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Introduction

Physics has certainly one of the most surprising and fascinating histories of all sciences.
Nowadays, it is hard to find a field of natural science that has not been influenced in
some way by rapid development of physics in the twentieth century. Ironically, in the end
of 1900’s, namely just before the beginning of the scientific revolution, people started to
suspect that all that had been found at that time (electrodynamics, thermodynamics, some
aspects of nuclear physics, and others) would never be unified, and physics is at its dead
end. And then, a mere two decades later came Einstein with his special, and then general,
theory of relativity, then Bohr, Dirac, Heisenberg, Schrödinger, et al. with probably the
most mysterious theory of all, the quantum mechanics, then the idea of quantum fields by
Dyson, Schwinger, and others, and astonishing amount of other discoveries in all fields of
physics, solid state physics, atomic physics, cosmology, particle physics, and so forth.

But although so many different, astounding papers have been published in the last
century, all theoretical physicists have had the same goal in their minds - a unification.
Even though now we have the theory, called Standard Model, that has managed to combine
three of the four fundamental interactions in nature, as of today gravity remains dissociated
from other forces, and Einstein’s theory of relativity resides out of the context of Standard
Model.

String theory appeared as an attempt to unify gravity with the other three forces, and
so far it is the only serious candidate for a theory of everything. The idea of a string as
a fundamental object of nature goes back to the 1960’s, however until 1984, when Green
and Schwartz proved that a theory based on it is free of anomalies, nobody really had been
taking it seriously. In the 1990’s Witten showed that all five, different superstring theories
that had been known can in fact be unified to one theory which he called M-theory. This
all, followed by Polchinski’s discovery in 1995 of higher-dimensional objects in string theory,
called D-branes, has to a large extent built a picture of string theory which we know today
- a mathematically consistent, unified, beautiful theory which is extremely difficult (if not
impossible) to test experimentally, and thus not very well established in order to describe
the real world. For that reason, one can say that while in a mathematical sense superstring
theory is indeed a theory (although still not everything is understood), from the physical
point of view it is rather a conjecture.

Soon after the discovery of D-branes a connection between string theory and gauge
theories was noticed, subsequently followed by a significant number of publications on that
subject. This has led to a full establishment of the string/gauge duality in 1997 by Maldacena
[1], and this discovery, together with further details worked out by Gubser, Klebanov,
Polyakov, and Witten [2, 3], has been known as the holographic principle, or the AdS/CFT
duality. It claims that the ten dimensional type IIB superstring theory compactified on

vii



the AdS5 ×S5 manifold1 is equivalent to the maximally supersymmetric Yang-Mills theory
in four dimensions, which is the N = 4 Super Yang-Mills (SYM) theory with the SU(N)
gauge group. The main assumption is that in order for the conjecture to hold, one has to
take the limit of large N by keeping the product λ = 4πgsN fixed. This idea is based on
an older observation by ’t Hooft [4] that the perturbative expansion in 1/N is very similar
in nature to the perturbative genus expansion in a generic interacting string theory, and
hence the name of this limit: the ’t Hooft limit. Ironically, the most exciting feature of
the AdS/CFT duality is also its biggest problem, and that is because it relates two entirely
different theories with two completely different properties, which itself is phenomenal but
also makes the duality very difficult to test. One can understand this by looking at its basic
dictionary

g2
YM =

λ

N
= 4πgs;

R2

α′ =
√
λ, (1)

where λ is the ’t Hooft coupling, gs is the string coupling constant, g2
YM is the Yang-Mills

coupling constant,
√
α′ is the fundamental string length, and R is the radius of AdS5 and

S5. If one now takes the string theory in a highly curved background, namely where the
string length is of the order of the radius of manifolds it lives on (α′ ∼ R2), then the
coupling gauge constant will be relatively small. On the other hand, if the curvature of
the background is small in string units (α′ ≪ R2), then g2

YM will be large. And since the
tests are being performed pertubatively, the allowance for an expansion on the one side
(for example the flat string background) usually makes the expansion on the other side
unfeasible (strongly coupled gauge theory), and therefore one can see that the gauge/string
duality is a weak/strong type of duality.

In spite of great interest in the subject of many theorists and already some confirma-
tions of Maldacena’s conjecture (successfully) performed soon after his publication, the
weak/strong duality problem remained. For example, the AdS/CFT correspondence pre-
dicts that the scaling dimensions ∆ of local operators in gauge theory should scale as

∆(λ, 1
N ) ≡ E(R2

α′ , gs), (2)

where E is the energy spectrum of dual string theory states. If we want to quantise the
string theory, in order to obtain the string states, we need R2 ≫ α′ but then how can
we expand the two point function of local gauge states from which we can read off the
scaling dimensions? One of the ideas to get around this was the Berenstein, Maldacena,
and Nastase’s suggestion [5] to quantise the string theory in the pp-wave limit, and consider
the gauge operators with large J charge on S5. This would allows to expand the spectra on
both sides by taking

λ, J → ∞,
λ

J2
= finite, ∆ − J = finite, (3)

and indeed the spectra do match up to two loops, however there is a disagreement at three
loops.

A different idea, yet based on the same limit, is due to Frolov and Tseytlin [6]. They
have considered the semiclassical picture of spinning strings in a submanifold of AdS5 ×

1The AdS5 is the five dimensional, hyperbolic anti-de Sitter space, and S
5 is the five sphere.
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S5, and due to the limit (3), which in the semiclassical picture is merely a limit of large
conserved charges, quantum effects become suppressed. One can then calculate the energy
of spinning strings as a function of other charges, and compare it to the gauge states, where
the calculation of scaling dimensions as functions of conserved charges is performed by the
Bethe ansatz procedure2. The hope of integrability in N = 4 appears because of Minahan
and Zarembo’s observation [9], followed by other tests [41, 42, 43, 44], that the N = 4
anomalous dimension matrix can be mapped to an integrable, Heisenberg system of spin
chains. However, here the same problem occurs as in the case of the pp-wave limit, namely
the discrepancy at three loops appears again. It is believed that the reason for this is that
even though the ratio λ

J2 is kept finite, it is still large enough so that the expansion breaks
down at some point, and one has to introduce the so-called dressing factor [7, 8].

A particularly interesting aspect of the AdS/CFT correspondence is what happens to
it when one acts on both sides of the duality with a discrete group. Manifolds modded out
by discrete groups have been known for some time now under the name of orbifolds, and
it has also been known since mid-1980’s that string theories on orbifolds might have their
supersymmetry reduced with respect to their “parent” theories (the same string theory on
the smooth manifold in the covering space), and that is because strings propagating on
orbifolds might encounter singular points which break the supersymmetry of the theory.
Therefore one might expect that the gauge/string duality modded out by some discrete
group could yield a new kind of duality, and the properties of the original holographic
principle as we know might help us determine if the gauge theories with less supersymmetry
are integrable, like we suspect the N = 4 SYM theory is. In this thesis we perform some
tests of the AdS/CFT duality, orbifolded by the discrete group G = ZM which becomes
the type IIB string theory on AdS5 × S5/ZM , presumably dual to the N = 2 quiver gauge
theory [54, 55].

The thesis is organised as follows. In chapter 1 we give a brief introduction to the
gauge/string duality, its constituents, and show that the two-point correlation function is
a well defined object according to the postulates of the holographic principle; we mention
in the end a few words about the Berenstein-Maldacena-Nastase paper [5]. In chapter
2 we discuss the formalism of obtaining the one-loop anomalous dimensions of generic,
unprotected, local gauge operators by the procedure of the dilatation operator [41], and
briefly explain the idea of spin-chains. In chapter 3 we introduce the orbifolding procedure,
quantise the resulting string theory in the pp-wave limit, and then formulate the gauge dual
states in the SU(2) subsector. Afterward, we compare their energy spectra up to one loop.
In chapter 4 we consider the approach of semiclassical strings spinning in Rt × S3/ZM ,
calculate their energy, and compare it to the one-loop anomalous dimension of the gauge
states, solved by the method of rational solutions. We conclude with a short remark on
algebraic curve, and in outlook of the thesis we suggest some directions in which one might
proceed afterwards.

2To be precise, it is performed by calculating the anomalous dimension matrix by the use of the dilatation
operator for N = 4 SYM, and then its diagonalisation through the Bethe ansatz procedure [51, 20].
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Chapter 1

The gauge/string duality

We start by giving a brief introduction to the AdS/CFT duality. We begin with the
presentation of various descriptions of anti-de Sitter space, followed by short discussions of
conformal group, conformal field theory, and then of the N = 4 superconformal Yang-Mills
theory. The emphasis of this introduction is put on the two-point correlation functions as
well-defined objects from the point of view of the duality. Therefore, after explaining main
arguments confirming why the AdS/CFT conjecture should hold in the first place, we show
that its prediction of the form of the two point function agree with the conformal field
theory postulates. We end this chapter by discussing a very specific limit in which the tests
of AdS/CFT duality will be performed throughout this thesis.

1.1 Anti-de Sitter space

In order to understand the gauge/string duality better it is crucial to discuss the prop-
erties of anti-de Sitter space extensively. Its geometry, spacetime structure, symmetries
are very different from de Sitter space, whose properties our world seems to possess, and
therefore I will try to be as clear as possible, in spite of rather extensive use of mathematics
and topology.

Anti-de Sitter space is the negative curvature analogue of de Sitter space named after
the Dutch physicist Willem de Sitter; in the language of general relativity it is a maximally
symmetric vacuum solution of Einstein’s field equation with a negative cosmological con-
stant. From the mathematical point of view, it is useful to consider a (d + 1)-dimensional
AdSd+1 space as a submanifold of a pseudo-Euclidean (d+2)-dimensional embedding spaceR2,d, with coordinates and metric

Xa = (X0,X1, . . . ,Xd,Xd+1), ηab = diag(−1,+1,+1, . . . ,+1,−1), (1.1)

defined such that

−R2 = −(X0)2 + (X1)2 + (X2)2 + ...+ (Xd)2 − (Xd+1)2, (1.2)

preserved by the Lorentz-like group SO(2, d), acting as

Xa → X ′a = Λa
bX

b, Λa
b ∈ SO(2, d), (1.3)

1



2 The gauge/string duality

and the metric

ds2 = −(dX0)2 +

d∑

i=1

(dXi)2 − (dXd+1)2. (1.4)

Note that, although we see two times X0 and Xd+1 in the definition (1.2), we have to realise
that it is the pseudo-Euclidean space which possesses them, and not the anti-de Sitter space;
the AdS space, as a submanifold, has just one proper time which we will show below.

This kind of description, however, is a starting point for more than one geometric inter-
pretation; while working in such space people customarily choose various parametrisations,
depending on the type of problems they are facing. It is a commonly known fact that certain
coordinates for certain mathematical puzzles might become very handy, and in fact we will
see that explicitly when endeavouring to solve a few of them. For that reason we proceed
to presenting the most popular descriptions of AdSd+1 space.

1.1.1 The global coordinates

They are introduced by the following parametrisation

X0 = R cosh ρ sin τ ρ ∈ [0,∞)

Xi = R sinh ρΩi i = 1, . . . , d (1.5)

Xd+1 = R cosh ρ cos τ τ ∈ [0, 2π),

where

d∑

i=1

Ω2
i = 1 (1.6)

denotes the Sd unit sphere. The metric then reads

ds2 = R2(− cosh2ρ dτ2 + dρ2 + sinh2ρ dΩ2
d−1). (1.7)

Now we can identify the proper time τ , since we can see by looking at (1.5) that translations
in τ correspond to rotations of X0’s and Xd+1’s. For that reason we say that this repre-
sentation of AdSd+1 space has closed time-like curves, and the hyperboloid (1.2) has the
topology of S1 ×Rd, with S1 representing these curves (see figure 1.1 (a)). One can always,
however, “unwrap” the circle S1 by taking τ → t ∈ R, obtaining the universal covering
space (CAdS), which has topology of R1,d and contains no time-like curves (see figure 1.1
(b)). For our purposes though, we will hereafter use only CAdS, and refer to it as AdS.

1.1.2 Conformal compactification of AdSd+1

Another parametrisation can be obtained from (1.5) by introducing new coordinate ζ,
and setting

ζ := arctan(sinh ρ), ζ ∈
[
0, π

2

)
(1.8)
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Figure 1.1: The figure (a) is the AdSd+1 space visualised in terms of the S1 ×Rd manifold
with time-like curves, whereas the figure (b) is the universal covering AdSd+1 space (CAdS),
represented by the R1,d manifold.

due to which the metric takes the form

ds2 =
R2

cos2ζ

(
−dt2 + dζ2 + sin2ζ dΩ2

d−1

)
, (1.9)

which has the topology of R× Sd, R being the time direction.
It is crucial to note that the casual structure of the spacetime is invariant under the

(conformal) rescaling

ds2 −→
(

R2

cos2ζ

)−1

ds2, (1.10)

however this time, unlike in the case of (1.5) when the global coordinates covered the whole
spacetime, here they in fact cover only one half of it, as the coordinate ζ takes the value
0 6 ζ < π/2, rather than 0 6 ζ < π. The point at ζ = π/2 is added, being the boundary
of the space with the topology of Sd−1. As a result, the AdS boundary ∂(AdSd+1) can
be seen as having topology of R × Sd−1 (see figure 1.2) The whole of anti-de Sitter space

S
d−1

time

boundary:

Figure 1.2: The AdSd+1 space can be visualised as a higher-dimensional “cylinder” of
topology R×Sd, where each circle at a constant time t is a (d− 1)-sphere. Hence, the AdS
boundary ∂(AdSd+1) has the topology R× Sd−1.



4 The gauge/string duality

is conformal to the region 0 6 ζ < π/2. Since for this coordinate system spatial infinity
(boundary that is) has a finite value, the AdS spacetime can be conveniently represented
by the use of Penrose diagrams (see figure 1.3), where coordinates of Sd−1 unit sphere are
suppressed, becoming a 2D plot of proper time t versus the “azimuth” angle ζ in (1.8). In

π
2

πB = (0,  )

t

A = (0,0) ζ

null (lightlike) geodesic

timelike geodesics
from point 

from point

A

A

boundary

Figure 1.3: The Penrose diagram of AdS space shows that the massive objects move along
the time-like geodesics which never reach the boundary, while the massless ones can reach
it and come back in a finite amount of time.

this diagram, the null lines at 45◦ are drawn to clarify the conformal structure. Massless
particles, moving along the null geodesics, will reach the spatial infinity of AdS space in
finite amount of time, whereas massive particles moving along the time-like geodesics will
never get there. (For detailed calculations of this phenomenon, please refer to [10].) This
is a crucial property of AdS space.

The set of coordinates (1.9) allows us to imagine how to view AdS space, and for that
please refer to figure 1.4. The Sd part of AdS space can be seen as a higher-dimensional
version of a two dimensional disk. Each bat is actually the same size, and the circular
boundary is infinitely far from the center of the disk. The projection from true, hyperbolic
space to this representation of it (which is merely the conformal scaling) squashes the
distant bat to fit the infinite space inside a finite circle. On the right-hand side we see
that these circles, which in fact are Sd-spheres, are layered inside the cylinder as each one
of them represents the AdS space in a certain time “snapshot”. In order to include the
time dimension, the bat-hyperplanes have to move also along the time direction. However,
the bats are made of massive particles and thus they can never reach the boundary of the
“cylinder”, unlike the (massless) light beam shot from the disc, which can reach it, reflect,
and come back in the finite amount of time (provided appropriate boundary conditions are
set, see figure 1.3).

