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Chapter 1

Introduction

Theoretical high energy physics is a broad field ranging from the study of field

theories over string theory to black holes. This thesis falls into two parts that each

examines their end of this field.

1.1 Abstract

In the first part we will consider the factorization of Seiberg-Witten curves. The

Seiberg-Witten curve captures the low energy (i.e. strong coupling) quantum dy-

namics of N = 2 super Yang-Mills theory where we consider a U(Nc) gauge group,

and we will also allow fundamental matter in the theory. The factorization of these

curves corresponds to examining the vacua of N = 1 supersymmetric theories ob-

tained by softly breaking the N = 2 supersymmetry by a tree-level superpotential.

This gives the classical gauge group breaking pattern U(Nc) 7→
∏g+1

i=1 U(Ni). We

examine the action of the PGL(2, C) group on the factorization problem and find

equivalence relations among same genus factorizations. In order to solve the factor-

ization problem we use a method where we work on the Jacobian of the hyperelliptic

Seiberg-Witten curve. We rederive the solution for the complete factorization case

and present the solution of the genus one case with U(Nc) 7→ U(N1) × U(N2) [3].

Further, we give an explicit proposal for the g − 1 equations of motion for the

period matrix of the factorized curve, for arbitrary genus g, in terms of zeroes of

hyperelliptic theta functions. This proposal, for sure, holds in the genus two case

U(Nc) 7→ U(N1)×U(N2)×U(N3). We then show how the solution of the factoriza-

tion problem should be obtained, and briefly discuss the implications for the global

structure of N = 1 vacua. We also give thorough reviews of Seiberg-Witten curves

and Riemann surfaces.

In the second part we construct five-dimensional three-charge black holes with

a circle in their transverse space for which the charges are carried by a F1-D0-D4

8



1.2. STRING THEORY, OPEN/CLOSED STRING DUALITY AND SUSY 9

brane configuration [1, 2]. These solutions are obtained by an explicit mapping of

neutral and static Kaluza-Klein black holes in five dimensions which we review. We

also show how to take a near-extremal limit of these non-extremal three-charge black

holes which reveals new physical behaviour – most importantly that the relative ten-

sion is constant. This turns out to be a consequence of the fact that extremal black

holes which are localised on the circle have a finite entropy 2π
√

N1N4N0 where Ni are

the number of branes/fundamental strings. We obtain the correction to this formula

as a function of the energy above extremality to next-to-leading correction. Partial

near-extremal limits are also investigated and for the case with two extremal charges

and one finite, we check that the entropy formula to leading order can be obtained

via the microscopic model by taking into account that the number of branes shifts

due to the presence of the circle. In general, we study the rich phase structure of the

non- and near-extremal black holes and their two-charge analogs both analytically

and numerically, and new phases with the black holes non-uniformly distributed on

the circle are found. The thermodynamic stability is investigated and especially for

the two-charge case this can have interesting consequences for the dual CFT2.

Before introducing each part in detail we will see how they can be seen in the

bigger picture of string theory and share important features such as supersymmetry

and open/closed string duality.

1.2 String Theory, Open/Closed String Duality

and Supersymmetry

We will now introduce and motivate the research directions of this thesis in a broader

context.

String theory solutions

The three-charge solutions with a transverse circle that we present in this thesis

(published in [1, 2]) are directly low energy solutions of Type IIA/B string theory.

We create these solutions by a method that is an extension of the one used in

reference [4] (see also [5, 6]). There, a map was created, following the procedure

of [7], that takes any Kaluza-Klein black hole (i.e. black holes on a space with a

compact circle, see [8, 9] and chapter 5 for reviews) in d + 1 dimensions (4 ≤ d ≤ 9)

into a brane solution of Type IIA/IIB String Theory and M-theory. These brane

solutions are thermal excitations of extremal 1/2-BPS branes in String/M-theory

with transverse space Rd−1 × S1 (i.e. a transverse circle). The full knowledge

of the phases of Kaluza-Klein black holes can then simply be mapped to phases

of the brane. This is especially interesting in the near-extremal limit where the
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thermodynamics of the brane was obtained and related to the non-gravitational

theories dual to the near-extremal brane.

Our three-charge solutions with a circle in the transverse space are obtained from

any five-dimensional Kaluza-Klein black hole using a generalisation of the above

map. The solutions are three-charge brane configurations in Type IIA/IIB String

Theory and M-theory. The charges are carried by the F1-D0-D4 brane system or a

dual thereof e.g. P-D1-D5, and the three-charge solutions are thus thermal excita-

tions of the corresponding extremal 1/8-BPS brane system. We can compactify on

the world-volume of the system to obtain three-charge black holes in five-dimensional

supergravity.

So the three-charge black holes are low energy string solutions, but, as we will

see below, the low-energy superpotential of the N = 1 supersymmetric theories that

we investigate in this thesis are also obtainable via string theory methods.

Supersymmetry

Supersymmetry is not only fascinating as a theoretical tool, but may be manifest

in nature for the description of the fundamental interactions at sufficiently high

energies. A question that might be answered in the near future by LHC.

In string theory one has to introduce supersymmetry to avoid the tachyon of the

bosonic string. Also in general, outside string theory, supersymmetry is extremely

useful. Quantum corrections are much more restricted in supersymmetric theories

since we have cancellations between the bosonic and fermionic loops. This gives rise

to non-renormalisation theorems and we can sometimes even make non-perturbative

calculations. Using also e.g. holomorphicity the supersymmetry gives so strong

constraints that the low-energy effective action is often determined exactly. However,

perhaps most important physically is the fact that in the supersymmetric theories

we can investigate confinement and make calculations for confining vacua.

We will consider the minimal four-dimensional supersymmetric gauge theory

that is “closest” to nature: N = 1 supersymmetric U(Nc) gauge theory with Nf

fundamental flavours. The fundamental matter is important since it, at low energies,

describes strongly coupled quarks.

The aim is to understand the vacua of this (pseudo-confining) theory which,

in general, is very hard since this involves an infinite series of non-perturbative

fractional instanton corrections. Here the low-energy (glueball) superpotential is

important since it determines the structure of the vacua. Importantly, this can be

determined via string theory, as we will see below, and with the Dijkgraaf-Vafa

conjecture a systematic way of computing it via a large-N matrix model was found.

However, the route we take in this thesis is different. We start by instead con-

sidering the extended supersymmetric case of N = 2 super Yang-Mills – also with
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fundamental flavours allowed. As shown in the seminal work of Seiberg and Witten

[10, 11] the strongly coupled low-energy dynamics of this theory is beautifully en-

coded in the properties of an associated hyperelliptic Riemann surface, the Seiberg-

Witten curve.

We can then break N = 2 to N = 1 supersymmetry in a controlled way by

adding a tree-level superpotential for the adjoint chiral field. The addition of the

superpotential means that the gauge group is classically broken into g + 1 factors:

U(Nc) 7→
∏g+1

i=1 U(Ni). The point is that the vacuum data of the N = 1 theory can

be calculated via the N = 2 Seiberg-Witten curve that factorizes into a genus g

reduced hyperelliptic curve. This factorization problem is highly non-linear, but we

will nevertheless pursue a solution.

We also saw above that the three-charge black holes are supergravity solutions

and they can be seen in ten dimensions as the excitations of extremal 1/8-BPS

states. The supersymmetry is thus also important for the black holes and, as we

will see below, the BPS property is important for the microscopic model that we

use to explain the entropy as a degeneracy of states. The possibility of taking the

near-extremal limit that we will define for the three-charge black holes is actually a

main motivation for considering such charged solutions.

Open/closed string duality

The open/closed string duality is the basis of many remarkable conjectures in string

theory. It arises by considering the interaction between static D-branes. These

can interact by exchange of closed strings and the tree-level diagram is the familiar

cylinder extended between the two branes. But this diagram can dually be seen

as a pair of open strings, extending between the branes, that are created and later

annihilated in a virtual loop. Thus the interaction of the D-branes is in one picture

the exchange of the closed string modes: Graviton, dilaton, Ramond-Ramond fields,

etc. and in the other picture a Casimir-like modification of the vacuum energy. In

general, the endpoints of the open strings that are confined to the branes give rise to

the world-volume gauge theory on the brane, whereas the low-energy modes of the

closed string gives the bulk supergravity theory. Thus the duality will often relate

gauge and gravity theories.

This open/closed string duality plays an important role both for the three-charge

black holes and the supersymmetric vacua, as we will now see.

AdS/CFT

The AdS/CFT conjecture [12, 13, 14, 15] is the most prominent example of open/closed

string duality. By considering the near-horizon limit of, say, N D3-branes which has
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the geometry AdS5 × S5, the type IIB strings propagating on this background can

equivalently be seen as the four-dimensional world-volume U(N) gauge theory with

N = 4 supersymmetry, but it is a strong/weak coupling duality. However, more

relevant for us is the AdS3/CFT2 correspondence where one instead considers the

near-horizon limit of coincident D1-D5 branes.

This is one of the reasons why adding charges to the neutral Kaluza-Klein black

holes is so important to consider – it allows us to study the near-extremal limit of

solutions that might be dual to a CFT. Importantly, in the two-charge subcase of

our three-charge black holes the localised phase is T-dual to the D1-D5 system, but

with a circle in the transverse space. We can then make predictions for the ther-

modynamics of the dual CFT by investigating the thermodynamics on the gravity

side.

One might wonder whether the AdS/CFT duality also applies to the N = 1

supersymmetric theories that we consider. However, it turns out that it is very dif-

ficult to extend to this class of theories. But, as we will see below, these theories are

conjectured by Vafa to have a dual description in terms of special geometry relations

on a Calabi-Yau three-fold. A conjecture that also arises from an open/closed string

duality.

The AdS/CFT conjecture is an example of the holographic principle introduced

by ’t Hooft and Susskind. The idea builds on the entropy of a black hole being

proportional to its horizon area, not the volume as would be expected in a local

field theory. Thus gravity in D dimensions should be described by a boundary

local field theory in D − 1 dimensions. The microscopic understanding of the black

hole entropy for the three-charge black holes with a transverse circle is one of the

highlights of this thesis.

Microscopic understanding of entropy

One of the great achievements of string theory is the microscopic explanation of

the Bekenstein-Hawking entropy of five-dimensional three-charge black holes [16,

17, 18, 19, 20]. The reason to focus on three-charge black holes is that we here

have a macroscopic horizon and hence finite entropy. This entropy turns out to be

2π
√

N1N4N0 where Ni are the number of branes (or fundamental strings etc.) in the

configuration. For instance in the two-charge case we only get an effective horizon

at the Plank scale. The only other case with finite entropy is the four-charge black

hole in four dimensions [21, 22].

The extremal three-charge black holes are constructed, as in our case with a cir-

cle, as D-brane configurations in ten-dimensional string theory where the calculation

can be done, and in the end one can compactify to the five-dimensional black holes.

The original calculation [16] illustrates the power of the open/closed string du-
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ality. In the weak curvature limit we can see the object as a black hole in gravity

and use the area law to obtain the entropy. However, to do the calculation of degen-

eracy of states we have to take the string coupling small (smaller than the inverse

number of branes) such that we have an effective weak coupling. Here the system

is described by D-branes wrapping supersymmetric cycles and we can count the de-

generacy of the world-volume gauge theory living on the branes given by the open

string endpoints. However, the string length is here larger than the Schwarzschild

radius and description in terms of a black hole suffers stringy corrections.

As one might guess correctly from this description, the calculation can also be

seen via the AdS/CFT correspondence even though it historically was discovered

later.

The supersymmetry is essential in this calculation. It ensures that the BPS

degeneracy of states is a topological quantity that does not change as we go to

strong coupling in order to compare with the black hole picture.

For non-BPS states the degeneracy is not topologically protected and we could

have strong coupling effects when extrapolating from the weak coupling calculation.

It is therefore interesting to consider non- and near-extremal black holes. Here it

was found [20, 23] that the entropy calculation also matches (see also the recent

developments [24, 25, 26] for calculations on neutral solutions). The calculation can

be done in the “dilute gas” regime where two charges are taken to be much bigger

than the third. It was found that the entropy takes the form

S = 2π
√

N1N4

[√
N0 +

√
N0̄

]
, (1.1)

where N0̄ is the number of added anti-D0-branes in the non-extremal case. That the

comparison of entropy is not accidental here was shown in [27]: The CFT description

holds true because multiple wound strings lead to a very low energy gap.

Even though the counting works in the non-extremal case there is a benefit in

adding charges since the microscopic description in this case also explains the low-

energy Hawking radiation [28, 29, 30] and thus also captures the dynamics of the

system.

So we see that the three-charge black holes have a very prominent role (see also

reviews [31, 32]). One of the main aims in this thesis is to extend the considerations

of the entropy to our situation where the three-charge configuration has a circle in

the transverse space i.e. asymptotes to Minkowski space times a circle, M4 × S1.

Note that we can not consider the four charge black holes in four dimensions that

also had a macroscopic horizon since the compact circle means, that the asymptotics

does not work in this case.

For our case the entropy of the extremal (vanishing energy above extremality)

black hole that is localised on the circle fits with the non-compact case. This is
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because considering the covering space of the circle we get an infinite array of black

holes, but these are not interacting since they are BPS. Thus the entropy is again

2π
√

N1N4N0 where we remember that we chose the charges to be carried by a F1-D0-

D4 brane system. Moving away from extremality we get corrections to this formula

and in our case we also get corrections from the interactions across the circle. We

find that the entropy including next-to-leading order corrections in the energy above

extremality (i.e. small mass or large radius of the compact circle) is

S = 2π
√

N1N4N0

(
1 +

√
ε

8
+

ε

16
+O(ε3/2)

)
. (1.2)

Here ε is the energy above extremality rescaled to be dimensionless.

We also consider the partial extremal dilute gas limit, mentioned above, where

two of the charges are sent to infinity, while one is kept finite. Here we find that

the first correction to the energy is in agreement with the microscopic entropy (1.1)

when we take into consideration that the number of D0 and anti-D0 branes will shift

due to the interactions across the circle [33]. Thus we confirm that the microscopic

model works for the three-charge black holes with a circle in the transverse space.

Thus by considering boosted (and U-dualised) solutions of the neutral and static

black holes – which is merely a kinematic change in the gravity solution – we are

able to take the near-extremal limit and compare with the microscopic side.

Geometric transition and the Dijkgraaf-Vafa conjecture

Let us end this section by briefly reviewing that the low-energy dynamics of the

four-dimensional N = 1 supersymmetric gauge theory that we consider actually is

encoded in the closed string superpotential on a Calabi-Yau [34]. Hence there is

again an open/closed string duality at work.

The first step is to realise that the N = 1 supersymmetric gauge theory can be

geometrically engineered by considering a Calabi-Yau where we wrap N D5-branes

on S2 cycles (see [35, 36, 37, 38]). The non-compact directions of the D5-branes

gives the four dimensions for our gauge theory. The tree-level superpotential for

the adjoint chiral superfield that breaks N = 2 to N = 1 is taken into account in

the geometry, and the N branes should wrap cycles located at the minima of the

superpotential. The number of branes on the ith cycle is Ni giving the gauge group

breaking pattern U(Nc) 7→
∏g+1

i=1 U(Ni) mentioned above.

The next step is to go from this open string description to closed strings prop-

agating in the background of the D-branes. The conjecture is that this involves a

geometric transition that changes the topology [34, 39, 40, 37] (important here is the

topological duality [41, 42]). For the dual Calabi-Yau we have S3-cycles instead of

the S2 cycles and Ni, which before was the number of D5-branes on a given cycle, is
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now the units of flux through the corresponding S3 cycle. On the Calabi-Yau there is

a unique holomorphic three-form Ω whose α-periods Si on the cycles fixes the mod-

uli and βj-period gives ∂F(Si)/∂Sj where F fixes the geometry of the Calabi-Yau.

One can also construct a superpotential via Ω and the flux through the cycles (see

section 2.3). The conjecture is that this closed string superpotential is the glueball

superpotential of the N = 1 supersymmetric gauge theory with the Sis being the

glueball superfields. This superpotential determines the low-energy dynamics of the

confining theory.

Importantly, all the S3-cycles can be seen as fibrations of S2 over an interval.

The integrals over S2 are trivial and we are left with the integrals over the intervals

that can be seen as cuts of a Riemann surface, and Ω reduces to a one-form on

the surface. This Riemann surface is exactly the reduced hyperelliptic curve of the

factorized Seiberg-Witten curve, and Ω is the Seiberg-Witten one-form.

It is the aim of the first part of this thesis to obtain a solution for these hyper-

elliptic curves. For the genus zero and genus one case we present the solution [3].

For the higher genus cases we propose that the period matrix of the curve (which

determines the curve up to PGL(2, C) transformations) has g − 1 equations of mo-

tion written in terms of zeroes of hyperelliptic theta functions. In the genus two

case this indeed holds true. We also show explicitly how the solution is constructed

when the period matrix is determined. This analysis of the higher genus cases is an

unpublished result.

Let us also note that the setup was used by Dijkgraaf and Vafa to show that

the superpotential is determined by the planar contribution to the free energy of

an auxiliary large-N matrix model [43, 44, 45]. This was later understood purely

within field theory [46, 47, 48, 49] (pedagogical introductions can be found in [50,

51, 52, 53, 54, 55]). The relation of the Dijkgraaf-Vafa conjecture and the factorized

Seiberg-Witten curves were studied in e.g. [56, 46, 57, 58, 59, 60, 61].

We will now go on to describe the contents of the thesis for each of the two parts.

1.3 Factorized Seiberg-Witten Curves

For the factorized Seiberg-Witten curves we will start by giving a review of the

curves in chapter 2. In section 2.1 we will introduce the N = 2 supersymmetric

QCD with U(Nc) gauge group that we consider, and which can be broken to N = 1

with a tree-level superpotential for the adjoint chiral superfield

Wtree =
∑
p∈N

gp

p
Tr Φp. (1.3)

We also present the form of the low-energy effective action. In section 2.2 we

will show how examining the monodromies for going around singular points on
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the vacuum moduli space will give the Seiberg-Witten curves. We will then con-

sider what happens when we add the tree-level superpotential to break the theory

to N = 1 in section 2.3. This means that we are localised at points in the vacuum

moduli space where we have massless dyons which in turn means that the curve

factorizes. We also discuss the low-energy potential and how it is obtained by the

geometric engineering and transition that we saw above.

Since we are going to need a lot of Riemann surface technology we will give an

introduction to these in chapter 3. After introducing the surfaces we will present the

analytical structure in section 3.2 including concepts like modular transformations,

meromorphic one-forms and divisors that all will be important for us. In section 3.3

we will introduce the concept of the Jacobian associated to the Riemann surface.

This will be central in our efforts to solve the factorization problem. Since the

Seiberg-Witten curves are hyperelliptic, we will devote a section to these before

turning to the theta functions and their properties in section 3.5.

The main part is chapter 4. Here we will try to solve the factorization problem

for general genus. This is an important problem to solve e.g. since it was found in

[62, 63, 64] that we have a very complex structure of N = 1 vacua with connected

components that allows multiple dual descriptions of the same physics, but with

different classical gauge group breaking patterns. However, the structure of vacua

had to be examined for low Nc and case by case, since only the complete factoriza-

tion problem corresponding to unbroken gauge group had been solved [65]. But in

reference [66] an exact solution of the genus one factorization problem corresponding

to U(Nc) 7→ U(N1) × U(N2) was found. This works for general Nc = N1 + N2 and

using the solution it was possible to determine precisely the equivalent descriptions

of the same vacua (see also [67]).

This was, however, for the case without fundamental flavours. For the important

case with flavours a lot of work has been done, too. The complete factorization case

was solved in reference [68] using the matrix model we saw above in the Dijkgraaf-

Vafa conjecture. The relation between Seiberg-Witten curves and the matrix model

in the presence of fundamental matter has also been investigated in references [69,

70, 71, 72, 73, 74, 75, 76] and the structure of N = 1 vacua was investigated

in [77, 78, 79, 80, 81], but again for low Nc and low number of flavours.

This called for an exact solution in the case with fundamental flavours, and in

reference [3] the solution of the factorization problem was found in the genus one

case i.e. U(Nc) 7→ U(N1)×U(N2) with the number of flavours Nf in the range 0 ≤
Nf < 2Nc and general Nc = N1 +N2 thus extending the method in [66]. We present

this result in section 4.5. Also, in section 4.4 we present the simple rederivation

of the original solution for complete factorization [68] that was also found in [3].

Further, we present the two appendices of [3]: Appendix A where we show that the
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Seiberg-Witten curve factorizes if and only if there exists a meromorphic one-form

with prescribed poles and integral periods, and appendix B where it is shown that

the solution includes the flavourless case [66] by decoupling flavours.

But all of this are only special cases of the general genus factorization (notice

here also the work of [82, 83] where a microscopic superpotential is found that

captures all vacua – independent of the genus). In section 4.1 we explain the setup

for solving the factorization problem which follows the idea in [66] that builds on the

observation of [48, 77] that a certain one-form has integral periods (the α-periods

of which are the Nis in the gauge group breaking) for the factorized curve. This

one-form is essential in constructing the solution. We further examine the action

of PGL(2, C) on the factorized Seiberg-Witten curves which gives us equivalences

between the factorization problems for different specifications of the holomorphic

scale Λ and quark masses mi, but importantly also between different numbers of

flavours. Let us also stress that we here consider an arbitrary number of flavours,

also the special case Nf = 2Nc. In the main section 4.2 we will use the Jacobian

associated to the reduced hyperelliptic curve of the factorization problem to try to

solve the problem. The genus one case directly reduces to the solution we already

have obtained. In the higher genus g cases the period matrix of the curve is shown

to be constrained and we make a proposal for g − 1 explicit equations of motion

written in terms of the zeroes of hyperelliptic theta functions. This indeed works

for the genus two case. We then show how the problem should be solved once the

period matrix is determined. This is then used in section 4.3 to investigate the

global structure of vacua for general Nc and Nf . These are all unpublished results.

We will conclude and discuss further research directions in section 4.6.

1.4 Three-Charge Black Holes on a Circle

For the black hole part of the thesis we will start by reviewing the neutral and

static Kaluza-Klein black holes in chapter 5. We keep the discussion general to

D = d + 1 dimensions. We will start by introducing the asymptotic quantities that

we can measure in section 5.1, namely the mass and the tension that arises due

to the compact circle. Many of the Kaluza-Klein black holes have a SO(d − 1)

symmetry and these can be written in an ansatz introduced in [84] (and proven

in [85, 86]) that we review in section 5.2. The thermodynamics of the black holes

are then discussed in section 5.3. In section 5.4 we describe the different phases of

Kaluza-Klein black holes. We have a branch with bubble-black hole sequences [87,

88, 89] that involves Kaluza-Klein bubbles which provide a repelling force between

black holes giving a static equilibrium. We will not focus on this branch here but

rather the remaining that fits into the mentioned ansatz. The first of these is the
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localised black hole branch which in the limit of zero mass, or large radius of the

compact circle, approaches the D-dimensional Schwarzschild black hole and it thus

has horizon topology Sd−1. This has been studied analytically in the small mass

limit [90, 91, 92, 93, 94] and the thermodynamics is known to second order, and the

metric to first order.1 Numerically, however, the phase was obtained in [95, 96, 97].

Further, we have a uniform phase which is the black string obtained by the d-

dimensional Schwarzschild black hole times a circle. This is unstable for masses

below the Gregory-Laflamme mass [98, 99]. At the Gregory-Laflamme point it is

marginally unstable, and from this point the non-uniform phase emerges. This has

the same horizon topology as the uniform string, namely Sd−2 × S1, but is non-

uniform along the circle. This phase has been studied in [100, 101, 102], and in [103]

the entire phase for d = 4 was computed numerically. All of these phases can be

plotted numerically in a two-dimensional mass vs. relative tension-phase diagram

[104, 105, 86].

In chapter 6 we will then use these five-dimensional (i.e. d = 4) Kaluza-Klein

black holes to create three-charge solutions. We start in section 6.1 by generating the

map from these five-dimensional “seeding” solutions to ten-dimensional three-charge

configurations by a combination of boosts and U-dualities. We find the physical

quantities (masses, tensions, charges and thermodynamics) of these in terms of the

seeding solution and the boost parameters. Three appendices are related to the

calculations done in this section: In appendix C we give the details on the boosts

and U-dualities used in section 6.1. Appendix D gives the precise relation between

the asymptotics of the seeding solution and that of the three-charge solution. Finally,

appendix E provides some further details on our definition of electric masses and

tensions and also an analysis of what this means for the tensions in the near-extremal

limit.

The map constructed in section 6.1 is used in section 6.2 on the ansatz of [84] to

create an ansatz for three-charge black holes. This is then used on the three phases

of seeding solutions mentioned above that falls into this ansatz. This leads to a

uniform, a non-uniform and a localised phase of non-extremal three-charge black

holes.

In section 6.3 we define how to take the near-extremal limit of the non-extremal

three-charge black holes. This is the limit that we have seen above which is very

interesting for the microscopic model of entropy and the dual CFT descriptions of

the brane systems. As for the one-charge case [4] the map here simplifies, but we find

new and interesting physics in this five-dimensional three-charge case, e.g. that the

1Actually, in the case of d = 4 the corrections to the metric are also known [93]. However,
for simplicity we will only use the first order corrected metric, but still go to second order in the
thermodynamics.
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tension along the transverse circle is proportional to the energy above extremality.

That this is a very special case might not be surprising taking our considerations

of entropy in section 1.2 into account, and indeed we show in generality that the

proportionality of tension and energy above extremality always happens in a system

which involves a finite entropy in the extremal limit – as is the case here.

The near-extremal limit obtained in section 6.3 is then in section 6.4 applied to

the non-extremal phases of three-charge black holes found in section 6.2 thus giving

three new near-extremal phases. We examine each of these phases in detail both an-

alytically and numerically and especially present diagrams of their thermodynamics.

Particularly interesting is the localised phase where we have finite entropy in the

near extremal limit and we find the corrections to this entropy for small energy above

extremality as mentioned above in equation (1.2). However, also the non-uniform

case is interesting in its own right as a new P-D1-D5 brane system non-uniformly

distributed on the transverse circle.

In section 6.5 we consider other near-extremal limits, i.e. where we keep one or

two of the charges finite. For these two cases the corrections to the thermodynamics

of the small localised black holes are found, especially the entropy. We also consider

the two-charge case obtained by setting one of the three charges to zero. Here the

corresponding map from seeding solutions to non-extremal two-charge black holes

with a transverse circle is found and the near-extremal limit is considered. We

choose to consider the D0-D4 system, and again we apply the map to the three

phases and present the phase diagrams and thermodynamics. The situation here is

more analogous to the one-charge case [4] (see [106] for a very short review) than

the three-charge case. But this system is also interesting, in particular note that

the T-dual is a D1-D5 system and the localised phase is thus relevant for the dual

CFT2, but where we here have a transverse circle. The thermodynamics of the lo-

calised phase is thus found and it is confirmed that, in the canonical ensemble, the

free energy has the conformal behaviour F ∝ T 2 and we find the small temperature

corrections. Considering the non-uniform branch as seeding solutions we get a new

phase of D1-D5 branes non-uniformly distributed on the transverse circle. For the

uniform branch, which is dual to a D2-D6 system, we find a Hagedorn behaviour.

The thermodynamic behaviour that we find for the near-extremal two-charge case

is actually analogous to that of the near-extremal NS5-brane considered in refer-

ence [107].

Finally, in section 6.6 we do the microstate counting that we mentioned above

in section 1.2. This is done for the small localised black hole in the dilute gas limit

where we keep one charge finite and send two to infinity. Following reference [33] we

find the first correction to the entropy in the microscopic model using (1.1) and the

fact that the number of branes are shifted due to the interaction across the circle
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for fixed total energy. This reproduces the leading order correction of the entropy

obtained in section 6.5.

We end with conclusions and outlook (updated compared to [1]) in section 6.7.



Chapter 2

Seiberg-Witten Curves

In this chapter we will introduce the Seiberg-Witten curves. We will specify the

gauge theories that we consider, show how the low-energy effective theory beautifully

is captured by the Seiberg-Witten curves [10, 11] (for reviews see [108, 109, 110, 55])

and explain the significance of their factorization. This factorization problem is

an intriguingly simply posed mathematical problem: Find the coefficients for the

polynomial PN(x) such that

PN(x)2 − C = Fn(x)Hm(x)2, (2.1)

where C is a constant (or more generally a polynomial) and Fn and Hm are poly-

nomials. However, the solutions have significant physical applications.

2.1 Gauge Theory Setup

Our main goal is to investigate low energy supersymmetric QCD. To be more specific,

we will at first consider N = 2 supersymmetric gauge theory with a U(Nc) gauge

group, and later also N = 1 supersymmetric theories – all in four dimensions.

We have two possible representations of the N = 2 supersymmetry algebra, the

N = 2 gauge supermultiplet and the N = 2 hypermultiplet. The gauge multiplet

transforms in the adjoint of the gauge group and in the language ofN = 1 superfields

it consists of a vector superfield V and a chiral superfield Φ. The hypermultiplet

consists of a N = 1 chiral superfield Q and an anti-chiral superfield Q̃†. If we include

this matter in the theory we will assume it transforms in the fundamental of U(Nc)

(i.e. Q̃ is anti-fundamental), and consider Nf copies indexed by the flavour index i,

Qi.

21
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2.1.1 Lagrangian

The (renormalisable) N = 2 Lagrangian for the gauge multiplet written in terms of

the N = 1 superfields takes the form (for a simple gauge group)

LN=2 =
τ

16πiC(r)
Trr

(∫
d2θWαWα + 2

∫
d4θΦ†e−2V Φ

)
+ c.c., (2.2)

where Wα is the supersymmetric gauge field strength and r is the representation

that we use for the generators of the gauge group, i.e. Φ = ΦaT
(r)
a , while C(r)

is the corresponding quadratic invariant. τ is the complex gauge coupling, τ =

ϑ/2π + i4π/g2.

If we include Nf multiples of fundamental matter, the renormalisable Lagrangian

will be proportional to (denoting gauge indices by capital letters, but suppressing

them in the first part of the equation)

Lmatter =

∫
dθ4

(
Q†

ie
−2V Qi + Q̃ie

−2V Q̃†i
)

+

∫
dθ2

(√
2Q̃A

i ΦB
AQi

B +
√

2Q̃A
i mi

jQ
j
A

)
+ c.c., (2.3)

where mi
j is the quark mass matrix. This matrix can be diagonalised by a rota-

tion in flavour space since the matrix must fulfill [m,m†] = 0 due to the N = 2

supersymmetry, and we denote the corresponding masses mi. We could also have

considered a general polynomial mi
j(Φ) such that the superpotential term takes the

form
√

2Q̃im
i
j(Φ)Qj. This generically breaks the N = 2 supersymmetry to N = 1,

however, in the end many results will only depend on B(x) = det m(x) which in our

case takes the form:

B(x) =

Nf∏
i=1

(x + mi). (2.4)

Finally, we will also consider N = 1 SYM where we softly break the above N = 2

theory by a superpotential

Wtree =
∑
p∈N

gp

p
Tr Φp. (2.5)

2.1.2 Symmetries

Let us now examine the symmetries of our Lagrangian. Classically, we have, besides

the gauge symmetry, the following global symmetries: A U(1)B × SU(Nf ) flavour

symmetry and a U(1)R×SU(2)R chiral R-symmetry. The SU(2)R symmetry is not

manifest in our N = 1 superfield notation, however, a U(1)J subgroup that acts

on Q and Q̃ is manifest. In general, the R-symmetry rotates the spinors of the

gauge multiplet while it rotates the scalar part of the hypermultiplet. In order to
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SU(Nc) SU(Nf ) U(1)B U(1)R U(1)J

Q Nc Nf 1 0 1

Q̃ Nc Nf -1 0 1

Φ adj 1 0 2 0

mA 1 adj 0 2 0

mS 1 1 0 2 0

Λ2Nc−Nf 1 1 0 2(2Nc −Nf ) 0

gk 1 1 0 2− 2k 2

Table 2.1: The classical symmetries of the N = 2 SQCD.

preserve the flavour symmetry in the massive case, the traceless part of the mass,

mA, must transform in the adjoint while the trace of the mass, mS, is a singlet.

Also for the U(1)R symmetry the masses have to be charged. Table 2.1 gives the

representations and charges for the scalar part of the superfields and the masses.

Please note that here and in the following we will denote the complex scalar part of

the chiral superfields Φ, Q and Q̃ by the same symbol.

In the table we have also included the charges of the holomorphic scale, Λ. We

have written Λ as the usual instanton factor Λb, where

b = 3C(adj)−
∑

n

C(rn) = 2Nc −Nf , (2.6)

and the sum is over the representations of the chiral field. We have one chiral field

with C(adj) = Nc and 2Nf with C(fund) = 1/2. The chiral anomaly of U(1)R

gives a transformation of the ϑ-angle and hence a charge to Λb. The charge is given

by

2
∑

i

qiC(ri) = 2(2Nc −Nf ), (2.7)

where the sum is over the representations of the Weyl fermions and qi their respective

charges (+1 for the fermions in the gauge multiplet and −1 for the fermions in the

hypermultiplet). This chiral anomaly also means that U(1)R is broken down to

Z2(2Nc−Nf ) in the quantum case. Please note that this analysis is for Nf < 2Nc,

where the theory is asymptotically free. For Nf = 2Nc we have a scale-invariant

theory (for zero masses) and thus no holomorphic scale Λ.

Note that the polynomial in (2.4) is given by B(x) = det(x1+mi), and especially

all its coefficients, are invariant under the residual flavour symmetry which acts as

permutations of mi and we expect to find expressions in terms of these permutation

invariant coefficients.
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2.1.3 Classical vacuum moduli space

The moduli space of the theory was studied in [111]. Classically, we have flat

directions given by the D- and F-term equations. The D-term equations are:

0 = [Φ, Φ†], (2.8)

0 = Qi
AQ†B

i − Q̃†i
AQ̃B

i , (2.9)

and the F-term equations are:

0 = W ′(Φ)A
B +

√
2Q̃A

i Qi
B, (2.10)

0 = mi
jQ

j
A + ΦB

AQi
B, (2.11)

0 = Q̃A
j mj

i + Q̃B
i ΦA

B. (2.12)

The first D-term equation (2.8) means that we can diagonalise Φ

Φ =

φ1

. . .

φNc

 . (2.13)

In the case of a SU(Nc) gauge group we should impose
∑

A φA = 0.

We should now distinguish between two types of branches of the vacuum moduli

space: The Coulomb branch and the Higgs branches. In the Coulomb branch the

quarks have zero expectation value 〈Q〉 = 〈Q̃〉 = 0. This is the branch that we will

investigate in this thesis. For the Higgs branch the quarks have non-zero expectation

value.

Let us first examine the Coulomb branch. In the N = 2 case without any

superpotential Wtree the eigenvalues are generically all different and the gauge group

is broken to U(Nc) 7→ U(1)Nc – hence the name Coulomb branch. In the N = 1 case

where we turn on Wtree we will, however, also have to obey (2.10), which tells us that

the eigenvalues have to lie in the minima of Wtree . Let us denote the degree of W ′
tree

by n and write W ′
tree(Φ) = (Φ− φ1) · · · (Φ− φn). Thus Φ = diag(φ11N1 , . . . , φn1Nn)

and the gauge group breaks into n parts as

U(Nc) 7→
n∏

i=1

U(Ni), (2.14)

where
∑

i Ni = Nc and we should rather be talking about pseudo-confining vacua. In

both of the above cases we should remember that we have residual gauge symmetry,

and we should parameterise the vacuum moduli space in terms of parameters which

are invariant under the Weyl group that permutes the φAs. These are given by the

coefficients of

PNc(x) = det(x1− Φ). (2.15)
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However, it is customary to use that these coefficients can instead be written in

terms of the Weyl invariants (the relation will be given in the next section)

uk =
1

k
〈TrΦk〉, k = 1, . . . , Nc, (2.16)

where we have taken the expectation value to anticipate the quantum case. The uks

will be used to parameterise the vacuum moduli space. Again for a SU(Nc) gauge

group we have to impose u1 = 0.

Let us consider the Higgs branches briefly for completeness. Examining the

Lagrangian we see that the squarks of Qi
A and Q̃A

i have mass φA + mi. From the

F-flatness equations (2.11) and (2.12) we see that when this mass is zero the quarks

can have non-zero expectation value. Thus the Higgs branch emanates from the

Coulomb branch at points where the squarks become massless. Also note that on

this root of the Higgs branch W ′
tree(−mi) = 0 by (2.10). The Higgs branches are

separated into baryonic and non-baryonic branches. The baryonic branches exist for

NF ≥ Nc and breaks the gauge group completely. The non-baryonic branches are

labelled by an integer r ≥ min{[Nf/2], Nc−2} depending on the size of the non-zero

part of the matrix Qi
A (in principle we have one such integer for each mi).

Let us now consider what happens in the quantum case.

2.1.4 Low-energy effective action

Here we consider the N = 2 low-energy effective theory for the Coulomb branch.

In section 2.3 we will take into account Wtree . We saw above that the gauge group

generically was broken as SU(Nc) 7→ U(1)Nc−1 – where we now do not take into

consideration the trivial overall U(1) of the U(Nc) gauge group. So the field content

should be Nc − 1 copies of N = 2 U(1) gauge multiplets which we write in terms

of the chiral N = 1 superfields Ai and Wi where i labels the generators of the

Cartan subalgebra.1 The point is that the Coulomb branch is not lifted by quantum

corrections [10, 11] i.e. that this is really the low energy field content. Of course,

this is for generic points where e.g. none of the φA coincide to give a larger gauge

group.

