the conformal transformation from the cylinder to the plane.

E Transformation on NHEK Metric (4.7) Under
(4.15)

For the ττ component of the metric, which will be the only one to write down
explicitly we have

Lξgττ = ξr∂rgττ (x)
= −r∂φε(φ)∂r

[
2GJΩ2(−1− r2 + Λ2r2)

]
= −r∂φε(φ)

[
2GJΩ2(−2r − 2Λ2r)

]
= 4GJΩ2

[
r2(1− Λ2)

]
∂φε(φ)

For the rr component of the metric we have

Lξgrr = ξr∂rgrr(x) + grr(x)∂rξr + grr(x)∂rξr

= 2GJΩ2

(
−r∂φε(φ)∂r

(
1

1 + r2

)
+

1
1 + r2

∂r(−r∂φε(φ)) +
1

1 + r2
(−r∂φε(φ))

)
= 2GJΩ2

(
2r2

(1 + r2)2
∂φε(φ)− 2

1 + r2
∂φε(φ)

)
= 4GJΩ2

(
r2

(1 + r2)2
− 1 + r2

(1 + r2)2

)
∂φε(φ)

= −4GJΩ2 ∂φε(φ)
(1 + r2)2
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For the φφ component of the metric we have

Lξgφφ = gφφ(x)∂φξφ + gφφ(x)∂φξφ

= 2GJΩ2Λ2∂φε(φ) + 2GJΩ2Λ2∂φε(φ)
= 4GJΩ2

(
Λ2∂φε(φ)

)
For the φr component of the metric we have

Lξgφr = grr∂φξ
r

= 2GJΩ2 1
1 + r2

∂φ(−r∂φε(φ))

= −2GJΩ2
r∂2
φε(φ)

1 + r2

While the rest of the components give us zero when computed, for instance the
φτ component

Lξgφτ = ξr∂rgφτ (x) + gφτ (x)∂φξφ

= −r∂φε(φ)∂r(2rΛ2) + 2rΛ2∂φε(φ)
= −2rΛ2∂φε(φ) + 2rΛ2∂φε(φ)
= 0

or, the θθ component

Lξgθθ = 0.

We also have to point out, that the metric is symmetric dxµdxν = dxνdxµ,
which is why a factor of two is missing from the cross-terms here, with respect
to (4.17).

F The Cardy formula in Kerr/CFT

The Cardy formula gives the entropy of the two-dimensional CFT as found in
section 2.5 as

S = 2π

√
c∆
6
, (F.1)

where c is the central charge and ∆ is the energy. The temperature of the CFT
is then given by

d∆ = TdS. (F.2)

We proceed by finding the derivative of S with respect to ∆

dS

d∆
=π
(
c∆
6

)− 1
2 c

6
= π

( c
6

)− 1
2 c

6
1√
∆

=π
( c

6

) 1
2 1√

∆
⇐⇒

1
T

=π
( c

6

) 1
2 1√

∆
⇐⇒

√
∆ = π

√
c

6
T
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Substituting back to (F.1) we get

S =2π
√
c

6

√
∆ = 2π2 c

6
T

⇐⇒ S =
π2

3
cT,

which is the form that the authors in the Kerr/CFT correspondence paper [23]
are using.

G Derivation of Klein-Gordon equation of mo-
tion for a massless scalar field

The standard way to specify specify a particle theory is via its Lagrangian.

L = K − V, (G.1)

here K and V are the kinetic energy and the potential energy of the system.
The time integral of the Lagrangian is called the action and is given by,

S =
∫
Ldt (G.2)

In field theory, a distinction is occasionally made between the Lagrangian L, of
which the action is the time integral and the Lagrangian density, which is the
spatial integral of the Lagrangian density

L =
∫
d3xL(φ, ∂µφ) (G.3)

and is a function of the fields and its first derivatives, of which the action is
given by integrating over all space-time,

S =
∫
d4xL(φ, ∂µφ) (G.4)

Considering now the Lagrangian density for a massless scalar field φ which is
given by,

L =
1
2
√
g∂µφ∂

µφ (G.5)

and using the Euler-Lagrange equation of motion,

∂L
∂φ
− ∂µ

∂L
∂(∂µφ)

= 0 (G.6)

we get to the Klein-Gordon equation of motion for a massless scalar field,

∂

∂φ

(
1
2
√
ggµν(∂φ)2

)
− ∂µ

∂

∂(∂µφ)

(
1
2
√
ggµν(∂φ)2

)
= 0 =⇒

=⇒ −∂µ(
√
ggµν∂νφ) = 0 =⇒ ∂µ(

√
ggµν∂νφ) = 0

(G.7)

where gµν is the metric tensor and ∂2 = ∂µ∂
µ.
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H What is the Casimir Operator

The Casimir operator or a Casimir invariance has the property that it commutes
with all elements of the algebra essentially by construction or can say it is
maximally commuting. The ’maximally commuting subalgebra’ is called the
centre. It is the set of all objects that commute with everything, hence the
word maximally. The casimir is an element of the centre.

For example in the case of rotational group, the operator

J2 =
∑
i

J2
i , i = 1, 2, 3 (H.1)

commutes with all generators

[J2, Ji] = 0. (H.2)

Thus J2 is the Casimir operator of the rotation group. Here Ji are the 3x3
matrices of the SO(3) rotational group.