1.1.3 Polar/stereographic coordinates

These coordinates, known also as the Poincaré-disc coordinates, are introduced by the
following map

(X0,Xµ) −→ (X0(ρ, yµ),Xµ(ρ, yµ)), µ = 1, ..., d + 1 (1.11)
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such that

X0(ρ, yµ) = ρ
1 + y2

1 − y2
Xµ(ρ, yµ) = ρ

2yµ

1 − y2
(1.12)

y2 =

d∑

i=1

(yi)2 − (yd+1)2 dy2 =

d∑

i=1

(dyi)2 − (dyd+1)2 (1.13)

with the metric

ds2 = −dρ2 +
4ρ2

(1 − y2)2
dy2. (1.14)

Figure 1.4: The AdS space as the cylinder from figure 1.2, where all the bats in the disk,
which is an Sd-sphere, are of the same size but since the boundary of the circle is infinitely
far from the centre of the disk the bats, which are made of massive particles, visually seem
to decrease towards the boundary.

One of the ways to describe the AdSd+1 space is to consider an Euclidean space Rd+1,
and let Bd+1 be the open unit-ball

0 < y2 =
d+1∑

i=1

(yµ)2 < 1, (1.15)

where we Wick rotated to Euclidean space by setting yd+1 → −iyd+1. Then, AdSd+1 can
be identified as Bd+1 with the metric

ds2 =
4R2

(1 − y2)2

d+1∑

i=1

(dyµ)2, (1.16)

which can be obtained from (1.14) by setting ρ ≡ R. We can compactify Bd+1 to get a
unit-ball B̃d+1, defined by

d+1∑

i=1

(yµ)2 6 1, (1.17)



6 The gauge/string duality

the boundary of which is the Sd unit sphere at y2 = 1. The Sd is the Euclidean version of
the conformal compactification of Minkowski space, and the fact that the Sd is the boundary
of B̃d+1 is the Euclidean version of the statement that Minkowski space is the boundary of
AdSd+1. We clearly see that the metric of B̃d+1 is singular at |y| = 1 as the overall scale
factor blows up there. This scale factor can be removed by a Weyl rescaling of the metric

ds2 → ds̃2 = f2ds2, f = 1 − y2, (1.18)

and then ds̃2 restricts to a metric on Sd, however such rescaling is not unique. That is
because one could equally well replace f by

f → ewf, (1.19)

with w any real function on B̃d+1, which would induce the conformal transformation

ds̃2 → e2wds̃2 (1.20)

in the metric of Sd. Therefore, we conclude that a unique, well-defined limit to the boundary
of AdSd+1 can exist only if the appropriate boundary field theory is scale invariant.

A closely descendant parametrisation to the one considered above is obtained by the
following change of variables in (1.16)

y2 ≡ r2, r = tanh

(
ỹ

2

)
, ỹ ∈ [0,∞) (1.21)

due to which

r2 = dr2 + r2dΩ2
d, (1.22)

hence

ds2 = dỹ2 + sinh2ỹ dΩ2
d, (1.23)

where the overall factor R2 was dropped for convenience. In this representation boundary
lies at ỹ = ∞.

1.1.4 Poincaré coordinates

Let us go back to Minkowski space again. If we parametrise the metric (1.5) in the
following way

X0 =
1

2u
(1 + u2(R2 + ~x2 − t2)), Xd =

1

2u
(1 − u2(R2 − ~x2 + t2))

Xi = Ruxi, i = 1, ..., d − 1, Xd+1 = Rut, (1.24)

where u ∈ (0,∞), and ~x ∈ Rd−1, then we will receive the following metric

ds2 =
du2

u2
+ u2(−dt2 + d~x2). (1.25)

(Again, R2 dropped.) The coordinates (u, t, ~x) are called the Poincaré coordinates, and are
called such because the metric (1.25) is invariant after such a group transformation that
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consists of two subgroups, namely the Poincaré transformations (or inhomogeneous Lorentz
group) group ISO(1, d − 1) on (t, ~x), and SO(1, 1) conformal group which acts on the full
set of coordinates as

(u, t, ~x) → (c−1u, ct, c~x), c > 0. (1.26)

In the AdS/CFT correspondence this is identified with the dilatation D in the conformal
symmetry group of R1,d−1.

Again, one can always rotate to Euclidean space by Wick-rotating the time coordinate
Xd+1 → −iXd+1, or in this case the Poincaré time coordinate t → −itE , getting the
Euclidean version of (1.25)

ds2 =
du2

u2
+ u2(dt2E + d~x2). (1.27)

In these coordinates, at u = ∞ we have a sphere Sd at the boundary, with one point
removed. The full boundary sphere is recovered by adding a point corresponding to u = 0
(or, equivalently, ~x = ∞).

Finally, one could view AdSd+1 as the upper half space x0 > 0 in a space with coordinates
xµ, for µ = 0, 1, ..., d, and the metric

ds2 =
1

(x0)2

d∑

µ=0

(dxµ)2. (1.28)

It can be simply obtained from (1.27) by setting x0 = 1/u, and identifying tE ≡ xd.
Likewise, in this representation the boundary consists of a copy of Rd at x0 = 0, together
with a single point P at x0 = ∞. Thus, from this point of view the boundary is a conformal
compactification of Rd, obtained by adding a point P at infinity, which gives a sphere Sd.

As the description of AdS space presented above is a necessary minimum, I refer to the
literature for more details [10, 11, 12, 13, 14, 15, 16].

1.2 Conformal field theory

1.2.1 Conformal group

From an abstract point of view, conformal field theories are Euclidean quantum field
theories that are characterised by the property that their symmetry group contains, in
addition to Euclidean symmetries, local conformal transformations, i.e. such symmetry
which preserves angles. Given the space Rp,q, p+ q = d, with flat metric gµν = ηµν , where

ηµν = diag(−, . . . ,−,︸ ︷︷ ︸
p entries

+, . . . ,+︸ ︷︷ ︸
q entries

), (1.29)

of signature (p, q), the conformal transformations are defined as the general coordinate trans-
formations, the parameters of which define a conformal Killing vector ξµ(x). The defining
equation for this conformal Killing vector is given by

δξgµν(x) ≡ ∇µξν(x) + ∇νξµ(x) = w(x)gµν(x), (1.30)
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where w(x) is an arbitrary function of xµ, ξµ = gµνξ
ν , and the covariant derivative is given

by ∇µξν = ∂µξν − Γ ρ
µν ξρ. In flat, d-dimensional Minkowski space (1.30) implies

∂µξν(x) + ∂νξµ(x) − 1

d
ηµν∂ρξ

ρ(x) = 0. (1.31)

Equation (1.31), which determines conformal symmetries, is often referred to as the confor-
mal Killing equation. In d = 2 it leads to an infinite-dimensional conformal algebra (known
as the Virasoro algebra), while for d > 2 the conformal algebra is finite-dimensional. Indeed,
the solutions are

ξµ(x) = aµ + ωµνxν + λxµ + (x2βµ − 2xµx · β). (1.32)

Corresponding to the parameters aµ are the translations Pµ, to ωµν correspond the Lorentz
rotations Mµν , to λ are associated dilatations D, and βµ are parameters of special conformal
transformationsKµ. This is expressed as follows for the full set of conformal transformations
δC (up to an overall constant factor):

δC = aµPµ + ωµνMµν + λD + βµKµ, (1.33)

These are the most general infinitesimal spacetime transformations which leave the light-
cone invariant, and the algebra generated by these transformations is isomorphic to
SO(p+ 1, q + 1).

One can always integrate (1.33) to finite conformal transformations; we find first of all
the Poincaré group (µ index suppressed)

x→ x′ = x+ a (1.34)

x→ x′ = Λx (Λµ
ν ∈ SO(p, q)), (1.35)

which corresponds to w = 1 in (1.30). On top of that we have the dilatations

x→ x′ = λx, (1.36)

corresponding to w = λ−2, and also the special conformal transformations (SCT)

x→ x′ =
x+ βx2

1 + 2β · x+ β2x2
, (1.37)

where w(x) = (1 + 2β · x+ β2x2)2.

And so, for d > 2 the total number of parameters in the conformal group is equal
to 1

2(d+ 1)(d + 2). The conformal group is thus isomorphic to the orthogonal group on
(d + 2) × (d+ 2) matrices. For the special case of four dimensions, the conformal group is
easily constructed from the six generators of the Lorentz group, four generators of transla-
tions, four generators for the proper conformal transformations, and one generator for scale
transformations, giving a total of 15 generators. The conformal group in four dimensions is
therefore

SO(2, 4) ∼ SU(2, 2). (1.38)
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Working out the Lie algebra of the conformal group is rather straightforward. We can
choose the simplest possible representation, namely a scalar field φ(x). Then we will find
out that

Pµ = i∂µ,

Mµν = i(xµ∂ν − xν∂µ),

D = ixµ∂µ, (1.39)

Kµ = i(2xµx · ∂ − x2∂µ),

which satisfy the following Lie algebra:

[Mµν ,Mρσ] = i(gνρMµσ − gµρMνσ − gνσMµρ + gµσMνρ), (1.40)

[Pµ,Mρσ ] = i(gµρPσ − gµσPρ), (1.41)

[Kµ,Mρσ] = i(gµρKσ − gµσKρ), (1.42)

[D,Mµν ] = [Pµ, Pν ] = [Kµ,Kν ] = 0, (1.43)

[Pµ,D] = iPµ, [Kµ,D] = −iKµ, (1.44)

[Pµ,Kν ] = 2i(gµνD −Mµν). (1.45)

It can be proved that this algebra is the same for more general fields as well. For more on
the conformal group refer to [17].

1.2.2 Correlation function in conformal field theory

Let us consider a local gauge invariant field O(x). The Jacobian of conformal transfor-
mation will be

∣∣∣∣
∂x′

∂x

∣∣∣∣ =
1√

det g′µν

= w−d/2. (1.46)

For dilatations (1.36) and SCT (1.37) it will be given respectively by
∣∣∣∣
∂x′

∂x

∣∣∣∣ = λd, (1.47)

and
∣∣∣∣
∂x′

∂x

∣∣∣∣ =
1

(1 + 2β · x+ β2x2)d
≡ γ−d(x). (1.48)

Following [17] we define a theory with conformal invariance as such which satisfies the
following properties:

(a) There is a set of fields {Fi} which in general is infinite and contains in particular the
derivatives of all the fields Fi.

(b) There is a subset of fields {Oj} ∈ {Fi} called “quasi primary”, that under global
transformation (1.33) x→ x′ transform accordingly to

Oj(x) −→ Oj(x
′) =

∣∣∣∣
∂x′

∂x

∣∣∣∣
−∆j

d

Oj(x), (1.49)

where ∆j := dim[Oj(x)].
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(c) The rest of the {Fi}’s can be expressed as linear combinations of {Oj}’s and their
derivatives.

(d) There is a vacuum |Ω〉 invariant under the conformal group.

These restrictions are enough to explore the properties of the correlation function in
CFT. The general, N -point function is defined such that1

〈O(x1)O(x2) · · · O(xN )〉 ≡ 1

Z

∫
DO O(x1)O(x2) · · · O(xN ) e−SCFT[O], (1.50)

where Z is the normalisation factor.
In particular we will focus on two-point functions

A(x1, x2) := 〈O(x1)O(x2)〉 , (1.51)

which are used to measure some generic properties of the local operators we want to examine.
In particular, the symmetries of the theory will be reflected by the correlation function A.
Due to translational invariance of (1.50) (the value of the integral cannot change if we vary
the integration variable), the two-point function can depend solely on the distance of the
two points

A(x1, x2) = A(|x1 − x2|) ≡ A(|x12|). (1.52)

Then, according to (1.49) and (1.50) we have

〈O(x1)O(x2)〉 =

∣∣∣∣
∂x′

∂x

∣∣∣∣

∆1
d

x=x1

∣∣∣∣
∂x′

∂x

∣∣∣∣

∆2
d

x=x2

〈
O(x′1)O(x′2)

〉
, (1.53)

where ∆j = dim[O(xj)]. Now, (1.47) implies that under the dilatations x→ λx (1.53) reads

A(|x12|) = λ∆1+∆2A(λ|x12|), (1.54)

and this holds provided that

A(|x12|) =
C12

|x12|∆1+∆2
, (1.55)

where C12 is a constant determined by the normalisation of the fields. Finally, (1.48) tells
us that

A(|x12|) = γ−∆1(x1) γ
−∆2(x2)A(|x′12|), (1.56)

and since under the special conformal rescaling (1.37) the distance |x12| behaves as

|x′12| =
|x12|

γ(x1)γ(x2)
, (1.57)

then obviously we must have

C12

|x′12|∆1+∆2
= [γ(x1)γ(x2)]

∆1+∆2
2

C12

|x12|∆1+∆2
. (1.58)

1We work here in Euclidean space; the Minkowski space can be retrieved by letting SCFT → −iSCFT.
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Equations (1.56) and (1.58) combined imply that

〈O(x1)O(x2)〉 =

[
γ(x2)

γ(x1)

]∆1−∆2
2

〈O(x1)O(x2)〉 , (1.59)

hence, the non-evanescence condition

∆1 = ∆2, or dim[O(x1)] = dim[O(x2)]. (1.60)

Summarising, the two-point function of the conformal field theory will obey

〈O(x1)O(x2)〉 ∼
δ∆1,∆2

|x1 − x2|∆1+∆2
. (1.61)

In full analogy, one can determine the form of the 3 point function. Invariance under
translations, rotations, and dilatations requires

〈O(x1)O(x2)O(x3)〉 =
∑

α,β,γ

Cαβγ

|x12|α|x23|β|x13|γ
, (1.62)

where the summation is restricted such that α+ β + γ = ∆1 + ∆2 + ∆3. Then, invariance
under SCT sets

α = ∆1 + ∆2 − ∆3, β = ∆2 + ∆3 − ∆1, γ = ∆3 + ∆1 − ∆2, Cαβγ = C123 (1.63)

which gives the three point function for the conformal field theory.

1.2.3 Superconformal invariance of N = 4 SYM

It turns out that a maximally supersymmetric conformal field theories in four dimensions
is the N = 4 supersymmetric Yang-Mills theory [18, 19]. It consists of one vector field Aµ,
six scalars φn, n = 1, ..., 6, and four Weyl fermions ψa

α, ψ̄a
α̇, where α = 1, 2 and α̇ = 1, 2 are

SL(2,C) ∼ SU(2) × SU(2) spinor indices, and a = 1, ..., 4 are indices for the fundamental
and anti-fundamental representations of an internal SO(6) ≃ SU(4) symmetry, known as
an R-symmetry.