The Wilsonian effective Lagrangian is by (super)symmetries constrained to be

determined by a prepotential F(Ak) such that

Leff =
1

8πi

∫
d4θAi

DĀi +
1

16πi

∫
d2θτijWiWj + c.c., (2.17)

1This is an abuse of the index i since it was already used for labelling the U(NF ) index. However,
there ought to be no confusion.
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where

Ai
D =

∂F(Ak)

∂Ai

, (2.18)

τij =
∂2F(Ak)

∂Ai∂Aj

. (2.19)

Classically, the prepotential is simply F(Ak) = τ
2

∑Nc−1
i=1 A2

i . Perturbatively, it

will only receive one-loop corrections due to non-renormalisation theorems. How-

ever, we will also have non-perturbative instanton corrections proportional to powers

of Λ2Nc−Nf as discussed above. The quantum prepotential then takes the form (see

e.g. [112] for the case with flavour)

F(Ak) =
τ

2

Nc−1∑
i=1

A2
i

− 1

8πi

(Nc−1∑
k,l

(Ak − Al)
2 ln

(Ak − Al)
2

Λ2
−

Nf∑
i

Nc−1∑
k

(Ak + mi)
2 ln

(Ak + mi)
2

Λ2

)

+
∞∑
l=1

Fl(Ak)Λ
l(2Nc−Nf ). (2.20)

The properties of the effective action will be discussed in the next section.

2.2 The Seiberg-Witten Curves

In the last section we saw how the low-energy effective theory was determined by

a prepotential. In this section we will see how the properties of this prepotential

enables us to construct the Seiberg-Witten curves that determines the prepotential

exactly.

2.2.1 Properties of the prepotential

Expanding the action using (2.20) shows that τij(ai) is the effective complex coupling

and Im τij(ai) is the metric on the moduli space, where ai is the complex scalar part

of Ai. The relation between ai and the parameters of the moduli space uk will be

given later (2.30). The metric has to be positive to ensure unitarity. However, Im τij

is a harmonic function in the ais and hence can not have a minimum. Here and in

the following we consider the case of a SU(2) gauge group with just one ai and thus

classically by (2.16) u2 = a2/2 (and u1 = 0), but we will quote the general U(Nc)

results. The conclusion for τ(a) is that it is only locally defined and we need different

descriptions of the theory on the full quantum moduli space. Also, we see from the

logarithms in the one-loop terms that the prepotential is actually a multi-valued

function.
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The dual description of the same physics is the strong-weak electric-magnetic

duality sending τ 7→ −1/τ . Further we also have the symmetry τ 7→ τ +1. Combin-

ing these two, the full duality group becomes SL(2, Z) whereas in the general case

we get a Sp(2(Nc − 1), Z) duality group transforming τij as

τ ′ = (C + Dτ)(A + Bτ)−1,

(
A B

C D

)
∈ Sp(2(Nc − 1), Z). (2.21)

This is the same formula as for the modular transformations of period matrices of

Riemann surfaces that we will meet in the next chapter, so this suggests an intimate

relation to these. One immediate advantage is that period matrices always have

positive definite imaginary part ensuring unitarity.

2.2.2 Monodromies

The above duality transformation of τ 7→ −1/τ is by (2.18) and (2.19) realised by

A 7→ AD and AD 7→ −A hence the reason for the index D for dual. For the full

duality group we get for U(NC) but without matter(
Ai

D

Aj

)
7→ M

(
Ai

D

Aj

)
(2.22)

where M∈ Sp(2(Nc−1), Z). Actually, one could add a constant vector on the right

hand side, but this would not leave the BPS formula for the mass invariant. However,

when we have fundamental matter in the theory we get an extra term in the formula

for the central charge, Z, that gives the mass of the BPS multiplet M2 = |Z|2.
Consider a state with electric charge ne ∈ ZNc−1, magnetic charge nm ∈ ZNc−1,

and quark number charge q ∈ ZNf which comes from the U(Nf ) flavour symmetry

broken to U(1)Nf when all masses are different (as discussed in the previous section

where we preserved the symmetry by letting the masses transform). The central

charge is then

Z = a · ne + aD · nm + m · q, (2.23)

where aD is the scalar part of AD and m = (mi). The extra term here means that

for fundamental matter we can and do have in (2.22) an extra vector with integers

times the bare masses mi. In this way the central charge is preserved under the

duality transformation by letting the charges (ne, nm, q) transform properly.

The point is now that (ai
D(uk), ai(uk)) is a section of a Sp(2(Nc − 1), Z) bundle

over the moduli space parameterised by the uks. The metric on the moduli space

can be expressed as the pullback of

i

2
(dai ∧ dāi

D − dai
D ∧ dāi). (2.24)
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If we go around a closed loop on the moduli space encircling a singular submanifold

(ai
D(uk), ai(uk)) will be transformed by an element of the monodromy group as

in (2.22), and the monodromy group is a subgroup of Sp(2(Nc − 1), Z).

The main point is then to associate to each point of the vacuum moduli space a

genus Nc Riemann surface. The monodromy group for going around a closed loop

is then reflected by modular transformations in the Riemann surface which, as we

will see in the next section, just corresponds to a change of homology basis. This

was suggested by the transformations of τij above, which will be identified with the

period matrix of the Riemann surface. The family of Riemann surfaces is called the

Seiberg-Witten curve.

The exact form of the Seiberg-Witten curve is determined by examining the

monodromies in details. We will not go into details here, but let us briefly consider

the SU(2) gauge group without matter. We can immediately see one singularity

around which we have monodromy. This is for a very large, i.e. large energy,

where the theory is asymptotically free (and here u2 = a2/2 holds). At this weak

coupling we can trust the perturbation theory and thus the one-loop part of the

prepotential (2.20). Let us circle u2 = ∞ such that ln u2 7→ ln u2 + 2πi i.e. a 7→ −a.

By (2.20) the logarithmic part of aD = ∂F/∂a is 2ia
π

ln a
Λ

and thus aD 7→ −aD + 2a.

We have thus determined the monodromy around u2 = ∞. For consistency there has

to be more singularities than the one at ∞. Such singularities arise at points where

we have accidentally integrated out massless fields. One might think this happens

at u2 = 0 where the gauge bosons become massless, but the analysis of Seiberg-

Witten showed that this was not the case. The only remaining possibility is that

the singularities correspond to monopoles or dyons becoming massless. These fields,

which are described by hypermultiplets, can not be coupled locally to our theory.

However, they can be described in the dual picture (2.22), where they become the

elementary weakly coupled objects. This allows one to calculate that we have two

more singular points corresponding to respectively a monopole and a dyon becoming

massless.

The Seiberg-Witten curves presented in the next section should then solve this

monodromy problem as well as have the right U(1)R charge assignments. Further,

for larger gauge groups and hypermultiplets one should have the right decoupling

limits. This allows one to determine the Seiberg-Witten curves.

2.2.3 Seiberg-Witten curves

The Seiberg-Witten curve solving the above monodromy problem is given as a genus

Nc − 1 hyperelliptic curve Σ (see section 3.4) depending on uk, the parameters of

the vacuum moduli space (2.16), and given by (here in the case of a U(Nc) gauge
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group and no matter found in [113, 114]):

Σ : y2 = PNc(x, uk)
2 − 4Λ2Nc , (2.25)

where the polynomial PNc is given as in (2.15):

PNc(x, uk) = 〈det(xI− Φ)〉 = xNc +
Nc∑
i=1

six
Nc−i. (2.26)

Here the coefficients si are polynomials in the uks determined by Newton’s formula

isi +
i∑

k=1

ksi−kuk = 0, i = 0, . . . , Nc, (2.27)

with the definition s0 ≡ 1. This can be derived from:

det (xI− Φ) = xNc det

(
I− Φ

x

)
= xNceTr ln(I−Φ

x ) = xNc exp

(
−

∞∑
n=1

Tr (Φn)

nxn

)
= xNc − Tr Φ xNc−1 − 1

2

(
Tr
(
Φ2
)
− Tr (Φ) Tr (Φ)

)
xNc−2 − . . . (2.28)

The relation to the low-energy effective action determined by ai and ai
D is given

in terms of the Seiberg-Witten one-form (see next chapter for definition of Riemann

surface concepts) given by:

λSW =
1

2πi
x d ln(y + PNc(x, uk)). (2.29)

Given the canonical homology basis (αi, βj) for Σ, the relation to ai and ai
D is given

by:

ai =

∮
αi

λSW , ai
D =

∮
βi

λSW . (2.30)

This gives the relation between uk and ai. Remembering that aD is given in terms

of the prepotential as (2.18) and the gauge coupling τij is given by the derivative of

ai
D we get τij(ai) =

∮
βi

∂λSW

∂aj
or

τ =
∂aD

∂u

(
∂a

∂u

)−1

, (2.31)

where
∂ai

∂uj

=

∮
αi

∂λSW

∂uj

∂ai
D

∂uj

=

∮
βi

∂λSW

∂uj

. (2.32)

As we will see in the next chapter this is exactly the period matrix of the hyperelliptic

surface for ∂λSW /∂uj a basis of holomorphic one-forms.

The curve for a SU(Nc) gauge group is the same as above but with constraint

u1 = 0. Thus for SU(2) we get

y2 = (x2 − u2)
2 − 4Λ2Nc = (x2 − u2 − 2ΛNc)(x2 − u2 + 2ΛNc). (2.33)
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Thus if u2 = ±2ΛNc ,∞ we got double roots and the curve degenerates. These are the

singular points on the vacuum moduli space around which we have monodromies.

The monodromy corresponds to the modular transformation that arises from the

change in homology basis as we let u2 circle one of these points corresponding to

vanishing cycles.

For other gauge groups the curves were found in [115, 116, 117]. Let us here just

quote the SO(N) result (see e.g. [59])

Σ : y2 = PN(x, vp)
2 − 4x2qΛ2h̃, PN(x) =

r∏
k=1

(x2 − e2
k) (2.34)

Here vp = 1
2p

Tr Φ2p (only even powers of Φ contribute), h̃ is the dual Coxeter number

which for SO(N) is h̃ = N−2. Given the rank, r = [N/2], of SO(N) then q = 2r−h̃

which is q = 2 for SO(2N) and q = 1 for SO(2N + 1). Finally, vp = 1
p

∑r
k=1 e2p

k .

Let us now consider the Seiberg-Witten curves with fundamental matter. Here

the curve for a U(Nc) gauge group takes the form (found in [118, 119], see [120, 121]

for other gauge groups)

Σ : y2 = PNc(x, uk)
2 − 4Λ2Nc−Nf

Nf∏
i=1

(x + mi), (2.35)

where we assume Nf < 2Nc.

Importantly, we get quantum corrections to the Newton formula (2.27) for Nc ≤
Nf < 2Nc and we have to replace (2.26) by [77] (see also derivation in section 4.1)

PNc(x, uk) = 〈det(xI− Φ)〉+

[
Λ2Nc−Nf

B(x)

xNc
exp

(
∞∑
i=1

ui

xi

)]
+

, (2.36)

where the subscript “+” stands for the polynomial part and B(x) =
∏Nf

i=1(x + mi)

was defined in (2.4).

The curve for the case Nc = 2Nf can also be found [118]. Here we do not have a

holomorphic scale Λ since the β function vanishes, but the curve will depend on the

bare coupling τ through h(τ) = 2θ4
1/(θ

4
2 − θ4

1) (the definition of the theta functions

is given in section 3.5). The curve then takes the form

Σ : y2 = PNc(x, uk)
2 − h(h + 2)

Nf∏
i=1

(x + mi + hmS), (2.37)

where mS =
∑

i mi/Nf is the trace of the mass matrix defined above in section 2.1.

The curves for Nf < 2Nc can be obtained from this solution by decoupling

flavours. To lower the value of Nf by one unit we integrate out the ith flavour

by taking the limit mi → ∞ while taking Λ → 0 (q = eiπt → 0 for Nf = 2Nc),
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but keeping Λ2Nc−Nf mi ≡ Λ
2Nc−(Nf−1)
new constant (16qmi ≡ Λnew constant). This re-

moves the ith flavour and the new scale Λnew is exactly given by the scale matching

condition. Using this procedure one can ultimately obtain the curve without fun-

damental matter. Actually, the curve for Nf > 2Nc can also be deduced using this

method [111], however, these are not asymptotically free theories. The curves are

the same as in (2.35).

Finally, we note that curves for the Higgs branch roots also exist. E.g. for the

rth non-baryonic branch root we have (see e.g. [111, 122])

Σ : y2 = x2r
(
PNc−r(x, uk)

2 − 4Λ2Nc−Nf xNf−2r
)
, (2.38)

where we are in the massless case, and P is only of degree Nc− r since we only have

Nc − r non-zero eigenvalues of Φ.

So we see that the complete dynamics of the low energy theory of N = 2 super-

symmetric gauge theory is completely determined by the geometry of the Seiberg-

Witten curve. In the next section we will consider the N = 1 theory.

2.3 Factorisation of Seiberg-Witten Curves

Let us now consider what happens when we add the tree-level superpotential (2.5),

Wtree , breaking the N = 2 theory to N = 1. The analysis we will do here is without

matter, but for the Coulomb branch where the quarks have zero expectation value

the analysis with matter is the same.

2.3.1 Massless dyons and the low-energy effective theory

The lore of the low energy theory is that it has a mass gap and confinement. The

term m Tr(Φ2) in Wtree gives mass to Φ, but we still need to give the gauge fields Ai

mass. This could happen either by having light gauge fields giving strong coupling

effects or light charged fields giving mass by the Higgs mechanism. As mentioned

above Seiberg and Witten argued that the second option is the correct one and we

have massless dyons at certain submanifolds of the vacuum moduli space. These

dyons (here we take them to be monopoles) can be described by N = 1 chiral

superfields Mi, M̃ i where i = 1, . . . , Nc − 1. Since we are at strong coupling, these

monopoles should couple to the dual of Ai, i.e. Ai
D from (2.22). So in the vicinity of

a point with massless monopoles the effective superpotential should be (equivalent

to (2.3)):

Weff =
Nc−1∑
i=1

M̃ iMiA
i
D (2.39)
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Taking into account Wtree we simply get

Weff =
Nc−1∑
i=1

M̃ iMiA
i
D +

∑
p

gpUp, (2.40)

where the Ups are the chiral fields representing 1
p
Tr Φp at low energies. Here we have

used the ILS linearity principle [123] saying that the low-energy effective potential

should be linear in gp. If we do not allow any singularity as gp → 0 we could also

argue for this simply using the U(1)R symmetry from table 2.1.

Let us now consider the vacua determined from this low-energy action. The

D-flatness equations are

|mi| = |m̃i|, (2.41)

where mi (m̃i) is the scalar part of Mi (M̃ i ). The F-flatness equations are2

gp +
Nc−1∑
i=1

∂ai
D(up, Λ)

∂up

m̃imi = 0, p = 1, . . . , Nc, (2.42)

ai
Dmi = ai

Dm̃i = 0, i = 1, . . . , Nc − 1. (2.43)

From (2.42) we see that if any gp is different from zero we must have some m̃imi 6= 0

for i = 1, . . . , l and thus by (2.43) we must have the corresponding ai
D = 0. However,

as we see from (2.40), this is the mass term for the monopoles so we have, say l,

massless monopoles (see also the mass formula (2.23)). So we conclude that the

N = 1 superpotential lifts the Coulomb branch except for submanifolds where l

(mutually local) monopoles become massless:

ai
D(up, Λ) = 0, i = 1, . . . , l, (2.44)

mi = m̃i = 0, i = l + 1, . . . , Nc − 1. (2.45)

Of course, we should still remember equation (2.42) as determining whether a given

Wtree really gives a N = 1 vacuum, and it determines the expectation values of the

monopoles (or more generally, dyons). Equation (2.44) gives l constraints and thus

these submanifolds should be of dimension Nc− l, i.e. the solution is parameterised

by ci where i = 1, . . . , Nc − l.

For the l massless monopoles we have non-zero expectation values and conden-

sation. By the lore of gauge theory this induces confinement of the corresponding

electric charges (the dual Meissner effect). Thus the low energy gauge group is

U(1)Nc−l−1 × U(1) where the last U(1) is the overall U(1) from U(Nc). Each of

these U(1) can be thought of as a U(1) ⊆ U(Ni) of the classic gauge group break-

ing pattern U(Nc) 7→
∏Nc−l

i=1 U(Ni) that we saw in (2.14). Each of the SU(Ni)

gauge groups confines, has a mass gap and gaugino condensation determined by a

corresponding scale Λi thus leaving us with U(1)Nc−l.

2For simplicity we take Wtree to have maximal degree Nc since we only consider the Uks up to
k = Nc as being independent.
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2.3.2 Factorization

The submanifolds of the Coulomb branch where we have massless monopoles and

possibility of N = 1 vacua are determined by factorized curves. This is seen

from (2.30) for the massless monopoles:

ai
D(u

(fact)
k , Λ) =

∮
βi

λSW = 0. (2.46)

This means that the βi-cycles shrink to zero size and the genus Nc − 1 Riemann

surface is reduced to a genus Nc − l − 1 curve. The shrinking of cycles means that

some of the cuts become single points and hence that we have l double roots in the

curve. I.e. the Seiberg-Witten curve takes the form

y2 = PNc(x, u
(fact)
k )2 − 4Λ2Nc = F2(Nc−l)(x)Hl(x)2 (2.47)

where F2(Nc−l)(x) and Hl(x) are polynomials of degree 2(Nc− l) and l, respectively.

We will generally assume that we have no multiple roots in F2(Nc−l) and Hl and that

they have no common roots. This means that we have no roots of order higher than

two in the curve. The submanifold should, as we also saw above, have dimension

Nc − l since we constrain the Nc independent uks by imposing the condition of l

double roots. We can immediately see that one of these parameters is realised by

translation invariance of the above problem. However, this is not the case when we

include matter – since this would translate the masses:

y2 = PNc(x, u
(fact)
k )2 − 4Λ2Nc−Nf

Nf∏
i=1

(x + mi) = F2(Nc−l)(x)Hl(x)2. (2.48)

However, the solution is still invariant under translation and simultaneous transla-

tion of the masses so the translation parameter will also be found in this case. Fur-

ther we should expect some discrete parameters labeling the branches, especially one

corresponding to the different vacua that appear when Z2(2Nc−Nf ) ⊂ U(1)J breaks

further down at low energies. See e.g. [122] for a brane picture of the factorization.

2.3.3 Low energy potential

The value of the low energy potential is then simply by (2.40), (2.44) and (2.45)

Weff (Λ, gp, ci) =
∑

p

gpu
(fact)
p (ci), (2.49)

where the cis are the Nc − l parameters of the submanifold with l mutually local

massless monopoles.
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Let us now assume, for simplicity, that Wtree is of order n+1 where n = Nc− l:3

Wtree =
n+1∑
p=2

gp

p
Tr Φp. (2.50)

We thus see that (2.42) gives Nc − l = n equations after solving for the expectation

values of the monopoles m̃imi for i = 1, . . . , l – the rest being zero by (2.45). Thus

we get n equations relating the n gps and the n cis. Solving for the gps and inserting

in (2.50) gives the low energy potential Wlow

Wlow(Λ, gp) =
n+1∑
p=2

gpu
(fact)
p (Λ, gp). (2.51)

This is equivalent to extremising Weff over the submanifold and solving for the cis.

This can be seen since the m̃imi simply act as Lagrange multipliers in (2.40).

2.3.4 Geometric engineering

The effective superpotential can also be found by geometrical engineering [37, 56,

124, 45], as we reviewed in the introduction. Here it was shown that there is an

equivalence between the N = 1 theory studied above and the type IIB superstring

on Calabi-Yau threefold geometries with fluxes. Dijkgraaf and Vafa showed that the

effective superpotential can be obtained simply by solving a related matrix model.

The point is here that integrals over the Calabi-Yau threefold reduces to integrals

over the genus n−1 Riemann surface (the matrix model curve in the Dijkgraaf-Vafa

conjecture)

y2 = W ′
tree(x)2 + fn−1(x), (2.52)

where fn−1 is a polynomial of degree n − 1 whose coefficients we will parameterise

by Si given by the α-periods of the one-form of (2.52)

Ω = y dx =
√

W ′
tree(x)2 + fn−1(x) dx, (2.53)

i.e.

Si =

∫
αi

Ω. (2.54)

These Si are representing the glueball superfields given by the expectation values of

the gauge field strengths for the broken gauge group factors U(Nc) 7→
∏n

i=1 U(Ni)

Si = − 1

16π2
Tr
(
Wα

(i)W(i)α

)
. (2.55)

3g1 can trivially be removed.
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We can think of Si as being dual of Λi, the scale corresponding to the broken factor

U(Ni) that we saw above. The β-periods of Ω are

∂F0

∂Si

=

∫
βi

Ω, (2.56)

where F0 is the prepotential of the Calabi-Yau geometry. Here the periods are

thought of as non-compact, but with some large distance cut-off Λ0. There is another

one-form H with α-periods Ni and β-periods τi, where the τis are the gauge couplings

(we will see more to this one-form later). The effective glueball superpotential is

then given by (this is SU(Nc) case):

Weff (Si) =

∫
Ω ∧H =

∑
i

(
Ni

∂F0

∂Si

+ τiSi

)
. (2.57)

The relation to the above factorization of the Seiberg-Witten curves with l =

Nc − n massless monopoles (2.47) turns out to simply be that the curve is given by

the reduced curve for the factorization:

g2
n+1F2n(x) = W ′

tree(x)2 + fn−1(x). (2.58)

But please note that the β-curves in (2.56) are not the same as the ones used on the

Seiberg-Witten curve. The curves in (2.56) start on the lower sheet at Λ0, continue

through one of the cuts, and end on Λ0 on the upper sheet. Thus for n cuts we

have n β-curves. We can also make an nth α-curve encircling the last cut giving

us n α-curves and thus n Si. The matrix ∂2F0

∂Si∂Sj
can, in an appropriate basis (also

taking τi all equal to τ(Λ0) which as noted depends on Λ0), be written [56] such

that τin = 0, τnn = τ(Λ0) and τij with i, j = 1, . . . , n− 1 is the period matrix of the

factorized Seiberg-Witten curve. Further it was shown that [37]

Weff (〈Si〉) = Wlow(gi, Λ), (2.59)

where by 〈Si〉 we mean that the expectation value have been found extremising

Weff (Si) (integrating out Si). This has been used to test the conjecture especially

for the complete factorization corresponding to an unbroken gauge group, which we

will discuss later in section 4.4.

2.3.5 Solutions

Please note that it is easy to give solutions for the factorization problem (2.47). Con-

sider the classical solution corresponding to U(Nc) 7→ U(1)Nc−2r×U(2)r where Φ =

diag(a1, a1, . . . , ar, ar, b1, . . . , bNc−2r). This means that the polynomial Pclas.(x, uk) =

〈det(xI− Φ)〉 has double zeroes in a1 to ar i.e. that Pclas.(ai) = P ′
clas.(ai) = 0. But

this in turn shows that PNc = Pclas. ± 2ΛNc solves the factorization problem as:

PNc(x, uk)
2 − 4Λ2Nc = H2Nc−2r(x)

∏
(x− ai)

2. (2.60)
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This is the generalisation of the solution found in [125] for one U(2)-factor simply by

obtaining the low-energy effective potential by integrating out matter and imposing

confinement and gaugino condensation.

However, how to find all solutions and analyse how these are continuously con-

nected is the question in the next chapters. In order to do our analysis we will use

Riemann surfaces, and the next chapter will be devoted to an introduction to these.



Chapter 3

Riemann Surfaces

In this chapter we will give an introduction to Riemann surfaces. Readers familiar

with the topic can skip to next chapter. A pedagogical review can be found in [126]

and much of this chapter is based on [127] and [128, 129]. Other references are [130,

131, 132, 133, 134].

3.1 Riemann Surfaces

3.1.1 Definition

An n-dimensional complex manifold is defined exactly as a standard real manifold

where we simply replace the coordinates into Rn with coordinates into Cn and de-

mand that the transition functions (coordinate change maps) should be holomorphic.

It is easily proven that complex manifolds are always orientable.

Here we will be concerned with Riemann surfaces which are connected one-

dimensional complex manifolds. These can, of course, be seen as ordinary real two-

dimensional manifolds and it can be shown that real two-dimensional differentiable

manifolds, which are orientable and compact, admit complex structure and thus can

be seen as equivalent to compact Riemann surfaces. We will generally assume our

surfaces to be compact. It turns out that these are always triangulable.

From real surfaces we now know that we can topologically classify the (compact)

Riemann surfaces according to their genus g ∈ N0 (i.e. the number of handles on

the surface). However, we only consider two surfaces as being equivalent if they are

analytically isomorphic, i.e. related by a bijective function f for which both f and

f−1 are holomorphic. It turns out that there is a continuity of analytic equivalence

classes for each genus – table 3.1 gives, for each genus, the number of continuous

complex parameters (moduli) parameterising the analytic classes.1 In the table

1Note the difference from diffeomorphic equivalence in the real case. Here we only have one
unique diffeomorphy type for each genus since the diffeomorphies are not constrained by the com-

37
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Genus Moduli Hyperelliptic moduli

0 0 -

1 1 1

g > 1 3g − 3 2g − 1

Table 3.1: The number of moduli for each genus, both for general Riemann surfaces

and hyperelliptic surfaces.

we have included the moduli for the hyperelliptic curves that will be discussed in

section 3.4. For g = 0 we only have one Riemann surface which is the Riemann

sphere, C ∪ {∞} = P1, and we have no hyperelliptic curves.

3.1.2 Simplicial homology group

For a given Riemann surface we now define the simplicial homology. To this end

think of a triangulation of the surface. We then define the 0-, 1- and 2-simplices

as respectively the vertices, the edges and the faces of the triangulation.2 Let us

denote the set of 0-simplices (i.e. points on the surface) as {P1, . . . , Pl}. Since our

surface is orientable we can give our triangles (2-simplices) and edges (1-simplices) an

orientation. With this orientation we can write the 1-simplices as 〈Pi, Pj〉 for the edge

from Pi to Pj and similarly the 2-simplices as 〈Pi, Pj, Pk〉 for the triangle with vertices

Pi, Pj and Pk taken in the direction of the orientation. In this notation we can give

the simplices a sign for opposite orientation so we identify 〈Pi, Pj〉 ≡ −〈Pj, Pi〉 and

〈Pi, Pj, Pk〉 ≡ −〈Pk, Pj, Pi〉.
Let now Cn define the free abelian group over the n-simplices (i.e. we can freely

add and subtract a finite number of n-simplices). The elements of Cn are called

n-chains. We can define the boundary operator, δ, by its action on the n-simplices

in the following natural way:

δ〈P 〉 = 0, δ〈Pi, Pj〉 = Pj − Pi, (3.1)

δ〈Pi, Pj, Pk〉 = 〈Pi, Pj〉+ 〈Pj, Pk〉+ 〈Pk, Pi〉, (3.2)

where δ : Cn 7→ Cn−1. This allows us to define the n-cycles, Zn, as the closed n-

chains i.e. the n-chains a ∈ Cn for which δa = 0. Finally, we define the nth simplicial

homology group as the n-cycles modulo the boundaries Bn = δ(Cn+1):

Hn =
Zn

Bn

, (3.3)

which is well-defined since δ2 = 0.

plex structure.
2For higher dimensional complex manifolds we of course need higher n-simplices as well.
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Figure 3.1: The figure shows a canonical homology basis (seen as continuous curves)

in the case of a genus-2 torus.

Now it is easy to see that H0 and H2 are simply isomorphic to Z (for a compact

surface). However, H1 is interesting for us. These are, of course, 1-cycles modulo

boundaries. The number of generators of this abelian group is called the first Betti

number β1. Actually, the group is independent of the triangulation that we have

used, and it is not surprising that it is isomorphic to the abelianisation of the

fundamental group (first homotopy group). It turns out that the Betti number is

2g where g is the genus of the surface.

3.1.3 Canonical homology basis

We choose to denote the basis for H1 as {αi, βi} with i = 1, . . . , g. The generators

can be seen as closed continuous curves by the above mentioned relation to the

fundamental group. It is possible to define the intersection number which is an

antisymmetric bilinear form on H1 that essentially counts the number of times two

1-cycles intersect each other. We will always choose the generators such that αi

intersects only βi and this only once (and vice versa), i.e. if the intersection bilinear

form is denoted by a dot:

αi · βj = −βj · αi = δij, (3.4)

or in other words: The intersection matrix for the basis is the 2g × 2g symplectic

matrix J . Such a basis is then called a canonical homology basis. An example can

be seen in figure 3.1.
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3.2 Analytical Structure

Let us now consider the analytic structure of the Riemann surface. The holomorphic

functions are defined, as usual, using the coordinate maps. Likewise we define a

meromorphic function as being holomorphic up to a set of isolated points (poles)

where it diverges. In the usual way we define the multiplicity of zeroes and poles.

Naturally, we can also see the meromorphic functions as holomorphic functions into

P1. One can quickly see that for a compact Riemann surface the only (global)

holomorphic functions are the constant ones.

3.2.1 One-forms

Let z denote a local complex coordinate map on our Riemann surface. A one-form,

ω, is then defined by locally having the form:

ω = f(z)dz + g(z)dz̄, (3.5)

and it should transform covariantly under coordinate transformations. A holomor-

phic one-form has locally the form f(z)dz with f(z) holomorphic on the coordinate

patch. Note that since this is defined patchwise, we are not constrained by the

fact that we only have constant global holomorphic functions. Instead, the space of

(global) holomorphic one-forms, H 1, has dimension g. Given a canonical homology

basis {αi, βi} one can find a unique basis, {σ1, . . . , σg}, for H 1 which obeys:∫
αj

σi = δij. (3.6)

3.2.2 Period matrix

Thus, given the canonical homology basis, we can uniquely define the period matrix

for the surface:

τij =

∫
βj

σi. (3.7)

τ is a symmetric g × g matrix and the imaginary part is positive definite, i.e. it

belongs to the Siegel upper half space Hg = {τ ∈ Mat(g) | τij = τji, Im τ > 0}. This

can be shown by the Riemann bilinear relations, e.g. the symmetry follows from:

g∑
i=1

(∫
αi

ω

∫
βi

ρ−
∫

αi

ρ

∫
βi

ω

)
= 0, (3.8)

where ω and ρ are holomorphic one-forms. The period matrix will be essential for

us.
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3.2.3 Modular transformations

With a given canonical homology basis {αi, βi} we found the corresponding unique

basis for the holomorphic one-forms {σi}. The full period matrix, Ω, is a g × 2g

matrix of the form Ω = (I, τ) where the first matrix gives the periods with respect

to the αi cycles, and the second the periods with respect to the βi cycles. However,

suppose that we have chosen another canonical homology basis {α′i, β′i}. This basis

will be related to the old basis by an invertible linear transformation represented by

an invertible matrix, N ∈ Sl(2g, Z), with integer entries3 – in vector notation:(
α′

β′

)
= N

(
α

β

)
≡

(
A B

C D

)(
α

β

)
, (3.9)

where N is split into g×g matrices as shown. However, for {α′i, β′i} to be a canonical

homology basis we must preserve the symplectic intersection matrix J . This exactly

means that N is an element in the symplectic group Sp(2g, Z) (and all elements in

this group are possible and generate all canonical homology bases). With respect to

the new canonical homology basis the full period matrix, Ω, for the σi’s is no longer

in the standard form:

Ω = (

∫
α′

σ,

∫
β′

σ) = (AT + τBT , CT + τDT ). (3.10)

In order to obtain the period matrix we must change the basis of the holomorphic

one-forms, {σi}, to {σ′i} that turns the first part of the full period matrix into the

identity, i.e. σ′ = (AT + τBT )−1σ and then we see that the new period matrix

becomes:

τ ′ = (C + Dτ)(A + Bτ)−1,

(
A B

C D

)
∈ Sp(2g, Z). (3.11)

Thus a change in the canonical homology basis just gives a transformation of the

period matrix by the symplectic modular group. This is the same transformation

that we found for the monodromy on the vacuum moduli space (2.21).

3.2.4 Meromorphic one-forms

Also important for us is the existence of meromorphic one-forms. These are just

one-forms which are holomorphic except at finitely many points {P1, . . . , Pk}, and

such that locally the coordinate function is meromorphic. This means that for z a

local coordinate around a point P with z(P ) = 0, the meromorphic one-form, ω,

takes the form f(z)dz where f(z) has the Laurent expansion f(z) =
∑∞

i=m fiz
i with

3The determinant is ±1 since the inverse matrix (with inverse determinant) must also have
integer entries (and thus integer determinant).
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m ∈ Z and fm 6= 0. Invariant of the chosen coordinate we can then define the order

and the residue of ω at P as:

ordP ω = m, resP ω = f−1. (3.12)

Integrating around all the 2-simplices in an triangulation of a compact Riemann

surface immediately gives:

Theorem. If ω is a meromorphic one-form on a compact Riemann surface, Σ, then:

∑
P∈Σ

resP ω = 0. (3.13)

Now, there exist meromorphic one-forms with just a single pole. These must have

residue zero by this theorem and hence the pole must be of order higher than one:

ordPi
ω < −1 (meromorphic one-forms with zero residues are called abelian differen-

tials of the second kind). It turns out that there also exist meromorphic one-forms

with non-zero residues and by the theorem they must have two or more poles (they

are called abelian differentials of the third kind).4 To obtain some uniqueness let us

consider meromorphic one-forms with only simple poles (ordPi
ω = −1). However,

we still have the possibility to add an arbitrary holomorphic one-form. But we can

fix this redundancy by determining the α-periods of ω in the canonical homology

basis – since determining these periods of a holomorphic one-form uniquely deter-

mines its coefficients in the basis for the holomorphic one-forms (3.6). This gives rise

to the following existence and uniqueness theorem for a compact Riemann surface

Σ:

Theorem. Let {P1, . . . , Pn} be a set of distinct points in Σ with n ≥ 2. Let

r1, . . . , rn ∈ C \{0} be given such that
∑

i ri = 0 and let also a1, . . . , ag ∈ C be

given. Then there exists a unique meromorphic one-form, ω, which is holomorphic

on Σ \ {P1, . . . , Pn}, has simple poles in P1, . . . , Pn, and fulfills:

resPi
ω = ri,

∫
αi

ω = ai. (3.14)

In the last equation we think of αis as specific curves, not homology classes, since

meromorphic one-forms integrated over homology classes are only defined modulo

2πir1Z+. . .+2πirnZ. This is because the αis otherwise are equivalence classes mod-

ulo boundaries that can encircle the poles, thus giving an integral linear combination

of (2πi times) the residues. This would spoil the uniqueness.

Especially we see that given to distinct point P and Q we have a unique mero-

morphic one-form ωPQ with simple poles at P and Q, and residues +1 and −1 re-

spectively, and zero α-periods. Any meromorphic one-form in the theorem can then

4Abelian differentials of the first kind are just the holomorphic differentials.
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be written using these meromorphic one-forms and the holomorphic one-forms, σi.

A useful formula is (can be proven using the Riemann bilinear relations):∫
βi

ωPQ = 2πi

∫ P

Q

σi. (3.15)

3.2.5 Divisors

The last concept we will introduce in this subsection is divisors. The group of divisors

on our Riemann surface Σ, Div(Σ), is simply the free abelian group generated by

the points of Σ. Thus a divisor can be written as:5

D =
∑
P∈Σ

n(P )P, (3.16)

where the sum is over all points P on Σ and n(P ) ∈ Z, but where there are only

finitely many points P with n(P ) non-zero. Given two divisors D =
∑

n(P )P and

D′ =
∑

m(P )P we define D ≥ D′ if and only if n(P ) ≥ m(P ) for all points P .

An important example of divisors are the principal divisors : Given a meromor-

phic function f 6= 0 the corresponding principal divisor (f) is given by

(f) =
∑
P∈Σ

ordP f P, (3.17)

where ordP f depends on whether there is a pole or a zero or neither in P : It is

the multiplicity of a zero in P , minus the multiplicity of a pole, and zero if there is

neither a zero nor a pole. If f is identically zero the order is infinity. We can also

define the divisors of zeroes (respectively the polar divisor) where we simply set all

negative (positive) orders to zero in (3.17). Note that under f 7→ (f) multiplication

is mapped into addition. We can now define two divisors to be linearly equivalent if

their difference is a principal divisor. Letting K (Σ) denote the field of meromorphic

functions on Σ, we can also define a vector space, L(D), corresponding to a general

divisor D as:6

L(D) = {f ∈ K (Σ) | (f) ≥ D}. (3.18)

The corresponding dimension of the vector space is denoted r(D).

We also define the degree of a divisor, D =
∑

i niPi, as:

deg D =
∑

i

ni, (3.19)

which is a homomorphism, deg : Div(Σ) → Z. A subgroup is the divisors of degree

0, Div0(Σ), and a further subgroup hereof is the group of principal divisors. This is

5Sometimes this is written in factor-notation where the n(P )s are then the powers of the P s.
6Here we have chosen to follow the notation of [127], however, it is common in the literature to

have a minus on the D in this definition.
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because any meromorphic function must have the same number of zeroes and poles

counted with multiplicity, as can be seen from (3.13) used on d log f . Using this, we

can define the Picard group, Pic(Σ), as the quotient of the divisors by the principal

divisors, and the restricted Picard group, Pic0(Σ), as the quotient of Div0(Σ) by the

principal divisors.

Consider an abelian differential, i.e. a holomorphic or meromorphic one-form, ω.

We can then define the corresponding canonical divisor, (ω), exactly as in (3.17) us-

ing (3.12). Since the quotient of two abelian differentials is a meromorphic function,

all canonical divisors are linearly equivalent.

Given a divisor D we define the index of speciality i(D) as the dimension of the

vector space

Ω(D) = {ω | ω is an abelian differential with (ω) ≥ D}. (3.20)

Both r(D) and i(D) only depend on the linear equivalence class. And one can

show that for ω 6= 0 any abelian differential we have i(D) = r(D − (ω)). We can

now state the very useful Riemann-Roch theorem.

