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Introduction

One of the main problems in supersymmetric gauge theories is to understand the low-energy
dynamics. This is particularly important since the N = 1 supersymmetric gauge theories
in four space-time dimensions are believed to exhibit some of the same non-perturbative
phenomena as QCD, e.g. confinement, mass gaps and chiral symmetry breaking. Investiga-
tion of the low-energy physics is, however, difficult due to the strong coupling of the gauge
theory. But due to a remarkable conjecture by R. Dijkgraaf and C. Vafa it is now possible
to systematically obtain the exact effective glueball superpotential in a wide range of N = 1
supersymmetric gauge theories in four space-time dimensions. With the glueball superpo-
tential we can e.g. calculate the values of the gaugino condensates and for the corresponding
chiral symmetry breaking we can find the tension of the associated domain walls.

The Dijkgraaf-Vafa conjecture tells us that the full glueball superpotential is a sum of
a potential which is perturbative in the glueball superfield and the Veneziano-Yankielowicz
superpotential [1] for the supersymmetric Yang-Mills theory. Furthermore, the perturbative
part is related in a simple way to the free energy of an associated matrix model. For a U(N)
gauge group and matter in the form of an adjoint chiral superfield we should take the planar
limit for the matrix model. More generally, for gauge groups and matter representations
allowing a double line notation we should also consider the contribution to the free energy of
the matrix model from diagrams with Euler characteristic χ = 1, that is, with the topology
of the projective plane or the disk. So we have a dramatic simplification in calculating the
glueball superpotential both to the zero-momentum modes of the matrix model and further
to planar and perhaps χ = 1 diagrams. Also the gauge couplings are related to the free
energy of the matrix model.

Originally, the conjecture arose from considerations in string theory. In a series of articles
large N dualities in string theory were investigated and led to the relation between the
glueball superpotential and the free energy of the matrix model in [2] and [3]. In [4] this
was summarised and the general conjecture was stated entirely within gauge theory and
further a sketch of a field theoretic proof was given. Proofs of the conjecture (for the form
of the perturbative part of the effective superpotential) given entirely within gauge theory
followed shortly. For the case of N = 2 supersymmetric Yang-Mills theory broken to N = 1
by a tree-level superpotential a proof was given using factorisation of Seiberg-Witten curves
in [5]. In the slightly more general case of an N = 1 supersymmetric theory with U(N)
gauge group and an adjoint chiral superfield a diagrammatic proof was given in [6], and a
proof using generalised Konishi anomalies was given in [7]. Special cases have been proven
using these methods in a large number of articles. A perturbative proof for the reduction
to the zero-momentum modes of the matrix model for general gauge groups and (massive)
matter representations was given in [8].

The aim of this thesis will be to give a thorough and pedagogical introduction to the
Dijkgraaf-Vafa conjecture and the concepts needed to understand the conjecture. We will
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2 CONTENTS

work entirely within supersymmetric gauge theories. Our prime example will be an N = 1
supersymmetric gauge theory with a U(N) gauge group and matter in the form of an adjoint
chiral superfield. But we will also see how the Dijkgraaf-Vafa conjecture can be used to obtain
exact superpotentials and we will see that the matrix model also captures the form of the
non-perturbative Veneziano-Yankielowicz superpotential. Furthermore, we will in detail go
through the diagrammatic proof of the conjecture.

The outline of the thesis is as follows. In the first chapter we will introduce supersym-
metry. We will establish the supersymmetry algebra as the unique extension of the Poincaré
algebra and consider its representations, the supermultiplets. The focus will then be on the
N = 1 supersymmetric field theories using chiral and vector superfields, but we will also
consider N = 2 supersymmetric theories.

The main chapter is the second chapter. We will start by introducing the Dijkgraaf-Vafa
conjecture in our prime case of a U(N) gauge group with adjoint chiral matter. Since most
of the concepts in the conjecture needs explaining, the rest of the chapter will be devoted to
this. We will start by introducing the supersymmetric vacua and the vacuum moduli space
and then consider these in our special case. Especially, we will explain the breaking of the
gauge group and the non-zero masses needed in the conjecture. We will then consider the
quantised theory and introduce the supergraphs. With these we will prove the perturbative
non-renormalisation theorem. To understand the effective superpotential we will present the
Wilsonian renormalisation and the integrating out procedure. In section 2.5 we will then
investigate the Wilsonian effective superpotential. We will introduce the important concept
of holomorphy and use it together with the symmetries of the theory to prove the non-
renormalisation theorem more generally and to constrain the form of the non-perturbative
corrections. We will here also need to learn about instantons and chiral anomalies. We will
then go on and introduce the ILS linearity principle and the concept of “integrating in” which
we will use to define the glueball superpotential. After explaining the lore of the low energy
gauge dynamics including phases, confinement, mass gaps and chiral symmetry breaking,
we will use the integrating in procedure to derive the form of the Veneziano-Yankielowicz
superpotential and then we will consider the glueball superpotential in our special case.

After introducing the double line notation and the ’t Hooft large N limit in section 2.6,
we will consider the matrix model in section 2.7. Here we will first present the diagrammatic
approach; also for the broken gauge group using ghosts. We will then see that the measure
of the matrix model gives a term with the same form as the Veneziano-Yankielowicz super-
potential under the Dijkgraaf-Vafa conjecture. The exact solution for the planar limit of the
matrix model is then examined and we will obtain algebraic equations for the one-cut solu-
tion. In section 2.8 we will use these and the Dijkgraaf-Vafa conjecture to obtain the exact
glueball superpotential for a cubic tree-level superpotential. We will here see that we get a
term in the matrix model which exactly matches the Veneziano-Yankielowicz superpotential.

At the end of the chapter we will discuss the problem of the nilpotency of the glueball
superfield and how to interpret the full effective superpotential obtained via the matrix
model. Finally, we will state the Dijkgraaf-Vafa conjecture for classical gauge groups with
adjoint and fundamental matter.

In the third and last chapter we will present the diagrammatic proof of the conjecture.
The main focus we will be on the U(N) case, but we will also consider general gauge groups
and matter allowing a double line notation. We will give a detailed proof for the case where
we take into account the abelian part of the supersymmetric gauge field strength. At last we
will show the reduction to zero-modes for general gauge groups and matter representations.

In appendix A we will present our notation. In appendix B we show that the Minkowski



space can be seen as cosets in the Poincaré group. The spinors and the notation for these
will be introduced in appendix C. The general Lagrangian for an N = 2 supersymmetric
Yang-Mills theory is derived in Appendix D. Finally, in appendix E we will show how to
calculate some integrals needed in the one-cut solution of the matrix model.

3



Chapter 1

Supersymmetry

In this chapter we will introduce the concept of supersymmetry. While being introduced in
the early 1970s there has been no experimental evidence for this theory. But as shown in
the next section it is natural to consider supersymmetric theories since supersymmetry is
the unique extension of the Poincaré algebra. We will, however, give no other motivation
than the simple beauty of the results derived in this thesis. Our introduction to super-
symmetry will follow a theoretic stream of logic rather than a chronological and it is based
on [9], [10], [11], [12], [13] and [14].

1.1 Supersymmetry Algebras

In this section we will introduce the supersymmetry algebra.

1.1.1 The Coleman-Mandula Theorem

Given a relativistic quantum field theory we can ask ourselves which symmetries we can have
beyond the manifest Poincaré invariance. Supposing that the symmetry generators form a
Lie algebra in the usual way, the answer was given in 1967 by Coleman and Mandula (here
taken from [10]):

Coleman-Mandula. Given that

1. For any mass M there are only a finite number of particle types with mass less than
M .

2. Any two-particle state undergoes some reaction at all energies except perhaps an iso-
lated set.

3. The amplitudes for elastic two-body scattering are analytic functions of the scattering
angle at all energies and angles except perhaps an isolated set. (Analyticity of the
S-matrix).

then the most general Lie algebra of symmetry generators consists of Pµ, Jµν (i.e. the
Poincaré algebra) and possibly internal symmetry generators commuting with the Poincaré
generators and being independent of spin and momentum.

Here symmetry generators are defined as hermitian operators that commute with the S-
matrix, whose commutators are again symmetry generators, that take single particle states
into single particle states, and that act on multiparticle states as the direct sum of their action

4



1.1. SUPERSYMMETRY ALGEBRAS 5

on single particle states. For definition of the Poincaré algebra please see appendix B. It
should be noted that in the massless case the Poincaré algebra can be extended to the algebra
of the conformal group. We will not go through the rather lengthy proof of the Coleman-
Mandula theorem here, but just remark that it is based on the fact that the Poincaré
symmetry of a scattering process only leaves the scattering angle unknown. Extra symmetry
would restrict this angle to a discrete set. Hence the scattering amplitude would be zero by
analyticity in contradiction with assumption number 2.

1.1.2 Superalgebras

The way to get around the Coleman-Mandula theorem is to introduce fermionic symmetry
generators which do not satisfy commutation relations like in Lie algebras, but rather an-
ticommutation relations. Hence instead of searching for the most general Lie algebra, we
search for the most general Z2-graded algebra also known as Lie superalgebra. This is defined
as a Z2-graded vector space V = V0 ⊕ V1. The elements A of V0 are called bosonic and are
given a grading |A| = 0. The elements of V1 are called fermionic and are given grading
|A| = 1. The superalgebra has a bilinear form [−,−} fulfilling

[−,−} : Vi × Vj → Vi+j (mod 2),

[A,B} = −(−1)|A||B|[B,A}. (1.1)

The bilinear form must obey the generalised super-Jacobi identity:

(−1)|A||C|[[A,B}, C} + (−1)|B||A|[[B, C},A} + (−1)|C||B|[[C,A},B} = 0. (1.2)

We note that the bosonic space with the restricted bilinear form is a Lie algebra. If it is
possible to take products of operators we see that the brackets are realisable as:

[A,B} = AB − (−1)|A||B|BA. (1.3)

These brackets reduce to commutators on the bosonic space and anticommutators on the
fermionic space. Thus in general we will use [−,−] on bosonic operators or a mix of bosonic
and fermionic operators, and we will use {−,−} on fermionic operators. Now according
to (1.1) the bracket of a bosonic operator with a fermionic operator is again a fermionic
operator. The super-Jacobi identity tells us that this actually gives a representation: The
fermionic space furnishes a representation of the bosonic Lie subalgebra.

1.1.3 The Haag-Sohnius-Lopuszanski Theorem

Let us now ask ourselves the question: What is the most general Lie superalgebra of sym-
metries under the assumptions of the Coleman-Mandula theorem? The answer was given by
Haag, Sohnius and Lopuszanski. In four space-time dimensions (which we will use through-
out this thesis) there is one unique solution namely the (extended) supersymmetry algebra:

[Pµ,Pν ] = 0, (1.4a)

[Pµ,QAα ] = [Pµ, Q̄Bα̇] = 0, (1.4b)

{QAα , Q̄Bβ̇} = 2 (σµ)αβ̇ PµδAB , (1.4c)

{QAα ,QBβ } = εαβZAB , (1.4d)

{Q̄Aα̇, Q̄Bβ̇} = εα̇β̇Z
†
AB . (1.4e)
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Here the fermionic generators are the supercharges QAα and Q̄Aα̇ =
(

QAα
)†

where A =

1, . . . ,N . As the indices α and β̇ indicate, the supercharges transform under the homogenous
Lorentz group in the (1

2 , 0) and (0, 1
2 ) representations respectively (left/right Weyl spinors).

For spinorial representations please see appendix C where also σµ is defined in (C.10). As
shown in the appendix these two conjugate Weyl spinors can be put together to form a
Majorana spinor. Hence the fermionic generators consist ofN Majorana spinorial generators.
The representation of the supercharges determines their commutation relations with Jµν and
hence we have left these out. We have also left out commutation relations with the internal
symmetries as we will not need them. ZAB and its hermitian conjugate are central charges
i.e. they commute with all other symmetry generators including the internal symmetries.
Please note that they are antisymmetric by definition of the anticommutator.

The Haag-Sohnius-Lopuszanski theorem has three assumptions besides those given in
the Coleman-Mandula theorem: The fermionic operators Q operate in a Hilbert space with
positive definite metric. If Q is a fermionic generator then so is the hermitian conjugate
Q†. At last we will assume physical states with −P2 ≥ 0 and P0 > 0. We will not prove
the whole theorem here, but we will see why we only have Majorana spinors and how (1.4c)
comes about.

As described above the bosonic part of the superalgebra constitute a Lie algebra and by
the Coleman-Mandula theorem this Lie algebra is generated by Pµ, Jµν and possibly inter-
nal symmetries. As we also saw the fermionic space is a representation of this Lie algebra.
The Lorentz generators constitute a subalgebra of the bosonic algebra and hence the Q’s
furnish a representation of the homogenous Lorentz group. Referring to appendix C the
representations of the proper orthochronous Lorentz group can be labelled by (j+, j−) cor-
responding to the product of conjugate spin j+ ∈ N0/2 and spin j− ∈ N0/2 representations.

Now (following [10]) we can label the Q’s according to this: Qj+j−m+m− with m± = −j±, . . . , j±.
By the spin statistics theorem j+ + j− must be a half integer since the Q’s anticommute .
But we can do better. Let us look at

{Qj+j−m+m−
,
(

Qj+j−m+m−

)†
}, (1.5)

where we used the assumption that the hermitian conjugate of a fermionic generator is again

a fermionic generator. Since it is the conjugate,
(

Qj+j−m+m−

)†
must transform in the (j−, j+)

representation. Actually
(

Qj+j−m+m−

)†
∼ Qj−j+−m−,−m+

. By the usual addition of spin (1.5),

which belong to the bosonic space by (1.1), can now be expanded in bosonic operators XCDcd
transforming in the (C,D) representation where C,D = |j+ − j−|, . . . , j+ + j−. Using the
properties of Clebsch-Gordan coefficients one can see that the top component fulfils:

X j++j−,j++j−
j++j−,−j+−j−

= {Qj+j−j+,−j−
,
(

Qj+j−j+,−j−

)†
}.

The Coleman-Mandula theorem tells us that the right hand side, being a part of the bosonic
Lie algebra, is a linear combination of internal symmetries, Pµ’s, and Jµν ’s. The internal
symmetries belong to the (0, 0) representation since they are Lorentz invariants, the Pµ’s
belong to the (1

2 ,
1
2 ) representation (appendix C) while Jµν transforms in the (1, 0) ⊕ (0, 1)

representation.1 Looking at the left hand side this leaves us with the possibilities j+ + j− =

1The last part is not shown in appendix C, but it is shown that on spinors the representation of Jµν namely
Σµν is a linear combination of (σµν) β

α and (σ̄µν)α̇
β̇. By lowering the indices these are actually symmetric.

Hence by spin addition (σµν)αβ is the symmetric part of spin zero plus spin one. Since the antisymmetric
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0, 1
2 . Since j+ + j− should be half integer we must have j+ + j− = 1

2 . For j+ + j− 6= 1
2

we conclude that Qj+j−j+,−j−
= 0 since the Hilbert space by assumption has a positive definite

metric. By raising and lowering we then have Qj+j−m+m− = 0 in the case of j+ + j− 6= 1
2 and

for all m±. Consequently we can choose a basis of fermionic generators as QAα and their
hermitian adjoints Q̄Aα̇ as wanted. Now (1.5) reduces to:

{QAα , Q̄Bβ̇} = 2NA
B (σµ)αβ̇ Pµ, (1.6)

where we have used the correspondence between 4-vectors and the (1
2 ,

1
2) representation

from appendix C. (σµ)αβ̇ Pµ is (according to [10]) positive definite if (and only if) we use

the assumption that the states fulfil −P 2 ≥ 0 and P 0 > 0. Since the anticommutator is
positive definite we see that the N -matrix is positive definite. By (1.6) NA

B is also hermitian
(Pµ is hermitian) and hence we can redefine our fermionic operators such that NA

B 7→ δAB .
We thus end up with (1.4c). The rest of the proof of the Haag-Sohnius-Lopuszanski theorem
follows using spin addition as above and the super-Jacobi identity. It should be noted that
in the massless case an extension to a superconformal algebra is allowed.

If N > 1 the algebra (1.4) is referred to as the extended supersymmetry algebra. If
N = 1 it is just called the supersymmetry algebra. In this case the central charges are zero
by antisymmetry. The N = 1 algebra then simplifies to:

[Pµ,Qα] = [Pµ, Q̄α̇] = 0.

{Qα, Q̄β̇} = 2 (σµ)αβ̇ Pµ.
{Qα,Qβ} = {Q̄α̇, Q̄β̇} = 0. (1.7)

This algebra can actually be written in a more compact form using the Majorana notation
for the supercharges (C.28):

QM ∼
(

Qα
Q̄α̇
)

. (1.8)

Using this, the supersymmetry algebra becomes:

[Pµ,Qa] = 0.

[Qa,Qb] = −2γµabPµ. (1.9)

Here we have used Latin indices for the Majorana spinors. The γ-matrices are defined
in (C.14). Please note that the last index on the γ-matrices has been lowered using the
charge conjugation matrix as defined in appendix C.

1.1.4 R-Symmetry

Without central charges the extended supersymmetry algebra (1.4a)–(1.4e) is invariant under
the unitary transformations:

QAα 7→ UABQBα , U ∈ U(N ).

These automorphisms are called R-symmetries and the group is denoted U(N )R. We can
split the group in an abelian and a non-abelian part denoted U(1)R and SU(N )R respectively.
In the case of N = 1 only U(1)R survives. The R-symmetries are not necessarily symmetries
of the actions we define, but we will generally choose the actions in such a way that they are
symmetric. However, quantum mechanically U(1)R will often be broken by anomaly effects
as we will see in section 2.5.4.

tensor εαβ is invariant (i.e. spin zero) (σµν)αβ must be spin one or rather in the (1, 0) representation

(0 ⊕s 1 = 1). Hence (σµν) β
α and (σ̄µν)α̇

β̇ transform respectively in the (1, 0) and (0, 1) representations.
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1.2 Supermultiplets

In this section we will find the 1-particle finite-dimensional unitary representations of the
supersymmetry algebra.

1.2.1 The Wigner Method

Since the Poincaré algebra is non-compact it is a theoretical fact that it is not possible to
find any finite-dimensional unitary representations. The way to find unitary representations
is then to use the Wigner method of induced representations. The idea is simply to fix the
non-compact transformations i.e. the translations and the boosts.

To be more precise let us first remark that2 P 2 is a Casimir operator of the Poincaré
algebra and since Pµ commutes with the supercharges it is a Casimir for the whole super-
symmetry algebra. Thus P 2 is constant on the irreducible representations by Schur’s lemma.
Let us now diagonalise the commuting Pµ’s such that each state is labelled by pµ satisfy-
ing the equation of motion p2 = −M2. Consider now some conventional value of pµ. The
subgroup of the Poincaré group leaving this momentum invariant is called the little group.
This group is independent of the choice of momentum on the mass shell since the invariance
groups are adjointly related by Lorentz transformations and hence isomorphic. The idea
is that the little group is either compact or, if it is not, we will compactify it. Hence it
has unitary finite-dimensional representations. These induce unitary representations of the
whole Poincaré algebra. This is done since the vector space, V , of the representation of the
little group trivially defines a vector bundle on the mass shell. The states can now be seen
as the sections, φ(p), of this vector bundle taking values in V . These sections are acted upon
by the whole Poincaré group in a natural way by simply splitting a Poincaré transformation
into the part belonging to the little group and the part changing pµ. The first part simply
works under the chosen representation on the vector-valued φ and the last part changes
the momentum (as defined in (B.3)). The space of sections is of course infinite-dimensional
because of the continuous parameter pµ, however, V is finite dimensional.

Since the supercharges commute with Pµ and hence leave the momentum parameter
invariant they can be included in the algebra of the little group thus defining the little super-
group. It is the irreducible representations of this group that we are looking for. Naturally,
the representations of the little supergroup are reducible when we see these as representa-
tions of the little group. Thus different particle (Poincaré-) representations will be related
by supersymmetry and the representations of the little supergroup are hence called super-
multiplets.

Since P 2 is a Casimir all particles in a supermultiplet have the same mass. Yet another
feature of the supermultiplets is that they have an equal number of bosonic and fermionic
states. This is readily seen (following [9]) by introducing the fermion number operator NF

defined such that it commutes with the bosonic operators and (−1)NF anticommutes with

2We use normal font for the operators since we now look at representations.
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Qα. We thus see:3

Tr
(

(−1)NF {QAα , Q̄Bβ̇}
)

= Tr
(

(−1)NFQAαQ̄Bβ̇ + (−1)NF Q̄Bβ̇Q
A
α

)

= Tr
(

−QAα (−1)NF Q̄Bβ̇ +QAα (−1)NF Q̄Bβ̇

)

= 0,

where we have used the cyclicity of the trace for the last term in the second equality. Us-
ing (1.4c) the left hand side is equal to 2 (σµ)αβ̇ δ

A
B Tr

(

(−1)NFPµ
)

. Choosing the momentum

and the indices properly this gives Tr
(

(−1)NF
)

= 0 proving that we have an equal number of
fermionic and bosonic states. Hence each particle has a superpartner of opposite fermionic
parity.

1.2.2 Massless Supermultiplets

The massless supermultiplets are phenomenologically the most interesting. This is because
supersymmetry has not been observed in nature. Hence supersymmetry must be broken
at the energies of modern accelerators. The masses of the particles are hence negligible
compared to the high energy at which we (might) have supersymmetry.

In the case of massless multiplets, i.e. P 2 = 0, we boost to the momentum pµ ∼
(−E, 0, 0, E) where E is some conventional energy. The little group is in this case SO(2) or
rather spin(2) since we represent the spin group rather than the Lorentz group. However,
also the generators K1 − L2 and K2 − L1 are in the algebra of the little group (Li and
Ki are defined in (C.1)). But we remove these by hand since they render the little group
non-compact and the corresponding continuous parameters are not seen in nature. The
spin(2) group is generated by a single generator which with our choice of momentum is L3.
The representations of this are one-dimensional and indexed by the eigenvalue of L3, the
helicity λ. Because a rotation by 4π can continuously be deformed into the identity we have
λ ∈ Z/2.4

In the specified frame (1.4c) becomes:

{QAα , Q̄Bβ̇} = 2

(

2E 0
0 0

)

αβ̇

δAB . (1.10)

Since we assumed a positive definite inner product, {QA2 , Q̄A2̇} = 0 (no sum) shows that
QA2 = Q̄A2̇ = 0. Inserting this into (1.4d) and (1.4e) further shows that all the central
charges vanish. The only non-zero supercommutator left is:

{QA1 , Q̄B1̇} = 4EδAB . (1.11)

After rescaling, this is simply the algebra of N fermionic creation and corresponding anni-
hilation operators. Using that QAα transforms as (using (C.27)):5

[Jµν , QAα ] = −i (σµν) β
α QAβ , (1.12)

3The trace is well-defined since we use a finite-dimensional representation. However, if supersymmetry is
broken states can be mapped out of the Hilbert space as we will see in section 2.2 – hereby dismissing the
proof.

4As explained in appendix C the first homotopy group of the proper orthochronous Lorentz group is Z2

so we need a double loop to get the identity: exp
(

i4πL3
)

= 1
5Please note the minus sign on the right hand side. This sign is of course determined by the super-Jacobi

identity. In the same way as we found in section B.3 that Pµ transforms in the vector representation, this
sign makes sure that Qα transforms in the ( 1

2
, 0) representation.



10 CHAPTER 1. SUPERSYMMETRY

Table 1.1:
N 1 1 2 2 3 4

Name Gauge Chiral Gauge Hyper Gauge Gauge

λ = 1 1 0 1 0 1 1

λ = 1/2 1 1 2 1+1 3+1 4

λ = 0 0 1+1 1+1 2+2 3+3 6

λ = −1/2 1 1 2 1+1 1+3 4

λ = −1 1 0 1 0 1 1

Total number 4 4 8 8 16 16

The number of massless states in global supersymmetry-multiplets for each helicity λ.
CPT-invariance of the supermultiplets is assumed. Plus-signs are used to indicate when

states of the same helicity stem from CPT doubling. Based on table in [13].

and L3 = J12 we get:
[L3, QA1 ] = −1

2Q
A
1 . (1.13)

This shows that QA1 lowers the helicity by 1/2 and hence Q̄B1̇ raises the helicity by 1/2.
Now we can construct the multiplets. Since they should be finite-dimensional there must be
some state Ωλmin

with lowest helicity λmin defined by:

QA1 Ωλmin
= 0, A = 1, . . . ,N . (1.14)

This state must be non-degenerate for the sake of irreducibility of the supermultiplet. All
other states are obtained by raising:

Ωλmin+1/2n,A1,...,An
= NQ̄An1̇ · · · Q̄A11̇

Ωλmin
, (1.15)

where N is a proper normalisation factor. These states transform as rank n antisymmetric
tensors under the SU(N )R symmetries and hence they are

(N
n

)

-fold degenerate as helicity
eigenstates. We also see that we reach a highest helicity state with helicity λmin + N/2
by raising with all the different Q̄A1̇’s. Thus the total number of states is

∑N
n=0

(N
n

)

=
2N . However, CPT reverses the sign of helicity so if we want a CPT-invariant theory we
must directly sum each multiplet with its CPT-conjugate antimultiplet having the opposite
helicities.6

Now we can tabulate all massless multiplets. However, we are only interested in multi-
plets with helicities |λ| < 3

2 since otherwise the only consistent couplings require gravitation
– and we will only deal with global supersymmetries. The result is given in table 1.1 . We
note that the spectra for N = 3 and N = 4 are the same – they are in fact equal. We also
observe that the number of bosonic and fermionic states are the same as expected.

The reason that some of the supermultiplets are called gauge multiplets is of course that
they contain two states with helicities 1 and −1 respectively i.e. making up a massless gauge
boson. These are always followed by the superpartner – a fermion made out of helicity ±1/2
states i.e. a Weyl (or Majorana) fermion called the gaugino. Please note that only in special
dimensions it is possible to make a gauge multiplet as shown in section C.6.

6In the case of N = 2 we have a helicity-symmetric multiplet with 2 helicity zero particles transforming
as a SU(2)R doublet. We could ask if this is not its own antimultiplet. But this can not be true since the two
particles would then be real and thus could not transform as a SU(2)R doublet. However, for N = 4 we have
a multiplet that is its own antimultiplet. This is possible since here the 6 helicity zero particles transform as
a rank 2 antisymmetric tensor under SU(4)R. This is actually the vector representation of SO(6) which is
real.
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The chiral multiplet is a matter multiplet consisting of one Majorana fermion, say a
quark, along with its superpartner a complex scalar called the squark.

1.2.3 Massive Supermultiplets

In the case of massive supermultiplets we boost to the rest frame with 4-momentum pµ ∼
(−M, 0, 0, 0). Thus the little group is SO(3) or rather its spin cover SU(2). Hence we get
states described by spin j ∈ N0/2 and m = −j, . . . , j.

We will here assume that the central charges are all zero. Consequently the only non-zero
supercommutator is (1.4c) and it takes the form:

{QAα , Q̄Bβ̇} = 2Mδαβ̇δ
A
B . (1.16)

This shows that we now have 2N fermionic creation and corresponding annihilation opera-
tors. As before we start from a “vacuum”, Ω, defined by

QAαΩ = 0, α = 1, 2, A = 1, . . . ,N . (1.17)

However, this time the state needs not be non-degenerate, but can be in some spin represen-
tation. Again all other states are built by making all possible raisings (N is a normalisation
factor):

NQ̄Anα̇n · · · Q̄A1α̇1Ω. (1.18)

This is a rank n tensor under the SU(N )R symmetries. But from (1.16) we see that we
also have a SU(2) symmetry in the spinorial α index.7 The state (1.18) is also a rank n
tensor under this symmetry group. However, it is only antisymmetric if we pairwise change
the indices Aiαi. Thinking of this paired index as one index taking 2N values, we see that
we have

(

2N
n

)

states with n raisings. Thus the total number of states is
∑2N

n=0

(

2N
n

)

= 22N

multiplied with the dimension of the spin representation of the vacuum.
The states (1.18) can be spin summed using Clebsch-Gordan coefficients to gain spin

eigenstates. We can, however, easily determine the state with maximal spin. To gain this
state we must symmetrise in as many spin-1

2 indices α̇ as possible (remembering that a pair of
antisymmetric indices is spin zero since εα̇β̇ is an invariant tensor). However, since the indices
should be pairwise antisymmetric the Ai-indices must simultaneously be antisymmetrised.
Hence we can maximally symmetrise in N spin indices adding spin 1

2N to the vacuum Ω.
Consequently, in order to avoid states with spin 3/2 or more we can only have N = 1, 2.

In the case of N = 1 we can start from a spin 0 “vacuum” and get the chiral multiplet
with a complex scalar and one Majorana fermion. We can also start from a spin 1

2 vacuum
getting a gauge multiplet with a scalar field, a Dirac fermion and a gauge boson.

In the case of N = 2 we have to start from a spin 0 vacuum and we will have 5 scalars,
4 Majorana spinors and one gauge boson.

1.3 N = 1 Supersymmetric Field Theories

Instead of venturing ahead combining fields to make supersymmetric Lagrangians it is possi-
ble in the case of N = 1 supersymmetry to define the superspace. This is the analog of what
Minkowski space is to the Poincaré algebra. Supersymmetry can then be realised as differ-
entials of fields defined on superspace and it will be easy to make manifestly supersymmetric
Lagrangians.

7Actually the full symmetry group of the massive algebra is SO(6).
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1.3.1 Superspace

Let us define anticommuting Grassmann numbers ξα and ξ̄α̇. These anticommute with each
other and with the fermionic operators while they commute with the bosonic operators.
Please note that they have indices like Weyl spinors and we will use the same summing,
raising and lowering conventions as for Weyl spinors. Using ξ and ξ̄ we can turn the anti-
commutators of the N = 1 supersymmetry algebra into commutators (here assuming that
the super-bracket is realisable as an (anti)commutator):

[ξQ, ξ̄Q̄] = ξQξ̄Q̄ − ξ̄Q̄ξQ = −ξα{Qα, Q̄β̇}ξ̄β̇
= 2ξσµξ̄Pµ. (1.19)

The rest of the commutators with ξQ and ξ̄Q̄ are zero.
Since we now only have commutation relations, we can form the Lie supergroup by

exponentiating the generators of the supersymmetry algebra, but with the supercharges
having Grassmannian coefficients. The Baker-Campbell-Hausdorff formula then applies as
usual. We note that the supersymmetry algebra forms a semi-direct product of the Lorentz
generators with the momentum generators and supercharges.8 This means that we are in
the same situation as in appendix B where the Minkowski space is defined as cosets of the
Lorentz group in the Poincaré group. Now we define superspace as cosets of the Lorentz
group in the Lie supergroup. In analogy with (B.6) the cosets can uniquely be written as:

ei(−x
µPµ+θQ+θ̄Q̄)GLorentz, (1.20)

where we denoted the Grassmannian coefficients by θα and θ̄α̇. This gives us a one-to-one
correspondence between the cosets modulo the Lorentz group and superspace coordinates
(x, θ, θ̄).9

In analogy with section B.3 the action of the Lie supergroup on the superspace is deter-
mined by left multiplication of the group on the cosets. This means that translations work
as usual: xµ 7→ xµ + τµ. Multiplication with exp(iωµνJµν) shows that xµ transforms as a
vector and that θ and θ̄ transform as left and right Weyl spinors respectively. The super-
translations with ξ and ξ̄ are easily obtained using the Baker-Campbell-Hausdorff formula
(since only the first commutator is non-zero):

ei(ξQ+ξ̄Q̄)ei(−x
µPµ+θQ+θ̄Q̄) = e

i
(

−xµPµ+(θ+ξ)Q+(θ̄+ξ̄)Q̄+i
1
2 [ξQ+ξ̄Q̄,θQ+θ̄Q̄]

)

= ei(−(xµ+iθσµξ̄−iξσµθ̄)
µ
Pµ+(θ+ξ)Q+(θ̄+ξ̄)Q̄). (1.21)

This corresponds to the transformation

(x, θ, θ̄) 7→ (x′, θ′, θ̄′) = (x+ iθσµξ̄ − iξσµθ̄, θ + ξ, θ̄ + ξ̄). (1.22)

This representation of the supercharges on superspace we now turn into a representation,
Q and Q̄, on the fields defined on superspace. However, to get a representation on fields
we must remember that the coordinate should transform in the opposite way as in (1.22).10

8That is: The momentum generators and the supercharges constitute a subalgebra. Also the Lorentz
generators form a subalgebra and the commutator of a Lorentz generator with a momentum generator or a
supercharge is a sum of momentum generators and supercharges.

9(x, θ, θ̄) should in the strict mathematical sense be seen as coordinate functions in a noncommutative
geometry.

10Suppose the group G acts on M as g.x with g ∈ G and x ∈ M . This induces an action of G on C
M

namely g.f(x) = f(g−1.x) where f ∈ C
M .
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But following [9] we do not take this into consideration so we will get an antirepresentation
of the supersymmetry algebra. But at the same time [9] at this point tacitly changes the
definition of the Q’s such that the infinitesimal change of the field F is (note the missing i):

δξF = [iξQ+ iξ̄Q̄, F ] ≡
(

ξQ+ ξ̄Q̄
)

F,

δξF (x, θ, θ̄) = F (x′, θ′, θ̄′)− F (x, θ, θ̄), (1.23)

where (x′, θ′, θ̄′) is defined in (1.22). Thus the supercharges are realised by the differential
operators:

Qα =
∂

∂θα
− i (σµ)αβ̇ θ̄β̇∂µ, (1.24)

Q̄α̇ = − ∂

∂θ̄α̇
+ iθβ (σµ)βα̇ ∂µ. (1.25)

These satisfy (note the change in sign compared to (1.7) and (A.1) due to the above men-
tioned redefinitions):

{Qα, Q̄β̇} = 2i (σµ)αβ̇ ∂µ. (1.26)

The rest of their mutual anticommutators are zero. However, please note that according
to (C.39) we have (due to the missing i’s):

(Qα)
† = −Q̄α̇. (1.27)

On the other hand according to (C.37) we now have

(Qα)
∗ = Q̄α̇. (1.28)

We can also define multiplication from the right on the cosets. This gives in the same
way as above differential operators Dα and D̄α̇ – the covariant derivatives – where:

Dα =
∂

∂θα
+ i (σµ)αβ̇ θ̄

β̇∂µ, (1.29)

D̄α̇ = − ∂

∂θ̄α̇
− iθβ (σµ)βα̇ ∂µ. (1.30)

Since left and right multiplications commute the covariant derivatives anticommute with the
supercharges. They satisfy the opposite algebra of (1.26):

{Dα, D̄β̇} = −2i (σµ)αβ̇ ∂µ. (1.31)

The fields on superspace transforming as (1.23) are called superfields. Given such a
general complex superfield F (x, θ, θ̄) we can expand it in component fields by looking at
its power series in θ and θ̄. This power series must terminate since the θ’s and the θ̄’s all
anticommute. Using (C.40) and (C.46) we get (the notation of components follow [13]):

F (x, θ, θ̄) = φ(x) + θψ(x) + θ̄χ̄(x) + θθf(x) + θ̄θ̄g∗(x) + θ̄σ̄µθAµ(x)

+ iθθθ̄λ̄(x)− iθ̄θ̄θρ(x) + 1
2θθθ̄θ̄D(x). (1.32)

Supposing F (x, θ, θ̄) is a bosonic Lorentz scalar we see that φ, f , g, and D are complex
scalars while ψ, χ, λ, and ρ are lefthanded Weyl spinors and Aµ is a gauge field. Hence we
note that the number of bosonic degrees of freedom equals that of the fermionic. The action
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of supercharges on superfields induces an action on the components simply by defining the
transformed components as the components of the transformed superfield.

The set of superfields are closed to addition and multiplication since the supercharges are
differentials. Thus the superfields form a linear representation of the supersymmetry algebra.
However, this representation is reducible as can be seen from the number of components
in (1.32) since according to table 1.1 there should only be four degrees of freedom in an
irreducible representation after imposing the equation of motion. Hence we must constrain
the superfields.

Let us conclude this subsection by noting that for a set of superfields F i any differentiable
function of them is again a superfield. We also note that using (1.23)–(1.25) the supersym-
metry variation of the top component D(x) is a space-time derivative – hence it can be used
as a manifestly supersymmetric Lagrangian (we assume that the boundary terms are zero).
This makes it easy to build invariant Lagrangians.

1.3.2 Chiral Superfields

One way to constrain a (complex) superfield Φ is to demand

D̄α̇Φ = 0, α̇ = 1̇, 2̇. (1.33)

This is a supersymmetric covariant constraint since the supercharges anticommute with D̄.
Complex superfields fulfilling (1.33) are called chiral superfields. Correspondingly an anti-
chiral superfield is defined by DαΦ = 0. We see that the complex conjugate of a chiral
field is anti-chiral and vice-versa hence giving a one-to-one correspondence between the two
sets. We also note that only constant fields can be both chiral and anti-chiral since then
{Dα, D̄β̇}Φ = 0 which by (1.31) can be used to show that ∂µΦ = 0. This is all in analogy
with holomorphic functions.

The components of a chiral field are easily found by noting that both xµ+ = xµ+iθσµθ̄ and

θ are annihilated by D̄α̇. Expressed in these coordinates Dα = ∂/∂θα + 2i (σµ)αβ̇ θ̄
β̇∂/∂xµ+

and D̄α̇ = −∂/∂θ̄α̇. Hence the most general chiral field can be written as:

Φ(x, θ, θ̄) = φ(x+) +
√

2θψ(x+) + θθF (x+)

= φ(x) + iθσµθ̄∂µφ(x) +
1

4
θθθ̄θ̄�φ(x) +

√
2θψ(x)

− i√
2
θθ∂µψ(x)σµθ̄ + θθF (x). (1.34)

Here we have used (C.41) and (C.42) to expand. As usual � = ∂µ∂
µ and we have put in

a
√

2 for standard normalisation. F will turn out to be an auxiliary field and hence after
taking the equations of motion, we see that the components fit that of the chiral multiplet
thus realising this off-shell.

The components can be obtained using the covariant derivatives (using (C.49)):

φ(x) = Φ|, ψα(x) =
1√
2
DαΦ|, F (x) = −1

4
DDΦ|, (1.35)

where | means setting θ = θ̄ = 0.
Since all components higher (i.e. with more θ’s in front) than F are just derivatives, the

supersymmetry variation of F is just a space-time derivative making it usable for constructing
manifestly supersymmetric Lagrangians. Actually δξF = i

√
2∂µ
(

ξ̄σ̄µψ
)

.
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Given N chiral multiplets represented by the (Lorentz invariant, bosonic) chiral fields
Φi with i = 1, . . . , N we search for the most general supersymmetric Lagrangian including
these. As we have seen above there are two ways to create Lagrangians: We can use the top
component, D/2, of a general superfield or the F component of a chiral superfield. Such
terms are called D-terms and F-terms respectively.

We can write these terms as “integrations” over superspace parameters. To do this we
define Lorentz invariant differentials by d2θ ≡ 1

4dθαdθα, d2θ̄ ≡ 1
4dθ̄α̇dθ̄α̇ and d4θ ≡ d2θd2θ̄.

As usual fermionic integration corresponds to differentiation such that e.g. dθα = ∂/∂θα.
By the above normalisations the F component of a chiral field Φ is simply F =

∫

d2θΦ and
the D-term, D/2, of a general superfield Ψ is D/2 =

∫

d4θΨ. Here it is assumed that we
put θ = θ̄ = 0 after differentiating. Since the space-time integral of a space-time derivative
is assumed to be zero, we see that the covariant derivatives work as differentials under the
space-time integration in the action. Hence:

∫

d4xd2θΦ = −1

4

∫

d4xDDΦ|.
∫

d4xd4θΨ =
1

16

∫

d4xDDD̄D̄Ψ. (1.36)

There is no need for a restriction “|” in the last equation since all θ-dependence is removed
by the covariant derivatives and the removal of total space-time derivative terms.

This shows us that we have a redundancy in our definition of F-terms. Actually any
D-term can now be rewritten as:

∫

d4xd4θΨ = −1

4

∫

d4xd2θD̄D̄Ψ, (1.37)

where there is also no need to set θ̄ = 0 since these are again removed by the two D̄’s along
with the removal of total derivative terms. D̄D̄Ψ is a chiral field since the product of three
D̄α’s vanish by anti-commutivity. A superfield that can be written in this way with Ψ being
a local field is called a chirally exact superfield. In order to avoid redundancy we redefine
F-terms as the θθ-term of chiral fields that are not chirally exact.11

The most general D-term obtained from the chiral fields Φi and the corresponding anti-
chiral complex conjugates, denoted Φ̄i, is simply the D-term of a real differentiable function
K
(

Φi, Φ̄i
)

since this is again superfield. This is called the Kähler potential. We have here ex-
cluded the possibility of a dependence on space-time derivatives of Φ and Φ̄. This is because
such terms, when expanded, give rise to more than two space-time derivatives on bosonic
fields and more than one on fermionic fields. Such terms can be excluded when looking at
low energy effective theories or renormalisable theories. Since the covariant derivatives anti-
commute with the supercharges, the covariant derivative of a superfield is again a superfield.
However, we will also assume that K does not depend on such fields.

The most general F-term can be found by noting that a differentiable function of chiral
fields is again chiral. Hence we look at the holomorphic function W

(

Φi
)

. There can be no
dependence on Φ̄ because then W would not be chiral. However, as noted above D̄D̄Φ̄i

is actually chiral and could contribute in a given term. But we can move the D̄’s to the
front of the term since they annihilate all the chiral fields thus showing that we are really
dealing with a chirally exact superfield not contributing to the F-term. However, yet another
possibility is the space-time derivative of a chiral field. Since ∂µ commutes with the covariant
derivatives this is again a chiral superfield. Even though we could have such contributions

11This definition is due to [15]. The material in this reference can now also be found in [16].
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in W , we choose to assume that we do not have such terms. In this case W
(

Φi
)

is called
the superpotential. Naturally, this contribution to the Lagrangian is complex so we have to
add its complex conjugate (which is the analogue of the F-term for an anti-chiral field).

With these assumptions the most general (low energy effective) N = 1 supersymmetric
Lagrangian density of N chiral fields, Φi, is

L =

∫

d2θW
(

Φi
)

+

∫

d2θ̄W (Φi) +

∫

d4θK
(

Φi, Φ̄i
)

. (1.38)

In the next section we will expand the gauge version of this Lagrangian in components.

If we further constrain this Lagrangian to be renormalisable, we must require all cou-
pling constants to have non-negative mass dimension. Since the lowest component of Φ
is a complex scalar it must have mass dimension one: [Φ] = 1. Since the supercharges
obey (1.4c) they must have [Q] = 1/2. Hence by (1.24) and (1.25) we have [θ] = [θ̄] = −1/2.
Correspondingly [dθ] = [dθ̄] = 1/2. Since [L] = 4 we must have

[

K
(

Φi, Φ̄i
)]

= 2 and the
only renormalisable possibility is K

(

Φi, Φ̄i
)

= KijΦ
iΦ̄j. Here Kij is hermitian so we can

diagonalise it by a change of the Φi’s. The superpotential must have
[

W
(

Φi
)]

= 3 so it
can be at most cubic. Discarding its constant part we get the most general renormalisable
Lagrangian of chiral fields:

L =

∫

d4θΦiΦ̄i +

∫

d2θ

(

aiΦ
i +

1

2
mijΦ

iΦj + gijkΦ
iΦjΦk

)

, (1.39)

where mij and gijk are symmetric in their indices. Please note that we still have the freedom
to perform a unitary rotation to diagonalise the mass matrix. Also the linear term in the
superpotential can be removed (provided non-zero masses) by the transformation

Φi 7→ Φi + bi, (1.40)

where bi is constant (and hence chiral). This Lagrangian describes (for N = 1) the Wess-
Zumino model.

1.3.3 R-Symmetry

The Lagrangians can also be restricted by employing the R-symmetries from section 1.1.4.
Actually, using the Coleman-Mandula theorem one can prove that for N = 1 we can only
have a single generator, R, which does not commute with Q. R generates U(1)R and we
normalise it such that Q has charge −1 (denoted by R(Q) = −1). Correspondingly the
complex conjugate Q̄ must have charge +1. Since R does not commute with Q, the different
components have different charge. Hence the coordinates θ have charge. By (1.24) and (1.25)
we see that R(θ) = 1 and R

(

θ̄
)

= −1. Consequently R(dθ) = −1 and R
(

dθ̄
)

= 1. Assuming
the Lagrangian is invariant under R-symmetry the overall charge of the Kähler potential
must be zero and the charge of the superpotential must be 2. If the superfields are given
R-charges R

(

Φi
)

we see that a renormalisable Kähler potential has charge zero since it is
real. The superpotential is, however, strongly restricted by the R-symmetry.

1.3.4 Supersymmetric Gauge Theories

A second way (and the last necessary) to constrain a superfield, V , is to impose reality:

V = V ∗. (1.41)
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Such a superfield is called a vector superfield. Please note that this constraint is also super-
symmetric covariant since by (1.28) and (C.31) ξQ + ξ̄Q̄ is real, and it is bosonic. When
expanding V in components, it is customary to use the following notation:

V (x, θ, θ̄) = v(x) + θχ(x) + θ̄χ̄(x) + θθf(x) + θ̄θ̄f∗(x) + θ̄σ̄µθAµ(x)

+iθθθ̄
(

λ̄(x) + 1
2 σ̄

µ∂µχ(x)
)

− iθ̄θ̄θ
(

λ(x) + 1
2σ

µ∂µχ̄(x)
)

+1
2θθθ̄θ̄

(

D(x) + 1
2�v(x)

)

. (1.42)

Here v, Aµ and D must be real. The motivation for defining the components in this way is
that we get nice gauge transformations. In the abelian case the gauge transformation of the
vector field simply is:

V 7→ V ′ = V + iΛ− iΛ̄, (1.43)

where Λ is a chiral superfield. According to (1.34) and (1.42) this means that Aµ 7→ Aµ +
∂µ(φ+ φ∗). Hence the real field Aµ transforms exactly as a gauge field which, of course, is
the reason that V is called a vector (or gauge) superfield. λ and D are gauge invariant in
the abelian case which is the reason for the notation in (1.42).