We assume all the fields to be in the adjoint representation of the gauge group U(N),
which means that they transform canonically under a local gauge transformation U (x) ∈
U(N) as follows

V → U VU
−1, Aµ → U AµU

−1 − ig ∂µU U
−1, (1.64)

where g is a dimensionless coupling constant, and

V = {ψa
α, ψ̄

a
α̇, φm}. (1.65)

However, it is more convenient to define the so-called covariant derivative

Dµ = ∂µ − igAµ, DµV := [Dµ,V] = ∂µV − ig[Aµ,V], (1.66)

and then one can see that now for

W = {Dµ, ψ
a
α, ψ̄

a
α̇, φm}, (1.67)
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we have a uniform gauge transformation under U(N)

W → U WU
−1. (1.68)

On top of that we have a field strength

Fµν := ig−1[Dµ,Dν ] = ∂µAν − ∂νAµ − ig[Aµ,Aν ], (1.69)

together with the associated Bianchi identity

D[µFνρ] = 0, (1.70)

where [· · · ] stands for antisymmetrisation.
The Lagrangian density for N = 4 supersymmetric Yang-Mills theory reads2

L
N=4
SYM [W] = 1

8 trFµνFµν + 1
2trDµφnDµφn − 1

4g
2tr[φm, φn]2

+ tr ψ̄a
α̇ σ

α̇β
µ Dµψa

β − i
2g trψa

ασ
n
abǫ

αβ[φn, ψ
b
β ] − i

2g tr ψ̄a
α̇σ

n
abǫ

α̇β̇[φn, ψ̄
b
β̇
], (1.71)

where the spacetime location dependence is suppressed, and the trace runs not only over
U(N) indices, but also over spacetime µ, ν and spinor α, α̇, β, β̇ indices, over internal (R-
symmetry) vector indices m,n, and over internal spinor indices a, b. Also, the matrices

σµ
α̇β = σµ

βα̇ (1.72)

are the chiral projections of the ten dimensional gamma matrices in four dimensions, and
the matrices

σn
ab = −σn

ba (1.73)

are the chiral projections of the ten dimensional gamma matrices in six dimensions. This
stems from the fact that the N = 4 SYM in 4D can be derived by dimensional reduction
from N = 1 supersymmetric Yang-Mills theory in 10D.

N = 4 SYM is a theory invariant under the N = 4 super Poincaré algebra. This con-
sists of the bosonic translations Pµ, eight supertranslations Qa

α together with their eight
conjugates Q̄a

α̇, plus Lorentz SO(4) rotation generators Mµν , and internal SO(6) rotation
generators Rmn. And so the infinitesimal supertranslations can be written as

δsutra = aµPµ + εαaQa
α + ε̄α̇aQ̄a

α̇. (1.74)

The action of supertranslations on N = 4 fields (1.67) δsutraW = [δsutra,W] gives a set of
transformations under which the action3 of N = 4 SYM remains unchanged

δsutraDµ = ig εαaǫαβ σ
βγ̇
µ ψ̄a

γ̇ + ig ε̄α̇aǫα̇β̇ σ
β̇γ
µ ψa

γ + i√
2
g aνFµν ,

δsutraφm = εαaσab
mψ

b
α + ε̄α̇aσab

m ψ̄
b
α̇ + aµDµφm,

δsutraψ
a
α = − 1

2
√

2
σµ

αβ̇
ǫβ̇γ̇σν

γ̇δ ε
δaFµν + i

2g σ
ab
mσ

bc
n ǫαβ ε

βc[φm, φn]

+ σab
n σ

µ

αβ̇
ε̄β̇b Dµφn + aµDµψ

a
α,

δsutraψ̄
a
α̇ = − 1

2
√

2
σµ

αβ̇
ǫβγσν

γδ̇
ε̄δ̇aFµν + i

2g σ
ab
mσ

bc
n ǫα̇β̇ ε̄

β̇c[φm, φn]

+ σab
n σ

µ
α̇β ε̄

βb Dµφn + aµDµψ̄
a
α̇. (1.75)

2We follow [20] with supersymmetry conventions.
3I emphasise that it is the action (2.3) of N = 4 super Yang-Mills that is invariant, since we have to

integrate over the spacetime in order to cancel the surface terms; also the algebra closes on-shell, and that
means that the invariance will remain only up to the equations of motion.
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The superconformal algebra can be summarised by the following commutation and anti-
commutation relations (in addition to (1.40 - 1.45))

{Qa
α, Q̄b

α̇} = 2σµ
αα̇ δ

abPµ {Qa
α,Qb

α} = {Q̄a
α̇ Q̄b

α̇} = 0 (1.76)

[Pµ,Qa
α] = [Pµ, Q̄a

α̇] = 0 (1.77)

[D,Qa
α] = − i

2Qa
α [D, Q̄a

α̇] = − i
2Q̄a

α̇ (1.78)

[Mµν ,Qa
α] = iσµν

αβ ǫ
βγQa

γ [Mµν , Q̄a
α̇] = iσµν

α̇β̇
ǫβ̇γ̇Q̄a

γ̇ , (1.79)

where σµν
αβ is an anti-symmetric combination of σµ

αα̇ and σν
ββ̇

(see for example [21, 22]). On

top of that we have two sets of eight fermionic boosts Sa
α̇, called superboosts, or special

conformal supercharges, which toghether with conformal boosts Kµ and dilatations D give
the following superconformal algebra

[Kµ,Qa
α] = σµ

αα̇ǫ
α̇β̇S̄a

β̇
[Kµ, Q̄a

α̇] = σµ
αα̇ǫ

αβSa
β (1.80)

{Sa
α, S̄b

α̇} = 2σµ
αα̇ δ

abKµ {Sa
α,Sb

α} = {S̄a
α̇ S̄b

α̇} = 0 (1.81)

[D,Sa
α] = + i

2Sa
α [D, S̄a

α̇] = + i
2 S̄a

α̇, (1.82)

together with

{Qa
α,Sb

β} = −ǫαβ σ
mn
ab Rmn + σµν

αβ δ
abMµν − ǫαβ δ

ab(D − C) (1.83)

{Q̄a
α, S̄b

β} = +ǫα̇β̇ σ
mn
ab Rmn + σµν

α̇β̇
δabMµν − ǫα̇β̇ δ

ab(D + C), (1.84)

where σmn
ab are constructed in analogy to σµν

αβ .
Summarising, the superconformal algebra, which is an invariance of N = 4 supersym-

metric Yang-Mills theory, consists of (Lorentz and internal) rotations Mµν , Rmn respec-
tively, of translations and supertranslations Pµ, Qa

α, Q̄a
α̇, boosts and superboosts Kµ, Sa

α, S̄a
α̇,

dilatation generator D, and finally chiral scalar charge (or hypercharge) B, together with cen-
tral charge C. They all together can be expressed in terms of a supermatrix (supergroup)
U(2, 2|4). This group, however, is reducible and can be reduced to an irreducible supercon-
formal group PU(2, 2|4), which can be achieved by dropping hypercharge B,4 and setting
central charge to zero in (1.83) and (1.84).

1.2.4 Chiral primaries

Let us consider the action of the dilatation operator on some local gauge invariant field
O(x)

[D,O(x)] =

(
−i∆ + x

∂

∂x

)
O(x); (1.85)

it gives the conformal dimension of O(x), dim[O(x)] = ∆. Let us for the sake of simplicity
consider O(x = 0) and see what happens to it if we act on it with the bosonic conformal
boost Kµ

[D, [Kµ,O(0)]] = [[D,Kµ],O(0)] + [Kµ, [D,O(0)]] = −i(∆ − 1)[Kµ,O(0)], (1.86)

4The reason for that is that B is as external automorphism of this algebra and thus does not appear on
the right-hand side of (1.83) and (1.84).
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which tells us that Kµ lowers the dimension by 1. On top of that we know that unitarity
of quantum field theories demands that local operators have positive dimensions, thus by
acting on it with Kµ we should eventually reach some operator O∗(0) such that

[Kµ,O∗(0)] = 0. (1.87)

O∗(0) is known as a conformal primary operator. One can obtain new operators by acting
with the conformal algebra on the primaries.

Awareness of (1.85) allows us to realise quickly, by looking at (1.78) and (1.82), that
Q’s and Q̄’s have dimension 1/2, whereas S’s an S̄’s have dimension −1/2 (which in fact
is consistent with (1.80) by the use of (1.86)). This gives us a hint that supercharges
(Q, Q̄, S, S̄) can be used to create new operators by acting on a primary operator. In
fact, the operators generated in such a way, along with the original operator, create an
SO(2N , 2N )|N=4 Clifford algebra, which is 22×4 = 256 dimensional. Obviously, if we can
find operators annihilated by some of these supercharges, then the number of operators in
the supermultiplet will be reduced.

Now let us take some other operator, say, O∗∗(0) that can be annihilated by all of the
16 special charges S and S̄, namely the one that fulfils

[Sa
α,O∗∗(0)] = [S̄a

α̇,O∗∗(0)] = 0. ∀α,α̇,a (1.88)

But that also means that the combination

−{Sb
α, [S̄a

α̇,O∗∗(0)]} − {S̄a
α̇, [Sb

α,O∗∗(0)]} (1.89)

should vanish as well. Obviously then

−{Sb
α, [S̄a

α̇,O∗∗(0)]} − {S̄a
α̇, [Sb

α,O∗∗(0)]} = 0 = [{Sb
α, S̄a

α̇},O∗∗(0)] ∝ [Kµ,O∗∗(0)], (1.90)

and a quick look at (1.87) tells us that while O∗∗(0) always satisfies (1.87), O∗(0) does
not have to satisfy (1.90). This merely means that O∗∗(0) is a more specific operator than
O∗(0); in fact it is its supersymmetric extension. For that reason O∗∗(0) is usually being
referred to as a superconformal primary operator.

Suppose now that furthermore we have some operator OCPO(0) which gets annihilated
by some of the supercharges Q, namely

[Qa
α,OCPO(0)] = 0 for some α, a. (1.91)

Such operators are called (superconformal) chiral primaries or BPS operators. Use of (1.89)
and (1.91) will now yield that

0 = {Qa
α, [Sb

β,OCPO(0)]} + {Sb
β, [Qa

α,OCPO(0)]} = [{Qa
α,Sb

β},OCPO(0)]

= [−ǫαβ σ
mn
ab Rmn + σµν

αβ δ
abMµν − ǫαβ δ

ab D, OCPO(0)]. (1.92)

Let us then examine properties of chiral primaries for the case of OCPO(0) being a scalar,
that is

[Mµν ,OCPO(0)] = 0. (1.93)
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Then, (1.92) yields that

δab[D,OCPO(0)] = −σmn
ab [Rmn,OCPO(0)]. (1.94)

Since Rmn (m,n = 1, ..., 6) generates internal SO(6) rotations, and SO(6) is a rank 3
group, it has three commuting generators, say5, R12, R34, R56, which generate the corre-
sponding charges (J1, J2, J3). The σmn

ab will be the SO(6) generators in the fundamental
representation, and in particular, the commuting generators can be expressed as

σ12
ab =




1
1

−1
−1


 σ34

ab =




1
−1

1
−1


 σ56

ab =




1
−1

−1
1


 ,

(1.95)

where off diagonal elements are zero. Then, (1.94) can be written for a chiral primary
operator with R-charges e.g. (J1, 0, 0) as follows




∆ − J1

∆ − J1

∆ + J1

∆ + J1


OCPO(0) = [{Qa

α,Sb
β},OCPO(0)], (1.96)

where ∆ = dim[OCPO(0)], and since (1.96) vanishes for some values of α, a, as defined
in (1.91), it tells us that a scalar chiral primary operator with R-charges (J1, 0, 0) can be
consistently annihilated by Q1

α and Q2
α if ∆ = J1. The same argument involving the {Q̄, S̄}

anticommutator will tell us that they can also be annihilated by Q̄3
α̇ and Q̄4

α̇; this can be
done for chiral primaries with R-charges (0, J2, 0) and (0, 0, J3). Furthermore, if we act on
any of these operators with Rmn we will also get an operator that is a chiral primary.

Chiral primaries are protected operators. What does it mean? It is a general feature
of operators in CFT that their dimensions depend on the coupling constant of the Yang-
Mills theory. However, as shown above, chiral primaries are annihilated by half of the
supercharges, and so the number of operators in the supermultiplet is now 24 = 16. This
number cannot change with the coupling, nor can the R-charge, since it too is an integer.
For that reason ∆ will always be equal to the R-charge, regardless of the strength of the
coupling.

1.2.5 Conformal symmetry of N = 4 SYM is maintained after quantisa-
tion

It is a rather common problem of a field theory that symmetries which are present at the
classical level might get broken after quantisation. If the quantisation through a formalism
of path integrals spoils these symmetries, then we speak of anomalies of this theory; in fact,
conformal symmetry is usually anomalous. The way to deal with that is to regularise the
theory to remove infinities, and by doing such one has to introduce a mass scale µ, in order
to control the dimensionfullness of the series expansion properly. However that means that

5We denote these generators according to the planes of S
5 sphere embedded in R6 on which they do act;

for example R34 will generate rotations on the 34-plane, etc.
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the correlation function itself will depend on some scale µ, which cannot happen if we want
our two-point function to have a physical meaning. In order to deal with this problem, one
assumes that the parameters of the quantum field theory also depend on the mass scale µ,
such that the overall dependence will disappear.

In the case of N = 4 SYM, the only parameter is the coupling constant g, and depen-
dence of µ is described by the beta function

β = µ
∂g

∂µ
. (1.97)

However, the appearance of the beta function means that the scale invariance is broken.
Fortunately, for N = 4 SYM it is believed that (see for example [23])

β = 0 (1.98)

to all loops, and thus the conformal symmetry of N = 4 SYM survives quantisation.

1.3 The AdS/CFT correspondence

Having presented both, the AdS space and conformal field theory, it is at first glance
certainly not obvious that a ten-dimensional string theory living in a hyperbolic-like space
should have anything to do with the four dimensional maximally supersymmetric, confor-
mal Yang-Mills theory, let alone being identical. Suprisingly, however, they are actually
believed to be equivalent. We will now sketch a few arguments that led Maldacena [1] to
formulate this conjecture, and then try to perform a relatively simple computation based
on its postulates.

1.3.1 Type IIB string theory and gauge theories

The first sign that one could somehow relate type IIB string theory to some gauge theory
is that a system of N coincident Dp-branes6 is a classical solution of the low energy string
effective action (in the Einstein frame)

SIIB ∼
∫
d10x

√
g

(
R− 1

2
gµν∂µΦ ∂νΦ − 1

2

∑

n

1

n!
e

5−n
2

ΦF 2
n + . . .

)
, (1.99)

where Φ is a dilaton, gµν is the metric (g ≡ |det gµν |), R is the Ricci scalar curvature, and
the n-form field strength Fn belongs to the Ramond-Ramond (R-R) sector; other terms
in this action, like axion charge or the Neveu-Schwarz-Neveu-Schwarz (NS-NS) field, are
irrelevant here, and hence dropped. On the other hand we know that in the low energy limit
parallel Dp-branes realise (p + 1)-dimensional U(N) supersymmetric Yang-Mills theories.
The solution of (1.99) has the following form

ds2 = H− 1
2 (r)

[
−f(r) dt2 +

p∑

i=1

(dxi)2

]
+H

1
2 (r)

[
f−1(r) dr2 + r2 + r2dΩ2

8−p

]
, (1.100)

6To be more precise these are actually p-branes which are the solution of the low energy string action,
however one can show that a p-brane and a Dp-brane both describe the same underlying object [15]; we are
interested in the latter, since they are more physical. For more on Dp-branes see [25, 26, 27].
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where

eΦ = H
3−p
4 (r), H(r) = 1 +

κpN

r7−p
, κp =

(2π
√
α′)7−p

(7 − p)Ω8−p
gs, (1.101)

gs ≡ e<Φ> being the string coupling,
√
α′ is the fundamental string length, and since we

consider non-extremal Dp-brane solution, f(r) ≈ 1 and can be dropped. Notice that the
metric (1.100) divides into the part which belongs to the world-volume of the brane, and
to the part along the directions transverse to the brane. Furthermore, it is believed that a
system of N coincident Dp-branes is described by the non-Abelian version of the Born-Infeld
action. It can be argued that it takes the form [28]

SBI = −gsτp

∫
dp+1ξ e−Φtr

√
− det (gαβ + 2πα′Fαβ), (1.102)

gαβ being the pullback to the Dp-brane world volume of the spacetime metric gµν , and
2πα′Fαβ + Bαβ is a gauge field that lives on the brane (but the Bαβ is dropped); the trace
is symmetrised7, and the determinant refers only to the Dp-brane (p + 1) × (p + 1)-index
structure of indices α, β. Above, the tension of the brane is given by

τp ≡ (2π
√
α′)1−p

2πα′gs
. (1.103)

By expanding the action (1.102) in powers of Fαβ and demanding that the factor in front
of the F2 term is

SF2

BI ∼ − 1

4g2
YM

∫
dp+1ξFa

µν Fa µν , (1.104)

as we expect to have in gauge theory, we obtain a relation between the string coupling and
the gauge coupling

g2
YM =

2gs√
α′ (2π

√
α′)p−2. (1.105)

It is worth stressing that even though we have established a connection between type IIB
string theory and a gauge theory it does not mean that the duality has already been for-
mulated. That is because we need to specify exactly (a) a very specific background for the
string theory to propagate in, and (b) the exact type of gauge theory that is supposed to
be compared with it. In fact, the connection between a string theory and a gauge theory
has been noticed before Maldacena’s discovery [30, 31].