Theorem (Riemann-Roch). For D an integral divisor (i.e. deg D ≥ 0) on the

compact genus g Riemann surface Σ we have

r(−D) = deg D − g + 1 + i(D), (3.21)

where r(−D) is dimension of the space L(−D) defined by (3.18) and i(D) is the

dimension of the space in (3.20).

The divisors gives a way to compactly write and prove theorems for Riemann

surfaces. But let us now continue on to introduce the concept of Jacobians.

3.3 Jacobians

In this and the following sections we will only consider Riemann surfaces, Σ, with

genus g > 0. The reason is that we then have a non-trivial canonical homology basis

{αi, βi} and corresponding basis of holomorphic one-forms {σi}. This allows us to

define the Jacobian, Jac(Σ), which has many advantages e.g. it is easier to obtain

the moduli space, and we will see that using the Jacobian we can construct explicit

functions and differentials on the surface.

To define the Jacobian remember that we have the full period matrix Ω = (I, τ).

Let then L be the lattice over Z generated by the columns of Ω, i.e. L = I·Zg⊕τ ·Zg.

The columns are linearly independent over R since Im τ > 0. The Jacobian is then

simply:

Jac(Σ) =
Cg

L
, (3.22)
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along with the symplectic intersection matrix J from above. This pair makes up a

so called principally polarised torus.

The point is that we have Torelli’s theorem which states that two Riemann sur-

faces are equivalent if and only if their Jacobians are equivalent. Here we, of course,

have to remember the modular transformations which preserves the symplectic in-

tersection matrix.

3.3.1 Abel-Jacobi map

We can embed the Riemann surface Σ in the Jacobian using the Abel-Jacobi map:

P ∈ Σ 7→ ~z(P ) ∈ Jac(Σ), zi(P ) =

∫ P

Q0

σi. (3.23)

Here Q0 is just some arbitrary base-point. Choosing another base-point will just

give an overall translation of the embedding. In principle, the integrals are not well-

defined since they depend on the chosen path. However, other choices of paths will

only give a change which is in the lattice L. This means that we have a well-defined

embedding (as it can be proven to be) of our surface into the Jacobian. We will,

however, also think of the map as being into Cg, but we will then specify how to

choose the path.

Actually, using the divisors introduced in the last section we can expand on this

in the following way: Consider a divisor of degree zero, i.e. D ∈ Div0. This we can

split as D = A− B where A =
∑n

i=1 pi and B =
∑n

i=1 qi are both integral divisors

(there can be repetitions in the pis and qis). We can then define the Abel-Jacobi

map on the divisors of degree zero similarly:

D ∈ Div0(Σ) 7→ ~z(D) ∈ Jac(Σ), zi(D) =
n∑

j=1

∫ pj

qj

σi. (3.24)

Abel’s theorem tells us that the kernel of the above map exactly is the principal

divisors. The Jacobi inversion problem states that the map is surjective, or, in other

words, the Jacobian is isomorphic to the restricted Picard group, Jac(Σ) ∼= Pic0(Σ).

In general, we define the Abel-Jacobi map on an integral divisor D =
∑

i Pi as

~z(D) =
∑

i ~z(Pi). Actually, what Jacobi’s inversion problem tells is that the map

from the integral divisors of degree g, Σg, is surjective. A special example is the

genus one case where the Riemann surface and the Jacobian actually are isomorphic.

This means that the genus one case is very special. In this case we also directly see

that the number of independent components in the period matrix is the same as the

number of moduli. In general, we have the Schottky problem of determining which

matrices in the Siegel upper half plane actually correspond to Riemann surfaces, and

further we can ask which correspond to hyperelliptic surfaces, which is of special

interest to us. We will introduce these in the next section.
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Figure 3.2: The figure shows the two sheets of the hyperelliptic curve. For each

sheet one should think of adding points at infinity to obtain a compact surface.

3.4 Hyperelliptic Surfaces

We define a hyperelliptic surfaces by a set (y, x) where

y2 =

2g+2∏
i=1

(x + xi). (3.25)

Letting x take values on C, or rather the compact Riemann sphere P1, y is a multi-

valued function. To make it single-valued we need to consider a two-sheeted covering

space (two copies of the Riemann sphere) and we split the xis into g+1 pairs {ai, bi}
which we connect by cuts connecting the two sheets; north bank to south bank, see

figure 3.1. As should be obvious this makes up a genus g Riemann surface.

Denoting a point on the hyperelliptic curve by P we see that x(P ) is a mero-

morphic function on the curve with exactly two poles and 2g + 2 branch points

Pi with x(Pi) = xi. Actually, an alternative description of a hyperelliptic curve is

that it is a Riemann surface on which there exists an integral divisor D of degree 2

with r(−D) ≥ 2. This is turn is exactly equivalent to existence of a meromorphic

function with precisely two poles (i.e. it is 2-1) for which all ramification points

must have branch number one (and thus we have 2g +2 branch points by Riemann-

Hurwitz). One can show that this must be x – or a Möbius transformation thereof,

thus returning to the above definition. Let us also note that some only use the term

hyperelliptic if the genus is greater than one. In all cases we will take g ≥ 1. It

turns out that all Riemann surfaces of genus one and two are hyperelliptic.

The uniqueness of x up to Möbius transformations is a reflection of the fact

that the automorphism group of P1 is PGL(2, C) which exactly gives the Möbius

transformations:

x 7→ ax + b

cx + d
. (3.26)

This means that we have the freedom to choose another x with three of the branch

points determined e.g. set to 0, 1 and ∞. We thus see that the number of moduli
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Figure 3.3: The figure shows the cycles and cuts for a hyperelliptic curve of genus

2. A dotted line means that the curve is on the lower sheet. Note that αi and βi

only intersect once.

for a genus g hyperelliptic curve is 2g + 2− 3 = 2g − 1 as was shown in table 3.1.

We should here note that the Seiberg-Witten curves were exactly of this form see

e.g. equation (2.25). Also remember that the PGL(2, C) automorphism group is not

directly a symmetry group on the physical side since each branch point is determined

by the parameters of the vacuum moduli space uk. This will be investigated in

section 4.1.7.

Another characteristic of a hyperelliptic surface is the existence of the hyperel-

liptic involution. Actually, a surface is hyperelliptic if and only if there exists an

involution in the group of automorphisms that fixes 2g +2 points. In terms of (y, x)

this is immediately seen as (y, x) 7→ (−y, x), i.e. it swaps the sheets.

3.4.1 Homology basis and holomorphic one-forms

On a hyperelliptic surface we can explicitly construct a canonical homology basis as

shown in figure 3.3. Here the αis encircle g of the cuts on the upper sheet. Often we

will also define αg+1 as the curve encircling the last cut. The βi-cycles goes between

two cuts on the upper sheet and then closes on the lower sheet.

Consider now a point ~z ∈ Jac(Σ). This is defined to be of order n if n~z ≡ 0.

Using the above canonical homology basis we can easily show that all branch points

are of order two on a hyperelliptic surface, if we choose the base point Q0 as one

of the branch points. For a general surface we see that if ~z has order n then there

exists a meromorphic function f with (f) = nP−nQ0. Or, considering d log f , there

exists a meromorphic one-form with integer periods and simple poles in P and Q0

with residues n and −n respectively. This is seen directly using Abel’s theorem.

We can also construct the holomorphic one-forms on a hyperelliptic surface ex-



48 CHAPTER 3. RIEMANN SURFACES

actly. A non-canonical basis (i.e.
∮

αi
σj is not necessarily δij) is simply

xr

y
dx, r = 0, . . . , g − 1. (3.27)

Using this we can explicitly write the period matrix in terms of the branch points.

The reverse is actually also true: The branch points can be written as a holomorphic

function of the period matrix. This can be done using the theta functions that we

will now introduce. Importantly, these will also allow us to construct x as a function

defined on the Jacobian in the next chapter.

3.5 Theta Functions

In this section we will introduce the theta functions that allows us to write mero-

morphic functions and one-forms on Riemann surfaces explicitly.

Riemann’s theta function, θ, is a holomorphic function θ : Cg ×Hg 7→ C. Let

z ∈ Cg and τ ∈ Hg be a general matrix, not necessarily a period matrix, in the

Siegel upper half space. Then the theta function is defined as:

θ(z, τ) =
∑
n∈Zg

exp 2πi

(
1

2
nT τn + n · z

)
. (3.28)

As we saw above, we are interested in Jacobian varieties defined as Cg/L where

L = I · Zg ⊕ τ · Zg as above, but now for a general matrix in the Siegel upper

half space. However, as on Riemann surfaces, the only holomorphic functions on a

Jacobian variety are the constant ones. Thus we can not expect the theta function

to periodic in L, but rather it turns out to be quasi-periodic, i.e. multiplicative:

θ(z + n, τ) = θ(z, τ), n ∈ Zg (3.29)

θ(z + τn, τ) = e2πi(− 1
2
nT τn−n·z) θ(z, τ), n ∈ Zg. (3.30)

Further, we should also note that the theta function is even in z: θ(−z, τ) = θ(z, τ).

3.5.1 First order theta functions

Given a point z ∈ Cg it can be written uniquely in terms of its characteristic

[
ε

ε′

]
with ε, ε′ ∈ Rg as z = Iε′ + τε (note the reversal of ε and ε′). We then define the

first order theta functions with characteristic

[
2ε

2ε′

]
as:7

θ

[
2ε

2ε′

]
(z, τ) = e2πi(

1
2

εT τε+ε·z+ε·ε′) θ(z + Iε′ + τε, τ). (3.31)

7Some authors do not include the factors of 2 on the left hand side of this definition.
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The multipliers under the periods are then:

θ

[
2ε

2ε′

]
(z + e(k), τ) = e2πiεk θ

[
2ε

2ε′

]
(z, τ) (3.32)

θ

[
2ε

2ε′

]
(z + τ (k), τ) = e2πi(−zk−

1
2

τkk−ε′k) θ

[
2ε

2ε′

]
(z, τ), (3.33)

where e(k) (τ (k)) is the kth column vector of the identity matrix (τ -matrix). For

ε = ε′ = 0 we see that we simply get the ordinary theta function:

θ

[
0

0

]
(z, τ) = θ(z, τ). (3.34)

It is especially the case with integer characteristic that are of interest. In this case

we e.g. get

θ

[
ε

ε′

]
(−z, τ) = eπiε·ε′ θ

[
ε

ε′

]
(z, τ), for ε, ε′ ∈ Zg. (3.35)

We thus see that a first order theta function with integer characteristic is even (odd)

if ε · ε′ is even (odd). For integer characteristic we essentially only have choices of

0 or 1 since addition of 2 to one of the εks or ε′ks gives us the same function up

to a scalar factor. Thus we got one theta function for each half period in Cg/L

(remember the factor 2 in the definition (3.31)). E.g. for the elliptic case we get the

well-known Jacobi theta functions:

θ1(z, τ) ≡ θ

[
1

1

]
(z, τ), θ2(z, τ) ≡ θ

[
1

0

]
(z, τ), (3.36)

θ3(z, τ) ≡ θ

[
0

0

]
(z, τ), θ4(z, τ) ≡ θ

[
0

1

]
(z, τ). (3.37)

3.5.2 Theta functions on a Riemann surface

Since we are interested in Riemann surfaces, the idea is to consider theta functions

on the corresponding Jacobian, Jac(Σ) (section 3.3 above). The theta function

can then be seen as a multiplicative holomorphic function on the surface using the

Abel-Jacobi map which we denote ϕ : Σ 7→ Jac(Σ) or rather ϕ : Σ 7→ Cg, i.e. we

will consider θ ◦ ϕ : Σ 7→ C. The multipliers are given above in equations (3.29)

and (3.30). Even though this function is not single-valued, but multiplicative, its

divisor (its zeroes) is well-defined, and likewise it zeroes on the whole Jacobian

Jac(M) are well-defined.

In general, we consider θ

[
ε

ε′

]
◦ϕ or θ(ϕ(P )− e) where e ∈ Cg. It turns out that

the zeroes of the theta functions on Cg is a codimension one analytic set so these
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functions on the compact Riemann surface are either identically zero or have a finite

number of zeroes, and the number can be shown to be precisely g – the genus of

the surface. In the case that θ

[
ε

ε′

]
◦ ϕ does not vanish identically, we can find the

image of the divisor of zeroes P1 + . . . + Pg under the Abel-Jacobi map:

ϕ(P1 + . . . + Pg) = −1
2
Iε′ − 1

2
τε−K, (3.38)

where K is called the vector of Riemann constants and only depends on the choice of

canonical homology basis and the base point of the Abel-Jacobi map. For θ(ϕ(P )−e)

we then get ϕ(P1 + . . . + Pg) = −K + e.

Actually, a stronger version of the theorem can be obtained. Consider the func-

tion θ(ϕ(P ) − e); if D is an integral divisor of degree g fulfilling ϕ(D) = −K + e

then the function does not vanish identically on the surface if and only if i(D) = 0.

In that case D is the divisor of zeroes.

Again the case of hyperelliptic surfaces is special and we can actually choose the

base point such that K is a half period, and further we can determine K exactly.

In the elliptic case the Jacobian was isomorphic to the Riemann surface and in

accordance with the above mentioned facts, the theta function has precisely one zero

(of multiplicity one)

θ

(
1 + τ

2
, τ

)
= 0. (3.39)

In the next chapter we will use the theta functions to create the meromorphic

functions and one-forms that we need in order to solve the factorization problem of

the hyperelliptic Seiberg-Witten curves.



Chapter 4

Solution of the Factorization

Problem

The aim in this chapter is to give a correspondence between the solutions of the

factorisation problem of Seiberg-Witten curves and hyperelliptic period matrices

satisfying certain constraints. Further, we will actually solve the problem in the

genus one case including fundamental matter [3], and make some investigations on

the implications for the vacuum structure of the N = 1 vacua.

4.1 Factorization – General Genus

We consider the factorization of the Seiberg-Witten curve with fundamental mat-

ter (2.48) where the curve reduces to a genus g curve yred

y2 = PNc(x, u
(fact)
k )2 − 4Λ2Nc−Nf

Nf∏
i=1

(x + mi) = F2g+2(x)︸ ︷︷ ︸
y2
red

HNc−1−g(x)2. (4.1)

This corresponds to having Nc−1−g mutually local massless monopoles and in the

N = 1 case the gauge group breaks into g + 1 factors U(Nc) 7→
∏g+1

i=1 U(Ni) as was

explained in detail in section 2.3.

The factorization problem without fundamental matter in the genus zero case

(complete factorization) was first solved back in 1995 by Douglas and Shenker [65]

using Chebyshev polynomials. With fundamental matter the genus zero factoriza-

tion problem was first solved by Demasure and Janik [68] using random matrices.

We will study the complete factorization case below in section 4.4.

51
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4.1.1 The one-form ω

The genus one factorization problem without fundamental matter was solved by

Janik in [66], and with fundamental matter it was solved in [3]. The solution and

its implications will be presented in section 4.5 below. The idea is here to consider

the meromorphic one-form

ω ≡ T (x)dx ≡ 〈Tr
dx

x− Φ
〉, (4.2)

which was studied in details in [48, 77]. In this section we will extend the analysis

of [3, 66] to general genus and show that the factorization problem is equivalent to

certain constraint equations on hyperelliptic period matrices.

Note that ω is a very useful one-form since we immediately see that it determines

the parameters of the vacuum moduli space:

uk =
1

k
〈Tr Φk〉 = −1

k
resx=∞ xkω. (4.3)

This equation is, actually, true for all k not just for the parameters of the vacuum

moduli space where k = 1, . . . , Nc. The minus sign on the right hand side is due to

resx=∞
1

x
dx = −1, (4.4)

which follows from going to a local coordinate z = 1/x or remembering that the

sum of the residues should be zero.

In the classical limit, Λ → 0, Φ has g+1 different eigenvalues φ1, . . . , φg+1, which

are the zeroes of W ′
tree , corresponding to the breaking U(Nc) 7→

∏g+1
i=1 U(Ni). From

the definition of ω (4.2) we see that it classically has simple poles in the φis with

residues Ni ∈ N:

ωcl . =

g+1∑
i=1

Ni

x− φi

dx. (4.5)

In the quantum case, when Λ is finite, each of these eigenvalues opens up to a

cut as we see from the Seiberg-Witten curve in (4.1).1 The cuts mean that we have

two sheets. The first (upper) sheet is the one we see in the classical limit while the

second (lower) is invisible classically. Quantum mechanically it is therefore natural

to see ω as a meromorphic one-form on the Seiberg-Witten curve. Defining the

homology basis as in figure 3.3 we see that the α-cycles encircle the cuts. We think

of the cuts as replacing the poles φi and hence the α-periods are:

1

2πi

∮
αi

ω = Ni, i = 1, . . . , g, (4.6)

1Generically, we get one cut for each of the Nc eigenvalues. But we here consider the factoriza-
tion case (4.1) where we keep the number of double roots constant.
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where we could also include αg+1, the cycle encircling the (g + 1)st cut and which

is not part of the homology basis. We expect ω to be regular on the rest of the

first sheet (since the poles became the cuts), except at infinity where it by (4.2)

must have a simple pole with residue −Nc. In reference [77] the chiral ring relations

were further used to obtain the exact form of ω on the hyperelliptic surface. As an

example one of the other one-forms that we can define is

R(x)dx = − 1

32π2
Tr
WαWα

x− Φ
dx, (4.7)

which we also met in (2.53) (with a minor redefinition) and it turns out to be
1
2
(W ′

tree − y)dx. Thus the chiral ring relations give us expressions for ω in terms

of x and y and hence on the whole Seiberg-Witten curve. The result is that ω

only contains simple poles on the second sheet. These are located at the zeroes of

B(x) =
∏Nf

i=1(x + mi) from (2.4) i.e. at the Nf points −mi, but on the lower sheet.

Let us generally denote the hyperelliptic involution by tilde such that x̃ is the point

on the lower sheet below x with y(x̃) = −y(x). Also, let us denote the zeroes of

B(x) by xi = −mi i.e. ω has poles in x̃i. It further turns out that the residue of

these poles are one. Finally, we have a pole in the infinity on the lower sheet with

residue Nc −Nf .

4.1.2 Higgs branch roots

These poles at x̃i might be surprising at first sight since they are on the lower sheet,

which is invisible classically. But they make good sense as we will now see [77].

Actually, when solving the chiral ring relations one chooses that ω is regular on the

first sheet (except at the cuts). However, there is a possibility to choose to have

simple poles in xi = −mi on the upper sheet with residues one. The point is that

when we consider the root of the Higgs branch, then ω classically has the form

ωcl . =

g+1∑
i=1

Ni

x− φi

dx +

Nf∑
i=1

ri

x + mi

dx, (4.8)

where ri ∈ {0, 1} are the integers labelling the Higgs branch. Remember from

section 2.1 that on the Higgs branch root some of the eigenvalues (exactly
∑

ri of

them such that
∑

Ni +
∑

ri = Nc) have to be equal to −mi. The solutions allowed

by the chiral ring relations are exactly solutions where ω in the quantum case has

poles in xi with residues ri (these residues are not changed quantum mechanically

since they count a number of eigenvalues of Φ). Now, take a solution in the non-

Higgs case where ω has a pole at x̃i. Then change B(x) continuously such that x̃i is

moved to the jth cut, up through the cut, and all the way to xi on the first sheet.

ω then has a pole in xi with residue one (and no pole at x̃i). The only discontinuity
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that we encounter in this process is when the pole crosses αj (and maybe the βks).

This will change Nj 7→ Nj − 1 and thus we precisely end up in the Higgs branch

root with ri = 1. Here we have not taken into consideration that the Seiberg-Witten

curve changes with B(z) and when we, by several applications of this procedure, take

Nj 7→ 0 the cut ought to close. Please note that here and henceforth we assume

that the α-cycles do not encircle any of the points xi.

4.1.3 Expression for ω

The meromorphic one-form ω reduces to a one-form on the reduced curve yred . We

can think of the double roots as having Nis that have been set to zero. This also

means that ω does not have any poles at those points and thus reduces to a one-

form with the above described poles and residues. Further the α-periods are integral,

and since these mix with the β-periods under the modular transformations arising

from the changes of the homology basis, we might guess that the β-periods are also

integral. Indeed it was shown in [77] (see also [63, 64]) using the field equations for

the effective superpotential that this is indeed the case (actually two long proofs are

given).

Since ω has integral periods it can be written as a logarithmic derivative of a

meromorphic function. To get the right poles and residues we see that ω must take

the form:

ω = d log(PNc(x) + y(x)) =

(
P ′

Nc
(x)

y(x)
+

B′(x)

2B(x)
− PNc(x)B′(x)

2y(x)B(x)

)
dx, (4.9)

again with B(x) =
∏Nf

i=1(x+mi) and B = 1 in the flavourless case, and we have used

the definition of the Seiberg-Witten curve (4.1) to write out the expression for ω.

Actually, (4.9) does not tell us the values of the periods only that they are integral.

We might worry if the α-periods are indeed Ni. Once we know this (4.9) must

describe ω since a meromorphic one-form is given uniquely by its poles, residues

and α-periods, see theorem at equation (3.14). However, the difference between

ω and the expression (4.9) must be a holomorphic one-form with integral periods

which must be zero. This is because it would have the form
∑

i liσi with li being the

α-periods and σ the basis of one-forms dual to the homology basis. The β-periods

l′i must fulfill l′i =
∑

j ljτji. But this is in contradiction with Im τ > 0 and thus the

lis must be zero.

Using (4.9) and the form of y in (4.1) we also see that not only can we retrieve

the uks from ω, but also Λ [77, 3]:∫ Λ0

eΛ0

ω = − log(Λ2Nc−Nf ) + log(Λ
2Nc−Nf

0 ) +O
(

1

Λ0

)
, (4.10)
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where Λ0 is seen as a large cut-off for the integration from infinity on the lower

sheet, ∞̃, to infinity on the upper sheet, ∞. Λ̃0 is then the point corresponding to

Λ0 on the lower sheet.

4.1.4 The case Nf = 2Nc

The case where Nf = 2Nc is special since the Seiberg-Witten curve has a different

form (2.37). This especially means that if the highest degree coefficient in y2 is 1

then this can not be true for PNc as we usually have. Let PNc(x) ∼ cxNc . Then

by (2.37) c− h(h + 2) = 1. We still have (4.9), but this means that (4.10) becomes

∫ Λ0

fΛ0

ω = log

(
c + 1

c− 1

)
+O

(
1

Λ0

)
, (4.11)

So in this case the integral is finite, but again determines the factor in front of B(x)

in the Seiberg-Witten curve.

4.1.5 Factorization and integral periods

In appendix A (which is a revised version of appendix A in [3]) we actually show

that a genus g surface corresponds to the reduced curve of a factorized Seiberg-

Witten curve if and only if there exist a meromorphic one-form with simple poles in

∞ (with residue −Nc), infinity at the lower sheet ∞̃ (residue Nc − Nf ) and minus

the mass-points on the lower sheets x̃i (residues 1), and with integral periods (and

fulfills (4.10)). This one-form is exactly (4.9) and, as shown in the appendix, it

reduces to a one-form on the reduced surface yred with the above mentioned poles

since y = yredHNc−1−g(x) and the zeroes of HNc−1−g(x) cancel with zeroes in the

numerator. Given such a Riemann surface and one-form with some α-periods Ni,

the one-form has to be the ω from (4.2) (uniqueness of meromorphic one-forms with

given poles and residues) with these Ni as we see e.g. by going to the classical limit

Λ 7→ 0 (which does not change the integers Ni) where (4.9) reduces to the classical

form for ω. This gives another proof that ω has integral periods.

In the appendix it is also shown that:

PNc(x) = 2Λ
2Nc−Nf

2

√
B(a)

(
1

2
e
R x

a ω +
1

2

B(x)

B(a)
e−
R x

a ω

)
, (4.12)

where a is a branch point. Here the integral periods of ω are essential since the

integrals of ω are only well-defined up to the periods. Similarly, we can get y from

ω as in equation (A.23).
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4.1.6 Quantum corrected Newton relation

Using (4.12) we can also show the relationship between PNc and the uks. Equa-

tion (4.3) allows us to write

ω =
Nc

x
dx +

∞∑
k=1

k
uk

xk+1
dx. (4.13)

Using (2.28) we see that

〈det (xI− Φ)〉 =

[
xNc exp

(
−

∞∑
n=1

un

xn

)]
+

=
PNc(a)

2

[
exp

(∫ x

a

ω

)]
+

, (4.14)

where the index + means taking the polynomial part. The constant of proportion-

ality in the last equation have been found using (4.9) and taking x →∞. We thus

see that the relation between the coefficients of PNc , which in the classical limit

simply is given by the Newton relation PNc(x) = det (xI− Φ), is changed quantum

mechanically by (4.12) into

PNc(x, uk) = 〈det(xI− Φ)〉+

[
Λ2Nc−Nf

B(x)

xNc
exp

(
∞∑
i=1

ui

xi

)]
+

, (4.15)

hence deriving (2.36).

Please note that the non-polynomial part of (4.12) tells us how uk with k > Nc

are related to the uks with k = 1, . . . , Nc.

4.1.7 The action of PGL(2, C)

Before continuing on to solve the factorization problem let us just remember from

section 3.4 that Möbius transformations of x on a Riemann surface determined

by (y(x), x) gave isomorphic Riemann surfaces – and hence e.g. the same period

matrices. However, this PGL(2, C) symmetry is not a symmetry of the Seiberg-

Witten curve (4.1). We now want to examine what these transformations mean.

PGL(2, C) is generated by translations x′ = x + x0, scalings x′ = λx and the

inversion x′ = 1/x. Lets us now consider each of these in order.

In the case without flavours the factorization problem is (2.47)

y2 = PNc(x)2 − 4Λ2Nc = F2g+2(x)HNc−1−g(x)2. (4.16)

Here translations x = x′ − x0 simply maps solutions to solutions and x0 can be

taken as one of the parameters of the theory. In the case with flavours (4.1) such a

translation will, however, translate the masses:

y′2 = P ′
Nc

(x′)2 − 4Λ2Nc−Nf

Nf∏
i=1

(x′ + mi − x0) = F ′
2g+2(x

′)H ′
Nc−1−g(x

′)2, (4.17)
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where the prime on the functions simply are defined by P ′
Nc

(x′) = PNc(x). We thus

have a simple one-to-one map between solutions with masses mi and solutions with

masses mi− x0, and one could e.g. choose to solve the problem with at least one of

the masses equal to zero.

In the case of scalings, x = x′/λ, we change the holomorphic scale Λ since

considering PNc(x
′/λ), we have to multiply with λNc to get a polynomial with one

as the highest degree coefficient. Equation (4.1) then becomes

y′2 = P ′
Nc

(x′)2 − 4(λΛ)2Nc−Nf

Nf∏
i=1

(x′ + λmi) = F ′
2g+2(x

′)H ′
Nc−1−g(x

′)2, (4.18)

where P ′
Nc

(x′) = PNc(x)λNc etc. Also note that the masses have been scaled. So we

map solutions with scale Λ to solutions with scale λΛ (and scaled masses). Note

here that Nf = 2Nc is special, since the factor in front of B(x) is not changed. Thus

the scalings here simply give a one-to-one map between solutions with masses mi

and masses λmi, and we could choose one of the masses to be 1.

A special case is obtained when λ2Nc−Nf = 1 then Λ2Nc−Nf is not changed and we

can think of Λ as changed by the 2Nc −Nf root of unity which is merely a change

of ϑ-vacua corresponding to the breaking of Z2(2Nc−Nf ) to Z2 – see section 2.1. We

thus expect a discrete parameter in our solutions parameterising these vacua. In the

case with flavours this parameter should not simply be a scaling, but also ensure

that the masses are not changed as in (4.18).

Finally, we consider the inversion x = 1/x′. In order to have polynomials we see

that we have to multiply with x′2Nc . Further, looking at

F2g+2(x)HNc−1−g(x)2 ≡
2Nc∏
k=1

(x− ek) =
1

x′2Nc

2Nc∏
k=1

(1− ekx
′) =

∏
k ek

x′2Nc

2Nc∏
k=1

(
x′− 1

ek

)
,

(4.19)

we see that we should not only multiply with x′2Nc but also divide by
∏

k ek to keep

the normalisation of y2. We thus see that (4.1) is transformed into:

y′2 = P ′
Nc

(x′)2 − 4Λ2Nc−Nf

∏Nf

i=1 mi∏2Nc

k=1 ek

x′2Nc−Nf

Nf∏
i=1

(
x′ +

1

mi

)
= F ′

2g+2(x
′)H ′

Nc−1−g(x
′)2.

(4.20)

We have thus mapped the solution with Nf flavours into a solution with N ′
f =

2Nc flavours, but where 2Nc − Nf of the masses are zero, and the rest are the

inverse of the original masses. Here P ′
Nc

is no longer normalised, but this is not

expected in the Nf = 2Nc case. Comparing with (2.37) we see that h(h + 2) =

4Λ2Nc−Nf
∏Nf

i=1 mi/
∏2Nc

k=1 ek. This is actually an invertible form of the integrating

out of flavours discussed in section 2.2. This is because the inverse of the zero

masses are infinite masses.
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Note that we should be careful in the above procedure if some of the masses are

equal to zero. For example, if we start with k of the masses equal to zero we will end

up in a theory with N ′
f = 2Nc− k. E.g. the factorization solutions with Nf flavours

and all masses equal to zero are in one-to-one correspondence with the theory with

2Nc −Nf flavours all with zero masses.

In the case of Nf = 2Nc and none of the masses zero, the inversion transformation

maps solutions to solutions inside the Nf = 2Nc theory, but gives the inverse masses,

however, also the factor in front of B(x) is changed.

Combining inversion and translation we can also see that the solutions with

Nf = 2Nc − 1 generically are in one-to-one correspondence with the solutions of

Nf = 2Nc for any choice of masses. In general one can play with the whole PGL(2, C)

to find equivalent solutions.

Also note that ω gets mapped to new one-forms under these transformations.

E.g. the flavourless case corresponds to Nf = 2Nc with all masses equal to zero. In

this case we have a ω′ which has integer periods, poles in ∞ on the upper sheet and

the lower sheet both with residue −Nc, and a pole in zero on the lower sheet with

residue 2Nc. Back in the flavourless case this means that we have a one-form with

the same integral periods as ω, but poles in zero on both sheets with residues −Nc

and pole in infinity on the lower sheet with residue 2Nc, and which generates the

Nf = 2Nc solution. This can be checked directly.

4.2 Solution using the Jacobian

We have seen above that the factorization problem is solved once we have deter-

mined ω. The u
(fact)
k s parameterising the submanifold of the vacuum moduli space

corresponding to the factorization are then determined by (4.3)

u
(fact)
k = −1

k
resx=∞ xkω. (4.21)

PNc(x) can be found using (4.15) or equivalently directly from ω using (4.12).

4.2.1 Strategy

To be more precise, and to sum up the knowledge from above, we should find a

genus g hyperelliptic surface with a one-form fulfilling (remembering xa = −ma for
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a = 1, . . . , Nf )

resx=∞ ω = −Nc, resx=f∞ ω = Nc −Nf , resx̃a ω = 1 (4.22)

1

2πi

∮
αi

ω = Ni,
1

2πi

∮
βi

ω = ∆ki (4.23)∫ Λ0

fΛ0

ω = − log(Λ2Nc−Nf ) + log(Λ
2Nc−Nf

0 ) +O
(

1

Λ0

)
(4.24)

Here ∆ki are integers since ω has integral periods.2 The last equation should be

changed into (4.11) in the case of Nf = 2Nc. Note that the canonical homology

basis (αi, βi) should here be thought of as definite curves so that the integers Ni and

∆ki are well-defined.

The overall strategy will here be to try to solve the problem on the Jacobian

introduced in section 3.3. Consider figure 4.1 showing the Riemann surface corre-

sponding to the factorized Seiberg-Witten curve, the Jacobian of the curve Jac(Σ)

and finally C seen as the upper sheet of the two-sheeted covering. x : Σ 7→ C
is the 2-1 map giving the x-value on the (upper) sheet, ϕ is the Abel-Jacobi map

ϕ : Σ 7→ Jac(Σ). Finally, we define (abusing the notation) x : Jac(Σ) 7→ C as giving

x : Σ 7→ C by composing with ϕ thus giving us a commutative diagram.

The point is that we, in principle, can construct x and ω on the Jacobian and

thus should be able to solve the problem using (4.21) – if we can determine the

period matrix τij (defining the Jacobian) and the point corresponding to infinity.

4.2.2 Calculation of the β-periods

To proceed, we know that ω is given uniquely by its poles, residues and α-periods

(section 3.2):

ω = −Ncω∞,f∞ +

Nf∑
a=1

ωx̃a,f∞ +

g∑
i=1

2πiNiσi. (4.25)

Here ωPQ is the unique one-form with zero α-periods and simple poles in P (with

residue 1) and Q (with residue −1). {σi} is the basis of one-forms dual to the

canonical homology basis from equation (3.6) and equation (3.7), and the last term

in (4.25) simply determines ω to have α-periods Ni.

Equation (4.25) fulfills (4.22) and first equation in (4.23). But we can find such

a one-form on any Riemann surface. The non-trivial constraint is the last part

of (4.23) saying that the β-periods should be integer. To calculate these let us

2The reason for writing ∆ki is that, as explained below equation (2.56), we have g + 1 non-
compact curves along which ω integrates to, what has been denoted, ki. The βi-curves here are
the differences between two such curves and hence a difference of kis. Actually, the kis are theta
angles [62].
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Figure 4.1: The figure shows the Riemann surface, the Jacobian and C. Also the

function x and the Abel-Jacobi map, ϕ, are indicated.

use (3.15) ∫
βi

ωPQ = 2πi

∫ P

Q

σi, (4.26)

where the curve from P to Q should not cross any of the α- and β-cycles. Applied

on (4.25) we obtain

∆ki = −Nc

∫ ∞

f∞
σi +

Nf∑
a=1

∫ x̃a

f∞
σi +

g∑
j=1

Njτji, (4.27)

where we have used (3.7). These g equations together with equation (4.24) are

exactly the ones obtained in reference [77] by the equations of motion of fi, the

coefficients of f in (2.52). Note, that since the path of integration in (4.27) should

not cross the cycles, the integral will actually depend on the choice of curves for our

homology basis. This will be important for the understanding of the global structure

of the vacuum moduli space, but let us first see how to solve these equations.

4.2.3 Mapping to the Jacobian

The point is that (4.27) has direct interpretation on the Jacobian. The integrals over

the holomorphic one-forms exactly give points on the Jacobian. Let us define the

Abel-Jacobi map ϕ into Cg instead of Jac(Σ) by requiring that for ϕi(P ) =
∫ P

Q0
σi
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the integration path should not cross any of the α- and β-cycles, hence making the

definition unique. Equation (4.27) then becomes

∆ki = −Nc(ϕi(∞)− ϕi(∞̃)) +

Nf∑
a=1

(ϕi(x̃a)− ϕi(∞̃)) +

g∑
j=1

Njτji

= −Ncϕi(∞) + (Nc −Nf )ϕi(∞̃) +

Nf∑
a=1

ϕi(x̃a) +

g∑
j=1

Njτji, (4.28)

where ϕi(P ) denotes the ith coordinate of ϕ(P ). Note that this equation is inde-

pendent of the choice of base point Q0.

Let the branch points on the surface be denoted Pi, Qi for i = 1, . . . , g + 1 such

that the ith cut is between Pi and Qi. With the notation in figure 3.3 we have

x(Pi) = ai and x(Qi) = bi. We choose the canonical homology basis as in the figure.

It is then natural to take the base point of the Abel-Jacobi map to be Q0 = Qg+1.

Let us, as before, denote hyperelliptic involution by tilde. If we do not care about

crossing homology cycles, the path from Qg+1 to some x̃ on the lower sheet can be

taken to be the hyperelliptic involution of the path to x,
∫ x̃

Q0
σi =

∫ x

Q0
σ̃i = −

∫ x

Q0
σi

since σi changes sign under the hyperelliptic involution. But since we have to care

about not crossing homology cycles, the path might have to be changed, but only

up to a homology curve. We then have with this choice of base point

ϕ(x̃) ≡L −ϕ(x), (4.29)

where we, as usual on the Jacobian, have to calculate modulo the lattice L =

I · Zg ⊕ τ · Zg. Note that this tells us that the branch points are of order 2.

Using (4.29) taking ϕi(∞̃) = n′i +
∑

j njτji − ϕi(∞) for ni and n′i integers, we

can write equation (4.28) as:

ϕi(∞) =
−∆ki + (Nc −Nf )n

′
i + (Nc −Nf )

∑g
j=1 njτji +

∑Nf

a=1 ϕi(x̃a) +
∑g

j=1 Njτji

2Nc −Nf

.

(4.30)

Another choice of base point would be to set Q0 = ∞̃. Then (4.28) takes the

form

ϕf∞i (∞) =
−∆ki +

∑Nf

a=1 ϕf∞i (x̃a) +
∑g

j=1 Njτji

Nc

. (4.31)

Where ϕf∞ is the Abel-Jacobi map with ∞̃ as the base point. In the flavourless case

this equation tells us that we have a point of order Nc on our Riemann surface. By

the note in section 3.4 this is exactly equivalent to the existence of our meromorphic

function with simple poles in ∞ and ∞̃ with residues −Nc and Nc and integral

periods.
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4.2.4 Counting of parameters

Equations (4.30) are our basic equations that we would like to solve. Remember

that the ingredients needed to solve the problem are: The period matrix τ , the

meromorphic map x, the holomorphic one-form ω and, finally, the point on the

Jacobian corresponding to ∞. Then the solution is given by equation (4.21).

On the other hand, we expect to have g+1 continuous parameters in our solution

of the factorization problem, as we saw in section 2.3. Let us make a counting to

see that this fits.