To see how the non-abelian gauge transformations work, we must be a bit more careful.
Let us assume that we have a compact gauge group G with corresponding Lie algebra G. To
obtain a unitary representation the generators Ta must be hermitian. We use roman indices
a, b, c for the adjoint gauge indices. The gauge transformations must commute with the su-
persymmetry transformations because otherwise the commutator of a gauge transformation
and a supersymmetry transformation would yield a new type of supersymmetry (since it
exchanges bosons and fermions). However, it would be a local transformation since gauge
transformations are local. But as noted above we will only consider global supersymmetries
thus demanding gauge and supersymmetry transformations to commute.

In order to find the transformation of the vector superfield we first have to look at gauge
transformations of chiral matter. Consider a representation r of G not necessarily irre-
ducible. The representation is furnished by the components of dim(r) chiral superfields, Φi.
Since gauge transformations commute with supersymmetry transformations each indepen-
dent component must transform in the same way:

φi 7→ (e−iΛ
a(x)T

(r)
a )ijφ

j , (1.44)

and the same for ψ and F with reference to (1.34). Here T
(r)
a are the generators of the gauge

group in the representation r and Λa(x) are real functions. However, according to (1.34)
the chiral superfield does not transform in this way because some of the higher components
involve derivatives. Instead (1.34) shows that we have the transformation:

Φ 7→ e−iΛ
a(x+)T

(r)
a Φ. (1.45)

Since x+ is not real, this means that Φ†Φ is not invariant, but:

Φ† 7→ Φ†ei(Λ
a(x+))∗T

(r)
a . (1.46)

Thus we need a superfield connection to make Φ†Φ invariant. Let us choose this connection

hermitian to keep the product real. We can then write it as e2V where V = V aT
(r)
a and the

V a’s must be vector superfields by hermiticity. The reason we have 2V instead of just V
will become clear later. The gauge transformation of V must be:

e2V 7→ e2V
′

= e−i(Λ
a(x+))∗T

(r)
a e2V eiΛ

a(x+)T
(r)
a . (1.47)
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By the Baker-Campbell-Hausdorff formula the transformation of V can be written purely
with commutators and is hence independent of the chosen representation. Thus we can think
of V as being Lie algebra valued simply taking the proper representation when working on
the chiral fields. Let us now note that we can preserve the invariance of Φ†e2V Φ when going
to the larger group of extended gauge transformations where we replace the Λa’s with chiral
superfields. Hence (1.45) becomes:

Φ 7→ e−iΛ(x,θ,θ̄)Φ, (1.48)

where Λ = ΛaT
(r)
a . This has the advantage that it preserves the chirality of the fields and

hence makes it possible to build invariant Lagrangians. The transformation of the vector
fields becomes:

e2V 7→ e2V
′

= e−iΛ
†

e2V eiΛ. (1.49)

We note that hermiticity is preserved.

In the abelian case the transformation of the components v, χ and f in the vector
superfield simply is δv = iφ− iφ∗, δχ = i

√
2ψ and δf = iF . This means that by choosing φ,

ψ and F properly these components can be set to zero. This is called the Wess-Zumino gauge
(WZ-gauge). In the non-abelian case the first two terms in V ′ (using the Baker-Campbell-
Hausdorff formula) is V ′ ∼ V + 1

2

(

iΛ− iΛ†
)

similar to the abelian transformation. This
suggests that the Wess-Zumino gauge also is possible in the non-abelian case. This is in fact
true, however, one has to consider all orders. In this gauge:

V (x, θ, θ̄) = θ̄σ̄µθAµ(x) + iθθθ̄λ̄(x)− iθ̄θ̄θλ(x) + 1
2θθθ̄θ̄D(x) (WZ-gauge). (1.50)

Here the components are Lie algebra valued. Using (C.41) we see that this gauge has the
nice property that

V 2 = −1
2θθθ̄θ̄AµA

µ, V 3 = 0 (WZ-gauge). (1.51)

The Wess-Zumino gauge does not fix the gauge totally. For infinitesimal Λ, and V in
Wess-Zumino gauge we get (using the Baker-Campbell-Hausdorff formula (B.7)):

V ′ = V +
i

2
(Λ− Λ†) +

1

2
[V, i(Λ + Λ†)] +

1

6
[V, [V, i(Λ − Λ†)]] (WZ-gauge). (1.52)

Using this we see that the infinitesimal gauge transformation that preserves Wess-Zumino
gauge is

Λ = ω(x+) = ω(x)− iθ̄σ̄µθ∂µω(x) +
1

4
θθθ̄θ̄�ω(x), (1.53)

where ω is Lie algebra valued and hermitian. According to (1.52) (the last term is zero
since it has to many θ’s) the infinitesimal gauge transformations of the components in the
Wess-Zumino gauge are:

δωAµ = ∂µω − i[ω,Aµ],
δωλ = −i[ω, λ],

δωD = −i[ω,D]. (1.54)

This is exactly as usual for a gauge field Aµ, and λ and D in the adjoint representation
supposing that the group elements are expressed as in (1.44).
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We will see that D is an auxiliary field so we note that in the Wess-Zumino gauge the
field content of the vector superfield, after imposing the equations of motion, is the same as
in the vector supermultiplet hence realising this off-shell.

Although Wess-Zumino gauge allows a gauged realisation of the vector multiplet it is
breaking supersymmetry (since some components are zero). This means that supersym-
metry should be realised by adding a gauge transformation going back to the Wess-Zumino
gauge. Thus on the components the anticommutator of the supersymmetries is no longer just
proportional to the momentum generators. This makes sense since the local gauge transfor-
mations do not commute with the momentum generators, but as assumed in the beginning
they commute with the supersymmetry transformations and hence also their commutator.

Let us now look for the supersymmetric version of the gauge field strength. In normal
gauge theory this transforms in the adjoint representation. By (1.54) the lowest component
of V that transforms in this way is λ. Let us therefore make a field with λ as its lowest
component. The solution is12

Wα = −1

8
D̄D̄e−2VDαe

2V . (1.55)

We note that the supersymmetric field strength is a fermionic spinor superfield which clearly
is chiral – actually chirally exact.13 It is Lie algebra valued since e−2VDαe

2V can be written
as commutators. Actually, in Wess-Zumino gauge we get (using (1.51)):

e−2VDαe
2V = 2DαV − 2[V,DαV ] (WZ-gauge). (1.56)

After a bit of calculation we then get that in Wess-Zumino gauge:14

Wα(x, θ, θ̄) = −iλα(x+) + θαD(x+)− i

2
(σµσ̄ν) β

α θβFµν(x+) + θθσµ
αβ̇
Dµλ̄

β̇(x+)

(WZ-gauge), (1.57)

where the components are Lie algebra valued. Here Fµν is the usual gauge field strength
given by

Fµν = ∂µAν − ∂νAµ + i[Aµ, Aν ], (1.58)

and Dµ is the gauge covariant derivative:

Dµλ̄ = ∂µλ̄+ i[Aµ, λ̄]. (1.59)

Thus Wα neatly turns out to contain the usual gauge field strength thus justifying it to be
the supersymmetric gauge field strength (this is the reason for the involved definition (1.55)).

The gauge transformation of Wα is:

Wα 7→ W ′
α = e−iΛWαe

iΛ. (1.60)

This simply shows that Wα transforms in the adjoint representation. To prove this one uses
that Λ is chiral and hence Λ† is anti-chiral along with the relation

[D̄α̇, {D̄β̇ ,Dγ}] = 0, (1.61)

which follows immediately from (1.31).
12We use calligraphic font to distinguish the supersymmetric field strength from the superpotential.
13Wα is actually also constrained by Bianchi identities.
14We note that since Fµν is antisymmetric, we could have rewritten 1

2
σµσ̄νFµν = σµνFµν .



20 CHAPTER 1. SUPERSYMMETRY

Let us now look for the most general supersymmetric gauge invariant Lagrangian. If
we only allow two space-time derivatives on bosonic fields and one on fermionic fields as in
section 1.3.2 we can at most have terms of W squared. To obtain Lorentz invariance we
must naturally look atWαWα which is also chiral. Thus the most general gauge kinetic and
self interaction term is:

LG =

∫

d2θτab
(

Φi
)

WαaWb
α + c.c., (1.62)

where we have added the complex conjugate to make the Lagrangian real. We have here
included functions τab holomorphic in the chiral fields Φi in the spirit of section 1.3.2. τab
must be symmetric and transform as an invariant tensor in the adjoint representation of
the gauge group hence putting restrictions on the dependence on the chiral fields. We note
that since the gauge field strength by (1.55) is chirally exact, it can be written as a D-term
using (1.37) (up to total space-time derivative terms):

LG = −
∫

d4θτab
(

Φi
) 1

16

(

e−2VDαe
2V
)a (

D̄D̄e−2VDαe
2V
)b

+ c.c. (1.63)

However, the integrand of this full superspace integral is not gauge invariant. Thus it is
natural to keep the Lagrangian in the form (1.62) and in the rest of this thesis we will think
of it as a θθ-term.

The Kähler term in (1.38) must now have the form

LK =

∫

d4θK
(

e2V
(r)

Φ,Φ†
)

, (1.64)

where V (r) is the vector field in the appropriate representation. The Kähler potential must
be formed such that it is gauge invariant. The most simple example is Φ†e2V

(r)
Φ as we saw

above. This is renormalisable (polynomial) since in Wess-Zumino gauge eV = 1 + V + 1
2V

2.
By the assumptions in section 1.3.2 the Kähler potential does not include derivatives. This
means that it is enough to require K to be globally (but complex) gauge invariant.

We can also have a superpotential term LW as above which now must be formed such
that it is gauge invariant. However, here it is enough to require the Lagrangian to be globally
gauge invariant since we have neither derivatives nor complex conjugates of the chiral fields:

LW =

∫

d2θW
(

Φi
)

+ c.c. (1.65)

If the gauge group G has an abelian factor we can also include a Fayet-Iliopoulos term.
Let κ be a non-zero element in the center of the algebra and as usual let Tr denote the
invariant inner product of the Lie algebra (we can think of Tr as trace in the fundamental
representation) then:

LFI =

∫

d4θTr(κV ) =
1

2
Tr(κD) , (1.66)

where the last part is in Wess-Zumino gauge. This is supersymmetric since it is the D-
term of a superfield and it is gauge invariant since by (1.54) D transforms in the adjoint
representation.

With the above constraints the most general Lagrangian is:

L = LK + LG + LW + LFI . (1.67)

One could add a D-term m2V 2 to gain a representation of the massive gauge supermultiplet,
however, this term is not gauge invariant.
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Let us expand these Lagrangians into components using (1.35) and (1.36). By simple
differentiation we get:

LW = F i
∂W

(

φi
)

∂φi
− 1

2
ψiψj

∂2W
(

φi
)

∂φi∂φj
+ c.c. (1.68)

In order to expand LG we calculate (in Wess-Zumino gauge):

WαaWb
α = eiθσ

µθ̄∂µ

[

−λaλb − iθλaDb − iθλbDa + 1
2θ (σµσ̄ν)

(

λaF bµν + λbF aµν

)

−θθ
(

iλaσµ
(

Dµλ̄
)b

+ iλbσµ
(

Dµλ̄
)a

+ 1
2

(

F aµνF bµν + iF aµν F̃ bµν

)

−DaDb
)]

(WZ-gauge), (1.69)

where F̃ is the Poincaré dual defined by

F̃µν =
1

2
εµνρκF

ρκ. (1.70)

In order to get (1.69) we have used (C.40), (C.45) and (C.48).15 The differential operator
in the beginning of the equation simply ensures that we are evaluating in x+. Using this we
get (independent of the choice of gauge):

LG = −λaλb
(

F i
∂τab
∂φi
− 1

2
ψiψj

∂2τab
∂φi∂φj

)

− 1

2
√

2

∂τab
∂φi

ψi
(

−iλaDb − iλbDa +
1

2
(σµσ̄ν)

(

λaF bµν + λbF aµν

)

)

−τab
(

iλaσµ
(

Dµλ̄
)b

+ iλbσµ
(

Dµλ̄
)a

+ 1
2

(

F aµνF bµν + iF aµν F̃ bµν

)

−DaDb
)

+c.c. (1.71)

where τab is seen as a function of φi. As noted above one could have used Majorana spinors
instead of Weyl spinors and thereby have written all of this even more compactly. However,
we shall not need this.

The Kähler term requires more computation. The result is (following, but correct-
ing [13]):

LK = −gīıDµφ
i (Dµφ)∗ı̄ − igīıψ̄ı̄σ̄µDµψ

i +
1

4
Rik̄jl̄ψ

iψjψ̄k̄ψ̄l̄

+gīı

(

F i − 1

2
Γijkψ

jψk
)(

F̄ ı̄ − 1

2
Γı̄̄k̄ψ̄

̄ψ̄k̄
)

+

(

1

2
Da(T (r)

a )jiφ
i ∂K

∂φj
+ i
√

2gīı(T
(r)
a )ikφ

kλ̄aψ̄ı̄ + c.c.

)

. (1.72)

The added complex conjugate in the last line is only for the last two terms. Here gīı is the
Kähler metric defined by

gīı =
∂2K(φi, φ̄ı̄)

∂φi∂φ̄̄
. (1.73)

15The sign on the FF̃ term is not standard in the literature. The reason ought to be the also unconventional
sign on σ0 = −1.
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Γ and R are the corresponding Levi-Civita connection and Riemann curvature tensor respec-
tively. Dµφ

i is the usual gauge covariant derivative while Dµψ
i also contains the Levi-Civita

connection:
Dµψ

i = ∂µψ
i + iAaµ(T

(r)
a )ijψ

j + Γijk
(

Dµφ
j
)

ψk. (1.74)

We have used a notation where the indices of the complex conjugates are barred to stress
that they are treated as independent coordinates.

We immediately see that the F i’s and Da’s are auxiliary fields with no derivatives as pos-
tulated above. Hence they can be replaced with their equations of motions. This is also true
in the quantised theory: Because the auxiliary fields appear at most quadratically they can
be integrated out.16 However, the supersymmetry transformations on these auxiliary fields
then give restrictions which exactly correspond to the equations of motion. Thus on the re-
maining fields supersymmetry is only realised on-shell. This agrees with the supermultiplets
from section 1.2 being on-shell.

Let us finish this section by looking at the case where τab from (1.62) is independent
of the chiral fields. This is the case when we look at renormalisable Lagrangians because
according to (1.57) the mass dimension of Wα is 3/2 (the lowest component is a spinor)
and hence

∫

d2θWαWα has mass dimension four. We can now split the gauge group in its
abelian and simple parts. The Lagrangian (1.62) splits into a sum with one term for each
part of the gauge group. There can be no mixed terms due to gauge invariance.

Let us first look at the abelian part. Here each Wa
α is gauge invariant. This allows us to

write the Lagrangian as:

LG,abelian =

∫

d2θ
1

16πi
τabWαaWb

α + c.c., (1.75)

where τab is the theta angles and gauge couplings:

τab =
ϑab
2π

+ i
4π

g2
ab

. (1.76)

Plugging into (1.71) yields:

LG,abelian = − 1

2g2
ab

(

iλaσµ∂µλ̄
b + iλbσµ∂µλ̄

a
)

− 1

4g2
ab

F aµνF
bµν− ϑab

32π2
F aµν F̃

bµν+
1

2g2
ab

DaDb.

(1.77)

Here we have used (C.44) and allowed integration by parts to get the first term. (1.77) is the
standard form of (supersymmetric) Yang-Mills theory and this is the reason for the chosen
normalisation factor in (1.75).

For a simple factor τab must be proportional to the Killing form. It can also be shown that
we can choose the generators of the simple factor such that in any irreducible representation,
r, we have

Tr(r)

(

T (r)
a T

(r)
b

)

= C(r)δab. (1.78)

16Actually this is oversimplified. The coefficients of the squares of the auxiliary fields are functions possibly
depending on xµ. This means that when we do the functional integration of the auxiliary fields we encounter
the determinants of the coefficient functions. Let us call such a coefficient function f(x). The corresponding
“matrix” is A(x, y) = f(x)δ4(x − y) such that e.g.

∫∫

d4xd4yDa(x)A(x, y)Da(y) =
∫

d4xDa(x)f(x)Da(x).
The determinant can be rewritten as the exponential of the trace. Hence we have to add a term to the
action proportional to

∫

d4x ln A(x, x) =
∫

d4x ln f(x)δ4(0). However, (following [10]) using dimensional

regularisation of the determinant this term is eliminated since here δ4(0) =
∫

ddq
(2π)d = Γ(1−d/2)

Γ(0)

(

1
4π

)d/2
= 0

because the Γ-function of zero is infinite and d is the dimension close to, but not equal 4.
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Here C(r) is called the quadratic invariant. The gauge kinetic Lagrangian for the simple
factor then becomes:

LG,simple =

∫

d2θ
τ

16πiC(r)
Tr(r)(WαWα) + c.c.

=

∫

d2θ
τ

16πi
WaαWa

α + c.c., (1.79)

where the complex τ contains the theta angle and the gauge coupling constant:

τ =
ϑ

2π
+ i

4π

g2
. (1.80)

There is one coupling τ for each simple factor in the gauge group. Expanding in the same
way as in (1.77) gives:

LG,simple = − i

g2
λaσµ

(

Dµλ̄
)a − 1

4g2
F aµνF

aµν − ϑ

32π2
F aµν F̃

aµν +
1

2g2
DaDa. (1.81)

We will see in section 2.5.3 that the theta terms are total derivative terms which in
the non-abelian case can be non-zero due to instanton effects. The coupling constant g,
which here enters by multiplying terms with 1/g2, can be put into the structure constants
by rescaling V 7→ gV . This removes the overall 1/g2 (but puts a factor g2 on the ϑ-term)
and the coupling g will then multiply the structure constants in the definition of Fµν and
Dµ in equations (1.58) and (1.59) – as we often see in non-supersymmetric gauge theory.

We also note that our Lagrangians are not invariant under rescaling of the generators
Ta. Scaling Ta 7→ αTa will scale the structure constants as f c

ab 7→ αf c
ab . The vectors in the

Lie algebra should be the same under this change of basis and hence the components of the
vector field and correspondingly the supersymmetric gauge field strength scale as V a 7→ 1

αV
a

and Wa
β 7→ 1

αWa
β (we have to remember the scaling of the structure constants in the last

scaling). We conclude that to keep our Lagrangians invariant under the scaling we must
require that the couplings scale as g 7→ g/α and ϑ 7→ α2ϑ. Accordingly we have to choose
some normalisation of the generators for the theory to make sense.17

1.4 N = 2 Supersymmetric Yang-Mills Theory

In this section we will briefly discuss the N = 2 supersymmetric gauge field theories. These
can be obtained from the results in the last section by noting that N = 2 supersymmetric
field theories are special cases of N = 1 supersymmetric field theories.

1.4.1 N = 2 Supersymmetric Lagrangians from N = 1 Supermultiplets

Let us as above denote the supercharges of the N = 2 supersymmetry as Q1 and Q2 where
we have suppressed the spinor indices. In section 1.2 we obtained the supermultiplets as
representations of the little supergroup. The little supergroup was obtained by adding the
supercharges to the algebra of the little group. However, looking at the supersymmetry
algebra (1.4) we see that we also get a group if we only add Q1 and its hermitian conjugate
Q̄1 to the little group. This is exactly the N = 1 little supergroup which accordingly is
a subgroup of the N = 2 little supergroup. Thus the N = 2 supermultiplets split into

17We could also have chosen to obtain an invariant theory by multiplying with e.g. the quadratic invariant
in the fundamental representation, C(fund), in (1.79 since the quadratic invariant scales as C(r) 7→ α2C(r).
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Figure 1.1:
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The N = 2 gauge supermultiplet with supersymmetry transformations. The spinor indices
on the supercharges have been suppressed.

N = 1 supermultiplets just as supermultiplets are multiplets of Poincaré representations.
However, we could just as well had looked at the subgroup corresponding to adding Q2

and its hermitian conjugate to the little group thus giving another splitting in N = 1
supermultiplets. This change corresponds to the R-symmetry:

Q1 7→ Q2, Q2 7→ −Q1. (1.82)

Now the method to get an N = 2 Lagrangian is simply to split the N = 2 supermultiplets
into N = 1 supermultiplets corresponding to say Q1, then write the most general N = 1
supersymmetric Lagrangian with these supermultiplets, and finally impose the discrete R-
symmetry (1.82). The Lagrangian will then be N = 2 supersymmetric since it is invariant
under Q1 by construction and hence invariant under Q2 by the R-symmetry (1.82).

1.4.2 Renormalisable N = 2 Supersymmetric Lagrangians

Let us now find the most general renormalisable Lagrangian for the fields of the N = 2
massless gauge supermultiplet. For simplicity we will assume a simple gauge group G. The
fields of this multiplet are according to table 1.1 a gauge field Aµ, two Weyl (or Majorana)
fermions λ and ψ, and a complex scalar φ. In figure 1.1 it is shown how these fields are related
by the supercharges Q̄1 and Q̄2 according to equation (1.15). Breaking the supermultiplet
into the N = 1 supermultiplets of the supercharge Q1 we get a gauge multiplet (λ,Aµ) and
a chiral multiplet (φ,ψ) corresponding to the superfields V and Φ respectively.

Aµ transforms in the adjoint representation of the gauge group so the whole N = 2
supermultiplet must transform in the adjoint representation since we argued above that
supersymmetry transformations and gauge transformations must commute. Thus Φ is in
the adjoint representation and both V and Φ can be seen as taking values in the gauge Lie
algebra.18 The most general Lagrangian involving these two fields is given in (1.67) where
we demand renormalisability. This means that the gauge kinetic and self interaction term
takes the form (1.79) since the gauge group is assumed simple. Using (1.39) and (1.64) the
renormalisable gauge invariant Kähler term takes the form

∫

d4θTr
(

Φ†e2 adV Φ
)

where adV
is the adjoint defined in (B.9). The trace can be taken in any representation, but we will
now have to care about the normalisation of the terms in the Lagrangian since we have to

18This also means that the N = 2 supersymmetric Lagrangian can not fulfil the standard model since that
would require the matter to belong to a complex representation (the chiral) of SU(3)×SU(2)×U(1), but the
adjoint representation is always real. Even when matter is added the representation will still be real.
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impose the symmetry (1.82). On the components we see from figure 1.1 that this symmetry
takes the form:

ψa 7→ λa λa 7→ −ψa. (1.83)

Thus the kinetic term for ψ and λ must have the same normalisation. Using (1.68) we see
that the superpotential term for the chiral field must be proportional to Φ since we have
no mass or interaction terms for the gaugino field λ. A linear superpotential is trivial and
hence we will set it to zero. There can be no Fayet-Iliopoulos term since we assumed a simple
group. The N = 2 supersymmetric Yang-Mills Lagrangian then takes the form (using (1.72)
and (1.81)):

LN=2 =
τ

16πiC(r)
Tr(r)

(∫

d2θWαWα + 2

∫

d4θΦ†e2 adV Φ

)

+ c.c. (1.84)

Expanded in components this gives (again using (1.72) and (1.81)):

LN=2 =
1

g2C(r)
Tr(r)

(

− iλσµDµλ̄−
1

4
FµνF

µν − g2ϑ

32π2
Fµν F̃

µν +
1

2
DD −Dµφ (Dµφ)†

− iψ̄σ̄µDµψ + FF̄ +D[φ†, φ]− i
√

2[λ̄, ψ̄]φ− i
√

2[λ, ψ]φ†
)

, (1.85)

where we have used the cyclic property of the trace (properly signed for the anticommuting
fields) to put the commutators in the above form. The commutator [λ, ψ] simply means
λψ−ψλ thus defining the spinor indices. Here the bars on the spinor fields mean hermitian
conjugates in the gauge algebra. We immediately see that this Lagrangian is invariant under
the symmetry (1.83).

As mentioned above we can now eliminate the auxiliary fields using their equations of
motion F = 0 and D = −[φ†, φ]. This gives the scalar potential:

U =
1

2g2C(r)
Tr(r)

(

[φ†, φ]2
)

. (1.86)

It is possible to add matter to the model in the form of the hypermultiplet from table 1.1.
Such a hypermultiplet splits into two chiral multiplets. Adding this to the Lagrangian allows
mixed superpotential terms.

For non-renormalisable Lagrangians one can use an N = 2 superspace formulation to get
the most general Lagrangian. As is shown in appendix D, the Lagrangian is then determined
by a holomorphic function known as the prepotential.



Chapter 2

The Dijkgraaf-Vafa Conjecture

In [4] R. Dijkgraaf and C. Vafa formulated a conjecture telling us how to systematically com-
pute the exact low energy effective superpotential of a wide range of N = 1 supersymmetric
gauge theories in four space-time dimensions.

We will start by simply stating the conjecture in the case of a U(N) gauge group and
adjoint matter. However, most of the concepts used in the Dijkgraaf-Vafa conjecture needs
explaining so the rest of the chapter will be devoted to understanding the conjecture. Along
the way we will understand some of its implications and put it into its right context. At the
end of the chapter we will present the Dijkgraaf-Vafa conjecture for general gauge groups
and matter representations.

2.1 The Dijkgraaf-Vafa Conjecture with U(N) Gauge Group
and Adjoint Matter.

Following [4] we will state the Dijkgraaf-Vafa conjecture in the case of a U(N) gauge group
and adjoint matter.1

2.1.1 The Traceless Case

We will study a four-dimensional supersymmetric field theory. The tree-level Lagrangian
of the theory is obtained by first looking at a renormalisable N = 2 supersymmetric Yang-
Mills theory with gauge group U(N) and corresponding Lie algebra U(N). Assuming no
Fayet-Iliopoulos term since this makes it more difficult to obtain supersymmetric vacua as
we will see in section 2.2, the Lagrangian is simply (1.84) with an abelian part added (in
section 2.1.4 we will write out the full Lagrangian). Then we add a tree-level superpotential
for the adjoint U(N)-valued chiral field Φ to the Lagrangian:

∫

d2θWtree(Φ) =

∫

d2θTrPn+1(Φ) , (2.1)

where Pn+1 is a complex polynomial of degree n + 1 which we in general will think of as
having the form:

Pn+1(Φ) =
1

2
mΦ2 +

n+1
∑

k=3

gk
k

Φk, (2.2)

1The notation will differ slightly from [4] and some points are taken from [7].

26



2.1. THE DIJKGRAAF-VAFA CONJECTURE WITH U(N) GAUGE GROUP. . . 27

where m and the couplings gk are complex.2 Assuming n ≥ 1 this breaks N = 2 supersym-
metry to N = 1 supersymmetry as we saw in section 1.4. We should think of Φ = ΦaTa
as taking values in the fundamental representation3 since e.g. in the adjoint representation
the abelian part would vanish. Thus here and in the following Tr will denote trace in the
fundamental representation.

We will not restrict ourselves to renormalisable superpotentials and hence allow Pn+1 to
have a degree higher than three. In that case we can think of the superpotential as obtained
from a superpotential at a higher energy scale by integrating out other fields using Wilsonian
renormalisation (explained in section 2.4).

As we will explain in section 2.2 the supersymmetric classical vacua are obtained by
diagonalising Φ and demanding the eigenvalues to be in the set of critical points of the
polynomial Pn+1. Since P ′

n+1 has degree n, there must be n critical points which we denote
a1, . . . , an. We will assume these to be isolated and – as we will show – this means that the
vacua are massive. Since Φ is an N ×N -matrix, a vacua is obtained by choosing a partition:

N = N1 + . . .+Nn, (2.3)

corresponding to distributing Ni of the eigenvalues at the critical point ai. This furthermore
breaks the gauge symmetry group as:

U(N) 7→ U(N1)× · · · ×U(Nn). (2.4)

If Ni is zero we will leave the corresponding factor out.
Looking at the corresponding quantised theory (section 2.3), the lore of the low energy

dynamics (section 2.5.6) tells us that we have confinement and gaugino condensation in the
SU(Ni) subgroups of the U(Ni) factors. The gauge coupling becomes strong at the (complex)
dynamically generated scale Λ and a mass gap is generated. To describe this we introduce
the traceless glueball superfield4 for each factor of SU(Ni):

Ŝi = − 1

16π2
Tr
(

Ŵα
(i)Ŵ(i)α

)

, (2.5)

where the supersymmetric gauge field strength for SU(Ni) is denoted Ŵα
(i). Please note

that here and in the following there is no sum over the factor indices in parenthesis. As
noted above we use the fundamental representation for the Lie algebra valued fields. Here

we use a normalisation such that the generators for the simple SU(Ni) part T
(fund)
(i)a with

a = 1, . . . , N2
i − 1 fulfil:

Tr
(

T
(fund)
(i)a T

(fund)
(i)b

)

=
1

2
δab, Tr

(

T
(fund)
(i)a

)

= 0. (2.6)

Thus from equation (1.69) we see that the lowest component of the traceless glueball su-
perfield is 1

32π2 λ̂
a
(i)λ̂

a
(i) where, as before, the hat means restriction to the traceless part of

the algebra. The condensation of the gauginos described by the field λ̂α(i) thus corresponds

to Ŝi getting a dynamical expectation value. We also see that the chiral half of the gauge
Lagrangian for SU(Ni) (equation (1.79)) is given by the θθ-component of Ŝi.

2The reason that we have m and not m2 in the tree-level superpotential is that Φ has mass dimension one
and the whole superpotential has mass dimension three as we saw in section 1.3.2.

3This should not be confused with Φ transforming in the adjoint representation, but means that Φ =
ΦaT

(fund)
a where T

(fund)
a are the generators of the gauge group in the fundamental representation.

4This is – perhaps more properly – also called the gaugino condensate chiral superfield.
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The physical quantities of the vacua are determined by the 1PI effective action. However,
as this is too hard to find we focus on the Wilsonian effective action and we denote the
corresponding Lagrangian Leff . It is the generalised superpotential Weff of this effective
Lagrangian which we want to determine (dealt with in detail in section 2.5):

Leff =

∫

d2θWeff + c.c. +

∫

d4θ . . . , (2.7)

where the dots denote some local gauge invariant superspace function which is not in the
focus of interest here. Hence the generalised superpotential consists of the θθ-terms that
can not be written as local gauge invariant D-terms. Thus it includes terms like (1.79) i.e.
Ŝi can contribute to Weff .5 Actually, it is the lore that the elementary fields at low energy
exactly are the Ŝi’s. Weff

(

Ŝi, gk
)

is thus called the effective glueball superpotential. The

vacuum expectation value of Ŝi is then simply determined by:

∂Weff

(

Ŝk, gk
)

∂Ŝi
= 0. (2.8)

As we will see in section 2.5.7, even without matter (Φ = 0) we have an effective super-
potential called the Veneziano-Yankielowicz superpotential. This is given by:

WVY =
∑

i

NiŜi

(

1− ln
Ŝi
Λ3
i

)

, (2.9)

where we have one term for each gauge group factor and the scales Λi are described in
section 2.5.8.

The Dijkgraaf-Vafa conjecture tells us that in order to determine Weff we have to look
at the related bosonic one matrix model (we will entertain ourselves with the details in
section 2.7) with partition function given by:

Zmatrix =

∫

DMe
− 1

gs
Wtree(M)

, (2.10)

i.e. where the potential is the tree-level superpotential. Here M are N ′ × N ′ hermitian
matrices (spanned by the generators of U(N ′)) and gs is a simple (dimensionful) scaling
factor – the “s” simply refers to the stringy origin of the Dijkgraaf-Vafa conjecture, but here
it, a priori, has nothing to do with string theory.

The vacua of the matrix model are, analogously to the gauge theory case, determined
by diagonal matrices with the N ′ eigenvalues in the set of critical points, a1, . . . , an, of
Pn+1. Thus, in analogy with (2.3) choosing a vacuum (modulo permutation of eigenvalues)
corresponds to a partition:

N ′ = N ′
1 + . . .+N ′

n. (2.11)

To obtain the correspondence with the gauge theory we must here demand that N ′
i = 0

if Ni = 0 in order to have the same gauge symmetry breaking pattern. Otherwise N ′
i

and Ni are completely independent. We can now obtain the free energy of the matrix
model by a perturbative expansion around the chosen vacuum. However, in the case of
broken gauge symmetry we must remember to take into account Faddeev-Popov ghosts in the

5Remember that WαW
α is chirally exact and hence can be written as a D-term as in (1.63), but not as a

gauge invariant D-term!



2.1. THE DIJKGRAAF-VAFA CONJECTURE WITH U(N) GAUGE GROUP. . . 29

matrix model. These actually take the same form as in the gauge theory in accordance with
correspondence between the potential of the matrix model and the tree-level superpotential.6

We should now take the ’t Hooft large N ′ limit (explained in section 2.6) where N ′
i ≫ 1,

gs ≪ 1 while keeping gsN
′
i fixed and finite. We will see how to topologically characterise

diagrams such that the free energy7 can be written as a topological expansion:

Zmatrix = e−
∑

g≥0 g
2g−2
s Fg(gsN ′

i), (2.12)

where g is the genus of the surface i.e. an integer number greater than or equal zero which
corresponds to the number of handles that has been added to the sphere. The Fg’s depend
only on gs and N ′

i through the products gsN
′
i . We see that the dominant contribution stems

from g = 0 and we can thus restrict to Fg=0 which is called the planar limit. The connection
to the gauge theory is to identify:

Ŝi ≡ gsN ′
i . (2.13)

We note that this is a formal identification that allows us to obtain the glueball superpotential
from the planar limit of the free energy in the matrix model. We will see in section 2.7.3 that
when the matrix model is solved exactly, Ŝi should be identified with the filling fractions in
the multi-cut solution.

Now we can state the Dijkgraaf-Vafa conjecture in the case where we ignore the abelian
part of the Wα’s such that the glueball superfield is traceless – but we do not disregard the
abelian part of Φ:

Dijkgraaf-Vafa conjecture; Traceless case.

Weff

(

Ŝi, gk
)

= Weff,pert

(

Ŝi, gk
)

+WVY

(

Ŝi
)

, (2.14a)

Weff,pert

(

Ŝi, gk
)

=
∑

i

Ni
∂Fg=0

(

Ŝi, gk
)

∂Ŝi
, Ŝi ≡ gsN ′

i . (2.14b)

The dependence on the couplings in the tree-level superpotential, gk, has been added for
completeness. Weff,pert is perturbative in Ŝi and the couplings gk. It is obtained by integrat-
ing out the massive chiral field Φ (and Φ̄) while treating Wα as a background field. We can
write this as (we are in Minkowski space):

Zholo =

∫

DΦDΦ̄ eiStree
∣

∣

holomorphic
, (2.15)

Zholo = ei
∫

d4xd2θWeff,pert, (2.16)

where Zholo is the partition function where we only keep the contribution to the θθ-term.
That is, we only include the holomorphic contributions with no conjugates (section 2.5.1).
This is what the restriction in the first line means. Stree is the tree-level action including the
superpotential (2.1). The Dijkgraaf-Vafa conjecture in this case is summarised in table 2.1.8

6This perturbative (diagrammatic) approach on the matrix model side in the formulation of the Dijkgraaf-
Vafa conjecture can be found in [17].

7For now we ignore any contribution from the measure of the matrix model. Such a contribution could
been seen as giving the Veneziano-Yankielowicz superpotential (section 2.7.2).

8It appears to be more suggestive to compare the matrix model with the gauge theory written in Euclidean
space. However, when Wick rotating to Euclidean space the superpotentials receive a sign change which seems
to give the wrong sign in the comparison. In section 3.2.2 we will see that signs cancel in the right way due
to the minus sign in the definition of the glueball superfield (2.5).
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Table 2.1:

Dijkgraaf-Vafa conjecture; Traceless case

Gauge theory Matrix model

Zholo =
∫

DΦDΦ̄ eiStree
∣

∣

holo
Zmatrix =

∫

DMe
− 1

gs
Wtree(M)

Zholo = ei
∫

d4xd2θWeff,pert Zmatrix = e−
∑

g≥0 g
2g−2
s Fg(gsN ′

i)

Weff = Weff,pert +WVY WVY as a measure contribution

Vacua: Vacua:

N = N1 + . . .+Nn N ′ = N ′
1 + . . .+N ′

n

No limit ’t Hooft large N ′
i limit

Weff,pert =
∑

iNi
∂Fg=0(Ŝi)

∂Ŝi

Ŝi = gsN
′
i

The Dijkgraaf-Vafa conjecture in the case of a traceless glueball superfield. Formulae are
explained in the text.

2.1.2 The U(Ni)-Case

Let us now turn to the case where we also consider the abelian parts of the supersymmetric
gauge field strengths. In this case we define the glueball superfield Si and the field wiα as
(here we follow [7], but naturally with our normalisations):

Si = − 1

16π2
Tr
(

Wα
(i)W(i)α

)

, (2.17)

wiα =

√
2

4π
Tr
(

W(i)α

)

, (2.18)

where Wα
(i) is the supersymmetric gauge field strength for the whole U(Ni) subgroup. As

a standard we will use the Ni × Ni identity matrix (with trace Ni) to span the abelian

part of the algebra, and the formerly introduced T
(fund)
(i)a to span the simple part. Using

equation (2.6) we get the following relation between Ŝ, S and wiα:

Si = Ŝi −
1

2Ni
wαi wiα (no sum over i). (2.19)

Even though Ŝi are the elementary fields at low energy (the wiα’s are IR-free) it is easier to
write the Dijkgraaf-Vafa conjecture using Si. The dependence on wiα will then simply be
quadratic. Now we have to identify gsN

′
i from the matrix model with Si. The conjecture for

the form of Weff,pert is then:

Dijkgraaf-Vafa conjecture; U(Ni)-case.

Weff,pert(Si, wiα, gk) =
∑

i

Ni
∂Fg=0(Si, gk)

∂Si
+

1

2

∑

i,j

∂2Fg=0(Si, gk)

∂Si∂Sj
wαi wjα,

Si ≡ gsN
′
i . (2.20)
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Here we have again included the dependence on the couplings gk from the tree-level su-
perpotential Wtree. We notice that by setting wiα = 0 this case reduces to the traceless
case (2.14).9

We note that the coefficient function of wαi wjα in (2.20) is not the abelian complexified
gauge coupling τij as in equation (1.75). This is because we have to split the gauge alge-
bra into its simple and abelian part. Thus Si should be split in Ŝi and wiα using (2.19).
Expanding the functions according to this yields:

τij ∝
∂2Fg=0

(

Ŝi, gk
)

∂Ŝi∂Ŝj
− δij

1

Ni

∑

l

Nl
∂2Fg=0

(

Ŝi, gk
)

∂Ŝi∂Ŝl
, (2.21)

where there is no sum over i. However, we note that we also have (mixed) terms of higher
order than quadratic in the wiα’s when we split Si into Ŝi and wiα. From (2.21) we see that
∑

j τijNj = 0 which is a reflection of the fact that the overall U(1) is decoupled since Φ is
in the adjoint (see (2.26) below where there is no coupling between the abelian part of the
vector field and Φ).

For the non-perturbative part we should again add the Veneziano-Yankielowicz super-
potential by hand. However, the literature is unfortunately inconclusive on how to do this.
Naturally, there should be a term like (2.9), but perhaps the traceless glueball superfields
should here be replaced by the full glueball superfields Si with some modification since the
overall U(1) should be decoupled. We will discuss this briefly in section 2.8.

A couple of remarks are in order. First we note that the Ni dependence in the effective
superpotential is extremely simple. Secondly, we emphasise that the reduction to planar
diagrams on the gauge theory side is exact while we have to take the ’t Hooft large N ′ limit
on the matrix model side. Furthermore, we will see in section 2.7.1 that for a given diagram
in the matrix model we get one factor of Si = gsN

′
i for each index loop indexed by i. Thus

it is very simple to make an expansion of Weff,pert to a given order in Si. However, this

immediately poses a problem: Looking at the definition of Si (or Ŝi) it is a sum of products
of a finite number of Grassmannian variables Waα

(i) where a is the adjoint index. Hence Si
must be nilpotent. But on the matrix model side we can go to any order in gsN

′
i i.e. any

number of loops. We will discuss this in section 2.9.

2.1.3 Proofs

The Dijkgraaf-Vafa conjecture actually consists of two parts:
First we have the statement that the total Wilsonian effective action is obtained as a sum

of the Veneziano-Yankielowicz superpotential for the pure super-Yang Mills theory, WVY,
and the effective potential obtained by integrating out the massive chiral fields, Weff,pert.

This has not been proven, but one can argue that it is true [7] if we assume that the Ŝi fields
are the elementary fields in the low energy effective theory as the lore says.

The second part of the conjecture is the exact form of Weff,pert using the related matrix
model. This conjecture originates in topological string theory and is proven herein. However,
the conjecture can be proven within supersymmetric gauge theory itself. This can be done
using Feynman diagrams as we will see in chapter 3. One can also use Seiberg-Witten theory
and the ILS linearity principle (section 2.5.5) to derive the effective superpotential [5]. A
last and powerful way to prove the conjecture within supersymmetric gauge theory is to use
the chiral ring and the generalised Konishi anomalies [7].

9In the case of Ni = 1 one should be careful since the field Si should appear as a field in its own right as
above – contrary to what one might think (see also section 2.9).
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The more general form of the Dijkgraaf-Vafa conjecture that we will present in sec-
tion 2.10 can also be proven using the diagrammatic (as we also will see in chapter 3), the
Seiberg-Witten, and the generalised Konishi anomaly method.

2.1.4 The Lagrangian

Let us finish this section by writing out the Lagrangian that we have assumed in the con-
jecture – for completeness, further reference, and to see how general it is. The fundamental
fields are the vector field V (and henceWα) and the chiral field Φ. Wα and Φ are both U(N)-
adjoint fields and as noted above they should take values in the fundamental representation.
It will be useful for us to split them in their abelian and simple parts. In accordance with
the notation above we use a hat to designate the projection onto the simple part of the space
and we choose to use a tilde to designate the projection onto the abelian part. Thus e.g. for
Φ we choose to write:

Φ = Φ̃ + Φ̂,

Φ̃ = Φ̃01N×N ,

Φ̂ = Φ̂aT (fund)
a , a = 1, . . . , N2 − 1. (2.22)

The generators T
(fund)
a of the simple part was introduced above in (2.6). In the same way

we expand Wα and other fields taking values in the fundamental representation of U(N).
Please note that we can set:

T
(fund)
0 ≡ 1N×N , (2.23)

and thus obtain a basis for the fundamental representation of U(N) as T
(fund)
a with a =

0, . . . , N2 − 1. These fulfil:

Tr
(

T (fund)
a T

(fund)
b

)

= c(a) δab, (2.24)

where c(0) = N and c(a) = 1/2 for a = 1, . . . , N2 − 1.
We should find the most general renormalisable N = 2 supersymmetric Lagrangian that

contains the Φ and V superfields (making up the N = 2 gauge multiplet). Actually, we also
assumed in chapter 1 that the Lagrangians should be used for low energy effective actions
as exactly is the case here. As noted above we also assume no Fayet-Iliopoulos term. Under
these assumptions we found the most general Lagrangian in section 1.4 for a simple gauge
group. So we simply have to consider how to include the abelian part. Let us first look at
the (renormalisable) Kähler term which according to (1.39) and (1.64) has the form:

LK =

∫

d4θΦ†e2V
(adj)

Φ. (2.25)

However, the adjoint representation of U(N) is not irreducible. In fact the adjoint represen-
tation of the abelian generator is, naturally, zero. So we can split the Kähler term into two
terms corresponding to the simple and the abelian part respectively. These two parts can
have different normalisation. Now, as we saw in section 1.4 the full N = 2 Lagrangian is
simply the sum of the properly normalised Kähler terms and LG from (1.62). We can split
LG into its abelian part (1.75) and its simple part (1.79). These two parts can have different
τ ’s (actually, we could normalise the abelian part of the gauge field strength such that the
two couplings are equal, but we choose for generality to keep them different here). To fulfil
the R-symmetry (1.83) (also for the abelian part) we must normalise the two Kähler terms



2.1. THE DIJKGRAAF-VAFA CONJECTURE WITH U(N) GAUGE GROUP. . . 33

properly. Thus we simply get (1.84) with a corresponding abelian term added as promised
in section 2.1.1. To get the full Lagrangian used in the conjecture, LU(N), we simply have
to add the superpotential term (2.1):10

LU(N) =
τ

8πi
Tr

(
∫

d2θŴαŴα + 2

∫

d4θΦ̂†e2 adV̂ Φ̂

)

+
τabel

16πiN
Tr

(∫

d2θW̃αW̃α + 2

∫

d4θΦ̃†Φ̃

)

+

∫

d2θTrPn+1(Φ)

+c.c., (2.26)

where the traces are in the fundamental representation. We have put a hat on V in the
Kähler term for the simple part to point out that only the simple part contributes. τabel

is the gauge coupling for the abelian part of the Lagrangian. In the superpotential we can
use (2.22) to split Φ into Φ̃ and Φ̂ as in the rest of the Lagrangian. The complex conjugate
added in the last line is for the whole equation.

Now we want to expand this Lagrangian in components. This has already been done for
the simple part of the N = 2 Lagrangian in (1.85) and we can expand the abelian part in
the same way. The superpotential is expanded using (1.68). We get:

LU(N) =
2

g2
Tr
(

− iλ̂σµD̂µ
¯̂
λ− 1

4
F̂µν F̂

µν − g2ϑ

32π2
F̂µν

1

2
εµνρκF̂ρκ +

1

2
D̂D̂ − D̂µφ̂

(

D̂µφ̂
)†

−i ¯̂ψσ̄µD̂µψ̂ + F̂
¯̂
F + D̂[φ̂†, φ̂]− i

√
2[

¯̂
λ,

¯̂
ψ]φ̂ − i

√
2[λ̂, ψ̂]φ̂†

)

+
1

g2
abelN

Tr
(

− iλ̃σµ∂µ ¯̃
λ− 1

4
F̃µν F̃

µν − g2
abelϑabel

32π2
F̃µν

1

2
εµνρκF̃ρκ +

1

2
D̃D̃

−∂µφ̃
(

∂µφ̃
)† − i ¯̃ψσ̄µ∂µψ̃ + F̃ ¯̃F

)

+

(

Tr
(

FP ′
n+1(φ)

)

− 1

2
Tr

(

ψ

N2−1
∑

a=0

ψa
∂

∂φa
P ′
n+1(φ)

)

+ c.c.