1.3.2 The near-horizon approximation

The key point of this approach is now to look at the low energy limit of the set-up
discussed above. Let us specifically consider p = 3, and a limit in which we approach the
horizon at r ∼ 0 but we keep the ratio of string length squared and r finite, namely

r → 0, α′ → 0, U :=
r

α′ = fixed. (1.106)

7In matter of fact, symmetrisation of the trace is correct only up to a certain order in the expansion
of Born-Infeld action (1.102); at some point it breaks down and stops being a good approximation to the
dynamics of Dp-branes (see for example [29]).
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Then, the metric (1.100) will become

ds2 = α′
(

U2

√
4πgsN

dx2
4 +

√
4πgsN

(
dU2

U2
+ dΩ2

5

))

=
U2

R2
dx̃2

4 +R2dU
2

U2
+R2dΩ2

5, (1.107)

where x̃ is a suitably rescaled x, and

R4 := 4πgsNα
′2 ≡ g2

YMNα
′2, (1.108)

where we used (1.105). The form of the metric (1.107) is the manifold8 AdS5 × S5, where
two radii of AdS5 and S5 are equal and given by

RAdS5
= RS5 = R. (1.109)

This clearly shows that the near horizon geometry of D3-branes in AdS5 × S5.

On the other hand, the field theory on N D3-branes is N = 4 U(N) super Yang-Mills
at low energies9. Since excitations of the fields that live near the horizon have very small
energies from the point of view of an outside observer we conclude that at low energies
only these excitations will survive. So in the low energy limit we have two alternative
descriptions which should be equivalent [1]. From the point of view of pure string theory, in
the low energy limit E ≪ 1√

α′
, only massless states can be excited. In this limit, the open

string states are massless excitations on the branes and are described by the theory that
lives in the world-volume of the brane (in our case the N = 4 SYM), whereas the closed
string states are described by type IIB supergravity in the ten-dimensional bulk AdS5×S5.
On top of that, in the limit we will take (gs → 0) the massless open and closed string
excitations do not interact, and thus gravity decouples from the brane being a “separate”
theory.

1.3.3 Comparison of the string theory and the gauge theory

Statement that a ten dimensional string theory is equivalent to a four dimensional gauge
theory is rather remarkable and it ought to be substantiated with a more convincing rea-
soning. Let us therefore try to compare the properties of

• type IIB string theory on AdS5×S5 with N =
∫
S5 F5 units of 5-form integer flux, and

string coupling gs, and

• N = 4 supersymmetric Yang-Mills theory with gauge group U(N) in four dimensions.

First of all the type IIB string theory has 32 supercharges [25, 26] but even though N = 4
SYM has only 16 of them, the superconformal extension gives us additional 16 fermionic
generators, as we remember from section 1.2.3, confirming yet another agreement between
these theories.

8One can see this explicitly by identifying U ≡ R2u in (1.107), dropping overall R2, and comparing with
(1.25).

9After all, as I mentioned before, the N = 4 SYM in 4D can be derived by dimensional reduction of
N = 1 SYM in 10D.
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Then, one should definitely compare global symmetries of both theories. The IIB string
string on AdS5 × S5 theory has an isometry group SO(2, 4) × SO(6), where the first part
is the metric of pseudo-Euclidean hyperbolic space AdS5, and SO(6) are rotations of the
S5 sphere. But the 32 Majorana spinor supercharges of IIB string theory (which are all
preserved in this background) transform under this symmetry in such a way that the full
invariance of the theory is given by the supergroup PSU(2, 2|4). This agrees with the
symmetry group of superconformal N = 4 Yang-Mills, which is also given by PSU(2, 2|4),
as mentioned in section 1.2.3. On top of that there is also the Montonen-Olive duality based
on the group SL(2,Z), which is an additional, discrete, global symmetry of both theories
[32]. Thus we see that equivalence of these two theories seems very reasonable.

1.3.4 Implications of the correspondence

So how one could prove, or disprove, the AdS/CFT correspondence? It is certainly very
difficult and here we present a heuristic argument. Let us first rewrite the most important
equations of the correspondence

g2
YM =

λ

N
= 4πgs;

R2

α′ =
√
λ, (1.110)

where we defined the ’t Hooft coupling λ.
Now look at the near-horizon approximation (1.107). This approximation is adequate,

provided that the radius of AdS5 (S5) is very large in string units (that is the curvature of
the background is small compared to the string scale). This can be achieved only if

R≫
√
α′ ⇐⇒ λ≫ 1. (1.111)

In this way we arrive at the ten dimensional classical supergravity compactified on AdS5×S5,
but on the other side we have to deal with a strongly coupled regime of N = 4 SYM,
inaccessible by perturbative calculations. Also, the string excitations become infinitely
heavy and decouple in that limit but, since we keep the radius of S5 fixed, we cannot at all
neglect the Kaluza-Klein states associated with the compactification on that sphere. On
the one hand, it is a good sign because having two completely different dual theories, with
different properties, the potential overlap of a weakly coupled regime of both could yield
some obscure contradictions; in this case we do not have to worry about that. However,
the bad news is that the gauge/string duality is a kind of a weak/strong duality, making it
hard to verify.

But then we can go even further than that and say that since supergravity is not a
consistent quantum theory one should be able to extend the conjecture to any value of λ,
yet for that one has to find a suitable substitute of classical supergravity. This was in fact
the argument of Maldacena who argued that [1] the type IIB string theory on AdS5 × S5

and the N = 4 SYM theory are in fact the same, with parameters related through (1.110).
Then one can for example take the string coupling to be small gs → 0 such that λ ∝

gsN = fixed, which corresponds to taking N → ∞ (’t Hooft limit)10, and then take λ to
be large yet finite. In this way one can see that the classical supergravity is “replaced”
by a free, non-interacting string theory. Unfortunately though, a quantisation of even a
zero-genus type IIB string theory on AdS5 × S5 is a problem that remains unsolved.

10The ’t Hooft limit is merely a requirement that the radii of AdS5 and S
5 be much larger than the Planck

length, namely that R2 ≫ ℓ2p =
√

gsα
′.
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There is however a very good news in all this, namely that, as far as the low order in
perturbation theory is concerned, there is a way to test the AdS/CFT duality by comparing
spectrum of dual objects on both sides after all. This is possible by taking yet another
limit: an infinite R-charge of some operators in a specific way, as suggested by Berenstein,
Maldacena, and Nastase [5]. We will briefly discuss that in section 1.4.

1.3.5 The dictionary of Maldacena’s conjecture

It is very important to emphasise that even though type IIB string theory is equivalent
to N = 4 SYM theory (as of today all the tests of AdS/CFT correspondence seem to confirm
so), these two theories live on two different spaces: IIB string theory lives on the AdS5 ×S5

manifold, whereas N = 4 supersymmetric gauge theory lives on the boundary of AdS5 which,
from the point of view of the metric (1.107), is the four-dimensional Minkowski space. For
that reason we need some kind of tool with the help of which we could relate the actions of
these theories to each other in the boundary limit. This kind of proposal came about thanks
to Gubser, Klebanov, Polyakov [2], and Witten [3] (GKPW), who suggested to relate the
partitions functions of these two theories (we use the Euclidean metric (1.28) here)

ZAdS [Φ0(~x)] ≡ ZCFT [Φ0(~x)] , (1.112)

where Φ0(~x) := Φ(x0 = 0, ~x) has two interpretations: On the gravity side these fields
corresponds to the boundary values for the bulk fields {Φi} which propagate in the AdS
space, and this includes not just the scalar fields but all the fields including the graviton
and the gauge fields. On the conformal field theory side it corresponds to external sources
(currents) coupled to operators in CFT. The idea therefore that we can obtain insertions
of these operators by differentiation of the partition function (1.112) with respect to the
sources. As suggested by GKPW, the ansatz for the precise relation of CFT on the boundary
to AdS space11 is

ZCFT [Φ0(~x)] =

∫
DO exp

[
−SCFT[O(x)] +

∫

∂(AdSd+1)
ddx Φ0(~x)O∆(~x)

]

=
〈
e

R

ddx Φ0(~x)O∆(~x)
〉
. (1.113)

Note that we work in Euclidean space, and therefore the boundary of AdSd+1 space is a
d-sphere Sd. Then, as argued by GKPW, the partition function for AdS space should be

ZAdS [Φ0(~x)] ∼ e−N2Ssugra[Φ]+O(α′) × (Quantum Corrections). (1.114)

We will now try to make a very specific and relatively simple check of AdS/CFT duality
and calculate the two-point correlation function for the massive scalars in the bulk by the
use of (1.112), and then compare it with the result of CFT (1.61). Since we consider λ≫ 1
we do not have to worry about corrections to the classical action in (1.114), and thus solely
focus on the classical, massive, scalar theory in the bulk, described by

S[Φ] =
1

2

∫

AdSd+1

dd+1x
√
g
(
∂µΦ(x)∂µΦ(x) +m2Φ2(x)

)
, (1.115)

11Note that we work again in d dimensions.
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where m2 is the Kaluza-Klein mass coming from the dimensional compactification. We will
use the metric (1.23) in which coordinates it is the easiest to solve the equation of motion

1√
g
∂µ (

√
g ∂µΦ(x)) = m2Φ2(x) (1.116)

at the boundary x0 = 0 (ỹ = ∞).
If, according to (1.23), we denote the metric on Sd as γαβ then certainly

√
g = sinhdỹ

√
γ, (1.117)

and in these coordinates we would like to understand the behaviour of Φ(ỹ, θα) at the
boundary ỹ = ∞. Our choice of metric allows us to split the Laplacian such that one part
depends solely on ỹ, whereas the other one on all of the coordinates

1√
g
∂µ

√
g ∂µ =

1

sinhdỹ

d

dỹ
sinhdỹ

d

dỹ
− L2

sinh2ỹ
, (1.118)

where

−L2 ≡ 1√
γ
∂α

√
γ∂α (1.119)

is the Laplacian on the unit Sd sphere. We therefore see that for the large ỹ the dependence
of the Laplacian on θα drops out, and the Klein-Gordon equation (1.116) becomes

1

sinhdỹ

d

dỹ

(
sinhdỹ

d

dỹ
Φ(ỹ, θα)

)
= m2 Φ(ỹ, θα). (1.120)

Due to spherical symmetry of the metric, one can expand Φ in spherical harmonics Φ(ỹ, θα) =∑
n Φn(ỹ)Yn(θα), and then (1.120) becomes

e−dỹ ∂ỹ

(
edỹ ∂ỹΦn(ỹ)

)
= m2Φn(ỹ) (1.121)

will have two solutions Φn ∼ 1 and Φn ∼ eλỹ. Clearly, at the boundary the second solution
dominates over the first one, and then (1.121) determines λ to be

λ(d+ λ) = m2 =⇒ λ± =
1

2

(
−d±

√
d2 + 4m2

)
. (1.122)

Suppose now that m2 > 0. Then the solution which will dominate at the boundary will be

Φ(ỹ, ~x) ∼
(
eỹ
)λ+

Φ0(~x), (1.123)

which will “blow up” at the boundary if λ+ > 0. But suppose that we define

f(ỹ, ~x) := e−ỹ, (1.124)

and then (1.123) will read

Φ(ỹ, ~x) ∼ f−λ+(ỹ, ~x)Φ0(~x). (1.125)
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The function f is just of the form needed to build a finite metric from the divergent AdS
one, because the definition of Φ0 as a function depends on the choice of particular f, which
was the same choice used in (1.18). Following thus (1.20) we can rescale f arbitrarily, which
on the other hand implies a freedom in Φ0

f → ewf =⇒ Φ0 → ewλ+Φ0. (1.126)

This transformation under conformal rescaling shows that Φ0 must be understood as a
conformal density of mass dimension −λ+. Since the partition function (1.113) ought to
be conformally invariant then we furthermore deduce that the field O∆(~x) has conformal
dimension ∆ ≡ d+ λ+.

1.3.6 Two-point correlation function in AdS/CFT

Let us now calculate the two-point function for the field O∆(~x). For that purpose we
use the metric of the form (1.28). As we remember, it has a boundary at x0 = 0, which
in Euclidean case corresponds to Rd together with a single point P at x0 = ∞, giving a
sphere Sd. This can be achieved [3] by looking for a Green’s function which is a solution
of the Laplace equation on the Euclidean version of AdSd+1, namely the (unit) ball Bd+1

whose boundary value is a delta function at a point P on the boundary

K(x;P ) = K(x0, ~x;P ), (1.127)

where x ∈ Bd+1, ~x ∈ Rd. Due to translational invariance at the boundary of (1.127) under
~x→ ~x′, K(x) will only be a function of x0, and thus the Laplace equation will read

1√
g
∂0

(√
g ∂0K(x0)

)
= m2 K(x0). (1.128)

Metric (1.28) yields that

gµν = (x0)−2δµν ,
√
g = (x0)−(d+1), ∂0 = (x0)2∂0 (1.129)

hence (1.128) becomes

[
(x0)d+1 d

dx0
(x0)−d+1 d

dx0
−m2

]
K(x0) = 0. (1.130)

We seek for the solutions of the type

K(x0) ∝ (x0)d+λ (1.131)

and we see that the one which vanishes for x0 → 0 is the one which has

λ ≡ λ+ =
1

2

(
−d+

√
d2 + 4m2

)
. (1.132)

The full version of K(x) is found by an SO(1, d+ 1) transformation that maps P to a finite
point

xµ −→ xµ

(x0)2 + ~x2
, µ = 0, 1, ..., d (1.133)
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yielding

K(x) = c
(x0)d+λ+

[(x0)2 + (~x− ~x′)2]d+λ+
, (1.134)

where we used translational invariance of K(x)

K(x) = K(x0, ~x;~0) ≡ K(x0, ~x; ~x′). (1.135)

Notice, however, that (1.134) does not become a delta function at x0 → 0, it is rather

(x0)d+2λ+

[(x0)2 + (~x− ~x′)2]d+λ+

x0→0−→ δ(d)(~x− ~x′). (1.136)

This can be intuitively understood when looking at the scalar field in the bulk, which can
be expressed as

Φ(x0, ~x) = c

∫
d~x′

(x0)d+λ+

[(x0)2 + (~x− ~x′)2]d+λ+
Φ0(~x

′)

= c (x0)−λ+

∫
d~x′

(x0)d+2λ+

[(x0)2 + (~x− ~x′)2]d+λ+
Φ0(~x

′), (1.137)

which merely confirms (1.125).
Let us now come back to the free scalar field action (1.115). One can clearly see that

its on-shell version (that is with (1.116) included) would be

S[Φ] =
1

2

∫
dd+1x

√
g

[
1√
g
∂µ

(√
gΦ(x0, ~x) ∂µΦ(x0, ~x)

)]

=
1

2

∫ ∞

x0=ǫ
d~x ∂0

[
(x0)−d+1 Φ(x0, ~x) ∂0Φ(x0, ~x)

]

= −1

2

∫
d~x
[
(x0)−d+1 Φ(x0, ~x) ∂0Φ(x0, ~x)

]
x0=ǫ

. (1.138)

Then, using (1.137), we can easily show that

∂0Φ(x0, ~x) = c (d+ λ+)(x0)d+λ+−1

∫
d~x′

Φ0(~x
′)

[(x0)2 + (~x− ~x′)2]d+λ+
+ O[(x0)d+1], (1.139)

hence

S[Φ0] = −c (d+ λ+)

2

∫∫
d~x′d~x

Φ0(~x)Φ0(~x
′)

|~x− ~x′|2(d+λ+)
. (1.140)

This yields the two-point function for an operator O∆(~x) with conformal dimension ∆ =
d+ λ+

〈
O∆(~x)O∆(~x′)

〉
=

δ

δΦ0(~x)

δ

δΦ0(~x′)
ZAdS[Φ0(~y)]

∣∣∣∣
Φ0≡0

∝ const

|~x− ~x′|2∆
, (1.141)

which perfectly agrees with (1.61).
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In this way we have explicitly checked that two-point functions are well defined objects
in AdS/CFT duality, and for that reason they can help us to compare many properties of
dual objects in the gauge/string correspondence. For example, by comparing spectra of
certain string states and their dual gauge states we will be able to test the conjecture, to
some extent at least. Of course, this is precisely when the weak/strong duality problem
comes about, and we will try to get around it by applying the BMN’s double scaling limit;
we will get back to this in the next section.