Firstly, counting without minding the Jacobian structure, we could think of

constructing the solution on the sheets. yred is defined by its 2g + 2 branch points.

Given these we can construct a basis of holomorphic one-forms using (3.27). By

making the integrations of this basis over the α-cycles we obtain a matrix, whose

inverse gives us the linear combinations turning this basis into the basis dual to

the canonical homology basis, like above equation (3.11). Having obtained the σis

we can integrate this from the last branch point to infinity and obtain ϕ(∞) as a

complicated function of the branch points, and also ϕ(xa) can be obtained. Similarly,

we can obtain τij by integrating over the β-cycles. (4.30) then gives g constraints

leaving us with g+2 continuous parameters. Finally, (4.24) gives one more constraint

(ω can be determined by (A.19) and thus the integration can be performed) and

thus leaves us with g + 1 continuous parameters.

Let us now do the counting on the Jacobian. A general genus g hyperelliptic

curve has a period matrix τij with 2g − 1 parameters (see section 3.4). Given the

period matrix one can in principle calculate ϕ(P ) as a function of τ , as above. On

the Jacobian we can also construct x. However, as explained in section 3.4 we

can only determine this up to Möbius transformations. We thus have three free

parameters in determining x. Especially, we can choose any point on the surface

to correspond to ∞. Thus (4.30) only needs to hold for some point on the curve

(ϕ(x̃a) should be kept unspecified and in the end determined by x(ϕ(x̃a)) = −ma).

The point is that the image of the Riemann surface, ϕ(Σ), is a complex dimension

one submanifold in the g-dimensional Jacobian. Thus (4.30), which can be written

as equations in τij, constitutes g − 1 constraints to ensure that the right hand side

is a point on ϕ(Σ). We are thus left with g continuous parameters in τ . x now has

two constraints: x(ϕ(∞)) = ∞ and (4.24) which turns out to determine the scale

of x, as we will see below where we will also see how to construct ω. Thus we only

have one continuous parameter in determining x and in all we have g +1 continuous

parameters.

In this way we have seen that we in principle can obtain τ in terms of g param-

eters. This is the on-shell τ restricted by the equations of motion.

However, all of this is very inexplicit. Even though we have obtained equa-
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tions (4.30), which in principle solves the problem, the point ϕ(∞) is a very com-

plicated function of τ and can not be hoped to be solved for analytically. Even

worse, we have not even written the functions explicitly. In principle, one would

have to construct the σis on the sheets, as we saw above, giving very complicated

expressions. Fortunately, we will in the next section be able to suggest g−1 explicit

equations that give the wanted constraints, and which for sure works for the genus

two case.

4.2.5 Explicit form of equations of motion

Let us now take a bit different view on (4.30). Notice that for the full g × g matrix

τ only the vector
∑

i Niτ
(i) (τ (i) being the ith column of τ) appears explicitly. By

the counting above we know that we should expect g free parameters in the period

matrix. Let us take these to exactly be
∑

i Niτ
(i). Actually, these can not take any

values. E.g.
∑

i,j Niτ
(i)
j Nj has to have a positive imaginary part. Further, we do

not have an explicit expression for τij in terms of its 2g− 1 parameters. This is like

a Schottky problem for the hyperelliptic matrices: The Schottky problem is how to

give equations for τ as being a period matrix for a Riemann surface, i.e. how to

express τ in its 3g − 3 moduli. However, for hyperelliptic surfaces we can at least

make complicated expressions for τ as mentioned in section 3.4. So which constrains

there are on
∑

i Niτ
(i) is complicated, but let us assume that we have g continuous

parameters with some constraints.

Let us first consider the case without flavours since these complicate things by

the presence of the mass poles in (4.30). Without the flavours we have

ϕi(∞) =
−∆ki +

∑g
j=1 Njτji

2Nc

+ 1
2
n′i + 1

2

g∑
j=1

njτji. (4.32)

To proceed, let us first note that we can find the images of the branch points

in the Jacobian. We put the base point at Qg+1 where we, as explained above,

denote the branch points by Pi and Qi. We can now find the ϕ(Pi) and ϕ(Qi)

by integrating along deformed version of the α- and β-cycles (see figure 3.3) that

pass through the branch points and such that their path on the lower sheet is the

hyperelliptic involution of the path on the upper sheet, but of course in the opposite

direction. Since we have a sign change in σi under the hyperelliptic involution,

integrating from one branch point to the other along one of the curves gives half of

integrating all the way around the cycle. However, we should remember not to cross

any of the original cycles on the path of integration. As an example ϕ(P1) =
∫ P1

Qg+1

is obtained by integrating along the lower half of β1 from Qg+1 to P1, thus giving



64 CHAPTER 4. SOLUTION OF THE FACTORIZATION PROBLEM

ϕ(P1) = −τ (1)/2. Similarly we get:

ϕ(P1) = −1
2
τ (1),

ϕ(Q1) = 1
2
e(1) − 1

2
τ (1),

...

ϕ(Pk) = 1
2

k−1∑
i=1

e(i) − 1
2
τ (k),

ϕ(Qk) = 1
2

k∑
i=1

e(i) − 1
2
τ (k),

...

ϕ(Pg+1) = 1
2

g∑
i=1

e(i),

ϕ(Qg+1) = 0, (4.33)

where e(i) is the ith row of the identity matrix.

We can now use this to investigate zeroes of theta functions. Remember from

section 3.5 that a theta function with integer characteristic

[
ε

ε′

]
(which up to a

non-zero factor is θ(z + Iε′/2 + τε/2)) is even (odd) if ε · ε′ is even (odd). Likewise

we call the point z = Iε′ + τε even or odd depending on this. We thus see that 2Qi

for i = 1, . . . , g are all odd while the rest of the branch points (multiplied by two)

are even. As shown in [127] the vector of Riemann constants, K, is then:

K ≡L

g∑
i=1

ϕ(Qi) = 1
2
(ge1 + (g − 1)e2 + . . . + eg)− 1

2

g∑
i=1

τ (i). (4.34)

This follows by the theorem for zeroes of theta functions in section 3.5 that says if we

consider θ(ϕ(P )− e), and D = P ′
1 + . . . + P ′

g fulfills ϕ(P ′
1) + . . . + ϕ(P ′

g) = −K + e,

then, if the function does not vanish identically (and this happens if and only if

i(D) = 0), D is the divisor of zeroes. And on the other hand if D is the divisor

of zeroes then ϕ(D) = −K + e. This combined with the fact that θ(0) 6= 0 and

θ(ϕ(Qi)) = 0 for i = 1, . . . , g (since these were odd) gives (4.34).

It can also be shown that if the divisor D is the sum of g distinct branch points,

then i(D) = 0 and thus θ(ϕ(P )− e) with e = K + ϕ(D) does not vanish identically.

Using this on D = Q2 + . . . + Qg+1 we get that θ(ϕ(P )− e) with

e = K + ϕ(D) ≡L ϕ(Q1) = 1
2
e(1) − 1

2
τ (1), (4.35)

has divisor of zeroes equal to Q2 + . . . + Qg+1. Especially

0 6= θ(ϕ(∞̃)− 1
2
e(1) + 1

2
τ (1)) ∝ θ(−ϕ(∞)− 1

2
e(1) + 1

2
τ (1)). (4.36)
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Now consider D = ∞+Q2 + . . .+Qg (as before we denote the point on the Riemann

surface corresponding to ∞ on the upper sheet by ∞). We calculate e:

e = K + ϕ(D) ≡L ϕ(Q1) + ϕ(∞) = ϕ(∞) + 1
2
e(1) − 1

2
τ (1). (4.37)

Considering θ(ϕ(P ) − e), this is non-vanishing on the Riemann surface as we see

by (4.36) for P = Qg+1. Thus we conclude that the divisor of zeroes is ∞ + Q2 +

. . . + Qg. Especially, it must vanish in Q2, . . . , Qg giving the g − 1 equations:

θ(ϕ(Qi)− e, τ) = θ(1
2

g∑
k=2

e(k) − 1
2
τ (i) + 1

2
τ (1) − ϕ(∞), τ) = 0, i = 2, . . . , g. (4.38)

We could obtain other equations starting from divisors being other combinations

of g different branch points. Let P ′
1, . . . P

′
g−1 be g − 1 different branch points and

consider the divisor D = ∞ +
∑

i P
′
i . Then in the same way as above, D is the

divisor of θ(ϕ(P )− e) where

e = K + ϕ(D) = K + ϕ(∞) +

g−1∑
i=1

ϕ(P ′
i ). (4.39)

Inserting P ′
g−1 gives (θ is even)

θ(ϕ(∞) +

g−2∑
i=1

ϕ(P ′
i ) + K, τ) = 0, (4.40)

where P ′
i can be arbitrary, but different, branch points and their value under φ is

given in (4.33). Only g−1 of these equations can really be thought of as inequivalent.

We will suggest how to choose them below.

As we did above, we can think of ϕ(∞) as being determined completely by our

g continuous parameters
∑

j Njτji leaving us with g − 1 undetermined parameters

in τij. Our point is that we by (4.40) have obtained g − 1 explicit equations which

have to hold if ϕ(∞) really is a point on the surface. Thus we can see the equations

as g − 1 constraints on the g − 1 continuous parameters. We can visualise this by

considering the codimension one analytical set of zeroes for θ(z, τ). We have to vary

the g− 1 parameters in τ such that the g− 1 points in (4.38) are on the zero-set, or

rather such that g − 1 carefully chosen points in (4.40) are on the zero-set.

Note that we have not proven that a τ that solves (4.40) really corresponds to a

solution of the factorization problem, but only the converse. However, the counting

for continuous parameters fits nicely. Since ∞ is an arbitrary point (except for some

choices of branch points) in the derivation of (4.40) we can use it for all points on

the Riemann surface, that are not branch points. I.e.

θ(ϕ(P ) +

g−2∑
i=1

ϕ(P a
i ) + K, τ) = 0, a = 1, . . . , g − 1, (4.41)
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where a indexes the choice of independent sets of branch points. Firstly consider-

ing (4.33), 2g of the branch points are linearly independent on the Jacobian. Now,

choose the sets {P a
i }i=1,...,g−2 such that any two sets has at least two points that are

not in common. This can e.g. be done by setting P a
i = P̂i+a−1 where P̂j denotes the

2g linearly independent branch points (this only uses 2g − 4 of the branch points).

Denoting the g − 1 dimensional analytical set of zeroes for the theta function

by Θ0 we have thus shown that φ(Σ) ⊆
⋂g−1

a=1(Θ
0 −

∑g−2
i=1 ϕ(P a

i ) − K). In general

the intersection of a g − 1 dimensional analytical (curved) set with itself translated

(g−2 times) is a dimension one set. Here it contains the embedding of the Riemann

surface, and thus we can hope it actually is ϕ(Σ). That would mean that the

equations

θ(z +

g−2∑
i=1

ϕ(P a
i ) + K, τ) = 0, a = 1, . . . , g − 1, (4.42)

would hold if and only if z corresponds to a point on the curve.

Actually, it can be shown [127] that the zero set of the theta function is Θ0 =

ϕ(Σg−1) + K, where Σg−1 is the set of integral divisors of degree g − 1, and we can

write ϕ(Σg−1) =
∑g−1

i=1 ϕ(Σ). This means that in the case g = 2 this really holds

true. In the case g = 3 we should look at

(
ϕ(Σ) + ϕ(Σ)− ϕ(P 1

1 )
)
∩
(
ϕ(Σ) + ϕ(Σ)− ϕ(P 2

1 )
)
. (4.43)

This set will, besides ϕ(Σ), at least also contain ϕ(Σ) − ϕ(P 1
1 ) − ϕ(P 2

1 ). However,

this discrete extra possibility could perhaps be ruled out by checking (4.43) for an

extra independent set of P a
i s. But whether equations (4.42) really are enough to give

the necessary constraints that the point is on the curve is not determined directly

by (4.43), and this should be investigated further. The higher genus cases are similar.

But at least we can say that in the genus two case we can give a constraint on the

period matrix that ensures it solves the problem.

Note that all fails if ϕ(∞) is equal to one of the branch points, but this case would

fail anyway since∞ can not be a branch point, because ω has poles of different order

at ∞ and ∞̃ which then would be the same point.

In the case with flavours we also have to take into account the Nf vectors ϕ(x̃a)

which are unknown, but have the constraint that x(ϕ(x̃a)) = −ma. For each of these

vectors we also make constraints as in (4.42). One then has to solve all (Nf +1)(g−1)

equations for τ in terms of the remaining Nf parameters which has to be determined

by the mapping to −ma, or one can take the masses as parameters of the solution,

and see them as extra continuous parameters.

We have thus obtained an explicit, albeit complicated, suggestion for the g − 1

equations of motion (or more in the case of flavours). We now go on to construct ω.
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4.2.6 Construction of ω

By now we think of having determined τ , which depends on the g free parameters.

However, to solve the problem in total we still need x on the Jacobian. But here

we need to remember the constraint (4.24) and thus we need to know ω on the

Jacobian.

For simplicity we consider the flavourless case, but the case with flavours is solved

analogously. Below we will do this explicitly in the g = 0, 1 cases.

The point is that ω∞,f∞ (and in general ωP,Q) can be constructed using theta

functions [135]. Simply take

ω∞,f∞ = d log
θ(ϕ(P )− ϕ(∞)− 1

2
e(1) + 1

2
τ (1))

θ(ϕ(P )− ϕ(∞̃)− 1
2
e(1) + 1

2
τ (1))

. (4.44)

Even though this is a logarithmic derivative it does not necessarily have integer

β-periods since the argument is a multiplicative function. The theta function in the

numerator has divisor of zeroes ∞+Q2+ . . .+Qg as we saw in (4.37) while the theta

function in the denominator in the same way has divisor of zeroes ∞̃+Q2 + . . .+Qg.

Thus the argument is a function with zero in ∞ and pole in ∞̃ and hence we got

a function with the right poles and residues. We also need to show that it is well-

defined on the Jacobian, i.e. that it is not multiplicative as we add e(k) or τ (k)

to ϕ(P ). But this follows directly from the periods of the theta function (3.29)

and (3.30). Using these we can also check that∮
αi

ω∞,f∞ =

∫ ϕ(P )+e(i)

ϕ(P )

ω∞,f∞ = 0. (4.45)

We can then use (4.25) to get ω:

ω = −Ncd log
θ(ϕ(P )− ϕ(∞)− 1

2
e(1) + 1

2
τ (1))

θ(ϕ(P )− ϕ(∞̃)− 1
2
e(1) + 1

2
τ (1))

+ 2πi
∑

i

Nidzi, (4.46)

where the coordinates on the Jacobian are denoted zi and hence σi maps to dzi

on the Jacobian by the definition of the Abel-Jacobi map. We can use the periods

in (3.30) to check formula (4.28).

4.2.7 Construction of x

We now want to find x : Σ 7→ C. x is defined to be a 2-1 meromorphic map with

exactly two poles and hence two zeroes. As we saw in section 3.4 x is defined up

to Möbius transformations, or in other words, has three unconstrained parameters.

But in our case we actually have a chosen x, and we saw that the factorization was

not invariant under the action of PGL(2, C), but rather gave dualities between the
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theories. In our case we have one immediate constraint: That x is infinite in the

point corresponding to infinity i.e. in ϕ(∞) on the Jacobian. Further assuming that

x takes the value x0 at Qg+1, x can be written as:

x = α
θ2(ϕ(P )− 1

2
e(1) + 1

2
τ (1))

θ(ϕ(P )− ϕ(∞)− 1
2
e(1) + 1

2
τ (1)) θ(ϕ(P )− ϕ(∞̃)− 1

2
e(1) + 1

2
τ (1))

+x0. (4.47)

Firstly, this is a well-defined function on the Jacobian, i.e. it is independent under

changes by the periods using (3.29) and (3.30). Here we have for simplicity assumed

ϕ(∞̃) = −ϕ(∞). Consider now x− x0, by our assumptions this should have divisor

2Qg+1 − ∞ − ∞̃. But by the divisors of the involved theta functions that were

determined above this is exactly the case. Now there is only an overall scaling left

since two meromorphic functions with the same poles and residues can only differ

by a scalar factor, because their quotient is a holomorphic function.

In the flavourless case, x0 is actually the last of our continuous parameters since,

as we saw in section 4.1, we have an overall translational symmetry. In the case with

flavour this is not the case. Rather, we can take one of the ϕ(x̃a)s as a parameter of

the solution (remember this is only one degree of freedom). Then x0 is determined

in this free parameter by using x(ϕ(x̃a)) = −ma.

Let us now move on to determine α. We know from the analysis in section 4.1

that scalings are related to Λ and by dimensional analysis we immediately have that

α ∝ Λ. To determine α we use (4.24). Let PΛ0 be the point corresponding to Λ0 i.e.

x(PΛ0). As usual P̃Λ0 denotes its hyperelliptic involution. We think of Λ0 close to

infinity thus PΛ0 is close to P∞, the point corresponding to infinity which we above

have simply denoted ∞. Let v be a local coordinate on the manifold around P∞

such that v(P∞) = 0. Denote by z : C 7→ Cg the map z(v) = ϕ(P (v)) and let

Λ0 = P (vΛ0). Also note that by the definition we have z(0) = ϕ(∞). Then

ϕ(PΛ0) = z(vΛ0) = ϕ(∞) +
∂z

∂v
(0)vΛ0 +O(v2

Λ0
). (4.48)

This gives us

θ(ϕ(PΛ0)− ϕ(∞)− 1
2
e(1) + 1

2
τ (1)) = 0 + (∂zi

θ)(−τ̂)
∂zi

∂v
(0)vΛ0 +O(v2

Λ0
), (4.49)

where we for simplicity have defined

τ̂ = 1
2
e(1) − 1

2
τ (1). (4.50)

In the same way we get using (4.29):

ϕ(P̃Λ0) = ϕ(∞̃)− ∂z

∂v
(0)vΛ0 +O(v2

Λ0
), (4.51)

and

θ(ϕ(P̃Λ0)− ϕ(∞̃)− 1
2
e(1) + 1

2
τ (1)) = −(∂zi

θ)(−τ̂)
∂zi

∂v
(0)vΛ0 +O(v2

Λ0
), (4.52)
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Now we can perform the integration in (4.24) using ω from (4.46):∫ Λ0

fΛ0

ω =

∫ ϕ(PΛ0
)

ϕ(P̃Λ0
)

(
−Ncd log

θ(z − ϕ(∞)− τ̂)

θ(z − ϕ(∞̃)− τ̂)
+ 2πi

∑
i

Nidzi

)
=− 2Nc log vΛ0 −Nciπ − 2Nc log ∂zi

θ(−τ̂)
∂zi

∂v
(0)

+ Nc log θ(ϕ(∞̃)− ϕ(∞)− τ̂) θ(ϕ(∞)− ϕ(∞̃)− τ̂)

+ 2πi
∑

i

Ni(ϕi(∞)− ϕi(∞̃)) +O(vΛ0). (4.53)

To compare with the original calculation in (4.24) we use the expression for x

in (4.47) to get:

Λ0 = x(ϕ(PΛ0)) = α
θ2(ϕ(∞)− τ̂)

(∂zi
θ)(−τ̂)∂zi

∂v
(0)vΛ0 θ(ϕ(∞)− ϕ(∞̃)− τ̂)

+O(v0
Λ0

). (4.54)

Finally, we can compare the two expressions for the integral. Solving for α we get:

α = Λe2πi k
2Nc

(
θ(ϕ(∞̃)− ϕ(∞)− τ̂) θ3(ϕ(∞)− ϕ(∞̃)− τ̂)

θ4(ϕ(∞)− τ̂)

)1/2

× e−
iπ
2 e2πi

P
i Ni

ϕi(∞)−ϕi(f∞)

2Nc , (4.55)

where k = 1, . . . , 2Nc is a new discrete parameter of the solution that arises since

we have to take the 2Nc-root of α. This is the expected parameter from our analysis

of the scalings of the factorized Seiberg-Witten curves that parameterises the 2Nc

vacua. In the case with matter we see that k = 1, . . . , 2Nc−Nf as we would expect.

Note that we could use ϕ(∞̃) ≡L −ϕ(∞) to remove the square root of the right

hand side simply giving the quotient θ2(ϕ(∞)−ϕ(∞̃)− τ̂)/ θ2(ϕ(∞)− τ̂), however

this will give an extra exponential factor in the formula.

4.2.8 The solution

We have thus finally obtained x and we have in principle solved the problem: We can

obtain the value of all the branch points x(Pi), x(Q1) and x(Qg+1) by insertion of

the values of these on the Jacobian (equations (4.33)) in the formula for x. We can,

however, not use (4.47) for the branch points corresponding to Qi with i = 2, . . . , g

since we have zero in numerator and denominator. What we should do is to write

an expression of x as in equation (4.47), but now based on divisors built of Pi, ∞
and ∞̃ in exactly the same way. The two undetermined parameters are found by

equating with the x-function already obtained in Q1 and Qg. We can now use the

new function to obtain x(Qi). This means that yred is determined in our specified

g +1 continuous parameters (together with the discrete parameters). ω can then be

constructed directly as in (A.19) and the uks can be found.
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The technical problem in obtaining the uks by (4.3) using our obtained ω, x and

ϕ(∞) is that we do not directly know the one-dimensional curve of our Riemann

surface in the g-dimensional Jacobian. This is, of course, not a problem for g = 1

where we do not have any further constraints on τ as in the higher genus cases. We

will examine this solution below in section 4.5.

There might, however, be a way round this problem. To construct the uks

by (4.3) or PNc by (4.12) we need to know the derivatives of ϕ(P ). Let us now

remember (4.41) could be used for any point, P :

θ(ϕ(P ) +

g−2∑
i=1

ϕ(P a
i ) + K, τ) = 0, a = 1, . . . , g − 1, . (4.56)

Letting v be a local coordinate around some point P0 we thus get by differentiation:

g∑
j=1

∂ θ(z +
∑g−2

i=1 ϕ(P a
i ) + K)

∂zj

∣∣∣
z=ϕ(P0)

dϕj(P (v))

dv

∣∣∣
v=0

= 0, a = 1, . . . , g− 1. (4.57)

As above, we hope that these are really independent equations, and we have thus

obtained g − 1 equations in dϕi(P ) giving os the wanted derivatives. In the case

g = 2 we know it works, and we have obtained a relation between dz1 and dz2

for the curve where z1 and z2 are the coordinates on the Jacobian. As soon as

equation (4.40) has been solved, e.g. numerically, we can get the uks directly.

Let us note that the method for the case of Nf = 2Nc is somewhat different,

but we can use that the solutions with Nf = 2Nc can always be found using the

solutions of Nf = 2Nc − 1 (or less flavours) as we saw in the study of PGL(2, C).

4.3 Global structure of the vacuum moduli space

We have seen how to obtain solutions of the factorization problem that depends on g

continuous parameters in τ and one extra continuous parameter which is an overall

translation in the flavourless case, and the position of a mass point in the case with

matter. Further, we have discrete parameters Ni, ∆ki and k. However, different

specifications of these parameters may give rise to the same solution. Examining

when this happens tells us about the global structure of the vacuum moduli space.

Importantly, one of the reasons for this can be that we have physically dual descrip-

tion of the same physics. E.g. it turns out that classical solutions with different

specifications of Ni can be continuously related to each other. The structure of vacua

has been studied extensively in the literature [62, 63, 64, 77, 78, 79, 80, 81, 66, 67].

We will here give a crude overview of the structure using the knowledge we have

obtained above. Since the Seiberg-Witten curve should be the same for the two sets
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of parameters, the period matrix must be related by a modular transformation. We

can then split into two cases: Those where τ is unchanged and those where the τs

are related by a modular transformation.

4.3.1 Equivalences with identical τ

We will first examine equivalences that have identical τ . Let us start by considering

the case without flavour. We expect Ni and ∆ki to be defined only modulo Nc

because of the poles with residue ±Nc for ω. Indeed, considering a solution of the

problem with given α- and β-curves, we can think of stretching αi or βi such that it

crosses ∞ or ∞̃ (this is most easily visualised on the torus in figure 3.1) one or more

times, but we still have a canonical homology basis. Since what we have done is

homologically equivalent this does not change τ , but crossing the pole change the αi

or βi integration of ω by ±2πiNc, i.e. changing Ni or ∆ki by ±Nc. This shows that

Ni and ∆ki are only defined modulo Nc. However, when keeping track of the discrete

parameters [N, ∆k, k] where N and ∆k are vectors, we should be careful since k is

also changing. The reason is that the points ϕ(∞) and ϕ(∞̃) changes by periods

when we move the homology curve, since the path of integration defining the points

must not cross any of the basis curves. Now, k was defined as a comparison between

the integral (4.53), that changes by periods of ω i.e. by Nis or ∆kis, and (4.24),

which does not take the positions of the curves into consideration. This means that k

will change by the Nis or ∆kis. We then e.g. get [N, ∆k, k] ≡ [N, ∆k−Nce
(i), k−Ni].

Finally, k is by definition periodic with 2Nc or in the case with flavours by

2Nc −Nf .

For the case with flavour we also have the poles at minus the masses on the

lower sheets, and the poles at the infinities have residues −Nc and Nc − Nf . We

thus have a much larger group of equivalences. If we have a single mass point we

can actually change the Ni and ∆kis by one at a time. In principle they can then

all be set to zero. But the information is not gone, it has merely been exchanged

by the position of ϕ(x̃a) on Cg rather than on the Jacobian Cg/L, and remember

that in this case the position of (one of the mass points) is one of the continuous

parameters. In principle it should lie in Cg/L, but defining it on Cg have actually

put the information of the Ni and ∆ki into the position of the continuous parameter.

If the masses are all the same we can not simply change Ni and ∆ki by 1, but only

by Nf at the time. However, we still have the periodicity with both Nc and Nc−Nf .

Finally, which should also remember that we have the transition of moving the

mass pole from the lower sheet to the upper sheet changing to the Higgs branch

root and we no longer have
∑

i Ni = Nc.

Below we will also discuss the structure in the case of the explicit construction
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of the genus one and zero curves.

4.3.2 Equivalences with different τ

Physically more interesting are the equivalences that involve a change of τ . In this

case we consider a change in canonical homology basis to another canonical basis as

in (3.9): (
α′

β′

)
= M

(
α

β

)
≡

(
A B

C D

)(
α

β

)
, M ∈ Sp(2g, Z). (4.58)

We will now get a modular transformed period matrix of the form (3.11)

τ ′ = (C + Dτ)(A + Bτ)−1. (4.59)

In the genus one case the transformations are simply τ 7→ τ + 1 and τ 7→ −1/τ .

The Seiberg-Witten curve stays the same since we have merely changed to other

basis curves. But the new N ′
i and ∆k′i are now linear combination of the old ones

by (4.58): (
N ′

∆k′

)
=

(
A B

C D

)(
N

∆k

)
,

(
A B

C D

)
∈ Sp(2g, Z). (4.60)

where N and ∆k are again vectors. We thus see that all of the Nis and ∆kis can

mix, but under the constraint of the symplectic group. We should also remember

that we can have a change of k under the transformations.

Physically this is important since it means that solutions with different Nis can

really correspond to the same solution. We can now think of a process where we

take the classical limit Λ 7→ 0 thereby shrinking the cuts to poles of ωcl . with the

given Nis. We demand that the number of cuts is unchanged in the process, thus

considering the same genus factorization problem for all Λ. Notably, this shrinking

of the cuts happens between the branch points in the α-cycles. If we now again

consider the quantum case, but make a transformation to different cycles (4.58)

we have new N ′
is and ∆kis. We then go to the classical solution, but this time

it happens along the new α′ cycles (it is thus other branch points that now move

close to each other in the semi-classical limit) and we end up in another classical

solution where the cuts shrink to poles of ω′cl . with the N ′
is. As promised, we see

that we can interpolate continuously between vacua with different Nis, and (4.60)

gives the possibilities. Importantly, we can also have solutions with some Ni = 0 in

the quantum case. If we can find a transformation such that all N ′
i 6= 0 we can take

the classical limit for these without having to go to lower genus factorization. We

have simply put the cuts “wrongly”.

We now move on to give the solution of factorization problems in the simplest

cases, namely genus 0 and 1, where we can solve the problem exactly.
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4.4 Factorization – Genus Zero Case

This section is a revised version of section 5 in [3].

The genus zero case without fundamental matter was solved in 1995 by Douglas

and Shenker using Chebyshev polynomials [65]. We will here study the case with

fundamental matter which was first solved by Demasure and Janik [68] using random

matrices. We will here give an easy way of solving the problem in the spirit of the

above higher genus solutions where we solve the problem using the meromorphic

one-form ω.

In the genus zero case (complete factorization) we expect a single continuous

parameter in the solution.3

Let us start from the reduced curve which in this case is given by the equation

y2 = F2(x) ≡ (x− a)(x− b) . (4.61)

As explained in section 4.1, we have to construct a meromorphic one-form ω on the

curve with residues −Nc at infinity on the physical sheet, Nc−Nf at infinity on the

second sheet and with residue 1 at x = −mi.

It turns out to be much easier to use an unconstrained parametrization of the

reduced curve, i.e. to pass to the universal covering space.

4.4.1 Parametrization and Z2 map

Since the curve (4.61) has genus zero, it can be parameterized by functions on a

sphere, which is represented as a compactified complex plane. This can be done

very easily. Let us first rewrite the equation (4.61) in the form

y2 = (x− T )2 − 4R , (4.62)

where we used the notation of [68]

T =
a + b

2
, R =

(a− b)2

16
. (4.63)

Then a rational parameterisation is

x = T + 2
√

R
1 + z2

1− z2
, y = 2

√
R

2z

1− z2
. (4.64)

For our application we have to keep track of some additional structure on the

curve. Firstly, we have to single out points on the sphere ∞+, ∞− which correspond

to points at infinity in the (x, y) plane. Here these are z = ±1. Secondly, it is

3For the complete factorization of the Seiberg-Witten curve with fundamental matter see
Ref. [68] and Refs. [53, 69].
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convenient to exhibit the Z2 covering transformation which exchanges the sheets

(x, y) → (x,−y) corresponding to the hyperelliptic involution in the higher genus

cases. In terms of the z coordinate it is represented as z → −z. Its fixed points

are exactly the branch points of the curve (4.61). These are z = 0 and z = ∞ and

correspond to x = T + 2
√

R and x = T − 2
√

R respectively.

4.4.2 The meromorphic one-form

Using the z coordinate we can at once write the unique meromorphic one-form with

the prescribed poles and residues

ω =

 −Nc

z − 1
+

Nc −Nf

z + 1
+

Nf∑
i=1

1

z + zmi

 dz , (4.65)

where the location of the pole corresponding to x = −m can be found to be

zm = ±
√

(m + T )2 − 4R

m + T − 2
√

R
. (4.66)

The two choices of sign correspond to putting the pole on either of the two sheets.

Since all parameters are complex we can always analytically continue the answer

from one sheet to the other one. As mentioned above, this has the interpretation of

interpolating between Coulomb and Higgs vacua.

4.4.3 Factorization solution

We can now calculate the uk’s using (4.3). Remarkably enough all the formulas from

[68] (compare e.g. formulas (38)-(40) in [136]) now follow from the simple formula

uk = −1

k
resx=∞ xkω = −1

k
resz=1

(
T + 2

√
R

1 + z2

1− z2

)k

· ω . (4.67)

The final ingredient is the calculation of Λ. We use formula (4.24) in the form:

log Λ2Nc−Nf = − lim
ε→0

{∫ 1−ε

−1+ε

ω −Nc log x(1− ε)− (Nc −Nf ) log x(−1 + ε)

}
.

(4.68)

Taking for simplicity all masses mi = m equal, a brief calculation gives

Λ2Nc−Nf = RNc−
Nf
2

(√
(m + T )2 − 4R−m− T + 2

√
R√

(m + T )2 − 4R + m + T − 2
√

R

)Nf

=
RNc∏Nf

i=1
1
2

(
m + T +

√
(m + T )2 − 4R

) , (4.69)



4.5. FACTORIZATION – GENUS ONE CASE 75

which is exactly the formula obtained from matrix models in [68]. Plugging these

parameters into the SW-curve will lead to a complete factorization regardless of

whether the flavour poles are on a single or on different sheets (which amounts to a

choice of the signs of the relevant square-roots). Equation (4.69) exactly gives one

constraint so we end up with one continuous parameter as expected.

4.4.4 Number of vacua

Finally, let us discuss the number of such vacua. From the above construction one

can obtain a discrete set of 2Nc −Nf vacua in the following manner. Let us rescale

the parameters by

T → eiαT , R → e2iαR , m → eiαm . (4.70)

Then x is effectively rescaled as x → eiαx. In order for the resulting factorization

to be related to the same theory, Λ2Nc−Nf should be unchanged hence

α = 2π
k

2Nc −Nf

, k = 0, . . . , 2Nc −Nf − 1 , (4.71)

which proves the claim.

However, the rescaling above did not keep the mass invariant. What we should

really do is to translate to the theory with zero mass which, as we saw in the study

of PGL(2, C) is in one-to-one correspondence with this case. For m = 0 the scalings

does not change the mass, showing that we have 2Nc −Nf vacua.

Also note that in the flavourless case we only have Nc vacua, since R 7→ αR

should keep RNc constant. This makes the genus zero case special compared to the

higher genus case [65].

Let us now continue to the case of genus one factorization.

4.5 Factorization – Genus One Case

This is a modified version of section 6 in [3].

We now solve the genus one case corresponding to gauge group breaking U(Nc) 7→
U(N1)×U(N2), but in the case with fundamental matter. The method is the same

as for the general genus cases above. Since g − 1 = 0 we do not have any equations

of motions for the period matrix – it is itself one of the continuous parameters. The

reason is that the Riemann surface and the Jacobian are in fact equivalent in the

genus one case as mentioned in section 3.4. Since the covering of the Jacobian is

simply C, the determined value of ϕ(∞) will always be a point on the curve.

This case is interesting as, in contrast to the genus zero case described above,

there is gauge symmetry breaking, one has additional discrete parameters labelling
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the vacua (inequivalent factorizations), new types of Coulomb vacua appear with

increasing Nc which cannot be induced from those with smaller Nc. Even more

interestingly, differing discrete labels like (N1, N2, ∆k, k) 6= (N ′
1, N

′
2, ∆k′, k′) may

lead to the same factorized SW-curves thus allowing for dual descriptions of the

same physics, as we discussed above.

Here we start from the reduced curve which in this case is given by the quartic

equation

y2 = F4(x) ≡ (x− a)(x− b)(x− c)(x− d) . (4.72)

Note that for cubic superpotentials W (x) relevant to this case the right hand side

can be written as F4(x) = W ′(x)2 − f(x) with f(x) a linear polynomial, as we saw

in (2.58).

4.5.1 Parametrization and Z2 map.

Since the above curve is quartic, it has genus one and hence can be parameterized

by a torus i.e. the complex plane modulo (1, τ), where τ is a complex parameter

(the modulus) with positive imaginary part.

Again we would like to exhibit the Z2 covering map (the hyperelliptic involution)

moving between the two branches of (4.72). As we saw in (4.29) a convenient choice

of base point allow us to set

z → 1 + τ − z . (4.73)

Note that we here, unlike what we did above, will stay on the fundamental region,

equivalent to the Jacobian rather than the covering C. This means that the modular

addition in (4.29) is fixed to be 1 + τ .

There are four fixed points on the torus: 0, 1/2, τ/2 and 1/2 + τ/2 which under

the embedding x(z), which we will soon give explicitly, go over to the branch points

of (4.72). This is as we saw it in (4.33), but moved to the fundamental region.

Next we need to mark the two points corresponding to the infinities on the upper

and lower sheet – these will be denoted ∞+ and ∞− respectively. In figure 4.2 the

torus is illustrated with the two marked points.

The points at infinity are here denoted by∞+ for the point corresponding infinity

on the upper sheet and ∞− for the lower sheet. These should go to each other under

the Z2 covering map thus giving the relation

∞+ = 1 + τ −∞− . (4.74)

We will find that then ∞− will be fixed completely when constructing the meromor-

phic one-form.
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Figure 4.2: The figure shows the torus with modular parameter τ and the two points

∞+ and∞− corresponding to the infinities, denoted by dots, on the upper and lower

sheet. Also shown are the points zi, denoted by crosses, corresponding to the masses

mi. z̃i are the corresponding points on the lower sheet.

4.5.2 The meromorphic one-form

Let us now construct the meromorphic one-form with the appropriate properties this

time explicitly in the case with matter. The form has to have poles at z = ∞± and

zi such that x(zi) = −mi (see figure 4.2) with the prescribed residues and integral

periods (4.22)

resz=∞+ ω = −Nc, resz=∞− ω = Nc −Nf , resz=z̃i
ω = 1, (4.75)

1

2πi

∫ 1

0

ω = N1,
1

2πi

∫ τ

0

ω = ∆k , (4.76)

where we have used that the α-cycle integration corresponds to integrating from 0

to 1 on the torus, and the β-cycle from 0 to τ . We again have to think of definite

curves for the integration not encircling the poles of ω.