)

, (2.27)

where we emphasise that the tildes refer to the projection onto the abelian part of the
algebra and not the Poincaré dual. Hence the Poincaré duals have been written out using
definition (1.70). We have put hats on the gauge covariant derivatives for the simple part to
emphasise that these depend only on the simple part of the gauge algebra. τ and τabel have
been expanded as in (1.80) and (1.76):

τ =
ϑ

2π
+ i

4π

g2
, (2.28)

τabel =
ϑabel

2π
+ i

4π

g2
abel

. (2.29)

In order to obtain the contribution from the superpotential using (1.68) we had to differen-
tiate Wtree = TrPn+1 as a function of the fields φa in φ = φaTa. Since the trace is linear we

10It should here be noted that in this notation it is not possible to give the gauge couplings different
units. This is because by multiplying the gauge couplings onto the Kähler term we would then give the
Φa’s “gauge-units” with Φ0 and Φa, a > 0 having different units. However, the superpotential can not be
made dimensionless because of these different units since the same superpotential-couplings multiply Φ0 as
well as Φa, a > 0. In order to fix this problem the superpotential should really be defined as (using g and

gabel from (2.28) and (2.29)): Tr Pn+1

(

1
gabel

Φ0T
(fund)
a + 1

g

∑N2−1
a=1 ΦaT

(fund)
a

)

. However, we will stick to the

notation in (2.26) because the superpotential looks as in the Dijkgraaf-Vafa conjecture.
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can move the differentiation inside the trace. We can then use

∂φ

∂φa
= T (fund)

a , a = 0, . . . , N2 − 1, (2.30)

to obtain the first term in (1.68) which contains only one derivative:

F a
∂W (φa)

∂φa
= F a Tr

(

∂

∂φa
Pn+1(φ)

)

= F a Tr
(

T (fund)
a P ′

n+1(φ)
)

= Tr
(

FP ′
n+1(φ)

)

, (2.31)

where we used the cyclicity of trace in the second equality to put the generator T
(fund)
a to the

front. However, when we make two differentiations as is the case in the last term in (1.68)
we can only fix the placement of one the generators that are generated. Thus we settle for
only carrying out one of the derivatives explicitly in the last term of (2.27).

Since the F and D-fields are auxiliary, even in the quantised theory, we should replace
them with their (algebraic) equations of motion. Using (2.27) we immediately get:

D̃0 = 0. (2.32)

D̂a = −[φ̂†, φ̂]a, a = 1, . . . , N2 − 1. (2.33)

F̃ 0 = −g2
abelTr

(

T
(fund)
0 P ′

n+1(φ)
)

= −g2
abelTr

(

P ′
n+1(φ)

)

. (2.34)

F̂ a = −g2Tr
(

T
(fund)
a P ′

n+1(φ)
)

, a = 1, . . . , N2 − 1. (2.35)

F̄ obeys the complex conjugated equations as that of F .

Plugging these expectation values back into the Lagrangian gives a scalar potential:

U(φ) =
1

g2
Tr
(

[φ̂†, φ̂]2
)

+ g2
N2−1
∑

a=1

∣

∣

∣
Tr
(

T (fund)
a P ′

n+1(φ)
)∣

∣

∣

2
+ g2

abel

∣

∣

∣
Tr
(

T
(fund)
0 P ′

n+1(φ)
)∣

∣

∣

2
.

(2.36)

The part stemming from the D field in this potential, naturally, is the same as we found in
the N = 2 case (1.86).

Finally we can we get the full Lagrangian in components after elimination of the auxiliary
fields:

LU(N) =
2

g2
Tr
(

− iλ̂σµD̂µ
¯̂
λ− 1

4
F̂µν F̂

µν − g2ϑ

32π2
F̂µν

1

2
εµνρκF̂ρκ − D̂µφ̂

(

D̂µφ̂
)†

−i ¯̂ψσ̄µD̂µψ̂ − i
√

2[
¯̂
λ,

¯̂
ψ]φ̂ − i

√
2[λ̂, ψ̂]φ̂†

)

+
1

g2
abelN

Tr
(

− iλ̃σµ∂µ ¯̃λ− 1

4
F̃µν F̃

µν − g2
abelϑabel

32π2
F̃µν

1

2
εµνρκF̃ρκ

−∂µφ̃
(

∂µφ̃
)† − i ¯̃ψσ̄µ∂µψ̃

)

+

(

− 1

2
Tr

(

ψ
N2−1
∑

a=0

ψa
∂

∂φa
P ′
n+1(φ)

)

+ c.c.

)

− 1

g2
Tr
(

[φ̂†, φ̂]2
)

−g2
N2−1
∑

a=1

∣

∣

∣Tr
(

T (fund)
a P ′

n+1(φ)
)∣

∣

∣

2
− g2

abel

∣

∣

∣Tr
(

T
(fund)
0 P ′

n+1(φ)
)∣

∣

∣

2
. (2.37)
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Let us end this chapter by discussing how general this Lagrangian is. We should compare
it to the most general N = 1 Lagrangian with U(N) gauge group and an adjoint chiral
matter field for use in low-energy effective theories, i.e. (1.67). As noted above we have
left out a Fayet-Iliopoulos term. The gauge part of the Lagrangian is the most general
renormalisable that we can have, i.e. we have assumed that the τ ’s do not depend on
Φ. The Kähler term is also assumed renormalisable, but its normalisation has also been
constrained such that we obtained N = 2 supersymmetric invariance when disregarding the
superpotential. However, this normalisation is not important at all even in the first version
of a diagrammatic proof of the Dijkgraaf-Vafa conjecture in [6]. Thus the only way the
restriction to N = 2 supersymmetry plays a role is that the matter field Φ is in the adjoint
representation. However, the N = 2 supersymmetry was important in the string theory
from which the conjecture emerged. Naturally, it is not at all important when we introduce
the generalised conjecture in section 2.10.

At last let us look at the superpotential (2.1). This we did not even constrain by renor-
malisability, however, it is not the most general superpotential that we a priori could think
of. Rather, the most general superpotential is a multi-trace form:

L =

∫

d2θ
∑

k

∑

n1,...,nk

g(k)
n1,...,nk

Tr
(

Φn1
)

· · ·Tr
(

Φnk
)

. (2.38)

The Dijkgraaf-Vafa conjecture does not apply immediately in this case. One has to linearise
the superpotential to a single trace form by introducing auxiliary fields. The Dijkgraaf-
Vafa conjecture can then be used to obtain the effective action including these auxiliary
fields. One finally obtains the correct effective superpotential by integrating out the auxiliary
fields [18], [19].

One might think that the superpotential (2.1) would include any superpotential of the
form:

L =

∫

d2θ
∑

m,n

gm,n
(

Φ̃0
)m

Tr
(

Φ̂n
)

, (2.39)

i.e. a product of a trace over the abelian part (proportional to Φ̃0) and a trace over the non-
abelian part of U(N). But expanding (2.1) gives (expanding the polynomial as

∑

n gnΦ
n):

Wtree(Φ) = Tr
(

∑

n

gn

(

Φ̃ + Φ̂
)n)

= Tr

(

∑

n

gn

n
∑

m=0

(

n

m

)

Φ̃mΦ̂n−m

)

=
∑

n

gn

∞
∑

m=0

(

n

m

)

(

Φ̃0
)m

Tr
(

Φ̂n−m
)

=

∞
∑

m,n=0

gn+m

(

n+m

m

)

(

Φ̃0
)m

Tr
(

Φ̂n
)

. (2.40)

Here we have used the binomial formula which applies since Φ̃ is abelian. We have also used
that

(

n
m

)

= 0 for integers with m > n. Thus we see that our superpotential is a constrained
form of (2.39).

2.2 Supersymmetric Vacua

As we saw in section 1.2 the mass is a Casimir of the supersymmetry algebra and hence
both the fermionic and bosonic particles in a supermultiplet have the same mass. This is not
observed in nature so supersymmetry is broken at our energies. This makes the spontaneous
breaking of supersymmetry to a very important issue. In spite of this, we will focus our
interest on vacua which do not break supersymmetry spontaneously. The treatment builds
on [9], [10], [11], [12], [13], and [14].
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2.2.1 Supersymmetric Vacua

In section 1.1.3 we chose the Hamiltonian of the field theory realising the supersymmetry
algebra to be positive. That this is true can also be seen directly from (1.4c) using that the
Pauli matrices have zero trace:

H =
1

4

(

{QA1 , Q̄A1̇}+ {QA2 , Q̄A2̇}
)

(no sum A), (2.41)

for any A. Since the barred generators are the hermitian conjugates, the expectation value
of H is clearly positive or zero in any state. Actually, we see that the expectation value in
a vacuum (or any other state) is:

〈vac|H|vac〉 =
1

4

(

∥

∥QA1 |vac〉
∥

∥

2
+
∥

∥Q̄A1̇|vac〉
∥

∥

2
+
∥

∥QA2 |vac〉
∥

∥

2
+
∥

∥Q̄A2̇|vac〉
∥

∥

2
)

. (2.42)

Thus we clearly see that the vacuum |vac〉 is supersymmetric if and only if the vacuum energy
vanishes. On the other hand, supersymmetry is spontaneously broken if and only if vacuum
energy is strictly positive.11.

Now let us assume thatN = 1. Another necessary and sufficient criterion for spontaneous
breaking of supersymmetry is that there exist a field, ψ, with a non-zero supersymmetry
variation in the vacuum:

〈vac|δξψ|vac〉 6= 0. (2.43)

Using that δξψ = [iξQ + iξ̄Q̄, ψ] we immediately see that this can never be fulfilled if the
supercharges annihilate the vacuum which is the case if the vacuum energy is zero. As we
are dealing with a relativistic quantum field theory, we assume that the Poincaré invariance
is manifest, i.e. the Poincaré generators annihilate the vacuum. Thus only scalar fields that
transform trivially under the Lorentz group can have a non-zero expectation. Consequently,
δξψ must be a scalar field and hence ψ is fermionic. This fermion is called the Goldstino
since it plays the same role as the Goldstone boson. The Goldstino is also massless.

Let us look back at the superfield representation of the supersymmetry algebra. In the
case of a chiral superfield the Goldstino must be the Weyl spinor ψ from the component
expansion (1.34). The supersymmetry variation of ψ can be found using (1.23). Using again
that only fields that transform trivially under the Lorentz group can have non-zero expecta-
tion values, one then gets that supersymmetry is spontaneously broken if the auxiliary field
F gets a non-zero expectation value. This is known as F-term supersymmetry breaking.
Looking at the vector multiplet the Goldstino is the gaugino and supersymmetry is sponta-
neously broken if the auxiliary field D gets a non-zero expectation value. This is known as
D-term supersymmetry breaking.

We end this subsection by noting that when the supersymmetry is spontaneously broken
we no longer have equality of bosonic and fermionic states. This is because the norm of
Q|vac〉 becomes infinite (with an infinite space and finite energy density). Thus the proof in
section 1.2.1 no longer works.

2.2.2 Breaking and No-Breaking of Supersymmetry in N = 1 Supersym-
metric Field Theories

Let us look at an N = 1 supersymmetric field theory with a compact gauge group and
with chiral fields in some representation r. What we want to do here and in the rest of

11It is not possible to simply shift the energy – and thus making this observation meaningless – because
the Hamiltonian P0 is a part of the supersymmetry algebra (1.4).
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this section is to consider the tree-level expansion of the theory i.e. the semi-classical limit.
The vacuum expectation values of the component fields must be translationally invariant
since the vacuum does not break the Poincaré invariance. Thus the expectation value of
the scalar field φ (which we will denote φ0) is independent of the space-time coordinate
x.12 The expectation values of the rest of the fields, not transforming trivially under the
Poincaré group, vanish. Thus the only contribution to the vacuum energy comes from the
scalar potential. The vacuum expectation value of φ in the semi-classical approximation is
the value that minimises the scalar potential constrained to constant fields:

∂U |constant fields

∂φ

∣

∣

∣

∣

φ=φ0

= 0. (2.44)

This is, naturally, the semi-classical limit of the quantum expectation value obtained by
minimising the 1-PI effective potential:

∂Veff

∂φcl
= 0. (2.45)

We will now find the scalar potential for the theory. For simplicity we will assume that the
gauge couplings τab from equation (1.62) is independent of Φ and τab = 1

4δab. Furthermore,
we assume that the Kähler metric is invertible. We normalise the Fayet-Iliopoulos term
such that it is equal to κaD

a where κa only has non-zero values in the abelian directions
to ensure gauge invariance. We have here also assumed that the inner-product on the Lie
algebra is diagonal. Combining all the terms from (1.67) and expanding into components as
in section 2.1.4 yields the equations of motion for the auxiliary fields:

F i = −gīı ∂W (φ)

∂φ̄ı̄
, (2.46)

Da = −κa −
(

1

2

∂K
(

φ, φ†
)

∂φi
(T (r)
a )ijφ

j + c.c.

)

. (2.47)

Here the Kähler metric with upper indices is the inverse of the Kähler metric with lower
indices defined in (1.73). The scalar potential is then:

U =
1

2
DaDa + gīıF

iF̄ ı̄

=
1

2

∑

a

(

κa +

(

1

2

∂K
(

φ, φ†
)

∂φi
(T (r)
a )ijφ

j + c.c.

))2

+ gīı
∂W (φ)

∂φi
∂W (φ)

∂φ̄ı̄
, (2.48)

where the first line is evaluated using (2.46) and (2.47). The Kähler metric is positive for
unitarity of the theory since it multiplies the kinetic energy in (1.72). Thus the potential
energy is positive (or zero) as promised.

We now see that if we can find a solution φ0 to U = 0 then we automatically have a
global minimum and hence the vacuum expectation value of φ. But at the same time it is
the condition that supersymmetry is unbroken in this vacuum. It is these supersymmetric
vacua that we investigate in this thesis.

12The space-time independence can also be obtained by demanding the vacuum energy to vanish. After
computing the Hamiltonian one sees that this implies that the covariant derivative of φ is zero; Dµφ = 0 and
that F a

µν = 0. The last equation means that the gauge field Aµ is pure gauge and therefore we can set it to
zero. Thus the first equation reduces to ∂µφ = 0.
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From (2.48) we immediately see that the condition of finding vacua with unbroken su-
persymmetry translates into:

F i = 0, Da = 0 have solution φ0 for all i and a←→ Supersymmetric vacuum. (2.49)

This is the same result we found in the last subsection when giving the F-term and D-term
condition for spontaneous supersymmetry breaking.

If we for any constant field φ can find a F i that is non-zero, we have F-term breaking of
supersymmetry. The order parameter will be 〈F 〉. In the case where we do have solutions
to F i = 0 for all i we talk about F-flatness. From (2.46) these F-flatness equations can be
rewritten as:

∂W (φ)

∂φi
= 0, i = 1, . . . ,dim(r) . (2.50)

One can also obtain that F-term breaking generically only happens when an R-symmetry is
broken.

When we always are able to find aDa 6= 0 we have D-term breaking. The order parameter
is here 〈D〉. When we do have solutions we talk about D-flatness. Using (2.47) the D-flatness
equations can be rewritten as:

κa +
1

2

∂K
(

φ, φ†
)

∂φi
(T (r)
a )ijφ

j +
1

2

(

φi
)∗

(T (r)
a )ij

(

∂K
(

φ, φ†
)

∂φj

)∗

= 0, (2.51)

where we have assumed a unitary representation such that the generators are hermitian. In
many theories there will be no solutions to these equations when the Fayet-Iliopoulos term
is non-zero.

On the other hand, we can always find solutions to the D-flatness equations in the
form (2.51) if we assume that κa = 0 (the proof here is taken from [20]). Simply take
an arbitrary vector φ0. We can then look at the surface obtained by performing complex

gauge transformations on this vector φ0 7→ φ(Λ) = exp
(

−iΛa(x)T (r)
a

)

φ0 where Λa ∈ C.

The renormalisable Kähler potential, φ†φ, must have a minimum on this surface since it is
real and positive definite when φ runs through φ(Λ). Thus the general Kähler potential,
K
(

φ, φ†
)

, must have a local minimum if we assume that it is the renormalisable Kähler
potential perturbed with some extra gauge invariant real terms. The only thing that could
spoil this is if the renormalisable potential has some flat directions that the full Kähler
potential does not share thus making it possible to break the minimum. However, the flat
directions of φ†φ correspond to performing the standard real gauge transformations under
which the full Kähler potential is also invariant. The local minimum must be a stationary
point when varying Λ:

0 =
∂K
(

φ, φ†
)

∂φi∗
i
(

T (r)
a

)j

i
φj∗δΛa∗ − ∂K

(

φ, φ†
)

∂φi
i
(

T (r)
a

)i

j
φjδΛa. (2.52)

The terms multiplying the variations δΛa and δΛa∗ must be zero. Hence the minimum
point fulfil the D-flatness equations (2.51) with κa = 0 thus finishing the proof. This is the
reason that we do not allow a Fayet-Iliopoulos term in the Lagrangian of the Dijkgraaf-Vafa
conjecture.

As a corollary in the case of κa = 0, we see that if there exist a solution to the F-flatness
equations (2.50) then there must exist a solution φ0 satisfying both F-flatness (2.50) and
D-flatness (2.51) thus showing the existence of a supersymmetric vacuum. This result simply
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follows from the proof of the existence of a solution to the D-flatness equations using that the
superpotential is holomorphic in φ and thus invariant under the whole complexified gauge
group. This means that in order to determine if supersymmetry is unbroken (with no Fayet-
Iliopoulos term) the necessary and sufficient condition is the F-flatness equations (2.50).

Please note that we have dim(r) F-flatness equations and dim(G) D-term equations in
dim(r) variables φi. However, the F-flatness equations are constrained by gauge invariance
of the superpotential:

∂W (φ)

∂φi

(

T (r)
a φ

)i
= 0, (2.53)

thus giving dim(G) constraints and hence we have dim(r) equations in dim(r) variables.
Generically, we will thus always have solutions, however, this is not necessarily true when
considering specific theories.

2.2.3 Classical Vacuum Moduli Space

The vacuum moduli space is defined as the space of supersymmetric inequivalent vacua. We
know from the last section that in the semi-classical limit this space is parameterised by
the solutions φ0 to the F- and D-flatness equations (2.49), however, we should here keep in
mind that the solutions should be inequivalent. This defines the vacuum moduli space as a
complex manifold and we can endow it with a metric by pulling back the Kähler metric (1.73)
from the target space of φ’s.

Now we must remember that all observables are independent of the choice of gauge. Thus
gauge transformations relate equivalent vacua. Hence the parametrisation of the moduli
space is simply obtained by the solutions to the flatness equations modulo gauge transfor-
mations. We noticed in the last subsection that the orbit of the complexified gauge group,
GC, through any vector φ contains a solution to the D-flatness equations. Thus the space
of solutions to the D-flatness equations is simply {φi}/GC which can also be parameterised
by holomorphic gauge invariants modulo algebraic relations. That is there exist a set of
independent holomorphic gauge invariants Xr(φ) that parameterise the D-flatness space of
solutions. The total moduli space is then simply obtained by restricting these gauge invari-
ants by the F-flatness equations.

We will comment on the quantised vacuum moduli space in section 2.5.2

2.2.4 Classical Vacua for LU(N)

Let us now turn to the Lagrangian of our interest namely LU(N). In (2.36) we found the scalar
potential which clearly is positive and vanishes if and only if the F ’s and D’s in (2.32)-(2.35)
are equal to zero. These flatness equations actually have the same form as (2.50) and (2.51)
and thus the results above also apply in this case.

Let us first focus on the D-flatness. From (2.32) we see that there is no restriction on
the abelian part, however, as the abelian part of φ does not contribute to any commutator
we can reformulate the D-flatness equations obtained from (2.32) and (2.33) as:

[φ†, φ] = 0. (2.54)

This is true for an arbitrary gauge group with adjoint matter as can be seen from (2.51)
by setting K = φ†φ, κa = 0, and taking the generators in the adjoint representation. We
immediately see that we get a solution by requiring φ to be in a Cartan subalgebra of the
gauge group. For the unitary and symplectic gauge groups this gives all possible solutions,
however, for O(N) with N ≥ 7 there can be more general solutions [21, Appendix I].
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In our case the gauge group is U(N). Thus φ is U(N)-valued, however, with complex
coefficients since the φa’s are complex fields. Let us assume that φ is a solution to the D-
flatness equation (2.54). Splitting the φa’s in their real and imaginary part splits the matrix
φ into its hermitian and anti-hermitian part φ = φ1+iφ2 where both φ1 and φ2 are hermitian.
Since φ1 and φ2 are hermitian they can be diagonalised by a unitary matrix. Using (2.54)
we see that φ1 and φ2 commute and thus can be diagonalised by the same unitary matrix.
Thus φ is diagonalised by this unitary matrix. Since the matrix is unitary and φ transforms
adjointly, this precisely corresponds to a gauge transformation. Thus, by a suitable gauge
transformation we can choose any solution to (2.54) to be in the Cartan subalgebra of the
diagonal matrices (we could, naturally, have chosen any other Cartan subalgebra).

The choice of diagonal matrix is in general not unique. Naturally, adjoint transforma-
tions, φ 7→ UφU−1, preserve the eigenvalue spectrum, but the eigenvalues in the diagonal
form can be permuted. This is the action of the Weyl group. For a general group and a
specific choice of a Cartan subalgebra, the Weyl group is the subgroup of the gauge group
that permutes the generators of the Cartan subalgebra. It thus transforms an element in the
Cartan subalgebra back into the Cartan subalgebra. This group is finite. In our U(N)-case of
diagonal matrices the Weyl group simply permutes the axes. Since the Weyl transformations
are gauge transformations, they relate physically equivalent vacua and the parametrisation
of the vacuum moduli space should be independent hereof.

The gauge invariant parametrisation (and thus also Weyl group invariant) of the vacuum
moduli space is easily obtained in this case. We simply note that the characteristic polyno-
mial det(λ− φ) is invariant under adjoint transformations. Hence the coefficients must be
gauge invariant. We obtain these by expanding:

det(λ− φ) = λN det

(

1− φ

λ

)

= λNeTr ln(1−φ
λ) = λN exp

(

−
∞
∑

n=1

Tr(φn)

nλn

)

= λN − TrφλN−1 − 1

2

(

Tr
(

φ2
)

−Tr(φ) Tr(φ)
)

λN−2 − . . . (2.55)

As we can guess from the expansion (which only holds true for λ ≫ φ), the holomorphic
independent gauge invariants are Trφn with n = 1, . . . , N . Please note that there can only
be N parameters since we only have N eigenvalues of φ. This also holds true for SU(N)
with the exception that Tr(φ) = 0.

Let us now turn to the F-flatness equations.13 Using equations (2.34) and (2.35) these
can be written as:

Tr
(

T (fund)
a P ′

n+1(φ)
)

= 0, a = 0, . . . , N2 − 1. (2.56)

Generally for a Lie algebra, a product of generators can not be expressed as a sum of

generators. Thus, generally, a polynomial of matrices φ can not be expanded in T
(fund)
a ’s.

However, in our U(N) case the complexified span of the T
(fund)
a ’s gives the whole set of

complex matrices i.e. the Lie algebra corresponding to the group of invertible complex
matrices, GL(N,C). Thus P ′

n+1(φ) can be expressed as a complex linear combination of

T
(fund)
a ’s. Using (2.24) we then get:14

P ′
n+1(φ) = 0. (2.57)

13In the rest of this section we will be very thorough since we have not found any of the following proofs
in the literature.

14Another way to get this is to realise that by (2.56) the trace of P ′
n+1 with any matrix vanishes thus P ′

n+1

vanishes.
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We note that this would not be true if we had only looked at SU(N). In that case we would
get P ′

n+1 − 1
N Tr

(

P ′
n+1

)

1 = 0.

If we now assume φ to be diagonal to solve the D-flatness equation, (2.57) simply splits
into N equations for the eigenvalues φii:

P ′
n+1(φii) = 0, i = 1, . . . , N. (2.58)

Thus we obtain the classical vacuum expectation values, φ0, by constraining the eigenvalues
to be in the set of roots of P ′

n+1, i.e. the critical points of Pn+1 as promised in section 2.1.
This gives the final constraints to obtain the vacuum moduli space.

Let us now think of a specific point in the vacuum moduli space. This is determined by
a diagonal matrix φ0. Each of the eigenvalues must be equal to one of the critical points ai
of Pn+1. However, the placement of the eigenvalues are unimportant since the Weyl group
relate equivalent vacua. Hence the vacuum is simply specified by the partition of N in (2.3).
We can simply think of putting the a1-eigenvalues first in φ0, then the a2-eigenvalues and so
on. The unbroken gauge group consist of the matrices of U(N) that have φ0 as a fixed point
under adjoint transformations. We note that this is a subgroup of the full gauge group. The
generators of the unbroken group are determined as corresponding to the infinitesimal Λa’s
with [ΛaTa, φ0] = 0. Let us choose a basis for the fundamental representation of U(N) as
Di, Aij and Bij where i < j and:

(Di)kl = δkiδli,

(Aij)kl = δkiδlj + δkjδli,

(Bij)kl = −iδkiδlj + iδkjδli. (2.59)

The Di’s span the Cartan subalgebra of the diagonal matrices and are all in the unbroken
subgroup. Using that φ0 is diagonal we get that

([aAij + bBij , φ0])kl = (a−ib) ((φ0)jj − (φ0)ii) δkiδlj+(a+ib) ((φ0)ii − (φ0)jj) δkjδli, (2.60)

where we have no sums. We thus see that the commutator on the left hand side only has non-
zero indices at (i, j) and (j, i). Thus the condition [ΛaTa, φ0] = 0 splits into [aAij+bBij , φ0] =
0 for all i < j. For a or b non-zero we see that this is only possible if (φ0)ii = (φ0)jj which in
turn allow both a and b to be non-zero. This proves that the partition (2.3) has an unbroken
gauge group U(N1)× . . .×U(Nn) as in (2.4).

Given a vacuum determined by φ0 and the rest of the fields having expectation value
zero, we should expand the Lagrangian around these expectation values:

Lσ(σ) ≡ LU(N)(σ + φ0) , (2.61)

where the rest of the fields are unchanged. We know that supersymmetry should be unbroken,
but that some gauge symmetries, generally, are broken. Above we found a nice basis {Ta}
of generators for the fundamental representation of U(N) in which the generators of the
unbroken subgroup merely is a subset – no need for taking linear combinations. We can
easily obtain that in this basis, the metric defined by Tr(TaTb) is also diagonal and positive
definite. Let us work in this basis. The expansion of the Lagrangian must be done by Taylor
expansion and even in the simple case of getting the mass terms this is quite elaborate. We
will not do the calculation of the masses here, but refer to [10] for such a calculation. The
result is that we will have three types of masses: We will have zero masses corresponding to
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the unbroken gauge multiplets. Secondly, we will have strictly non-zero masses determined
by the square-root of the non-zero eigenvalues of the matrix with the (a, b) entry given by:15

φ†0{T (adj)
a , T

(adj)
b }φ0, (2.62)

where T
(adj)
a is the generator in the adjoint representation. We note that this entry is zero

if T
(adj)
a or T

(adj)
b is unbroken and it is positive when restricted to the broken subspace,

i.e. where a and b are the indices of broken generators. Thus the number of eigenvectors
with positive eigenvalues equals the number of broken gauge symmetries. These will be
the masses of the massive gauge multiplets that arise by the supersymmetric version of the
Higgs mechanism. At last we will have masses corresponding to the eigenvalues of the mass
matrix:

Mab =
∂2W (φ)

∂φa∂φb

∣

∣

∣

∣

φ=φ0

. (2.63)

These complex masses are the masses of the chiral multiplets in a representation of the
unbroken gauge group. Naturally, the masses of the components will be real positive. As
we see from (2.36) by expanding around the vacuum, the masses of the scalars (and thus of
the multiplet) are the absolute values of the eigenvalues of Mab if we disregard the gauge
coupling constants in (2.36) (which would not be there if we had defined the superpotential
as in footnote 10).

To be a bit more precise, we have NB broken gauge symmetries with [Ta, φ0] 6= 0. As we
saw above these [Ta, φ0] are linearly independent and must span the whole space of broken
symmetries since for any unbroken symmetry Tb,unb we have:

Tr(Tb,unb[Ta, φ0]) = Tr(Ta[φ0, Tb,unb]) = 0, (2.64)

since [Tb,unb, φ0] = 0. Thus [Ta, φ0] is orthogonal to the space of unbroken symmetries and
thus in the NB-dimensional space of broken symmetries. In this space we find NB complex
scalars of which we find NB real scalars of zero mass. These are the Goldstone bosons which
can be removed by choosing unitary gauge (“eaten”). The remaining NB scalars will have
the positive masses determined by (2.62). In the same directions we find two Weyl spinors
with the same mass namely the gaugino and the spinor from the chiral multiplet. With this
positive mass we also find a gauge boson. This makes up the massive gauge multiplet that
we found in section 1.2.3.

As we saw above the orthogonal space to the non-zero [Ta, φ0]’s is the unbroken subspace.
In these directions we find massless gauge multiplets and chiral multiplets. The masses of
the chiral multiplets are determined by the mass matrix in (2.63) restricted to the unbroken
subspace. We will end this section by proving that all the eigenvalues of this matrix, and
hence the masses, are non-zero if the roots of P ′

n+1 are different from each other as was
claimed above in section 2.1.1. As in (2.31) we get

Mab =
∂

∂φb
Tr
(

TaP
′
n+1(φ)

)

∣

∣

∣

∣

φ=φ0

= Tr
(

TaTbP
′′
n+1(φ0)

)

, (2.65)

where we have used that Tb is unbroken and thus commutes with φ0. This made it possible
to move Tb to the front. We note that it here was crucial that we only look at the unbroken
directions because, as noted above, this could not have been done using the cyclicity of the

15As this mass matrix arises from the term − 1
g2 Tr

(

[φ̂†, φ̂]2
)

we really should divide by 1/g2 to get the
masses.



2.3. QUANTISED THEORY 43

trace. We immediately see that we must assume Pn+1 to be non-trivial i.e. of degree two or
greater. Now let va by an arbitrary vector in the unbroken subspace and let us assume that:

Mabv
b = Tr

(

TaφP
′′
n+1(φ0)

)

= 0, (2.66)

where φ = Tbv
b, and a and b are in the unbroken space. Since φ0 is diagonal, P ′′

n+1(φ0) is
diagonal and each diagonal entry is equal to P ′′

n+1((φ0)ii). This is non-zero by the assumption
that the roots of P ′

n+1 are all different and that (φ0)ii is one of the roots. This is easily seen
by differentiating and evaluating in one of the roots. What we should now realise is that
since Ta is in the unbroken subspace

TaP
′′
n+1(φ0) = TaP

′′
n+1((φ0)kk) , (2.67)

for some suitable k depending on a. This we see by checking it for all the three types of
generators given in (2.59). Since P ′′

n+1(φ0) is diagonal it can be expanded in the Di’s. Thus
equation (2.67) is obviously fulfilled for Ta = Di which are all in the unbroken subspace;
here k = i. If Ta = Aij then by (2.60) (φ0)ii = (φ0)jj and thus

(

P ′′
n+1(φ0)

)

ii
=
(

P ′′
n+1(φ0)

)

jj
.

Using this we easily see by calculation that AijP
′′
n+1(φ0) = Aij

(

P ′′
n+1(φ0)

)

ii
thus realis-

ing (2.67) with k = i. The same holds true for Bij thus finishing the proof (2.67). Using
cyclicity of the trace and that Ta commutes with φ0, we can rewrite (2.66) as

Tr
(

φTaP
′′
n+1(φ0)

)

= Tr(φTa)P
′′
n+1((φ0)kk) = 0. (2.68)

Using that P ′′
n+1((φ0)kk) 6= 0, we conclude that Tr(φTa) = 0 for all generators Ta of the

unbroken subgroup. Using the invertibility of the metric we get that φ = 0 thus concluding
that we have no zero-eigenvalue vector and hence no zero mass. This finishes the proof.

What we should do now is to quantise the theory we have obtained thus defining a
perturbation theory for the fluctuations around this vacuum. The massive gauge multiplets
should be integrated out since they are not in the focus of our interest. The final theory
will have a very complex structure and thus we will mostly deal with the case of unbroken
gauge symmetry. This happens when all the eigenvalues in φ0 are chosen to be the same. If
we can choose all the eigenvalues to be zero the Lagrangian Lσ from (2.61) simply is LU(N).

2.3 Quantised Theory

In the last section we obtained the Lagrangian, which we want to quantise, by expanding
around the expectation values of the chosen vacuum. We can expand this Lagrangian into
components i.e. scalars, spinors and gauge bosons. These we already know how to quantise
using the path integral technique. However, instead of quantising the component fields it
is possible directly to quantise the superfields thus making the supersymmetry manifest.
We note, however, that even though our Lagrangian is classically supersymmetric since we
chose a supersymmetric vacuum, we do not know a priori if supersymmetry is broken in the
quantised case. We will discuss this issue later. We will not go into details in this section,
but just give a short review of the subject.

2.3.1 Supergraphs

Our goal is to develop a perturbation theory for the quantum fluctuations around the chosen
vacuum. As usual, the important objects to calculate are the n-point Green’s functions.
From a superspace point of view we want the n-point Green’s functions of the superfields.
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From these one can then obtain the usual Green’s functions by expanding in components as
in (1.32). The tool to calculate the Green’s functions is as usual the Feynman graphs which
in this case are called supergraphs. We will focus on the case where the Lagrangian only
contains chiral fields. Assuming renormalisability, the Lagrangian is given by (1.39).

The first thing to do when developing the supergraphs is to find the propagators. But
before finding these we should realise that we have a problem: The chiral superfield is
a constrained superfield by the chirality condition (1.33) (and the analogous for the anti-
chiral field Φ̄). Thus we have a problem in defining a path integral with integrations over
unconstrained superfields.

Another problem is that when we deal with supersymmetry the points should be super-
space points. But the fermionic integral in the superpotential term is only over half the
superspace. So we have to do something to put this term in the same form as the Kähler
term with a four-dimensional θ-integration.

The propagators that we are looking for are 〈TΦ
(

x, θ, θ̄
)

Φ̄
(

x′, θ′, θ̄′
)

〉0 and the corre-
sponding with ΦΦ or Φ̄Φ̄. Here the vacuum expectation values should be found using the
non-interacting Lagrangian, L0, and T is the time-ordering operator. There are several ways
to find these propagators. Firstly we could simply expand the Lagrangian in component
fields where we know how to do the calculations thus evading all problems. A second su-
persymmetric approach used by [9] imposes the constraint of chirality using the projection
operator onto chiral fields defined by:

Pch =
1

16

D̄D̄DD

�
, (2.69)

which is well-defined since � = ∂µ∂
µ commutes with the covariant derivatives. We imme-

diately see that PchΨ is chiral for any superfield Ψ since D̄α̇D̄β̇D̄γ̇ = 0. That it is really
a projection onto the chiral fields then follows since for any chiral field Φ we get by simple
calculation using (1.31), (1.61) and (C.47):

1

16

D̄D̄DD

�
Φ = Φ. (2.70)

This we could also have stated as the usual projection condition P 2
ch = Pch. Naturally, the

corresponding projection onto anti-chiral fields

Panti−ch =
1

16

DDD̄D̄

�
(2.71)

is also needed. These projections also solve the problem that the superpotential terms only
have integrations over half the superspace. Using (1.37) and (2.70) e.g. the mass term can
be rewritten as:

∫

d4xd2θ
1

2
mΦ2 = −m

8

∫

d4xd4θΦ
DD

�
Φ. (2.72)

At last, the chirality of the fields also has to be imposed when varying a chiral field. Using
that the chiral field Φ only can depend on x+ and θ as in (1.34), this boils down to the rule:

δ

δΦ
(

x, θ, θ̄
)Φ
(

x′, θ′, θ̄′
)

= −1

4
D̄D̄ δ(2)

(

θ − θ′
)

δ(2)
(

θ̄ − θ̄′
)

δ(4)
(

x− x′
)

. (2.73)

Now we are able to find the equations of motions and after some calculations the propagators
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will be (in Minkowski space):16

〈T
(

Φ
(

x, θ, θ̄
)

Φ
(

x′, θ′, θ̄′
)

Φ
(

x, θ, θ̄
)

Φ̄
(

x′, θ′, θ̄′
)

Φ̄
(

x, θ, θ̄
)

Φ
(

x′, θ′, θ̄′
)

Φ̄
(

x, θ, θ̄
)

Φ̄
(

x′, θ′, θ̄′
)

)

〉0 =

i

�−m2

(

m
4 D̄D̄

1
16D̄D̄DD

1
16DDD̄D̄

m
4 DD

)

δ(4)
(

x− x′
)

δ(2)
(

θ − θ′
)

δ(2)
(

θ̄ − θ̄′
)

. (2.74)

A third way (and the last that we will present) to obtain the propagators is to introduce
potential superfields as is done in [10]. This is in analogy with the well-known problem of the
gauge field strength that is constrained by the homogeneous Maxwell equations forcing us
to introduce the unconstrained gauge potential. In this case we introduce the unconstrained
superfields Πi defined from the chiral fields Φi as:

Φi = D̄D̄Πi. (2.75)

As we see from (2.70) we can always find such a field, but it need not be a local field due to
the �−1. This would in turn also have meant that any chiral field would be chirally exact
as discussed below equation (1.37) – this is not the case. We note that analogous to (1.28)
Φ̄i = DDΠ̄i. The Lagrangian (1.39) now becomes:

L =

∫

d4θΠ̄iDDD̄D̄Πi − 4

∫

d4θ
(

W̃
(

Πi
)

+ c.c.
)

, (2.76)

where we have used that we can always integrate D and D̄ by parts under the four-
dimensional superspace integral since the superspace integral of a super-covariant derivative
is zero by (1.36). W̃ is defined as W

(

D̄D̄Πi
)

where one pair of D̄D̄ has been removed in
each term when using (1.37) to change the half superspace integral to the full superspace
integral. But we still have a problem in defining the propagator since the Lagrangian by the
definition of Πi clearly is invariant under the transformations:

Πi 7→ Πi + D̄F, (2.77)

where F is any superfield. This is in analogy with the gauge transformation of the gauge
potential. However, there is no need for introducing Faddeev-Popov ghosts here to define
the path integral since all Green’s functions that we want to determine are invariant un-
der (2.77). The solution is simply to project onto the space orthogonal to the zero-eigenvalue
vector in (2.77) when determining the propagator. This projection is simply the anti-chiral
projection (2.71) since Panti−chD̄F = 0. Thinking of the mass term as an interaction term,
the propagator for ΠiΠ̄j is then by (2.76):

−iDDD̄D̄∆ij

(

x, θ, θ̄;x′, θ′, θ̄′
)

= Panti−ch δ
(4)
(

x− x′
)

δ(2)
(

θ − θ′
)

δ(2)
(

θ̄ − θ̄′
)

δij . (2.78)

Here there can be some unspecified terms of the form D̄F that adds to the right hand
side. But these are, as explained, unimportant. Using the definition of the anti-chiral
projection (2.78) immediately solves as

∆ij

(

x, θ, θ̄;x′, θ′, θ̄′
)

=
i

16�
δ(4)
(

x− x′
)

δ(2)
(

θ − θ′
)

δ(2)
(

θ̄ − θ̄′
)

δij . (2.79)

Inserting the D̄D̄ and DD from the definition of the potential superfields we get the propa-
gator for the chiral fields. The result is the same as (2.74) with m = 0.

16Here taken from [9]. We note that it is tacitly assumed that the mass m is real.
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2.3.2 Non-Renormalisation

Using the method of potential superfields the Feynman rules for the vertices can immediately
be obtained since the interactions from (2.76) simply are given by W̃ and its complex conju-
gate. We can use the supergraphs to find the 1PI-effective action here following [9] and [10].
For a general diagram contributing to the 1-PI effective action we see from (2.79) that we
get a four-dimensional delta function in θ from each propagator. These delta functions are
acted on by super-covariant derivatives from the Feynman rules of the vertices. We also
have full superspace integrations for each vertex which means that we can always integrate
the super-covariant derivatives by parts. For a given delta function we can then remove the
super-covariant derivatives using integration by parts and then perform the corresponding
four-dimensional θ-integration. Using this method we can eliminate all θ-integrations but
one by the delta functions. All super-covariant derivatives then act on the external fields
and all delta functions have been removed.17 A simple counting of vertices, internal and
external lines shows that the super-covariant derivatives can be used to change the external
Πi’s back to Φ’s except in the case of tree-level diagrams. Thus the effective action can be
written:
∫

d4θ

∫

d4x1 . . . d
4xnF1

(

x1, θ, θ̄
)

. . . Fn
(

xn, θ, θ̄
)

G(x1, . . . , xn)+tree-level diagrams. (2.80)

Here the Fi’s only depend on the external chiral fields and the super-covariant derivatives,
and G is just some translationally invariant function. We see that contributions to the
superpotential term, which only has integration over half the superspace, can only come
from the tree-level diagrams which in the 1-PI case are the simple vertices. We have thus
reached the important result that the superpotential is not renormalised perturbatively and
no new terms are introduced. Thus only the Kähler term is renormalised.

There is, however, one flaw in this proof and that is when we consider the �−1 in the
propagator (2.79). If we include the mass term in the propagator, the �−1 changes into
1/
(

�−m2
i

)

where we have assumed that the mass term is diagonal giving Φi mass mi.

Naturally, with the δ(4)(x− x′) this just gives the usual Feynman propagator. With the
mass we also have ΠΠ and Π̄Π̄ propagators that also have the Feynman propagator as a
factor.18 Now if we have a zero mass field, we could have a 1PI-diagram contributing to the
first term in (2.80) of the form:

∫

d4θ
DD

�
f
(

Φi
)

= −4

∫

d2θf
(

Φi
)

, (2.81)

where f is a function of the chiral fields Φi, and we used (1.37) and (2.70) as in (2.72). This
clearly gives a change in the superpotential. The first explicit example of such a diagram
was given in [22] as a two loop diagram. In the article they actually do the calculations in
components, but it is noted that the corresponding supergraph yields the same result. It is
important to realise that such a contribution arose because we had a massless field and we
thus have an IR divergency in the D-term. The IR divergency stems from the propagator �−1

which can bring about an integration
∫

0 dk 1
k which is logarithmically divergent. Actually, all

loop contributions to the F-term from 1PI diagrams come from IR divergent D-terms [23].
17When considering the details one needs to use that δ(θ) = θ. Thus δ(0) = 0 and δ(θ) δ(θ) = 0.
18A remark is in order for consistency with the second way of obtaining the propagators that led to (2.74).

When doing diagrams we should not use the propagators in (2.74). The reason is that we also have to use
the formula (2.73) for varying the external chiral currents one introduces to develop the Feynman graphs.
Taking this into consideration one gets the Grisaru-Roček-Siegel propagator which really just is the same as
the propagator for the potential superfields.
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We will return to the subject of such non-renormalisation theorems in section 2.5.2. How-
ever, there is another way to obtain effective actions without the above described problems.
We will introduce this method in the next section.

2.4 Wilsonian Renormalisation

Suppose we are interested in the dynamics of the quantised theory at energies below some
energy-momentum cut-off µ. All the physics is then captured by the Wilsonian effective
action that we will introduce in this section. The treatment is based on [12], [13], [24]
and [25].

2.4.1 Wilsonian Effective Action

Our starting point is a quantum field theory regularised by an UV cut-off Λ. Naturally, such
a sharp momentum cut-off is not preserved by gauge symmetry, but let us not worry about
that here. Another problem is that the condition kµkµ < Λ2 in Minkowski space does not
ensure that each 4-momentum coordinate is bounded – thus we rotate to Euclidean space.
For concreteness let us think of a scalar field theory with Lagrangian LΛ. The generating
functional is then given by (setting the external current to zero for simplicity):

Z =

∫

[Dφ]Λ e
−
∫

d4xLΛ(φ), (2.82)

where the scalar field only has non-zero momentum modes for ‖k‖ < Λ, and the functional
integration is defined as [Dφ]Λ =

∏

‖k‖<Λ dφ(k). To obtain an action that only depends on
the energy-momentum below the cut-off µ, we want to integrate out φ(k) with µ ≤ ‖k‖ < Λ.
To do this we split the scalar field as φ = φ̃+ φ̂ where

φ̃(k) =

{

φ(k) if ‖k‖ < µ
0 if µ ≤ ‖k‖ < Λ

, φ̂(k) =

{

0 if ‖k‖ < µ
φ(k) if µ ≤ ‖k‖ < Λ

. (2.83)

Now we can split the Lagrangian into the original Lagrangian evaluated in φ̃ and a mixed
term:

LΛ

(

φ̃+ φ̂
)

= LΛ

(

φ̃
)

+ Lmixed

(

φ̃, φ̂
)

, (2.84)

where there are no terms only depending on φ̃ in the mixed Lagrangian. Since φ̃ and φ̂ are
orthogonal in momentum space, quadratic terms of the form φφ̂ are zero. Thus the kinetic
term and the mass term in Lmixed only depend on φ̂ making this a Lagrangian in φ̂ with φ̃
as an external field. We can now integrate the φ̂ field out:

Z =

∫

[

Dφ̃
]

Λ
e−

∫

d4xLΛ(φ̃)
∫

[

Dφ̂
]

Λ
e−

∫

d4xLmixed(φ̃,φ̂) =

∫

[

Dφ̃
]

µ
e−

∫

d4xLµ(φ̃), (2.85)

where the functional integrations only are over the non-zero modes. Lµ is the Wilsonian ef-
fective Lagrangian at the energy µ. For calculations of processes with energies and momenta
less than µ it gives precisely the same result as using the old Lagrangian, however, now it is
only necessary to perform the momentum integrations up to µ.