As a last remark, let us discuss the m2 parameter. The assumption that m2 > 0 led
us to (1.125), and then to (1.137). That is because in the case of real, positive mass the
linear combination of these solutions had one term which was dominant over the other one.
However, it turns out [33] that for

−d
2

4
< m2 < −d

2

4
+ 1 (1.142)

both solutions (that is roots in (1.122)) may be chosen, hence two possible conformal field
theories: one in which the operator has dimension ∆+, and one in which it has dimension
∆−, where

∆± = d+ λ± =
1

2

(
d±

√
d2 + 4m2

)
. (1.143)

This does not contradict itself, since ∆+ is bounded from below by d
2 but there is no

corresponding bound in d-dimensional CFT, whereas in the range (1.142) ∆− is bounded
from below by d−2

2 , which is the unitarity bound on dimensions of scalars in d dimensional
conformal field theories. For that reason ∆− is crucial for consistency of the AdS/CFT
duality. Furthermore, m2 < 0 does not yield to tachyonic instabilities as one might suspect,
since these appear when m2 < −d2

4 , and not when m2 < 0 [34, 35].
It turns out that in order to build a correlation function in the theory with dimension

∆− one has to consider the most general solution of the scalar field Φ(x) at the boundary

Φ(x0, ~x)
x0→0−→ (x0)d−∆±

(
Φ0(~x) + O(x0)

)
+ (x0)∆±

(
A(~x) + O(x0)

)
, (1.144)

where (as we already know) Φ0(~x) represents a current in the AdS/CFT partition function
(1.112), and (as we do not know yet) A(~x) describes physical fluctuations that will be
determined from the source by solving the classical equations

A(~x) =
1

2∆± − d
〈O(~x)〉 . (1.145)

Since A(~x)(2∆± − d) is the variable conjugate to Φ0(~x), in order to interchange ∆± and
d−∆± one has to interchange Φ0(~x) and (2∆±−d)A(~x). This is a canonical transformation
which for tree-level correlators reduces to a Legendre transform. Thus, the generating
functional of correlators in the ∆− theory must be obtained by Legendre-transforming the
partition function of correlators in the ∆+ theory. For details, please refer to [36].

Finally, let us do an explicit check for m2 = 0. The dominant solution in x0 → 0 will
be ∆+ = d. For the case of AdS5 ×S5, ∆+ = 4 ≡ ∆, and thus the correlation function will
be of the form

〈
O(~x)O(~x′)

〉
∝ const

|~x− ~x′|8 . (1.146)
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We know also that since (a) Φ0(~x) for m = 0 becomes a dilaton which is related to the
string coupling as

gs = eΦ0 , (1.147)

(b) gs is related to the Yang-Mills coupling through (1.105), and furthermore (c) the quick
look at the N = 4 SYM action (2.3) tells us that g2

YM couples to trF2, then we should
suspect that

〈
trF2(~x) trF2(~x′)

〉
∝ const

|~x− ~x′|8 , (1.148)

or

dim [trF2] = 4, (1.149)

which is protected by R-symmetry [3]. This indeed does agree, since Aµ(~x) has conformal
dimension 1, providing us with a nice consistency check for the AdS/CFT duality.

1.4 BMN operators and the double scaling limit

While the supergravity limit of type IIB string theory on AdS5 ×S5, which corresponds
to α′ → 0, and λ → ∞, began to be tested soon after the conjecture had been established
(see for example [37]), the regime of non-interacting IIB string theory (with λ fixed yet
large, gs → 0, N → ∞) remained inaccessible due to enormous difficulty in quantisation
of string theory in the AdS5 × S5 background. Then, Berenstein, Maldacena, and Nastase
suggested [5] how to find the overlapping spectrum of dual operators through AdS/CFT
correspondence on the pp-wave, which can be viewed as a first correction to the string
theory in flat space.

The idea of pp-waves goes all the way to 1925 and comes from Brinkmann [38]. The
“pp” term stands for plane-fronted waves with parallel propagation, and was introduced in
1962 by Ehlers and Kundt [39]. Then, in 1976 Penrose showed that plane waves can be
obtained as limits of various backgrounds [40]. In the case of Berenstein, Maldacena, and
Nastase the idea was to consider the trajectory of a particle that is moving very fast along
the S5, and to focus on the geometry that this particle sees. Suppose it sits at the center of
AdS, and rotates in S3 ⊂ S5 along one of the directions, say some θ (in global coordinates,
same as (1.5) but this time for S5; see (3.47)), and then introduce the light-cone coordinates

x+ =
t+ θ

2µ
, x− = µR2(t− θ), (1.150)

where t is the time direction, and µ is some mass scale. By taking the the limit R → ∞
one receives the parallel-plane (pp-wave) metric

ds2 = −4dx+dx− − µ2
8∑

I=1

(xI)2(dx+)2 +

8∑

I=1

(dxI)2, (1.151)

which for µ → 0 reproduces the flat space string metric. Above, xI are eight transverse
coordinates, and come from both, AdS5 and S5.
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The energy in global coordinates in AdS is given by E = i∂t, and the angular momentum
by J = −i∂θ. The latter can be thought of as the rotation generator that rotates the 56-
plane of R6. In terms of the dual CFT these are the energy and the R-charge of a state of
the field theory on R × S3, or we can also say that E = ∆ is the conformal weight of an
operator on R4. The Hamiltonian will be

H = 2p− = iµ(∂t + ∂θ) = µ(∆ − J), (1.152)

2p+ =
∆ + J

µR2
, (1.153)

and since 2p+ and 2p− have to stay finite in R→ ∞, we can take

∆ ∼ J → ∞ such that J ∼ R2 ∼
√
gsN. (1.154)

And so we do the following. We take the ’t Hooft limit gs → 0, gsN = fixed, and then take
λ to be large, keeping gsN

J2 fixed and ∆ − J as well, giving us the plane wave background
with zero coupling.

The metric (1.151) leads us to the σ-model action which can be quantised rather easily12,
yielding the following Hamiltonian

2p− =
∑

n

Nn

√
µ2 +

4πgsN

J2
n2, (1.155)

where n labels the Fourier modes, Nn denotes the total occupation number of oscillatory
mode, and the condition

P =
∑

n

nNn = 0 (1.156)

is imposed.

Very generally speaking, (1.152) is used to construct the operators on the gauge side,
plus the corresponding excitations, and then (1.155) is used to compare their spectra. This
indeed can be done since the quantity gsN

J2 is being kept fixed. The spectrum is constructed
such that, if we take Z := φ5 + iφ6, and then consider a chiral primary operator with R
charge (0, 0, J), then we can associate it with the vacuum state in light-cone gauge

|0, p+〉l.c. =̂ tr[ZJ ], (∆ − J = 0) (1.157)

up to a normalisation constant. We have 8 bosonic (αA, †
0 ) + 8 fermionic (θB, †

0 ) modes
(A,B = 1, . . . , 8) with ∆ − J = 1, for example applying the zero momentum bosonic

oscillator α†, i
0 (splitting A = {i, µ})

αi, †
0 |0, p+〉l.c. =̂ tr[φi Z

J ], i = 1, 2, 3, 4 (1.158)

12The reason for this is that the pp-wave metric of type IIB string theory on AdS5 × S
5 (1.151) acquires

one additional term with respect to the flat space string theory, and this term has the form of a mass term.
Since the quantisation of string theory with a harmonic oscillator-like potential is a problem which is already
known and solved, quantisation of our model is rather straightforward.
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and so on. If we consider a non-zero momentum creation oscillator of the type αi
−n or α̃i

−n,
where the operators without “∼” denote the left-moving modes, and the ones with “∼”
denote the right-moving modes, then we need to include a phase, for example

αi
−n|0, p+〉l.c. =̂

J∑

ℓ=1

tr[Zℓφi Z
J−ℓ] e

2πinℓ
J , (1.159)

which will vanish due to the cyclicity of the trace; that is merelyy a restatement of (1.156).
In this way we can build up a spectrum, for example

αi
−nα̃

j
−n|0, p+〉l.c. =̂

J∑

ℓ=1

tr[φi Z
ℓφj Z

J−ℓ] e
2πinℓ

J , (1.160)

and so forth. We just need to remember that the states whose total momentum is not zero
along the string (and thus the “string” of Z’s) lead to operators that are automatically zero
by cyclicity of the trace; in this way we enforce (1.156) which is nothing but the Virasoro
constraint on the string side (the number of left moving modes equals the number of right
moving modes).

So what about the spectrum of the gauge side? Berenstein, Maldacena, and Nastase in
[5] did a one-loop calculation of the correlation function and received that a contribution of
a field φi inserted in the “string” of Z’s gives a one-loop correction to the bare dimension
of the operator

(∆ − J)n = µ+
g2
YMN

2µJ2
n2, (1.161)

which agrees with (1.155) expanded in small gsN
J2 , due to (1.105). We will fill in many

details into this derivations when considering a type IIB string on AdS5 × S5/ZM in the
plane wave background.
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Chapter 2

The Dilatation Operator

I have already mentioned that the two-point correlation function is a very well defined
object from the point of view of AdS/CFT duality-conjecture. It is of particular importance
as the correct establishment of a two-point function of a locally gauge invariant operator
allows to read off its scaling dimension. Unfortunately, in practice it is not easy and there
are two main reasons for that. First of all, this dimension depends on the coupling constant
of super Yang-Mills theory, and therefore it has to be calculated loop by loop by means
of field theory, which already makes the computation rather involved. Secondly, it is very
rare that we can perform such calculation in a basis that yields anomalous dimensions (as
corrections to the bare dimension) in diagonal form. Instead, one usually receives a matrix
of anomalous dimensions which ought to be diagonalised. In the following chapter we present
an alternative method of calculating this matrix, namely by applying the dilatation operator.
Then, by the use of field theory, we come to its explicit one-loop form for the bosonic SO(6)
subsector of N = 4 SYM and show that it also yields the one-loop anomalous dimension
matrix. Finally, we recalculate the precise form of both, the operator and the matrix for
the SU(3) and SU(2) subsectors.

2.1 Correlation function of N = 4 SYM

The N -point correlation function of N = 4 SYM reads exactly like in (1.50), i.e. the
two-point function will be

〈O(x1)O(x2)〉 =

∫
DW O[W(x1)]O[W(x2)] e

−SN=4
SYM [W ], (2.1)

where W is one of the N = 4 fields in some spacetime point x

W ∈
{
Dkφ,Dkψ,Dkψ̄,DkF

}
, (2.2)

with appropriate indices, and where (2.1) ought to be properly normalised of course. The
action is given by

SN=4
SYM [W] =

2

g2
YM

∫
d4xL

N=4
SYM [W, g = 1], (2.3)

29
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where g2
YM is a Yang-Mills coupling constant, and L N=4

SYM is given by (1.71). The local,
gauge invariant states in (2.1) are constructed such that we take

O(x) = trW(x) · · ·W(x) trW(x) · · ·W(x) · · · . (2.4)

Due to the fact, however, that we will be mostly interested in the correlation functions in
the planar (large N) limit, in which the field theory diagrams may connect only two single
trace operators with genus zero, we will be considering a linear combination of single trace
operators

O(x) =
∑

appropriate
indices

trW(x) · · ·W(x). (2.5)

The fields W(x) are in representation of the gauge group U(N), and therefore we have

Wab(x) = W(a)(x)(T a)ab, a, b = 1, . . . ,N, a = 1, . . . ,N2 (2.6)

where T a’s are the generators of U(N), that is

[T a, T b] = ifabcT c, tr(T aT b) = δab. (2.7)

Therefore, the two-point correlator for U(N) fields will read
〈
Wab(x)Wcd(y)

〉
=
(

spacetime
propagator

)
× (additional) × δadδbc, (2.8)

where “additional” denotes possible extra deltas coming from additional indices of a field
W.

In the perturbative theory it will be convenient to work with the two coupling constants
g and g̃

g̃2 :=
g2
YM

16π2
, g2 = g̃2N =

λ

16π2
, (2.9)

where N is the number of colours in the U(N) gauge group, and λ is the ’t Hooft coupling,
and for that reason we will perform all the field theory calculations with the following form
of the action

SN=4
SYM [W] =

1

8π2

∫
d4xL

N=4
SYM [W/g̃, g̃ =

√
g2
YM/16π

2]. (2.10)

Having said that, the two-point function will have the form (in the orthogonal basis)

〈O(x1)O(x2)〉 =
C12

|x12|2∆(g)
, (2.11)

where

∆(g) = dim[O(x1)] = dim[O(x2)] =

∞∑

n=0

g2n∆2n (2.12)

is a scaling dimension of a state O, which depends on the coupling constant g, unless the
state is a chiral primary of course. However, while the two- and the three-point functions of
chiral primary operators are protected from radiative corrections, the higher-point functions
do receive these corrections, and thus in the limit of infinite R-charge they simply diverge
[24]. Above, the n index refers to nth loop, and we note that in this expansion the terms
with odd powers of g will not appear [20].
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2.2 Anomalous dimensions from the two-point function

Soon after the BMN limit (section 1.4) was discovered people realised that an effective
way to compute the scaling dimension ∆(g) of gauge operators is needed, because it can
be immediately compared to the string side; the AdS/CFT conjecture can thus be tested
explicitly, although only to some order in perturbation theory and in a specific limit. Unfor-
tunately, the calculation of coupling-dependent ∆ is a challenge in itself and requires quite
a bit of field theory.