As we saw in (4.25) we can write ω uniquely as

ω = Ncω∞−∞+ +
∑

i

ωz̃i∞− + 2πiN1dz , (4.77)

where we have used that the holomorphic one-forms on the torus has the simple

form of a constant times dz. The constant is then determined by the α-period

in (4.76). The remaining β-period gives the important constraint determining ∞+

(which is equal to −∞− modulo (1, τ)). Thus it seems like no continuous parameter

is undetermined on the torus except the modular parameter τ . However, for the

embedding we have a scalar factor and a translation. We will see, as above, that

we determine the scale factor using (4.24) thus leaving us with two continuous

parameters.
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Now, the main point is that on the torus we have a formula for ωPQ using the

elliptic theta function:

θ(z, τ) =
∞∑

n=−∞

eiπτn2+i2πzn . (4.78)

We will often suppress the τ dependence and just write θ(z). The theta function is

a multiplicative holomorphic function with periods (3.29) and (3.30):

θ(z + 1, τ) = θ(z, τ), θ(z + τ, τ) = e−iπτ−i2πzθ(z, τ) . (4.79)

Importantly, θ(z) is only zero in (1 + τ)/2 and the multiplicity is one (3.39). Us-

ing (4.79) this gives us the formula for ωPQ (see e.g. [137])

ωPQ = d log
θ(z − P + 1+τ

2
)

θ(z −Q + 1+τ
2

)
=

θ′(z − P + 1+τ
2

)

θ(z − P + 1+τ
2

)
dz −

θ′(z −Q + 1+τ
2

)

θ(z −Q + 1+τ
2

)
dz . (4.80)

Using (4.77) we thus get an explicit expression for ω:

ω = Ncd log
θ(z −∞− + 1+τ

2
)

θ(z −∞+ + 1+τ
2

)
+
∑

i

d log
θ(z − z̃i + 1+τ

2
)

θ(z −∞− + 1+τ
2

)
+ 2πiN1dz . (4.81)

We should now perform the β-cycle integration in (4.76). Using (4.79) this gives

−Nc∞+ + (Nc −Nf )∞− +
∑

i

z̃i + N1τ = ∆k , (4.82)

which also directly follows from (3.15) that takes the form
∫

β
ωPQ = 2πi(P − Q).

We may now use the relation (4.74) between ∞+ and ∞− derived earlier to obtain

∞− =
(N1 −Nc)τ −∆k −Nc +

∑
i z̃i

Nf − 2Nc

, (4.83)

where we think modulo (1, τ) on the torus. Note that, as is suggested by this

equation and mentioned above, we could trade in N1 and ∆k for the location of the

flavour poles in appropriate copies of the fundamental domain.

At this stage we have uniquely fixed the meromorphic one-form ω and hence we

may now extract the factorization solution.

4.5.3 Factorization solution

The uk’s are given by calculating the residues of x(z)kω at z = ∞+ using (4.3):

u
(fact)
k = −1

k
resz=∞+ xkω . (4.84)

We thus have to construct the embedding map x(z). It has to be a meromorphic

map with single poles at ∞+, ∞−. Then necessarily it will have two zeroes z0 and,
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since it should be invariant under the Z2 map, z̃0 = 1 + τ − z0. It is thus fixed

uniquely up to a multiplicative constant B and the embedding map takes the form

x(z) = B
θ(z − z0 + 1+τ

2
)θ(z − 1− τ + z0 + 1+τ

2
)

θ(z −∞+ + 1+τ
2

)θ(z −∞− + 1+τ
2

)
, (4.85)

In order to compute the complete solutions it remains to determine Λ. To this end

let us perform the integral in (4.24): We take zΛ0 as the point corresponding to Λ0

on the upper sheet, i.e. we think of zΛ0 as being close to∞+. Then z̃Λ0 = 1+τ−zΛ0 .

Using (4.81) we get (in close similarity with (4.53))∫ zΛ0

1+τ−zΛ0

ω = − log(zΛ0 −∞+)2Nc−Nf + log θ(∞+ −∞− + 1+τ
2

)2Nc−Nf

+
∑

i

log
θ(∞+ − z̃i + 1+τ

2
)

θ(∞− − z̃i + 1+τ
2

)
+ log θ′(1+τ

2
)Nf−2Nc

+ (Nc + N1)2πi(∞+ −∞−)−Nfπi +O(zΛ0 −∞+) , (4.86)

where we have used θ(−z + 1+τ
2

) = exp(iπ + i2πz)θ(z + 1+τ
2

) which can be proven

using (4.79) and that θ(z) is an even function. Since x(z) has a pole of order one at

∞+ we can write

Λ0 = x(zΛ0) = A
1

zΛ0 −∞+

+O((zΛ0 −∞+)0) , (4.87)

where A is a constant. Thus

Λ0(zΛ0 −∞+) = A +O(zΛ0 −∞+) . (4.88)

Hence we get the relation

log Λ
2Nc−Nf

0 + log(zΛ0 −∞+)2Nc−Nf = log A2Nc−Nf +O(zΛ0 −∞+) . (4.89)

Using this to equate (4.24) and (4.86), we finally see that (4.24) determines the scale

A of x(z):

log A2Nc−Nf = log Λ2Nc−Nf + log θ(∞+ −∞− + 1+τ
2

)2Nc−Nf

+
∑

i

log
θ(∞+ − z̃i + 1+τ

2
)

θ(∞− − z̃i + 1+τ
2

)
+ log θ′(1+τ

2
)−2Nc+Nf

+ (Nc + N1)2πi(∞+ −∞−)−Nfπi . (4.90)

This is solved as

A = Λe
i2πk

2Nc−Nf
θ(∞+ −∞− + 1+τ

2
)

θ′(1+τ
2

)

(∏
i

θ(∞+ − z̃i + 1+τ
2

)

θ(∞− − z̃i + 1+τ
2

)

) 1
2Nc−Nf

× e
2πi(∞+−∞−)

Nc+N1
2Nc−Nf e

−πi
Nf

2Nc−Nf , (4.91)



80 CHAPTER 4. SOLUTION OF THE FACTORIZATION PROBLEM

where k is an integer, k = 0, . . . , 2Nc−Nf − 1, which is a discrete parameter of our

solution.

Let us now relate A to the scalar factor B appearing in the expression (4.85) for

the embedding x(z) using limz→∞+ x(z)(z−∞+) = A. The resulting expression for

B is

B = Λe
i2πk

2Nc−Nf
θ(∞+ −∞− + 1+τ

2
)2

θ(∞+ − z0 + 1+τ
2

)θ(∞+ − 1− τ + z0 + 1+τ
2

)

×
(∏

i

θ(∞+ − z̃i + 1+τ
2

)

θ(∞− − z̃i + 1+τ
2

)

) 1
2Nc−Nf e

2πi(∞+−∞−)
Nc+N1
2Nc−Nf e

−πi
Nf

2Nc−Nf . (4.92)

Thus we have solved the problem and the solution is summarized by Eqs. (4.81),

(4.84), (4.85) and (4.92). As expected, the construction depends on the two contin-

uous parameters τ and z0 (modulo (1, τ)) and the discrete parameters N1, ∆k and

k. The physical given parameters are Nc, Nf , Λ and the masses mi. In principle we

should determine the z̃is, i = 1, . . . , Nf , using

x(z̃i) = −mi, i = 1, . . . , Nf . (4.93)

However, the dependence on z̃i is extremely complicated since also x(z) in (4.85)

depends on the z̃is through B (see (4.92)). There is, however, one exception: If

all the masses are the same, mi = m, and correspondingly z̃i = z̃1. Then we can

consider x′(z) = x(z) + m. This is zero in z̃1 and has the same poles as x. Thus x′

is given by (4.85) and (4.92) with z̃1 = z0, and (4.84) is replaced by

u
(fact)
k = −1

k
resz=∞+ (x′ −m)kω . (4.94)

Of course, in the case of different masses we can in the same way trade z0 for an

arbitrary z̃i leaving only Nf − 1 points to be determined by (4.93).

We have checked our solution explicitly (using algebraic computer programs) for

various specific values of Nc, Nf , including the range Nc ≤ Nf < 2Nc for which

we have the quantum corrected Newton relation (4.15). Alternatively, one may find

PNc directly using (A.14) which is equivalent to (4.15). As a consistency check of

our solution we have also considered the decoupling of (infinitely) massive flavours

and checked that our formulas reduce to the case of pure N = 2 theory without

flavours. We present some details of the computation in Appendix B.

We note that the solution satisfies a multiplication map. This map was found in

Ref. [37, 62] for the case without flavours and further generalized to the case with

flavours in Ref. [78]. For any solution, with given Nc, N1, ∆k, it follows from (4.82),

(4.83), (4.92) that we also have a solution for tNc, tN1, t∆k with t an integer, while

at the same time each z̃i is mapped onto t copies of the same z̃i. This holds similarly

in the higher genus cases.
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We finally remark that not all of the above discrete and continuous parameters

in the set (N1, ∆k, k, τ, z0) give rise to different solutions. E.g. the periodicity in k

is manifest and hence we have

(N1, ∆k, k) ≡ (N1, ∆k, k + 2Nc −Nf ) . (4.95)

Also periodicities of N1 and ∆k can be found. E.g. we have

(N1, ∆k − (Nf − 2Nc), k) ≡ (N1, ∆k, k − 2Nc − 2N1) , (4.96)

(N1 + Nf − 2Nc, ∆k, k) ≡ (N1, ∆k, k − 2Nc − 2∆k) . (4.97)

Equation (4.96) is easily seen noting that ∞− from equation (4.83) changes by one.

However, this do not change the theta functions in the formula for x. Thus the

relation follows directly from equation (4.92). On the other hand, the periodicity in

N1 changes ∞− by τ and this means that x and the scale B changes non-trivially

and the relation requires a calculation to check. We note that (4.97) depends on

the choice of the (2Nc − Nf )-root for the part depending on the mass-points z̃i

in (4.92). This shows the complexity in studying the vacuum structure when we

have fundamental flavour in the theory compared to the flavourless case [66], see

also the discussion above. Similarly, we also expect modular transformations that

change τ to τ + 1 or −1/τ .

Finally, let us mention that this method does not work for Nf = 2Nc since ∞+

diverges. However, as mentioned above in the analysis of the PGL(2, C) structure

we can actually obtain the solutions of this case directly from the case Nf = 2Nc.

The cases Nf > 2Nc are actually straightforwardly obtained by what we have found.

4.6 Conclusions and Outlook

In this chapter we have studied the factorization of the U(Nc) Seiberg-Witten curve

to a reduced general genus g curve. In the case where we softly break the N = 2

supersymmetry to N = 1 by a tree-level superpotential, this corresponds to the

breaking of the gauge group as U(Nc) 7→ U(N1) × · · · × U(Ng+1) for the Coulomb

vacua that we are studying. We have also taken into account the cases where we

include Nf fundamental matter multiplets into the theory.

By examining the PGL(2, C) group acting on the Seiberg-Witten curve we have

found that the same genus factorizations of curves with (Nc, Nf ) are equivalent to

(Nc, 2Nc), but with 2Nc − Nf of the masses being equal. Especially, the vacua

solutions for the case Nf = 2Nc are equivalent to the solutions of Nf = 2Nc − 1 (or

less flavours). So, in principle, we can always consider Nf < 2Nc. However, one can
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also perform the analysis for Nf = 2Nc in much the same way as above, but with

some important modifications. The non-asymptotically free cases of Nf > 2Nc can

actually also be solved by our methods.

The method of solving the problem has been to study the one-form ω with pre-

scribed poles and integral periods (the existence of which was shown in appendix A).

The important new step here was to map the problem to the Jacobian of the reduced

curve. This allows us to obtain the one-form ω and the meromorphic function x that

is needed to solve the factorization problem. In the case without matter, we have

further given a suggestion for g− 1 equations of motions for the on-shell period ma-

trix using hyperelliptic theta functions. Indeed, in the genus two case the equation

gives the right constraint. Still, however, there remains the Schottky-like problem of

solving the equations within the space of hyperelliptic period matrices, which only

is a 2g − 1 dimensional subset of the Siegel upper half space of symmetric matrices

with positive imaginary part.

The g − 1 equations of motion has the interpretation of demanding that the

point on the Jacobian determined by the integral periods of ω, i.e. Ni and ∆ki,

really is a point on the hyperelliptic one-dimensional curve. The period matrix is

then determined in g parameters, the last continuous parameter of the solution being

an overall translation that the period matrix does not depend on.

Note here the reduction in the number of equations of motion: We start by g +1

equations of motion obtained by e.g. varying in terms of the glueball superfields Si

with i = 1, . . . , g + 1 .

The case with fundamental matter is more complicated, and here we actually get

(Nf + 1)(g − 1) equations in g − 1 + gNf parameters with further Nf constraints

that the mass points on the Jacobian should really correspond to the given masses.

One of these last equations can further be traded for the extra continuous parameter

in the solution.

But this still means a simplification. In the genus one-case we have no equations

of motion to solve for the period matrix, and we have given the complete solution

(taken from [3]). The solution for the genus zero case was also obtained in an

easy way. For the higher genus cases we have described exactly how to construct

the solution of the problem, e.g. by obtaining all uks, once the on-shell period

matrix has been found. The genus two case could be solved by specifying the

continuous parameters and then solve for the remaining component of the period

matrix numerically using the new equation of motion. The solution with the given

parameters can then be constructed.

Using the solution we have also seen the action of the multiplication map that

embeds solutions with gauge group U(Nc) into solutions with gauge group U(tNc), t

being integer but, as in the PGL(2, C) case, without changing the genus. It would be
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nice to investigate these mappings of solutions even further for instance considering

genus changing transformations like x 7→ xt in the Seiberg-Witten curve.

Finally, we have also given a crude investigation of the global structure of N = 1

vacua. We have seen that we have a discrete parameter k = 1, . . . , 2Nc−Nf labelling

the equivalent vacua. We also found that the structure is directly related to the

choice of explicit curves in the canonical homology basis, and we have given the

allowed transformations between the Nis, ∆kis and τ . Further, we have seen that

also k changes with the transformations and what the meaning of these changes is

on the Jacobian. For the case with flavours, the Jacobian also plays an important

role and we saw that the Nis and ∆kis could be exchanged by the position of the

flavour points in the covering of the Jacobian, Cg.

It would be interesting to pursue a better understanding of the global structure

of the vacuum moduli space by a more detailed analysis along the lines of [62, 77,

63, 64]. There might be new discrete parameters when solving the g − 1 equations

of motion for the period matrix, but we got a good understanding of how to obtain

the relations between Ni, ∆ki and k. The analysis of the connected components of

vacua and the dual descriptions of the same physics is dependent on these relations

between the discrete parameters.

Further, it would be nice to extend the analysis to other classical gauge groups

and more complicated matter. As we saw in chapter 2, the Seiberg-Witten curves

for e.g. the SO(N) gauge groups are rather similar, and an extension to these groups

seems natural (see also [59, 53] for the genus zero cases). Also quiver gauge theories

would be interesting to consider since we here are faced with non-hyperelliptic curves,

and the integrality of the periods also plays an important role here [138]. Actually,

our considerations above might be useful in these cases too. The places were we

really depended on the curve being hyperelliptic was in the determination of the

branch points. It might be possible to find these for the non-hyperelliptic curves in

question as well.

Another interesting line of investigation is the implications for the low energy

potential (on-shell effective superpotential). The couplings in the tree-level super-

potential gk and the coefficients, fi, of fn−1(x) can be obtained directly using (2.58)

both in terms of our g + 1 continuous parameters (this is, for simplicity, the case

where the degree of the tree-level superpotential is g +2). Notice that this compari-

son is particularly easy to do since the roots of yred simply is given by the constructed

meromorphic function x used on the derived values of the branch points on the Jaco-

bian. The effective potential itself can be obtained by (2.51). It would be important

to get the expectation values of the glueball superfields 〈Si〉(gk). Naturally, this

should be examined in more detail, especially for the two-cut case where we have

found the exact solution with matter (see also [139]).
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At last, let us mention that it would be interesting to investigate more spe-

cial points of the moduli space where we have e.g. higher order roots, etc. (see

e.g. [140]). The investigation of such points are especially important in light of

the connection that was found between rigid factorizations of Seiberg-Witten curves

and Grothendieck’s “dessins d’enfants” [141]. Here rigid factorization means that

the factorization problem should leave only an overall translation parameter free.

Grothendieck’s programme of classifying these “dessins d’enfants” into orbits of the

Galois groups is conjectured to be related to the classification of special phases of

the N = 1 vacua.



Chapter 5

Black Holes on a Circle

In this chapter we will very briefly outline the knowledge of static and neutral

Kaluza-Klein black holes on a circle. Even though we only need the results for the

five-dimensional case to study the three-charge black holes on a circle in the next

chapter, we will state the results in general dimensions here.

The review is based on [8] and [142], but see also [9].

5.1 Mass and Tension

The objects of our interest in this chapter are black holes on a circle. Hereby we

mean a (physically reasonable) object in gravity with at least one horizon that

asymptotes to Minkowski space times a circle (Kaluza-Klein space). Further, we

make the important restriction in our study to only consider static metrics (especially

no angular momentum) and in this chapter we will also assume the solutions to be

neutral.

5.1.1 Asymptotics

Denoting the total dimension D, the solutions should asymptote to Md × S1 with

D = d + 1. Here Md denotes d-dimensional Minkowski space. We write the asymp-

totic metric of Md × S1 as

ds2 = −dt2 + dr2 + r2dΩ2
d−2 + dz2, (5.1)

where t is the time coordinate of Md, and r is its radial coordinate, while dΩd−2

describes the angular coordinates. The coordinate of S1 is denoted z which we

assume to have period L, i.e. the radius of the circle is L/2π.

As shown in [104] the leading behaviour of the metric gµν is determined by the

two quantities ct and cz defined by (for a localised object)

gtt ' −1 +
ct

rd−3
, gzz = 1 +

cz

rd−3
, (5.2)

85
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and the rest of the leading behavior of the metric can be written in these two

variables by gauge choice.

We then expect that we will have two physical quantities that we can measure.

Indeed, these two quantities turn out to be the mass and the tension along the circle,

and these are all the long-range quantities that we can measure. The latter arises

because of the self-interaction of the black hole over the circle. It can be seen as

measuring the binding energy of the configuration when we use the covering space

of the circle.

5.1.2 Calculation of mass and tension

To calculate the mass, M , and tension, Tz, in terms of ct and cz let us use the method

of equivalent sources (following [143]): Replace the black hole with an everywhere

weakly gravitating (and hence horizonless) object that has the same asymptotics.

Let us abuse the notation and also denote its metric by gµν . We split the metric as

gµν = ηµν + hµν , (5.3)

where we consider hµν to be small. In the linear approximation to gravity we consider

hµν to leading order and can therefore raise and lower by the Minkowski metric. The

linearised equations of motion are then

−1

2

(
�hµν + h λ

λ ,µν − h λ
µ ,νλ − h λ

ν ,µλ

)
= 8πGDSµν , (5.4)

where GD is the D-dimensional Newton’s constant. Sµν is related to the energy-

momentum tensor Tµν (containing both the gravitational and the matter part) as

Sµν ≡ Tµν − 1
D−2

gµνT . This can be reversed as

Tµν ' Sµν −
1

2
ηµνS. (5.5)

Let us assume that the equivalent metric only depends on r (the real metric will

also depend on z (see next section), but we assume an asymptotic ∂z Killing vector).

Further, we assume it has a diagonal form (remember we assumed static metrics).

What we are interested in are the physical parameters which are integrals of Tij over

all of space. By (5.4) we see that the energy-momentum tensor is diagonal and thus

the non-zero components are Ttt, Tzz and Tii, where i indexes the spatial directions

of Minkowski space. However, the integral over Tii is zero by the energy-momentum

conservation ∂iTij = 0. This follows from Tii = ∂i(x
jTij) and Gauss’ law. All that

remains is thus the integrals over Ttt and Tzz which we define to be the mass (as

usual) and (minus) L times the tension:

M =

∫
dD−1x Ttt, LTz = −

∫
dD−1x Tzz. (5.6)
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Since Tii integrates to zero, we get from (5.5) that under integration we can use

S = 2(Stt − Szz)/(D − 2). Thus we get

M =
1

D − 4

∫
dD−1x ((D − 3)Stt − Szz) =

Ωd−2L

16πGD

[(d− 2)ct − cz],

LTz =
1

D − 4

∫
dD−1x (−(D − 3)Szz + Stt) =

Ωd−2L

16πGD

[ct − (d− 2)cz], (5.7)

where we have used (5.4) to write Stt and Szz as a total derivative of the metric, and

then performed the integration using Gauss’ law and the asymptotics of the metric.

Note, however, that we could have a constant dtdz term in the metric. This

would not violate the metric being static. But we can simply boost such a term

away, since boosts are in the symmetry group of the background. On the other

hand, starting from a solution as in (5.2) we can boost it. This means that the mass

and tension defined above will change (the energy momentum tensor transforms as

a special relativistic covariant tensor), but the formulae still hold.

These formulae can be generalised to branes [4], and in the case of non-flat

asymptotics a more involved definition of the tension has been given in [143], see

in general [144, 145, 146]. As an example consider the case where the asymptotic

flat space is instead MD−k × Tk. Here Tk is the rectangular k-torus which has the

coordinates za with a = 1, . . . , k and their periods are La. The asymptotics of the

metric is in this case given by:

gtt ' −1 +
ct

rD−k−3
, gzaza = 1 +

ca

rD−k−3
, (5.8)

where r is again the radial coordinate of the Minkowski space. In the same way as

above, and with the same assumptions, the mass and tensions Ta in the za directions

are:

M =

(∏k
a=1 La

)
ΩD−k−2

16πGD

[(D − k − 2)ct −
∑

a

ca],

LaTa =

(∏k
a=1 La

)
ΩD−k−2

16πGD

[ct − (D − k − 2)ca −
∑
b6=a

cb], a = 1, . . . , k. (5.9)

5.1.3 Dimensionless quantities

In order to be able to compare the Kaluza-Klein solutions that we will discuss

below, we need to define dimensionless quantities for the mass and tension. General

relativity does not contain a scale in itself, but the Kaluza-Klein space contains the

length scale L that it is natural to rescale our quantities with. It turns out that

the equations takes the most simple form if we define the rescaled mass µ and the



88 CHAPTER 5. BLACK HOLES ON A CIRCLE

relative tension n as (here in the case with one circle):

µ =
16πGD

Ld−2
M =

Ωd−2

Ld−3
[(d− 2)ct − cz],

n =
LTz

M
=

ct − (d− 2)cz

(d− 2)ct − cz

. (5.10)

Importantly, these dimensionless quantities are bounded. Of course, the mass

has the lower bound µ ≥ 0, but it turns out that the relative tension is actually

bounded both from above and below:

0 ≤ n ≤ d− 2. (5.11)

Here the lower bound of positive tension was found in [147, 148]. The proof is similar

to the proof of the Positive Energy Theorem [104]. The upper bound is due to the

Strong Energy Condition and basically ensures that gravity is not repulsive in the

asymptotic region [104].

5.2 The Ansatz

Let us now consider what happens if we assume that the solutions have a local

SO(d−1) symmetry. Actually, all known solutions with 0 ≤ n ≤ 1/(d−2) have such

a symmetry. Let us consider objects with a single connected horizon. The SO(d−1)

symmetry means that the topology of their horizon is either Sd−1 or Sd−2×S1. The

first case corresponds to localised black holes on the cylinder Rd−1 × S1. When

the radius of the circle is large (i.e. L large) these are like ordinary Schwarzschild-

Tangherlini black holes, but they receive corrections due to the presence of the circle.

In the case of Sd−2×S1 horizon topology we speak of black strings that wind around

the circle. If the solution does not depend on z we speak of a uniform black string,

otherwise we have a non-uniform string.

These solutions – and the copied versions thereof – are all captured by the fol-

lowing ansatz for the metric derived by the local SO(d− 1) symmetry [84],

ds2 = −fdt2 +
L2

(2π2)

[
A

f
dR2 +

A

K2
dv2 + KR2dΩ2

d−2

]
, f = 1− Rd−3

0

Rd−3
. (5.12)

In this ansatz the metric is specified by the two functions A(R, v) and K(R, v)

where R and v are dimensionless parameters, and v is periodic with 2π. One has

furthermore that A(R, v) can be found explicitly in terms of K(R, v) [84]. The

horizon is located at R = R0. See [84, 85, 86, 149] for more on this ansatz.

To refer back to the asymptotic metric written in the parameters r and z, we

note that in the asymptotic region (R large) we have r ' LR/2π and z ' Lv/2π.
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Thus A, K → 1 as R →∞. Further, we can determine the mass and tension by the

asymptotics of K:

K(R, v) = 1− χ
Rd−3

0

Rd−3
+O

(
R−2(d−3)

)
. (5.13)

The asymptotics of A(R, v) is, as noted, related to this and actually it turns out

that asymptotically A(R, v) ' K(R, v). Thus the rescaled mass and relative tension

becomes by (5.10)

µ =
(d− 3)Ωd−2

(2π)d−3
Rd−3

0

(
d− 2

d− 3
− χ

)
, n =

1− (d− 2)(d− 3)χ

d− 2− (d− 3)χ
. (5.14)

5.3 Thermodynamics

In this section we consider black holes on a circle with a single connected horizon. As

we know, black holes can be seen as thermodynamic objects obeying the four (clas-

sical) black hole mechanics laws [150]. These are in complete analogy with the laws

of thermodynamics. The (Hawking) temperature of the black hole is (Boltzmann’s

constant and the speed of light are taken to one)

T =
}κ

2π
, (5.15)

where κ is the surface gravity on the horizon which by the laws of black hole me-

chanics is constant on the horizon. This is thus the same as the 0th law of thermo-

dynamics saying that the temperature is constant throughout an object in thermal

equilibrium. Often it is much easier to calculate the temperature by performing a

Wick rotation and demanding that the Wick rotated time has a period, the inverse

of which is the temperature, such that we avoid a conical singularity.

The (Bekenstein-Hawking) entropy was identified by Bekenstein [151, 152] as

being proportional to the area, A, of the horizon. The precise relation is

S =
A

4}GD

. (5.16)

This means that the first law of thermodynamics is of the form δM = TδS plus

work terms involving the long-range quantities. In our case we have seen that the

only other asymptotic quantity that we have is the tension. The first law then takes

the form [105, 86, 146]

δM = TδS + Tz δL. (5.17)

In the next chapter we will also have a term for the charges of the black holes.

Further, the second law states that the area of the horizon (the entropy) always

increases in a (classical) physical process, and the third law that we can not achieve

zero surface gravity (zero temperature) by such a process.
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Also very useful is the Smarr formula (the integrated form of the first law) which

in the case with tension takes the form [104, 105]

(d− 1)TS = (d− 2)M − LTz. (5.18)

This can be proven using Hamiltonian methods [153]. Note that the Smarr formula

provides a nice check of the quantities that we can obtain by other means.

5.3.1 Rescaled entropy and temperature

Again it useful to introduce dimensionless versions of the thermodynamical quanti-

ties. The rescaled temperature, t, and rescaled entropy, s, are defined as:

t = LT, s =
16πGD

Ld−1
S. (5.19)

The first law written in terms of dimensionless quantities takes the simple form

(using the Smarr formula)

δµ = tδs, (5.20)

while the Smarr formula becomes

(d− 1)ts = (d− 2− n)µ. (5.21)

5.3.2 Thermodynamics of the ansatz

Using the ansatz introduced in the last section, we can write the entropy and tem-

perature in terms of Ah which is the value of A(R, v) on the horizon, which is at

R = R0. Actually, by the equations of motion it turns out that A(R, v) does not

depend on v on the horizon, so Ah is well-defined. We get

t =
d− 3

2
√

AhR0

, s =
4πΩd−2

(2π)d−2

√
AhR

d−2
0 . (5.22)

5.4 Phases of Kaluza-Klein Black Holes

An important tool in investigating the Kaluza-Klein black holes on a circle is the

(µ, n) phase diagram. We have already seen that the diagram is restricted by µ > 0

and 0 ≤ n ≤ d− 2. What we really want to know is the plot of all solutions in this

diagram. In this section we will review the present knowledge of this.

Importantly, we can also obtain the thermodynamics from the (µ, n) phase dia-

gram. Suppose that we for a phase know the relative tension in terms of µ, n(µ),

then we can obtain the entropy, s(µ), as a function of µ using

δ log s

δ log µ
=

d− 1

d− 2− n
, (5.23)
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which is obtained using the Smarr formula (5.21) and the first law of thermodynam-

ics (5.20).

This also gives the intersection rule presented in [104]: Suppose that two branches

intersect at a point (µ0, n0). Then for masses above µ0 the branch with the highest

entropy also has the highest relative tension n and oppositely for masses lower than

µ0.

5.4.1 Phases with Kaluza-Klein bubbles

As mentioned in last section, no solutions have been found without local SO(d− 1)

symmetry for 0 ≤ n ≤ 1/(d − 2). However, for 1/(d − 2) < n < d − 2 we have

solutions without this symmetry, but they involve Kaluza-Klein bubbles.

The simplest case is where we have a single static Kaluza-Klein bubble, which

simply is the Euclidean rotation of the d-dimensional Schwarzschild black hole where

we add a trivial time direction:

ds2 = −dt2 +

(
1− Rd−3

rd−3

)
dz2 +

(
1− Rd−3

rd−3

)−1

dr2 + r2dΩd−2. (5.24)

Here z has to be periodic with L = 4πR/(d− 3) to avoid a conical singularity. We

can then calculate the rescaled mass and relative tension using (5.10) giving us

µ = Ωd−2

(
d− 3

4π

)d−3

, n = d− 2. (5.25)

Thus we see that the bubble satisfies the bound n ≤ d− 2.

For d = 4 and d = 5 exact solutions with a black hole attached to a Kaluza-Klein

bubble were constructed by Emparan and Reall [87] using a generalised Weyl ansatz.

This was developed further in [88, 89] to more general sequences of bubbles and black

holes where the bubbles balance the gravitational attraction between the black holes.

One then obtains a very rich phase structure for the range 1/(d − 2) < n ≤ d − 2.

We will, however, not go into further details of this part of the phase diagram, but

focus on the part with n ≤ 1/(d− 2). As we discussed above all known solutions in

this part of the diagram has SO(d−1) symmetry and thus fall into three categories:

The localised black holes, the uniform and the non-uniform black strings.

5.4.2 The localised black hole branch

As mentioned above, the localised black holes have horizon topology Sd−1 and cor-

respond to black holes that are localised on the circle S1. For µ → 0 these are the

higher dimensional Schwarzschild black holes, especially, n → 0 as µ → 0. But for

µ finite we get corrections due to the circle. The localised black hole can be written

in the ansatz (5.12), see [84, 86, 85]. The ansatz was used to find the metric to
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first order in µ in [90], see also [91, 92]. This allows one to find the relative tension

to first order in µ. Actually, using the results of [93, 94] we can give the result to

second order

n =
(d− 2)ζ(d− 2)

2(d− 1)Ωd−1

µ−
(

(d− 2)ζ(d− 2)

2(d− 1)Ωd−1

µ

)2

+O(µ3), (5.26)

where ζ(p) is Riemann’s zeta function.

The thermodynamics of this branch can be obtained to the next-to-leading order

in µ using (5.26) in (5.23)

s(µ) = C
(d)
1 µ

d−1
d−2

(
1 +

ζ(d− 2)

2(d− 2)Ωd−1

µ− d2 − 6d + 7

2(d− 1)

(
ζ(d− 2)

2(d− 2)Ωd−1

µ

)2

+O(µ3)

)
,

(5.27)

where C
(d)
1 is a constant of integration that can be fixed by comparing with the

Schwarzschild black hole in the limit µ → 0

C
(d)
1 = 4π(Ωd−1)

− 1
d−2 (d− 1)−

d−1
d−2 . (5.28)

5.4.3 The uniform black string phase

The uniform black string with horizon topology Sd−2×S1 is simply the Schwarzschild-

Tangherlini black hole with the circle added [154]

ds2 = −
(

1− rd−3
0

rd−3

)
dt2 +

(
1− rd−3

0

rd−3

)−1

dr2 + r2dΩ2
d−2 + dz2. (5.29)

Since cz = 0 we directly get from (5.10) that

n =
1

d− 2
. (5.30)

And the mass is simply

µ =
(d− 2)Ωd−2

Ld−3
rd−3
0 . (5.31)

Thus the phase is simply a horizontal line in our phase diagram. To get the thermo-

dynamics note that metric is the trivial solution in the ansatz (5.12) with A(R, v) = 1

and K(R, v) = 1 with the identifications R = 2πr/L and v = 2πz/L and thus

R0 = 2πr0/L. Then by (5.22)

t =
d− 3

4πr0

L, s = 4πΩd−2

(r0

L

)d−2

. (5.32)

Solving for s(µ) we get

s(µ) = C
(d−1)
1 µ

d−2
d−3 , (5.33)

where Cd−1
1 was defined in (5.28).
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Gregory and Laflamme found in [98, 99] that the uniform black string is classi-

cally unstable for µ < µGL where µGL is the Gregory-Laflamme mass. This mass

depends on the dimension. It can be determined numerically, and for the five-

dimensional black string that we will use in the next chapter one has µGL ' 3.52.

At µ = µGL we have a marginal mode [100] and this means that we have a new

static branch which emanates from this point. This is the non-uniform black string.

See also review in [142].

5.4.4 The non-uniform black string phase

The non-uniform black string has the same horizon topology, Sd−2 × S1, as the

uniform string, but it is non-uniformly distributed over the circle.

This branch has only been determined numerically (except for large d) and the

results can be found in [100, 101, 102, 103]. It emanates from the uniform black hole

branch at (µ, n) = (µGL, 1/(d− 2)) and has n ≤ 1/(d− 2). An important parameter

is the slope γ where it meets the uniform branch

n(µ) =
1

d− 2
− γ(µ− µGL) +O((µ− µGL)2). (5.34)

γ can be found numerically and in the five-dimensional case (d = 4) we have γ '
0.14. Importantly, γ is positive for d < 13, but is negative for d ≥ 13 meaning

that the branch starts off in the negative µ direction. Using the intersection rule

explained in the beginning of this section this means that the non-uniform black

string for d ≥ 13 has a higher entropy than the unstable uniform string for the

range it exists at µ < µGL. In this range it is possible that the unstable uniform

string can decay to a non-uniform string. For d < 13 this is not possible, but it

is possible that it decays to a localised black hole since this has higher entropy

comparing (5.33) and (5.27) for small µ. For d = 4, 5 this holds for all µ < µGL.

5.4.5 The d = 4 phase diagram

Also the localised face has been investigated numerically and the results are found in

[97] (see also [95, 96]). In the case of d = 4 the results for the (µ, n) phase diagram

with 0 ≤ n ≤ 1/2 are plotted in figure 5.1.

As we see from this diagram, and which is even more clear in the six-dimensional

case, it seems like the localised and non-uniform branch meet in some merger point.

This is in support of the suggestion by Kol [155] that the branches meet in a merger

point where the topology changes.
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Figure 5.1: Diagram with µ versus n for the uniform black string (red), non-uniform

black string (blue) and localized black hole phase (magenta) for five-dimensional

Kaluza-Klein black holes, using numerical results of [97, 103]. The diagram is taken

from [1].

5.4.6 Multi-black hole solutions

The diagram in figure 5.1 is, however, not the full story.

Firstly, we have copies: Given a solution in the non-uniform or localised phase

we can simply copy it k times on the circle [156, 86, 4]. This produces an infinite

number of phases that are copies of the two phases that are non-uniform on the

circle.

Referring to the ansatz (5.12) we obtain for any k = 2, 3, ... a new solution with

A′(R, v) = A(kR, kv), K ′(R, v) = K(kR, kv) and R′
0 = R0/k. In terms of µ, n and

the thermodynamical quantities s and t this means using (5.14) and (5.22)

µ′ =
µ

kd−3
, n′ = n, s′ =

s

kd−2
, t′ = kt. (5.35)

Further, it was recently shown in [157] that there exist more general multi-black

solutions. E.g. consider two small black holes on the circle placed oppositely to

each other. For the copy solutions these two black holes have the same mass, but

also solutions with different mass are possible. These more general solutions are in

mechanical equilibrium, but it is not stable since a small perturbation will cause

the system to collapse into a single black hole. For small masses it also turns

out that they are neither in thermal equilibrium, except for the copies, since the

temperatures for each of the black holes are different. It is, however, conceivable

that the temperatures converge in the non-perturbative regime.

The existence of several dimensionless continuous parameters (the relative masses)

for these multi-black hole solutions means that we have a continuity of non-uniqueness
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Figure 5.2: The (µ, n) phase diagram for d = 5 showing the phase with two-black

hole configurations which fills the region between the localised black hole phase

(LBH) and its copy with two equal size black holes (LBH2). Also shown in the

figure are the uniform black string phase (UBS), the non-uniform phase (NUBS)

and its two copied phase (NUBS2). The diagram taken from [157].

in the phase diagram (as also happens for the Kaluza-Klein bubbles and black holes

sequences for n > 1/(d − 2)). The phase with k black holes will, for small masses,

lie between the localised black hole phase and the phase where it is copied k times.

In figure 5.2 we show this for the solution with two black holes. Also note that for

larger masses the phases may fan out and cross the phases of the single black hole

and its copy.

Finally, the results on the multi-black hole phases points to the existence of new

non-uniform black strings, new equilibrium phases, and also the possibility of a class

of new “lumpy” black holes.

Also note the interesting recent work [158] where the phase structure of Kaluza-

Klein black holes is mapped to phases of stationary black rings and black holes in

asymptotically flat non-compact space.

In the next chapter we will show how to create three-charge solutions given one of

the five-dimensional neutral and static black holes on a circle that we have examined

in this chapter.



Chapter 6

Three-Charge Black Holes on a

Circle

This chapter is a modified version of [1], for a review see [2].

As mentioned in the introduction, three-charge black holes play a prominent role

in the understanding of the Bekenstein-Hawking entropy. In this chapter we will

examine five-dimensional versions of these on a circle.

6.1 Generating Three-Charge Solutions from Kaluza-

Klein Black Holes

In this section we will present the non-extremal three-charge solution generated from

a neutral Kaluza-Klein black hole in 4+1 dimensions (reviewed in last chapter). The

neutral solution is referred to as the seeding solution. Further, we will see how to

calculate the physical quantities of the new three-charge solution given the seeding

solution.