For small couplings we can make Feynman diagrams representing the process of inte-
grating out φ̂ in (2.85) with φ̃ as an external field. It is natural to put this diagrammatic
contribution in exponential form. As usual this corresponds to only taking into account con-
nected diagrams. Lµ is then simply the sum of LΛ and these diagrammatic contributions:

Lµ
(

φ̃
)

= LΛ

(

φ̃
)

+ connected diagrams. (2.86)
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We note that the propagators in the diagrams will only have to be integrated over the
energy-momentum shell µ ≤ ‖k‖ < Λ. These diagrams thus suffer from neither UV nor
IR divergencies which is an essential feature in the Wilsonian effective action. Usually the
diagrams give an infinite number of non-zero correction terms – all those that are allowed
by symmetries. These corrections are new (and renormalisations of the old) interactions
terms that compensate for the degrees of freedom that has been integrated out. However,
we immediately see that supersymmetry is an exception (actually the only known) since here
there is no renormalisation of the superpotential as we saw in the last section for a theory
with only chiral fields. The exceptions to the non-renormalisation theorem mentioned in the
last section had their root in IR divergencies which are not a problem here.

2.4.2 Renormalisation Group Running of Couplings

We can use the above procedure for a general theory if we integrate out the high energy-
momentum modes for all the particles simultaneously to obtain Lµ. We can think of µ as
a continuous parameter. We note that this e.g. can be done by in steps integrating out
infinitesimal energy-momentum shells. The couplings gi(µ) are then continuous functions of
µ. The renormalisation group running in the space of theories is then given by the Wilson
equation:

µ
∂gi(µ)

∂µ
= βi(g(µ), µ) . (2.87)

We can constrain the µ-dependence in the β-function by introducing dimensionless couplings.
If ∆i is the mass dimension of gi then we define the dimensionless couplings as Gi(µ) =
µ−∆igi(µ). However, Gi(µ) can only depend on G(Λ) and µ/Λ since these are the only
dimensionless parameters. Differentiating and setting Λ = µ then gives:

µ
∂Gi(µ)

∂µ
= β̃i(G(µ)) , (2.88)

where we note that there is now no explicit dependence on µ on the right hand side. Using
the dimensionless couplings one can show a theorem due to J. Polchinski saying (with some
assumptions) that if the initial couplings G(Λ) lie on generic N -dimensional surface then for
µ ≪ Λ they will approach a fixed surface that is independent of the initial surface and Λ.
This surface is also approximately stable under further running of the parameter µ. Here N
is the number of renormalisable couplings. Using this we see that the physical observables
are independent of Λ as they should be.19

A fixed point is as usual a point where the left hand side of (2.87) vanishes. We can
linearise the β-function around the fixed point. The eigenvalues of the µ ∂

∂µ operator then
determines whether the coupling is damped or grows along the flow. The corresponding
operators are for the former called irrelevant and for the latter relevant operators. Zero
eigenvalues correspond to marginal operators. The free theory is, naturally, a fixed point
since Lmixed in (2.84) in this case is independent of φ̃. In the vicinity of this point where
we have weak coupling, we can determine the relevant operators by dimensional analysis.
As above gi has mass dimension ∆i and thus its natural order of magnitude is Λ∆i . Thus
a coupling with positive mass dimension will become increasingly important at lower µ
and the contrary for a coupling with negative mass dimension. This, naturally, only holds
true as long as the couplings are not changed too much by the quantum corrections i.e.

19This can be used to justify the usual renormalisation scheme where we take Λ to infinity and express the
couplings and masses in terms of physical quantities.
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in the vicinity of the free fixed point. Thus we see that the relevant operators here are
the super-renormalisable, the marginal are the renormalisable, and the irrelevant are the
non-renormalisable operators.

One can now ask why we do not drop the irrelevant operators when letting µ flow towards
low energies. However, when we want to examine a vacuum we expand the fields around
the vacuum expectation values. In this way irrelevant and relevant terms are mixed. Thus
irrelevant terms can contribute to relevant terms after the redefinition of the fields. However,
by the above dimensional analysis we see that it is enough to keep two derivatives on scalar
fields and one on the fermionic fields – just as we did in chapter 1 when developing the
general supersymmetric Lagrangians. With these Lagrangians we can obtain the vacuum
expectation values and investigate the relevant and marginal physics around the vacua.
But if we do not want to let µ go all the way to zero, we are to some extent making an
approximation here. Also note that we assumed that we were close to a free fixed point as
µ → 0 so we could characterise the relevant operators as the renormalisable ones. This is
actually true for a wide range of theories: The Coleman-Gross theorem tells us that for small
couplings a theory of scalars, spinors and U(1) gauge bosons has an IR free fixed point.

In general when wanting to determine the effective action at some scale µ one has to
guess which degrees of freedom are relevant (or marginal) at that scale.

2.4.3 Integrating Out Massive Fields

We note that both the kinetic terms and the masses are renormalised as we let µ float to
lower energies. However, we can as usual renormalise the wavefunctions to keep the kinetic
terms invariant. This will naturally also renormalise the couplings that are then called
canonical couplings. Let us assume that we have a massive field φ. Normally the canonically
renormalised mass will not decay as the energy-momentum scale µ runs to zero so at some
point µ will be less than the canonically renormalised mass of φ. This means, especially if
µ ≪ m, that the mass term dominates the kinetic term which we can then disregard. Let
us here pause the flow of the rest of the fields and perform the remaining integration of the
field φ. What we should think here is then:20 When we want to integrate out the remaining
momentum shell of thickness µ the propagator for the field φ is only given by the inverse
mass (squared). A loop with this propagator then contains a momentum integration of the
thickness µ. The loop must then scale as µ/m to some power and can thus be discarded.
Thus we only have tree-level diagrams left i.e. the semi-classical approximation. This tells
us that when we go below the mass of a field we can completely integrate it out by replacing
it with its equation of motion:

∂Lµ
∂φ

= 0, (2.89)

where we used that the dependence in the Lagrangian on ∂φ/∂xµ can be removed since terms
including such space-time derivatives give rise to tree-level diagrams that scales as µ/m to
some power. The integrating out procedure will be important for us in the next section.

2.4.4 Wilsonian vs. 1PI Effective Action

In the limit µ → 0 we can compare the Wilsonian and the 1PI effective action. As we
saw in the last subsection the massive fields will then be completely integrated out of the
Wilsonian effective action. However, the massless fields are still degrees of freedom. This

20The literature is unfortunately a bit vague at this point.
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is contrary to the 1PI effective action where all fields are integrated out. But if there are
no massless fields the 1PI and the Wilsonian action coincide. As discussed above, when one
integrates out the massless fields in the 1PI effective action one gets IR divergencies. We saw
that because there were no IR divergencies in the Wilsonian effective action, it fulfilled the
non-renormalisation theorem. In the next section we will discuss that this also ensures the
intimately related concept of holomorphy of coupling constants in the Wilsonian effective
action – this is not case for the 1PI effective potential.

It should be mentioned that the Wilsonian effective action actually suffers from IR di-
vergencies when we are varying in the space of theories. Simply think of a Lµ with some
field φ with mass m < µ. Here the field is integrated out. If we now vary m to zero we have
accidentally integrated out a massless field and we get an IR divergency. It is a fact that all
singularities in the Wilsonian effective action arise in this way as fields becoming massless.

Let us end this section by noting that the Lagrangian LU(N) in the Dijkgraaf-Vafa conjec-
ture can be seen as an effective Lagrangian obtained by integrating out a very massive field in
an underlying theory. Hence we can understand the inclusion of non-renormalisable powers
in the tree-level superpotential. In the next section we will see how further renormalisation
group running changes the effective superpotential.

2.5 The Wilsonian Effective Superpotential

In this section we will study the Wilsonian effective superpotential at some scale µ. Let
us assume that supersymmetry is unbroken at this scale. Then we can write the effective
Lagrangian in the general supersymmetric form (2.7). This allows us to define the Wilsonian
effective generalised superpotential as the θθ-term in (2.7). As also noted there we have here
enlarged the definition of the superpotential to also include the supersymmetric gauge field
strength hence the name “generalised superpotential”.21 This made sense since the gauge
kinetic term, even though it can be written as a local D-term, can not be written as a
gauge invariant D-term. We will begin our investigation of this effective superpotential by
introducing the concept of holomorphy which will be crucial to us not only in this section,
but also when we give the diagrammatic proof of the Dijkgraaf-Vafa conjecture.

2.5.1 Holomorphy

Since the mid-eighties it has been known that the effective superpotential should be holo-
morphic not only in the chiral fields as demanded by supersymmetry, but also in the bare
coupling constants. However, it was discovered that it here is essential that the effective
superpotential is the Wilsonian one since the IR-divergencies from massless particles in the
1PI effective superpotential can violate this holomorphy - i.e. give an holomorphic anomaly
(this was made clear in [26] and [27], and is reviewed in [23]).

In [28] N. Seiberg introduced22 a trick well-known from string theory that allows us
to prove the holomorphicity in the (complex!) coupling constants: We think of the bare
couplings gk in the (not generalised) superpotential as being the scalar components of back-
ground chiral superfields. E.g. they could be very massive chiral superfields integrated out
at the energy at which we write our bare Lagrangian and with fine-tuned couplings such

21We will simple refer to the generalised superpotential as “superpotential” when no confusion should be
possible.

22Actually, the trick is also mentioned in [27], however, it is not used in its full power as in [28]. It should
also be mentioned that [28] is based on an unpublished argument by N. Seiberg and J. Polchinski.
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that the expectation value of the scalar components exactly match the bare couplings gk
(and the rest of the components have zero expectation value). Now, as we flow down in
energy the Wilsonian effective superpotential will still be holomorphic in the chiral fields
due to supersymmetry which we assume to be unbroken. This now includes the auxiliary
background fields which are just the bare constants. Thus the effective superpotential is
holomorphic in the bare coupling constants, i.e. independent of g∗k, as long as supersymme-
try is unbroken.23 This remains true also for non-perturbative corrections as it is based only
on the assumption of unbroken supersymmetry. However, we note that it is important not
to use the canonically renormalised couplings since the Kähler term is not holomorphic.

The holomorphicity also applies to the complex gauge coupling constants τ from (1.76)
and (1.80). And, naturally, it also applies when we look at the generalised superpotential.

Using the full power of holomorphy and treating the couplings as background fields we
can prove powerful non-renormalisation theorems as we will see already in the next section.

2.5.2 Non-Renormalisation Theorems

In this section we will use the idea from the last section that the couplings in the generalised
superpotential can be seen as background chiral superfields. We will prove that the gener-
alised superpotential is not renormalised perturbatively or to be more precise that the only
renormalisation that takes place is one-loop renormalisation of the complex gauge coupling
τ .

In the article [28] (reviewed in [29] and [30]) Seiberg introduced the following scheme for
determining the effective superpotentials:

1. Holomorphy: As discussed in the previous section the dependence in the generalised
superpotential on the bare couplings should be holomorphic due to supersymmetry.

2. Symmetries and selection rules: Setting the background fields (i.e. the couplings) to
zero gives a large global symmetry group of the Lagrangian where we also include R-
symmetries. This symmetry group is spontaneously broken for non-zero expectation
values of the background fields (non-zero couplings). However, letting the background
fields transform (assigning transformation rules to the couplings) the global symmetry
group can be restored for the Lagrangian. If non-anomalous, these symmetries must
be shared by the effective Lagrangian giving powerful restrictions that are further
sharpened when using the above holomorphy.

3. Various limits: E.g. in the weak coupling limit it can be possible to put restrictions on
the Lagrangian using perturbation theory. Sometimes one can require smoothness in
the weak coupling limit or even, when setting some masses to zero, use that there must
be singularities due to massless particles that have been integrated out as explained in
section 2.4.4.

This scheme will often determine the effective superpotential since a holomorphic function
is determined by its asymptotic behaviour and its singularities. We will now use it to prove
the perturbative non-renormalisation theorem. This was formerly done using the supergraph
method as in section 2.3.2 which generalises to the case where vector superfields are involved.
Here we will present a proof based on [10] and [20] using the Seiberg scheme.

23Naturally, also the term superpotential no longer makes sense when supersymmetry is broken.



52 CHAPTER 2. THE DIJKGRAAF-VAFA CONJECTURE

Let us assume that our bare Lagrangian at the UV energy µ0 has the form:

Lµ0 =

∫

d4θΦ†e2V
(r)

Φ +

(∫

d2θ
τ

16πiC(r)
Tr(r)(WαWα) +

∫

d2θWµ0

(

Φi
)

+ c.c.

)

. (2.90)

Here we have used (1.67) and assumed a renormalisable Kähler term. The gauge group is
for simplicity assumed simple and the gauge kinetic term renormalisable so that we could
use (1.79). The superpotential could be non-renormalisable.

Using the background field method we think of the bare complex gauge coupling τ
as being a background chiral superfield. The same we do with the couplings gk in the
superpotential Wµ0

(

Φi
)

which we can write as:

Wµ0

(

Φi
)

=
∑

k

gkOk
(

Φi
)

, (2.91)

where Ok
(

Φi
)

is a gauge invariant multiple of the chiral fields, i.e. a multiple of the indepen-
dent holomorphic gauge invariants, Xr, parameterising the vacuum moduli space introduced
in section 2.2.3.

Now we want to determine the effective Lagrangian Lµ at the lower energy µ. We assume
that the cut-off respects supersymmetry and gauge invariance. Thus Lµ a priori takes the
form of the most general gauge invariant and supersymmetric Lagrangian i.e.:

Lµ =

∫

d4θGµ
(

Φi, Φ̄i, V, τ, τ∗, gk, g
∗
k,Dα . . .

)

+

(∫

d2θFµ
(

Φi,Wα, τ, gk
)

+ c.c.

)

. (2.92)

Here Gµ and Fµ are very general gauge invariant functions since we do not know which
operators are relevant at the scale µ. This means that we can not constrain ourselves to the
Lagrangians given in section 1.3 where we assumed maximally two space-time derivatives
on bosonic fields and one on fermionic fields as explained in section 2.4.2. However, we do
note that the generalised superpotential Fµ is holomorphic in gk and τ as determined by
supersymmetry. Also, Fµ does not depend on the covariant derivatives Dα or space-time
derivatives since according to [10] such terms can be reformulated as D-terms as we did with
the chirally exact terms.

The next item on the Seiberg scheme is to constrain Lµ by extended global symmetries.
There are two of those. The first is a U(1)R R-symmetry under which the generalised
superpotential must have charge 2 as explained in section 1.3.3 . When all the couplings are
zero we obtain an R-symmetry simply by choosing Φi and V to be R-neutral. In order for
this to be an R-symmetry with non-zero couplings we must assign transformation rules to
the couplings, i.e. the background fields. All couplings gk must have charge 2 to give the
tree-level superpotential an overall charge of 2. On the other hand Wα given by (1.55) must
have charge 1 since R(∂/∂θα) = R(Dα) = −1. We then conclude that τ has zero charge. We
will now assume that Lµ is obtained perturbatively. Then the R-symmetry is non-anomalous
as we will see in the next section. Thus Lµ must be invariant under the R-symmetry and Fµ
must have charge 2. Since it is holomorphic, it only depends on couplings and fields having
non-negative charges and we conclude that it takes the form:

Fµ
(

Φi,Wα, τ, gk
)

= Wµ

(

Φi, gk, τ
)

+
1

16πi
τµ,ab

(

Φi, τ
)

WαaWb
α, (2.93)

where Wµ is linear in the gk’s.
The second symmetry we will use is τ 7→ τ + ξ where ξ is a real number. This is a

symmetry of the Lagrangian since as we will see in the next section the real part of τ i.e. ϑ
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multiplies a total derivative term that does not contribute in the perturbative regime. Thus
τ can only appear as multiplying a WαaWb

α term as in the tree-level Lagrangian. Hence Wµ

is independent of τ and demanding gauge invariance gives τµ,ab
(

Φi, τ
)

= cµδabτ + dµ,ab
(

Φi
)

since the gauge group is simple.

The last step in the Seiberg scheme is to consider limits. Setting gk equal to zero we
have a global symmetry of the bare Lagrangian: Φ 7→ e−iαΦ. This constrains dµ,ab

(

Φi
)

to
be independent of Φi and thus equal to δabdµ for the sake of gauge invariance. Thus we can
write Fµ as:

Fµ
(

Φi,Wα, τ, gk
)

= Wµ

(

Φi, gk
)

+
cµτ + dµ
16πiC(r)

Tr(r)(WαWα) . (2.94)

Let us now take the limit where the gauge coupling and the gk’s are small i.e. weak
coupling. Since Wµ is linear in the gk’s, the only diagrams that can contribute to Wµ is the
single vertex diagrams determined from the bare superpotential W . This shows us that the
superpotential is not renormalised: Wµ = W .

To find cµ and dµ we also use the weak coupling limit. We note that this for the gauge
coupling amounts to taking τ to infinity. We can think of τ as being purely imaginary
since, as noted above, ϑ does not contribute. We can then develop the supergraph rules
for the vector field V . The propagator and self-interaction vertices are derived from the
term

∫

d2θ τ
16πiC(r) Tr(r)(WαWα). This means that the propagator goes as 1/τ and the self-

interaction vertices go as τ . The interactions with matter come from the Kähler term and
are τ independent. We note that each of these interaction vertices has two Φ-lines attached
since we assumed a renormalisable Kähler term in (2.90). There can be no Φ-Φ interaction
since we have no dependence on the gk’s in cµ and dµ. Now, let there be given a diagram
contributing to the last term of Fµ in (2.94). We will count the τ dependence in this diagram.
Let VV and IV be the number of pure gauge boson vertices and internal gauge boson lines
respectively. The power of τ in the diagram then is:

Nτ = VV − IV . (2.95)

Introducing VΦ for the number of (not pure gauge) interaction vertices and IΦ for the number
of internal Φ-lines (or Φ̄-lines), the number of loops is given by (assuming a connected
momentum space diagram):

L = IV + IΦ − VV − VΦ + 1. (2.96)

However, since there are no external Φ-lines and each interaction vertex contains two Φ-
lines we have VΦ = IΦ so Nτ = 1 − L. Thus only tree-level diagrams contributes to cµ
i.e. it takes the same value as in the bare Lagrangian: cµ = 1. And dµ only receives
one-loop renormalisation (we can include the tree-level which is zero). The renormalised
superpotential then takes the form:

Fµ = W
(

Φi
)

+
τ(µ)

16πiC(r)
Tr(r)(WαWα) , (2.97)

where τ(µ) is the one-loop renormalised complex gauge coupling. This ends the proof of the
perturbative non-renormalisation theorem. We could also have obtained this result from a
general non-renormalisable bare Lagrangian, however, the counting of the powers of τ would
have been a bit harder [20].
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τ(µ) can be determined from standard quantum gauge theory calculations; here taken
from [10], [12] and [25]. The renormalisation group running (2.87) of the (real) gauge coupling
g is found to be µ ∂

∂µg = − b
16π2 g

3 to one-loop order. Here b depends on the quadratic
invariants, C(r), defined in (1.78) of the representations of the complex bosons and the
Weyl fermions. Using that we have one adjoint Weyl fermion for each vector superfield, and
we have a Weyl fermion and a complex boson for each chiral superfield representation rn,
one gets:24

b = 3C(adj)−
∑

n

C(rn) , (2.98)

where the sum is over the different representations of the chiral fields. We note that this
is not invariant under scalings of the gauge group generators since these scale the gauge
coupling as explained at the end of section 1.3.4. Solving the Wilson equation yields:

1

g2(µ)
= − b

8π2
ln

( |Λ|
µ

)

, (2.99)

where |Λ| is the strong coupling scale of the theory. It is simply a constant of integration
that by definition is scale invariant and we can express it as:

|Λ| = µe
− 8π2

bg2(µ) . (2.100)

The reason for the modulus is that we can now express the running complex gauge coupling
τ(µ) using (1.80) as:25

τ(µ) =
b

2πi
ln

(

Λ

µ

)

, (2.101)

where Λ is the (complex) holomorphic scale26 given by:

Λ ≡ |Λ| eiϑ/b = µe
2πi
b
τ(µ). (2.102)

The strong coupling scale is naturally so called since when µ approaches |Λ| the effective
gauge coupling diverges as seen from (2.99). We also see that the sign of b determines
whether the theory is UV or IR free. For b positive the theory is UV free and IR strongly
coupled i.e. asymptotically free. From (2.98) we see that this happens for non-abelian gauge
theories with not too much light27 charged matter. On the other hand, for b negative the
theory is weakly coupled in the IR and runs to strong coupling in the UV. This happens e.g.
in the abelian case where C(adj) = 0 or for theories with enough charged matter.

For an asymptotically free theory we must demand that the scale µ in the non-renormali-
sation theorem is greater than the strong coupling scale – so the theorem does not solve the
strong coupling problem of asymptotically free theories.

We should note that for a general (classical) gauge group we get one holomorphic scale
for each simple factor. We also note that the 1PI complex gauge coupling does receive
higher order loop contributions. However, the effective theory is not holomorphic in the 1PI

24This is often written with the quadratic Casimir C2(adj) instead of C(adj) which one can do since the
quadratic Casimir and the quadratic invariant are equal in the adjoint representation.

25We note that this tells us that dµ = b
2πi

ln
(

µ0

µ

)

. Here µ0 is the scale for the tree-level Lagrangian.
26Not to be mistaken with the UV cut-off in section 2.4.
27We note that the fields contributing to the counting in b are only those which have not been integrated

out at the scale µ i.e. the light matter. This also means that Λ depends on how much matter that has been
integrated out.
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coupling and the relation between the Wilsonian and the 1PI complex gauge couplings is
consequently non-holomorphic [27].

An important consequence of the non-renormalisation theorem is that if supersymmetry
is unbroken classically, it is unbroken to any order in perturbation theory. This follows
since the superpotential is not renormalised and thus we still have the classical solution to
the F-flatness equations. But the Kähler term is now taking a general form since we can
not constrain this term with holomorphy. However, the proof in section 2.2.2 still works
for this general Kähler term and thus shows us that we can always find a simultaneous
solution to both the D- and F-flatness equations. Consequently, supersymmetry in unbroken
perturbatively. However, this does not mean that the quantum moduli space is the same
as the classical. As noted in section 2.2.3 the classical moduli space is endowed with the
Kähler metric pulled back from the target space. But this metric is, naturally, changed by
the Kähler term renormalisation thus changing the moduli space. It should be mentioned
that non-perturbatively it is possible to break supersymmetry since we here do not have a
strict non-renormalisation theorem in the non-perturbative regime.

The Dijkgraaf-Vafa conjecture provides a systematic way to obtain the effective gen-
eralised superpotential. We have learned in this section that the non-trivial part of these
effective superpotentials must be non-perturbative contributions. We will discuss such con-
tributions shortly, but first we will have to take a look at the ϑ-angle and chiral anomalies.

2.5.3 The ϑ-Angle, Instantons and Chiral Anomalies

In this section we will rather briefly study the Fµν F̃
µν -term in the gauge kinetic and self-

interaction Lagrangian (1.71). The presentation is based on [12], [31], [32] and [33]. Let
us look at a non-abelian gauge group and concentrate on a simple factor. For simplicity
we think of this subgroup as SU(2). The results will be true for general non-abelian gauge
groups since they all contain SU(2) subgroups. From (1.81) we see that the term of our
interest takes the form:

Sϑ = −
∫

d4x
ϑ

16π2
Tr
(

Fµν F̃
µν
)

, (2.103)

where the trace here and in the rest of this subsection is taken in the fundamental represen-
tation where, as before, the quadratic invariant from (1.78) is chosen to be 1/2. Using the
definition of the field strength (1.58) we get:

Sϑ = −
∫

d4x
ϑ

8π2
εµνρσ∂µ Tr

(

Aν∂ρAσ + i
2

3
AνAρAσ

)

, (2.104)

which, as promised above, is a total space-time derivative term.
For the integral (2.103) to be finite we must require that Fµν vanishes at infinity.28

Hence, at infinity the gauge potential is pure gauge such that Aµ = i (∂µg) g
−1 where g is

an element in the gauge group.29 Plugging into (2.104) gives:

Sϑ =
ϑ

24π2

∫

S3

d3ξ εijk Tr
(

g−1(∂ig)g
−1(∂jg)g

−1(∂kg)
)

, (2.105)

where we have rewritten the four-dimensional space-time integral over the total derivative
as a surface integral over the 3-sphere S3 at infinity.30 However, this integral is known from

28Since Fµν transforms adjointly, the condition Fµν = 0 at infinity is gauge invariant.
29We have here used that the gauge transformation of Aµ with g is A′

µ = gAµg−1 + i (∂µg) g−1 consistent
with the definition of Dµ in (1.59).

30We have here assumed a regular gauge with no divergencies.



56 CHAPTER 2. THE DIJKGRAAF-VAFA CONJECTURE

homotopy theory. It counts (ignoring the ϑ-angle) the number of times g(x) wraps S3 around
SU(2) which in turn is topologically equivalent to S3. This is an integer – the winding number
– and it determines to which homotopy (Pontryagin-) class the gauge potential belongs. This
corresponds to the third homotopy group being π3(SU(2)) = Z. The winding number is a
topological invariant and is thus unchanged under continuous deformations of the fields. We
can now write Sϑ as:

Sϑ = ϑn, n ∈ Z, (2.106)

where n is the winding number. Since the contribution to the path integral is eiSϑ , we see
that

ϑ 7→ ϑ+ 2π (2.107)

is a symmetry of the theory or, more correctly, it is an exact equivalence of theories. This
shows us that we can think of ϑ as an angle. This symmetry can be expressed in the complex
gauge coupling as:

τ 7→ τ + 1. (2.108)

To investigate the above field configuration further we switch to temporal gauge At = 0
and the surface in (2.105) is taken to be a cylinder parallel to the time axis. Then the only
contribution to our surface integral comes from the caps at t = ±∞. The surface integral
is thus the difference between the full space integrals over the pure gauge configurations at
t = ±∞. The pure gauge configurations at the caps are determined by the space dependent
group elements g∞ and g−∞ respectively and the full space integrals are ϑ times integers say
n∞ and n−∞. The gauge field configuration then interpolates between two vacua configured
by g∞ and g−∞ and the winding number is the difference n = n∞ − n−∞. Both vacua
can, by definition, be gauge transformed into the classical vacua with zero gauge potential,
i.e. g±∞ = 1 and n±∞ = 0. However, the gauge transformation can not be continuously
deformed into the identity for n∞, n−∞ 6= 1 since the configurations belong to different
homotopy classes. This kind of gauge transformations are called large gauge transformations.

The homotopically different vacua are related by the above field configurations with
non-zero winding number. They are not physically equivalent as we already see from the
fact that the interpolating gauge configurations have different weights in the path integral
due the Sϑ = ϑn term. Also, since Fµν can not vanish identically (this would give zero
winding number) there is an energy barrier between the vacua. The corresponding quantum
mechanical tunnelling amplitude is e−SE where SE is the Euclidean action (focusing on the
gauge part only) with SE = 1

2g2

∫

d4xTr(FµνFµν).
We thus have an infinity of homotopically inequivalent vacua. This naturally assumes

that the above interpolating gauge configurations exist and have finite action implying that
the tunnelling amplitudes are not vanishing. Such solutions indeed exist. In fact, by rotating
to Euclidean space we can for each winding number n find a unique gauge configuration in
the homotopy class which minimises the action, i.e. satisfies the classical equation of motion
DµFµν = 0 and has finite action. These are called instantons and the corresponding winding
number is called the instanton number or charge. It is easy to show that the field strengths
for the instantons are (anti-)selfdual Fµν = ±F̃µν .31 For instantons the tunnelling amplitude
given by the FF term can then be calculated using (2.106) (without ϑ):

e−SE =
(

e−8π2/g2
)|n|

=

( |Λ|
µ

)|n|b

, (2.109)

31It is important that we are in Euclidean space because here ˜̃Fµν = Fµν . This is contrary to Minkowski

space where ˜̃Fµν = −Fµν and thus (anti-)selfduality only has trivial solutions.
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Figure 2.1:

�jµa Ac

Ab �+ jµa

Ac

Ab

The diagrams contributing to the chiral anomaly in four space-time dimensions. Taken
from [12].

where we have used the strong coupling scale from (2.100). Since the strong coupling scale
is non-perturbative,32 we see that instantons are non-perturbative effects given by powers of
|Λ| and thus become increasingly important in the strongly coupled regime.

Using the instantons one can calculate non-perturbative corrections to the effective La-
grangian, but we will not go into details of this vast field. However, let us just note that the
instanton solutions only exist in non-abelian groups. Thus, as mentioned before, we do not
have such contributions in abelian subgroups. However, the abelian ϑ-angle should not be
neglected in the IR effective actions since it here couples to massive sources not described
by the same IR physics. So the real part of the complex gauge couplings (2.21) in the
Dijkgraaf-Vafa conjecture should not be neglected.

The Fµν F̃
µν -term also plays an important role when we look at anomalies in chiral sym-

metries. A chiral symmetry is defined as a symmetry in which the left and right handed
part of the spinors transform differently. As in the rest of this thesis we here assume that
the spinors are Majorana spinors. Now, if the left-handed Weyl spinor transforms in the
rchiral representation of some symmetry group Gchiral then due to the Majorana reality condi-
tion (C.18) the right-handed Weyl spinor transforms in the complex conjugate representation
r̄chiral. We thus conclude that for a chiral symmetry the spinor must transform in a complex
representation. Corresponding to this symmetry we as usual have a classically conserved

current, jµa , for each generator T
(chiral)
a of Gchiral.

In four space-time dimensions this symmetry can only be anomalous, i.e. 〈∂µjµa 〉 6= 0, if
the fermions are coupled to gauge fields. We thus assume a gauged theory with gauge group
G. The anomaly can be calculated perturbatively using diagrams and is actually a one-loop
effect. The diagrams contributing to the calculation of 〈∂µjµa 〉 in four dimensions are the
triangle diagrams shown in figure 2.1. The result of the calculation in Minkowski space is
(treating the gauge fields as external fields):33

〈∂µjµa 〉 ∝
∑

r

Trr(Ta{Tb, Tc})F bµν F̃ cµν , (2.110)

where the sum is over the different representations of the Weyl fermions. The right hand
side should be seen as external fields. Setting Ta to be a generator of the chiral symmetry
group, and Tb and Tc to be gauge generators we get the chiral anomaly. Let us suppose
that the Weyl fermions transform in the representations (ri, rchiral,i) of the symmetry group

G × Gchiral. The anomaly then depends on
∑

iTrrchiral

(

T
(chiral)
a

)

Trri

(

TbTc
)

. We conclude

32If we try to expand the exponential e−1/g2

in a Taylor series around g = 0 each coefficient would be zero.
33In this expression all the generators could be generators of the gauge group. For consistency we must

then demand that we have no gauge anomaly i.e.
∑

r
Trr(Ta{Tb, Tc}) = 0.
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that the anomaly can only be in the abelian factors of the chiral symmetry group. We thus
assume Gchiral to be a U(1) symmetry. The different fermion representations have charge
qi, i.e. ψ(i) 7→ eiαqiψ(i) where ψ(i) is the Weyl fermion in the ith representation. The exact
result of the calculation is then:34

〈∂µjµ〉 = − 1

16π2

∑

i

qiTrri

(

Fµν F̃
µν
)

= −
∑

i qiC(ri)

16π2
F aµν F̃

aµν , (2.111)

where we have used the quadratic invariant from (1.78). We see that the anomaly is propor-
tional to Tr

(

FµνF̃µν
)

and thus, by the considerations above, the abelian chiral symmetry is
anomalous in the non-perturbative regime with non-abelian gauge groups.35

One can also calculate the anomaly in the path integral formalism. The reason for the
anomaly is simply that the measure has a non-trivial Jacobian under the chiral transfor-
mation. To see this we first promote the chiral symmetry to a local transformation with
ψ′

(i) = eiα(x)qiψ(i). One finds that under this transformation the measure changes as:

DψDψ̄ = Dψ′Dψ̄′e−i
∑

i qiC(ri)

16π2

∫

d4xα(x)F a
µν F̃

aµν

. (2.112)

Letting S[ψ] denote the action we then get:

∫

DψDψ̄ . . . eiS[ψ] =

∫

Dψ′Dψ̄′ . . . eiS[ψ′]

=

∫

DψDψ̄ . . . eiS[ψ]+iδS+i
∑

i qiC(ri)

16π2

∫

d4xα(x)F a
µν F̃

aµν

≈
∫

DψDψ̄ . . . eiS[ψ]

(

1 + iδS + i

∑

i qiC(ri)

16π2

∫

d4xα(x)F aµν F̃
aµν

)

, (2.113)

where the last line is to the first order in α. Using that under the localised chiral transfor-
mation the change in the action is

δS =

∫

d4xα(x)∂µj
µ, (2.114)

we immediately get (2.111). Since the result agrees with the above one-loop calculation, we
conclude that the anomaly is one-loop exact.

For an N = 1 supersymmetric theory with simple gauge group we see from (1.81)
and (2.114) that the change in the Lagrangian under the anomalous chiral symmetry corre-
sponds to changing the ϑ-angle as ϑ 7→ ϑ+2α

∑

i qiC(ri). In this way the anomalous breaking
of the chiral symmetry has been transformed into an explicit breaking by the ϑ-term. The
effective Lagrangian then has the symmetry:

ψ(i) 7→ eiαqiψ(i),

ϑ 7→ ϑ+ 2α
∑

i

qiC(ri). (2.115)

34We note that there here is a factor 1
2

compared to most standard calculations since we look at Majorana
fermions instead of Dirac fermions thus halving the degrees of freedom. Also, we have changed sign compared
to standard texts (e.g. [25]) since the sign depends on Tr γµγνγργσγ5 and our sign here is unconventional
due to the definition of σ0 in (C.10). This was also the reason for the unconventional sign on the FF̃ -term
(i.e. the ϑ-term) in (1.69) as we discussed there.

35Since we saw in (2.104) that Tr
(

Fµν F̃ µν
)

= ∂µKµ for some Kµ, we might think that we could define a

non-anomalous current as jµ −Kµ. However, this is not possible since Kµ is not gauge invariant under large
gauge transformations as explained above.
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Since the anomaly is related to the ϑ-angles, we conclude that there can only be one inde-
pendent anomalous chiral symmetry for each simple factor in the gauge group.

We can use that the ϑ-angle is periodic to see that the anomalous chiral symmetry
group is in fact not completely broken, but broken to a discrete group (as done in e.g. [34]).
However, in our case we should be a bit careful since the Lagrangian is not invariant under
rescalings of the gauge group generators as discussed at the end of section 1.3.4. We here
appreciate that in (2.115) ϑ and C(ri) transform in the same way under the rescalings.
However, the instanton calculation that showed ϑ to be periodic was done for a specific
normalisation chosen such that C(fund) = 1/2 for SU(N). Generalising this to any gauge
group the ϑ-angle is 2π periodic if we choose a normalisation (following [10]) such that for
Ta, Tb and Tc in the “standard” SU(2) subalgebra we have the structure constant:

fabc = εabc. (2.116)

Given this normalisation we see that the chiral symmetry is unbroken for the discrete set of
α’s obeying:

2α
∑

i

qiC(ri) ∈ 2πZ. (2.117)

We can now use our knowledge of the Fµν F̃µν -term to constrain the non-perturbative
corrections to the superpotential.

2.5.4 Non-Perturbative Corrections

The perturbative non-renormalisation theorem proven in section 2.5.2 depended on two
symmetries: Real translations of τ and an R-symmetry. With the knowledge from the last
section we see that both of these symmetries can be broken non-perturbatively: τ can only
be translated by integers τ 7→ τ + n, n ∈ Z (using (2.108)) and the R-symmetry can be
anomalous. However, we will now see that the Seiberg scheme used in 2.5.2 still constrains
the form of the effective superpotential (based on [10], [12], [28] and [30]).

Let us assume the same setup as in section 2.5.2. This means that the Lagrangian at
the UV energy µ0 is given by (2.90) and we want to determine the effective generalised
superpotential at the lower energy µ. The general form of the Lagrangian at energy µ is
(using holomorphy) again given by (2.92).

According to the Seiberg scheme in section 2.5.2 we shall now use symmetries and limits
to constrain the generalised superpotential. Firstly, the weak coupling limit of the couplings
gk should be smooth (we do not at this point integrate out fields so we should also have
smoothness in the limit of masses going to zero). This means that we can rule out negative
powers of gk. But also terms like e−1/g2k are ruled out [15, 16] since gk is complex and the
exponential diverges when e.g. gk goes to zero from the imaginary direction in the complex
plane. This means that we can simply expand the generalised superpotential in non-negative
powers of the couplings gk.

The dependence on τ is more complicated. Here we can have a non-perturbative depen-
dence as in e2πiτ since the imaginary part of τ given by (1.80) is 4π/g2 and thus positive.
This means that in the limit of the gauge coupling g → 0 we have e2πiτ → 0. We can
exchange e2πiτ with Λb using the holomorphic scale from (2.102) since the quotient only
depends on the scale. Λb also has the nice property that it is periodic in ϑ and as we saw
in (2.109) integer powers of Λb can be obtained by instanton corrections. However, we can
have contributions that depend on (not necessarily integer) powers of Λ. Below we will actu-
ally see an example of an expectation value with the wrong ϑ-periodicity. The contributions
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Table 2.2:

U(1)i U(1)R
Φj δij 0
gk −Nk,Φi 2
Wα 0 1
Λb 2C(ri) 2C(adj)− 2

∑

i C(ri)

Charges for the symmetries constraining the effective generalised superpotential. Nk,Φi is
the order of Φi in the term with coupling gk in the bare superpotential. Based on [12].

of Λa must have a > 0 since Λ → 0 corresponds to the smooth weak coupling limit g → 0
assuming an asymptotically free theory with b > 0. We note that Λ depends on τ holomor-
phically. Thus Λ should be regarded as a background chiral superfield and the dependence
on it should be holomorphic. Naturally, we can also have a perturbative dependence on τ
through ln(Λ). We know how this looks in perturbation theory from equation (2.97) so let
us extract it from the effective generalised superpotential (using (2.101)):

Fµ
(

Φi,Wα, τ, gk
)

= − b

32π2C(r)
ln

(

Λ

µ

)

Tr(r)(WαWα) + F ′
µ

(

Φi,Wα,Λ, gk
)

. (2.118)

Please note that we have not yet proven that the perturbative part should look like this,
but simply extracted it in expectation of such a term and indeed one can show that it will
look like this. We also note that F ′

µ only depends on τ through powers of Λ. The reason
is that there will be chiral anomalies. As we saw in (2.115) the anomaly is cancelled by
the first term if we translate τ under the anomalous chiral symmetry and hence F ′

µ should
be invariant under the symmetry. This can only happen if the dependence of τ is through
powers of Λ that under (2.115) has a definite charge.

Let us now turn to the symmetries that can restrict F ′
µ. These are naturally the same

as we used in section 2.5.2: We have a global symmetry, U(1)i, rotating Φi, but not the rest
of the chiral fields: Φj 7→ eiαδij Φj. Here Φi transforms in the representation ri of the gauge
group. To ensure the U(1)i symmetry with non-zero couplings we must as before assign
charges, −Nk,Φi, to the couplings gk where Nk,Φi is the order of Φi in the term with coupling
gk in the bare superpotential (2.91). Since this is a chiral symmetry, it can be anomalous and
thus we should also assign a charge to Λ. The other symmetry that we used in section 2.5.2
is the R-symmetry, U(1)R. Here we found that R

(

Φi
)

= 0 and R(Wα) = 1. Using (1.34),
(1.57) and that R(θ) = 1 this means that the spinor from the chiral multiplet has charge
−1 and the gaugino has charge +1. Thus it is a chiral symmetry and it can be anomalous.
Using (2.115) we can find the corresponding charge of Λ. The charges for the symmetries
are given in table 2.2.

The effective superpotential now heavily depends on the sign of the charge of Λb under
the anomalous R-symmetry. For a positive charge there is only one possible power of Λ
whereas for a negative charge, Λ can be used to compensate the positive charges of gk and
Wα thus allowing arbitrary powers of these.

Let us focus on the case where the charge is zero and the R-symmetry is not anomalous.
This is exactly the case for the Lagrangian LU(N) presented in the Dijkgraaf-Vafa conjecture
in section 2.1 where we ignore the abelian part of the gauge group. Here we only have
one chiral field in the adjoint representation exactly compensating the contribution to the
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anomaly from the gaugino. Using that the effective generalised superpotential should have
charge two under the R-symmetry we get two kinds of terms in F ′

µ: One term linear in
the gk’s and one term proportional to two Wα’s. This means that the effective generalised
superpotential takes the form:

Fµ
(

Φi,Wα, τ, gk
)

= − b

32π2C(r)
ln

(

Λ

µ

)

Tr(r)(WαWα) +
∑

k

gkOµ,k
(

Φi,Λ
)

+ hµ,ab
(

Φi,Λ
)

WαaWb
α. (2.119)

We can constrain the dependence on Φi and Λ using the U(1)i symmetry. Let us for simplicity
assume that we only have one chiral field Φ which is in the adjoint representation. Let NΦ

and NΛ respectively denote the powers of Φ and Λ in a given term. Then we see from
table 2.2 that for hµ,ab we have NΦ = −2C(adj)

b NΛ. Thus the term independent of Φ is
also independent of Λ and will in fact simply give the one-loop running of τ that we have
already taken out. The rest of the terms in hµ,ab have negative powers of Φ thus giving new
non-perturbative contributions. For Oµ,k we have

NΦ = Nk,Φ −
2C(adj)

b
NΛ. (2.120)

Setting NΛ = 0 we have NΦ = Nk,Φ and considering the weak coupling limit we see that this
gives us the bare superpotential. For NΛ > 0 we get corrections to terms with NΦ < Nk,Φ.
Thus a term of order NΦ in Φ only receives new contributions arising from terms in the bare
superpotential of higher order in Φ.

To be able to perform further analysis of the effective Lagrangian we will in the next
subsection introduce the concept of integrating in matter.

Let us end this section with an example of the breaking of the U(1)R symmetry to a
finite group. We consider the N = 1 supersymmetric Yang-Mills theory. In this case we
only have one adjoint fermion, the gaugino, with charge +1. Thus (2.117) shows us that
the R-symmetry is unbroken if 2αC(adj) ∈ 2πZ. It is here customary to introduce the dual
Coxeter number, h. The precise definition of the dual Coxeter number is [35]:

Tradj

(

T (adj)
a T

(adj)
b

)

= hψ2δab, (2.121)

where ψ2 is the length of the highest root. This definition makes the dual Coxeter number
invariant under rescaling of the generators. The dual Coxeter numbers for the classical
and exceptional groups can be found in table 2.3 along with other group theoretical facts.
We should now remember that (2.117) holds true for a normalisation such that (2.116)
is fulfilled for the standard SU(2) subalgebra. With this normalisation we have ψ2 = 1
such that C(adj) = h. Thus by (2.117) the R-symmetry is broken to Z2h i.e. the gaugino
transforms as:36

λβ 7→ eiαλβ, α =
2π

2h
n, n ∈ Z2h. (2.122)

36This result can also be obtained by an instanton calculation (following [14]). In the case of a SU(N)
gauge group we have 2N = 2h zero-modes from the gaugino. The first non-vanishing correlator must have
2h gaugino insertions to soak the zero modes. Requiring this correlator to be invariant we see that U(1)R

breaks to Z2h.
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Table 2.3:

SU(N) SO(N), N ≥ 4 Sp(k) E6 E7 E8 F4 G2

dim(G) N2 − 1 N(N − 1)/2 2k2 + k 78 133 248 52 14

rank(G) N − 1 [N/2] k 6 7 8 4 2

C(fund) 1/2 1 1/2

h(G) N N − 2 k + 1 12 18 30 9 4

Dimensions, dim(G), ranks, rank(G), and dual Coxeter numbers, h(G), for the classical
and exceptional groups. For the classical groups the quadratic invariant in the fundamental
representation, C(fund), is also given – in a normalisation such that the highest root has

length 1. Based on [12] and [35].

2.5.5 ILS Linearity Principle and Integrating In

In the last section we did not consider integrating out massive fields which, as we explained
in section 2.4.3, is possible at energy scales below the masses of the fields. In this section we
will do this and even see that we can integrate the fields back in.

The setup will be the same as in the last subsection and section 2.5.2 with an N = 1
supersymmetric Lagrangian with simple gauge group. However, we will assume that the tree
level (i.e. the bare) superpotential Wtree that was given by (2.91) now is linear in the basis
for holomorphic gauge invariants Xk

(

Φi
)

introduced in section 2.2.3:37

Wtree =
∑

k

gkXk. (2.123)

Let us for now ignore the dependence on Wα in the effective superpotential – we will
return to this later. In [36] K. Intriligator, R. G. Leigh and N. Seiberg (ILS for short)
conjectured that the effective (generalised) superpotential can be put into the form:38

Weff(Xk,Λ, gk) = Wdyn(Xk,Λ) +Wtree(Xk, gk) . (2.124)

This is called the ILS linearity principle since it states that the dependence on the couplings
gk is linear. However, we note that it further asserts that the term depending on the couplings
is the tree-level superpotential. This can often be obtained using the Seiberg scheme from
section 2.5.2, but actually it is not the form we found in (2.119) for the case of a single
adjoint chiral superfield. Equation (2.119) is nicely linear in the couplings, but the term
depending on the couplings is not the tree-level superpotential. However, the conjecture
in [36] is that one can always redefine the fields Xk as a function of the couplings gk to bring
the effective superpotential into the form (2.124).

Since this is not proven directly let us see that it is true in a special case using (2.119).
We assume that the gauge group is SU(N) and that the tree-level superpotential is given
by Wtree = 1

2mX2 + gX3 where, as we found in (2.55), the basic gauge invariants here are
Xk = Tr

(

Φk
)

, k ≤ N . Using (2.119), (2.120) and assuming only non-negative integer powers

37The Xk can be constrained. This can be fixed by including Lagrange multipliers in the effective super-
potential.