Let us now describe very briefly how the calculation should be performed up to one
loop (generalisation to higher loops in this section will be rather straightforward here). In
general, the constant C12 in (2.11) will depend on the coupling g and the divergent UV
cutoff constant Λ (that sets the scale), and it is chosen such that

C12 = C12(g,Λ) →M(g)(1 − g2∆2 ln Λ2) + O(g3), (2.13)

where we denoted

∆(g) ∼= ∆0 + γ, (2.14)

γ ≡ g2∆2 being the one-loop anomalous dimension. Then, expansion of (2.11), with (2.13)
included, yields

〈O(x1)O(x2)〉 =
M0

|x12|2∆0
+

g2

|x12|2∆0
(M2 −M0 ∆2 ln |x12Λ|2), (2.15)

where we expanded M(g) ∼= M0 + g2M2. Obviously, in order to remove infinities from this
expansion one has to renormalise the operator, and this is usually done by introducing the
renormalisation factor by defining the renormalised basis

Õ ≡ Z · O, (2.16)

and then expect the desired correlator to be of the form

〈Õ(x1)Õ(x2)〉 =
M0

|x12|2∆0
+

g2

|x12|2∆0
(M2 −M0 ∆2 ln |x12|2), (2.17)

and since

〈Õ(x1)Õ(x2)〉 = 〈ZO(x1)ZO(x2)〉 = Z2〈O(x1)O(x2)〉, (2.18)

then comparison of (2.15) and (2.17) tells us that

Z2(g,Λ)C(g,Λ) = 1, (2.19)

hence

Z(g,Λ) = (1 − γ ln Λ2)−1/2 ∼= 1 + γ ln Λ. (2.20)

This calculation, however, is done in diagonal basis, therefore we directly obtain the one-
loop anomalous dimension. In practice though, it is almost never that easy because the
states O(x) have appropriate matrix indices, and thus the coefficients in (2.15), (2.17),
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together with Z in (2.20), will also have them. Also, instead of the number ∆(g) we will
rather have a (one-loop) matrix of anomalous dimensions, related to Z as

Γα
β ≡ (Z−1)αγ

d

d ln Λ
Zγ

β. (2.21)

When we expand the operator O in some basis

O = ξαOα, (2.22)

such that γ can be obtained by the following relation

Γ(g)αβ ξ
β = ∆(g) ξα; (2.23)

keeping that in mind, we see that (2.20) fulfils (2.21) for Z−1 ≈ 1.
Another important thing is that, as noticed in section 1.2.5, we cannot expand in the

dimensionful parameter ln |x12|, and therefore we need to rescale the conformally invariant
two-point correlation function such that we introduce some (mass) scale which will make
the expansion dimensionless. Thus, we rescale O by exponential scale µ−δ∆(g), which gives

µ−2g2∆2〈Ō(x1)O(x2)〉ren =
M0

|x12|2∆0
+

g2

|x12|2∆0
(M2 −M0 ∆2 ln |µx12|2). (2.24)

Of course during this whole procedure we have to assume that ∆2 ≪ ln |µx12|−2 but arbi-
trariness of µ also makes (2.24) valid for any value of g. This arbitrary scale will, however,
drop out when it is resummed to all orders in perturbation theory, and therefore it is nothing
but an artefact of perturbation theory.

2.3 Anomalous dimensions from the dilatation operator

There are basically two equivalent approaches to calculate the dimension ∆(g) of an
operator in (2.11). Either one expands the correlation function (2.11) in loops, by calculation
of the appropriate integrals, as explained in section 2.2, or one derives an operator which
somehow has all the field theory “inside” it, and then one uses it to obtain dimensions of
various operators by acting on them with such an operator; this is precisely the dilatation
operator D from section 1.2!

We have seen that D ∈ PSU(2, 2|4), an invariance group of N = 4 SYM. An alternative
way of defining it is to say that

D =

∫
d3x TN=4

tµ xµ, (2.25)

where TN=4
µν is the energy-momentum tensor of N = 4 SYM theory (this gives us the hint

that in the string dual side it will be related to the energy of dual string states). In general,
action of D on Oα from (2.22) would give us the anomalous dimension matrix (2.21), namely

D ◦ Oα = Oβ Γβ
α, (2.26)

and D = D(g) can be also expanded in loops as

D(g) = D0 + g2D2 + g3D3 + g4D4 + . . . (2.27)



2.3 Anomalous dimensions from the dilatation operator 33

which, unlike (2.12), contains also odd powers of g, since it was shown in [44] that the
double expansion turns out to be inconsistent. In this thesis, however, we will be interested
only on terms up to order of O(g2).

We will now follow [44] in derivation of the one-loop dilatation operator for the scalar
subsector SO(6) ⊂ PSU(2, 2|4) of N = 4 super Yang-Mills, and assume that local operators

(2.5) consist solely of scalars fields φi(x) = φ
(a)
i (x)T a (with the flavour index i = 1, ..., 6,

and the adjoint index a = 1, ..., N2) of the N = 4 U(N) gauge theory, that is

O(x) = Ci1i2···iLtr (φi1φi2 · · ·φiL) (x), (2.28)

where Ci1i2···iL is a rank L tensor. It is instructive to mention that if this tensor is symmet-
ric and traceless, operator O(x) becomes a chiral primary operator. Obviously, the bare
dimension of (2.28) will be

∆0 = L, (2.29)

however we would very much like to derive the one-loop anomalous dimension matrix by
deriving the one-loop dilatation operator and acting with it on the appropriate basis Oα.
But let us perhaps first think about the tree-level dilatation operator, which clearly should
reproduce (2.29). Since scalar fields have conformal dimension 1, then such operator should
merely count their number, and this is exactly how we construct D0, based on (1.85)

D0 = trφmφ̌m, m = 1, . . . , 6 (2.30)

where

φ̌m ≡ δ

δφm
= T a

δ

δφ
(a)
m

(2.31)

removes the field φ, and the other φ puts it back “by hand”1. Also, as shown in [20], the
anomalous dilatation operator δD(g) = D(g)−D0 must commute with the classical algebra
of PSU(2, 2|4), hence

[D0,Dk] = 0, k > 0. (2.32)

The interesting question is what would be the one-loop dilatation operator and we will
now try to answer this. Since we will be considering the two-point functions, we would like
to distinguish the fields of operator (2.5) placed at some point x1 = x in spacetime from
other fields placed in some other point, say, x2 = 0. This we will achieve by abbreviating
them (and hence the operators O) with superscripts ±, i.e.

φ+
m = φm(x), φ−m = φm(0). (2.33)

Now we can evaluate the expectation value for the two point function, which we know to
be

〈O+O−〉 = exp
(
W0[∂/∂φ

±]
)
exp

(
−Sint[g̃, φ

±]
)
O+O−∣∣

φ=0
, (2.34)

1In fact, it works like the number operator in quantum mechanics N̂ =
P

i a†
iai.
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SI1 SI2 GE1 GE2 SE1 SE2 SE3 SE4

Figure 2.1: The one loop contribution to the two point function. The solid, wiggly, dashed
and dotted lines represent scalars, gluons, fermions and ghost fields (that is non propagating
auxiliary fields have quartic interactions) respectively. Diagrams ‘SI’ represent the scalar
interaction, diagrams ‘GE’ - the gluon exchange, and diagrams ‘SE’ - the self energy.

where Sint are all non-kinetic terms of (2.3) that include scalar fields φm, and W0 is the tree
level connected Green’s function

W0 =
1

2

∫∫
dx dy tr φ̌(x)Ixyφ̌(y), (2.35)

Ixy being the propagator defined in (A.1). Obviously for g̃ = 0 we will obtain the tree level
expectation value

〈O+O−〉 tree
level

= exp
(
W0(x, ∂/∂φ

+, ∂/∂φ−)
)
O+O−∣∣

φ=0
, (2.36)

where W0 now becomes

W0(x, φ̌
+, φ̌−) = I0x tr φ̌+

mφ̌
−
m. (2.37)

Since we put φ = 0 in the end we need to make sure that all the fields φ− in O− are
connected with φ+ in O+, by the use of W0. In particular, the classical (engineering)
dimensions of O+ and O− have to be equal, as predicted by conformal field theory.

Of course for g̃ 6= 0 we have to deal with interactions, and evaluate the Feynman
diagrams (up to one loop). The connected Green’s functions can be read off the Lagrangian
of the (regularised) N = 4 SYM theory and they are depicted on figure 2.1.

The one loop correlator will take the form

〈O+O−〉 one
loop

= exp
(
W0(x, φ̌

+, φ̌−)
)
(1 + g̃2W2(x, φ̌

+, φ̌−))O+O−∣∣
φ=0

, (2.38)

where W2(x, φ̌
+, φ̌−) is the connected one loop Green’s function, coming from the ∼ g̃2

expansion of e−Sint in (2.34). The diagrams can be evaluated to be (see [24, 44], but also
[45, 46, 47])

W SI1
2 =

1

4
X00xx tr [φ̌+

m, φ̌
+
n ][φ̌−m, φ̌

−
n ]

W SI2
2 =

1

4
X00xx

(
tr [φ̌+

m, φ̌
−
n ][φ̌+

m, φ̌
−
n ] + tr [φ̌+

m, φ̌
−
n ][φ̌−m, φ̌

+
n ]
)

WGE1

2 ∼ tr [φ̌+
m, φ̌

+
m][φ̌−n , φ̌

−
n ] = 0 (2.39)

WGE2
2 =

(
−1

2
H̃0x0x − Y00xI0x +

1

4
X00xx

)
tr [φ̌+

m, φ̌
−
n ][φ̌+

m, φ̌
−
n ]

W SE
2 = −Y00x tr [φ̌+

m, T
a][T a, φ̌−m],
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where the integrals Y00x, X00xx, and H0x0x are evaluated in appendix A. One can clearly
see that the trace part of these functions represents the symmetry structure of the diagrams
on figure 2.1: their legs want to attach to the external trace operators in the correlator just
like the differential operators φ̌±m want to act on the fields in O±. Then, the spacetime
factor and the statistical weight factor are represented by the integrals and coefficients in
front of the trace.

We now use the Jacobi identity to show that

tr [φ̌+
m, φ̌

−
n ][φ̌−m, φ̌

+
n ] = tr [φ̌+

m, φ̌
+
n ][φ̌−m, φ̌

−
n ] − tr [φ̌+

m, φ̌
−
m][φ̌+

n , φ̌
−
n ],

and reexpress the scalar interaction as

W SI
2 =

1

4
X00xx

[
VD(φ̌+, φ̌−) + VF (φ̌+, φ̌−) + VK(φ̌+, φ̌−)

]
, (2.40)

where

VD(φ̌+, φ̌−) = −tr [φ̌+
m, φ̌

−
m][φ̌+

n , φ̌
−
n ],

VF (φ̌+, φ̌−) = 2tr [φ̌+
m, φ̌

+
n ][φ̌−m, φ̌

−
n ], (2.41)

VK(φ̌+, φ̌−) = tr [φ̌+
m, φ̌

−
n ][φ̌+

m, φ̌
−
n ],

and then classify all the W2’s according to their spacetime structure, obtaining

WX
2 =

1

4
X00xx

[
VF (φ̌+, φ̌−) + VK(φ̌+, φ̌−)

]
,

WH
2 =

1

2
H̃0x0xVD(φ̌+, φ̌−), (2.42)

W IY
2 = −Y00x

(
I0xtr [φ̌+

m, φ̌
−
m][φ̌+

n , φ̌
−
n ] + tr [φ̌+

m, T
a][T a, φ̌−m]

)
.

Now, we make a very useful observation in (2.38). Since each φ̌+ is acting on φ+ in O+,
and then is being acted on by W0, we can equally well substitute φ̌+ in W2 by I−1

0x φ
−, since

it has to be contracted with W0 anyway, and hence come to the same result; the inversed
propagator is nothing but a “recompense” of the spacetime structure. The only thing we
have to remember about is to not to contract φ̌− with φ− inside the vertex and this is
achieved by “sandwiching” W2 with double colons which denote the normal ordering2. For
this purpose we define the one loop effective vertex

V2(x) =:W2(x, I
−1
0x φ, φ̌) :, (2.43)

and then (2.38) can be rewritten as

〈O+O−〉 one
loop

= exp
(
W0(x, φ̌

+, φ̌−)
)
(1 + g2V −

2 (x))O+O−∣∣
φ=0

. (2.44)

Obviously, there is no difference between substituting

φ̌+ → I−1
0x φ

− and φ̌− → I−1
0x φ

+,

2Normal ordering is defined such that it moves all the “checks” to the right and in this way prevents
self contractions inside the same vertex; we define it along with [20], namely : tr φiφ̌jφkφ̌l : = tr φiφ̌jφkφ̌l −
δjkNtr φiφ̌l.
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therefore

V −
2 =̂ V +

2 , (2.45)

where ± symbols naturally refer to the spacetime point in which (2.43) is defined, and the
symbol =̂ denotes equivalence in an operator sense. Then the connected Green’s functions
can be written as

V X
2 =

1

4
X00xxI

−2
0x

[
:VF (φ, φ̌) : + :VK(φ, φ̌) :

]
,

V H
2 =

1

2
H̃0x0xI

−2
0x :VD(φ, φ̌) : , (2.46)

V IY
2 = −Y00xI

−1
0x

(
: tr [φm, φ̌m][φn, φ̌n] : + :tr [φm, T

a][T a, φ̌m] :
)
.

In the last term we can replace the normal ordering and hence absorb the second one into
the first one

:tr [φm, φ̌m][φn, φ̌n] : + 2N : tr (φmφ̌m) : −2:tr (φm) tr (φ̌m) : (2.47)

= tr : [φm, φ̌m] : : [φn, φ̌n] :≡ −tr η η, (2.48)

where

η = i : [φm, φ̌m] : (2.49)

is the generator of gauge transformations. For that very reasons V IY
2 does not act on gauge

invariant states O, hence

V IY
2 =̂ 0. (2.50)

As for two other terms, we use (A.5) and (A.6) to find out that

H̃0x0xI
−2
0x =

(
−48ζ(3)ǫ+ O(ǫ2)

)
f(x), (2.51)

where

f(x) =
Γ(1 − ǫ)

|12µ2x2|−ǫ
, and ζ(s) =

∞∑

n=1

1

ns
, (2.52)

(the latter being the Riemann zeta function) and thus V H
2 doesn’t contribute either when

taking ǫ→ 0. On the other hand (A.4) and (A.6) tell us that

X00xxI
−2
0x =

(
2

ǫ
+ 2 + O(ǫ2)

)
f(x), (2.53)

and we clearly see that for

V2(x) = V X
2 (x). (2.54)

The only thing left, basically, would be to renormalise the correlation function. This is
done by introducing the renormalisation factor Z, which we choose to be3

Z = 1 − 1

2
g̃2V2(1/µ) + O(g̃3), (2.55)

3Notice that the resemblance of (2.55) and (2.20) is not accidental.
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then using (2.16) and (2.45) we can write

〈Õ+Õ−〉 one
loop

= exp
(
W0(x, φ̌

+, φ̌−)
)
(1 + g̃2V −

2 (x) − g̃2V −
2 (1/µ))O+O−∣∣

φ=0
. (2.56)

On the other hand, a closer look at V2(x) tells us that the spacetime dependence appears
solely through f(x)

V2(x) = f(x)V2 =
Γ(1 − ǫ)

|12µ2x2|−ǫ
V2, (2.57)

a desired property of a renormalisable theory in dimensional regularisation, where

V2 =
1

4

(
2

ǫ
+ 2 + O(ǫ2)

)[
:VF (φ, φ̌) : + :VK(φ, φ̌) :

]
. (2.58)

We can now expand the following argument for small ǫ

V2(x) − V2(1/µ) = [f(x) − f(1/µ)]V2 = Γ(1 − ǫ) ln |µ2x2|ǫV2, (2.59)

and then we let

lim
ǫ→0

[V2(x) − V2(1/µ)] = ln |µx|−2D2, (2.60)

for

D2 ≡ − lim
ǫ→0

ǫV2 (2.61)

which gives us the one loop correction to the dilatation operator

D2 = − : tr [φm, φn][φ̌m, φ̌n] : −1

2
:tr [φm, φ̌n][φm, φ̌n] : , (2.62)

and thus

〈Õ+Õ−〉 one
loop

= exp
(
W0(x, φ̌

+, φ̌−)
)
(ln |µx|−2g̃2D−

2 )O+O−∣∣
φ=0

. (2.63)

However, in order to reobtain the dilatation operator in accordance with the definition
(2.27), and thereby work with the coupling constant g, we redefine the dilatation operator
(2.62) such that

D2 → D2 = −N−1

(
: tr [φm, φn][φ̌m, φ̌n] : +

1

2
:tr [φm, φ̌n][φm, φ̌n] :

)
, (2.64)

and then we can speak of the dilatation operator (like in the beginning of this chapter)
D(g), instead of D(g̃).