The three commutators of the generators define the algebra of rotation group
and that of SO(3) . It should be noted that the commutators of the generators
define the multiplication rules of the group. Essentially, the generators and
commutators define the ’local’ properties of the group. However the ’global
properties’ are not determined by the generators and commutators of the group.

I Equivalence of boosted black string metrics
(6.14) and (6.19)

In this section we will show that the boosted black string metric given in [119],
and is

ds2 =−
(

1− cosh2 σ
rH
r

)
dt2 + 2

rH
r

coshσ sinhσdtdψ

+
(

1 + sinh2 σ
rH
r

)
dψ2 +

(
1− rH

r

)−1

dr2 + r2dΩ2
2,

(I.1)

is equal to the boosted black string metric given in [120]

ds2 = −f̄
(
dt− rH sinh 2σ

2rf̄
dψ

)2

+
f

f̄
dψ2 +

1
f
dr2 + r2dΩ2

2, (I.2)

where dΩ2
2 = dθ2 + sin θ2dφ2, f = 1 − rH

r , f̄ = 1 − rH cosh2 σ
r and sinh 2σ =

2 sinhσ coshσ.
The metric (I.1) seems pretty straight forward (note that is being computed

for D=5 where D is the number of dimensions). Performing some algebra to
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(I.2) we get

ds2 =−
(

1− rH cosh2 σ

r

)
dt2 + 2

rH
r

coshσ sinhσdtdψ

− r2
H sinh2 σ cosh2 σ

r2(1− rH cosh2 σ
r )

dψ2 +
1− rH

r

1− rH cosh2 σ
r

dψ2 +
(

1− rH
r

)−1

dr2

+ r2dΩ2
2.

(I.3)

The two metrics seem pretty similar. The only thing that is left is to equal
the third and fourth term from (I.3) with the third term on (I.1). Doing some
algebra on the third and fourth term we have:

− r2
H sinh2 σ cosh2 σ

r2(1− rH cosh2 σ
r )

dψ2 +
1− rH

r

1− rH cosh2 σ
r

dψ2 =
(
rH cosh2 σ + r − rH

r

)
dψ2 =

=
(
rH(sinh2 σ + 1) + r − rH

r

)
dψ2 =

(rH
r

sinh2 σ +
rH
r

+
r

r
− rH

r

)
dψ2 =

=
(

1 +
rH
r

sinh2 σ
)
dψ2

Where we used the relation, cosh2 σ − sinh2 σ = 1. With this last result we see
that (I.1) = (I.2).

J The n-sphere metric

The Sn volume element is given by the relation

dΩ2
n−2 = dα2

1 + sin2 α1

(
dα2

2 + sin2 α2

(
· · ·+ sin2 αn−3dα

2
n−2

))
. (J.1)

Some examples follow to get maybe a better feeling of (J.1). For

2-sphere =⇒ ds2 = dθ2 + sin2 θdφ2

3-sphere =⇒ ds2 = dθ2 + sin2 θ(dφ2 + sin2 φdζ2)

4-sphere =⇒ ds2 = dθ2 + sin2 θ(dφ2 + sin2 φ(dζ2 + sin2 ζdκ2))

5-sphere =⇒ ds2 = dθ2 + sin2 θ(dφ2 + sin2 φ(dζ2 + sin2ζ(dκ2 + sin2κdη2)))

From the above we can see that, in each increase in the dimension of a sphere
an angle is being added.

Acknowledgements

I would like to thank my supervisor Niels Obers and my co-supervisor Kon-
stantinos Zoubos of whom without the help and guidance this thesis would not
have been possible to make. For the patience and understanding they demon-
strated throughout the whole process and the time they dedicated for me from

66



the beginning of this thesis until the very end of it. Furthermore I would like
to thank Niels Bohr Institute (N.B.I) that initially offered me a place to their
master thesis degree program and gave me the chance to learn so many things
and socialize with this group of people called physicists. I actually had a lot of
fun among other things. In total it was a remarkable experience, thank you!

Until next time . . . !

Afterthought...

I would like to close this thesis with a thought.
— It seems to me that theoretical scientists around the world, people with

high education and very smart in their own field what are really trying to do
is to see nature as a whole. That is to bring about a unification of the several
theories into one undivided and inseparable unified theory. One wonders if that
is possible. Going into that question, we can see that these theories were created
by thought. Thought is the accumulation of knowledge and past experiences.
Since thought is limited in its own perspective, as we seem to need more and
more knowledge, one can say that through thought we will not be able to achieve
that which is total-complete. Thought brings about a fragmentation as the
theories we have are fragmented. and a mind bind to thought is limited. It
seems to me that only a mind capable free from the limitation of thought will
be able to perceive this unity and wholeness. Considering the above statements
mathematics will not be able to do that because they are a creation of thought,
thus limited. The question that arises then is. Does such a mind exist, a mind
not limited by thought and what is the state of that mind? I am not saying in
any way that a scientific mind which is solely based on knowledge and discovery
is its mission should not act. On the contrary a scientific approach is most wise,
unprejudiced and precise. —–
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