38In writing this we use that gauge invariance requires the Φi dependence to be expressed through the
basic gauge invariants Xk.



2.5. THE WILSONIAN EFFECTIVE SUPERPOTENTIAL 63

of Φ we get (dropping constant terms and using b = 2C(adj) = 2N in this case):

Weff(Xk,Λ, gk) = Wtree + cgΛX2, (2.125)

where c is a constant and we have used that the only Xk of order less than three in Φ is
X2 (X1 = Tr Φ = 0 in the non-abelian case). By redefining X ′

3 = X3 and X ′
2 = gX2 we

get Wtree = 1
2
m
g X

′
2 + gX ′

3 and Wdyn = cΛX ′
2. Here Wdyn is independent of the couplings

m′ = m/g and g′ = g as wanted.

Let us now continue with the general case following [36] and [37]. We assume that we
are at so low energies that we can integrate out some massive field say X0 using (2.89) (or
rather when working with the elementary fields Φi we integrate out all Xk that involve Φi).
Ignoring the Kähler-term at these low energies (2.89) shows that we integrate X0 out by
solving the equation of motion

∂Weff

∂X0
(〈X0〉) = 0 (2.126)

for 〈X0〉(X1, . . . ,Xn,Λ, gk) (assuming k = 0, . . . , n) and inserting this back into Weff thus
obtaining the effective action, Weff,L, with X0 integrated out:

Weff,L(X1,X2, . . . ,Xn, gk,Λ) = Weff(〈X0〉,X1, . . . ,Xn, gk,Λ)

= Wdyn(〈X0〉,X1, . . . ,Xn,Λ) +
∑

k 6=0

gkXk + g0〈X0〉. (2.127)

The reason for the index “L” is that this is nothing but the Legendre transform ofWdyn(Xk,Λ)

in (2.124) as we see by rewriting (2.126) as
∂Wdyn

∂X0
= −g0. Using that the implicit dependence

on g0 through 〈X0〉 is zero by the virtue of (2.126) we get that:39

∂Weff,L

∂g0
= 〈X0〉. (2.128)

This is nothing but the inverse Legendre transform. If we know the g0 dependence in the
effective Lagrangian with X0 integrated out, we can use (2.128) to solve for g0 as a function
of 〈X0〉 and the other fields and couplings, and then use (2.127) to obtain Wdyn. Weff is
then obtained by adding Wtree. This is called integrating in. This means that we loose no
information in integrating out a field and we can see Xk and gk as being dual.

Whereas the dependence on g0 in Weff,L is complicated, the linearity principle still applies
for the rest of the fields since ∂Weff,L/∂gk = Xk for k 6= 0 by (2.126). This means that we can
continue the integrating out (and in) for the rest of the fields. Without loss of information
we can obtain an effective Lagrangian only depending on the couplings gk and Λ.

The integrating in procedure through equation (2.128) should not be unfamiliar since
this is just the equation we have for the 1PI effective superpotential. The couplings are
here the external currents. Actually, we could have carried out our treatment in the 1PI
formalism (if well-defined) and if the 1PI action and the Wilsonian action agrees, this would
prove the linearity principle [30].

The integrating in method is powerful (following [37]) since it sometimes allows us to
determine the effective superpotential for an “upstairs” theory with an extra massive field
Φ̂ from a known effective superpotential of a “downstairs” theory simply by integrating in
the Φ̂ field. Two points should, however, be borne in mind. Firstly, the holomorphic scales

39We note that if the tree-level superpotential was given as in (2.91) with the Ok’s being – not necessarily
linear – functions of the basic gauge invariants, then the right hand side in (2.128) would be Ok(〈X0〉).
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depend on the matter representation as noted in section 2.5.2. Let Λd denote the scale for
the downstairs theory and let bd be the corresponding constant in the β-function determined
by (2.98). Correspondingly for the upstairs theory we have Λu and bu. If the gauge group
is not simple, we have one such pair for each simple factor. Assuming simple thresholds (or
absorbing factors into the Λ’s) we can simply compare the running gauge couplings g(µ) (for
each factor) at the mass, m, of the field to be integrated in (using (2.99)):

Λbdd = Λbuu m
C(r), (2.129)

where C(r) is the quadratic invariant for the representation of Φ̂. This follows from (2.98)
yielding bu = bd − C(r).

The second point to consider is that when flowing to the upstairs theory, adding a tree-
level superpotential with couplings gk, and then flowing down again by integrating out Φ̂ as
in (2.127) does not give the downstairs effective superpotential Weff,d back, but rather:

Weff,L = Weff,d(Xk,Λd) +WI(Xk,Λu, gk) , (2.130)

where WI is the renormalisation group irrelevant term that the downstairs theory does not
know about. WI must vanish for gk = 0 or m → ∞. Only if such a WI superpotential
can be ruled out, we can use the integrating in procedure from the downstairs theory to the
upstairs.

Let us now consider the dependence onWα. We will assume that the dependence hereon
is always40 through the (traceless since we study a simple group) glueball superfield, Ŝ,
defined as in (2.5), but now, naturally, for any simple group. (2.5) was written for C(fund) =
1/2. Generally we define Ŝ as:

Ŝ = − 1

32π2C(r)
Tr(r)(WαWα) . (2.131)

This is a massive field so at low energies, which we will assume to be at, it is integrated out.
Looking at the tree-level Lagrangian with the UV cut-off µ0 the gauge kinetic term (1.79)
takes the form (using (2.101) as we did in (2.118)):

WG = 2πiτŜ = ln

(

Λb

µb0

)

Ŝ. (2.132)

Thus we can see ln
(

Λb/µb0
)

as the coupling for Ŝ. Assuming that the principle of linearity41

also holds for Ŝ, we can integrate Ŝ back in analogously to (2.128) by solving:

∂Weff

∂ ln
(

Λb

µb
0

) = 〈Ŝ〉. (2.133)

This gives Λ as a function of 〈Ŝ〉 and Xr (or gk if the fields have been integrated out) which
we can substitute back in to obtain Wdyn as a function of Ŝ (in analogy with (2.127)):

Wdyn

(

Xk, Ŝ
)

= Weff

(

Xk,Λ
(

Xk, Ŝ
)

)

− ln

(

Λ
(

Xk, Ŝ
)b

µb0

)

Ŝ. (2.134)

40E.g. in (2.119) the dependence on Wα is not necessarily through Ŝ so this is an assumption.
41As noted in [37] the assumption of simple thresholds above is actually a generalisation of the linearity

principle for Ŝ.
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To obtain the effective superpotential we simply add the tree-level potential (2.132). Nat-
urally, the µ0 dependence then goes out so the low-energy effective superpotential is inde-
pendent of this scale. Now we can see ln

(

Λb/µb0
)

and Ŝ as a canonical pair just as gk and
Xk was above. We can also extend this analysis to the case where we have a semi-simple
gauge group with more than one holomorphic scale and corresponding glueball superfields.
We should mention that we were able to perform the integrating in procedure since there
can be no WI -term as in (2.130) because the total Λ dependence is accounted for in Weff [5].

We note that the meaning of the superpotential with Ŝ integrated in is unclear since it
is a massive field that really should be integrated out at the low energies. However, it is
this potential that we determine in the Dijkgraaf-Vafa conjecture – with all matter fields
integrated out and the glueball superfields integrated in. This superpotential has the virtue
that the expectation values of the glueball superfields are found by the equations of motion
analogous to (2.126):

∂Weff

∂Ŝ

(

〈Ŝ〉
)

= 0. (2.135)

Thus we have explained equation (2.8).

We should not think of the Dijkgraaf-Vafa conjecture as depending on the ILS linear-
ity principle since we in the next chapter will prove the conjecture (i.e. obtain Weff,pert)
diagrammatically without using the linearity principle. The linearity principle can actually
quite easily be proven [38] using the Dijkgraaf-Vafa conjecture and the techniques we develop
in the diagrammatical proof. But one can also prove the Dijkgraaf-Vafa conjecture using the
linearity principle along with Seiberg-Witten curves [5]. To complete the picture one can
quickly obtain the Konishi anomaly using the linearity principle and the anomalous U(1)i
symmetry from table 2.2 – and the other main proof of the Dijkgraaf-Vafa conjecture [7]
actually uses a generalised form of this Konishi anomaly.

We will use the integrating in procedure to obtain the Veneziano-Yankielowicz superpo-
tential in section 2.5.7, but let us first review some of the lore of gauge dynamics.

2.5.6 The Lore of Gauge Dynamics

One of the aims in obtaining the low-energy effective action is to be able to determine what
phase the theory is in. The phase of a theory depends on the parameters of the theory and
the choice of vacuum state. It is characterised by the energy potential, Velec(R), between
two electrical test charges separated by a large distance, R. By electric we here mean in the
abstract gauge group sense. The presentation is based on [12], [23] and [30] and we are in
four space-time dimensions.

It is here important for us that G. ’t Hooft and A. Polyakov showed the possibility of
magnetic monopoles for non-abelian gauge groups.42 These ’t Hooft-Polyakov monopoles
were obtained as solitonic solutions in the Georgi-Glashow model, however, it was first with
the Seiberg-Witten theory for N = 2 supersymmetric theories that exact calculations could
be done of e.g. monopole condensation.

Table 2.4 shows the different conjectured phases characterised by the behaviour of the
electric potential, Velec(R). The behaviour is only determined up to an additive constant.
In the first three phases (Coulomb, free electric and free magnetic) there are massless gauge
fields and the potentials are of the form e2(R)/R where e(R) is the renormalised charge. In
the Coulomb phase the charge is constant. In the free electric phase the massless charged

42What is meant here is that the UV Lagrangian has a non-abelian gauge symmetry. Naturally, this gauge
group could be spontaneously broken in the IR.
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Table 2.4:

Phase: Velec(R) ∼ Vmagn(R) ∼ E-M duality

Coulomb
1

R

1

R
bb

Free electric
1

R ln(RΛ)
ln(RΛ)

R
nn

ppFree magnetic
ln(RΛ)

R

1

R ln(RΛ)

Higgs constant ρR nn

ppConfining σR constant

The table shows the characterising behaviour of the electric and magnetic potential for the
different phases of gauge theories. Also shown is the electric-magnetic (E-M) duality.

particles renormalise the charge to zero as R→∞ while in the free magnetic phase massless
monopoles renormalise the charge to infinity at large distances. In table 2.4 the behaviour
of the magnetic potential, Vmagn(R), between two magnetic test charges is also shown. For
the first three phases we directly get the magnetic potential from the electric by the Dirac
quantisation condition e(R)g(R) ∼ 1 where g(R) is the renormalised magnetic charge.

The Higgs phase is characterised by condensation of an electrically charged particle. This
gives a mass gap to the theory via the Higgs-mechanism. The potential is then of the Yukawa
type and thus exponentially decays to zero at large R. This can be seen by the charges being
screened by the condensate or equivalently by the gauge bosons acquiring mass. The flux
between two magnetic sources, on the other hand, is confined into a thin flux-tube with
constant tension ρ thus giving the linear potential. This is in analogy with the Meissner
effect from superconductivity.

The confining phase is the phase of our interest. This phase is solely for non-abelian
groups whereas we can find the above for both abelian as well as non-abelian groups. Em-
pirically we know this phase from QCD: In the UV the degrees of freedom are the gluons
and the coloured quarks while in the IR we have the colourless hadrons - i.e. colour con-
finement. The qualitative explanation of confinement can, as suggested by Mandelstam and
’t Hooft, be seen as a dual Meissner effect where the confining phase is dual to the Higgs
phase. The duality here is the electric-magnetic duality that exchanges the electric and mag-
netic charges. As is also indicated in table 2.4 this duality exchanges the free electric and
free magnetic phase. The Coulomb phase is self-dual which one finds easily in the abelian
case, but in the non-abelian case one again has to go to supersymmetric theories where it
is part of the Montonen-Olive duality. Getting back to the confining phase this can then
be seen as the electric-magnetic dual of the Higgs phase. Here it is now monopoles that
form a condensate and the electric flux between the two electric test charges is confined to a
thin tube with constant string tension σ. The corresponding linear potential Velec(R) ∼ σR
shows that it requires an infinite amount of energy to separate two charged particles. This
explains why we only see the gauge-invariant fields (hadrons in QCD) at low energy. As in
the Higgs phase we also have a mass gap in the confining phase.
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The confining phase has another characteristic: If we only have adjoint matter, the
Wilson loop operator for large loops satisfies the area law 〈TrPei

∮

dxµAµ〉 ∼ e−σ·Area where
“Area” is the area of the Wilson loop.43 As opposed to this the Wilson loop operator in
the Higgs phase will rather depend on the perimeter of the loop. However, when we have
particles in the fundamental representation we can not distinguish the confining and the
Higgs phase because virtual pairs can screen the sources. As a last remark we can also have
dyons (particles with both electric and magnetic charge) if we have a non-zero ϑ-angle. If
the dyons condensate, we get a phase called oblique confinement.

Let us now turn to supersymmetric gauge theories. Let us concentrate on supersymmetric
Yang-Mills theory with a simple gauge group i.e. pure superglue. We want to know what
happens at low energy i.e. below the strong coupling scale, |Λ|. Based on e.g. lattice
simulations it is believed that we have confinement and a mass gap.

But the theory also shows another phenomenon characteristic for the strong coupling
regime of gauge theories, namely spontaneous breaking of chiral symmetry. We look at the
U(1)R symmetry from table 2.2. This is simply measuring the gaugino number since we
have no chiral matter. We have already seen in (2.122) that the symmetry is anomalous and
broken to the discrete group Z2h where h is the dual Coxeter number from table 2.3. As
explained in footnote 36 the breaking to Z2h could also be seen using that the first possibly
non-zero correlator in an instanton background is 〈(λλ)h〉 ∝ Λ3h where λaα is the gaugino
field. The dependence on Λ has been found using dimensional analysis and by requiring
a holomorphic dependence on τ as in section 2.5.1. However, at strong coupling the R-
symmetry is spontaneously broken further down to Z2 by the gaugino bilinear getting a
non-zero dynamical expectation value i.e. gaugino condensation:

〈λλ〉 6= 0 ←→ Z2h 7→ Z2. (2.136)

Here the non-trivial element in Z2 simply works as a sign change on λaα since referring
to (2.122) the only symmetry in Z2h leaving λλ invariant is the one with n = h which simply
gives a sign change. We note that the gaugino condensate can just as well be described
by the traceless glueball superfield getting a non-zero expectation value since its lowest
component is the gaugino bilinear as mentioned in section 2.1.1. The glueball superfield is
further believed to be the relevant field for the low energy theory.

Associated with the breaking of Z2h 7→ Z2 we get h inequivalent vacua. This is because
states that are related by the generators of Z2h/Z2 are no longer treated as equivalent. The
generators of Z2h/Z2 are eikπR/h where k = 0, 1, . . . , h − 1 and R is the gaugino number.
Working with these generators on a given vacuum state we get the h inequivalent states
|k〉 with k as above. This also solves another problem: Using dimensional analysis and
holomorphy as before, we get 〈λλ〉 = constant × Λ3. In the proper normalisation we know
from (2.107) that ϑ should be 2π-periodic. But using (2.98) we see that b = 3C(adj) = 3h
and hence by (2.102) we have Λ3 ∼ eiϑ/h which is only 2πh-periodic. However, using the
definition of the h vacua |k〉 the expectation value of the gaugino condensate depends on the
vacua and is given by:

〈λλ〉k = aΛ3e2πik/h, (2.137)

where a is a constant independent of the chosen vacuum and the index k refers to in which
vacuum the expectation value is taken. However, using the anomaly (2.115) we see that

43This is seen by choosing a rectangular loop with length T in the time direction and length R in a space
direction. The interpretation of the Wilson loop is then that it measures the Euclidean action of a process
where two heavy charged particles are created and then separated by a distance R for a time T before they
are annihilated. We then get 〈TrPei

∮

dxµAµ〉 = e−TV (R) and inserting V (R) ∼ σR gives the result.
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effect of eikπR/h ∈ Z2h/Z2, which gives a change in vacuum as |n〉 7→ |n+ k〉 (modulo h), is
equivalent to translating ϑ 7→ ϑ + k2π which just gives the exponential in (2.137). In this
way all observables of the theory are 2π periodic even though the gaugino condensate in a
given vacuum is not. Each of these h vacua has a mass gap. We note that this is possible
since the breaking of the chiral symmetry now allows a mass-term for the gaugino.

For any supersymmetric theory we have the gaugino number which now is not simply
U(1)R from table 2.2, but rather given by summing the generators of U(1)R and the U(1)i’s.
By gaugino condensation we will again have h vacua.

Let us end this subsection by noting that the existence of the h vacua are strongly
suggested by the Witten index being Tr(−1)NF = h. Here the trace is over the zero energy
states and NF is the fermion number operator introduced in section 1.2.1. This corresponds
to each of the h vacua contributing with (−1)NF = 1 to the Witten index. That the
Witten index for supersymmetric Yang-Mills theory is equal to the dual Coxeter number is
true for both the classical and the exceptional groups. We note that this also means that
supersymmetry is unbroken in the strongly coupled regime.

2.5.7 The Veneziano-Yankielowicz Superpotential

In this section we will consider the low energy effective action for the N = 1 supersymmetric
Yang-Mills theory in the case of a simple gauge group. More precisely, we want to determine
the glueball superpotential with Ŝ integrated in as discussed in the section 2.5.5. The
superpotential was first found, prior to the integrating in method, by G. Veneziano and S.
Yankielowicz in [1] as the unique form that fulfils the proper anomaly matching conditions.
We will here derive the superpotential using the integrating procedure (as done for SU(N)
in [7] and [12]). To do this we have to know the low energy effective superpotential, Weff(Λ),
as a function of the holomorphic scale Λ. Assuming that we have chiral symmetry breaking
by gaugino condensation as described in the last subsection, the expectation value of Ŝ must
be non-zero as determined from (2.137):

〈Ŝ〉 = aΛ3, (2.138)

where a is a constant (different from the one in (2.137)) and we look at a particular vacuum
among the inequivalent vacua. Using (2.135) we can see this as a differential equation for
the glueball superpotential which can then be determined. But let us take an extra step and
first use (2.133) to obtain:

Weff(Λ) = C(adj) aΛ3. (2.139)

Where we, by (2.98), have used that b = 3C(adj). We can then use (2.134) to obtainWdyn

(

Ŝ
)

noting that by (2.138) Λ
(

Ŝ
)

=
(

Ŝ/a
)1/3

. Adding the tree-level superpotential (2.132) finally
gives the effective superpotential – the Veneziano-Yankielowicz superpotential:

WVY

(

Ŝ
)

= C(adj) Ŝ

(

1− ln
Ŝ

aΛ3

)

. (2.140)

The Ŝ ln Ŝ term in this expression is multi-valued so rotating Ŝ 7→ e2πiŜ gives WVY 7→
WVY − 2πiC(adj) Ŝ. But from (2.132) we see that this is exactly cancelled by rotating ϑ 7→
ϑ+ 2πC(adj) in perfect agreement with Ŝ 7→ e2πiŜ corresponding to a chiral transformation
of the gaugino as λ 7→ eπiλ and the anomaly equation (2.115).



2.5. THE WILSONIAN EFFECTIVE SUPERPOTENTIAL 69

Determination of the correct constant a is non-trivial, but can be found for instance using
instanton calculus,44 monopoles in the theory compactified to three dimensions or Seiberg-
Witten curves (a review can be found in [39] and the constant a for general classical and
exceptional groups is given in [40]). Naturally, the factor a can be absorbed in Λ. However,
using the standard normalisation C(fund) = 1/2 we actually find that a = 1 for a SU(N)
gauge group and thus the Veneziano-Yankielowicz superpotential here is (C(adj) = N):

WVY,SU(N) = NŜ

(

1− ln
Ŝ

Λ3

)

. (2.141)

Extending this solution to semi-simple groups suggests the claimed form of the Veneziano-
Yankielowicz superpotential in (2.9). However, as we discuss in the next subsection we can
actually not use the integrating in technique in the case considered in section 2.1.

In the derivation of the Veneziano-Yankielowicz superpotential we have actually ignored
the fact that for small N in the classical groups we have no non-abelian dynamics. Choos-
ing the normalisation such that C(adj) is the dual Coxeter number given in table 2.3 and
absorbing the normalisation a into the scale Λ we can then write (following [8]; “sgt” stands
for standard gauge theory):

WVY = hsgtŜ

(

1− ln
Ŝ

Λ3

)

, hsgt =







N − δN,1 for SU(N)
N + 1− δN,0 for Sp(N)
N − 2 + δN,1 + 2δN,0 for SO(N)

, (2.142)

Let us emphasise that our derivation relied on the assumption of gaugino condensa-
tion. However, in [41] the Veneziano-Yankielowicz superpotential has been derived in the
Dijkgraaf-Vafa context – but all things considered, the proof relies on the supersymmetric
Ward identities in the same way as in the original proof in [1].45 Finally, we will later see
that the Veneziano-Yankielowicz superpotential can be seen as a contribution from the free
energy of the matrix model in the Dijkgraaf-Vafa setup.

2.5.8 The Glueball Superpotential – Our Case

We will end this section by summing up what we have learnt about the Wilsonian low energy
effective superpotential for the N = 1 supersymmetric theory with gauge group U(N) and
adjoint chiral matter which we used in the Dijkgraaf-Vafa conjecture in section 2.1. The
Lagrangian is given by LU(N) from (2.26).46 As we saw in section 2.2.4 we have to choose
around which classical supersymmetric vacuum to expand, and that the classical expectation
value of the chiral field breaks the gauge group as U(N) 7→ U(N1)×. . .×U(Nn). The massive
gauge multiplets corresponding to this breaking we simply integrate out. We also proved that
if the critical points of the tree-level superpotential are isolated then the chiral multiplets
in these vacua are massive. Integrating out these massive fields leaves us with an N = 1
supersymmetric pure gauge theory. It is, however, important to realise that the holomorphic
scale, Λu, before integrating out is not the same as the scale, Λ, in the low energy theory

44Naturally, this does not mean that the gaugino condensation is a semi-classical phenomenon like the
instantons. Rather, the normalisation factor a can be determined by calculating 〈S3h〉 which is saturated by
a one-instanton and then use the cluster decomposition principle. Here h is the dual Coxeter number.

45Thanks to J. Wheater for a discussion on this subject.
46Actually, LU(N) is the Lagrangian for N = 2 supersymmetry broken to N = 1 by a tree-level superpo-

tential, but as we discussed in section 2.1.4 this only affected the normalisation of the Kähler terms and is
not important in the proof of the conjecture.
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(here assuming an unbroken gauge group). Using the simple threshold relation (2.129) we
can match the scales as:

Λ3 = Λ2
um, (2.143)

where m is the mass of the chiral field. We have here used that bd = 3N , bu = 2N and
C(adj) = N since we assume C(fund) = 1/2 (see (2.129) for notation). With a broken gauge
group we should be more careful. The gauge fields are in this case not independently coupled
since at the UV energy µ0 for the tree-level Lagrangian the complex gauge couplings are all
equal to the coupling for the unbroken SU(N). So the holomorphic scales Λi,u corresponding
to the factors SU(Ni) are related as (using (2.102)):

(

Λ1,u

µ0

)2N1

= · · · =
(

Λn,u
µ0

)2Nn

. (2.144)

The relation to the low energy scales Λi is as in (2.143), but there can be different masses,
mi, for each factor: Λ3

i = Λ2
i,umi.

We saw in section 2.5.2 that the abelian U(1) part of U(Ni) described by the wiα
from (2.18) is (perturbatively) weakly coupled at low energy (IR free). On the other hand,
for the non-abelian SU(Ni) subgroups we have strong coupling in the IR. Here we expect,
as described in section 2.5.6, confinement and gaugino condensation breaking the gaugino
number as Z2Ni 7→ Z2 and giving Ni inequivalent vacua each with a mass gap. Since we
have confinement, we know that the low energy theory should be described by singlet gauge
fields. When focusing on the superpotential part of the effective Lagrangian the relevant,
elementary fields are believed to be the traceless glueball superfields Ŝi defined in equa-
tion (2.5). The IR dynamics is described by the glueball superpotential for Ŝi and wiα,
Weff(Si, wiα, gk). As noted in section 2.5.5 the glueball superfield is generally massive (mass
of order |Λ|) so we should see the glueball superpotential as obtained by integrating out
the chiral matter fields, but with the glueball superfields integrated in. Naturally, the re-
sult is not just the Veneziano-Yankielowicz superpotential obtained in the last section, but
depends non-trivially on the bare superpotential couplings, gk. Actually, as mentioned in
section 2.1, the full superpotential, obtained by taking into account the full path integral,
is conjectured to be the sum of the Veneziano-Yankielowicz superpotential, accounting for
the gauge dynamics, and Weff,pert obtained by integrating out the chiral fields. The way we
obtain Weff,pert is to perform the path integral over the chiral fields while treating Wα as a

(constant) background field thus allowing us to get the Ŝ dependence. We should also note
that the Veneziano-Yankielowicz superpotential in the case of a broken gauge group can not
be determined using the integrating in technique from the last subsection since the Ŝi fields
are not independently coupled as explained above.

The full glueball superpotential then determines the IR dynamics of Ŝi and we can e.g. get
the expectation values of the glueball superfields by the equation of motion (2.8). A non-zero
expectation value gives gaugino condensation, chiral symmetry breaking and the correspond-
ing inequivalent vacua. Also the tension in the domain walls connecting these vacua can be
determined from the glueball superpotential. We can obtain Weff,pert to a certain order in Ŝ
by going to the corresponding loop order for the matrix model Feynman diagrams using the
Dijkgraaf-Vafa conjecture. This gives us the non-perturbative corrections to a corresponding
fractional order in Λ (also called fractional instantons). This is what Dijkgraaf and Vafa
refer to as “a perturbative window into non-perturbative physics” [4]. However, we note
that this interplay between perturbative and non-perturbative physics happens through the
Veneziano-Yankielowicz term. But all that we will prove in the Dijkgraaf-Vafa conjecture
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is simply the form of Weff,pert. We do not prove confinement, mass gaps or Ŝ being the
elementary field, and we have to add the Veneziano-Yankielowicz superpotential by hand.

In [42] F. Ferrari has investigated the above theory in the case of a cubic tree-level
superpotential Wtree = Tr

(

1
2mΦ2 + 1

3gΦ
3
)

. Using the Dijkgraaf-Vafa conjecture or rather,
which amounts to the same, using the setup that he used to prove the Dijkgraaf-Vafa con-
jecture in [5], the low-energy effective superpotential can be found (see also section 2.8)
and investigated. Assuming that the gauge group is unbroken it is found that there exist
some critical points in the quantum parameter space given by 8g2Λ3/m3 = e−2πik/N with
k = 0, . . . , N − 1. In these points the glueball superfield actually is massless if one assumes
the Kähler potential to be well-behaved. We note, however, that from the Dijkgraaf-Vafa
conjecture we know nothing about the Kähler potential so this result should be seen with
some reservation. Further, using the Seiberg-Witten theory it is shown that in these points,
for N odd, there is monopole condensation and hence confinement. Thus it is claimed that
we here have a phase with confinement without a mass gap in contradiction with the lore.
For N even we do not have total confinement and for N = 2 there is no confinement at all in
these points. Other interesting phenomena are tensionless domain walls and the ϑ angle not
being periodic. The investigation of the phases and parameter spaces of the supersymmetric
theories has been carried on in many articles e.g. [43], [44], [45], and [46]. For more references
see [16].

With this example of the interesting results of the Dijkgraaf-Vafa conjecture we will end
this section. To prove the Dijkgraaf-Vafa conjecture and understand the planar limit in
the matrix model we will in the next section introduce the double line notation allowing a
geometric interpretation of the Feynman diagrams.

2.6 Double Line Notation

In this section we will introduce the double line notation for theories with fields in the adjoint
representation. This will lead us to a topological classification of the Feynman diagrams and
the t’ Hooft large N limit. We will use this for the matrix model in the next section and in
the diagrammatic proof of the Dijkgraaf-Vafa conjecture in the next chapter.

2.6.1 Double Line Propagators

Let us consider a theory in which we have a real field Φa where a is an index in the adjoint
representation of U(N). Φ could e.g. be the gauge potential which was the case G. ’t Hooft
considered in his article introducing the double line notation and the large N limit [47] (a
more general introduction can be found in [48]). However, we naturally think of Φ as a real
version of the chiral adjoint field in the Dijkgraaf-Vafa conjecture. As we see below we can
even use all of this for the hermitian matrix model also introduced in the conjecture (the
double line notation for the matrix model is introduced in e.g. [49]).

The whole idea of the double line notation is based on the observation that we can use
the generators of U(N) in the fundamental representation – as we have done numerous times
above – to write the adjoint field as a hermitian matrix:

Φa, a = 1, . . . , N2 ←→ Φi
j = Φa(T (fund)

a )ij , i, j = 1, . . . , N. (2.145)

We here note that if Φa had been complex then Φi
j could be any complex matrix. In (2.145)

the upper index transforms in the fundamental representation and the lower index in the
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anti-fundamental representation. To be precise: If Φa 7→ (exp
(

−iαcT (adj)
c

)

)abΦ
b then

Φi
j 7→ (e−iα

aT
(fund)
a )ikΦ

k
l(e

iαaT
(fund)
a )lj = (e−iα

aT
(fund)
a )ik(e

−iαaT
(anti-fund)
a )jlΦ

k
l, (2.146)

where we have used the definition of the anti-fundamental, i.e. conjugate, representation

T
(anti-fund)
a = −

(

T
(fund)
a

)T
. (2.146) is proven using the definition of the adjoint representation

(T
(adj)
a )bcΦ

c = [Ta,Φ
cTc]

b which also gives (T
(adj)
a )bc = if b

ac . We can state (2.146) as: The
adjoint representation of U(N) is N ⊗N .

As we have done before we can use the matrix notation to write the invariant Lagrangian
using traces, e.g.:

L =
1

gs

(

1

2
mTr

(

Φ2
)

+
∑

k

gk
k

Tr
(

Φk
)

)

. (2.147)

Naturally, we could also have a kinetic term, however, we are only interested in the index
structure of the Feynman diagrams, not the space-time dependence. Actually, the theory
could just as well be the matrix model used in the Dijkgraaf-Vafa conjecture with a global
U(N) symmetry. We have put a coupling gs in front of the Lagrangian (for the gauge theory
gs is the Yang-Mills coupling squared). This coupling is first needed in the large N expansion
and is not necessary for the double line notation. We could also have multi-trace terms, but
we will assume that we do not have such terms.

We will now develop the Feynman rules for the Lagrangian (2.147). To this end we can
think of Φi

j as a complex particle if i > j and a real particle if i = j. In the usual way we

treat Φj
i = Φ∗i

j and Φi
j as independent. Thus we can see the path integral as having an

integration over each entry of the matrix Φ and all entries are independent. The propagator
is determined from the quadratic term in the usual way. We quickly get (here in Euclidean
notation and disregarding the space-time dependence):

∫

DΦ e
− m

2gs
Tr(Φ2)

Φi1
j1
· · ·Φin

jn
=

∂

∂Jj1i1

· · · ∂

∂Jjnin
e

gs
2m

Tr(J2)
∣

∣

∣

J=0
, (2.148)

where J is the external current which here is a hermitian matrix. We can directly read off
the propagator from gsTr

(

J2
)

/2m = gsJ
i
jδ
l
iδ
j
kJ

k
l/2m:47

〈Φi
jΦ

k
l〉0 =

gs
m
δilδ

k
j . (2.149)

If Φ is the gauge field then we naturally have the usual propagator 1/k2 instead of 1/m.
The propagator is consistent with our view of Φi

j as complex particles. If i > j we have

〈Φi
jΦ

k
l〉0 = 〈Φi

jΦ
∗l
k〉0 which immediately gives us (2.149). As usual with complex particles

we assign arrows to the propagators. Here we must use double lines for the propagators since
we have two indices. The upper index, which transformed in the fundamental representation,
is then associated with an incoming arrow and the anti-fundamental lower index with an
outgoing arrow. The double line propagator corresponding to (2.149) is shown in figure 2.2.
The single lines in the double line propagator are called index lines since they are indexed
by i = 1, . . . , N . The interaction vertices from (2.147) all have the same index structure
consistent with the double line propagators and can be derived from (2.148). They are
just proportional to Kronecker delta functions that connect the index lines and preserve the
directions of these. As an example the quartic vertex is also shown in figure 2.2. Let us
finally note that if Φa was complex, and hence Φi

j a general complex matrix, then we would
have to assign an extra overall arrow to the whole double line propagator.

47In the case of SU(N) we have to subtract δi
jδ

k
l /N on the right hand side since in this case Φ is traceless.
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Figure 2.2:

�ij l
k �

On the left the double line propagator and on the right the quartic vertex.

Figure 2.3:

� ←→�
A planar diagram. On the left in single line adjoint representation with interaction vertices

denoted by dots. On the right the same diagram in double line notation.

2.6.2 Topological Classification of Double Line Diagrams

Let us now look at the connected vacuum diagrams in the double line notation. These “fat”
graphs have enough structure to associate each of them with a Riemann surface or rather
a topological class of these. To do this we view each index line as a perimeter of a face in
a simplicial decomposition of a surface. To this end we compactify the space by adding a
point at infinity so we also can see the outer index loop as a face on a compact surface. In
our U(N) case the surface is further oriented since we have directions on the index lines.
The compact oriented surfaces in R

3 are topologically classified by the Euler characteristic,
χ, which is a topologically invariant integer. The surfaces are simply given by the sphere,
S2, with g handles added. g is called the genus of the surface. The Euler characteristic is
then given by:

χ = 2− 2g. (2.150)

We can determine the Euler characteristic of the surface corresponding to a given diagram
by simply counting the number of vertices, V, edges i.e. double line propagators, E, and
faces i.e. index loops, F. Then:

χ = V − E + F. (2.151)

If the topology of the diagram is that of a sphere, g = 0, the diagram is called planar.
An example of a planar diagram with cubic vertices is given in figure 2.3. We can simply
count V = 2, E = 3 and F = 3 so χ = 2 − 3 + 3 = 2. An example of a diagram with the
topology of a torus, g = 1, is given in figure 2.4. Here we count V = 4, E = 6 and F = 2 so
χ = 4 − 6 + 2 = 0. We can obtain surfaces with boundaries if we add fundamental matter
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Figure 2.4:

� ←→�
A diagram with the topology of a torus. On the left in single line adjoint representation
with interaction vertices denoted by dots. On the right the same diagram in double line

notation.

Figure 2.5:�ij l
k

The cross-over part of the SO(N) propagator.

to our Lagrangian. Such matter only has one index so it will only correspond to a single
index line which we can interpret as a boundary. If we look at SO(N) or USp(N) instead of
U(N) we must also include non-orientable surfaces. E.g. in the case of SO(N) we can also
use (2.145), however, we must here remember that the fundamental representation is real
and Φ in this case is antisymmetric. We thus see that the adjoint of SO(N) is N ⊗as N .
Since we can not distinguish the upper from the lower indices we can not orient the index
lines. Further we have to constrain the path integral to only include antisymmetric matrices.
We could do this by replacing the antisymmetric matrices with (Φ − ΦT )/2 where Φ is a
hermitian matrix and then integrate over the unconstrained Φ. Expanding the quadratic
terms shows that the propagator must contain a cross-over term as shown in figure 2.5
which indeed gives rise to non-orientable surfaces. In these more general cases the surfaces
are characterised by starting from the sphere S2 and adding g handles, b boundaries and c
cross-caps. The Euler characteristic is then given by [50]:

χ = 2− 2g − b− c. (2.152)

We obtain the boundaries by adding fundamental matter single index lines and the cross-
caps from the cross-over part of the SO(N) or USp(N) propagator. We note that χ ≤ 2 and
only odd with fundamental matter or another group than U(N).

2.6.3 ’t Hooft Large N Limit

Using the topological classification obtained in the last subsection we can now explain the
’t Hooft large N limit as introduced in [47]. We will assume a U(N) group and no funda-
mental matter. For a given connected vacuum diagram we count the dependence on N and
the coupling gs from (2.147). For each vertex we have a factor 1/gs, for each double line
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propagator we have a factor gs as seen from (2.149), and finally we have a factor N for each
index loop since we here sum

∑

i δ
i
i = N . Thus we get an overall factor of:

NF gE−V
s = NV−E+F (gsN)E−V = Nχ (gsN)E−V = N2−2g (gsN)E−V , (2.153)

where we have used (2.150) and (2.151). We thus see that by taking N →∞ while keeping
gsN fixed the planar diagrams with g = 0 are the dominant ones. This is the ’t Hooft
large N limit also called the planar limit. To connect with the Dijkgraaf-Vafa conjecture
we rewrite the factor (2.153) and include the dependence on the couplings gk from (2.147)
(with a minus for Euclidean space) and the mass m for completeness:

g2g−2
s (gsN)F m−E

∏

k

(−gk)Vk , (2.154)

where Vk is the number of vertices of order k so that V =
∑

k Vk. What we want to calculate
is the free energy, Wfree, which exactly is the sum over (minus) the connected vacuum
diagrams. We can now group the diagrams topologically and write (using (2.154)):

Wfree =
∑

g≥0

g2g−2
s Fg(gsN) , (2.155)

where Fg is the contribution to the free energy (modulo factors of g2g−2
s ) from diagrams with

genus g and whose dependence on gs and N only is through gsN . In the ’t Hooft large N limit
we see that the planar contribution is dominant since gs → 0 and thus Wfree ≈ g−2

s Fg=0.
This explains (2.12) and the planar limit taken on the matrix side in the Dijkgraaf-Vafa
conjecture in the case of an unbroken gauge group.

2.7 The Matrix Model

In this section we will investigate the matrix model side of the Dijkgraaf-Vafa conjecture.

2.7.1 The Matrix Model and the Dijkgraaf-Vafa Conjecture

In the Dijkgraaf-Vafa conjecture for a U(N) gauge group we are instructed to calculate the
free energy in the planar limit for a bosonic matrix model with partition function (2.10):

Zmatrix =

∫

DMe−
1
gs
Wtree(M),

where M are N ′ × N ′ hermitian matrices and Wtree = TrPn+1(M). The constraint to
hermitian matrices requires the couplings in Wtree to be real contrary to the gauge theory
side where Φ is a general complex matrix. Thus the matrix model is real (real eigenvalues,
real couplings) and we should perform an analytic continuation after obtaining the wanted
free energy to compare with the gauge theory side in the Dijkgraaf-Vafa conjecture. There
should be no ambiguity in this continuation since we restrict to the planar limit [5]. Naturally,
this is of no concern in calculations where one simply formally uses gk as couplings with no
reference to whether they are real or complex. From the partition function we also see that
M must have mass dimension one and gs mass dimension three to fit the dimensions of the
couplings. Of course, one can scale these dimensions away using the holomorphic scale Λ
which has mass dimension one.
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The matrix model does not have any supersymmetry as on the gauge theory side, but it
is gauged in the sense that the potential is (globally) U(N) invariant under M 7→ UMU−1

for U ∈ U(N). We will treat this symmetry as an equivalence like the gauge symmetry. We
can e.g. use this to diagonalise the matrices. Using the same manipulations that led to (2.57)
the classical equation of motion for M can be shown to be P ′

n+1(M) = 0 . Choosing M to
be diagonal we conclude that the “vacua” for the matrix model are obtained analogously to
the supersymmetric vacua by distributing the N ′ eigenvalues of M over the critical points
a1, . . . , an of Pn+1. This corresponds to the partition of N ′ in (2.11). As with the supersym-
metric vacua we should think modulo permutation of the eigenvalues and the vacuum then
breaks the gauge symmetry as:

U(N ′) 7→ U(N ′
1)× · · · ×U(N ′

n). (2.156)

In the Dijkgraaf-Vafa conjecture we should, in the terminology of section 2.1.1, here choose
N ′
i = 0 if Ni = 0 to obtain the same symmetry breaking pattern as on the gauge theory side.

However, due to the realness of the matrix model we here have a problem since the real form
of the polynomial P ′

n+1 does not necessarily have n real roots and the eigenvalues of the
hermitian matrix M must be real. The solution is probably to constrain the couplings gk to
certain real intervals and then analytically continue to all real numbers. E.g. for the quartic
potential Pn+1 = 1

2mM
2 + 1

4gM
4 we have the set of critical points

{

0,±
√

−m/g
}

. We can
thus choose m positive and g negative to have the same set of critical points to distribute
the eigenvalues over as in the gauge theory.48

What we should do now is to formulate a perturbation theory for the fluctuations around
the chosen vacuum. Assuming, as in section 2.1.1, that the critical points are distinct, the
vacua will be massive in the sense that the parts corresponding to unbroken gauge group
factors have non-zero masses. This can be proven in the same way as done for the gauge
theory side in section 2.2.4. In the case of an unbroken gauge group, i.e. if all eigenvalues
are equal, the perturbative expansion is simple. As an example consider a cubic interaction
which has two critical points a1 and a2. Expanding around a11N ′×N ′ gives (disregarding a
constant term):

Wtree = 1
2∆ Tr

(

M2
)

+ g
3 Tr

(

M3
)

, (2.157)

where ∆ = g(a1 − a2) which we note is non-zero for distinct critical points. We can then
simply expand the partition function as:

∫

DMe−
1
gs
Wtree =

∫

DMe−
1

2gs
∆ Tr(M2)

∞
∑

n=0

(−1)n

n!

(

1

gs

g

3
Tr
(

M3
)

)n

. (2.158)

In the case of broken gauge symmetry we have to be more careful and take into ac-
count Faddeev-Popov ghosts in the matrix model [17]. These ghosts are described by two
Grassmannian matrices B and C which contribute to the potential as:

Wghost = Tr(B[M,C]) . (2.159)

This ghost term can be derived from the Vandermonde determinant that, as we will see in
the next section, arises from choosing a gauge such that M is diagonal. From this term
we immediately see that the ghosts are only propagating if we expand around a vacuum
with broken symmetry since a matrix proportional to the identity will disappear from the
commutator. On the gauge theory side a ghost term of precisely the same form arises with

48Unfortunately, this would in turn mean that Wtree(M) is not bounded from below.
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Figure 2.6:

�
Example of a planar diagram for the matrix model with ghosts. The solid index lines carry

indices running over 1, . . . , N ′
1 while the dashed index lines carry indices running over

1, . . . , N ′
2. We have two ghost double line propagators and one double line propagator

associated with M11.

B and C being anticommuting chiral superfields. This is in line with the Dijkgraaf-Vafa
conjecture assuming that the superpotential in the gauge theory and the potential in the
matrix model should be the same.

To be specific, let us consider the cubic model as we did above (following [17]). We now
consider the broken case where the vacuum expectation value M0 has N ′

1 eigenvalues equal
to a1 and N ′

2 eigenvalues equal to a2. We should expand around this vacuum:

M 7→M0 +M =

(

a11N ′
1×N

′
1

0

0 a21N ′
2×N

′
2

)

+

(

M11 M12

M21 M22

)

, (2.160)

where we have written the matrix in block notation (Mij is a N ′
i ×N ′

j matrix). Using this
block notation, also for the ghost term, one finds the quadratic terms in the potential to be:

1

2
∆ Tr

(

M2
11

)

− 1

2
∆ Tr

(

M2
22

)

+ ∆ Tr(B21C12)−∆ Tr(B12C21) , (2.161)

where ∆ = (a1 − a2) and we have set g = 1. We thus see that the off-diagonal blocks
for M do not propagate which is clear since they are pure gauge terms. On the other
hand, only the off-diagonal blocks for the ghost fields propagate. Using (2.161) it is trivial
to write down the double line propagators using the same method as in last section. We
see that we have two types of propagators. Firstly the usual double line propagators with
the same type of index running in both index lines. We have two propagators of this
type corresponding to respectively M11 and M22 and with indices running over respectively
1, . . . , N ′

1 and 1, . . . , N ′
2. The second type of double line propagators stems from the ghost

terms. In these propagators the index in one index line runs from 1, . . . , N ′
1 while the index

in the other runs from 1, . . . , N ′
2. We have two propagators of this type corresponding to the

two ghost terms in (2.161). As can be derived from (2.159) we also get vertices connecting
a standard double line propagator with two ghost propagators. An example of a diagram
with ghosts can be seen in figure 2.6.

Generalising these results we see that in the case of broken symmetry we have diagrams
in the double line notation in which the index loops, i.e. the faces, are indexed according
to which broken part they are associated with. With partition N ′ =

∑

iN
′
i the index loops

are indexed by i and the index loop gives a contribution N ′
i . As an example the index loops
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in the diagram in figure 2.6 give a contribution of N ′2
1 N

′
2. As in section 2.6.2 the connected

vacuum diagrams can be topologically classified. Let Fi be the number of faces indexed
with i then the total number of faces is F =

∑

i Fi. We simply perform the topological
classification “blind” to the index i i.e. only depending on F and also we do not distinguish
between the types of double line propagators when counting edges. Finally, to connect with
the Dijkgraaf-Vafa conjecture we should take the large N ′ limit, or more precisely, we should
let gs ≪ 1 while keeping gsN

′
i fixed and finite.49 We can count the gs dependence in a given

diagram and we find, in analogy with (2.154), a factor:

g2g−2
s

∏

i

(

gsN
′
i

)Fi . (2.162)

We can make a topological expansion of the free energy as in (2.155). The leading contribu-
tion is again from genus g = 0 and we get the planar limit of the free energy g−2

s Fg=0(gsNi).
Identifying Si = gsN

′
i we see from (2.162) that we get one factor of Si for every index loop

indexed by i as stated at the end of section 2.1.2. In section 2.8 we will give an explicit
example of this (in the unbroken case).