6.1.1 Three-charge configuration on a circle

The system that we are interested in is a three-charge solution of Type IIA Su-

pergravity that describes a thermal excitation of the 1/8-BPS configuration with an

F1-string, D4-brane and a D0-brane. The configuration is a solution to the equations

of motion of the action

I =
1

16πG10

∫
d10x

√
−g

(
R−1

2
∂µφ∂µφ− 1

12
e−φ(dB)2− 1

2 · 6!
e−

1
2
φ(dA(5))

2

−1

4
e

3
2
φ(dA(1))

2

)
(6.1)
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where φ is the dilaton field, B is the Kalb-Ramond two-form field and the A(i), i =

5, 1 are the gauge fields that couple to the D4-brane and the D0-brane, respectively.

This is the low energy action of Type IIA String Theory when the only gauge fields

present are the ones that correspond to the three extended objects that we are

interested in. Note that the action is written in Einstein frame which we will use

throughout.

The extremal 1/8-BPS solution of the action (6.1) is well known and can be found

e.g. by using the harmonic rule [20, 159, 160]. The metric for such a solution consists

of a world-volume part for the extended objects times a transverse space which will

be four-dimensional if the extended objects do not intersect. It is important that

the non-compact part of the transverse space has at least three dimensions in order

to be able to measure asymptotic quantities. We are interested in solutions where

the transverse space asymptotes to R3 × S1. The compact transverse circle gives

rise to some interesting physics that we wish to explore.

The solution can be compactified on T 5 which is spanned by the spatial world-

volume directions of the D4-brane and the F1-string. This gives a five-dimensional

black hole with three charges that can be compared to the extremal solution of

Strominger and Vafa [16]. We choose to consider the F1-D0-D4 configuration instead

of the more traditional P-D1-D5 configuration because the background turns out to

be simpler, it has diagonal metric and the objects do not share spatial world-volume

directions. The systems are, however, T-dual.

6.1.2 Generating F1-D4-D0 solutions

The main idea of the present chapter is that we can generate charged solutions of

the type described above, starting from a neutral 4+1 dimensional Kaluza-Klein

black hole. A d + 1 dimensional static and neutral Kaluza-Klein black hole is, as

mentioned in last chapter, defined here as a pure gravity solution that has at least

one event horizon and asymptotes to d-dimensional Minkowski-space times a circle

at infinity. As we have reviewed, the thermodynamics of these kinds of Kaluza-

Klein black holes has been studied extensively and there are both numerical and

analytical results available about their different phases. The key observation is

that we can translate information about the thermodynamics of the well-studied

seeding solutions into information about the thermal three-charge configuration in

ten-dimensional supergravity with a transverse circle where little or nothing was

known before.

Let us start with a static and neutral five-dimensional Kaluza-Klein black hole

as a seeding solution. There is no dilaton and no gauge fields and we assume that
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the metric can be written in the form

ds2
5 = −Udt2 +

L2

(2π)2
Vabdxadxb (6.2)

where U is a non-constant function that vanishes at the horizon(s) and asymptotes

to one, and Vabdxadxb describes a cylinder of circumference 2π in the asymptotic

region. The metric should in other words asymptote to (5.1)

ds2 = −dt2 + dr2 + r2dΩ2
2 + dz2 (6.3)

where z is periodic with period L. We will refer to the dimensionful coordinates r

and z when discussing the asymptotic behavior of the full metric.

By adding five flat dimensions x and ui, i = 1, ..., 4, to the neutral solution

(6.2), and performing a series of boosts and U-dualities, we can construct a ten-

dimensional solution of Type IIA Supergravity with three charges. Each boost adds

one charge which depends on the rapidity parameter α of the boost. The derivation

is sketched in Appendix C. The new solution has metric

ds2
10 = H

− 3
4

1 H
− 3

8
4 H

− 7
8

0

(
− Udt2 + H4H0dx2 + H1H0

4∑
i=1

(dui)2

+ H1H4H0
L2

(2π)2
Vabdxadxb

)
, (6.4)

a dilaton φ given by

e2φ = H−1
1 H

− 1
2

4 H
3
2
0 , (6.5)

a Kalb-Ramond field given by

B = coth α1(H
−1
1 − 1)dt ∧ dx, (6.6)

and gauge fields

A(5) = coth α4(H
−1
4 − 1)dt ∧ du1 ∧ du2 ∧ du3 ∧ du4, (6.7)

A(1) = coth α0(H
−1
0 − 1)dt. (6.8)

The Ha are harmonic functions of the transverse space, given by

Ha = 1 + (1− U) sinh2 αa, for a = 1, 4, 0. (6.9)

This three-charge solution describes a non-extremal configuration with an F1-string,

D4-brane and D0-brane. The label a = 1, 4, 0 refers to the type of object. In the

following we will refer to the fields B, A(5) and A(1) collectively as Aa.

We can perform one more U-duality and map this solution into a configuration

with three non-extremal M2-branes which is an excitation of a known 1/8-BPS state.
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6.1.3 Measuring asymptotic quantities

The physical quantities of the configuration that can be measured asymptotically

far away in the transverse space are the mass, the three different kind of charges,

and, since we have a compact circle in the transverse space, the tension in the

direction of the circle. The tension measures how hard the black hole pulls itself

across the circle and has an interpretation as the binding energy of the black holes

in the covering space of the circle. For extremal BPS black holes there is no net

force between the black holes in the covering space because the electric force exactly

cancels the gravitational force and the tension therefore is zero. For non-extremal

black holes this is not the case and more interesting physics appears. We now show

how information about all these quantities can be mapped from the neutral seeding

solution to the new three-charge solution.

It is useful to assume that each spatial world-volume direction x and ui is com-

pactified on a circle of length Lx and Lui respectively. This gives us two rectangular

tori with volumes V1 and V4 =
∏

i Lui . In the asymptotic region of the transverse

space the components of the metric can be expanded to leading order1 in r

gtt ' −1 +
c̄t

r
, gzz ' 1 +

c̄z

r
(6.10)

gxx ' 1 +
c̄x

r
, gii ' 1 +

c̄u

r
, for i = 1, ..., 4, (6.11)

and the dilaton and the non-vanishing components of the gauge fields are to leading

order

φ ' c̄φ

r
, (Aa)t... '

c̄Aa

r
, for a = 1, 4, 0. (6.12)

The non-vanishing gauge field components are the same as in equations (6.6)–(6.8).

The total mass and the total tension along any compact direction can be found

from the asymptotic behavior of the metric using the general formulae of [143] (see

also [145, 146]). Following [4, 143] we find the mass and charge via (see eq. (5.9))

M̄ =
Ω2

gL
(2c̄t − c̄z − c̄x − 4c̄u) (6.13)

Qa = −Ω2

gL
c̄Aa (6.14)

where we have defined

g ≡ 16πG10

V1V4L2
. (6.15)

The dimensionful parameter g is useful to define dimensionless mass and charge as

µ̄ ≡ gM̄, qa ≡ gQa. (6.16)

1Note that the dependence on r really is in terms of r(d−3) where d is the number of transverse
dimensions which in this case is 4.
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The tensions in the compactified directions are also found via (5.9)

LT̄z =
Ω2

gL
(c̄t − 2c̄z − c̄x − 4c̄u) (6.17)

LxT̄x =
Ω2

gL
(c̄t − c̄z − 2c̄x − 4c̄u) (6.18)

Lui T̄ui =
Ω2

gL
(c̄t − c̄z − c̄x − 5c̄u) . (6.19)

The world-volume of the D0-brane has no spatial direction, but for calculational

purposes we can still pretend that there is a “phantom” u0 direction compactified

on a circle of length L0. The tension in that direction would then be given by

L0T̄0 =
Ω2

gL
(c̄t − c̄z − c̄x − 4c̄u − c̄0) . (6.20)

This is useful when we discuss the contribution of the D0-brane to the electric mass

in the next subsection.

6.1.4 Mapping of physical quantities

To find how the physical quantities of the charged solution are related to the original

seeding solution we write the asymptotics of the metric of the seeding solution as

−gseed
tt = U ' 1− ct

r
, gseed

zz ' 1 +
cz

r
. (6.21)

Expressed in ct and cz the mass and tension of the seeding solution is given by (5.7)

M =
Ω2L

16πG5

(2ct − cz), Tz =
Ω2L

16πG5

(ct − 2cz). (6.22)

Correspondingly we have the dimensionless mass, µ, and tension, n, given by (5.10)

µ =
16πG5

L2
M =

Ω2

L
(2ct − cz), n =

T L

M
=

ct − 2cz

2ct − cz

. (6.23)

By plugging the asymptotics (6.21) into the solution (6.4)–(6.9) and expanding to

first order, we find a relation between the expansion coefficients of the new solution

and the seeding solution. This relation is spelled out in Appendix D. Plugging into
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the equations for mass, charge and tension we get

M̄ =
Ω2

gL

(
−cz + ct(2 + sinh2 α1 + sinh2 α4 + sinh2 α0)

)
, (6.24)

Qa =
Ω2

gL
ct sinh αa cosh αa, (6.25)

LT̄z =
Ω2

gL
(ct − 2cz) , (6.26)

LxT̄x =
Ω2

gL

(
−cz + ct(1 + sinh2 α1)

)
, (6.27)

Lui T̄ui =
Ω2

gL

(
−cz + ct(1 + sinh2 α4)

)
, (6.28)

L0T̄0 =
Ω2

gL

(
−cz + ct(1 + sinh2 α0)

)
. (6.29)

Thus we have found how the physical quantities of the charged solution are given in

terms of the boost parameters αa and the two independent quantities ct and cz of

the neutral solution.

The electric mass and tensions

The electric part of the mass and tensions are simply defined as the parts that go to

zero when the charges Qa vanish. We can directly read from equations (6.24) and

(6.25) that

M el =
∑

a

Ω2

gL
ct sinh2 αa. (6.30)

We see that the electric mass consists of a three parts – one for each of the charged

objects. Thus it is natural to define the electric mass M el
a corresponding to the

charge Qa as

M el
a = La(T̄a)

el =
Ω2

gL
ct sinh2 αa, (6.31)

for a = 1, 4, 0 (x, ui, 0). In this notation a can either label the type of object or one

of the spatial world-volume directions of the corresponding object.

Note that the electric mass can be written as

M el
a = νaQa (6.32)

where

νa = tanh αa (6.33)

is the chemical potential. The chemical potential can also be measured as νa =

−Aa|Horizon which by setting U = 0 in (6.6)–(6.8) gives the same result.

We also note that the electric part of the tension Tz is zero. To see how all of

this follows from the harmonic function rule in generality see Appendix E where the

electric masses and tensions are calculated in detail.



102 CHAPTER 6. THREE-CHARGE BLACK HOLES ON A CIRCLE

The mapping of dimensionless quantities

In the Kaluza-Klein black hole literature it is customary to define a relative tension

n as the total tension divided by the total mass. Branches of different types of static

solutions are then plotted on a (µ, n) phase diagram, where µ is the dimensionless

mass. This kind of phase diagrams will be discussed further in section 6.2.

For the charged black holes under consideration here, we define the relative

tension along the z direction as [4]

n̄ ≡ LT̄z

M̄ −M el
=

ct − 2cz

2ct − cz

(6.34)

and the relative tension along each of the world-volume directions as

n̄a ≡
La(T̄a − T̄ el

a )

M̄ −M el
=

ct − cz

2ct − cz

. (6.35)

Note that we have chosen to subtract the electrical contribution in these definitions.

In equations (6.34)–(6.35) we have also written the relative tensions in terms of the

seeding parameters ct and cz.

Writing the physical parameters µ̄, n̄ and qa in terms of the original quantities

µ, n of the seeding solution and the boost parameters αa gives

µ̄ = µ

(
1 +

2− n

3
(sinh2 α1 + sinh2 α4 + sinh2 α0)

)
, (6.36)

qa = µ
2− n

3
sinh αa cosh αa, for a = 1, 4, 0 (6.37)

and finally

n̄ = n, n̄a =
1 + n

3
. (6.38)

We can solve equation (6.37) for cosh αa and get

cosh αa =

√
1

2

(
1 +

1

ba

√
1 + b2

a

)
(6.39)

with

ba ≡
2− n

6

µ

qa

. (6.40)

Given the values of the three charges, the map between the mass and relative tension

of the neutral and charged solutions can therefore be written as

n̄ = n, (6.41)

µ̄ =
∑

a

qa +
1

2
µn +

(2− n)µ

6

∑
a

ba

1 +
√

1 + b2
a

. (6.42)
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This map from neutral to three-charge Kaluza-Klein black holes is one of our main

results.

There are a few things to notice here. The neutral seeding solutions always have

µ ≥ 0 and 0 ≤ n ≤ 2 and therefore we see that for fixed qa the mass µ̄ is bounded

from below by
∑

a qa. This is to be expected for a charged black hole. An object

with mass smaller than its charge results in a naked singularity rather than a black

hole. We therefore define the energy above extremality to be the mass minus the

sum of the charges. Later we will see that ba → 0 in the near-extremal limit, and

therefore

ε ≡ µ̄−
∑

a

qa →
1

2
µn (6.43)

in that limit. The mass of the charged black hole can also be written as µ̄ =

µ +
∑

a νaqa, where νa = tanh αa is the chemical potential from equation (6.32).

If the seeding solution has a single connected horizon we can find its temperature

T and entropy S from the metric. We will mostly work with rescaled temperature

and entropy which are defined for the seeding solution as [8] (see (5.19))

t = LT, s =
16πG5

L3
S. (6.44)

For the three-charge solution we define the rescaled temperature and entropy anal-

ogously by

t̄ = LT̄ , s̄ =
g

L
S̄, (6.45)

where g is given in equation (6.15). These quantities are calculated at the horizon

where U = 0 and thus Ha = cosh2 αa. It is easy to see from the metric (6.4) that

the three-charge solution therefore has temperature and entropy given by

t̄ = t/ cosh α1 cosh α4 cosh α0, (6.46)

s̄ = s cosh α1 cosh α4 cosh α0. (6.47)

The factors of cosh αa cancel when we multiply the temperature and entropy and

therefore the product

t̄s̄ = ts (6.48)

remains fixed. The generalized Smarr formula from [143] gives a relation between

the temperature, entropy, and the gravitational mass for our three-charge solution

in terms of the relative tension (can be seen directly from (5.21))

t̄s̄ =
2− n̄

3

(
µ̄− µel

)
. (6.49)
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6.2 Non-Extremal Three-Charge Black Holes on

a Circle

In this section we apply the map, that was found in section 6.1, to obtain three-

charge black holes on a circle from neutral Kaluza-Klein black holes. We restrict

ourselves to neutral black holes without Kaluza-Klein bubbles. We describe the

three different phases that we obtain for three-charge black holes on a circle, using

the map.

6.2.1 The neutral seeding solutions

We have seen in section 6.1 that we can transform five-dimensional static and neutral

black hole solutions to three-charge solutions via boosts and U-dualities. The static

and neutral black holes on a circle were reviewed in chapter 5. The classes of

solutions that we consider as seeding solutions here, i.e. what solutions we will map

to three-charge solutions, are essentially all solutions obeying the ansatz (5.12),

which for d = 4 takes the form

ds2 = −fdt2 +
L2

(2π2)

[
A

f
dR2 +

A

K2
dv2 + KR2dΩ2

2

]
, f = 1− R0

R
. (6.50)

This means that we consider solutions without Kaluza-Klein bubbles and thus

with the relative tension in the range 0 ≤ n ≤ 1/2. We will focus on the three

branches: The uniform black string, the non-uniform black string and the localized

black holes (see section 5.4).

We have displayed the (µ, n) phase diagram for 0 ≤ n ≤ 1/2 with the three types

of solutions2 in figure 5.1. We will review these three phases further as needed for

describing the three-charge phases.

6.2.2 The ansatz for three-charge black holes on a circle

Using the map described in section 6.1.2, we map the ansatz (6.50) for neutral

Kaluza-Klein black holes to the following ansatz for three-charge black holes:

ds2
10 = H

− 3
4

1 H
− 3

8
4 H

− 7
8

0

[
−fdt2 + H4H0dx2 + H1H0

4∑
i=1

(dui)2

+H1H4H0
L2

(2π)2

(
A

f
dR2 +

A

K2
dv2 + KR2dΩ2

2

)]
,

(6.51)

with

f = 1− R0

R
, Ha = 1 +

R0 sinh2 αa

R
, for a = 1, 4, 0, (6.52)

2Note that we also have the copied phases described in subsection 5.4.6.
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and with the dilaton and the gauge fields still given by (6.5)–(6.8).

Using the ansatz for three-charge black holes on a circle (6.51), (6.52), (6.5)–

(6.8), we can work out the following explicit physical parameters (assuming a single

connected horizon)

µ̄ = 2R0

(
2− χ +

∑
a

sinh2 αa

)
, n̄ =

1− 2χ

2− χ
,

t̄ =
1

2
√

AhR0

∏
a cosh αa

, s̄ = 4
√

AhR
2
0

∏
a

cosh αa ,

qa = 2R0 sinh αa cosh αa , νa = tanh αa , n̄a =
1− χ

2− χ
, a = 1, 4, 0 ,

(6.53)

where χ is defined from the asymptotic behavior of K(R, v) as (5.13)

K(R, v) = 1− χ
R0

R
+O(R−2) (6.54)

for R � 1, and where

Ah ≡ A(R, v)
∣∣
R=R0

. (6.55)

Note that one can show that ∂vA(R, v) = 0 on the horizon R = R0 [84]. It is

straightforward to see from the thermodynamics (6.53) along with the relation µel =∑
a νaqa that we get the Smarr formula (6.49).

6.2.3 The uniform and non-uniform phases

The uniform phase corresponds to the F1-D0-D4 system smeared uniformly on a

transverse circle. The supergravity solution for this is easily obtained by putting

A = K = 1 in the ansatz (6.51), (6.52), (6.5)–(6.8). The thermodynamics is obtained

from (6.53) setting χ = 0 and Ah = 1, giving

µ̄ = 2R0

(
2+
∑

a

sinh2 αa

)
, t̄ =

1

2R0

∏
a cosh αa

, s̄ = 4R2
0

∏
a

cosh αa (6.56)

with qa and νa as given in (6.53). We have furthermore that the relative tension

is n̄ = 1/2. The uniform phase is mapped from the neutral uniform black string

in five dimensions. The horizon topology for our non-extremal F1-D0-D4 system in

the uniform phase is T 5 × S2 × S1, where the T 5 is along the charged directions.

The non-uniform phase of our F1-D0-D4 system is a phase in which the F1-D0-

D4 is still distributed on the transverse circle without gaps, but with the distribution

being non-uniform along the circle direction. The horizon topology is therefore the

same as for the uniform phase: T 5 × S2 × S1. The non-uniform phase is mapped

by (6.4)–(6.9) from the neutral non-uniform black string phase. From this fact it
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is easy to see using equation (6.42) that the non-uniform phase emanates from the

uniform phase in a critical point corresponding to the mass

µ̄c =
∑

a

qa + x + x2
∑

a

(qa +
√

x2 + q2
a)
−1 , x ' 0.88 (6.57)

which is mapped from the Gregory-Laflamme mass µGL = 3.52 of the five-dimensional

neutral uniform black string [100, 102, 8] using that x = µGL/4. We expect that the

uniform phase is unstable to linear perturbations for masses µ̄ < µ̄c. Indeed, one

should be able to find the explicit unstable mode using the methods of [6, 161] where

the unstable mode of one-charge smeared branes were constructed by transforming

the unstable mode for the neutral black string.

As reviewed in chapter 5, the neutral non-uniform black string solution is ob-

tained numerically in [103]. This numerical solution can then be mapped to a

numerical solution for the non-uniform phase of the F1-D0-D4 system, using either

the map (6.4)–(6.9), or the ansatz (6.51), (6.52), (6.5)–(6.8). Similarly we can map

the physical quantities using the results of section 6.1.4. We do not go into details

with this, since the qualitative features of the mapped solution are highly similar

to that of the neutral seeding solution. Only in the near-extremal limits that we

consider in sections 6.3 and 6.4, one sees significant differences in the qualitative

behavior. However, it is interesting to find the slope of the non-uniform phase in

the (µ̄, n̄) diagram near the critical point (µ̄c, 1/2) since this in a simple way can tell

us about some of the features of the non-uniform phase as we change the charges.

Using that the neutral non-uniform black string has the slope n ' 1/2− γ(µ−µGL)

(γ ' 0.14) near the Gregory-Laflamme point (µ, n) = (µGL, 1/2) [100, 102, 8], we

get the slope

n̄ ' 1

2
−η(µ̄−µ̄c), η = γ

[
1

4
− 2γx + x

(
1

4
+

2

3
γx

)∑
a

2qa

√
x2 + q2

a + x2 + 2q2
a√

x2 + q2
a(qa +

√
x2 + q2

a)

]−1

(6.58)

for 0 ≤ µ̄− µ̄c � 1, when considering fixed charges qa.

6.2.4 The localized phase

The localized phase of the F1-D0-D4 system corresponds to having the horizon of

F1-D0-D4 localized on the transverse circle, such that the horizon is not connected

across the circle. The horizon topology is therefore S3 × T 5, where T 5 is along the

charged directions.

If we consider the case in which the size of the horizon is very small compared to

the circumference of the transverse circle, we can write down an analytic expression

for the metric using [90] (see [91, 93, 94] for more analytical results for such black
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holes). To this end, we should slightly modify the ansatz (6.51), (6.52), (6.5)–(6.8)

by expressing it instead in the new coordinates ρ̃ and θ̃ defined by

2R = ρ̃2 , v = π − 2θ̃ + 2 sin θ̃ cos θ̃ . (6.59)

We thus have the relation ρ2
0 = 2R0 for the horizon radius. With this, we can rewrite

the ansatz (6.51), (6.52), (6.5)–(6.8) as

ds2
10 = H

− 3
4

1 H
− 3

8
4 H

− 7
8

0

[
−fdt2 + H4H0dx2 + H1H0

4∑
i=1

(dui)2

+H1H4H0
L2

(2π)2

(
Ã

f
dρ̃2 +

Ã

K̃2
ρ̃2dθ̃2 + K̃ρ̃2 sin2 θ̃dΩ2

2

)]
,

(6.60)

with

f = 1− ρ2
0

ρ̃2
, Ha = 1 +

ρ2
0 sinh2 αa

ρ̃2
, for a = 1, 4, 0. (6.61)

Using the results of [90] one can now write down the full solution for the case in

which the horizon is very small, i.e. for ρ0 � 1. For simplicity, we discuss here only

the part concerning the solution near the horizon, but it is straightforward to use

the map to find the full solution. From [90] we get for ρ0 ≤ ρ̃ � 1 that

Ã− 1
3 = K̃−1 =

1− w2

w

ρ̃2

ρ2
0

+ w , w = 1 +
1

24
ρ2

0 +O(ρ4
0). (6.62)

From [90] we have furthermore that χ = 1
2
− 1

32
ρ2

0 +O(ρ4
0) and Ãh = 1+ 1

8
ρ2

0 +O(ρ4
0),

with Ãh = Ã|ρ̃=ρ0 . Using then that A = Ã/ρ̃2 together with the thermodynamics

(6.53), we can get the thermodynamics for ρ0 � 1. However, before writing down

this thermodynamics, we note that the second order correction has been obtained

in [93, 94] which we can translate to our notation as3

χ =
1

2
− 1

32
ρ2

0 +O(ρ6
0) ,

√
Ãh = 1 +

1

16
ρ2

0 +
1

512
ρ4

0 +O(ρ6
0). (6.63)

This now gives the thermodynamics

µ̄ = ρ2
0

(
3

2
+

1

32
ρ2

0 +O(ρ6
0) +

∑
a

sinh2 αa

)
, n̄ =

1

24
ρ2

0 −
1

1152
ρ4

0 +O(ρ6
0),

t̄ =
1− 1

16
ρ2

0 + 1
512

ρ4
0 +O(ρ6

0)

ρ0

∏
a cosh αa

, s̄ = ρ3
0

(
1 +

1

16
ρ2

0 +
1

512
ρ4

0 +O(ρ6
0)

)∏
a

cosh αa,

qa = ρ2
0 cosh αa sinh αa, νa = tanh αa, n̄a =

1

3
+

1

72
ρ2

0 −
1

3456
ρ4

0 +O(ρ6
0).

(6.64)

This is thus the thermodynamics of a small three-charge black hole localized on a

circle.
3Note that this follows from the slope of n(µ) = µ/62 − µ2/64 +O(µ3) for the neutral seeding

solution, as one can see from the fact that µ = (2− χ)ρ2
0 and n = (1− 2χ)/(2− χ).
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6.3 Near-Extremal Three-Charge Black Holes on

a Circle

We now consider the near-extremal limit of our three-charge black holes on a circle.

This is an interesting limit in view of the microscopic counting of entropy and, more

generally, in the context of the dual CFT. In this section we will see how to define

this limit and its consequences for the physical quantities.

6.3.1 The near-extremal limit

There are two ways to take the near-extremal limit. One can either keep the charges

fixed and send the temperature to zero or keep the temperature fixed and send the

charges to infinity. Since we are interested in the thermodynamics of the near-

extremal black hole, it is natural for us to take the second option.

In order to retain the non-trivial physics related to the presence of the circle we

want to take the limit in such a way that the size of the circle has the same scale as

the energy above extremality. This means that the metric components multiplying

dt2 and Vabdxadxb should scale in the same way. From the metric in equation (6.4)

we therefore require

lim
L→0

H1H4H0

(
L

2π

)2

= finite. (6.65)

A natural way to achieve (6.65) is to demand

lim
L→0

Ha

(
L

2π

)2γa

= finite, a = 1, 4, 0, (6.66)

where γa ≥ 0 and γ1 + γ4 + γ0 = 1. In this section we consider only the case when

all γa are non-vanishing, postponing other limits to the next section. For γa > 0 the

requirement of equation (6.66) means that

Ha = 1 + (1− U) sinh2 αa →∞ (6.67)

so that the boost parameters αa must go to infinity (for simplicity we will take αa

to be positive). In order to see what this means for the charges, it is convenient to

introduce rescaled coordinates on the transverse space4

r̂ ≡ 2π

L
r, ẑ ≡ 2π

L
z, (6.68)

and corresponding rescaled expansion coefficients for the seeding metric (6.21)

−gseed
tt ' 1− ĉt

r̂
, gseed

zz ' 1 +
ĉz

r̂
. (6.69)

4Note that the coordinates of the ansatz (6.50) approach these dimensionless coordinates in the
asymptotic region, R → r̂ and v → ẑ.
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These coefficients are more appropriate in the near-extremal limit since they remain

finite. We can now write the dimensionless charges (6.16) as

qa =
Ω2

2π
ĉt sinh αa cosh αa (6.70)

and from this expression it is apparent how the charges diverge. Notice that in order

to satisfy the condition (6.65), we should keep fixed the parameters

`a ≡ Lγa
√

qa =

(
Ω2ĉt

2π

)1/2

Lγa
√

sinh αa cosh αa. (6.71)

To get a finite solution for the metric, the gauge fields and the dilaton in the

near-extremal limit, we must rescale the fields with appropriate powers of L/2π and

the powers will depend on γa. This rescaling should be a symmetry of the action

(6.1). It is fairly easy to check that the following scaling works

e2φnew

=

(
L

2π

)−2γ1−γ4+3γ0

e2φold

, (6.72)

gnew
tt =

(
L

2π

)− 3
2
γ1− 3

4
γ4− 7

4
γ0

gold
tt , gnew

xx =

(
L

2π

)− 3
2
γ1− 3

2
γ4+ 1

4
γ0

gold
xx , (6.73)

gnew
uiui

=

(
L

2π

) 1
2
γ1− 3

4
γ4+ 1

4
γ0

gold
uiui

, gnew
rr =

(
L

2π

) 1
2
γ1+ 5

4
γ4+ 1

4
γ0+2

gold
rr , (6.74)

Anew
a =

(
L

2π

)−2γa

Aold
a , Gnew

10 =

(
L

2π

)2

Gold
10 . (6.75)

The components of the metric for the other transverse directions are rescaled in the

same way as grr. The choice of powers of L/2π is unique and can be found by first

requiring the gauge fields, B field, and dilaton to be finite in the limit. Next the

scalings of the metric is found by requiring all the terms in the action to scale in

the same way. Finally, the scaling of Newton’s constant is found by requiring the

scaling to be a symmetry of the action.

The choice of gauge in equations (6.6)–(6.8) is not convenient in the near-

extremal limit because the constant term will be dominant. But we are free to

change the gauge by adding the constant coth αa to our old Aold
a before taking the

limit. This gives

Aold
a = coth αaH

−1
a =

(
L

2π

)2γa

coth αaĤ
−1
a (6.76)

where we have defined

Ĥa ≡ lim
L→0

(
L

2π

)2γa

Ha. (6.77)

By construction, Ĥa is finite in the near-extremal limit and from equation (6.75) we

see that after rescaling Anew
a will be finite as well.
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To summarize, the particular near-extremal limit that we are interested in can

be defined as

L → 0, αa →∞, `a ≡ Lγa
√

qa = fixed, g ≡ 16πG10

V1V4L2
= fixed. (6.78)

The near-extremal limit of the three-charge solution (6.4)–(6.8) can now be writ-

ten down. The metric and the dilaton are given by

ds2 = Ĥ
− 3

4
1 Ĥ

− 3
8

4 Ĥ
− 7

8
0

(
−Udt2 + Ĥ4Ĥ0dx2 + Ĥ1Ĥ0

4∑
i=1

(dui)2 + Ĥ1Ĥ4Ĥ0Vabdxadxb

)
,

(6.79)

e2φ = Ĥ−1
1 Ĥ

− 1
2

4 Ĥ
3
2
0 , (6.80)

where from (6.77)

Ĥa =

{
ĥa

1−U
ĉt

for γa > 0

Ha for γa = 0
, ĥa ≡

(2π)1−2γa`2
a

Ω2

. (6.81)

In the case that all γa > 0 the dilaton is constant

e2φ = ĥ−1
1 ĥ

− 1
2

4 ĥ
3
2
0 . (6.82)

The non-vanishing components of the gauge fields are given by

(Aa)t... =

{
Ĥ−1

a for γa > 0,

coth αa(H
−1
a − 1) for γa = 0.

(6.83)

Note that the near-horizon limit of the extremal three-charge metric is AdS2 ×
S3×T 5 for the localized phase of F1-D0-D4. For the uniformly smeared phase there

is not such a simple description.

Relation to string scale units

Before discussing the physical quantities of the new near-extremal solution, it is

useful to see how the parameters that are kept fixed in near-extremal limit, namely

g and `a, are related to the string coupling gs and the string length `s. By comparing

the parameters ĥa in equation (6.81) to the usual harmonic functions of smeared

extremal branes, we find

`2
1 = L2γ1

(2π`s)
6g2

sN1

L2V4

, (6.84)

`2
4 = L2γ4

(2π`s)
3gsN4

L2V1

, (6.85)

`2
0 = L2γ0

(2π`s)
7gsN0

L2V1V4

, (6.86)
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and

g =
(2π)7`8

sg
2
s

L2V1V4

(6.87)

where N1 is the number of F1-strings, N4 is the number of D4-branes and N0 is the

number of D0-branes.

From the fixed parameters in equations (6.84)–(6.87) we can form the dimen-

sionless combination

`1`4`0

g
= 2π

√
N1N4N0 (6.88)

which will be useful to reinstate the units in the rescaled entropy that we obtain

below.

6.3.2 Physical quantities

In the near-extremal limit we define the energy above extremality and the tensions

in the compact directions as5

E = lim
L→0

(
M̄ −

∑
a

Qa

)
, T̂z = lim

L→0

L

2π
T̄z, LaT̂a = lim

L→0

(
LaT̄a −Qa

)
. (6.89)

The general definitions for the energy and tensions in backgrounds that are not

asymptotically flat can be found in [143] (see also [144]). In reference [4] it was

actually shown that for one-charge solutions written in the ansatz (6.50) the general

definition is equivalent to (6.89). We have checked that the same is true for the

three-charge case.

The dimensionless versions of these quantities are defined as

ε = gE, r =
2πT̂z

E
, ra =

LaT̂a

E
. (6.90)

These variables are the possible independent physical parameters analogous to µ

and n in the neutral case and µ̄, n̄ and n̄a in the non-extremal case.

Using equations (6.24) and (6.25) and the fact that

lim
α→∞

(
sinh2 α− sinh α cosh α

)
= −1

2
(6.91)

we find the energy above extremality in terms of ĉt and ĉz as

E =
Ω2

2πg

(
1

2
ĉt − ĉz

)
(6.92)

5We will always assume the Qas to be positive.



112 CHAPTER 6. THREE-CHARGE BLACK HOLES ON A CIRCLE

while the tension of the transverse circle and the tensions in the spatial world-volume

directions are given by

2πT̂z =
Ω2

2πg
(ĉt − 2ĉz), LaT̂a =

Ω2

2πg

(
1

2
ĉt − ĉz

)
. (6.93)

Rewriting the dimensionless energy ε and the relative tensions, r and ra, in terms

of the seeding µ and n we get the remarkable result

ε =
1

2
µn, r = 2, ra = 1 , a = 1, 4, 0 . (6.94)

Note that the relative tensions are constant. That means that the tensions are

proportional to the energy above extremality. This is a very special result that

depends on the fact that we have exactly three charges and four spatial transverse

dimensions. In section 6.3.3 we will see that r being a constant is a necessary

condition in order for the localized five-dimensional black hole to have a finite non-

vanishing entropy in the extremal limit. But first we look at the near-extremal

thermodynamics.

The near-extremal temperature and entropy are given by

T̂ = lim
L→0

T̄ , Ŝ = lim
L→0

S̄ (6.95)

where T̄ and S̄ are the non-extremal temperature and entropy. To get rescaled

temperature and entropy we need a new length scale and it turns out to be useful

to define

` ≡ `1`4`0 (6.96)

with `a given in equation (6.71). Note that ` has the dimension of length since

the γa sum to one. Dimensionless versions of the temperature and entropy in the

near-extremal limit can now be defined by6

t̂ = `T̂ , ŝ =
g

`
Ŝ. (6.97)

These quantities can be related to the non-extremal temperature and entropy via

t̄
√

q1q4q0 = LT̄
√

q1q4q0 → `T̂ = t̂, (6.98)

s̄/
√

q1q4q0 =
g

L
√

q1q4q0

S̄ → g

`
Ŝ = ŝ, (6.99)

and this implies the map

t̂ŝ = t̄s̄ = ts. (6.100)

6This is assuming that all the charges are non-zero. If one or two of the charges are zero then
the corresponding `a should be left out of the definition of `. We will come back to this in section
6.5.
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Given the temperature and entropy of the neutral seeding solution, we find the

rescaled temperature and entropy of the near-extremal three-charge solution as

t̂ = t(ts)3/2, ŝ = s(ts)−3/2 (6.101)

This can be derived from

t̂ = t̄
√

q1q4q0 =

√
q1q4q0

cosh α1 cosh α4 cosh α0

t (6.102)

by noticing that from the neutral Smarr formula ts = (2−n)µ/3 and equation (6.37)

we have

lim
αa→∞

√
qa

cosh αa

=
√

ts. (6.103)

In the near-extremal three-charge case we do not have a Smarr relation in the

traditional sense since the relative tensions are constant. However, we can write

a Smarr relation in a ‘mixed’ notation where we use the relative tension n of the

seeding solution

t̂ŝ =
2(2− n)

3n
ε. (6.104)

From this and the first law of thermodynamics we obtain

δ log ŝ

δ log ε̂
=

3n

2(2− n)
(6.105)

so that given the curve n(ε) we can find the entire thermodynamics.

The Helmholtz free energy is

f̂ = ε− t̂ŝ, δf̂ = −ŝδt̂ (6.106)

and using the Smarr relation (6.104) we can rewrite this for near-extremal black

holes on a circle as

f̂ =
5n− 4

3n
ε. (6.107)

This is the near-extremal free energy written in mixed notation, using the neutral

tension n instead of r which is a constant in this case.

Note that the free energy is negative for n ≤ 4/5. This is important for the dual

field theory which is only thermodynamically stable if the free energy is negative.

The region n ≤ 4/5 contains all the usual phases with SO(3) symmetry (which have

n ≤ 1/2), and also some of the Kaluza-Klein bubbles [8].

From the first law of thermodynamics we get

δ log f̂

δ log t̂
= − ŝ̂t

f̂
=

4− 2n

4− 5n
. (6.108)
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Given n(̂t) we can integrate the above equation and get f̂ as a function of t̂. Note

that we again have to use the relative tension of the seeding solution.

The world-volume pressure is

p̂a = −raε = −ε (6.109)

where we used (6.94). This not proportional to the free energy (6.107), contrary to

the one-charge solutions [4] for which the world-volume pressure is always equal to

minus the free energy.

6.3.3 Finite entropy from the first law of thermodynamics

In this section we try to understand why the relative tension is a constant for the

near-extremal three-charge solution. Let us start with an ansatz for the energy

above extremality in terms of the seeding µ and n

ε = (a + bn)µ (6.110)

where a and b depend on the number of charges and the number of transverse

dimensions. We can argue for this ansatz using only the expression for the gauge

fields (6.6)–(6.8). Since µ and µn are linear combinations of the seeding ct and cz

it is enough to show that the same is true for the energy above extremality. To see

that, we write

ε = µ +
∑

a

(νa − 1)qa (6.111)

where the chemical potential νa = −Aa|Horizon is independent of ct and cz. Since qa

is proportional to ct we immediately see that ε is indeed a linear combination of ct

and cz.

In the next section we will see that ε takes the form (6.110) for the one- and

two-charge cases with non-zero a and b [cf. equation (6.154) and (6.158) for the

near-extremal map in the one- and two-charge case respectively] but for the three-

charge case we have seen that a = 0 [cf. (6.94)]. We will ignore this knowledge for

now, and first examine what the first law of thermodynamics implies.