The fact that although we consider the correlator of renormalised operators Õ, in prac-
tice we work with bare operators O. This is because we choose to renormalise the dilatation
operator instead of the states, according to

Dren = Z−1 Dbare Z, (2.65)

which makes perfect sense, since Dbare, unlike (2.64), is expected to diverge, thus the
operator D2 in (2.64) is already renormalised.
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2.4 A short manual for the dilatation operator

Let us calculate the Z operator explicitly. According to (2.55), and using (2.57), we can
rewrite it as

Z = trφmφ̌m −
(
g2
Y M

16π2

)
1

2ǫ

[
: tr [φm, φn][φ̌m, φ̌n] : +

1

2
:tr [φm, φ̌n][φm, φ̌n] :

]
, (2.66)

where the tree level part we will simply denote hereafter as the identity operator. As an
operator, it acts of course on the correlator 〈O+O−〉. The bad news, however, is that each
operator in the correlator contains L different flavour indices and thus, when acting on it
with Z (and thus D(g)), we will have to perform a certain number of mathematical opera-
tions which will be proportional to some permutation of these indices, which becomes quite
tediuos. The good news though is that we are interested in the planar limit, and therefore
our computation simplifies a lot since we just have to contract the nearest-neighbour fields,
allowing us to use the following trick. Of all the set of scalar fields in an operator

O± = trφ±i1φ
±
i2
· · ·φ±iℓφ

±
iℓ+1

· · ·φ±iL (2.67)

we will distinguish two neighbouring ones, at site, say, (ℓ) and (ℓ + 1), that is a “partial”
operator

O−ab
ℓ,ℓ+1 =

(
φ− jℓφ− jℓ+1

)ab
, (2.68)

where a, b are colour indices, jℓ, jℓ+1 are flavour indices, and ‘−’ denotes that the operator
O− is situated in point x2 = 0. In analogy, we have its hermitian conjugate4 in x1 = x

O+ cd
ℓ,ℓ+1 =

(
φ+

iℓ+1
φ+

iℓ

)cd

. (2.69)

Now, when evaluating the correlator, we contract the fields according to (2.36), namely

〈φ+ ab
i φ− cd

j 〉 = I0x δijδ
adδbc, (2.70)

therefore

〈O+ ab
ℓ,ℓ+1O− cd

ℓ,ℓ+1〉 = I2
0xNδ

adδbcδ jℓ
iℓ
δ

jℓ+1

iℓ+1
, (2.71)

Actually, there could have also been other contribution apart from δadδbc, namely δabδcd,
but that would give negligible contributions in the planar limit (when contracting other
fields in (2.67) and summing over a, b, c and d afterwards), which we do not consider.

Evaluation of the one loop part of Z is just matter of a little algebraic exercise, which
leads to

〈O+ ab
ℓ,ℓ+1 : tr [φ−m, φ

−
n ][φ̌−m, φ̌

−
n ] : O− cd

ℓ,ℓ+1〉 = 2I2
0xN

2δadδbc(δ
jℓ+1

iℓ
δ jℓ
iℓ+1

− δ jℓ
iℓ
δ

jℓ+1

iℓ+1
), (2.72)

and

〈O+ ab
ℓ,ℓ+1 : tr [φ−m, φ̌

−
n ][φ−m, φ̌

−
n ] : O− cd

ℓ,ℓ+1〉 = −I2
0xN

2δadδbcδiℓiℓ+1
δjℓjℓ+1, (2.73)

4Although, since the fields are real it is just a transpose in this case.
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which yields the Z factor in the flavour representation

Z ···jℓjℓ+1···
···iℓiℓ+1··· = δ jℓ

iℓ
δ

jℓ+1

iℓ+1
− λ

16π2
ln Λ

[
2δ

jℓ+1

iℓ
δ jℓ
iℓ+1

− 2δ jℓ
iℓ
δ

jℓ+1

iℓ+1
− δiℓiℓ+1

δjℓjℓ+1

]
, (2.74)

where

ln Λ =
1

2ǫ
, (2.75)

and λ = g2
Y MN is the ’t Hooft coupling in the large N limit. This on the other hand, with

(2.21), immediately yields the one-loop anomalous dimension matrix

( Γ one
loop

)
···jℓjℓ+1···
···iℓiℓ+1··· =

λ

16π2

[
2δ jℓ

iℓ
δ

jℓ+1

iℓ+1
− 2δ

jℓ+1

iℓ
δ jℓ
iℓ+1

+ δiℓiℓ+1
δjℓjℓ+1

]
. (2.76)

In order, however, to consider the full sector of scalar fields

O+ = N−L/2trφ+
iL
· · ·φ+

i1
, O− = N−L/2trφ− j1 · · · φ− jL , (2.77)

it is convenient to reexpress (2.76) as an operator acting on the flavour basis, namely

〈O+O−〉 = IL
0x

(1− λ

16π2
ln |2−1µ2Λ2x2|

L∑

ℓ=1

Dℓ,ℓ+1
2

)
δ j1
i1
δ j2
i2
δ j3
i3

· · · δ jL
iL

+ cycles. (2.78)

Here, “cycles” mean that due to the trace cyclicity invariance we have L non trivial planar
leading ways to contract these indices to form the flavour basis. Above

Dℓ,ℓ+1
2 ≡ 2Iℓ,ℓ+1 − 2Pℓ,ℓ+1 + Kℓ,ℓ+1 (2.79)

is the one-loop element of the anomalous dimension matrix (2.21) in an operator form,
where its constituent operators act on the flavour basis in the following way

Iℓ,ℓ+1 δ
j1

i1
δ j2
i2

· · · δ jℓ
iℓ
δ

jℓ+1

iℓ+1
· · · δ jL

iL
= δ j1

i1
δ j2
i2

· · · δ jℓ
iℓ
δ

jℓ+1

iℓ+1
· · · δ jL

iL
,

Pℓ,ℓ+1 δ
j1

i1
δ j2
i2

· · · δ jℓ
iℓ
δ

jℓ+1

iℓ+1
· · · δ jL

iL
= δ j1

i1
δ j2
i2

· · · δ jℓ+1

iℓ
δ jℓ
iℓ+1

· · · δ jL
iL
, (2.80)

Kℓ,ℓ+1 δ
j1

i1
δ j2
i2

· · · δ jℓ
iℓ
δ

jℓ+1

iℓ+1
· · · δ jL

iL
= δ j1

i1
δ j2
i2

· · · δiℓiℓ+1
δjℓjℓ+1 · · · δ jL

iL

and are the identity, permutation and trace operator, respectively. In other words, these
operators act in the tensor product Vℓ⊗Vℓ+1 = R6⊗R6, of the 6L-dimensional linear space
H = V1 ⊗ · · · ⊗ VL, as

I(u⊗ v) = (u⊗ v),

P(u⊗ v) = (v ⊗ u), (2.81)

K(u⊗ v) = (u · v)
∑

i

êi ⊗ êi,

where êi are a set of orthonormal unit vectors in R6. After having acted on the flavour
basis, they give the 6L × 6L anomalous dimension matrix for the full SO(6) bosonic sector
(with Z−1 ≈ 1)

Γ one
loop

=
λ

16π2

L∑

ℓ=1

(2Iℓ,ℓ+1 − 2Pℓ,ℓ+1 + Kℓ,ℓ+1) δ
j1

i1
δ j2
i2

· · · δ jL
iL

+ cycles ≡ g2D2, (2.82)
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where we supressed all of the indices. It is very important to note, however, that (2.64) and
(2.66) are operators, whereas (2.74) and (2.82) are matrices.

This result is more important than one might think. As shown by Minahan and Zarembo
[9] the one-loop anomalous dimension matrix (2.82) is the Hamiltonian of an integrable spin
chain, which has SO(6) symmetry and the spins transform in the vector representation. A
basis of the spin chain Hilbert space is thus given by the states

|i1, i2, . . . , iL〉, (2.83)

which corresponds, up to cyclic permutations, to single trace local operators (2.28). More
suprisingly, it turns out that the integrability not only extends to the full sector of N = 4
SYM theory which is the PSU(2, 2|4) supergroup [41, 42], but also to higher loops [43, 44].

2.5 Splitting up SO(6)

Although the formalism of the dilatation operator of N = 4 SYM theory is particularly
neat for the SO(6) bosonic subsector, our aim is to express it in the language of N = 1
supersymmetric theories, from the point of view of which it consists of three chiral superfields
WI in the adjoint representation. The reason is that the orbifolding of N = 4 theory to
N = 2 theory will be performed by applying the projection conditions to these three complex
scalars, defined as

W1 =
1√
2
(φ1 + iφ2) ≡ X, W2 = 1√

2
(φ3 + iφ4) ≡ Y, W3 =

1√
2
(φ5 + iφ6) ≡ Z, (2.84)

and their complex conjugates. In terms of representations, we split up 6 = 3+3 and employ
an SU(3) notation for the fields. In component form, we project a vector in Vℓ

vi ≡ (vI , v̄I), i = 1, . . . , 6, I = 1, 2, 3, (2.85)

to its components vI and v̄I = vĪ . In this representation the permutation operator P and
the trace operator K which act on Vℓ ⊗ Vℓ+1 as

I(u⊗ v) = (u⊗ v),

P(u⊗ v) = (v ⊗ u), (2.86)

K(u⊗ v) = (u · v)
∑

I

(êI ⊗ êĪ + êĪ ⊗ êI),

where

u⊗ v = uI ⊗ vI + ūI ⊗ vI + uI ⊗ v̄I + ūI ⊗ v̄I ,

u · v =
∑

I

(uI v̄I + ūIvI),

and êI and êJ̄ are vectors of an orthonormal basis in V. This suggests that every delta
function in (2.74), (2.76), or in the flavour basis should change accordingly to (2.85), that
is

δ j
i → δ J̄

I + δ J
Ī . (2.87)
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We would however like to reproduce this result by the field theory calculations. For this,
there are two steps that ought to be performed. First, we need to reexpress the dilatation
operator (2.64) in terms of the six complex scalars from (2.84), that is WI and WI = WĪ ,
(I = 1, 2, 3), and then and redo all the field theory calculations. As a consistency check we
expect that the one loop anomalous dimension matrix (2.82) will be reproduced, with the
basis changed accordingly to (2.87).

2.5.1 Splitting up the dilatation operator

The aim is to express the dilatation operator D2 in terms of W and W. First we notice
that since index i at φi takes on six possible values, one could always rewrite an arbitrary
function of these fields in the following way

6∑

i=1

F (φi) =

3∑

I=1

[F (φ2I−1) + F (φ2I)] . (2.88)

On the other hand, the complex scalars are defined such that

WI =
1√
2
(φ2I−1 + iφ2I), WI =

1√
2
(φ2I−1 − iφ2I), I = 1, 2, 3, (2.89)

and thus

φ2I−1 =
1√
2
(WI + WI), φ2I =

1

i
√

2
(WI − WI), (2.90)

Hence we have

W̌I =
δ

δWI
=

1√
2

(
δ

δφ2I−1
− i

δ

δφ2I

)
, (2.91)

and

W̌I =
δ

δWI

=
1√
2

(
δ

δφ2I−1
+ i

δ

δφ2I

)
. (2.92)

Now, we can take advantage of (2.88) and write that

6∑

m,n=1

tr [φm, φ̌n][φm, φ̌n] =
3∑

I,J=1

(
2tr[W̌I ,WJ ][W̌I ,WJ ] + 2tr[W̌I ,WJ ][W̌I ,WJ ]

)
,

and

6∑

m,n=1

tr [φm, φn][φ̌m, φ̌n]

=

3∑

I,J=1

(
tr[WI ,WJ ][W̌I , W̌J ] + tr[WI ,WJ ][W̌I , W̌J ] + 2tr[WI ,WJ ][W̌I , W̌J ]

)
.

This suggests that one could express the dilatation operator D2 in our new basis (call it
D′

2) in terms of its holomorphic, anti-holomorphic and non-holomorphic parts

D′
2 = N−1

(
Dh

2 + Dh̄
2 + Dhh̄

2

)
, (2.93)
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where

Dh
2 = −tr[WI ,WJ ][W̌I , W̌J ]

Dh̄
2 = −tr[WI ,WJ ][W̌I , W̌J ] (2.94)

Dhh̄
2 = −2tr[WI ,WJ ][W̌I , W̌J ] − tr[WI , W̌J ][WI , W̌J ] − tr[WI , W̌J ][WI , W̌J ]

2.5.2 Splitting up the basis

Unlike in the SO(6) case, instead of one basis (2.67) we now have 2L different, gauge
invariant fields which get contracted with each other, for example

O = tr
(
WI1WI2WI3WI4WI5 · · ·WIk−1

WIk
WIk+1

· · ·WIL−1
WIL

)
, (2.95)

and hence different contraction rules, namely

〈W+ ab
I W

− cd

J 〉 = I0xδIJ̄ δ
adδbc, (2.96)

〈W+ab

I W− cd
J 〉 = I0xδĪJ δ

adδbc, (2.97)

and all others equal to zero. Having said that, in analogy to (2.68) we can define a “partial”
operator O′ in this basis as a transformation from O to the new representation, that is

Oab
ℓ,ℓ+1 = (φjℓφjℓ+1)ab −→ O′ab

ℓ,ℓ+1 =
1

2

[
(φ2Jℓ−1 + φ2Jℓ)(φ2Jℓ+1−1 + φ2Jℓ+1)

]ab
,

where we used the fact that

φj −→ 1√
2
(φ2J−1 + φ2J).