2.7.2 The Measure

So far we have not discussed the measure of the matrix model. However, when we obtained
the Feynman rules for double line propagators, we implicitly assumed in (2.148) that the
normalisation of the measure was such that for the free theory 〈1〉0 = 1. This means that
in the measure we have to divide with the volume of the gauge group vol(G). In [51] it is
found that in the planar limit (here for a broken gauge group):

1

vol(U(N ′
1)× · · · ×U(N ′

n))
∼ e 1

2

∑

i N
′2
i lnN ′

i+..., (2.163)

where we have only kept the part of the planar contribution that involves lnN ′
i . We can

here substitute N ′
i = Ŝi/gs and compare with the planar free energy e−g

−2
s Fg=0(Ŝi). This

gives us a contribution to Fg=0 of the form −1
2

∑

i Ŝ
2
i ln Ŝi. As noted by Dijkgraaf and

Vafa, if we here extend the connection (2.14b) between Weff and Fg=0 in the Dijkgraaf-Vafa
conjecture to also apply for this term, we see that the essential −∑iNiŜi ln

(

Ŝi
)

part of the
Veneziano-Yankielowicz superpotential is reproduced. We emphasise that there is no field
theoretic proof for this, but it suggests a tighter relation between the matrix model and the
gauge theory than we can actually prove.

Let us also note that in the case of unbroken symmetry (following [7]) we can obtain this
coupling independent part of the planar free energy simply by setting the couplings in the
potential to zero and use Gaussian integration:

µ−N
′2
∫

DMe−
1

2gs
mTr(M2) =

(

2πgs
mµ2

)N ′2/2

, (2.164)

where µ is a scale of mass-dimension one introduced to make the measure dimensionless.
We thus get a contribution to Fg=0 given by:

∆Fg=0 = −1

2
Ŝ2 ln

(

2πŜ

N ′mµ2

)

= −1

2
Ŝ2 ln

(

Ŝ

e3/2mΛ2
u

)

, (2.165)

49We have not been careful with the normalisation of the ghost term. To take the ’t Hooft limit we should
also give this term a 1/gs normalisation.



2.7. THE MATRIX MODEL 79

where we in the last line identify N ′µ2/2π with e3/2Λu where Λu is the holomorphic scale
before integrating out the chiral field in the gauge field theory. Extending the Dijkgraaf-Vafa
conjecture as above this exactly gives the Veneziano-Yankielowicz superpotential if we use
the matching of scales (2.143): Λ3 = mΛ2

u.

2.7.3 Exact Solution of the Matrix Model

Above we have solved the matrix model perturbatively using diagrams. However, as we now
show, it is also possible to use non-perturbative techniques to obtain the exact solution of
the matrix model in the planar limit. This was first done in [52]. Here we will also use [49].

It is customary to redefine the matrix model coupling to:

gm ≡ gsN ′, (2.166)

such that the potential takes the form N ′

gm
Wtree(M). Noting that this potential only depends

on the eigenvalues of M due to the cyclicity of the trace, we can diagonalise the hermitian
matrix asM = U †ΛU where U is a unitary matrix and Λ is a diagonal matrix consisting of the
eigenvalues λi, i = 1, . . . , N ′, of M . The integration over M then splits into an integration
over the eigenvalues and a trivial integration over the unitary matrices. Assuming unit
measure for the unitary matrices we get:

Zmatrix =

∫

DMe−
N′

gm
Wtree(M) =

∫ N ′
∏

i=1

dλi∆
2(λ) e−

N′

gm

∑

i Pn+1(λi), (2.167)

where ∆(λ) =
∏

i<j (λj − λi) is the Vandermonde determinant which can be derived using

the Faddeev-Popov method.50 Exponentiating the Vandermonde determinants then gives us
an effective potential:

Zmatrix =

∫

∏

i

dλi e
− N′

gm

∑

i Pn+1(λi)+
∑

i6=j ln|λj−λi|. (2.168)

In the large N ′ limit the exact solution for the free energy g−2
s Fg=0 = N ′2

g2m
Fg=0 is found

using the steepest descent method: We simply evaluate the effective potential in its critical
point (the saddle-point), i.e.:

Fg=0 =
gm
N ′

∑

i

Pn+1(λi)−
g2
m

N ′2

∑

i6=j

ln |λj − λi| , (2.169)

0 = −N
′

gm
P ′
n+1(λi) + 2

∑

j 6=i

1

λi − λj
, i = 1, . . . , N ′. (2.170)

We can describe the distribution of the eigenvalues with the density of eigenvalues:

ρ(λ) =
1

N ′

∑

i

δ(λ− λi) ,
∫

dλρ(λ) = 1. (2.171)

50Simply write one as 1 =
∫
∏

i dλidU ′ δ(N′2)
(

U ′MU ′† − diag(λi)
)

∆2(λ). The λi integrations constrain λi

to be the eigenvalues of M and diag(λi) = Λ. The δ-function constrain U ′ to be in a neighbourhood of the
matrix U that diagonalised M : U ′ = (1 + T )U where T is infinitesimal. Thus

(

U ′MU ′† − Λ
)

ij
≃ [T, Λ]ij =

Tij (λj − λi). The result then follows from performing the integration over the real and complex part of
Tij , i < j.
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Due to the term from the Vandermonde determinants we see that there is a Coulomb repul-
sion between the eigenvalues. This means that the eigenvalues will spread out evenly and in
the large N ′ limit we get a continuous distribution of eigenvalues and a smooth density, ρ.
In general (as we will show below) the support of ρ is disconnected consisting of maximally
n intervals (cuts), supp(ρ) =

⋃

k Ck. There is one cut Ck for each critical point, ak, of Pn+1

and ak ∈ Ck. From (2.170) we see that in the classical limit gm → 0 the eigenvalues are all
in the critical points and the cuts Ck simply shrink to the points ak. Using ρ we can rewrite
the sums over λ as integrals, and (2.169) and (2.170) become:

Fg=0 = gm

∫

dλρ(λ)Pn+1(λ)− g2
m−
∫

dλdλ′ ρ(λ) ρ(λ′) ln
∣

∣λ− λ′
∣

∣ , (2.172)

0 = −P ′
n+1(λ) + 2gm−

∫

dλ′
ρ(λ′)

λ− λ′ , λ ∈ supp(ρ). (2.173)

Here we have principal value diagrams since j 6= i in the sums over λ.
To solve the matrix model it is convenient to introduce the resolvent:

R(z) ≡ 1

N ′
Tr

(

1

M − z

)

=

∫ ∞

−∞
dλ

ρ(λ)

λ− z , z ∈ C \ supp(ρ). (2.174)

The resolvent is analytic with branch cuts at supp(ρ). The point is that we can determine
R(z) which in turn determines ρ since by redrawing contours of integration, (2.174) gives:

ρ(λ) =
1

2πi

(

R(λ+ iǫ)−R(λ− iǫ)
)

, λ ∈ supp(ρ), (2.175)

where ǫ is infinitesimal. Indeed we can determine R(z) using the saddle-point equation which
from (2.173) takes the form:

R(λ+ iǫ) +R(λ− iǫ) = − 1

gm
P ′
n+1(λ) , λ ∈ supp(ρ). (2.176)

However, we can also multiply (2.173) with 1
gm

ρ(λ)
λ−z and integrate over λ to obtain (after

a couple of rewritings):51

R2(z)− 1

N ′
R′(z) +

1

gm
P ′
n+1(z)R(z) + f(z) = 0, (2.177)

where f(z) is a polynomial of degree n− 1 given by:

f(z) =
1

gm

∫ ∞

−∞
dλρ(λ)

P ′
n+1(z)− P ′

n+1(λ)

z − λ . (2.178)

Since we are in the large N ′ limit, we can disregard the R′/N ′ term in (2.177) and thus
the equation is purely algebraic. We solve this most easily by splitting R in its regular and
singular part R(z) = Rreg(z)+Rsing(z). The regular part is Rreg(z) = −P ′

n+1(z) /2gm which
is also directly seen from (2.176). The singular part is then determined from (2.177) as:

Rsing(z) =
√

1
4g2m

P ′2
n+1(z)− f(z). (2.179)

51This equation is also found in [7] with R being the expectation value of 1
N′

Tr
(

1
M−z

)

. The result is

obtained using the loop equations and that the correlation functions factor in the large N ′ limit. This tells
us, as we have already noted, that the saddle-point approximation is exact in the large N ′ limit.
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Since P ′2
n+1 is of order 2n, we see that R has at most 2n different branch points and hence at

most n branch cuts Ck giving the promised support of ρ. However, we have not really solved
the problem yet since f depends on ρ. But the n coefficients in f are actually determined
by the n filling fractions [2]:52

N ′
i

N ′
= − 1

2πi

∮

Ci

dz R(z) =

∫

Ci

dλρ(λ). (2.180)

We see that the filling fraction N ′
i/N

′ is the relative number of eigenvalues in the ith cut.
Finally we have solved for R and hence ρ as a function of gm, N ′

i/N
′ and the couplings gk.

We can then obtain the free energy using (2.172).

In this exact case the relation between the gauge theory side and the matrix model side
in the Dijkgraaf-Vafa conjecture is through the filling fractions:53

Ŝi ≡ gm
N ′
i

N ′
= gsN

′
i . (2.181)

This definition, naturally, gives the same result as the one we have in the diagrammatic
case (2.13). We can see this from the classical limit gm → 0 where the filling fraction N ′

i/N
′

simply becomes the relative number of eigenvalues in the ith critical point. The form of the
exact solution is used to prove the Dijkgraaf-Vafa conjecture in the original superstring proof,
in the proof using the generalised Konishi anomaly, and in the proof using the Seiberg-Witten
curves.

2.7.4 One-Cut Solution

Let us consider the exact solution of the matrix model in the case of a single cut. This
corresponds to the case of unbroken gauge symmetry where one N ′

i equals N ′ and the rest
are zero. We write the cut as Ci = [a, b]. To determine R we use equation (2.176). We
note, following [49], that the homogeneous version of this equation (i.e. setting the right
hand side to zero) has the solution g(z) =

√

(z − b)(z − a) = exp
(

1
2 ln(z − b) + 1

2 ln(z − a)
)

,
where the logarithms are defined with the usual branch cut along the negative real axis.
Thus g(λ ± iǫ) = ±i

√

(b− λ)(λ− a) for λ ∈ [a, b]. We can then rewrite (2.176) as:

r(λ+ iǫ)− r(λ− iǫ) = − 1

gm

P ′
n+1(λ)

i
√

(b− λ)(λ− a)
, λ ∈ [a, b], (2.182)

where we have defined r(z) = R(z)/g(z). In analogy with the relation between equa-
tion (2.174) and (2.175) we get:54

R(z) = g(z)r(z) =

√

(z − b)(z − a)
2πgm

∫ b

a
dλ

1

λ− z
P ′
n+1(λ)

√

(b− λ)(λ− a)
, z ∈ C \ [a, b]. (2.183)

To obtain the solution we should determine a and b using the constraint (2.180) which simply
tells us that R(z) behaves as −1/z for |z| → ∞. This condition also rules out the possibility

52Actually, if we sum all these conditions we simply get the normalisation condition (2.171) for ρ which in
turn is equivalent to require R(z) to behave like −1/z for |z| large.

53From (2.172) and (2.180) we see that the dependence on gm in the free energy is always through
gmN ′

i/N
′ = gsN

′
i as it should be.

54We can also prove this using 1/(λ − λ′ − iǫ) − 1/(λ − λ′ + iǫ) = 2iǫ/((λ − λ′)2 − ǫ2) = 2πi δ(λ − λ′).
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of a regular term in (2.183). Using that
√

(z − b)(z − a)/(λ − z) = −1−(λ− (b+ a)/2)/z +
O
(

1/z2
)

for large |z|, we get the two constraints:

∫ b

a
dλ

P ′
n+1(λ)

√

(b− λ)(λ− a)
= 0, (2.184)

∫ b

a
dλ

λP ′
n+1(λ)

√

(b− λ)(λ− a)
= 2πgm. (2.185)

These two equations determine a and b as functions of gm and the couplings gk. Naturally,
we should here choose the solution such that for the critical point ai with N ′

i = N ′ we have
ai ∈ [a, b].

In principle we have solved the problem and we can obtain the free energy (2.172) using
ρ determined from R using (2.175). However, what we really need in the Dijkgraaf-Vafa
conjecture (2.14b) is the derivative of the free energy ∂Fg=0/∂gm (where Ŝ ≡ gm). To
obtain this we first note that (as we show in appendix E):

∂

∂gm

(

gmρ(λ, gm)
)

=
1

π
√

(b− λ)(λ− a)
. (2.186)

Following [5] we can use this and (as we also show in appendix E)

−
∫ b

a
dλ

ln |λ− λ′|
√

(b− λ)(λ− a)
= π ln

(

b− a
4

)

, ∀λ′ ∈ [a, b], (2.187)

to rewrite (2.172) as:

∂

∂gm
Fg=0 =

∫ b

a
dλ

Pn+1(λ)

π
√

(b− λ)(λ− a)
− 2gm ln

(

b− a
4

)

. (2.188)

Thus (2.184), (2.185) and (2.188) determines the effective superpotential Weff,pert using the
Dijkgraaf-Vafa conjecture (2.14) for an unbroken gauge group. But here we should be care-
ful. In the solution of the matrix model we have actually been working with dimensionless
variables i.e. where the dimensions have been scaled away using the only mass-scale at hand
namely Λu – the scale for the gauge theory before integrating out the chiral fields. At the
point where we wish to use the Dijkgraaf-Vafa conjecture we should restore the dimensions
such that gm and Pn+1(λ) have dimensions 3, and thus a and b dimension 1, and Fg=0

dimension 6. The only place where we will be able to see this, is in the logarithm in the last
term of (2.188) which will take the form ln

(

(b− a)/4Λu
)

. We can then identify Ŝ ≡ gm and
Weff,pert = N∂Fg=0/∂gm.

However, as we show in appendix E, we can go one step further and actually perform the
integrations if we expand Pn+1 as in (2.2). We then get the following algebraic equations for
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the solution (with m = g2):

0 =

n+1
∑

p=2

gp

[(p−1)/2]
∑

q=0

p− 2q

p

(

p

2q

)(

2q

q

)(

a+ b

2

)p−2q−1(b− a
4

)2q

, (2.189a)

Ŝ =

n+1
∑

p=2

gp

[p/2]
∑

q=1

q

p

(

p

2q

)(

2q

q

)(

a+ b

2

)p−2q (b− a
4

)2q

, (2.189b)

Weff,pert = N
n+1
∑

p=2

gp

[p/2]
∑

q=0

1

p

(

p

2q

)(

2q

q

)(

a+ b

2

)p−2q (b− a
4

)2q

−2NŜ ln

(

b− a
4Λu

)

. (2.189c)

These are the same equations as obtained on the gauge theory side in [5] using factorisation
of Seiberg-Witten curves and the ILS linearity principle (for other examples of Seiberg-
Witten theory in the matrix model framework inspired by the Dijkgraaf-Vafa conjecture
see e.g. [53], [54], [55], [56], [57], [58], [59], and [60]). Here we should identify (a + b)/2
with z = Tr(Φ)/N and (b − a)/4 with Λ

(

z, Ŝ, gp 6=2

)

. In this way (2.189a) corresponds to

integrating out z (using (2.126)) and (2.189b) corresponds to integrating in Ŝ (i.e. (2.133)).
This gives the relation between the matrix model and the gauge theory in this proof.

2.8 Exact Superpotentials

In this section we will use the Dijkgraaf-Vafa conjecture and the exact solution of the matrix
model obtained in the last section to find the exact effective glueball superpotential in the
case of a cubic tree-level superpotential. We will also briefly discuss the even tree-level
superpotential.

2.8.1 Cubic Tree-Level Superpotential

We consider the case of a cubic tree-level superpotential:

Wtree = Tr

(

1

2
mΦ2 +

g

3
Φ3

)

. (2.190)

The planar free energy in the matrix model was first obtained in [52]. The effective su-
perpotential in the gauge theory has been obtained already in [61], and later in e.g. [17]
and [15, 16] using the Dijkgraaf-Vafa conjecture.

The critical points for the cubic potential are 0 and −m/g. Let us choose the vacuum
where all eigenvalues are 0 and the gauge symmetry thus is unbroken. Plugging into the
single-cut solution (2.189) gives:

0 = mz + gz2 + 2g∆, (2.191a)

Ŝ = m∆ + 2gz∆, (2.191b)

Weff,pert = N

(

m

(

1

2
z2 + ∆

)

+ g

(

1

3
z3 + 2z∆

))

−NŜ ln

(

∆

Λ2
u

)

. (2.191c)

Here we have defined z = (a + b)/2 and ∆ = ((b − a)/4)2 as in [42]. We can use (2.191a)
to solve for ∆. After a couple of rewritings the result is (as also obtained in [42] using
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Seiberg-Witten curves):

Ŝ = −m
3

2g2

gz

m

(

1 +
gz

m

)(

1 + 2
gz

m

)

, (2.192a)

Weff = N
m3

g2

(

1

2

(gz

m

)2
+

1

3

(gz

m

)3
)

+NŜ ln
(

1 + 2
gz

m

)

+NŜ

(

1− ln

(

Ŝ

mΛ2
u

))

. (2.192b)

In (2.192) we have actually found the Veneziano-Yankielowicz superpotential by solving
the matrix model exactly! This result has been pointed out in [62]. It is in accordance with
the result we obtained in section 2.7.2. That we get the exact right form also tells us that our
normalisation of the measure (essential in equation (2.169)) is well-chosen. Naturally, in this
exact solution of the matrix model there is now no need to add the Veneziano-Yankielowicz
superpotential by hand as in (2.14a) and hence we have exchanged Weff,pert with the more
suitable Weff in (2.192b). We emphasise that the Dijkgraaf-Vafa conjecture for the relation
between the matrix model and the gauge theory has not been proven for the −NŜ ln Ŝ term.
In the diagrammatic proof that we will give in chapter 3 only the perturbative behaviour of Ŝ
is captured. And in the generalised Konishi anomaly proof [7], which in fact relates the exact
superpotential to the exact free energy in the matrix model, the relation is only proven for
terms depending on the couplings gk in the tree-level superpotential.55 Thus the Dijkgraaf-
Vafa conjecture does not give a derivation of the Veneziano-Yankielowicz superpotential as
also discussed above.

Let us briefly look at the case where we also consider the abelian part of the super-
symmetric gauge field strength (section 2.1.2). We should here remember the extra double
derivative term in (2.20). Let us assume that (2.20) can be used for the exact free energy of
the matrix model found above, and let us consider the non-perturbative term. Due to the
double derivative term in (2.20) we should then have an extra term which is the derivative of
the Veneziano-Yankielowicz superpotential (since (2.192b) is the matrix model free energy
differentiated once). Further, we should remember to replace Ŝ with the full glueball su-
perfield S. However, when expanding S in Ŝ and wα as in (2.19) we will have cancellations
such that the two non-perturbative terms simply gives the Veneziano-Yankielowicz super-
potential expressed in the traceless glueball superfield Ŝ as in (2.192b). That is, we have
no dependence on the abelian part wα. This is as expected since this part is decoupled, as
discussed in section 2.1.2, and IR free. The cancellation is just the same as we saw for the
gauge coupling in (2.21) which is zero in the unbroken case. As we noted in section 2.1.2
it is not clear how to add the non-perturbative part by hand in the unbroken case when
we consider the abelian parts. However, in the light of the above we could guess that the
full superpotential is obtained by the extension of the Dijkgraaf-Vafa conjecture where we
use (2.20) to give the full effective superpotential using the exact (non-perturbative) solution
of the matrix model.

Since (2.192a) is a cubic equation we can solve it exactly as:

gz

m
= A+

1

12A
− 1

2
, A ≡ 3

√

√

√

√−1

2

g2

m3
Ŝ +

√

− 1

123
+

1

4

(

g2

m3
Ŝ

)2

. (2.193)

Here we have chosen the solution that satisfies56 limŜ→0 z = 0 thus ensuring 0 ∈ [a, b] i.e.
55Naturally, it is captured by the non-perturbative methods in the proof using Seiberg-Witten curves [5].
56Since Ŝ ≡ gm, the matrix model classical limit, gm → 0, corresponds to Ŝ → 0.
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Figure 2.7:

�
The dumbbell diagram contributing to the second order term in Weff,pert

(

Ŝ
)

.

we have chosen the cut around the critical point 0. Naturally, there is another solution
corresponding to limŜ→0 z = −m/g. Inserting (2.193) into (2.192b) thus explicitly gives us
the exact effective superpotential.

Using (2.193) we can expand the perturbative part of Weff in a power series in Ŝ. To
third order the result is:

Weff,pert = −Nm3

g2

(

2

(

g2

m3
Ŝ

)2

+
32

3

(

g2

m3
Ŝ

)3

+O
(

Ŝ4
)

)

. (2.194)

We can compare this with the results that we get from the matrix model diagrams. The
contribution from a given diagram is given by (2.154) and a combinatorial factor. Since there
is no diagram with less than three index loops the first non-zero term must be of order 3 in
the matrix model free energy and hence order 2 in Weff,pert. There are two types of diagrams
with three index loops. Firstly we find the diagram given in figure 2.3 which with our choice
of tree-level potential has a combinatorial weight of 1/6.57 Secondly, we have the diagram
shown in figure 2.7 which has the combinatorial weight 1/2. The total contribution from the
two diagrams is then −2

3m
−3g2(gsN

′)3 where the minus sign stems from the definition of the

free energy. This gives the contribution −2Nm−3g2Ŝ2 to Weff,pert using the Dijkgraaf-Vafa
conjecture (2.14b) – in agreement with (2.194).

We note that the form of the expansion of Weff,pert

(

Ŝ
)

is completely determined by the
analysis we made in section 2.5.4. Remembering the results obtained there we must demand
that Weff has a power series expansion in g. Further we can use the symmetries in table 2.2.
This tells us that we have a global U(1) symmetry under which Weff and Ŝ are invariant,
m has charge −2, and g has charge −3. Secondly we have a U(1)R symmetry under which
m, g, Ŝ and Weff has charge 2. This constrains the form of Weff,pert to be a power series
expansion of the form:

Weff,pert =
m3

g2

∑

k

ck

(

g2

m3
Ŝ

)k

. (2.195)

This is exactly the form we get as we can see from (2.192b) and (2.193). We note that
Weff,pert is singular in m→ 0 which also is expected since the chiral field has been integrated
out. The possibility of inverse powers of m is also the reason that we do not have to restrict

57When counting the number of diagrams one should remember that only the planar diagrams contribute.
If the counting instead is done in the adjoint single-line notation one should remember that the vertices are
proportional to Tr(TaTbTc). Thus the legs in the vertices can not be permuted arbitrarily, but only cyclically,
and we should only count the subgroup of diagrams that corresponds to planar diagrams in the double line
notation.
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to linear terms in the R-charged variables as in (2.119). We thus see that the essence of the
Dijkgraaf-Vafa conjecture for Weff,pert is that it determines the coefficients in (2.195): The
coefficients are obtained by combinatorial counting of planar diagrams in the related matrix
model.

2.8.2 Even Tree-Level Superpotential

Let us briefly examine the case of an even tree-level superpotential. We consider the unbroken
case where we expand around the zero critical point. Here we have a λ 7→ −λ symmetry in
the eigenvalues. Thus a = −b in (2.189) and the solution reduces to:

Ŝ =
1

2

∑

p≥1

g2p

(

2p

p

)(

b− a
4

)2p

, (2.196a)

Weff,pert = N
∑

p≥1

g2p
2p

(

2p

p

)(

b− a
4

)2p

− 2NŜ ln

(

b− a
4Λu

)

. (2.196b)

This is actually the general solution one finds for a SU(N) gauge group as also obtained
already in [61].

2.9 Nilpotency of the Glueball Superfield

As noted in section 2.1.2 the glueball superfield defined in (2.5) or (2.17) is a sum of terms
proportional toWαaWa

α for a = 1, . . . ,dim(G). Here G is SU(N) for Ŝ, U(N) for S or we can
think of the glueball superfield for a general gauge group G. Since Wαa is Grassmannian,
we see that the glueball superfield classically is nilpotent:

Sdim(G)+1 = 0. (2.197)

This even holds true in perturbation theory as can be seen using R-symmetries and dimen-
sional analysis.

However, we can say something even more powerful if we consider the chiral ring. First
we define chiral operators as gauge invariant operators annihilated by the supercharge Q̄α̇.
One can show that the products of chiral operators are again chiral operators. By considering
chiral operators modulo terms like {Q̄α̇, . . .} (where the dots indicate some gauge invariant
operator) the equivalence classes form a ring which, per definition, is the chiral ring. The
point is that one can show that in a supersymmetric vacuum, which we will assume in
the following, the expectation value of a product of chiral operators does not depend on
the chosen representatives. In fact, the expectation values factorise and are space-time
independent. There is a one-to-one correspondence to chiral superfields by noting that the
lowest component of a chiral superfield is a chiral operator. The chiral ring is then obtained
by considering the chiral fields modulo chirally exact terms of the form D̄D̄F where F is
a superfield for which D̄α̇F is gauge invariant. Now, in the chiral ring we have classically
and in perturbation theory [7] (conjectured for all groups, but certainly true for the classical
groups):

Sh = 0 (Chiral ring, perturbation theory), (2.198)

where h is the dual Coxeter number given in table 2.3. Actually, we also have Sh−1 6= 0
(anyway for SU(N)) in the chiral ring. The relation (2.198) is changed by non-perturbative
effects (as we have seen by instantons) into:

Sh = a(G)Λ3h (Chiral ring, exact), (2.199)
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where a(G) is a normalisation depending on the group. As mentioned in section 2.5.7 we
have a = 1 for SU(N) . Naturally, also the relation (2.197) is changed non-perturbatively,
see also [63].

We thus see that we should be very careful when employing the Dijkgraaf-Vafa conjecture
for the terms of order h and higher in S. Actually, in [64] (and using the generalised Konishi
anomaly method in [65] and [66]) in the case of a Sp(k) gauge group with matter in the
form of a two-index antisymmetric tensor chiral superfield the superpotential was obtained
from the matrix model using the general Dijkgraaf-Vafa conjecture (as we will introduce in
the next section). The results were compared to superpotentials obtained earlier in gauge
theory using the power of holomorphy. It was found that the results agreed up to order k and
discrepancies were found at order h = k+ 1 and higher orders. An even more basic example
of discrepancies is found by considering a U(1) gauge group with adjoint chiral matter. Here
we can think of the dual Coxeter number as being zero and indeed we have immediate
discrepancy. Using the Dijkgraaf-Vafa conjecture we really can define a superpotential in S
via the matrix model whereas there should be no glueball superpotential in ordinary gauge
theory (the theory is IR free).

The point here is [8] that the terms in the superpotential of order h or higher depend on
the UV completion of the theory. To see this let us in the UV turn on the term:

∫

d4xd2θ
∑

k≥h

akS
k, (2.200)

where the glueball superfields here should be considered quantum mechanically smeared.
Due to (2.198) this will not change the action classically (nor perturbatively), however, in the
IR the term is relevant due to the non-perturbatively corrected chiral ring relation (2.199).
Thus two theories which agree classically can differ quantum mechanically. Thus we can split
the superpotential as Weff(S) = WR(S) +WA(S) where WR consists of the terms of order
less than h, and WA of the terms of order h and greater. WR is determined unambiguously
from the tree-level superpotential by integrating out the matter fields, and the coefficients
are given by the Dijkgraaf-Vafa conjecture. WA, on the other hand, is ambiguous and should
really be seen as a part of the definition of the quantum theory – i.e. it depends on the choice
of F-term completion for the theory.

In the case of a U(N) gauge group with adjoint matter as considered in section 2.1 there
is a natural way of determining the F-term completion. Simply consider U(Nk) where k
is a (large) positive integer. Here the coefficients of Sn are determined unambiguously up
to order Nk by the Dijkgraaf-Vafa conjecture. And actually we see from (2.14) that the
dependence on k is a simple multiplicative factor. The F-term completion for a U(N) theory
is then simply defined by noting that the coefficient of Sn is determined by the coefficient in
the U(Nk) theory with Nk > n divided by k. Thus the effective superpotential to any order
is obtained from the matrix model using the Dijkgraaf-Vafa conjecture. This can also be
done for the other classical groups, but the dependence on N is generally not multiplicative.

There is, however, another approach to F-term completion applicable for any classical
group, denoted G(N), and any matter representation. Instead of G(N) we consider the
larger supergroup G(N+k|k) (which corresponds to adding k brane/anti-brane pairs). With
this group the terms in the superpotential are unambiguous up to order N + 2k and the
coefficients are actually independent of k.58 We can thus take k →∞ to determine the full
superpotential – the F-term completion. In the end we then use that all of the G(N + k|k)
theories have a Higgs branch where in the IR the supergroup is Higgsed down to G(N). The

58This is due to the supertrace in an index loop giving (N + k) − k = N .
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completion obtained in this way corresponds, in essence, to treating the S’s in the different
index loops (in the gauge theory) as being distinct.

TheG(N+k|k)-completion also tells us when we have discrepancies compared to the stan-
dard gauge completion. This happens when there are residual instanton effects in the broken
part of the group in the Higgsing G(N + k|k) 7→ G(N). By the knowledge of section 2.5.3 a
necessary condition for this is that the third homotopy group π3(G(N + k|k)/G(N)) 6= 0. In
the case of a U(N) gauge group with adjoint matter we only have residual instanton effects
for U(1 + 1|1) 7→ U(1) and this explains the discrepancy we found for the U(1) theory. The
residual instanton effects also explain the discrepancy in the Sp(k) case considered above.
The ambiguity is also investigated in e.g. [67], [68], [69], [70], [71], [72] and [73].

Thus, in conclusion, we can trust the glueball superpotential obtained by the Dijkgraaf-
Vafa conjecture up to order h unambiguously, whereas the terms of order h and greater
correspond to a choice of F-term completion. In the case of a U(N) gauge group (N > 1)
with adjoint matter we can use the Dijkgraaf-Vafa conjecture to any order since the choice
of completion here is the natural one. We should then think of S as an unconstrained
elementary field and the relation (2.199) as obtained on-shell using the equations of motion.

2.10 The General Dijkgraaf-Vafa Conjecture

Now that we have understood the Dijkgraaf-Vafa conjecture in details in the case of a U(N)
gauge group with a single adjoint chiral field, let us end this chapter by presenting the
Dijkgraaf-Vafa conjecture in the case of more general gauge groups and matter represen-
tations following [4]. We assume an N = 1 supersymmetric theory with a classical gauge
group G i.e. a product with factors of U(N), SO(N) and Sp(k). We further assume that the
matter content of the theory in the form of chiral fields, Φa, allows a double line notation
as in section 2.6. Also, we demand that it is possible to add mass terms to the matter
fields. We will here think of a single adjoint chiral field and flavours, i.e. chiral fields in the
fundamental/anti-fundamental representation, with Yukawa couplings. One could consider
more exotic matter, but in general the comparison between the gauge theory and the ma-
trix model should be done diagram by diagram and we do not have a nice relation to the
total free energy of the matrix model as below [64]. The matter is described by a tree-level
superpotential Wtree(Φ

a).59

The classical supersymmetric vacua for our system are by (2.50) again determined by
the critical points of Wtree. We will assume a massive supersymmetric vacuum where the
gauge group is broken to

∏

iGi where each of the Gi’s is one of the classical groups U(Ni),
SO(Ni) or Sp(ki) = USp(Ni = 2ki). All fields should be massive in the vacuum except the
N = 1 super Yang-Mills part for the gauge group

∏

iGi. Corresponding to each of the Gi’s
we have a glueball superfield Si defined analogously to (2.5). We will here ignore the abelian
part as in section 2.1.1 – the result when considering this is as in section 2.1.2.

The Dijkgraaf-Vafa conjecture once again tells us that the effective glueball superpo-
tential is determined as a sum of a superpotential Weff,pert(Si), perturbative in Si, and the
Veneziano-Yankielowicz superpotential (extending (2.140)):

WVY =
∑

i

C(adj(Gi))Si

(

1− ln
Si
aiΛ3

i

)

. (2.201)

Here ai is the normalisation from (2.138) depending on Gi, and C(adj(Gi)) is the quadratic

59This should only include single traces as we discussed at the end of section 2.1.4.
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invariant for the adjoint representation of Gi which, in a proper normalisation, equals the
dual Coxeter number for Gi given in table 2.3.60

Furthermore, Weff,pert is determined by the related matrix model with potential given
by 1

gs
Wtree. Here the matrices can now correspond to all of the classical groups U(N ′),

SO(N ′) and USp(N ′), so e.g. for SO(N ′) we have real antisymmetric matrices. If we have
fundamental matter, we should, naturally, also include integrations for this. In the matrix
model we expand around the saddle-point corresponding to the breaking of G 7→∏

iGi where
each Gi has a corresponding N ′

i . As explained in section 2.6.2 we can classify the matrix
model diagrams topologically. Analogously to section 2.6.3 we can make an expansion of the
free energy in powers of the matrix model coupling gs using the Euler characteristic χ:

Wfree =
∑

χ

g−χs Fχ
(

gsN
′
i

)

=
1

g2
s

Fχ=2

(

gsN
′
i

)

+
1

gs
Fχ=1

(

gsN
′
i

)

+O
(

g0
s

)

. (2.202)

As we will see in the proof of the Dijkgraaf-Vafa conjecture, it is only diagrams with Euler
characteristic χ ≥ 1 that contribute. In the case of a U(N) gauge group with a single adjoint
chiral field this means that only the χ = 2 diagrams contribute corresponding to genus g = 0.
However, in the general case we can also have a χ = 1 contribution. The contribution to
Fχ=1 comes from diagrams with two different topologies as we see from (2.152). We have
the diagrams with one boundary (stemming from the fundamental matter) which have the
topology of the disk D2 and whose contribution to Fχ=1 we denote FD2 . Secondly, we have
the diagrams with one cross-cap with topology of the projective plane RP

2 stemming from
the cross-over in the double line propagators of SO(N) and USp(N), see figure 2.5. The
contribution from these diagrams to Fχ=1 is denoted FRP2 . We thus have:

Fχ=1 ≡ FD2 + FRP2 . (2.203)

We have to distinguish between these two contributions since they have different weights
in the Dijkgraaf-Vafa conjecture, even though the Euler characteristic is the same. To be
consistent with the notation depending on the topology we also define FS2 ≡ Fχ=2 = Fg=0.

The relation to the gauge theory is similarly to (2.13) through 2C(fund)Si ≡ gsN
′
i and

we can state the Dijkgraaf-Vafa conjecture as (for the traceless glueball superfields):

Dijkgraaf-Vafa conjecture; General case.

Weff(Si) = Weff,pert(Si) +WVY(Si), (2.204a)

Weff,pert(Si) =
∑

i

Ni
∂FS2(S′

i)

∂S′
i

+ 4FRP2(S′
i) + FD2(S′

i), (2.204b)

S′
i ≡ gsN

′
i , S′

i = 2C(fund)Si. (2.204c)

As we will see in section 3.2.2 the reason for including C(fund) is that it appears in the
definition of S in (2.131).61 For a U(N) gauge with adjoint matter and C(fund) = 1/2 this,
naturally, reduces to (2.14).

This form of the conjecture is corrected from the original proposal in [4] in the case
of SO(N) and USp(N) gauge groups as was first found in [74] and [75] (also investigated
in [76] and [77]). There it is also shown (using the loop equations) that FRP2 = ∓1

2∂FS2/∂S
60We do not include the small N exceptions as in (2.142) since our G(N + k|k)-completion discussed in

section 2.9 has no small N exceptions because we take k large.
61We note that S′

i is invariant under the scaling of the gauge group generators discussed at the end of
section 1.3.4. This means that Weff,pert is invariant under such scalings as it should be.
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with minus for SO(N) and plus for USp(N). The addition of fundamental matter was first
done in [78] (see also [55], [56], [60], [79], [80], [81], [82], [83], [84], [85], [86], [87], [88], [89],
[90], [91], [92], [93], [94], [95], and [96] for the U(N)-case and [97], [98], [99], [100], [101],
and [102] for the SO(N) and USp(N)-case). Let us finally mention that the reduction to
zero-momentum modes holds true for any gauge group and any (massive) representation as
shown in [8].



Chapter 3

Diagrammatic Proof of the
Dijkgraaf-Vafa Conjecture

In this chapter we will present the diagrammatic proof for the form of Weff,pert in the
Dijkgraaf-Vafa conjecture. Following [6] the strategy will be as follows: Using holomor-
phy we will choose the anti-chiral part of the action suitably and then integrate it out. This
gives us an effective chiral action for which we can develop perturbative methods. In the
case of a classical gauge group and a single adjoint chiral field we then show that the path
integral reduces to zero-momentum modes and that we can relate the diagrams to matrix
model diagrams in the conjectured way.

At the end of the chapter we will show the localisation to zero-momentum modes for
general gauge groups and matter representations.

3.1 Setup for Perturbation Theory

3.1.1 Gauge Covariant Notation

In the following it will be convenient to use a gauge covariant notation for the superspace
derivatives and fields. We will use the so-called gauge chiral representation (described
in [103]). The point is to define derivatives ∇A transforming under gauge transformations
with the chiral superfield Λ

(

x, θ, θ̄
)

(section 1.3.4) as:

∇A 7→ e−iΛ∇AeiΛ. (3.1)

Using the transformation property (1.49) of the vector superfield e2V 7→ e−iΛ
†
e2V eiΛ, Λ

being chiral, and Λ† being anti-chiral we get the covariant derivatives:

∇α ≡ e−2VDαe
2V , ∇̄α̇ ≡ D̄α̇, ∇αα̇ ≡ −i{∇α, ∇̄α̇}. (3.2)

We note that D̄α̇ is the conjugate of Dα whereas the same is not true for ∇̄α̇ and ∇α.
Furthermore, we see that:

∇α = Dα + e−2V
(

Dαe
2V
)

, (3.3)

where the last term gives the gauge connections.

Analogous to the chiral fields we define the covariantly chiral fields as being annihilated
by the covariant derivative ∇̄α̇. The covariantly chiral fields are, naturally, simply the chiral
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fields. Correspondingly we define the covariantly anti-chiral fields Φ♯ as being annihilated
by ∇̄α̇, however, acting from the right. Given a chiral field Φ these take the form:

Φ♯ ≡ Φ†e2V , Φ♯←−∇α = Φ†←−Dαe
2V = 0. (3.4)

This also means that Φ♯ transforms covariantly as Φ♯ 7→ Φ♯eiΛ.
As an analogue of (2.70) we define for a chiral field Φ:

�+Φ ≡ 1

16
∇̄∇̄∇∇Φ. (3.5)

Using that (by simple calculation)

[∇̄α̇,∇ α̇
α ] = i8Wα, (3.6)

we easily get:

�+Φ =
1

8
∇αα̇∇ α̇

α Φ− 1

2
Wα∇αΦ−

1

2
∇αWαΦ. (3.7)

Defining

�cov =
1

8
∇αα̇∇ α̇

α , (3.8)

which for V = 0 simply is �, and rewriting the last differentiation in (3.7), where ∇α works
on both Wα and Φ, we get:

�+Φ =
(

�cov −Wα∇α −
1

2
(∇αWα)

)

Φ. (3.9)

Here we have used that ∇α obeys the Leibnitz rule, and we should remember that when
∇α = e−2VDαe2V works on Wα, then V should be in the adjoint representation.

For a real representation, e.g. the adjoint representation which is the case of our inter-
est, we have V T = −V and hence (Φ♯)T = e−2V Φ̄. Φ♯ is then annihilated from the left:
∇α(Φ♯)T = 0. Analogously to (3.5) we then define in a real representation:

�−

(

Φ♯
)T ≡ 1

16
∇∇∇̄∇̄

(

Φ♯
)T
. (3.10)

On covariantly chiral fields we then see:1

∇∇�+Φ = �−∇∇Φ, (3.11)

since ∇∇Φ is covariantly anti-chiral. We note that, by definition, �+ maps chiral fields to
chiral fields and �− maps covariantly anti-chiral fields to covariantly anti-chiral fields.

3.1.2 Anti-Chiral Part

Let us consider an N = 1 supersymmetric gauge theory with arbitrary chiral matter given by
the chiral field Φ. We will assume that the Lagrangian is renormalisable with the exception
that we allow arbitrary tree-level superpotentials, Wtree. We want to determine the per-
turbative part of the effective glueball superpotential, Weff,pert, (discussed in section 2.5.8)
obtained by integrating out the chiral superfield while treating the vector superfield as an
external background field. Thus the relevant part of the action is given by:

S
(

Φ, Φ̄
)

= A

∫

d4xd4θΦ†e2V Φ +

(∫

d4xd2θWtree (Φ) + c.c.

)

. (3.12)

1There is a typo in this equation in [6].
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Here we have allowed for a normalisation A of the Kähler term as we e.g. have in the case
of LU(N) in (2.26). We will demand that the supersymmetric vacuum is massive and for
now consider the case of an unbroken gauge group. For convenience, we will assume that
Φ transforms in a real representation thus allowing the mass term 1

2mΦTΦ. However, our
results until section 3.2 are valid in any representation.

The main point in this section is that Weff,pert can only depend holomorphically on the
couplings in Wtree as explained in section 2.5.1. In the notation of (2.15) what we want
to determine is then Zholo. We can thus treat both Φ and Φ̄, and Wtree(Φ) and Wtree(Φ̄)
independently and we can choose the form of Wtree(Φ̄) freely. We choose:2

Wtree

(

Φ̄
)

=
1

2
m̄Φ†Φ̄ =

1

2
m̄Φ̄T Φ̄. (3.13)

Thus the action is quadratic in Φ̄ and we can simply integrate it out by completing the
square. However, before we do this let us remark that we can scale the normalisation A
in (3.12) away by taking Φ̄ 7→ Φ̄/A and m̄ 7→ A2m̄. Since the final result does not depend
on m̄, we can choose m̄ freely and thus absorb the normalisation A in this way. This was
used in section 2.1.4 to note that there is no need for the N = 2 supersymmetry of the
Lagrangian without the tree-level superpotential in section 2.1.1 and 2.1.2.

Switching to the gauge covariant notation introduced in the last subsection, the part of
the action depending on Φ̄ can then be written:

∆S =

∫

d4xd4θΦ♯Φ +

∫

d4xd2θ̄
m̄

2
Φ♯
(

Φ♯
)T
, (3.14)

where we have used that Φ♯
(

Φ♯
)T

= Φ†e2V e2V
T
Φ̄ = Φ†Φ̄ in our real representation. We could

change the functional integration over Φ̄ to an integration over Φ♯. In the next section we
will change variables from Φ to e2V Φ so the Jacobian under DΦDΦ̄ 7→ D

(

e2V Φ
)

D
(

e−2V Φ̄
)

should be independent of V in analogy with (2.112) since there should be no anomalies in a
real representation.

We can rewrite the last term of (3.14) as:
∫

d4xd2θ̄
m̄

2
Φ♯
(

Φ♯
)T

= −1

4

∫

d4xd4θ
m̄

2
Φ♯ 1

�+
∇̄∇̄

(

Φ♯
)T
, (3.15)

where �−1
+ , naturally, should be defined modulo its kernel. To prove (3.15) we use the

conjugated analogue of (1.37) to replace
∫

d2θ with −1
4DD. Then by the Leibnitz rule for

Dα:

m̄

2 · 16DDΦ♯ 1

�+
∇̄∇̄

(

Φ♯
)T

=
m̄

2 · 16Φ†DDe2V
1

�+
∇̄∇̄

(

Φ♯
)T

=
m̄

2 · 16Φ♯∇∇ 1

�+
∇̄∇̄

(

Φ♯
)T
.

(3.16)
Finally using (3.11) to write (�+)−1 = (∇∇)−1 (�−)−1∇∇ and using (3.10) to note that

(�−)−1∇∇∇̄∇̄
(

Φ♯
)T

= 16
(

Φ♯
)T

, we get the wanted result.
We can then complete the square as:

∆S =

∫

d4xd4θ

{

− m̄

8

(

Φ♯ − 1

4m̄
(∇∇Φ)T

)

1

�+
∇̄∇̄

(

Φ♯ − 1

4m̄
(∇∇Φ)T

)T

+
1

8 · 16m̄(∇∇Φ)T
1

�+
∇̄∇̄∇∇Φ

}

. (3.17)

2One might think that it would easier to take Wtree

(

Φ̄
)

= 0 and then calculate the partition function.
However, the diagrammatic method that we will use turns out to be easiest [6].
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The only non-trivial part in completing the square is the term:

1

4 · 8(∇∇Φ)T
1

�+
∇̄∇̄

(

Φ♯
)T

=
1

32

(

DD(e2V Φ)T
)

e2V
1

�+
∇̄∇̄

(

Φ♯
)T

=
1

32
ΦT∇∇ 1

�+
∇̄∇̄

(

Φ♯
)T
, (3.18)

where we in the last line have integrated DD by parts which is allowed since d2θD ∼ DDD =
0. As above, ∇∇(�+)−1∇̄∇̄ can be replaced with 16 to show that the term reduces to the
wanted 1

2Φ♯Φ.
Using (3.17) we can integrate Φ♯ out by translating the integration variable to Φ♯ −

1
4m̄(∇∇Φ)T . The Gaussian integration then gives a factor depending on the determinant
of (�+)−1∇̄∇̄ which seems to depend on V . However, we do note that according to the
method of unconstrained superfields introduced in section 2.3.1 we should really integrate
over Π̄ defined by (the complex conjugate of) equation (2.75) i.e. Φ̄ = DDΠ̄. Analogous to
the derivations in equations (3.16) and (3.18) we can write:

−m̄
8

Φ♯ 1

�+
∇̄∇̄

(

Φ♯
)T

= −2m̄Π†DDΠ̄. (3.19)

Here the Gaussian integration just contributes with a constant independent of the back-
ground field V which we can disregard.