From the non-extremal Smarr formula (6.49) and the map (6.100) we know that

the product of the rescaled entropy and temperature is given by

t̂ŝ =
2− n

3
µ =

2− n

3(a + bn)
ε (6.112)

where in the last equation we used the ansatz (6.110). Plugging this into the first

law of thermodynamics, δε = t̂δŝ, we therefore find

δ log ŝ

δ log ε
=

3(a + bn)

2− n
. (6.113)
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For small black holes in the localized phase, n → 0 as ε → 0, since the tension

should vanish in the extremal (BPS) limit. Therefore it follows that for small black

holes close to extremality

δ log ŝ

δ log ε
' 3a

2
. (6.114)

Integrating this equation for small ε gives

ŝ ' Aε3a/2 (6.115)

where A is a constant of integration. But for this type of a localized black hole with

three-charges in five spacetime dimensions, we expect to find [16]

ŝ → constant 6= 0 (6.116)

as ε → 0. This can only be true if a = 0. We have therefore seen that in order for

the entropy of the small three-charge black hole to be non-vanishing in the extremal

limit, the number a in the ansatz (6.110) should be zero. This is what makes the

three-charge case special compared to the one- and two-charge case. The fact that

a vanishes has an immediate consequence for the relative tension

r =
LT̄z

E
=

µn

ε
=

n

a + bn
=

1

b
. (6.117)

From equation (6.94) we see that the five-dimensional near-extremal three-charge

black hole indeed has a = 0 and b = 1/2 which gives the correct value r = 2.

Let us finally note that we can quickly see how r depends on the number of

transverse dimensions and charges.7 Firstly, in this general case we still have that

LT̄z = LTz = µn (see Appendix E). Thus we only have to see how a and b depends

on d, the number of transverse spatial dimensions, and Nch, the number of charges.

We assume that (6.32) applies and that the form of the gauge fields is the same in

the general case such that νa = tanh αa and

M el =

Nch∑
a=1

tanh αaQa. (6.118)

Further, from [4] we get ct ∝ (d−2)M−LT
(d−2)2−1

. Using this and the form of the gauge fields,

we see that Qa = (d− 3) sinh αa cosh αa
(d−2)M−LT

(d−2)2−1
thus giving

ε =

(
1− Nch(d− 2)

2(d− 1)

)
µ +

Nch

2(d− 1)
µn (6.119)

where we have used that (tanh αa − 1) sinh αa cosh αa → −1/2 as αa → ∞. This,

of course, agrees with our case where Nch = 3 and d = 4. The only other case with

a = 0 is for Nch = 4 and d = 3. For the latter case it is actually known that one can

have configurations with finite entropy (see e.g. [162]). However, our derivation does

not hold in this case since the asymptotic ct and cz do not make sense for d = 3.

7We choose a short derivation here. One can also obtain the result by calculating c̄t, c̄z, etc.
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6.4 Phase Diagrams for the Near-Extremal Case

In this section we discuss consequences of the near-extremal map for the different

phases of the seeding solution that we also considered for the non-extremal case in

section 6.2 and display the phase diagrams.

6.4.1 Energy versus relative tension

In normal situations it would be appropriate to draw the different phases of near-

extremal solutions on an (ε, r) phase diagram. But in the special case of a five-

dimensional three-charge black holes on a circle the relative tension r is a constant

independent of the seeding solution. The phase diagram is therefore just a straight

line r(ε) = 2 which does not contain much information about the different phases.

We can, however, see how the relative tension approaches this constant as the

charges are sent to infinity. In this discussion we define, with a slight abuse of

notation, the non-extremal energy above extremality for finite charges as ε = µ̄ −∑
a qa. From the definition of the relative tension, we then have that

r =
LT̄z

E
=

µn

ε
. (6.120)

We can plug in our equations for the tension and energy above extremality (6.42)

and get

µn

µ̄−
∑

a qa

=

(
1

2
+

(2− n)

6n

∑
a

ba

1 +
√

1 + b2
a

)−1

. (6.121)

This quantity clearly goes to r = 2 in the near-extremal limit, since by equa-

tion (6.40) the ba vanish when the charges go to infinity. We do not have analytic

expressions for the full localized phase nor for the non-uniform phase, but from the

numerical data [97, 103] we can plot a non-extremal (ε, r) phase diagram and see

how it evolves as the charges go to infinity. Figure 6.1 depicts this phase diagram for

four increasing values of the charges and we clearly see how all the phases collapse

to the degenerate line r = 2 as the charges go to infinity.

6.4.2 Thermodynamics of the uniform and non-uniform phases

The thermodynamics of the uniform phase in the near-extremal limit follows directly

from the general map (6.94), (6.101) and the known thermodynamics (su(µ) = µ2/4)

of the uniform black string in five dimension, and we find

ŝu(ε) =
√

2ε, f̂u(̂t) = −1

2
t̂2. (6.122)
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Figure 6.1: The non-extremal (ε, r) phase diagram for four different values of the

charges. The three charges are all taken to be equal and have the value q = 1,

q = 10, q = 100, and q = 1000. Notice how all the phases collapse to the line

r = 2 as the charges go to infinity. The curves were found from equation (6.121)

using n = 1/2 for the uniform phase (red curve), numerical data from [97] for the

localized phase (magenta curve) and numerical data from [103] for the non-uniform

phase (blue curve).
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If we apply the general map (6.94) to the neutral non-uniform branch that was

reviewed in section 5.4.4 we get a new non-uniform phase of near-extremal three-

charge black holes on a circle. The Gregory-Laflamme point (µGL, 1/2) where the

non-uniform phase branches off the uniform phase is mapped to a critical point with

energy above extremality εc = µGL/4. The relative tension at this point is r = 2

as for all other points and therefore we cannot describe the non-uniform phase as a

curve on the (ε, r) diagram like in the non-extremal case. We can, however, express

the neutral tension n in terms of ε− εc near the critical point. The expression is

n(ε) =
1

2
− γ̂(ε− εc) +O((ε− εc)

2) (6.123)

with γ̂ given by

γ̂ =
4γ

1− 2γµGL

= 38.89 (6.124)

where γ = 0.14 is the slope of the neutral non-uniform branch and µGL = 3.52 is the

Gregory-Laflamme critical mass. It is useful to have the neutral tension in terms of

the energy above extremality because we can integrate (6.105) to find the entropy

for the non-uniform branch to leading order

ŝnu(ε) = ŝc

(
1 +

ε− εc

2εc

−
(1
8

+
2

3
γ̂εc

)(ε− εc)
2

ε2
c

)
+O((ε− εc)

3) (6.125)

where ŝc =
√

2εc is the critical entropy.

We can recover the entropy of the uniform branch by replacing γ̂ with zero in

the expression (6.125) above. Notice that the entropy of the non-uniform phase

deviates from that of the uniform phase only to second order. These two phases 8

are depicted in figure 6.2 together with the localized phase which will be discussed

in section 6.4.3.

In the canonical ensemble we can get the free energy of the non-uniform phase as

an expansion around the critical temperature t̂c =
√

2εc. Using the Smarr formula

to relate temperature to energy above extremality, we get from (6.125)

f̂nu = −εc − ŝc(̂t− t̂c)−
c

2̂tc
(̂t− t̂c)

2 +O((̂t− t̂c)
3) (6.126)

where

c =
3ŝc

3 + 16γ̂εc

= 0.0072 (6.127)

8Note that for each of these two phases we also have copies, which are mapped from the copies
[156, 86, 4] of the non-uniform and localized phase of the seeding solution. The thermodynamic
quantities of the copies of the near-extremal three-charge solutions are given by ε̃ = ε/k, ˜̂t = t̂/

√
k,

˜̂s = ŝ/
√

k where k = 2, 3, . . ..
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Figure 6.2: The entropy ŝ as a function of the energy above extremality ε for the lo-

calized phase (magenta), the uniform phase (red) and the non-uniform phase (blue).

The curves are based on numerical data from [97, 103].

is the heat capacity of the non-uniform phase at t̂ = t̂c. The free energy of the

uniform branch around t̂ = t̂c is also given by (6.126) but with heat capacity c = ŝc

as can be easily derived from (6.122). These phases are depicted in figure 6.3 together

with the localized branch which will be discussed in section 6.4.3.

6.4.3 Thermodynamics of small three-charge black holes on

a circle

We now consider the case of a small localized black hole. In the neutral case we

have (see section 6.2.4)

µ =
3

2
ρ2

0 +
1

32
ρ4

0 +O(ρ8
0), n =

1

24
ρ2

0 −
1

1152
ρ4

0 +O(ρ6
0) (6.128)

which gets mapped by (6.94) to the energy above extremality

ε =
1

32
ρ4

0 +O(ρ8
0). (6.129)

Note that not only is the ρ2
0 term missing but the ρ6

0 term cancels as well. The

rescaled entropy and temperature are by (6.101) mapped into

ŝ = 1 +
ρ2

0

16
+

ρ4
0

512
+O(ρ6

0), (6.130)

t̂ = ρ2
0 −

ρ4
0

16
+

ρ6
0

512
+O(ρ8

0). (6.131)

Using (6.129) we can also write the entropy in terms of ε

ŝloc(ε) = 1 +

√
ε

8
+

ε

16
+O(ε3/2). (6.132)
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curves are based on numerical data from [97, 103].

showing the first two corrections to the extremal entropy for a thermal black hole

localized on a circle. We correctly see that the entropy (6.132) goes to a non-

vanishing constant in the extremal limit ε → 0. It is not surprising that the first

correction comes with a power of ε smaller than one, otherwise the temperature

would not go to zero in the extremal limit.

Restoring the normalization of the entropy using (6.88) we find

Ŝloc =
`ŝ

g
= 2π

√
N1N4N0

(
1 +

√
ε

8
+

ε

16
+O(ε3/2)

)
. (6.133)

The entropy in the extremal limit is the constant Ŝ0 = 2π
√

N1N4N0 in agreement

with the well-known result of [16]. Eq. (6.133) is one of the central results of this the-

sis and gives, as a function of the energy above extremality, the first two corrections

to the finite entropy due to the interactions of the black hole. We will come back

to this in section 6.6, where we will present a microscopic counting of the corrected

entropy in case of the partial extremal limit described in section 6.5.1.

The Helmholtz free energy of small localized black holes in the canonical ensemble

(6.106) is given by

f̂loc(̂t) = −t̂− 1

32
t̂2 − 1

512
t̂3 +O(̂t4). (6.134)

The fact that the leading term in the free energy is linear in t̂ is in accord with

the localized black hole background being asymptotically AdS2 × S3 × T 5. One

expects the dual gauge theory to be quantum mechanical and hence the free energy

to be proportional to the temperature. The higher order terms are then due to the

presence of the circle.
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It is also interesting to see how the thermodynamics changes if only one or two of

the charges are sent to infinity with the others kept finite. These cases are studied

in the next section.

6.5 Other Near-Extremal Limits

In this section we discuss some other limiting cases for the near-extremal three-

charge background, involving one or two finite charges. We also present the special

case of non-extremal solutions with two charges only and present the corresponding

near-extremal limit.

6.5.1 Near-extremal limit with finite charges

We start by considering near-extremal limits where one or two of the three charges

stay finite. This corresponds to having one or more of the γa in (6.78) vanishing.

One finite charge

Without loss of generality we can choose any of the three charges finite. We choose

here to take q4, q0 →∞ with q1 finite. The presence of this finite charge corresponds

to choosing γ1 = 0 with γ4, γ0 > 0 in the near-extremal limit (6.78). The explicit

form of the resulting background is easily obtained using the general expressions

in (6.79)–(6.83). This limit is also called the dilute gas limit in the literature [18]

and after a T-duality in the x-direction where the F1-string lies, corresponds to the

near-extremal D1-D5 brane system with finite KK momentum in the direction of

the D-string.

In close analogy to (6.89), the energy and tensions in this partial limit are defined

as

E = lim
L→0

(
M̄ −

∑
a=0,4

Qa

)
, T̂z = lim

L→0

L

2π
T̄z,

T̂1 = lim
L→0

(L1T̄1 − L1T̄ el
1 ), LaT̂a = lim

L→0

(
LaT̄a −Qa

)
for a = 0, 4. (6.135)

The dimensionless versions of these quantities are taken to be

ε = gE, r =
2πT̂z

E −M el
1

, ra =
LaT̂a

E −M el
1

, t̂ = `T̂ , ŝ =
g

`
Ŝ (6.136)

where M el
1 is the electric mass defined in (6.31), g is defined in (6.15) and ` = `0`4.

Using the definitions (6.135), (6.136) and the results in (6.24)–(6.29) for the

physical quantities of the general three-charge background, one finds after some
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algebra

ε =
1 + n

3
µ + µel

1 , r =
3n

1 + n
, r1 = 1 , ra =

3n

2(1 + n)
, for a = 4, 0,

(6.137)

where we used equations (6.23) to write the final result in terms of the physical

parameters µ and n of the original seeding black hole. This provides for this partial

near-extremal case the map from the neutral solution to the charged one. In this

case, the only relative tension that is constant is the one in the spatial world-volume

direction corresponding to the charge that is finite.

For temperature and entropy one easily finds the mapping

t̂ =
t2s

cosh α1

, ŝ = t−1 cosh α1. (6.138)

We also recall that µel
1 = ν1q1, with the chemical potential ν1 and charge q1 given by

(6.33), (6.37) in terms of α1. Finally, the Smarr relation in this case takes the form

t̂ŝ = (2− r)
(
ε− µel

1

)
. (6.139)

The above map can of course be applied in particular to the neutral solutions that

fall into the black hole/string ansatz (6.51), as was done in section 6.4 for the full

near-extremal limit. For later use, we present here the result for the localized phase,

obtained by applying the map (6.137) to the localized black hole on a circle. The

corrected background for the near-extremal two-charge localized black hole follows

by taking the near-extremal limit (6.78) of the non-extremal background (6.60) with

the appropriate choice of γa. In particular, this amounts to Ha → Ĥa where Ĥa are

given in (6.81).

The thermodynamic quantities of the resulting near-extremal localized phase,

carrying one finite charge q1 are then given by

ε = ρ2
0 sinh2 α1 +

1

2
ρ2

0

(
1 +

1

16
ρ2

0

)
+O(ρ6

0), (6.140)

r =
1

8
ρ2

0 −
1

128
ρ4

0 +O(ρ6
0), (6.141)

ŝ = ρ0 cosh α1

(
1 +

1

16
ρ2

0 +
1

512
ρ4

0

)
+O(ρ7

0), (6.142)

t̂ =
ρ0

cosh α1

(
1− 1

16
ρ2

0 +
1

512
ρ4

0

)
+O(ρ7

0). (6.143)

In section 6.6 we will provide a microscopic derivation of the entropy found in

the case of one finite charge. However, we will consider a permutated version of

the above limit, namely with the D0-brane charge kept finite and F1 and D4-brane
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charge sent to infinity. It is not difficult to see that this case is completely analogous

to the one discussed above.

In these expressions, we can send α1 → 0 (and hence q1 → 0) and obtain the

entropy and temperature of a small localized two-charge black hole on a circle (see

section 6.5.2). The entropy clearly vanishes in the extremal limit ρ0 → 0.

Two finite charges

We now choose q4 → ∞ with q1 and q0 finite, corresponding to taking γ4 = 1 with

γ1 = γ0 = 0 in the expressions (6.78). Again, the explicit form of the resulting

background is easily obtained using the general expressions in (6.79)–(6.83).

The energy and tensions in this partial limit are defined by the obvious general-

izations of (6.135) and the dimensionless quantities are similar to those in (6.136),

where we now divide by E −M el
1 −M el

0 .

We then find after some algebra the map

ε =
4 + n

6
µ + µel

1 + µel
0 , (6.144)

r =
6n

4 + n
, ra =

2(1 + n)

4 + n
, for a = 1, 0 , r4 =

3n

4 + n
, (6.145)

where we recall that µel
a = νaqa, with the chemical potential νa and charge qa given

by (6.33), (6.37) in terms of αa. For vanishing q1 and q0 the above results agree with

the one-charge d = 4 case considered in [4].

For temperature and entropy one easily finds the mapping

t̂ =
t3/2s1/2

cosh α1 cosh α0

, ŝ = t−1/2s1/2 cosh α1 cosh α0 (6.146)

Finally, the Smarr relation in this case takes the form

t̂ŝ =
1

2
(2− r)

(
ε− µel

1 − µel
0

)
. (6.147)

As before, all of this can be applied to the ansatz, and in particular for the

localized phase we now get

ε = ρ2
0(sinh2 α1 + sinh2 α0) + ρ2

0

(
1 +

1

32
ρ2

0

)
+O(ρ6

0), (6.148)

r =
1

16
ρ2

0 −
1

512
ρ4

0 +O(ρ6
0), (6.149)

ŝ = ρ2
0 cosh α1 cosh α0

(
1 +

1

16
ρ2

0 +
1

512
ρ4

0

)
+O(ρ8

0), (6.150)

t̂ =
1

cosh α1 cosh α0

(
1− 1

16
ρ2

0 +
1

512
ρ4

0

)
+O(ρ6

0). (6.151)
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The entropy vanishes in the extremal limit, as we expect, but one finds finite ex-

tremal temperature. This is in accord with the fact that we know that for d = 4 (see

e.g. [4]) the localized phase corresponds to the near-extremal Type II NS5-brane,

which has a Hagedorn temperature.

6.5.2 Two-charge black holes on a circle

Starting with the general three-charge non-extremal case one may also consider the

situation with a smaller number of non-zero charges. In this section, we present

some further details for the case with two non-zero charges, which was not studied

before.

Brief review of one-charge case

As remarked earlier, when we set two of the three charges equal to zero, we should

recover the one-charge case which was extensively studied in Ref. [4, 106]. In par-

ticular, by sending say q1, q0 → 0, equation (6.42) becomes

µ̄− q4 =
(4 + n)µ

6
+

(2− n)µ

6

b4

1 +
√

1 + b2
4

(6.152)

which agrees with equation (4.18) of [4] for d = 4. Recall that ba was defined in

equation (6.40). As an example, for the localized phase discussed in section 6.2.4

we can eliminate µ and n to arrive at [4]

n̄(µ̄; q4) =
1

24
(µ̄− q4) +O

(
(µ̄− q4)

2
)
. (6.153)

For comparison below, we also give here the map from the neutral five-dimensional

Kaluza-Klein black holes to the near-extremal one-charge physical quantities

ε =
4 + n

6
µ , r =

6n

4 + n
, r4 =

3n

4 + n
, t̂ = t3/2s1/2 , ŝ = t−1/2s1/2.

(6.154)

Non-extremal two-charge case

Turning to the two-charge case, we keep q0, q4 finite and take q1 → 0. The non-

extremal background can simply be obtained by setting α1 = 0 in the general form

in (6.4)–(6.9). For the thermodynamic quantities, we can use for example (6.42) to

compute the non-extremal map

µ̄−
∑
a=0,4

qa =
(1 + n)µ

3
+

(2− n)µ

6

∑
a=0,4

ba

1 +
√

1 + b2
a

(6.155)

and for the temperature and entropy we simply have (6.46), (6.47) with α1 = 0.
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As an application of (6.155), it follows using the results of section 6.2.4 that for

the localized phase

n̄(µ̄; q4, q0) =
1

12
(µ̄− q4 − q0) +O

(
(µ̄− q4 − q0)

2
)
. (6.156)

We observe from (6.153) and (6.156) that in both the two-charge and the one-

charge case, the relative tension for a small black hole is linear in the energy above

extremality. For the three-charge case, which is special in many respects, this is not

the case (see equation (6.42)).

Near-extremal limit

We consider here the near-extremal limit of the two-charge black hole solution,

in which we send both of the charges to infinity. Before discussing these results

we briefly review the near-horizon limit of the corresponding extremal two-charge

background.

For the localized phase, corresponding to D0-D4 smeared in the x-direction, we

find after a T-duality in that direction the D1-D5 brane system, which has near-

horizon geometry AdS3 × S3 × T 4. As a consequence we expect that the leading

behavior of the thermodynamics of the localized phase in the near-extremal two-

charge system with a transverse circle corresponds to that of a two-dimensional

CFT. As we will see below this is indeed the case. For the uniform phase we find

that the extremal background is described by a doubly-smeared configuration of D0-

D4 branes, which after a double T-duality (in the x and z-direction) corresponds to

the D2-D6 brane system. The dual description of this is less clear and presumably

gravity is not decoupled, due to the presence of the D6-brane. However, as we

will see below the system exhibits a Hagedorn behavior, in close analogy to the

near-extremal NS5-brane system [163, 164].

The definition of the near-extremal two-charge limit follows the same route as

discussed in section 6.3 for the three-charge case, where now the harmonic function

H1 is set to one. The corresponding background follows likewise from (6.79)–(6.81)

by taking γ0 > 0, γ4 > 0 and setting Ĥ1 = 1. In this case the quantity ` (of

dimension length) that enters the dimensionful physical quantities is given by

` = `0`4 =
(2πls)

5gs

LV1

√
V4

√
N0N4 (6.157)

where we used (6.85), (6.86). The quantity g is still given by (6.87).

The physical quantities are defined as in (6.89) with α1 = 0 (and hence M el
1 =

Q1 = 0) and the dimensionless quantities are as in (6.90) (in this case there is no

T1). The map follows easily by setting q1 = 0 in the map (6.137), (6.138) so that
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the map from neutral Kaluza-Klein black holes to near-extremal two-charge physical

quantities is

ε =
1 + n

3
µ , r =

3n

1 + n
, ra =

3n

2(1 + n)
for a = 4, 0 , (6.158)

t̂ = t2s , ŝ = t−1. (6.159)

Like the one-charge map in (6.154), this is a one-to-one map that maps from the

neutral two-dimensional (µ, n) phase diagram to the two-dimensional (ε, r) phase

diagram of near-extremal two-charge solutions.

The Smarr relation is

t̂ŝ = (2− r)ε. (6.160)

It is useful to recall that for a given curve in the (ε, r) phase diagram we can find the

entire thermodynamics from this Smarr relation and the first law of thermodynamics

δε = t̂δŝ, by integrating the equation

δ log ŝ(ε)

δ log ε
=

1

2− r(ε)
. (6.161)

In particular, for the solutions that are generated from the ansatz (6.50) the

metric takes the form of (6.79)–(6.83) with Ĥ1 = 1. For the three known phases of

black holes/strings on a cylinder discussed in section 5.4 we can then map to the

corresponding phases of two-charge black holes with a circle in the transverse space.

For this we can use, as in section 6.2, the known data for the phases of five-

dimensional Kaluza-Klein black holes along with the analytically known results for

the uniform phase, the non-uniform phase near the GL point and localized phase in

the small mass limit.9

The results can be summarized are as follows. For the uniform phase we have

ru(ε) = 1 , ŝu(ε) = ε , f̂u(̂t) = 0 (6.162)

showing that this phase has Hagedorn thermodynamics with Hagedorn temperature

t̂c = 1 found e.g. from t−1 = ∂s/∂ε. For the non-uniform phase we have

rnu(ε) = 1− γ̂ · (ε− εc) +O
(
(ε− εc)

2
)
, (6.163)

ŝnu(ε) = ŝu(ε)

(
1− γ̂

2εc

(ε− εc)
2 +O

(
(ε− εc)

3
))

, (6.164)

9Note that the non-uniform and localized phases also have copies, which are mapped from the
copies [156, 86, 4] of the non-uniform and localized phase of the seeding solution. The thermo-
dynamic quantities of the copies of the near-extremal two-charge solutions are given by ε̃ = ε/k,
˜̂t = t̂, ˜̂s = ŝ/k where k = 2, 3, . . ..



6.5. OTHER NEAR-EXTREMAL LIMITS 127

2 3

0.5

1

0.0

4

1.0

0.75

0.25

0

ε

r

Figure 6.4: (ε, r) phase diagram for near-extremal two-charge black holes on a circle.

Shown are the localized phase (magenta), the uniform phase (red) and the non-

uniform phase (blue). The curves are based on numerical data from [97, 103].

f̂nu(̂t) = −εc(̂t− 1)− 1

2γ̂
(̂t− 1)2 +O

(
(̂t− 1)3

)
(6.165)

εc =
µGL

2
= 1.76 , γ̂ =

8γ

3− 2µGLγ
= 0.56, (6.166)

exhibiting the departure at the critical point from the Hagedorn thermodynamics.

Finally, for the localized phase

rloc(ε) =
1

4
ε− 1

16
ε2 +O(ε3), (6.167)

ŝloc(ε) =
√

2ε1/2

(
1 +

1

16
ε− 1

512
ε2 +O(ε3)

)
, (6.168)

f̂loc(̂t) = −1

2
t̂2 − 1

32
t̂4 − 1

256
t̂6 +O(̂t8). (6.169)

The numerically obtained plots for all of these quantities are shown in figures 6.4

and 6.5.

We first observe that the leading order thermodynamics (for small temperatures)

of the localized phase of the near-extremal D1-D5 brane system on a transverse

circle correctly exhibits a free energy that is proportional to t̂2, as expected for a

two-dimensional conformal field theory at finite temperature. The results in (6.168),

(6.169) then describe the departure of this behavior due to higher order temperature

corrections in the presence of the circle.

On the other hand, note that the near-extremal uniformly smeared D1-D5 brane

phase exhibits a Hagedorn temperature Thg = 1/` (since t̂c = 1) with ` given in
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Figure 6.5: (ε, ŝ) and (̂t, f) diagrams for near-extremal two-charge black holes on a

circle. Shown are the localized phase (magenta), the uniform phase (red) and the

non-uniform phase (blue). The curves are based on numerical data from [97, 103].

(6.157), with the non-uniformly smeared phase emerging at the Hagedorn temper-

ature. The picture that emerges in this system is in many respects analogous to

the one considered in Ref. [107] where the thermodynamics of near-extremal NS5-

branes was studied, and applied to Little String Theory. In particular, we see from

the above that also here, the localized phase provides a new stable phase in the

canonical ensemble, extending to a maximum temperature that lies above the Hage-

dorn temperature. It would be interesting to see if there is a dual interpretation of

this, which would require a further examination of the near-extremal D2-D6 brane

system.

6.6 Microscopic Entropy

In this section we use the microstate counting technique of [16, 20] to recalculate the

entropy of our three-charge black holes on a circle. The non-extremal branes will

interact across the transverse circle and this interaction effectively shifts the number

of branes [33]. In the case of a small localized near-extremal black hole with one

finite charge, we find agreement between the first correction obtained via microstate

counting and the macroscopic corrected entropy in equation (6.140).

6.6.1 Review of non-extremal black hole microstate count-

ing

Horowitz, Maldacena and Strominger [20] showed how to count the microstates for

a special class of five-dimensional non-extremal black holes with three charges. In
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their case the metric asymptotes to Minkowski space with no circle in the transverse

space.

In the weak string coupling limit the extremal black hole can be described as a

configuration with N4 D4-branes, N1 fundamental strings and N0 D0-branes. Non-

extremal black holes can be generated, for example, by adding a small number N0̄ of

anti-D0-branes. In a thermal system one would of course expect the non-extremality

also to excite the D4-branes and the F1-strings, but we assume that the anti-D0-

brane excitation is much lighter than the other two. The mass of the black hole is

then given by the sum of the masses of each type of object

M = V1τ1N1 + V4τ4N4 + V0τ0 (N0 + N0̄) (6.170)

where Va is the world-volume of each object, τ1 = (2π`2
s)
−1 is the tension of the

string, τ4 = (gs(2π)4`5
s)
−1 is the tension of the D4-brane and τ0 = (gs`s)

−1 is the

tension of the D0-brane. The charge associated to the D0-branes is given by

Q0 = V0τ0 (N0 −N0̄) (6.171)

while the other charges are extremal and therefore given by Qa = VaτaNa for a = 1, 4.

The D4-branes are separated in the spatial world-volume direction of the F1-

string. There are therefore effectively N4N1 strings between neighboring D4-branes.

The D0-branes are like beads threaded on any one of these strings and in the dilute

gas limit the strings are far apart and the beads can therefore only be threaded by

one string at a time. In the extremal case with N0̄ = 0, this gives rise to an entropy

[20]

S = 2π
√

N1N4N0. (6.172)

In the non-extremal case the anti-D0-branes are like beads with opposite charge. In

the dilute gas limit the forces between the beads are small and so interactions can

be ignored. The entropy is additive in this case and given by [20]

S = 2π
√

N1N4

(√
N0 +

√
N0̄

)
. (6.173)

This is the equation that we want to generalize for our near-extremal three-charge

black hole with one finite charge on a circle.

6.6.2 Microstate counting on a circle

In the previous subsection the beads were far apart and did not interact, but with

the small transverse circle present that is no longer a safe assumption to make. In

our near-extremal limit, the size of the transverse circle was taken to be at the same

scale as the energy above extremality and the interaction energy is therefore not
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negligible compared to the excitation energy. That means that interactions across

the transverse circle between beads of opposite charge must be taken into account.

The effect of the interaction is to shift the number of beads for a given total energy

[33]. We now examine this for the localized phase of three-charge black holes on a

circle.10

The non-extremal mass of the three-charge black hole (6.24) can be rewritten as

M̄ =
Ω2ct

2gL

[(
1− 2

cz

ct

)
+ cosh 2α1 + cosh 2α4 + cosh 2α0

]
. (6.174)

The first term is equal to

Ẽ ≡ Ω2ct

2gL

(
1− 2

cz

ct

)
(6.175)

and we notice that Ẽ is proportional to the tension along the transverse circle. This

term is absent in the case where there is no transverse circle. The terms involving

cosh 2αa are recognized as the contribution of each type of extended object to the

total mass of five-dimensional three-charge black hole without the circle [20]. It is

therefore natural to write

M̄ = Ẽ + M̄1 + M̄4 + M̄0 (6.176)

with

M̄a =
Ω2ct

2gL
cosh 2αa. (6.177)

The charges (6.70) can also be rewritten as

Qa =
Ω2ct

2gL
sinh 2αa. (6.178)

It is now easy to see that in the full near-extremal limit we have M̄a −Qa → 0 and

M̄ −
∑

a Qa → Ẽ.

Partial extremal limit

Let us now consider the case where two of the charges are taken to be extremal, say

Q1 and Q4, while Q0 has some small non-extremality. The total mass of the black

hole is then

M̄ = Q1 + Q4 + M̄0 + Ẽ. (6.179)

Following Costa and Perry [33]11, we want to write the total mass in the form

M̄ = Q1 + Q4 + δE + Vint (6.180)

10We thank Roberto Emparan for suggesting this computation to us.
11The same idea has been applied in [165].
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where δE is the energy carried by the D0-branes and the anti-D0-branes, and Vint is

the interaction energy related to the presence of the transverse circle. As we start

adding anti-D0-branes to the extremal system, they will interact with the D0-branes

across the circle, reducing their energy by Vint.

The force between the beads across the circle gives rise to the tension T and

the interaction energy is the “energy stored in the tension”. In d = 4 the tension is

proportional12 to L and therefore

Vint = −
∫
T dL = −1

2
T L. (6.181)

Notice that from the near-extremal map (6.94) we have 1
2
T L = Ẽ and hence Vint =

−Ẽ.

Equation (6.179) can now be written as

M̄ = Q1 + Q4 + (M̄0 + 2Ẽ) + Vint (6.182)

so we can identify

δE = M̄0 + 2Ẽ. (6.183)

We find the effective number of D0- and anti-D0-branes from requiring

δE = V0τ0(N
′
0 + N ′

0̄), (6.184)

Q0 = V0τ0(N
′
0 −N ′

0̄). (6.185)

This gives

τ0N
′
0 =

1

2

(
M̄0 + Q0

)
+ Ẽ =

1

2

Ω2ct

2gL
exp(2α0) + Ẽ, (6.186)

τ0N
′
0̄ =

1

2

(
M̄0 −Q0

)
+ Ẽ =

1

2

Ω2ct

2gL
exp(−2α0) + Ẽ (6.187)

where we used the expression (6.178) for Q0. We thus see that there is a shift of

Ẽ in the effective number of zero-branes compared to the black hole without the

transverse circle [20, 33]. Recall that τ0 = 1/gs`s and V0 = 1.

The microstate entropy for our interacting system on a circle is then given by

S = 2π
√

N1N4

(√
N ′

0 +
√

N ′
0̄

)
(6.188)

where N ′
0 and N ′

0̄ are the effective number of D0- and anti-D0-branes given in equa-

tions (6.186)–(6.187).

12Since T = nM/L and M ∝ Ld−2 by the definition of the dimensionless quantities (5.10) we
have T ∝ Ld−3.
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Application to small localized three-charge black holes

For small (neutral) localized black holes we have ct = ρ2
0L/(4π) and recall from

equation (6.63) that cz/ct = χ = 1/2− ρ2
0/32 +O(ρ6

0). We therefore get that

Ω2ct

2L
=

1

2
ρ2

0, gẼ =
1

32
ρ4

0 +O(ρ6
0) (6.189)

where we used the definition of Ẽ in (6.175). We thus compute from (6.186), (6.187)

the expressions

gτ0N
′
0 =

1

4
ρ2

0 exp(2α0) +
1

32
ρ4

0 +O(ρ6
0), (6.190)

gτ0N
′
0̄ =

1

4
ρ2

0 exp(−2α0) +
1

32
ρ4

0 +O(ρ6
0). (6.191)

To this order we therefore get√
N ′

0 +
√

N ′
0̄

=

√
N0

`0

ρ0 cosh α0

(
1 +

ρ2
0

16
+O(ρ4

0)

)
(6.192)

where we have used equation (6.86) to rewrite gτ0 = `2
0/N0. The microstate entropy

in equation (6.188) then becomes

S =
2π
√

N1N4N0

`0

ρ0 cosh α0

(
1 +

ρ2
0

16
+O(ρ4

0)

)
(6.193)

=
`1`4

g
ρ0 cosh α0

(
1 +

ρ2
0

16
+O(ρ4

0)

)
. (6.194)

This agrees with our previous result for the partial near-extremal entropy obtained

from the black hole side (6.140), up to the order ρ4
0 term.

We could in principle include higher order terms in equations (6.189) and hope

to find agreement in the entropy to higher order, but it is not clear to which degree

the method of shifting the effective number of branes is accurate. We do not expect

the microstate picture to hold for the uniform or the non-uniform phase so it is clear

that somewhere on the way it must break down.

From equation (6.129) we know that the ρ6
0 order term in Ẽ is vanishing and this

information would yield (1− 2 cosh α0)ρ
4
0/512 as the next order term in the paren-

thesis of equation (6.193). This is to be compared to ρ4
0/512 from the Bekenstein-

Hawking entropy on the black hole side. It is not too surprising to find a minor

discrepancy at such an high order.

6.7 Conclusions and Outlook

In this chapter we have seen how the solution generating technique can be used to

create an explicit map from the static and neutral Kaluza-Klein black holes on a
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circle in five space-time dimensions, that we reviewed in the chapter 5, to three-

charge black holes also on a circle. The three-charge solutions can either be seen

as ten-dimensional solutions of low-energy string theory or be compactified on their

world-volume to five-dimensional solutions. The construction of the map involved

taking a series of boosts and U-dualities where each of the boosts gave a new charge,

thus extending the mapping to one-charge black holes found in [4].

We restricted ourselves to considering seeding solutions without Kaluza-Klein

bubbles i.e. with relative tension less than one half. Using the very general ansatz

for Kaluza-Klein black holes with SO(3) symmetry found in [84] we have obtained,

via the map, an ansatz for three-charge black holes on a circle with this symmetry.

Especially, this ansatz includes the three main studied phases: A localised phase,

where the three-charge black holes are located on the transverse circle, a uniform

phase, where the three-charge solution is uniformly smeared around the transverse

circle, and, finally, a new type of non-uniform phase, where the three-charge black

hole is also smeared on the transverse circle without gaps, but in a non-uniform way.

Further, we have also given explicit formulas for how to obtain the copied versions

of these phases.

Given these non-extremal three-charge solutions that are thermal excitations of

the F1-D4-D0 1/8-BPS extremal brane system, we have shown how to take a new

near-extremal limit of these where (some of) the charges are sent to infinity, but

the radius of the circle is taken to zero in such a way that we retain the interesting

physics. Importantly, we have seen how new physics appear which we have shown to

be special for the case of three charges and four transverse space directions (except

possibly three transverse space directions and four charges). The most important

result is that the relative tension, for any seeding solution, is always constant equal to

two i.e. the tension along the circle is proportional to the energy above extremality

with fixed constant of proportionality. We have explained how this is a consequence

of the finite entropy, S = 2π
√

N1N4N0, of the solution in the extremal limit. Also,

we have seen in an appendix how this follows from how the tensions depend on the

boosts.

Further, we examined the physical properties of the constructed three-charge

solutions, especially for each of the three phases: We examined the thermodynamic

stability both in the microcanonical and canonical ensemble. We have given a for-

mula for the entropy as a function of the energy above extremality for the small

three-charge black holes localised on the circle, giving the corrections to the finite

extremal entropy due to the interaction of the black hole. For the new non-uniform

phase the corrections to the entropy are found in the vicinity of the critical point

where it departs from the uniform branch. It was, finally, visualised how the constant

relative tension is approached as we take the charges to infinity.
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We also considered other near-extremal limits where one or two of the charges

were kept finite. Especially, the case with one finite charge for the small black

holes turned out to be important since we obtained an expression for the entropy to

next-to-leading order which we later could compare to the microscopic counting.

The two-charge solutions were also considered in detail since the solutions were

not known before. The uniform branch exhibits Hagedorn behaviour, whereas the lo-

calised phase is stable and extends up to a temperature that lies above the Hagedorn

temperature. This is the same behaviour that was found in the thermodynamics of

the near-extremal NS5-brane [107]. The near-extremal small black holes correspond

to a D1-D5 brane system with the usual near-horizon geometry AdS3×S3× T 4. In

the light of the AdS/CFT conjecture it is therefore interesting that there are defor-

mations of the dual CFT2 that are counterparts of our deformations of the usual

two-charge solution without a circle in the transverse space.