The integrating out procedure leaves us with the last term in (3.17) as a contribution to
the action for Φ. In this term we can immediately use the definition (3.5) of �+ to see that
it cancels out. Using (1.37) we can then rewrite the term to a

∫

d2θ-term:

1

8m̄

∫

d4xd2θ

(

−1

4
D̄D̄

)

ΦT∇∇Φ = − 1

2m̄

∫

d4xd2θΦT
�+Φ, (3.20)

where we again used the definition of �+. Thus the end result of this subsection is (us-
ing (3.9)):

Zholo =

∫

DΦeiS(Φ), (3.21)

with

S(Φ) =

∫

d4xd2θ

{−1

2m̄
ΦT

(

�cov −Wα∇α −
1

2
(∇αWα)

)

Φ +Wtree(Φ)

}

. (3.22)

3.1.3 Simplifications

In this section we will simplify the result (3.22) by taking into consideration the form of the
background and which terms that can contribute.

In order to obtain the glueball superpotential (which has no derivatives) we can think of
the background field Wα as being constant. Following [6] we will further make the following
simplifications:

• We choose the background such that Wα is also covariantly constant i.e.:

∇αα̇Wβ = 0. (3.23)

By the definition of �cov in (3.8) we then conclude that Wα commutes with �cov.
From (3.22) we see that we can choose the propagator in perturbation theory to be
like �−1

cov and we can treat the Wα∇α term as an interaction giving Wα insertions.
With the assumption (3.23) we can thus move such insertions around in the loops
when only considering the space-time part.
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• We drop the term ∇αWα in (3.22) since we do not consider such contributions. This
naturally calls for a redefinition of Zholo not to include these terms, however, we will
see below that in a very simple background this term is not present at all.

• Analogous to the gauge chiral representation in section 3.1.1 we have a gauge anti-chiral
representation transforming covariantly with respect to anti-chiral Λ̄ gauge transfor-
mations. Here the covariantly chiral field is Φ′ = e2V Φ (and thus Φ′T = ΦT e−2V ) and
it is annihilated by ∇̄′

α̇ = e2V D̄α̇e
−2V . Switching to this basis we can rewrite (3.22)

as:

S =

∫

d4xd2θ

{−1

2m̄
Φ′T

(

�
′
cov −W ′αDα

)

Φ′ +Wtree

(

Φ′
)

}

, (3.24)

where the point is that we have Dα instead of ∇α. Here �′
cov = e2V�cove

−2V , W ′
α =

e2VWαe
−2V and we have used the gauge invariance of the tree-level superpotential to

write Wtree(Φ) = Wtree(Φ
′). We can then change the functional integral to Φ′ and

drop the primes since the glueball superfield depends on Tr(WαWα) = Tr(W ′αW ′
α).

However, let us note that we also can obtain this reduction to Dα simply using (3.3)
and dropping the term Wαe−2V

(

Dαe
2V
)

since by (1.50) and (1.56) we see that (in
Wess-Zumino gauge) this term always contains at least one θ̄ and hence does not
contribute to the

∫

d2θ-integral.

• Finally we can replace �cov with the usual � = ∂µ∂
µ. This is because the connection

terms in �cov generally only appear in the effective action in order to covariantise
derivative terms – but we have none of these. However, to see that we can drop the
connection terms in general requires a detailed covariant supergraph analysis or the
assumption of a very simple background as below.

Thus the action we will use for our calculation of Zholo is:

S(Φ) =

∫

d4xd2θ

{−1

2m̄
ΦT (�−WαDα) Φ +Wtree(Φ)

}

. (3.25)

Here we actually can replace Dα with ∂/∂θα using the definition (1.29) since we again can
drop terms depending on θ̄.

The above reduction can also be seen by choosing the simplest possible non-trivial back-
ground as done in [15, 16]. Simply set Aµ = 0, take the gaugino field λα to be constant,
choose λ̄α̇ = 0, and disregard the auxiliary field D. Then by (1.50) and (1.57) we have (in
Wess-Zumino gauge):

V = −iθ̄θ̄θλ, Wα = −iλα. (3.26)

By (3.3) ∇α = Dα + 2θ̄θ̄Wα and after a short calculation (3.8) then gives:

�cov = �+ 2iWσµθ̄∂µ + 2θ̄θ̄WW. (3.27)

Inserting into (3.9) yields:

�+ = �−WαDα + 2iWσµθ̄∂µ. (3.28)

If we drop the last term since it depends on θ̄, we get (3.25) as wanted.
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3.1.4 Perturbation Theory Setup

In this subsection we will develop the perturbation theory based on the action (3.25). The
crucial point is that we have been able to integrate Φ̄ out since we are only interested in the
F-term. In this way we are only left with ΦΦ-propagators contrary to the usual supergraphs
developed in section 2.3.1. The new Feynman rules are also the reason that we escape the
perturbative non-renormalisation theorems from section 2.3.2 and 2.5.2.3 Since Φ̄ has been
integrated out and there is no longer any dependence on θ̄, we can also restrict the superspace
to the half-superspace generated by θ and think of Φ as a general superfield in this space.
Thus we do not have to worry about imposing chirality by e.g. introducing unconstrained
superfields as in (2.75).

The effective action Weff,pert is obtained from Zholo as in equation (2.16). However, we
will here Wick rotate into Euclidean space:

Zholo =

∫

DΦe−S
(E)(Φ) = e−

∫

d4xd2θW
(E)
eff,pert, (3.29)

where the label E denotes Euclidian space. We note that there is a simple sign change
between the superpotential in Euclidean and Minkowski space-time:

W
(E)
eff,pert(S) = −Weff,pert(S) . (3.30)

Equation (3.29) tells us that we should consider (minus) the sum of connected Feynman
diagrams. In developing the Feynman rules for these diagrams it will be convenient to use
the momentum space formulation not only for the space-time part, but also for the fermionic
parameters θα. To obtain the fermionic Fourier transformation we note that by (C.42):

−4

∫

d2πeθπ = θθ = δ(2)(θ) , (3.31)

where πα is the fermionic momentum and we have defined
∫

d2π ππ = 1. Thus the Fourier
transformation is given by:

f(θ) = −4

∫

d2πeθπ f̃(π) , (3.32)

f̃(π) ≡
∫

d2θe−θπf(θ) . (3.33)

In this way the spinorial derivative is replaced by a fermionic momentum:

∂

∂θα
7→ πα, (3.34)

which is consistent with the hermitian adjoint of the spinorial derivative given in (C.39).
When we construct the propagator we have two choices: Either to see the Wα∂/∂θα

term as giving a vertex or to include it as a part of the propagator. We will use the latter
and assume thatWα is not only constant in space-time, but also independent of θ like in the
case of the simple background (3.26). This is sufficient to determine the form of Weff,pert.
Now Zholo takes the form:

Zholo = e−
∫

d4xd2θ{−1
2m̄

ΦT (�−Wα∂/∂θα−mEm̄)Φ+interactions}, (3.35)
3This should not be misunderstood as the perturbative non-renormalisation theorems being wrong.

Rather, the perturbation theory for the field Φ after integrating out Φ̄ captures the form of the non-
perturbative corrections from section 2.5.4.
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where we have included the mass term in the inverse propagator term. Here mE = −m is
the mass in the Euclidean superpotential where there is a sign change as in (3.30). The sign
change in the two other terms in the inverse propagator has been absorbed into m̄. The

interaction terms are then the remaining terms in W
(E)
tree. The propagator ∆(x, θ;x′, θ′) is

then determined by:

−1

m̄

(

�−Wα ∂

∂θα
−mEm̄

)

∆
(

x, θ;x′, θ′
)

= δ(4)
(

x− x′
)

δ(2)
(

θ − θ′
)

. (3.36)

Using (3.31) and expanding δ(4)(x− x′) similarly we get the propagator:

∆
(

x, θ;x′, θ′
)

=

∫

d4p

(2π)4
(−4)

∫

d2π
m̄

p2 +Wαπα +mEm̄
ei(x−x

′)pe(θ−θ
′)π, (3.37)

where we have repressed the gauge group representation indices. From this propagator we see
that the m̄ dependence explicitly cancels out since we can rescale p2 7→ m̄p2 and πα 7→ m̄πα.
m̄ then cancels in the fraction and since the fermionic Jacobian is the inverse of the bosonic
Jacobian, the dependence also cancels here. In the following we can therefore set m̄ = 1.

The Feynman rule for the vertices is to multiply with (minus) a coupling times a gauge
group invariant tensor and then integrate over x and θ. SinceWα is merely a (fermionic) con-
stant, such an integration is over the exponentials from the propagators (3.37) and as usual
this gives a delta function (2π)4 δ(4)(

∑

i pi) (−1
4) δ(2)(

∑

i πi) giving bosonic and fermionic
momentum conservation at the vertices. However, since we consider connected diagrams
one of these delta functions simply is (2π)4 δ(4)(0) (−1

4 ) δ(2)(0) which expresses the fact that
the total incoming momentum in the diagram is zero. This delta function thus equals an
integration

∫

d4xd2θ and this is our overall integration in the effective action. We should not
worry about the integrand being x and θ independent since what we want is the form of the
effective Lagrangian and here it suffices to takeWα constant. We can now use the remaining
delta functions to remove some of the momentum integrations leaving us with L integrations
and thus 4L independent bosonic loop momenta and 2L fermionic loop momenta where:

L = E − V + 1. (3.38)

Here E is the number of propagators and V is the number of vertices. In conclusion, we are
left with the momentum space Feynman rules:�pµ, πα =

1

p2 +Wαπα +mE
, (3.39)�.. = −gE,kfa1···ak

, (3.40)

W
(E)
eff,pert = −

∑

connected diagrams. (3.41)

Here gE,k = −gk is the Euclidean coupling (with a sign change as above) for the interaction
term which has the form gE,kfa1···ak

Φa1 . . .Φak .

The trick is now to write the propagators, indexed by i = 1, . . . , E, as:

∫ ∞

0
dsie

−si(p2i +Wαπiα+mE) =
1

p2
i +Wαπiα +mE

, (3.42)
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where si is the so-called Schwinger time variable, and pi and πi are the momenta flowing
through the ith propagator.4 The point is that we can now factorise the propagator in the
contribution coming from respectively p2

i , Wαπiα and mE. This gives us a corresponding
factorisation of the amplitude, A, of a given diagram:

A = nsymm

∫ ∞

0

∏

i

dsiAbosonic(si)Afermionic(si)e
−
∑

i simE
∏

k

(−gE,k)Vk , (3.43)

where nsymm is a symmetry factor, Abosonic is the contribution from the space-time momen-
tum integrations, Afermionic is the contribution from the fermionic momenta which also holds
all the gauge group index contractions, and Vk is the number of vertices of order k.

It is easy to calculate Abosonic. To this end we introduce the L independent loop momenta
p′a which are related by a matrix Lia to the momenta flowing through the propagators, pi,
as:

pµi =
L
∑

a=1

Liap
′µ
a , i = 1, . . . , E. (3.44)

We can then write Abosonic as:

Abosonic =

∫ L
∏

a=1

d4p′a
(2π)4

exp
(

−
∑

i
sip

2
i

)

=

∫ L
∏

a=1

d4p′a
(2π)4

exp
(

−
∑

i
si

(

∑

a
Liap

′
a

)2)

=

∫ L
∏

a=1

d4p′a
(2π)4

exp
(

−
∑

a,b
p′µa Mab(si)p

′
bµ

)

=
1

(4π)2L
1

(detM(si))2
, (3.45)

where we in the last line have used Gaussian integration and we have introduced the real
symmetric matrix:

Mab(si) =
∑

i

siLiaLib. (3.46)

What we want to prove is that the dependence on the Schwinger time variables si in
Afermionic(si) cancels the si dependence in Abosonic thus giving us a localisation to zero-
momentum modes. Modulo gauge group factors Afermionic takes the form:

Afermionic(si) ∼ (−4)L
∫ L
∏

a=1

d2π′ae
−
∑

i

∑

a siWα
(ri)

Liaπ
′
aα , (3.47)

where we have introduced the fermionic loop momenta π′a which are related to the propagator
momenta like in (3.44):

πiα =

L
∑

a=1

Liaπ
′
aα, i = 1, . . . , E. (3.48)

In (3.47) we have explicitly shown that Wα depends on the representation. Here ri is the
representation that flows through the ith propagator, where we allow the representation to
depend on the propagator as we saw was the case for a broken gauge group. We see that
the cancellation of the dependence on si in Afermionic and Abosonic depends non-trivially on

4This is inspired by string theory where we have a cancellation between the factors obtained from integra-
tion over the space-time momenta and the integration over fermionic momenta. The Schwinger time variables
can be seen as the length of an edge and are thus the field theory limit of the world-sheet moduli from string
theory.
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Figure 3.1:�ij l
k −�ij l

k

The inverse double line propagator from the Wα
(adj)πα term. Crosses denote Wα insertions.

the gauge group representation. We will show this cancellation for general gauge groups
and matter representations in section 3.3. However, we will start by considering the case of
classical gauge group with an adjoint chiral field for which we will prove the direct relation
to the matrix model given by the Dijkgraaf-Vafa conjecture.

3.2 Reduction to the Matrix Model

3.2.1 Double Line Notation and Wα Insertions

In this section we will continue the evaluation of equation (3.43) for the amplitude A of a
given diagram. But here we restrict the gauge group to be one of the classical gauge groups
U(N), SO(N) or Sp(k) = USp(N = 2k), and the matter is in the form of a single adjoint
chiral superfield, Φ. Since we have integrated Φ̄ out, we can think of Φ as a real field and
use the double line notation for diagrams introduced in section 2.6. Here the difference is
that we have a ΦTWα

(adj)πiαΦ term. To determine the corresponding inverse double line

propagator we write the adjoint field as a hermitian matrix ΦaT
(fund)
a as in (2.145). The

term now takes the form Tr(Φ[Wαπiα,Φ]) where Wα = WaαT
(fund)
a .5 The contribution to

the inverse propagator δ∆−1 ≡ Γαπiα is then determined by:

Φi
j (Γα)ljik Φk

l ≡ Tr(Φ[Wα,Φ]) = Φi
j

(

(Wα)jk Φk
i − Φj

k (Wα)ki

)

, (3.49)

giving us the result:

(Γα)ljik = δli (Wα)jk − (Wα)li δ
j
k. (3.50)

This inverse propagator corresponds in the double line diagrams to insertions of Wα in the
single index lines (figure 3.1) with a sign which is correlated with the single index lines
having opposite directions (and hence being parallel or anti-parallel with the direction of the
fermionic momentum). By expanding Tr(Φ[Wαπiα, [Wαπiα,Φ]]) we see that two of these
inverse double line propagators multiply as:

(ΓαπiαΓ
απiα)

lj
ik = (Γαπiα)

mj
in (Γαπiα)

ln
mk . (3.51)

This simply tells us to join the double lines in the obvious way and defines the exponentials
in the Schwinger representation of the propagators in Afermionic (equation (3.47)). Thus
the second order term, shown in figure 3.2, involves double line propagators with two Wα

insertions. Since the exponential involves the fermionic propagator momentum πiα, the

5Please note that when going to the trace formulation we actually get a factor of C(fund) as in ΦaΦa =
Tr(ΦΦ) /C(fund). For the p2 and Wαπα terms this factor can be absorbed in m̄. For the mass term we think
of the factor as redefining the mass. E.g. to have a mass term 1

2
m Tr

(

Φ2
)

in Wtree as in (2.2) the mass term
in (3.35) should really have been multiplied with C(fund) – in this way when we go to the trace formulation
we will get the wanted mass term.
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Figure 3.2:�ij l
k

+�ij l
k − 2�ij l

k

Double line notation for the second order term of the exponential in the Schwinger
representation of the propagator. Crosses denote Wα insertions.

expansion terminates at second order and thus figure 3.1 and 3.2 show all the possible
double line propagators with insertions; especially we note that there can be maximally two
insertions per double line propagator.

With the double line notation we see that we should define Feynman rules giving diagrams
where we can haveWα insertions in the index lines. However, the important point is that we
should have exactly 2L insertions since the integrations

∫
∏L
a=1 d2πa over the 2L fermionic

loop momenta in (3.47) bring down exactly 2L factors of Wα. On the other hand, there
can be at most two Wα insertions in an index loop. This is because Tr(Wα1 . . .Wαn) = 0
for n ≥ 3 as shown in [7]. We can prove this following [15, 16] by noting that by the
relation (3.6), the definition (3.2) and the fact that Wβ is chiral we get:

{Wα,Wβ} =
1

8i
[∇̄α̇,∇ α̇

α ]Wβ = −1

8
∇̄α̇∇̄α̇∇αWβ. (3.52)

where the vector field V in the definition of ∇α is in the adjoint. Thus

Tr(Wα1 . . .WαiWαi+1 . . .Wαn) = −Tr(Wα1 . . .Wαi+1Wαi . . .Wαn)

− 1

8
D̄D̄Tr(Wα1 . . .∇αiWαi+1 . . .Wαn) . (3.53)

Due to the transformation of the gauge covariant derivative the last trace is gauge invariant
and we conclude that we can anticommute the Wαi ’s under a trace in the chiral ring (sec-
tion 2.9). Since the Weyl index α can only take two values, traces of more than two Wα’s
are zero (classically) in the chiral ring and can thus be disregarded.

Suppose the diagram under consideration has F index loops (and E propagators, L
momentum loops, and V vertices). We can thus have maximally 2F Wα insertions and since
we know that we have 2L insertions, we conclude that F ≥ L. Since the Euler characteristic
χ = V − E + F (2.151) and L = E − V + 1 (3.38) we conclude:

χ = F − L+ 1 ≥ 1. (3.54)

Thus for a U(N) gauge group and an adjoint chiral superfield only planar diagrams contribute
and we conclude that the planar limit is exact. We note that this result came about simply
by considering the number of fermionic integrations. For the SO(N) and USp(N) gauge
groups we can also have diagrams with χ = 1 and topology RP

2 if we include a single cross-
cap using the cross-over double line propagator from figure 2.5. If we take into consideration
fundamental matter, we further have the possibility of diagrams with one boundary (and
the topology of a disk) and hence χ = 1.

3.2.2 Reduction to the Matrix Model

We now want to show the reduction to the matrix model using the results from the last
subsection.



3.2. REDUCTION TO THE MATRIX MODEL 101

Figure 3.3:

��
On the left a planar diagram with an insertion. On the right a non-orientable diagram

obtained from the diagram on the left by replacing a double line propagator with a
cross-over.

Let us first note that an index loop with a single insertion contributes with a factor
Tr(Wα). An index loop with two insertions gives a factor proportional to the glueball
superfield from (2.131):

Tr
(

WαπiαWβπjβ

)

= −1

2
Tr(WW )πiπj = 16π2C(fund)Sπiπj, (3.55)

where we have used the fact that the matrices Wα and Wβ anticommute under the trace
and hence behave as spinors allowing us to use (C.42).

However, we have to care about the sign of an insertion since, as we found above (fig-
ure 3.1), the sign depends on whether the direction of the single index line with the insertion
is parallel or anti-parallel to the direction of the momentum. This actually also holds true
in the case of non-orientable diagrams. Take the case of a SO(N) gauge group. If we replace
a double line with a cross-cap6 as in figure 3.3, we will join two index loops to one and flip
the arrows in one of the index loops i.e. change the order of how to contract the indices.
But for SO(N) (Wα)ij is antisymmetric and hence this change in the direction of arrows
on the single lines exactly gives a sign change. Since Wα does not depend on where in the
index loop it is inserted, this means that we can keep track of the signs and the insertions
by introducing an auxiliary set of fermionic variables W ′α

m , m = 1, . . . , F , corresponding to
the index loop insertions such that Wα

(ri)
in (3.47) is given by:

Wα
(ri)

=

F
∑

m=1

KimW ′α
m . (3.56)

Here Kim is an E × F matrix defined to be +1 if the direction of the single index line on
the side of the mth index loop in the ith double line propagator is parallel to the momentum
πi, −1 if it is anti-parallel, and zero if the ith double line propagator is not part of the mth

index loop at all. If we have the same face on both sides of the propagator, we should sum
the contributions. Thus in this case if the index lines have opposite directions Kim is zero

6To obtain a cross-cap we replace a normal double line propagator with the cross-over part of the SO(N)
propagator from figure 2.5. But the double line propagator should not have the same face on both sides. E.g.
if we draw the middle propagator in the dumbbell diagram in figure 2.7 as a cross-over, we essentially get the
same diagram.
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and if they have the same direction it is ±2. If Kim is zero (3.56) implies that we will not
have any insertions in that propagator. For χ ≥ 1 this is consistent with the fact that in
such a propagator the momentum must be zero and we really do not have any insertion
since Wαπiα = 0. This happens e.g. in the dumbbell diagram in figure 2.7. However, if
χ < 1 we can have propagators with Kim = 0 and non-zero momentum, see figure 2.4. Thus
this method only works for χ ≥ 1, but, actually, this is all we need by (3.54). The middle
propagator in the non-orientable diagram in figure 3.3 gives an example where Kim = 2.
This is also consistent since we only have one variable W ′α

m which can give insertions, but
we can have insertions in both sides with the same sign – hence we need the factor 2. In
conclusion Kim ∈ {0,±1,±2} and we only get ±2 for χ = 1. The advantage is further,
as we will see below, that the contraction of the gauge group indices reduces to thinking
of W ′α

m as a simple fermionic variable (not a matrix) and performing fermionic integrations
over these variables. Using these auxiliary variables we can now prove the reduction to the
matrix model.

Let us start by considering a U(N) gauge group and the traceless glueball superfield. In
this case we have seen that only planar diagrams contribute to Weff,pert. Consider such a
planar diagram with amplitude A as in (3.43). Using the new double line Feynman rules
this amplitude splits into amplitudes from diagrams with the different possible insertions.
For a planar diagram we have F = L + 1 using (3.54). Thus we have two possibilities of
distributing the 2L insertions: Either we have 2 index loops with just one insertion and
the remaining L − 1 index loops have two insertions or we have 1 index loop without any
insertions and the remaining L index loops with two insertions. In the traceless case we
should disregard the first option because it gives contributions depending on TrWα, which
is zero since we choose a background such that the abelian part of Wα is zero. So let us
consider the last case. Let us fix the index loop without any insertions, e.g. as the outer
loop. The remaining index loops have two insertions thus giving a factor of SF−1. However,
to calculate the precise value we should consider all the different ways to distribute the
insertions. In figure 3.4 all the possible insertions have been shown in the case of a stop
sign diagram. We can now calculate the dependence on the Schwinger parameters si since
an insertion in the ith propagator gives a factor si as seen from (3.47). Remembering that a
propagator with a double insertion comes with a factor 1/2 from expanding the exponential,
we then see that the contribution from the diagrams is proportional to:

1

4

(

s21s
2
2 + s21s

2
3 + s22s

2
3

)

+
1

2

(

s1s
2
2s3 + s1s2s

2
3 + s21s2s3

)

, (3.57)

One can check that this actually is (detM(si))
2/4 thus cancelling the si dependence in

Abosonic from (3.45) and proving the reduction to zero-modes for this diagram. Actually, one
has to be a little more careful in (3.57). When calculating diagram d in figure 3.4 we get an
extra factor 1

2 compared to the other diagrams which is, however, cancelled by the factor of
2 coming with the double line propagators that have insertions in both sides – see figure 3.2.

However, using the auxiliary fermionic variables there is no need to explicitly do this
elaborate expansion into diagrams with insertions. We simply constrain the matrix Kim by
removing the column corresponding to the index loop without insertions thus ensuring no
insertions in this index loop. But the resulting matrix is, by definition, exactly the matrix
Lia from (3.44) if we choose the L loop momenta to run as the L index loops with insertions
and, especially, with the same orientation, see figure 3.5. This is possible since we have
a planar, oriented diagram. It is here a point that the Jacobian for the transformation
from the independent propagator momenta to these loop momenta simply is one.7 We

7We can sketch a proof of this as follows: Consider the matrix relating the loop momenta p′
a to the inde-
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Figure 3.4:

�
a)

�
b)

�
c)

�
d)

�
e)

�
f)

The stop sign diagram with all the different possible distributions of the four insertions.
The outer loop has been chosen to be without insertions.

Figure 3.5:

�p2

p1

p3 = −p1 − p2

p′1

p′2 �
On the left the stop sign diagram in single line notation with the loop momenta p′1 and p′2

chosen to run like the inner index loops in the corresponding double line diagram
(displayed to the right).
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can then rewrite (3.56) as Wα
(ri)

=
∑

a LiaW ′α
a where we have used the same label for the

(remaining) auxiliary fermionic variables as for the momentum loops. The point is that the
auxiliary variables also captures the index contraction structure of the insertions: By (3.55)
we can identify W ′αW ′

α with −32π2C(fund)S where W ′α is a simple fermionic variable,
not a matrix. Thus, to obtain Afermionic(si) in (3.47) we simply have to include the 2L
integrations

∏

a(−32)π2C(fund)S
∫

d2W ′
a with

∫

d2W ′W ′αW ′
α = 1. In this way we get

exactly two insertions in the index loops with insertions and no insertion in the remaining
index loop. Furthermore, this takes care of all gauge index contractions and we will get the
right signs both from the insertions and from the ordering of the fermionic variables. Also,
we are ensured that we have the right Weyl index contractions. We then get:

Afermionic(si) =

(

L
∏

a=1

(−32)π2C(fund)S

∫

d2W ′
a (−4)

∫

d2π′a

)

e−
∑

i

∑

a,b siLiaW ′α
a Libπ

′
bα

= (−2C(fund)S)F−1 (4π)2L
∫

(

∏

a

d2W ′
a(−4)d2π′a

)

e−
∑

a,b W
′α
a Mab(si)π′

bα

= (−1)F−1 (2C(fund)S)F−1 (4π)2L(detM(si))
2, (3.58)

where we have used the definition of Mab(si) from (3.46) and in the last line we have made
a fermionic Gaussian integration.8 We see that the si dependence in Afermionic(si) cancels
that of Abosonic in (3.45) thus giving us the wanted localisation to zero-modes.

The total amplitude (3.43) now reduces to:

A = NF (−1)F−1 (2C(fund)S)F−1 nsymm

∫ ∞

0

E
∏

i=1

dsie
−
∑

i simE
∏

k

(−gE,k)Vk , (3.59)

where we have multiplied with NF since we have F possibilities in choosing the loop without
insertions and this loop contributes with a factor N . The integrations over the Schwinger
variables si are now trivial and gives m−E

E . To compare with the matrix model we should use
mE = −m and gE,k = −gk where m is the mass and gk the couplings in Wtree in Minkowski
space. We thus get a factor (−1)V −E which by (2.151) can be written as (−1)χ−F . With
the definition

S′ = 2C(fund)S (3.60)

we can thus write

A = (−1)χ−F (−1)F−1N
∂

∂S′
S′Fnsymmm

−E
∏

k

(−gk)Vk . (3.61)

From (2.154) we see that the amplitude of the corresponding planar double line diagram in
the matrix model is given by:

Amatrix

(

gsN
′
)

= nsymmg
−2
s

(

gsN
′
)F
m−E

∏

k

(−gk)Vk . (3.62)

pendent propagator momenta pi. Take a double line propagator at the boundary. Here the loop momentum,
denoted p′

1, and the propagator momentum, denoted p1, is the same up to a sign – see e.g. figure 3.5. Thus
the top row in the transformation matrix is ±1 in the first entry and zero in the rest. Adjacent to the inner
face of this double line propagator we have another propagator whose propagator momentum, denoted p2,
thus depends on p′

1 and some other loop momenta p′
2. Thus the second row in the matrix has something in

the two first entries and zeroes in the rest. Continuing in this way we get a triangle matrix whose determinant
simply is the multiple of the entries in the diagonal. Since these are ±1, the Jacobian is 1.

8Naturally, the sign and normalisation from the fermionic Gaussian integration is important for us. Going
through the proof of Gaussian integration, one finds that the fermionic integrations gives the determinant
squared and L factors of

∫

d2W ′ (−4)
∫

d2π′W ′1π′
1W

′2π′
2 which simply is 1 by (C.40).
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Thus, if we identify S′ with gsN
′, we can write:

A = −N ∂

∂S′
g2
sAmatrix

(

gsN
′ ≡ S′

)

, (3.63)

where we have used that χ = 2 so (−1)χ−F (−1)F−1 = −1. From (3.41) we know that the
Euclidian effective superpotential is obtained as minus the sum of such amplitudes. Thus
by (3.30) the effective glueball superpotential in Minkowski space is (plus) the sum of these
amplitudes of connected planar diagrams. On the other hand, by (2.12) such a sum over
g2
sAmatrix gives −Fg=0. Thus we finally get:

Weff,pert = N
∂

∂S′
Fg=0

(

gsN
′ ≡ S′

)

, (3.64)

which simply is (2.14b) in the unbroken case with C(fund) = 1/2 and Ŝ = S. For this case
we have thus proven the Dijkgraaf-Vafa conjecture for the relation between the perturbative
part of the effective glueball superpotential and the planar limit of the matrix model.

Now, in much the same way we can prove the conjecture for other gauge groups and
matter representations that allow a double line notation:

D2 diagrams: If we have a classical group with an adjoint chiral field and include fun-
damental matter then, as mentioned above, we should add amplitudes from diagrams
with a single boundary and hence topology D2. Here χ = 1 and hence F = L by (3.54)
which, naturally, corresponds to one of the index loops being replaced by a boundary.
Since we only have L index loops, all of these must have two insertions. This gives us
an overall factor of (−1)FS′F . So in this case we should keep all the auxiliary variables
W ′α
m and integrate over them. By choosing the loop momenta to run as the L index

loops, the matrix Lia is again equal to Kim. Thus the fermionic integration is the same
as in the case above and we get a factor that cancels Abosonic. In this case we have no
overall NF factor so the amplitude, in analogy with (3.61), becomes:

A = (−1)χ−F (−1)FS′Fnsymmm
−E
∏

k

(−gk)Vk , (3.65)

where (−1)χ−F as before comes from changing mE and gE,k to m and gk. Together with
(−1)F this gives an overall minus sign since χ = 1. Using (2.154) (with 2−2g replaced
by χ = 1) we can identify the last part of (3.65) with gs times the amplitude from the
corresponding diagram in the matrix model under the identification S′ ≡ gsN

′. The
contribution to Weff,pert from these disk diagrams are again the sum of the amplitudes.
The sum over the corresponding amplitudes in the matrix model times −gs gives FD2

from (2.203). Thus we get:

∆Weff,pert(S) = FD2

(

S′ ≡ gsN ′
)

, (3.66)

as claimed in (2.204).

RP
2 diagrams: In the case of a SO(N) or USp(N) gauge group with adjoint matter we

should also consider the contribution from diagrams with the topology of the projective
plane RP

2 and hence χ = 1. Since the Euler characteristic is the same as for the D2

diagrams above, this case is very similar, especially with two insertions in all of the
F = L loops. The only difference is when we choose the matrix Lia. We can once
again choose the loop momenta to run as the index loops and in this way Lia equals
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Kim. But we should here pay special attention to the cross-cap in the form of a cross-
over propagator that joins two oriented loops to one. For this cross-over propagator,
indexed by i, and the corresponding index loop, indexed by a, we have Lia = Kia = ±2
corresponding to pi = ±2p′a (see figure 3.3). This means that the Jacobian for the
change from the independent propagator momenta to the loop momenta is not 1 as
above, but 2. Since we have 4 sets of the L bosonic momenta (pµ) we get a factor
of 24 from these. However, we also have 2 sets of the fermionic momenta (πα) and
since the Grassmannian Jacobian is the inverse of the bosonic, this gives a factor of
(±2)−2. Thus in this case we get a factor 4 compared to the contribution from the
disk diagrams above:

∆Weff,pert(S) = 4FRP2

(

S′ ≡ gsN ′
)

, (3.67)

which finishes the proof of (2.204) in the unbroken case. A proof for this case can also
be found in [74].

Disconnected diagrams: Suppose that we have matter which specifically needs a pro-
jection to be traceless. This is e.g. the case for a SU(N) gauge group with adjoint
matter as mentioned in footnote 47 on page 72. In these cases we should also consider
disconnected double line propagators. One can then prove [64] that the number of
disconnected components is one higher than the number of disconnected propagators.
Thus, in the case of an even tree-level superpotential these disconnected diagrams will
not contribute at all. However, in general the disconnected diagrams should be con-
sidered say for a USp(N) gauge group with traceless antisymmetric matter. Since a
given amplitude here is a multiple of factors from the disconnected pieces, we can not
give a relation to the total free energy of the matrix model and the comparison should
be done diagram by diagram.

Broken gauge group: We now consider what happens when the vacuum breaks the gauge
group. We will assume that we can make diagrams for the gauge theory just as we
did for the matrix model in the broken case (section 2.7.1) which is plausible since the
ghost term has the same form. We should then consider diagrams where the index
loops have an extra label telling to which broken part, Gi, they belong. The Wα

insertion in a loop with the label i should then be the gauge field strength, Wα
(i), for

Gi. Two insertions in an index loop then correspond to the glueball superfield Si for Gi
as in (2.5) and (2.17). For the contribution corresponding to diagrams of topology D2

and RP
2 there is no change in the form of the relation to the matrix model, except that

S now has a label i and we should identify S′
i ≡ gsN

′
i . For the planar diagrams (and

a traceless glueball superfield) we should split the contribution from a given diagram
according to which type of index loop we choose to be without insertions. Let us
assume that we have chosen the type i and let F =

∑

j Fj where Fj is the number of
index loops of type j. Since the loop without insertion now gives a factor Ni and we
have Fi possibilities in choosing this loop, we get a factor of NiFiS

Fi−1
i which should

be multiplied with factors of S
Fj

j from the remaining types of index loops. We can

write this as Ni∂/∂Si
∏

i S
Fi
i . Finally, we should sum over the choice of type of index

loop without insertions, i. Thus (3.64) becomes:

Weff,pert =
∑

i

Ni
∂

∂S′
i

Fg=0

(

S′
i ≡ gsN ′

i

)

, (3.68)

as in (2.14b).
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In the next section we will finish the proof of the Dijkgraaf-Vafa conjecture for the form of
Weff,pert by considering the abelian part of Wα. But let us end this section by noting that it
is essential in the localisation to zero-modes that we are in four space-time dimensions. This
is because Abosonic in (3.45) is determined by the space-time dimension whereas Afermionic

in (3.47) depends on the dimension of the Weyl spinors. Thus, the cancellation between
Abosonic and Afermionic only takes place in four space-time dimensions.

3.2.3 Abelian Part

In this section we will finish the proof from the last subsection by taking into consideration
the abelian part ofWα. We will think of a U(N) gauge group with adjoint matter. A sketch
of the proof can be found in [6], but since we have not found a detailed diagrammatic proof
in the literature, we will be thorough here.9

With a non-zero abelian part of Wα we should allow index loops with a single Wα

insertion giving a contribution of Tr(Wα). Since we have 2L insertions, only planar diagrams
have enough index loops to allow single insertions. We thus get an extra contribution to
Weff,pert obtained in (3.64) from the planar diagrams in which 2 of the F = L + 1 loops
have one insertion and the rest have two insertions. We will consider the case of a broken
gauge group since for adjoint matter the overall U(1) in U(N) is completely decoupled as
mentioned in section 2.1.2.

Let us first point out that the cancellation between Abosonic and Afermionic in this case
does not happen in exactly the same way as for the planar diagrams in the last subsection.
Consider as an example the stop sign diagram. In the last section we considered the insertion
pattern where one of the index loops has no insertions and the rest have two insertions and
we obtained the possible diagrams in figure 3.4. Furthermore, we saw that the dependence
on the Schwinger variables si exactly corresponded to the six terms in the square of the
determinant of Mab from (3.46) thus cancelling Abosonic. However, in this case we do not
have six, but eight possible insertion distributions. These are shown in figure 3.6 where the
outer index loop and the upper of the inner index loops have been chosen to only have one
insertion. We should compare the si dependence in these diagrams to the ones in figure 3.4.
If we factor out the dependence on the traces of the Wα’s which, naturally, is different in
the two set of diagrams, we will actually get that diagrams a, b, c and d in figure 3.6 gives
−2 times respectively the diagrams a, b, f and c in figure 3.4. For diagrams a, b and c in
figure 3.6 this can be seen by moving the single insertion in the outer loop to the opposite
side of the double line propagator and thus to the index line in the corresponding inner loop.
This gives us the same si dependence, but we get a minus sign since the insertion change
sign and a factor of 2 from changing a propagator with insertions in both sides to one with
insertions in only one side (remember the factor 2 in figure 3.2). For diagram d in figure 3.6
one should be more careful and remember which insertions should be Weyl contracted with
each other. For the remaining diagrams in figure 3.6 one finds that e and f are equal and
each corresponds to minus diagram d in figure 3.4. In the same way g and h in figure 3.6
are equal and each corresponds to minus diagram e in figure 3.4. Thus, all in all, we again
get the determinant of Mab squared and a cancellation between Abosonic and Afermionic, but
also an extra factor −2.

For a general diagram we can use the auxiliary variables to see the reduction to the
matrix model. Let F =

∑

i Fi where Fi is the number of index loops of type i. Consider the

9In the generalised Konishi anomaly proof in [7], the proof for the abelian part is included in a natural
way.



108 CHAPTER 3. DIAGRAMMATIC PROOF OF THE DIJKGRAAF-VAFA. . .

Figure 3.6:

�
a)

�
b)

�
c)

�
d)

�
e)

�
f)

�
g)

�
h)

The stop sign diagram with all the different possible distributions of the four insertions in
the case where we choose the outer index loop and the upper of the inner index loops to

only have one insertion.

case where we choose the single insertions to be in the loops of type i and j respectively.
Thus, from these two index loops we get a contribution of Tr

(

Wα
(i)πlα

)

Tr
(

Wβ
(j)πkβ

)

and
after performing the fermionic momentum integrations we will, by Lorentz invariance, end
up with a factor proportional to:

Tr
(

Wα
(i)

)

Tr
(

W(j)α

)

=
(4π)2

2
wαi wjα, (3.69)

where we have introduced wαi from (2.18). Let us now also introduce the auxiliary variables
W ′α
m . We choose the labelling such that m = 0 corresponds to the index loop of type i with

a single insertion and m = 1 to the index loop of type j with the other single insertion.
We can thus identify (3.69) with W ′α

0 W ′
1α and to calculate Afermionic we should include an

integration
(4π)2

2
wαi wjα

1

2

∫

dW ′
0αdW ′α

1

∣

∣

∣

∣

. (3.70)

Here 1
2

∫

dW ′
0αdW ′α

1

∣

∣W ′α
0 W ′

1α = 1 and the restriction means that we should set the parts
of W ′α

0 and W ′α
1 that are not integrated over to zero, just as above where we removed the

auxiliary variables corresponding to the index loop without insertions, i.e.:

dW ′
0αdW ′α

1

∣

∣ = dW ′
0α=1dW ′α=1

1

∣

∣

∣

W ′
0 α=2=W ′α=2

1 =0
+ dW ′

0α=2dW ′α=2
1

∣

∣

∣

W ′
0 α=1=W ′α=1

1 =0
(3.71)

For the remaining index loops, numbered by a = 2, . . . , L, with two insertions we get glueball
superfield contributions and similar to (3.58) we should include the 2(L − 1) = 2(F − 2)
integrations

(−1)F−2(4π)2(F−2)SFi−1
i S

Fj−1
j

(

∏

k 6=i,j

SFk
k

)

L
∏

a=2

∫

d2W ′
a, (3.72)



3.2. REDUCTION TO THE MATRIX MODEL 109

where we have chosen C(fund) = 1
2 as in section 2.1. The fermionic integrations in Afermionic

from (3.47) thus take the form:

1

2

∫

dW ′
0αdW ′α

1

∣

∣

∣

∣

(

L
∏

a=2

∫

d2W ′
a

)(

L
∏

a=1

(−4)

∫

d2π′a

)

e−
∑

i

∑

mb siKimW ′α
mLibπ

′
bα (3.73)

This splits into two contributions by (3.71) (which actually give the same by Lorentz in-
variance). Let us consider the last contribution. Using (C.22) and (C.23) we can write the
second integration as

∫

dW ′
0α=2dW ′α=2

1 =
∫

dW ′α=1
0 dW ′α=2

1 . We can factorise the expo-
nential in (3.73) by writing out the sum over α into two contributions (remembering the
restriction in (3.71)):

e−
∑

i

∑

mb siKimW ′α=1
m Libπ

′
b α=1

∣

∣

∣

W ′α=1
1 =0

e−
∑

i

∑

mb siKimW ′α=2
m Libπ

′
b α=2

∣

∣

∣

W ′α=2
0 =0

. (3.74)

By choosing the loop momenta to run as the index loops with m = 1, . . . , L we have, as
above, Kia = Lia, a = 1, . . . , L. The second exponential in (3.74) then has the form:

e−
∑

i

∑L
a,b=1 siLiaW ′α=2

a Libπ
′
b α=2 , (3.75)

whereas the first exponential in (3.74) is:

exp

(

−
∑

i

si

( L
∑

a=2

LiaW ′α=1
a +Ki0W ′α=1

0

)(

∑

b

Libπ
′
b α=1

)

)

. (3.76)

Now, the trick is that since we have an oriented diagram, the single index lines in the double
line propagators have opposite directions and by definition of Kim we conclude that:

∑

m

Kim = 0, (3.77)

for all propagators labelled by i. Thus in our caseKi0 = −∑L
a=1 Lia and we can rewrite (3.76)

as:

exp

(

−
∑

i

si

( L
∑

a=2

Lia
(

W ′α=1
a −W ′α=1

0

)

− Li1W ′α=1
0

)(

∑

b

Libπ
′
b α=1

)

)

. (3.78)

Since the integrations overW ′α=1
a , a = 2, . . . , L, only work on this exponential, we can safely

translate the integrations over these withW ′α=1
0 . The integration overW ′α=1

0 also only works
on this exponential and we can thus substitute W ′α=1

0 with −W ′α=1
1 and get:

exp

(

−
∑

i

si

( L
∑

a=1

LiaW ′α=1
a

)(

∑

b

Libπ
′
b α=1

)

)

. (3.79)

This is the same form as we got for the second exponential in (3.75). We can now do the
same for the first term in (3.71) and thus (3.73) becomes:

−2
(

L
∏

a=1

∫

d2W ′
a

)(

L
∏

a=1

(−4)

∫

d2π′a

)

e−
∑

i

∑L
ab=1 siLiaW ′α

a Libπ
′
bα , (3.80)
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where the minus sign is from the substitution of W ′
0 with −W ′

1 and the factor 2 comes from:

1

2

∫

dW ′
1αdW ′α

1 = 2

∫

d2W ′
1. (3.81)

The integration in (3.80) is the same as we had in (3.58) which gave (detM(si))
2, but now

with an extra factor of −2 that we also found when comparing the diagrams in figure 3.6 to
the diagrams in figure 3.4. We have thus obtained the localisation to zero-modes.

Collecting the terms from (3.70) and (3.72) and using (3.45) we get:

AbosonicAfermionic = −2
1

2
wαi wjα(−1)F−2SFi−1

i S
Fj−1
j

(

∏

k 6=i,j

SFk
k

)

. (3.82)

Thus, with this choice of in which type of index loops we should have only one insertion, the
contribution to the total amplitude (3.43) is:

−ai,j(−1)F−2(−1)χ−Fwαi wjαS
Fi−1
i S

Fj−1
j

(

∏

k 6=i,j

SFk
k

)

nsymmm
−E
∏

k

(−gk)Vk , (3.83)

where (−1)χ−F as before comes from the change of mE and gE,k to m and gk. ai,j is a
combinatorial factor telling in how many ways we can choose the index loops with single
insertions. If i 6= j we have ai,j = FiFj , whereas for i = j we have ai,i =

(

Fi
2

)

= Fi(Fi− 1)/2.
To obtain the total amplitude we should sum over the choices of i and j i.e. a sum as

∑

i≤j.

Using that
∑

i<j = 1
2

∑

i6=j we get the total amplitude for the planar diagrams having two
index loops with single insertions:

A = −1

2

∑

i,j

wαi wjα
∂2

∂Si∂Sj

(

∏

k

SFk
k

)

nsymmm
−E
∏

k

(−gk)Vk , (3.84)

since (−1)F−2(−1)χ−F = 1 for χ = 2. The same analysis that led from (3.61) to (3.64) gives
us the contribution to Weff,pert from the planar diagrams with two single insertions:

∆Weff,pert =
1

2

∑

i,j

wαi wjα
∂2

∂Si∂Sj
Fg=0

(

gsN
′
i ≡ Si

)

, (3.85)

thus finishing the proof of (2.20).
We have now finished the proof for the form of Weff,pert in the Dijkgraaf-Vafa conjecture.

However, we have actually missed one type of diagram in the proof. If we think of the
Wαπα term as an interaction term, the one-loop diagram shown in figure 3.7 should also be
taken into consideration (as done in [7]). The diagram has two propagators and two Wα

interaction vertices as shown in diagram a) in figure 3.7. Since Wα is a constant, there is
no external momentum and the same momentum runs through both propagators.

Let us use the double line notation for the diagram. The Wα interaction vertices takes
the same form as in figure 3.1. Since the diagram has one loop, it should have two Wα

insertions. The two types of insertion patterns are shown in b) and c) in figure 3.7. In the
broken case the diagrams in which the index loops are of different types should cancel. Let
us therefore consider a diagram in which both index lines are of the same type i. As seen
from (3.55) the insertions of type b) give a term proportional to −2Ni · 8π2Siππ. Here we
have a minus sign since the insertions sit in different sides of the double lines (but both in
the same index loop), the factor two comes from the choice of index loop without insertions,
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Figure 3.7:

�
a)

p, π

p, π
�

b)

�
c)

The one-loop diagram with two Wα interaction vertices. a) shows the diagram in single
line notation while b) and c) show the diagram in double line notation with the two

possible types of insertion patterns.

and the factor Ni comes from the trace in that index loop. Correspondingly, the second
insertion pattern in diagram c) in figure 3.7 gives a contribution of −8π2wαi wiαππ. Since
one of the interaction vertices gives an overall chiral superspace integration, the contribution
to the Euclidean effective superpotential is given by:

2
1

2!

(

−1

2

)2 ∫ d4p

(2π)4
(−4)

∫

d2π
1

(p2 +mE)2
(−1)(4π)2

(

NiSi +
1

2
wαi wiα

)

ππ. (3.86)

Here the factors in front are a factor 2 from the symmetry of the diagram, a factor 1/2! from
going to second order in the interaction, and a factor (−1/2)2 from the normalisation of the
interaction term as seen from (3.35). Introducing a cut-off, Λ0, the four-dimensional bosonic
momentum integration gives standardly:

∫

d4p

(2π)4
1

(p2 +mE)2
=

1

(4π)2
ln

(

Λ0e
−1

|mE|

)

. (3.87)

Inserting into (3.86), summing over the type of index loop i, and rotating into Minkowski
space (giving a sign change) gives the contribution to the glueball superpotential:

∑

i

(

NiSi +
1

2
wαi wiα

)

ln

(

m

Λ0e−1

)

=
∑

i

NiŜi ln

(

m

Λ0e−1

)

, (3.88)

where we have used (2.19) to write the result in terms of the traceless glueball superfield,
Ŝi. We see that this is nothing but the m dependent part of the Veneziano-Yankielowicz
superpotential (2.9) if we use the matching of scales (2.143): Λ3 = Λ2

um. This is the same
m-dependence we obtained in the matrix model in (2.165).

3.3 General Gauge Groups and Matter Representations

In the last section we have proven diagrammatically the localisation to zero-modes (and the
form of Weff,pert) for the gauge groups and matter representations that allowed a double
line notation. Following [8] let us end this chapter by briefly showing the localisation to
zero-modes for general gauge groups and representations.
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We will use the same setup as in section 3.1.4, but we will assume that the constant field
strength Wα is abelian, i.e. lies in a Cartan subalgebra. Let us denote the generators of the
Cartan subalgebra by Ha so Wα =WαaHa. For the given representation of the chiral field

r we can diagonalise the H
(r)
a ’s simultaneously since they commute:

(

H(r)
a

)i

j
Φj = λiaΦ

i. (3.89)

We can thus define the dim(r) vectors ~λi = (λi1, . . . , λ
i
rank(G)) where rank(G) is the rank of

the gauge group. These are called the weights of the representation.10 Using these we can
write:

(

Wα
(r)

)i

j
=Wαaλiaδ

i
j ≡ ~Wα · ~λiδij . (3.90)

SinceWα
(r) is diagonal, we can use a notation where the propagators just carry a single gauge

index sitting on ~λ instead of two indices.
Let us think of a given diagram. With ~λi we denote the weight propagating through

the ith propagator which is then equal to ~λj where j is the gauge index for the propagator.
The ~λi’s are like charges for the Cartan generators and especially we have conservation of
charges at the vertices (due to gauge invariance of the interaction terms). This means that we
can introduce loop Cartan charges, ~λ′a,

11 analogous to the bosonic and fermionic momenta
in (3.44) and (3.48):

~λi =
∑

a

Lia~λ
′
a. (3.91)

For a given choice of ~λ′a we see that Afermionic(si) from (3.47) takes the form of a factor from
the vertices and:

(−4)L
∫ L
∏

a=1

d2π′ae
−
∑

i si
~Wα·~λiπiα = (−4)L

∫ L
∏

a=1

d2π′ae
−
∑

i si
∑

ab Lia
~Wα·~λ′aLibπ

′
bα

= (−4)L
∫ L
∏

a=1

d2π′ae
−
∑

ab
~Wα·~λ′aMabπ

′
bα , (3.92)

where we have introduced the matrix Mab from (3.46). Exactly as in (3.58) (the integrations
overW ′ there was just a bookkeeping device) we see that this gives (detM(si))

2 times a mul-
tiple of factors of ~Wα ·~λ′a. The last factor cancels the si dependence in Abosonic from (3.45).
We are then left with the trivial si dependence in the mass part of the propagators (see (3.43))
and we have thus obtained the wanted localisation to zero-modes.

One can pursue the matter and obtain the total amplitude by remembering the factor
from the vertices, which depends on the choice of ~λ′a, and then sum over the ~λ′a’s (and
there is also an overall sum analogous to the overall superspace integration). In this way
the relation to the matrix model can be found e.g. for the U(N) gauge group with adjoint
matter as done in [8].

10The precise mathematical definition of the weights (as given in [104]) is that they are the linear functionals,
M i, on the Cartan subalgebra given by M i(

∑

a caHa) =
∑

a caλi
a.

11The loop index a should not be confused with the adjoint gauge index.



Conclusions

The prime goal of this thesis has been to give a thorough introduction to the Dijkgraaf-Vafa
conjecture, its diagrammatic proof and the concepts needed to understand the conjecture.

We started in chapter 2 by stating the conjecture and then used the rest of the chapter to
understand the concepts used in the conjecture. Along the way we got a better understanding
of the conjecture and its context. Using the Seiberg scheme of holomorphy, symmetries and
various limits we proved the non-renormalisation theorem telling us that the low energy
superpotential, which is what the Dijkgraaf-Vafa conjecture determines, essentially consists
of non-perturbative corrections. And in the case of a cubic tree-level superpotential we
saw that the Seiberg scheme determined the form of the perturbative part of the glueball
superpotential and thus the essence of the Dijkgraaf-Vafa conjecture is to determine the
coefficients in the power series for the glueball superfield. Furthermore, we briefly pointed
out that there is an interplay between the ILS linearity principle and the Dijkgraaf-Vafa
conjecture.

We have also seen some of the limitations in the conjecture. We still need to assume
that the glueball superfield is the fundamental field (confinement). And we can only prove
the relation to the matrix model for the perturbative part of the glueball superpotential, not
that the full glueball superpotential simply is given by adding the Veneziano-Yankielowicz
superpotential. Furthermore, we have discussed the nilpotency of the glueball superfield. We
have seen that the terms in the glueball superpotential up to the power of the dual Coxeter
number are determined unambiguously. And we saw how to interpret the full solution for
the glueball superpotential given by the Dijkgraaf-Vafa conjecture as an F-term completion
using supergroups, but also mentioned the discrepancies that arise here when comparing to
standard gauge theory. We have also pointed out the difficulties in stating the conjecture
in a general form when considering multi-trace tree-level superpotentials and in the case of
general matter where the relation to the matrix model should be done diagram by diagram.

In the diagrammatic proof of the conjecture we were able to integrate out the conjugated
chiral field using holomorphy. In this way we escaped the non-renormalisation theorems and
were able to derive the strong results for the non-perturbative corrections in the glueball
superpotential purely diagrammatically. In the proof we have been careful and kept track of
all the details. In this way we found the 2C(fund) factor in the identification of the glueball
superfield with gsN

′
i in the matrix model for a general classical gauge group. We have also

seen the cancellation of the intricate sign from rotating to Euclidean space with the minus
sign in the definition of the glueball superfield. And we have given a thorough diagrammatic
proof in the case where one takes into account the abelian part of supersymmetric gauge
field strength. All in all, we have understood very basically how the different terms in the
Dijkgraaf-Vafa conjecture arise by considering insertions in diagrams. We have seen the
projection to planar and Euler characteristic χ = 1 diagrams by counting of these insertions.
With the localisation to zero-momentum modes for general gauge groups and (massive)
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matter representations we have seen the generality of the Dijkgraaf-Vafa conjecture.
It is natural to ask if there is a meaning with the diagrams in the matrix model of higher

genera. Indeed one finds that with gravitational couplings one should take these non-planar
diagrams into account and much of recent research has been done in this area.

The use of the Dijkgraaf-Vafa conjecture has also been discussed. We have only briefly
mentioned the important results obtained for the parameter spaces of different theories
using the conjecture. But we have seen how to solve the one-cut case in the matrix model
exactly and with this solution we have used the Dijkgraaf-Vafa conjecture to obtain the
exact effective glueball superpotential for a cubic tree-level superpotential.

At last we have seen that we can recover the Veneziano-Yankielowicz superpotential
from the matrix model free energy by considering the measure of the matrix model or by
evaluating the partition function for zero couplings in the tree-level superpotential. But
perhaps most strikingly the term emerged when we solved the matrix model exactly. Thus
there were no need for adding the Veneziano-Yankielowicz superpotential by hand. This
calls for a proof of this deeper relationship between the gauge theory and the matrix model.
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Appendix A

Notation

The topic of supersymmetry suffers under an abundance of notations. We choose to follow
the notation of [9] as strict as possible, however, we shall make deviations.

We choose to use the “mostly plus” metric for the Minkowski space:

ηµν ∼









−1
1

1
1









.

This also defines the similarity symbol for use when we do not have a formal equality (as
here for the same matrix/tensor in index notation and written out with all entries in bracket
notation). Also note that we use Greek letters µ, ν, . . . for Lorentz indices contrary to [9].
Latin indices i, j, k will be used for spatial coordinates.

This choice of metric then demands that we choose to represent the four-momentum
operator as:

pµ = −i∂µ, (A.1)

such that p0 is the Hamiltonian and pi the usual momentum operators −i∂i.
The orientation in Minkowski space is given by the totally antisymmetric Levi-Civita

tensor εµνρσ defined by:
ε0123 = −ε0123 ≡ +1.

[−,−] will be used for commutators and {−,−} for anticommutators.
In order to simplify expressions we choose units such that ℏ = c = 1.
Matrices can be in bold font while operators are in normal font – except abstract Lie

algebra operators which can be in calligraphic font.
The term Lagrangian will also be used for the Lagrangian density as long as no confusion

should be possible.
For notation on spinors please see appendix C.
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Appendix B

Minkowski Space as Cosets in the
Poincaré Group

In this appendix we describe how the Minkowski space emerges as the cosets of the Poincaré
group modulo the Lorentz group. The treatment builds on [11].

The idea is based on the fact that the Poincaré algebra is the semidirect product of the
translation group and the Lorentz group and hence the same for the corresponding algebras.
Any point in Minkowski space can be reached as a translation of the origin – but not uniquely
since any Lorentz transformation keeps the origin fixed. Hence we must identify Minkowski
space with the translations modulo the Lorentz transformations.

B.1 Poincaré Algebra

To be precise let Pµ be the generators of the translations and let Jµν = −Jνµ be the
antisymmetric generators of the Lorentz group such that the total Poincaré algebra is given
by (taken from [24]):

[Pµ,Pν ] = 0,

[Pµ,Jνρ] = −i (ηµνPρ − ηµρPν) , (B.1)

[Jµν ,Jρσ] = −i (ηνρJµσ − ηµρJνσ + ηµσJνρ − ηνσJµρ) .

An element in the Poincaré group then has the form:

e−iτ
µPµ+i

1
2ω

µνJµν , (B.2)

where ωµν = −ωνµ. Please note the signs which have been chosen carefully. In a represen-
tation where this is the (active) coordinate transformation of fields, we want:

e−iτ
µPµ+i

1
2ω

µνJµνψ(x) = ψ′(x) = ψ(xPassive), (B.3)

where P and J is the representations of P and J respectively, and xPassive to first order in
τ and ω is given by

xµPassive ≃ xµ − ωµνxν − τµ. (B.4)

With the signs given in (B.2) this is exactly realised by (A.1) i.e. Pµ  Pµ = −i∂µ and

Jµν  Jµν = xµPν − xνPµ = −i (xµ∂ν − xν∂µ) . (B.5)
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It checks easily that we indeed get the right transformation (to first order in τ and ω):

e−iτ
µPµ+i

1
2ω

µνJµνψ(xµ) = (1− τµ∂µ + ωµνxµ∂ν)ψ(xµ)

= ψ
(

xµ − τµ − ωµνxν
)

.

We also note that P and J satisfy the Poincaré algebra (B.1) as they should.

B.2 Minkowski Space as Right Cosets

Now let us consider the cosets ([11] call them right cosets) given by the Poincaré group,
GPoincaré, modulo the Lorentz group, GLorentz. They have the form gGLorentz, g ∈ GPoincaré.
However, we can always use a pure translation as a representative of the coset and this
translation is unique. Hence we have the unique form of a given coset:

exp(−ixµPµ)GLorentz. (B.6)

Proof. Since [11] does not prove this let us do it here. Take an arbitrary element in
the Poincaré group exp

(

−iyµPµ + i12ω
µνJµν

)

. We now want to use the Baker-Campbell-
Hausdorff formula (here from [10]), which says:

eAeB = eA+B+
1
2 [A,B]+ 1

12
[A,[A,B]]+ 1

12
[B,[B,A]]+···, (B.7)

where A and B are arbitrary elements in a given Lie algebra. Now let us try to set A =
i12ω

µνJµν and B = −ixµPµ. From (B.1) we get that [B,A] ∼ P and hence [B, [B,A]] = 0.
Thus one of the series in the Baker-Campbell-Hausdorff formula truncates and the resulting
series is linear in B. The formula then takes the form (from [11]):

eAeB = eC , C = A+

( − adA
e− adA − 1

)

B, (B.8)

where 1 is the identity and the adjoint adA is defined, as usual, as the operator

adA · B = [A,B]. (B.9)

Now let us work out how the adjoint works in our case. (B.1) gives:

ad
(

i12ω
µνJµν

)

· (−ixµPµ) = [12ω
µνJµν , xµPµ]

= ixµω ν
µ Pν . (B.10)

By induction:
(

ad
(

i12ω
µνJµν

))k · (−ixµPµ) = −(−1)kix · ωk · P, (B.11)

where x is the row vector made out of xµ, ω is the matrix made from ω ν
µ and P is the

column vector made out of Pν . Now (B.8) becomes:

ei
1
2ω

µνJµνe−ix
µPµ = ei

1
2ω

µνJµν−ix·( ω
eω−1

)·P . (B.12)

Noting that as a real function ω
eω−1 is non-zero, and that it and its inverse are well defined

as series expansions in ω we get:

ei
1
2ω

µνJµνe
−iy·

(

eω−1

ω

)

·P
= e−iy

µPµ+i
1
2ω

µνJµν .
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Now taking the inverse and substituting y and ω for −y and −ω respectively we get the
wanted result:

e−iy
µPµ+i

1
2ω

µνJµν = e
−iy·

(

e−ω−1

−ω

)

·P
ei

1
2ω

µνJµν . (B.13)

The uniqueness of the translation representative can easily be seen. Suppose that we had
two pure translation representatives of the same coset (determined by x and x′). Then for
suitable ω and ω′ we have:

e−ix
µPµei

1
2ω

µνJµν = e−ix
′µPµei

1
2ω

′µνJµν .

Hence

e−i(x−x
′)µPµ = ei

1
2ω

′µνJµνe−i
1
2ω

µνJµν ∈ GLorentz,

which is only possible for x = x′

Now we see that the well defined relation (bijection) between Minkowski space and the
cosets in the Poincaré group modulo the Lorentz group is given by:

xµ ∈ Minkowski space←→ exp(−ixµPµ)GLorentz ∈ GPoincaré/GLorentz. (B.14)

B.3 Action on Minkowski Space

Now arises the natural question of how the action of the Poincaré group is expressed in the
coset space. The answer is the simple action of left multiplication of the Poincaré group on
the cosets. This is easily checked. Left multiplication with a pure translation determined by
τ gives:

e−iτ
µPµe−ix

µPµGLorentz = e−i(x+τ)
µPµGLorentz, (B.15)

hence sending xµ 7→ xµ+ τµ which is the active translation, that we want. Now let us check
how a Lorentz transformation determined by ω works. By the use of (B.12) and (B.13) we
get

ei
1
2ω

µνJµνe−ix
µPµGLorentz = ei

1
2ω

µνJµν−ix·( ω
eω−1

)·PGLorentz

= e
−ix·( ω

eω −1
)·
(

e−ω−1

−ω

)

·P
ei

1
2ω

µνJµνGLorentz

= e−ix·e
−ω ·PGLorentz

= e−i(e
ω )µ

νx
νPµGLorentz, (B.16)

where we in the last line have used that ω is antisymmetric. Hence this generates the
transformation xµ 7→ Λµνxν with

Λµν = (eω)µν , (B.17)

as expected for an active Lorentz transformation.
Please note that the fact that this is a representation of the Lorentz group, is tightly

bound to the generator Pµ being multiplied with Λ−1 and not Λ as one might expect. Pµ
is also a representation of the Lorentz group, but the transformation matrices are not just
multiplied on from the right like on xµ, but are multiplied on right next to Pµ. I.e. first
transforming with Λ1 and then with Λ2 yields Λ−1

1 Λ−1
2 P, but because of the inverses this is

a representation.
In conclusion, we have seen that the Minkowski space can be identified with the Poincaré

group modulo the Lorentz group and the Poincaré transformations are given by left multi-
plication under this identification.



Appendix C

Spinors

In this chapter we will give an introduction to spinors with emphasis on what we will need
in this thesis namely Majorana spinors, Weyl spinors and the conventions and notation that
follows.1

C.1 Spinorial Representations

In relativistic quantum mechanics Lorentz invariance is the first principle. Hence our objects
must be representations of the Lorentz group. The spinorial representations are a special
case since they rather are representations of a double cover of the Lorentz group – the spin
group.

Let us start by looking at the proper orthochronous Lorentz group with the six generators
Jµν = −Jνµ with commutation relations given by (B.1). There is a very nice and easy way
to list all finite-dimensional representations of the Lorentz group (here inspired by [25]).
First we define the usual generators of rotations and boosts as:

Li = 1
2ε
ijkJ jk, Ki = J 0i. (C.1)

In this basis we get from (B.2) that a Lorentz transformation takes the form:

e−iθ·L−iβ·K, (C.2)

with θi = −1
2ε
ijkωjk and βi = ωi0 i.e. the turning angle and the rapidity respectively. The

signs of θ and β are chosen to comply with (B.17). However, we now want to make a second
change of basis to the six generators defined by:

J± = 1
2 (L± iK) . (C.3)

One can show that J+ and J− commute and both satisfy the commutation relations of
angular momentum (i.e. the SU(2) algebra):

[J i±, J
j
±] = iεijkJk±.

Consequently, we can write (C.2) as:

ei(−θ+iβ)·J+ei(−θ−iβ)·J− . (C.4)
1This appendix is based on [9], [11] and [13], but with all notation and definitions altered to coincide

with [9]. However, where [9] has not defined objects we will try to define everything logically and consistent
with [9].
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This shows that the representations of the Lorentz group can be seen as the complexified
representations of SU(2)× SU(2) where the last part is the conjugate of the first. Since the
irreducible finite-dimensional representations of SU(2) are characterised by an integer or half
integer j (corresponding to the dimension of the representation being 2j + 1), we see that
the finite-dimensional representations of the Lorentz group correspond to pairs of integers
or half integers (j+, j−).

Let us investigate the representations with the lowest dimensions. (0,0) is of course the
trivial representation. The two dimensional representation (1

2 , 0) is the complexified SU(2)
spin 1

2 representation. Let us use that J+ = σ
2 and J− = 0 where the Pauli matrices, i.e.

the generators of SU(2), as usual are given by:

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

. (C.5)

Hence (C.4) becomes:
ei(−θ+iβ)·σ

2 = e(−iθ−β)·σ
2 . (C.6)

Since −iθ−β can be any complex number (−iθ − β) · σ2 can by any complex traceless matrix
and hence the represented group is SL(2,C). If we look at the representation (0, 1

2 ) we get
the same result with a simple change in the sign of β i.e. the group elements are:

e(−iθ+β)·σ
2 . (C.7)

Now in order to investigate the representation (1
2 ,

1
2) we note that if (C.7) works on ψ, the

action on ψ̃ = ψTσ2 is (by the use of σ = −σ2σTσ2 and
(

σ2
)2

= 1):

ψ̃ 7→ ψ̃e(iθ−β)·σ
2 . (C.8)

This is the hermitian adjoint of the (1
2 , 0) representation working from the right. Thus we

can see a (1
2 ,

1
2 ) object as a matrix, A, transforming like:

A 7→MAM†, (C.9)

for M ∈ SL(2,C). Let us now assume that A is hermitian. Then by defining

σ0 = −1, σµ ∼ (−1,σ), (C.10)

we get a one to one correspondence between hermitian matrices and real 4-vectors by Vµ ↔
Vµσ

µ. Since (C.9) preserves hermiticity we can define a transformation of a 4-vector like

Vµσ
µ 7→MVµσ

µM† ≡ V ′
µσ

µ. (C.11)

Now by calculation one gets that det(Vµσ
µ) = −VµV µ. Using this and the fact that (C.11)

preserves the determinant since det(M) = 1, we see that this transformation is a (proper
orthochronous by further calculations) Lorentz transformation. Hence the real part of the
representation (1

2 ,
1
2 ) is the same as the defining vector representation of the Lorentz group.

Or actually almost. Since both M and −M correspond to the same Lorentz transformation,
we are actually dealing with a double cover of the Lorentz group. The group that we really
are representing, SL(2,C), is called the spin group. Actually, it is the simply connected
extension of the Lorentz group.2 The spin representations are, of course, representations of
the spin group SL(2,C).

2Following [24] a matrix in SL(2, C) can be written as a matrix from SU(2) times the exponential of
a traceless hermitian matrix by the polar decomposition theorem (like in (C.6)). The topology of SU(2)
is the same as the three dimensional ball S3 and the topology of traceless hermitian matrices is the same
as R

3. Hence SL(2, C) is topologically equivalent to S3 × R
3. The Lorentz group, which now can be seen

as SL(2, C)/Z2, is topologically equivalent to S3 × R
3/Z2 and is not simply connected – actually, the first

homotopy group is Z2.
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C.2 The Clifford Algebra

The spinorial representations can be investigated using the Dirac γ-matrices obeying the
Clifford algebra:

{γµ, γν} = −2ηµν1. (C.12)

The connection to the spin group is through

Σµν ≡
i

4
[γµ, γν ] (C.13)

which one can check obeys the Lorentz algebra (B.1) and hence generates a spinorial repre-
sentation.

Until now we have not said anything about the number of space-time dimensions. In most
of this thesis, however, we shall use four space-time dimensions. In this case the dimension
of the Dirac matrices must be (at least) four and all representations are unitarily equivalent.
We will use the Weyl basis:

γµ =

(

0 σµ

σ̄µ 0

)

, (C.14)

where σ̄ is defined as
σ̄µ ∼ (−1,−σ) . (C.15)

Please note that γ0 is hermitian while γi is antihermitian. In the index notation we give the
γ-matrices indices (γµ) b

a and spinors index down, ψa.
Taking the full Clifford algebra as a real algebra it is isomorphic to the algebra of real

4× 4 matrices and thus has a natural real four-dimensional irreducible representation – the
Majorana spinor. However, looking at the complexified Clifford algebra we get a complex
four-dimensional irreducible representation – the Dirac spinors. Both are of course trans-
forming with Σµν as generators under Lorentz transformations. Connecting back to the
(j+, j−)-notation the Dirac spinors correspond to (1

2 , 0) ⊕ (0, 1
2) and the Majorana spinors

are the subrepresentation fixed by complex conjugation.
Another way to obtain the Majorana spinors is to look at how to define the conjugate of a

spinor, ψ. There are two definitions – the Dirac conjugate, ψ̄D, and the Majorana conjugate,
ψ̄M, defined as:

ψ̄D = ψ†γ0 (C.16)

ψ̄M = ψTC, (C.17)

where C is the charge conjugation matrix defined by CγµC
−1 = −γTµ . In our case C = iγ2γ0.

Now the Majorana spinors are defined as those Dirac spinors that obey ψ̄D = ψ̄M. This can
be rewritten as the Majorana reality condition:

ψ∗ = −iγ2ψ. (C.18)

Actually, C is not a matrix like the γ-matrices, but rather it transforms like a bilinear
form. We define it to have indices up, Cab. Hence by the use of (C.17) it can be used to
raise indices on Majorana spinors, but one should be careful since it is antisymmetric. We

define raising by ψa = Cabψb and hence lowering by ψa = Cabψ
a where Cab =

(

C−1
)ab

.
We will not proceed any further in this direction, but rather note that the Dirac and

Majorana representations are not irreducible as representations of the spin group. To see
this define

γ5 = γ0γ1γ2γ3. (C.19)
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Table C.1:
Name Matrix Notation Transformation

Fundamental M ψα ψ′
α = M β

α ψβ

Conjugate M∗ ψ̄α̇ ψ̄′
α̇ = (M∗) β̇

α̇ ψ̄β̇
Dual

(

MT
)−1

ψα ψ′α = M−1 α
β ψβ

Conjugate dual
(

M†
)−1

ψ̄α̇ ψ̄′α̇ = (M∗)−1 α̇

β̇
ψ̄β̇

Representations of SL(2,C) and their notation.

This matrix has the property that it anticommutes with all other γ-matrices. Hence it
commutes with Σµν . By Schur’s lemma the spinorial representation is reducible and reduces
corresponding to the eigenvalues of γ5. Actually:

γ5 =

(

−i1 0
0 i1

)

, (C.20)

showing that the four dimensional representations split into two (irreducible) representations
– the Weyl spinors. The two representations are conjugate and are exactly the representa-
tions (1

2 , 0) and (0, 1
2) that we have already encountered.

C.3 Weyl Spinors

The two-dimensional representations we uncovered in last section are of course linked with
the fact that SL(2,C) has a natural two-dimensional complex representation acting as a

matrix. A two dimensional spinor hence transforms as ψα 7→ M β
α ψβ where M belongs to

SL(2,C). We will use Greek indices (running from 1 to 2) for Weyl spinors while Dirac and
Majorana spinors have Latin indices. However, we also get a representation (i.e. we keep
the group multiplication structure) if we work with the conjugated, the transposed inverse
or the hermitian inverse matrix. This is summarised in table C.1 where we also see the
notation for the representations (we are here following [9]). Please note that we use dots on
indices that transform in the conjugate representation.

But not all of these representations are inequivalent. Since we are dealing with 2 × 2
matrices with unit determinant, we have the following relations:

εαβ = M γ
α M δ

β εγδ ,

εαβ = εγδM α
γ M β

δ , (C.21)

where the antisymmetric tensors are defined by (as usual the tensor with indices up is the
inverse of the tensor with indices down)

ε12 = −ε21 = −ε12 = ε21 = 1. (C.22)

Thus we see that the antisymmetric tensors are invariant. Consequently, they can be used
to raise and lower indices to define invariant inner products. But one has to be careful since
we are dealing with antisymmetric tensors. We define raising and lowering as:

ψα ≡ εαβψβ , ψα ≡ εαβψβ. (C.23)
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This is a consistent definition in itself since ψα = εαβψβ = εαβεβγψ
γ !

= ψα by the use of
εαβεβγ = δαγ . But the definition is also consistent with table C.1 since:

ψα = εαβψβ 7→ εαβM γ
β ψγ = M ǫ

δ M
−1 α
ǫ εδβM γ

β ψγ

= M−1 α
ǫ εǫγψγ = M−1 α

β ψβ .

Consequently, the fundamental representation and the dual representation are equivalent.
The same holds true for the conjugate and the conjugate dual representations – raising and
lowering are defined in exactly the same way with the same definition of the ε-tensor with
dotted indices. The invariant products are defined as:

ψχ ≡ ψαχα, ψ̄χ̄ ≡ ψ̄α̇χ̄α̇. (C.24)

The reason for these contraction conventions will become clear later. But please note that
the ordering is important since e.g. ψαχα = εαβψβχα = −ψαχα. Keeping in mind that
half-integer spinors must be represented by anticommuting Grassmann numbers we actually
see that these contractions commute since e.g. ψχ = ψαχα = −χαεαβψβ = χβψβ = χψ.
Looking back at the transformation (C.11) we see that the index structure of the σ-matrices
is:

(σµ)αβ̇ . (C.25)

Hence we get yet another Lorentz scalar by the contraction ψα (σµ)αβ̇ ∂µχ
β̇. We can also use

the ε-matrices to raise and lower the indices on the σ-matrices using the definition (C.23).
Using this we actually get:

σ̄α̇β = σβα̇ = εα̇γ̇εβδσδγ̇ . (C.26)

Inserting this index structure in (C.13) we get:

Σµν =
i

4

(

(σµ)αγ̇ (σ̄ν)
γ̇β − (σν)αγ̇ (σ̄µ)

γ̇β 0

0 (σ̄µ)
α̇γ (σν)γβ̇ − (σ̄ν)

α̇γ (σµ)γβ̇

)

≡ i

(

(σµν)
β
α 0

0 (σ̄µν)
α̇
β̇

)

, (C.27)

where we also defined σµν and σ̄µν . The diagonal Lorentz generators (the benchmark of the
Weyl basis for the γ-matrices) directly show us how the Dirac spinor, ΨD, and the Majorana
spinor, ΨM, split into two Weyl spinors:

ΨD ∼
(

ψα
χ̄α̇

)

, ΨM ∼
(

ψα
ψ̄α̇

)

. (C.28)

Here we have used the Majorana reality condition (C.18) in writing the Majorana spinor.
We have also used how to complex conjugate the Weyl spinor as will be defined in the next
subsection. Rewriting the Σµν generators to K and L we can easily see that the upper spinor
transforms according to (C.6), i.e. like (1

2 , 0), while the lower spinor transforms according
to (C.7), i.e. like (0, 1

2).3

3We note that the transformation (C.7) is not exactly the conjugate of (C.6). In order to get the exact
conjugate we have to do, as we did when going from (C.7) to the exactly conjugate representation in (C.8).
Since the conjugate representation (that we used in table C.1) and (C.7) are equivalent, it does not mat-
ter which one we choose the dotted indices to transform in – as long as we consistently choose the same
everywhere.
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C.4 Complex Conjugation

We define complex conjugation on Weyl spinors as the involution:

(ψα)∗ ≡ ψ̄α̇, (ψα)∗ = ψ̄α̇, (C.29)

where the last part simply followed since we chose the ε-tensor with and without dotted
indices to be the same. This definition fits with table C.1. However, when complex conju-
gation works on products of anticommuting spinors it reverses the order (or equivalently it
adds an appropriate sign), e.g.:

(ψαχβ)
∗ = χ̄β̇ψ̄α̇. (C.30)

Now we see the reason for the placement of the indices in (C.24) because with these definitions
we get the nice equation:

(ψχ)∗ = (ψαχα)
∗ = χ̄α̇ψ̄

α̇ = χ̄ψ̄ = ψ̄χ̄. (C.31)

Using the definition of complex conjugation we can show that the inner product of two
Majorana spinors is real. First we find the Majorana conjugate in the Weyl spinor formalism:
(using (C.17)):

Ψ̄M =
(

ψα, ψ̄α̇
)

(C.32)

Hence the product of two Majorana spinors (Ψ and Φ =

(

φα
φ̄α̇

)

) becomes:

Ψ̄MΦ = ψφ+ ψ̄φ̄. (C.33)

This is real by (C.31).

C.5 Differentiation of Spinors

The last thing we have to settle is the differentiation of Weyl spinors. As usual for Grass-
mannian differentiation it should fulfil:

{ ∂

∂ψα
, ψβ} = δβα, (C.34)

and the same with indices lowered. But now we have to be careful when defining raising,
lowering and conjugation of the differential. Using the definition of raising we see:

{−εαβ ∂

∂ψβ
, ψγ} = −εαβεγδ{

∂

∂ψβ
, ψδ} = −εαβεγδδδβ = δαγ .

Consequently we have:

−εαβ ∂

∂ψβ
=

∂

∂ψα
. (C.35)

Also when complex conjugating spinorial derivatives we have to be a bit careful. When
conjugating (C.34) we have to reverse the order of the products, however, conjugation should
not change on which part the derivative acts. So instead of changing order we preserve the
order and add a compensating sign. For a general field A we then have:

{ ∂

∂ψα
, A}∗ = (−1)|A|{

(

∂

∂ψα

)∗

, (A)∗}, (C.36)
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where |A| is 0 if A is bosonic, and 1 if it is fermionic. Using this on (C.34) gives

(

∂

∂ψα

)∗

= − ∂

∂ψ̄α̇
. (C.37)

So complex conjugation on differentials does not work in the same way as on spinors.4

The hermitian adjoint is defined by:

∫

dxdψdψ̄B∗ ∂

∂ψα
A ≡

∫

dxdψdψ̄

(

(

∂

∂ψα

)†

B

)∗

A, (C.38)

where
∫

dψdψ̄ is the integration over the spinorial degrees of freedom while A and B are two
arbitrary fields. Taking care of all signs, also when doing the integration by parts, this gives

(

∂

∂ψα

)†

=
∂

∂ψ̄α̇
, (C.39)

contrary to the usual derivative.

C.6 Space-time Dimensions

Even though this thesis deals with four space-time dimensions let us appreciate that it is
only in a few space-time dimensions that it is possible to construct an N = 1 supersymmetric
Yang-Mills theory. Following [35] let us look at which spinorial representations it is possible
to make in a general dimension. We will assume that the signature of the metric is Lorentzian,
i.e. we are looking at the group SO(D − 1, 1) where D is the space-time dimension.

In every space-time dimension it is possible to make the Dirac representation which after
imposing the Dirac equation has dimension (i.e. number of real degrees of freedom) 2[D/2].
The brackets means the least whole number closest to D/2.

However, in even dimensions this representation is not irreducible since we can make
a chirality matrix like γ5. This cuts the Dirac representation into two inequivalent Weyl
representations both of dimension 2[D/2−1]. The two representations are conjugate if D ≡ 0
(mod 4) and they are self-conjugate if D ≡ 2 (mod 4).

The Majorana reality condition defines the Majorana representation and cuts the dimen-
sion to the half: 2[D/2−1]. However, if the Majorana condition is to be consistent one must
require D ≡ 0, 1, 2, 3, 4 (mod 8).

A last representation can be obtained if we impose both the Majorana condition and the
Weyl condition. But this requires that the Weyl representation is self-conjugate. Hence this
Majorana-Weyl representation is only possible if D ≡ 2 (mod 8). The dimension is then
2[D/2−2].

When we look at supersymmetry we find that the number of bosonic and fermionic
degrees of freedom must be the same. The number of bosonic degrees of freedom in the Yang-
Mills model is D−2 (the transverse directions in the gauge field Aµ). This must fit with one
of the above irreducible representations. Simple counting now tells us in which space-time
dimensions and with which representations it is possible to make a supersymmetric Yang-
Mills theory. The result can be seen in table C.2. We see that four space-time dimensions
is one of the few dimensions in which it is possible. Please note that due to (C.28) the
Majorana and the Weyl representations are equivalent.

4This could have been solved if we had defined the ε-tensor with dotted indices with a minus sign contrary
to the ε-tensor without dotted indices.
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Table C.2:

D Spinor representation

3 Majorana

4 Majorana or Weyl

6 Weyl

10 Majorana-Weyl

The possible space-time dimensions, D, for which supersymmetric Yang-Mills theory can
be realised and the corresponding representations. The table is taken from [11].

C.7 Weyl Spinor Algebra

Using our definitions we can find a lot of useful identities for Weyl spinors. Without proof
we give the following relations for ψ, χ and θ being anticommuting Weyl spinors. The
contractions follow the logic of (C.24), σ having indices (C.25) and σ̄ having indices (C.26)

such that e.g. χσµψ̄ = χα (σµ)αβ̇ ψ̄
β̇ (the relations are taken from [9]):

θαθβ = −1
2ε
αβθθ,

θαθβ = 1
2εαβθθ,

θ̄α̇θ̄β̇ = 1
2ε
α̇β̇ θ̄θ̄,

θ̄α̇θ̄β̇ = −1
2εα̇β̇ θ̄θ̄. (C.40)

θσµθ̄θσν θ̄ = −1
2θθθ̄θ̄η

µν . (C.41)

(θψ) (θχ) = −1
2 (ψχ) (θθ) . (C.42)

(

θ̄ψ̄
) (

θ̄χ̄
)

= −1
2

(

ψ̄χ̄
) (

θ̄θ̄
)

. (C.43)

χσµψ̄ = −ψ̄σ̄µχ,
(

χσµψ̄
)†

= ψσµχ̄. (C.44)

χσµσ̄νψ = ψσν σ̄µχ,

(χσµσ̄νψ)† = ψ̄σ̄νσµχ̄. (C.45)

(ψθ) χ̄β̇ = −1
2 (θσµχ̄) (ψσµ)β̇ . (C.46)

Tr(σµσ̄ν) = −2ηµν . (C.47)

Tr
(

σµνσρδ
)

= −1

2

(

ηµρηνδ − ηµδηνρ
)

− i

2
εµνρδ . (C.48)

εαβ
∂

∂θα
∂

∂θβ
θθ = 4. (C.49)



Appendix D

N = 2 Superspace and The
Prepotential

In this appendix we will continue the analysis of the N = 2 supersymmetric Yang-Mills
theory from section 1.4. But here we will not assume renormalisability of the Lagrangian.

In order to get the most general N = 2 supersymmetric pure Yang-Mills Lagrangian
with no constriction of renormalisability it is an ease to use the N = 2 superspace formu-
lation (following [13] and [14]). This is a simple extension of the N = 1 superspace from
section 1.3.1 where the θα-coordinates now carry an extra SU(2)R index: θαi with i = 1, 2.
Thus we have one θα-coordinate for each supercharge. The new index can be raised and
lowered as the spinor index using the SU(2) invariant antisymmetric tensor εij .

The supercharges are linearly realised on superfields in the same way as in the N = 1
case – we just have to put the index i on the θ’s and the Q’s. We also get the covariant
derivatives Di

α and D̄α̇i where as an example:

D̄α̇i = − ∂

∂θ̄α̇i
− iθβi (σµ)βα̇ ∂µ. (D.1)

A chiral superfield is then defined as:

D̄α̇iΦ = 0, α̇ = 1̇, 2̇, i = 1, 2. (D.2)

In analogy with the N = 1 case a differentiable function of chiral superfields is again a chiral
superfield. Also the variation under supersymmetry of the component with four θ’s and no
θ̄’s is a total derivative. Thus a possible Lagrangian is:

L =

∫

d2θ1d2θ2Φ, (D.3)

where the indices on the differentials are the SU(2)R indices.
The chiral field is not irreducible as in the N = 1 case. This means that we have to

impose further constraints. To do this we introduce the G-valued supergauge fields Aαi
and Āα̇i. With these we define the gauge-covariant version of the supersymmetric covariant
derivatives as:

D̃αi = Dαi + iAαi
¯̃Dα̇i = D̄α̇i + iĀα̇i. (D.4)

The constraint needed to generate an N = 2 gauge field out of a chiral G-valued field W
(not to be confused with the N = 1 superpotential) turns out to be:

D̃αiD̃j
αW = ¯̃Di

α̇
¯̃Dα̇jW †. (D.5)
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Expanding this field as a power series in θ2 gives the N=1 superfield components:

W (x̃+, θ
1, θ2) = Φ

(

x̃+, θ
1
)

+
√

2θα2Wα

(

x̃+, θ
1
)

+ θ2θ2G
(

x̃+, θ
1
)

, (D.6)

where x̃µ+ = xµ + iθiσ
µθ̄i is the N = 2 version of x+. Φ and W are the N = 1 chiral

field and gauge field strength respectively corresponding to the splitting of the N = 2 gauge
supermultiplet into the N = 1 chiral and gauge supermultiplet. W is based on the vector
superfield V . G may be expressed as:

G
(

x̃+, θ
1
)

= −
∫

d2θ̄1Φ
(

x̃+ − iθ1σθ̄1, θ1, θ̄1
)†
e2[−,V (x̃+−iθ1σθ̄1,θ1,θ̄1)], (D.7)

where [−, V ] simply means that the adjoint is working to the left with V to the right in the
commutators. We see that the field W has the component fields of theN = 2 gauge multiplet
(after eliminating the auxiliary fields). The most general gauge invariant supersymmetric
Lagrangian involving W is now:

LN=2 = − 1

8πi

∫

d2θ1d2θ2 TrF(W ) + c.c., (D.8)

where F is any holomorphic function. TrF is called the prepotential. The trace ensures
gauge invariance since the fields transform in the adjoint representation. We can expand
this in components as we did in (1.68) using (1.35) and (1.36):

LN=2 =
1

16πi

(∫

d2θ1Fab(Φ)WαaWb
α + 2

∫

d2θ1d2θ̄1
(

Φ†e2[−,V ]
)a
Fa(Φ)

)

+ c.c. (D.9)

Here Fa and Fab are simply the derivatives Fa = ∂F/∂Φa and Fab = ∂2F/∂Φa∂Φb respec-
tively where we have made an abuse of notation and used the name F for TrF as a function
of Φa. Setting F = 1

2τΦ
aΦa we get the renormalisable Lagrangian (1.84).1 We can also

see that the Kähler potential (without 1/4π) is Im
(

Φ†aFa(Φ)
)

and thus the Kähler metric
according to (1.73) is gab = Im(Fab).

1To see that [−, V ] (working to the left) is the same as adV (working to the right) we have to rewrite the
sum over the adjoint indices as a trace and use the cyclic properties of the trace.



Appendix E

Calculation of Integrals in the
Matrix Model

In this appendix we calculate the integrals needed in section 2.7.4.

Let us first derive equation (2.186):

∂

∂gm

(

gmρ(λ, gm)
)

=
1

π
√

(b− λ)(λ− a)
.

In principle we could obtain this by differentiating the equation (2.183) we have obtained
for R(z) – remembering that a and b depend on gm. However, it is more easy to note that
(following [49]):

Ω(z) ≡ ∂gmR(z)

∂gm
=

∫ ∞

−∞
dλ

1

λ− z
∂

∂gm

(

gmρ(λ, gm)
)

, (E.1)

is an analytic function with branch cut [a, b] and fulfils: It has no regular part due to (2.176),
like R(z) it must behave like −1/z for large |z|, and since R(z) behaves like

√
z − a close to

the branch point a, the derivative Ω(z) can behave at most as 1/
√
z − a (and the same for

b). This determines Ω uniquely to be:

Ω(z) = − 1
√

(z − b)(z − a)
. (E.2)

Using (E.1) we then obtain in analogy with (2.175):

∂

∂gm

(

gmρ(λ, gm)
)

=
1

2πi
(Ω(λ+ iǫ)− Ω(λ− iǫ)) =

1

π
√

(b− λ)(λ− a)
, (E.3)

as wanted.
Let us now derive (2.187) following [5]:

I(λ′) ≡ −
∫ b

a
dλ

ln |λ− λ′|
√

(b− λ)(λ− a)
= π ln

(

b− a
4

)

, ∀λ′ ∈ [a, b].

In analogy with equation (2.176) we have:

∂I

∂λ′
=

1

2

(

h(λ′ + iǫ) + h(λ′ − iǫ)
)

, λ′ ∈ R, (E.4)
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where

h(z) =

∫ b

a
dλ

1

(z − λ)
√

(b− λ)(λ− a)
. (E.5)

h is analytic in C \ [a, b] and in analogy with (2.175) we have:

h(λ′ + iǫ)− h(λ′ − iǫ) = − 2πi
√

(b− λ′)(λ′ − a)
, λ′ ∈ [a, b]. (E.6)

From the definition (E.5) we also see (using equation (E.15) below) that h ∼ π/z for large
|z|. This determines h uniquely as:

h(z) =
π

√

(z − b)(z − a)
, z ∈ C \ [a, b]. (E.7)

Thus using (E.4) we get:

∂I

∂λ′
(λ′) =

{

0 for λ′ ∈ [a, b]

h(λ′) for λ′ ∈ R \ [a, b]
. (E.8)

For λ′ > b we then get:

I(λ′) = π ln
(

2
√

(λ′ − b)(λ′ − a) + 2λ′ − a− b
)

− π ln 4, λ′ > b, (E.9)

where the constant of integration has been fixed using that I(λ′) ∼ π ln(λ′) for large λ′.
Using the continuity of I(λ′) we then get the wanted result by plugging λ′ = b into (E.9).

Let us finally show how to derive equations (2.189). From equations (2.184), (2.185)
and (2.188) we see that basically all we need is the integral:

I(p) ≡
∫ b

a
dλ

λp
√

(b− λ)(λ− a)
. (E.10)

Defining λ′ = λ− (a+ b)/2 we get:

I(p) =

∫ (b−a)/2

−(b−a)/2
dλ′

(

λ′ + b+a
2

)p

√

(

b−a
2

)2 − λ′2
=

p
∑

k=0

(

p

k

)
∫ (b−a)/2

−(b−a)/2
dλ′

λ′k
(

b+a
2

)p−k

√

(

b−a
2

)2 − λ′2

=

p
∑

k=0

(

p

k

)(

b+ a

2

)p−k (b− a
2

)k ∫ 1

−1
dλ′

λ′k√
1− λ′2

=

[p/2]
∑

q=0

(

p

2q

)(

b+ a

2

)p−2q (b− a
2

)2q

2

∫ 1

0
dλ′

λ′2q√
1− λ′2

, (E.11)

where we have used that the integral of an odd function is zero in the last line. Substituting
λ′ = sin y and using integrating by parts we see that:

∫ 1

0
dλ′

λ′k√
1− λ′2

=

∫ π/2

0
dy sink y =

k − 1

k

∫ π/2

0
dy sink−2 y. (E.12)

Thus:
∫ 1

0
dλ′

1√
1− λ′2

=
π

2
, (E.13)
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and hence
∫ 1

0
dλ′

λ′2q√
1− λ′2

=
1 · 3 · · · (2q − 1)

2 · 4 · · · (2q)
π

2
. (E.14)

Using that
(

2q
q

)

= 22q 1·3···(2q−1)
2·4···(2q) we finally get:

I(p) = π

[p/2]
∑

q=0

(

p

2q

)(

2q

q

)(

b+ a

2

)p−2q (b− a
4

)2q

. (E.15)

We then obtain (2.189a) and (2.189c) simply by expanding Pn+1(λ) in respectively (2.184)
and (2.188). (2.189b) is obtained by expanding

∫ b

a
dλ

(λ− (b+ a)/2)P ′
n+1(λ)

√

(b− λ)(λ− a)
= 2πgm, (E.16)

which is (2.185) with the addition of (2.184) times −(b+a)/2. (E.16) is the original condition
that R(z) ∼ −1/z for large |z| in equation (2.183). The reason we write equation (2.189b) in
this way is for comparison with the result obtained on the gauge theory side using Seiberg-
Witten theory in [5].
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