Finally, we extended the microstate counting of the entropy performed in [20] to

our case of small three-charge black holes localized on the transverse circle where two

of the charges are sent to infinity and one is kept constant. This was done following

an analysis similar to that of [33]. We found that, in fact, the first correction to the

entropy due to the presence of the transverse circle is in perfect agreement with the

microstate counting of the entropy, thus giving a non-trivial check of the microscopic

picture.

In [166] the microscopic calculations were taken even further. They use that

tension is invariant under the boosting (note this was the same we used to get the

constant relative tension) to get the energy, which we determined to second order in

the number of D0- and anti-D0-branes, to third order. This means that they can go

to one higher order in the small black hole expansion and explain the vanishing of

the sixth order term in the energy above extremality (6.129). It would be interesting

to pursue this further. Actually, reference [166] also presents a simple microscopic

model (using “fractionation”) that reproduces most of the features of the three new

phases. This would, naturally, be very interesting to pursue as well.

Another interesting research direction is the non-uniform phase and the stability

of the uniform phase. Both with two and three charges we found a new non-uniform

phase emerging from the uniform phase where the black hole is smeared along the

transverse circle. In the one-charge case the existence of this mapped non-uniform

phase has been shown to be connected with a map from the Gregory-Laflamme mode

of the neutral black string to an unstable mode of the singly-charged uniform phase

[6, 161]. The construction of such a map for the two- and three-charge cases would,

in addition to boosts and U-dualities, also include complex rotations as in [6, 161].

The question of the existence of such unstable modes is highly interesting in view

of the Correlated Stability Conjecture of [167, 168, 169, 170], which is examined in
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[161] for the one-charge case, also in view of recent work on the conjecture for other

brane bound states [171, 172, 173]. See also review in [142].

Finally, the study of the three-charge map should be completed by examining

the mappings of the seeding solutions that we have not considered in this chapter.

Especially, we should consider the five-dimensional bubble-black hole sequences of

[89]. These will map to new three-charge solutions with regular event horizons which

could be very interesting to examine, since the free energy of the near-extremal limit

of such solutions can be negative, as one can see from (6.107), and the fact that there

exist plenty of bubble-black hole configurations with n ≤ 4/5. This could very well

hint at the existence of new stable phases of the three-charge system. We intend

to report on this in the future [174]. But also the multi-black hole configurations

found in [157] could be interesting to consider. Maybe adding charge and taking the

near-extremal limit would give new insight on the microscopic side.



Appendix A

Factorization and Integral Periods

This is a revised version of appendix A in [3].

In this appendix we will prove that the SW-curve with fundamental matter fac-

torizes as in (2.48) if and only if there exist a meromorphic one-form with only

simple poles on a hyperelliptic curve, y2
red = F2(Nc−l)(x), which has residue −Nc at

infinity on the upper sheet, residue Nc − Nf at infinity on the lower sheet, residue

1 at −mi, fulfills (4.10), and, finally, has integral α- and β-periods.1 Note that Nc,

Nf , mi and Λ are thought of as given.

This was proven in the case without fundamental matter in [66]. The ideas here

are much the same. The proof is independent of the genus and is thus not confined

to the genus one curves.

Let us first, for completeness, consider the easy part of the proof and show that

factorization of the SW-curve implies the existence of the meromorphic one-form on

the reduced curve with the prescribed properties.

A.1 Factorization Implies Integral One-Form

In the first part of the proof we consider the factorized SW-curve (2.48) as given.

Let us define

ω ≡
(

P ′
Nc

(x)

y(x)
+

B′(x)

2B(x)
− PNc(x)B′(x)

2y(x)B(x)

)
dx . (A.1)

This is nicely a meromorphic one-form on the SW-curve (2.35):

y2 = PNc(x)2 − 4Λ2Nc−Nf B(x) , (A.2)

where B(x) =
∏Nf

i=1(x + mi). In fact, using (A.2) we get:

ω = d log(PNc(x) + y(x)) , (A.3)

1That a meromorphic one-form with the given poles, residues, and integral α-periods exists is,
of course, always true.
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which tells us that ω has integral periods. From (A.1) we can also see that ω has

the right poles and residues. However, since the curve is now factorized according

to (2.48):

y2 = PNc(x)2 − 4Λ2Nc−Nf B(x) = F2(Nc−l)(x)Hl(x)2 = y2
redHl(x)2 , (A.4)

we should check that we do not have poles at the zeroes of Hl. Therefore let x0 be

a root in Hl. Then by (A.4) x0 is a double root in y2 and hence a root in both y2

and dy2/dx. This gives

PNc(x0)
2 − 4Λ2Nc−Nf B(x0) = 0 , (A.5)

2PNc(x0)P
′
Nc

(x0)− 4Λ2Nc−Nf B′(x0) = 0 . (A.6)

We assume B(x0) 6= 0 and hence PNc(x0) 6= 0. Thus we get from (A.5) and (A.6)

P ′
Nc

(x0)−
1

2
PNc(x0)

B′(x0)

B(x0)
= 0 . (A.7)

Thus rewriting ω from (A.1) as

ω =

(
P ′

Nc
(x)− 1

2
PNc(x)B′(x)

B(x)

Hl(x)

1

yred(x)
+

B′(x)

2B(x)

)
dx , (A.8)

we see by (A.7) that the zeroes of Hl are cancelled and we do not get any poles from

Hl. Thus we have proven that we have a meromorphic one-form on the reduced

curve, yred, with the right poles and residues and with integral periods.2 That ω

fulfills (4.10) follows directly from (A.3) given that PNc is normalized.

Before going to the second part of the proof let us get a little inspiration from

this case where we assume that the SW-curve factorizes. In the following, if x is a

point in the upper sheet then (with obvious abuse of notation) x̃ is the corresponding

point on the lower sheet. By (A.1) we then get (since y(x̃) = −y(x)):

ω(x) + ω(x̃) =
B′

B
. (A.9)

Now, let a denote a branch point of yred. Then integrating (A.3) gives

PNc(a)e
R x

a ω = PNc(x) + y(x) , (A.10)

PNc(a)e
R x̃

a ω = PNc(x)− y(x) . (A.11)

Performing the integrations entirely on the upper/lower sheet we get from (A.9):∫ x̃

a

ω = −
∫ x

a

ω + log
B(x)

B(a)
. (A.12)

2By uniqueness (given the α-periods) this must be T (x)dx from (4.2).
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Using this and choosing3 PNc(a) = 2Λ
2Nc−Nf

2

√
B(a) we find by addition of (A.10)

and (A.11) that

PNc(x) = 2Λ
2Nc−Nf

2

√
B(a)

(
1

2
e
R x

a ω +
1

2

B(x)

B(a)
e−
R x

a ω

)
. (A.13)

This is independent of the chosen path of integration since ω has integral peri-

ods. (A.13) is the generalization for the formula for the case without fundamental

matter found in [66]. There the generalization of the Chebyshev polynomials from

the one-cut case was found to be P (x) ∝ cosh(
∫ x

a
ω) which we get from (A.13) by

taking B(x) to be constant.

Let us now use the above considerations to complete the proof of the theorem.

A.2 Integral One-Form on the Reduced Curve Im-

plies Factorization

For the second part of the proof we take as given a hyperelliptic curve yred and a

meromorphic one-form ω on yred with the prescribed poles, residues, integral periods,

and fulfilling (4.10). In this case we simply define (a is again a branch point and we

will, as above, assume that B and y2
red do not share roots)

PNc(x) ≡ 2Λ
2Nc−Nf

2

√
B(a)

(
1

2
e
R x

a ω +
1

2

B(x)

B(a)
e−
R x

a ω

)
, (A.14)

where we of course do not know if this is a polynomial. However, we do know PNc

is well-defined in the sense that it is independent of the choice of integration since

ω has integral periods. To show that PNc is indeed polynomial we will first have to

see that ω fulfills (A.9). We know that we can express ω in the unique meromorphic

one-forms ωPQ with simple poles in P and Q with residues +1 and −1, respectively,

and zero α-periods. In this way we can write

ω = −Ncω∞+∞− +
∑

i

ωg−mi∞−
+ holo. one-forms , (A.15)

We can now use that

ω∞+∞−(x) = − xg

yred(x)
dx + holo. one-forms , (A.16)

ωP̃∞−
(x) =

1

2

1

x− P
dx− 1

2

1

x− P

xg+1

yred(x)

yred(P )

P g+1
dx (A.17)

−1

2

(
1− y(P )

P g+1

)
xg

yred(x)
dx + holo. one-forms .

3There is really no sign choice in PNc since the coefficient of xNc should be 1.
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Here g is the genus of the reduced curve, i.e. if y2
red = F2(Nc−l)(x) then g = Nc− l−1.

Further a basis for the holomorphic one-forms takes the form (3.27)

xi

yred(x)
dx, i = 0, . . . , g − 1 . (A.18)

Thus we can write ω in (A.15) as

ω(x) =
1

yred(x)

(
Rg(x)− 1

2

∑
i

xg+1

x + mi

yred(−mi)

(−mi)g+1

)
dx +

1

2

∑
i

1

x + mi

dx , (A.19)

where Rg(x) is some polynomial of degree g and we recognize the last term as the

expression 1
2
B′(x)/B(x)dx. From this (A.9) is immediate. (A.9) then tells us that

PNc is continuous across the cuts (it is of course by definition continuous through

the cuts) since using (A.12):

PNc(x̃) = 2Λ
2Nc−Nf

2

√
B(a)

(
1

2
e−
R x

a ω+log
B(x)
B(a) +

1

2

B(x)

B(a)
e
R x

a ω−log
B(x)
B(a)

)
= PNc(x) . (A.20)

This means that PNc can be continued to a holomorphic function in the (non-

compact) complex plane with the possible exception of the poles of ω i.e. −̃mi.

However, the value of PNc here is the same value as in −mi by (A.20) and the are

no poles in −mi at the upper sheet. Thus we only have to care about the behavior

of PNc at infinity. Since
∫ x

a
ω ∼ Nc log x for x going to infinity we get

log PNc(x) ∼ log
(
eNc log x+

xNf

B(a)
e−Nc log x

)
= log

(
xNc +

xNf−Nc

B(a)

)
∼ Nc log x , (A.21)

since Nf ≤ 2Nc. We can thus conclude that PNc(x) is a polynomial of degree Nc

as wanted. That PNc is correctly normalized follows by redoing the calculation

in (A.21) also including the x0-order and this time using the assumption (4.10) and

the derived equation (A.12).4

Having established that PNc is a polynomial it follows that

y2 ≡ PNc(x)2 − 4Λ2Nc−Nf B(x) , (A.22)

must also be polynomial. Now, all we need to prove is that y2 = y2
redHl(x)2 for some

polynomial Hl. Using equation (A.14) we get

y2 = 4Λ2Nc−Nf B(a)

(
1

4
e2
R x

a ω +
1

4

B(x)2

B(a)2
e−2

R x
a ω − 1

2

B(x)

B(a)

)
. (A.23)

4It is unclear if one really has to assume (4.10). In the case without fundamental matter we
simply rescale x to get the correct value of Λ. However, in this case the rescaling also affects the
masses thus giving poles in the wrong places.
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To see that y2 contains y2
red as a factor we first realize that a, which was a root in

yred, is also trivially a root in y2 by inserting a in (A.23). Let now b be any other root

in y2
red. We want to know the value of exp(±2

∫ b

a
ω). To find these values we first

note that the α- and β-cycles on yred can all be seen as curves from one branch point

to another on the upper sheet and then back again (i.e. in the reverse direction) on

the lower sheet (think of continuous deformations of the curves in figure 3.3). The

curve in the integral
∫ b

a
ω can then be seen as being put together of the upper sheet

parts of the α- and β-curves. We can then write (using (A.12) and explicitly writing

whether the integral is taken on the upper or the lower sheet):∫ b

a

ω
∣∣∣
upper

=
1

2

∫ b

a

ω
∣∣∣
upper

− 1

2

∫ b

a

ω
∣∣∣
lower

+
1

2
log

B(b)

B(a)

=
1

2

∫
P

i ciαi+c′iβi

ω +
1

2
log

B(b)

B(a)
, (A.24)

where the first integral in the last line simply is the half of a sum of α- and β-periods

of ω (ci and c′i are ±1 or zero). However, since we know that the periods are integral

(this is the crucial dependence on the integrality of the periods) the first integral in

the last line simply is an integer times iπ. Thus inserting in (A.23) gives

y2(b) = 4Λ2Nc−Nf B(a)

(
1

4

B(b)

B(a)
+

1

4

B(b)

B(a)
− 1

2

B(b)

B(a)

)
= 0 . (A.25)

Thus the integrality of ω gives us that y2 contains y2
red as a factor, so that

y2(x) = y2
red(x)Q(x) . (A.26)

To complete the proof we simply have to show that Q(x) is the square of a

polynomial. First we note that

y(x) = 2Λ
2Nc−Nf

2

√
B(a)

(
1

2
e
R x

a ω − 1

2

B(x)

B(a)
e−
R x

a ω

)
, (A.27)

since this nicely fulfills (A.23) (we ignore the sign choice). We can then calculate

1√
Q

dy2

dx
=

yred

y

dy2

dx
=

yred

y

(
2PNcP

′
Nc
− 4Λ2Nc−Nf B′)

(A.14),(A.27)
=

yred

y

(
2PNc

(
y

ω

dx
+ 2Λ

2Nc−Nf
2

√
B(a)

1

2

B′

B(a)
e−
R x

a ω

)
− 4Λ2Nc−Nf B′

)
(A.14),(A.27)

=
yred

y

(
2PNc

(
y

ω

dx
+

1

2

B′

B
(P − y)

)
− 4Λ2Nc−Nf B′

)
(A.19),(A.22)

=
yred

y

(
2PNcy

1

yred

(
Rg −

1

2

∑
i

xg+1

x + mi

yred(−mi)

(−mi)g+1

)
+ y2B′

B

)
(A.26)
= R̃ + y2

red

√
Q

B′

B
, (A.28)
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where R̃ is some rational function. Solving this for
√

Q gives√
Q(x) =

1

R̃(x)

(
dy2

dx
− y2

red

B′

B
Q

)
. (A.29)

Since
√

Q is the square-root of a polynomial and the right hand side is a rational

function we can finally conclude that
√

Q is a polynomial, thus finishing the proof.

The given one-form ω must then – by uniqueness given the α-periods – be T (x)dx

from equation (4.2) and thus (4.3) applies.



Appendix B

Flavour Decoupling

This is a revised version of appendix B in [3].

We can obtain the case without fundamental flavours by taking the limits de-

scribed after equation (2.37). This means that we should take Λ → 0 and mi →∞
for all i while keeping constant:

Λ2Nc−Nf

∏
i

mi ≡ Λ2Nc
new , (B.1)

where Λnew is the new scale for the theory without flavours. The limit means that

for all i we have z̃i → ∞−. However, ∞− is itself changed by changing the z̃is so

from (4.83) we get the consistency equation

∞− =
(N1 −Nc)τ −∆k −Nc + Nf∞−

Nf − 2Nc

, (B.2)

which, as could be expected, is solved as

∞− =
(N1 −Nc)τ −∆k −Nc

−2Nc

. (B.3)

For x(z) in (4.85) all we should do then is to find the formula for B after the limit

has been taken. Using (4.85) in mi = −x(z̃i) we can rewrite equation (B.1) as

lim
Λ2Nc−Nf∏

i θ(z̃i −∞− + 1+τ
2

)

(
−B

θ(∞− − z0 + 1+τ
2

)θ(∞− − 1− τ + z0 + 1+τ
2

)

θ(∞− −∞+ + 1+τ
2

)

)Nf

= Λ2Nc
new . (B.4)

This means we can solve for lim Λ2Nc−Nf /
∏

i θ(z̃i −∞− + 1+τ
2

) and the result can

be used in (4.92) to obtain:

B = e
i2πk

2Nc−Nf
θ(∞+ −∞− + 1+τ

2
)2

θ(∞+ − z0 + 1+τ
2

)θ(∞+ − 1− τ + z0 + 1+τ
2

)

× θ(∞+ −∞− + 1+τ
2

)
Nf

2Nc−Nf e
2πi(∞+−∞−)

Nc+N1
2Nc−Nf e

−πi
Nf

2Nc−Nf

× Λ
2Nc

2Nc−Nf
new

(
−

θ(∞− −∞+ + 1+τ
2

)

Bθ(∞− − z0 + 1+τ
2

)θ(∞− − 1− τ + z0 + 1+τ
2

)

) Nf
2Nc−Nf

. (B.5)
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We can then solve for B to obtain

B = Λnewe
i2πk
2Nc

θ(∞+ −∞− + 1+τ
2

)2

θ(∞+ − z0 + 1+τ
2

)θ(∞+ − 1− τ + z0 + 1+τ
2

)

× e2πi(∞+−∞−)
Nc+N1

2Nc . (B.6)

This gives the solution together with (4.85):

x(z) = B
θ(z − z0 + 1+τ

2
)θ(z − 1− τ + z0 + 1+τ

2
)

θ(z −∞+ + 1+τ
2

)θ(z −∞− + 1+τ
2

)
, (B.7)

and the limit of (4.81):

ω = Ncd log
θ(z −∞− + 1+τ

2
)

θ(z −∞+ + 1+τ
2

)
+ 2πiN1dz . (B.8)

This is exactly what we would get if we solved the factorization problem without

fundamental matter directly.



Appendix C

The Boosts and U-dualities

This is a revised version of appendix A in [1].

In this appendix we show how the neutral solution is charged up via boosts and

U-dualities. Let us start with a static and neutral five-dimensional Kaluza-Klein

black hole as a seeding solution. The metric of such a solution can be written in the

form

ds2
5 = −Udt2 +

L2

(2π)2
Vabdxadxb (C.1)

where Vabdxadxb describes a cylinder in the asymptotic region of circumference L.

There is no dilaton and no gauge fields. By adding flat dimensions x and ui, i =

1, ..., 4, and performing a series of boosts and U-dualities we can construct the ten-

dimensional solution of Type IIA Supergravity given in section 6.1.2.

C.1 The Route

Before going through the calculation, let us first schematically sketch the route that

we will take. First we make a boost in t and x direction with boost-parameter α1:

t x u1 u2 u3 u4

(α1) P × ×
Type IIB

T-dualize in x direction:

t x u1 u2 u3 u4

(α1) F1 × ×
Type IIA

Boost in t and x direction with boost-parameter α4:

t x u1 u2 u3 u4

(α1) F1 × ×
(α4) P × ×

Type IIA

Lift to M-theory by adding the 11th dimension y:
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t y x u1 u2 u3 u4

(α1) M2 × × ×
(α4) P × ×

M-theory

Go back to Type IIA by reducing on x:

t y u1 u2 u3 u4

(α1) F1 × ×
(α4) D0 ×

Type IIA

T-dualize in u1, u2, u3, u4:

t y u1 u2 u3 u4

(α1) F1 × ×
(α4) D4 × × × × ×

Type IIA

Lift to M-theory again by adding an 11th dimension x:

t x y u1 u2 u3 u4

(α1) M2 × × ×
(α4) M5 × × × × × ×

M-theory

Boost in t and x with boost parameter α0:

t x y u1 u2 u3 u4

(α1) M2 × × ×
(α4) M5 × × × × × ×
(α0) W × ×

M-theory

Go back to IIA by reducing on x:

t y u1 u2 u3 u4

(α1) F1 × ×
(α4) D4 × × × × ×
(α0) D0 ×

Type IIA

We stop here with a configuration that is a thermal excitation of an F1-string,

D4-brane and a D0-brane, but we could T-dualize in directions u3 and u4 and lift

to M-theory once more to get the configuration:

t x y u1 u2 u3 u4

(α1) M2 × × ×
(α4) M2 × × ×
(α0) M2 × × ×

M-theory

This is a thermal excitation of a configuration that is known to be 1/8-BPS.



146 APPENDIX C. THE BOOSTS AND U-DUALITIES

C.2 Transformation of the Solution

We now examine how the solution transforms under the boosts and U-dualities

described in the previous subsection. We start with the metric

ds2
10 = −Udt2 + dx2 +

4∑
i=1

(dui)2 + ds2
4 (C.2)

where we have introduced the shorthand ds2
4 ≡ L2

(2π)2
Vabdxadxb. This is considered

to be a solution of Type IIB Supergravity with vanishing dilaton and no gauge fields

present.

Under a Lorentz-boost along the x-axis with rapidity α1, the coordinates trans-

form as (
tnew

xnew

)
=

(
cosh α1 sinh α1

sinh α1 cosh α1

)(
told

xold

)
(C.3)

and the metric becomes

ds2
10 =

(
−U cosh2 α1 + sinh2 α1

)
dt2 − 2(1− U) cosh α1 sinh α1dtdx

+
(
−U sinh2 α1 + cosh2 α1

)
dx2 +

4∑
i=1

(dui)2 + ds2
4. (C.4)

There is an isometry in the x direction and we can therefore use equations (2.54)

in [175] to T-dualize in that direction and get a solution of Type IIA Supergravity.

The dilaton becomes (fields with/without a tilde are new/old)

e2φ̃ =
eφ

gxx

=
1(

−U sinh2 α1 + cosh2 α1

) = H−1
1 (C.5)

where we have defined

H1 ≡
(
−U sinh2 α1 + cosh2 α1

)
= 1 + (1− U) sinh2 α1. (C.6)

The components of the metric that change under the duality are

g̃xx =
1

gxx

= H−1
1 (C.7)

g̃tx = 0 (C.8)

g̃tt = gtt − (gtx)
2/gxx = −UH−1

1 (C.9)

and we get a Kalb-Ramond field with component

B̃tx =
gtx

gxx

= coth α1

(
H−1

1 − 1
)
. (C.10)
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Therefore the solution has become

ds2
10 = H−1

1

(
−Udt2 + dx2

)
+

4∑
i=1

(dui)2 + ds2
4 (C.11)

e2φ = H−1
1 (C.12)

B = coth α1

(
H−1

1 − 1
)
dt ∧ dx (C.13)

and we see that we have already picked up one charge. Two to go.

To produce the second charge we make another Lorentz boost in the x direction,

now with boost parameter α4. The effect on the metric is analogous to the one

above, except now all terms with dt and dx are multiplied with H−1
1 . The dilaton is

a scalar and does therefore not transform and it turns out that B is also invariant

because

dtnew ∧ dxnew = dtold ∧ dxold. (C.14)

We lift the boosted solution to M-theory by adding an eleventh dimension y in the

following S-duality fashion

ds2
11 = e−2φ/3ds2

10 + e4φ/3 (dy + Aµdxµ)2 . (C.15)

There is no gauge field Aµ in our solution and we therefore have, using e2φ = H−1
1 ,

ds2
11 = H

1/3
1 ds2

10 + H
−2/3
1 dy2. (C.16)

The B field gives rise to a three-form with non-vanishing components

Ctxy = coth α1

(
H−1

1 − 1
)
. (C.17)

There is no dilaton in 11 dimensions and this is therefore the full solution.

Let us rewrite the boosted part of the metric (the dt and dx components) before

reducing on x. Defining H4 ≡ 1 + (1− U) sinh2 α4, we find(
− U cosh2 α4 + sinh2 α4

)
dt2 − 2(1− U) cosh α4 sinh α4dtdx

+
(
−U sinh2 α4 + cosh2 α4

)
dx2

= −H−1
4 Udt2 + H4

(
dx + coth α4

(
H−1

4 − 1
)
dt
)2

. (C.18)

The total metric can therefore be written as

ds2
11 = H

1/3
1

{
H−1

1

[
−H−1

4 Udt2 + H4 (dx + Atdt)2]+
4∑

i=1

(dui)2 + ds2
4

}
+ H

−2/3
1 dy2

= H
−2/3
1 H4 (dx + Atdt)2 + H

−2/3
1

(
−H−1

4 Udt2 + dy2
)

+ H
1/3
1

(
4∑

i=1

(dui)2 + ds2
4

)
(C.19)
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with At ≡ coth α4

(
H−1

4 − 1
)
.

We can now reduce on x by reading the S-duality transformation (C.15) back-

wards. From the factor multiplying the first term we see that

e2φ = H−1
1 H

3/2
4 (C.20)

and therefore

ds2
10 = H−1

1 H
−1/2
4

[
−Udt2 + H4dy2 + H1H4

(
4∑

i=1

(dui)2 + ds2
4

)]
. (C.21)

The three-form gives back our B field and we also have a new one-form

Bty = coth α1

(
H−1

1 − 1
)
, (C.22)

At = coth α4

(
H−1

4 − 1
)
. (C.23)

This is a two-charge solution and we only need one more.

Before boosting again, let us transform the D0-brane into a D4-brane by T-

dualizing in u1, u2, u3, u4. The dilaton becomes

eφ =
H−1

1 H
3/2
4

(H
1/2
4 )4

= H−1
1 H

−1/2
4 , (C.24)

the B-field is unchanged and the gauge field is simply

A(5) = coth α4(H
−1
4 − 1)dt ∧ du1 ∧ du2 ∧ du3 ∧ du4. (C.25)

The only part of the metric that changes is in the u-directions and we find

ds2
10 = H−1

1 H
−1/2
4

(
−Udt2 + H4dy2 + H1

4∑
i=1

(dui)2 + H1H4ds2
4

)
. (C.26)

To add the third charge we lift once more to M-theory, boost and reduce. The

procedure is analogous to what has been done before and the end result is as given

in section (6.1.2).

These U-duality transformations of the solution take place in the string frame,

but in the main text we always use the Einstein frame. Going to ten-dimensional

Einstein frame the metric transforms as

gE
µν = e−φ/2gstring

µν (C.27)

and we get

ds2
E = H

− 3
4

1 H
− 3

8
4 H

− 7
8

0

(
− Udt2 + H4H0dx2 + H1H0

4∑
i=1

(dui)2

+ H1H4H0
L2

(2π)2
Vabdxadxb

)
. (C.28)



Appendix D

Relating the c’s and c̄’s

This is a revised version of appendix B in [1].

To find how the expansion coefficients of the non-extremal metric (the c̄’s) are

related to the original seeding solution we recall that the seeding solution has

−gseed
tt ' U = 1− ct

r
, gseed

zz ' 1 +
cz

r
. (D.1)

The harmonic functions can then be written as

Ha ' 1 +
ct

r
sinh2 αa (D.2)

and we can read the asymptotics off the new metric

−gtt = H
− 3

4
1 H

− 3
8

4 H
− 7

8
0 U (D.3)

= 1− ct

r

(
1 +

3

4
sinh2 α1 +

3

8
sinh2 α4 +

7

8
sinh2 α0

)
+ · · · (D.4)

This shows that

c̄t = ct

(
1 +

3

4
sinh2 α1 +

3

8
sinh2 α4 +

7

8
sinh2 α0

)
. (D.5)

Similarly we find

c̄x = ct

(
−3

4
sinh2 α1 +

5

8
sinh2 α4 +

1

8
sinh2 α0

)
, (D.6)

c̄u = ct

(
1

4
sinh2 α1 −

3

8
sinh2 α4 +

1

8
sinh2 α0

)
, (D.7)

c̄z = cz + ct

(
1

4
sinh2 α1 +

5

8
sinh2 α4 +

1

8
sinh2 α0

)
, (D.8)

and

c̄Aa = −ct sinh αa cosh αa. (D.9)

For the phantom direction u0 the factor in front of (du0)2 inside the parenthesis in

equation (C.28) would be H1H4 (from the harmonic rule of [175]) and we find

c̄0 = ct

(
1

4
sinh2 α1 +

5

8
sinh2 α4 −

7

8
sinh2 α0

)
. (D.10)
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Appendix E

Electric Masses and Tensions

This is a revised version of appendix C in [1].

In this appendix we examine the electric mass and tensions in greater detail.

E.1 Direct Calculation

In this subsection we will show how to calculate the electric mass and tensions in 10

and 11 dimensions for general objects composed of transverse branes, F1-strings etc.

obeying the harmonic function rule, and based on a seeding solution of dimension

d + 1. This will be done using the method of equivalent sources.

The matter part of the energy momentum tensor, Tmat, consists of a dilatonic

part, T dil
µν , and parts from the gauge field strengths Fa, T

(Fa)
µν :

Tmat
µν = T dil

µν +

Nch∑
a=1

T (Fa)
µν , (E.1)

where Nch is the number of different charges. The explicit expressions for the energy-

momentum tensors are:

8πGDT dil
µν = −1

4
gµν∂

ρφ∂ρφ +
1

2
∂µφ∂νφ (E.2)

8πGDT (Fa)
µν = −1

2
gµν

1

2(pa + 2)!
eκaφ(Fa)

2 +
1

2(pa + 1)!
eκaφ(Fa)

ρ1···ρpa+1
µ (Fa)νρ1···ρpa+1 ,

(E.3)

where D is the total number of dimensions, pa is the number of world-volume direc-

tions for object a, and κa is a number depending on pa.

To calculate the mass and tension we use the method of equivalent sources. This

means that instead of studying the real metric we will study a metric with the same
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asymptotics as our solution, but which is everywhere Newtonian, i.e. we can split

the metric as:

gµν = ηµν + hµν , (E.4)

where ηµν is the Minkowski metric and hµν is small so we can ignore second order

contributions in h.

We now define:

Sµν ≡ Tµν −
1

D − 2
gµνT ' Tµν −

1

D − 2
ηµνT, (E.5)

where D is the total number of dimensions and T = T µ
µ ' ηµνTνµ. We can inverse

this as:

Tµν ' Sµν −
1

2
ηµνS. (E.6)

Then Einstein’s equation takes the form

Smat
µν =

1

8πGD

Rµν (E.7)

The linearized Ricci tensor is

R(1)
µν = −1

2

(
�hµν + h λ

λ ,µν − h λ
µ ,νλ − h λ

ν ,µλ

)
(E.8)

The gravitational part of the energy-momentum tensor is then defined from:

Sgr
µν ≡

1

8πGD

(
R(1)

µν −Rµν

)
(E.9)

Summing the contributions from both the gravitational part and the matter part

gives:

Sµν = Sgr
µν + Sdil

µν +

Nch∑
a=1

S(Fa)
µν =

1

8πGD

R(1)
µν (E.10)

The electric part of the energy momentum tensor will simply be defined as the part

of the tensor that goes to zero when we set the charges to zero, i.e.:

Sel
µν ≡ Sµν − Sµν |Qa=0 (E.11)

We note that we a priori have contributions from all the parts of the energy momen-

tum tensor in (E.10), especially, we see that both the terms from the gauge fields

and the dilatonic term (the dilaton is constant in the case where the charges are

zero) are completely electric.

Using that all raisings and lowerings can be done with ηµν , that the covariant

derivatives can be replaced with ordinary, and that hµν only depends on r and is

diagonal, we get from (E.6):

Tµµ =
1

16πGD

∂2
r

(
−hµµ − ηµµ(hrr − ηαβhβα)

)
= ∂2

r

(
−hµµ − ηµµ

(
htt −

(d− 2)

r2
hΩΩ − hzz −

∑
a

pahu(a)u(a)

))
, (E.12)
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where µ 6= r, Ω refers to the angular directions, and ui
(a) are the coordinates for the

world-volume for object a which will have a volume denoted by Vpa . We see that

this is a boundary term so that we easily can get the masses and tensions (since

hxx ∼ c̄x/r
d−3):

M̄ =

∫
dD−1xTtt =

(
∏

Vpa)LΩ(d−2)

16πGD

(d− 3)

(
(d− 2)c̄Ω + c̄z +

∑
a

pac̄u(a)

)
, (E.13)

LT̄z = −
∫

dD−1xTzz =
(
∏

Vpa)LΩ(d−2)

16πGD

(d−3)

(
(d−2)c̄Ω+

∑
a

pac̄u(a)
− c̄t

)
, (E.14)

Lu(a)
T̄a =

(
∏

Vpa)LΩ(d−2)

16πGD

(d− 3)

(
(d− 2)c̄Ω + c̄z +

∑
a′ 6=a

pa′ c̄u(a′)
+ (pa − 1)c̄u(a)

− c̄t

)
.

(E.15)

The asymptotic quantities are determined by the real physical metric which by

the harmonic function rule has components:

gtt = −H

(∏
a

H−1
(a)

)
U, gui

(a)
ui
(a)

= H−1
(a)H,

gzz = Hfz, gΩΩ = HfΩ, (E.16)

where U ∼ 1, fz ∼ 1, and fΩ ∼ r2 are functions from the seeding solution, and:

H ≡
∏

a

Hβa

(a), βa =
pa + 1

D − 2
, (E.17)

which holds for Dp-branes, F1-strings and NS5-branes in D = 10 dimensions, and

M2- and M5-branes in D = 11 dimensions. The harmonic function is assumed to

be given by:

H(a) = 1 + (1− U) sinh2 αa. (E.18)

The electric part of the mass and tensions are defined by (E.11) as the part that

goes to zero when we set the charges to zero. We can now use the metric to find the

electric parts of c̄t, c̄z, etc. in terms of the seeding ct:

c̄el
t =

∑
a

D − 2− pa − 1

D − 2
sinh2 αact

c̄el
u(a)

=
∑
a′

pa′ + 1

D − 2
sinh2 αa′ct − sinh2 αact

c̄el
z =

∑
a

pa + 1

D − 2
sinh2 αact

c̄el
Ω = c̄el

z (E.19)
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Inserting this in (E.13)–(E.15) finally gives:

M̄ el =
(
∏

Vpa)LΩ(d−2)

16πGD

(d− 3)ct

∑
a

sinh2 αa (E.20)

LT̄ el
z = 0 (E.21)

Lu(a)
T̄ el

a =
(
∏

Vpa)LΩ(d−2)

16πGD

(d− 3)ct sinh2 αa (E.22)

which, of course, is the same result as (6.30). We note that since we should look

at the asymptotic behavior of our metric, then by the form of H(a) in (E.18) our

electric masses and tensions split in a sum of contributions from each object a. We

also observe that there is no contribution to the electric parts of the tension in some

given direction from objects transverse to this direction. Especially, the electric part

of the tension in the z-direction is zero. We will use this as one of the basic principle

in the next section.

E.2 Symmetry Considerations

In this section we will investigate the electric masses and tensions, but this time

based on some simple symmetry consideration and some physical principles that

have been confirmed in the last subsection. We will follow the analysis in [4, section

3.2], but with our definition of the electric mass and tension.

First, we assume that the electric parts of the energy-momentum tensor split up

into contributions from each of the objects a, as was confirmed in last section, i.e.:

T el(a)
µν = Tµν |∀a′ 6=a:Qa′=0 − Tµν |∀a′:Qa′=0. (E.23)

This gives rise to the electric parts of the mass and tensions.

We will still use the method of equivalent sources, so that we can neglect sec-

ond order contributions in hµν . We then require boost-invariance for object a, i.e.

T
el(a)
tt = −T

el(a)

uj
(a)

uj
(a)

. This can be seen to be fulfilled by the dilatonic and gauge part

of the energy-momentum tensor in (E.2) and (E.3) (using that φ only depends on

r) and, actually, also for R
(1)
µν using (E.16) (assuming the symmetry holds for the

equivalent metric also) and (E.8), and hence for the whole energy-momentum tensor.

After integrating, the boost-invariance implies:

M el(a) = Lu(a)
T̄ el(a)

a . (E.24)

We further require that for ν a transverse direction to object a we have (i.e. after

integrating the electromagnetic part of the energy-momentum tensor):

Lν T̄ el(a)
ν = −

∫
T el(a)

νν = 0, ν transverse to object a. (E.25)
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This means that we in (E.24) can replace the tension on the right hand side with

the total electric tension in the u(a)-direction:

M el(a) = Lu(a)
T̄ el

a . (E.26)

Assuming a diagonal energy-momentum tensor and using the method of equiva-

lent sources we get from [143] that

∇2gui
(a)

ui
(a)

= −16πGD

(
Tui

(a)
ui
(a)
− 1

D − 2
T ρ

ρ

)
. (E.27)

Taking the non-electric part of this we should set all the charges to zero. In that case

the directions ui
(a) should be completely flat, and hence the left hand side should be

zero, i.e.:

T non-el
ui
(a)

ui
(a)

=
1

D − 2

∑
ρ

ηρρT non-el
ρρ , (E.28)

or:

(D − 2)T non-el
u(a)u(a)

= −T non-el
tt + T non-el

zz +
∑

a

paT
non-el
u(a)u(a)

+ overall transverse terms.

(E.29)

Integrating, using (E.25) and (E.26), and solving we get:

(d− 1)(Lu(a)
Ta −M el(a)) = M̄ −M el + LT̄z. (E.30)

In general these Nch equations can be solved for the unknowns M el(a). However,

precisely in our three-charge case with d − 1 = 3 the equations have determinant

zero. Adding the three equations gives:

LxT̄x + Lui T̄ui + L0T̄0 = M̄ + LT̄ , (E.31)

which exactly is independent of M el. From this equation we, however, obtain the

two nice relations:

n̄x + n̄0 + n̄u = 1 + n̄, (E.32)

rx + r0 + ru = 1 + r (E.33)

which are indeed obeyed by (6.34) and (6.35), and (6.94).

For general dimensions and charges we instead get:∑
a

n̄a =
Nch

d− 1
+

Nch

d− 1
n̄, (E.34)

∑
a

ra =

(
1− d− 2

2

)
Nchµ

(d− 1)ε
+

3Nch

2(d− 1)
r, (E.35)
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where in the last equation the limit αa →∞ had to be taken in the same way as in

the end of section 6.3.3. We see that for d = 4 the last relation reduces to:∑
a

ra =
Nch

2
r. (E.36)

If we use this for the three-charge case we exactly get r = 2.

Finally, if we use this on near-extremal two-charge case we get:

r0 + r4 = r (E.37)

in agreement with (6.137) (we set the last charge to zero). Using (E.33) we also con-

clude that the last relative tension should be once again in agreement with (6.137).
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