It is now straightforward to apply (2.90) and write out our new “partial” basis in the
following way

O′ab
ℓ,ℓ+1 =

1

2

(
WJℓW

Jℓ+1 + W
JℓWJℓ+1 − iWJℓWJℓ+1 + iW

JℓW
Jℓ+1

)ab

. (2.98)

The tree-level basis can be achieved by computing

〈O′+ ab
ℓ,ℓ+1O′− cd

ℓ,ℓ+1〉 = I2
0xNδ

adδbc
(
δ J̄ℓ
Iℓ
δ

J̄ℓ+1

Iℓ+1
+ δ J̄ℓ

Iℓ
δ

Jℓ+1

Īℓ+1
+ δ Jℓ

Īℓ
δ

J̄ℓ+1

Iℓ+1
+ δ Jℓ

Īℓ
δ

Jℓ+1

Īℓ+1

)

= I2
0xNδ

adδbc
(
δ J̄ℓ
Iℓ

+ δ Jℓ

Īℓ

)(
δ

J̄ℓ+1

Iℓ+1
+ δ

Jℓ+1

Īℓ+1

)
, (2.99)

which not only fulfils our expectations but also gives us the idea that

〈O′+O′−〉 = IL
0x

(
δ J̄1

I1
+ δ J1

Ī1

)(
δ J̄2

I2
+ δ J2

Ī2

)
· · ·
(
δ J̄L
IL

+ δ JL

ĪL

)
+ cycles, (2.100)

where we followed exactly as in the case of tree-level part of (2.78).
The one-loop correlation function can be obtained by calculating

〈O′+ ab
ℓ,ℓ+1D2O′− cd

ℓ,ℓ+1〉 ≡ −
6∑

p=1

〈D2,p〉, (2.101)
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where

〈D2,1〉 = 〈(W+
Iℓ+1

W
+
Iℓ

)ab D2 (W− JℓW− Jℓ+1)cd〉,
〈D2,2〉 = 〈(W+

Iℓ+1
W

+
Iℓ

)ab D2 (W
− JℓW− Jℓ+1)cd〉,

〈D2,3〉 = 〈(W+
Iℓ+1

W
+
Iℓ

)ab D2 (W− JℓW
−Jℓ+1)cd〉,

〈D2,4〉 = 〈(W+
Iℓ+1

W+
Iℓ

)ab D2 (W
− JℓW− Jℓ+1)cd〉,

〈D2,5〉 = 〈(W+
Iℓ+1

W+
Iℓ

)ab D2 (W− JℓW
−Jℓ+1)cd〉,

〈D2,6〉 = 〈(W+
Iℓ+1

W+
Iℓ

)ab D2 (W
− JℓW

−Jℓ+1)cd〉,
where all the other terms were dropped due to the fact they vanish during contractions.
Furthermore, we notice that in 〈D2,1〉 only Dh

2 does not give vanishing contribution, as well

as Dh̄
2 in 〈D2,6〉, and Dhh̄

2 in four other terms. Let us now write that

〈D2,p〉 = I2
0xNδ

adδbcD2,p, (2.102)

where D2,p for p = 1, ..., 6 expresses only the flavour symmetry structure. Thus one can
easily verify that

D2,1 = 2
(
δ

Jℓ+1

Īℓ
δ Jℓ

Īℓ+1
− δ Jℓ

Īℓ
δ

Jℓ+1

Īℓ+1

)
,

D2,2 = 2δ
Jℓ+1

Īℓ
δ J̄ℓ
Iℓ+1

− δĪℓIℓ+1
δJ̄ℓJℓ+1,

D2,3 = −2δ Jℓ

Īℓ
δ

J̄ℓ+1

Iℓ+1
− δĪℓIℓ+1

δJℓJ̄ℓ+1,

D2,4 = −2δ J̄ℓ
Iℓ
δ

Jℓ+1

Īℓ+1
− δIℓĪℓ+1

δJℓJ̄ℓ+1, (2.103)

D2,5 = 2δ
J̄ℓ+1

Iℓ
δ Jℓ

Īℓ+1
− δIℓĪℓ+1

δJ̄ℓJℓ+1,

D2,6 = 2
(
δ

J̄ℓ+1

Iℓ
δ J̄ℓ
Iℓ+1

− δ J̄ℓ
Iℓ
δ

J̄ℓ+1

Iℓ+1

)
,

hence the one-loop dilatation matrix

D2 =

6∑

p=1

D2,p = 2δ
J̄ℓ+1

Iℓ
δ J̄ℓ
Iℓ+1

+ 2δ
J̄ℓ+1

Iℓ
δ Jℓ

Īℓ+1
+ 2δ

Jℓ+1

Īℓ
δ J̄ℓ
Iℓ+1

+ 2δ
Jℓ+1

Īℓ
δ Jℓ

Īℓ+1

− 2δ J̄ℓ
Iℓ
δ

J̄ℓ+1

Iℓ+1
− 2δ J̄ℓ

Iℓ
δ

Jℓ+1

Īℓ+1
− 2δ Jℓ

Īℓ
δ

J̄ℓ+1

Iℓ+1
− 2δ Jℓ

Īℓ
δ

Jℓ+1

Īℓ+1

− δĪℓIℓ+1
δJ̄ℓJℓ+1 − δĪℓIℓ+1

δJℓJ̄ℓ+1 − δIℓĪℓ+1
δJ̄ℓJℓ+1 − δIℓĪℓ+1

δJℓJ̄ℓ+1

and therefore

〈O′+ ab
ℓ,ℓ+1D2O′− cd

ℓ,ℓ+1〉 = −I2
0xNδ

adδbc
[
2
(
δ

J̄ℓ+1

Iℓ
+ δ

Jℓ+1

Īℓ

)(
δ J̄ℓ
Iℓ+1

+ δ Jℓ

Īℓ+1

)

− 2
(
δ J̄ℓ
Iℓ

+ δ Jℓ

Īℓ

)(
δ

J̄ℓ+1

Iℓ+1
+ δ

Jℓ+1

Īℓ+1

)
−
(
δĪℓIℓ+1

+ δIℓĪℓ+1

)(
δJ̄ℓJℓ+1

+ δJℓJ̄ℓ+1

)]
,

giving the one-loop anomalous dimension matrix

Γ one
loop

= g2D2 =
λ

16π2

[
2
(
δ J̄ℓ
Iℓ

+ δ Jℓ

Īℓ

)(
δ

J̄ℓ+1

Iℓ+1
+ δ

Jℓ+1

Īℓ+1

)

− 2
(
δ

J̄ℓ+1

Iℓ
+ δ

Jℓ+1

Īℓ

)(
δ J̄ℓ
Iℓ+1

+ δ Jℓ

Īℓ+1

)
+
(
δĪℓIℓ+1

+ δIℓĪℓ+1

)(
δJ̄ℓJℓ+1 + δJℓJ̄ℓ+1

)]
,

(2.104)
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where we supressed flavour indices on the left-hand side. This fully reproduces the result
(2.76), only with indices (i, j) replaced by (I, J̄) and (Ī , J) according to (2.87), as predicted
in (2.85). Generalisation of (2.104) to an equivalent of (2.82) is rather straightforward.

2.6 SU(3) and SU(2) bosonic subsectors

By following the same logic as we have done so far we could break 6 even more, by
letting 3 = 2 + 1. This construction implies that

vI ≡ (vα, ξ), α = 1, 2, (2.105)

where its components are an SU(2) doublet (vα) and a singlet (ξ). There is a freedom
in forming these doublets, the fact that will have important physical implications when
orbifolding to N = 2 supersymmetric Yang-Mills theory. For our convenience (which will
become subsequently justified) we choose to consider the following doublets:

χ
SU(2)R
α :=

(
X

Ȳ

)
, ψ

SU(2)L
α :=

(
X

Y

)
, φSU(2)Z

α :=

(
X

Z

)
, α = 1, 2. (2.106)

For these, the one-loop dilatation operator becomes again

D′
2 = N−1

(
Dh

2 + Dh̄
2 + Dhh̄

2

)
, (2.107)

but where now

Dh
2 = − tr[Ψα,Ψβ][Ψ̌α, Ψ̌β] − 2tr[Ψα, ϕ][Ψ̌α, ϕ̌],

Dh̄
2 = − tr[Ψ̄α, Ψ̄β][ ˇ̄Ψα,

ˇ̄Ψβ] − 2tr[Ψ̄α, ϕ̄][ ˇ̄Ψα, ˇ̄ϕ],

Dhh̄
2 = − 2tr[Ψα, Ψ̄β][Ψ̌α,

ˇ̄Ψβ] − 2tr[Ψα, ϕ̄][Ψ̌α, ˇ̄ϕ] − 2tr[Ψ̄α, ϕ][ ˇ̄Ψα, ϕ̌]

− 2tr[ϕ, ϕ̄][ϕ̌, ˇ̄ϕ] − tr[Ψα, Ψ̌β ][Ψ̄α,
ˇ̄Ψβ] − tr[Ψα,

ˇ̄Ψβ ][Ψ̄α, Ψ̌β]

− tr[Ψα, ϕ̌][Ψ̄α, ˇ̄ϕ] − tr[Ψα, ˇ̄ϕ][Ψ̄α, ϕ̌] − tr[ϕ, Ψ̌α][ϕ̄, ˇ̄Ψα]

− tr[ϕ, ˇ̄Ψα][ϕ̄, Ψ̌α] − tr[ϕ, ϕ̌][ϕ̄, ˇ̄ϕ] − tr[ϕ, ˇ̄ϕ][ϕ̄, ϕ̌], (2.108)

where Ψ = {χ,ψ, φ}, and ϕ the remaining U(1) field (which will be ϕ = Z i the case of
SU(2)L and SU(2)R, and ϕ = Y in the case of SU(2)Z). This breaks our dilatation operator
into 2+1+2+1. The basis can be dealt with in a similar fashion, keeping in mind (2.105),
and the correlation function can be derived again in this representation, however we will
not go through the whole derivation here. The reason is that the way of proceeding will
be fully analogous to the previous case and we expect to get an identical result from the
physical point of view. Therefore, we will stop here and leave it to a curious reader as an
exercise.

Instead, I would like to show that the trace operator K in (2.82) vanishes for SU(3) and
SU(2) bosonic subsectors and this can be easily done with the treatment presented above.
In these sectors the gauge invariant operators can be built only out of WI ’s for SU(3), and
Ψα’s for SU(2). Thus, the SO(6) operators (2.28) will become for the SU(3) case

O(x) = tr[WI1WI2 · · ·WIL
](x), (2.109)
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and for the SU(2) case

O(x) = tr[Ψα1
Ψα2

· · ·ΨαL
](x). (2.110)

For that very reason the dilatation operator (2.94) for the SU(3) case becomes

D2 = −N−1tr[WI ,WJ ][W̌I , W̌J ]

(2.111)

and the dilatation operator (2.108) for the SU(2) case becomes

D2 = −N−1tr[Ψα,Ψβ][Ψ̌α, Ψ̌β]. (2.112)

Both, in SU(2) and SU(3) it will be of the form

Γ
SU(2),SU(3)
one
loop

=
λ

8π2

L∑

ℓ=1

(Iℓ,ℓ+1 − Pℓ,ℓ+1) , (2.113)

which, recognised as the Hamiltonian of the XXX Heisenberg spin chain with L lattice sites,
consists solely of the identity operator and the permutation operator. Also, we can see that
in terms of our new basis, the trace operator K is merely the consequence of hitting the
non-holomorphic structure in the basis (e.g. · · ·WIℓ

WIℓ+1
· · · ) with the dilatation operator,

which can actually be understood just by looking at K’s definition in (2.86).

Summary

In this chapter we have presented an alternative method of calculating anomalous di-
mension matrices - the dilatation operator, and used it explicitly to obtain the form of
the one-loop anomalous dimension matrix for the SO(6) bosonic subsector of N = 4 SYM
theory; we have mentioned that it is equivalent to the Hamiltonian of an integrable spin
chain. (Since our notation might be slightly confusing for the reader, we recap the symbols
we will be using throughout the next two chapters in table 2.1.) Afterwards, we showed
that one can reproduce the same matrix in different basis, namely in (2.85) and (2.105).
This also showed us what will be its form in the SU(3) and SU(2) bosonic subsectors.

operator matrix eigenvalues

full expansion, up to one loop D(g) Γ(g) ∆(g)
terms next to g2 D2 D2 ∆2

one-loop anomalous expressions Γ̂ one
loop

Γ one
loop

γ

Table 2.1: Summary of different symbols for the dilatation operator, the anomalous dimen-
sion matrix, and its eigenvalues, the anomalous dimensions; we do not write any terms of
the order of O(g3).
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Chapter 3

Quantisation of string theory on
AdS5 × S5/ZM in the pp-wave limit

Orbifolds arise in a purely geometric context by generalising the notion of manifolds to
allow a discrete set of singular points. Thus, having some manifold M we could act on
it with a discrete group action G : M → M. This action is said to possess a fixed point
x ∈ M if for some g ∈ G (g 6= identity) we have gx = x . Then, by identifying points under
the relation x ∼ gx for all g ∈ G, we construct the quotient space M/G. Each point is
identified with its orbit (in the mathematical sense) under G, hence the name orbifold. If
the group G acts freely (no fixed points) then we have the special case of orbifold which
is an ordinary manifold. Otherwise, the points of the orbifold corresponding to the fixed
point set have discrete identifications of their tangent spaces, and are not manifold points.

This set-up is crucial for properties of a (string) theory compactified on an orbifold.
Since fields of this theory can propagate on it freely, and on the other hand some points of
orbifold are identified through x ∼ gx , as a consequence one relaxes the boundary conditions
for the fields, allowing by the same time to add new states to it. These new states are called
the twisted sectors of the theory.

Although orbifolds in context of string theory have come about sometime ago already
(see for example [49, 50, 52]), their application to AdS/CFT conjectrure is particularly
exciting. The reason is that the singular points of the orbifold can break supersymmetry
of strings propagating on them, and therefore it is expected that a similar occurance might
take place on the gauge dual side. Then, it would be very interesting to examine if the
corresponding gauge theory with less supersymmetry is integrable. This breaking might
hopefully lead us to theories with zero supersymmetry, like QCD. In this chapter we will
try to consider a very specific orbifold, and formulate the AdS/CFT duality based on the
new set-up, which we develop in the next few sections, and finally test it by comparing the
spectrum up to the lowest order, by the use of the Bethe ansatz procedure [51].

3.1 The orbifold/quiver gauge correspondence

I have already mentioned in section 1.3.1 that a connection between string theory and
gauge theories appeared before the discovery of Maldacena’s conjecture. Orbifolds entered
in that context also before 1997; it has been proved [53] that placing D3-branes at orbifolds
results in a certain class of four dimensional field theories, usually referred to as quiver

47
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gauge theories. Then, it was shown [54, 55] that these theories admit an AdS dual where
the compact 5-manifold is an orbifold on S5.

In particular, we consider a discrete symmetry group G = ZM and act with it on the
five sphere S5, embedded in R6 ∼ C3 with

3∑

i=1

|zi|2 = R2, (3.1)

such that
(z1, z2, z3) ∼ (ωz1, ω

−1z2, z3), ω := e2πi/M . (3.2)

As a result, we will obtain the orbifold C2/ZM × C. From a point of view of Dp-brane
dynamics, we consider N D3-branes transverse to the 6-dimensional complex space C3/ZM ,
and then the covering space is the “parent” space with NM D3-branes, with the N = 4
SYM theory of gauge group SU(NM). Its projection to the “daughter” space gives [53] an
N = 2 superconformal field theory living on each of the four-dimensional world volumes of
M stacks of N D3-branes. It has the R-symmetry group SU(2)R × U(1), and the gauge
group

U(N)(1) × U(N)(2) × · · · × U(N)(M), (3.3)

where we impose

U(N)(M+a) ↔ U(N)(a). (3.4)

The new N = 2 supersymmetric quiver gauge theory (QGT) is a “daughter” of the “parent”
N = 4 SYM theory and from the mathematical sense it is its projection from the covering
space to the “daughter” space by the group G.

The fact that the holographic dual of the N = 2 quiver gauge theory is type IIB
string theory on AdS5 × S5/ZM is very non-trivial and has been first argued in [54] and
shortly afterwards in [55]. It has been also shown [56] that the correlation functions of the
“daughter” theory are identical to those of the “parent” theory, up to the following rescaling
of the coupling constant

g2
YM → 1

M
(g

(a)
YM)2. ∀a=1,...,M (3.5)

This gives us some ideas about the form of the basic quantities of this kind of AdS/CFT
duality. First of all, we expect that the analogue of (1.105) for p = 3 would be

(g
(a)
YM)2 ≡ g2

QGT = 4πgsM = g2
YMM, (3.6)

and thus the radius of AdS5 and S5 would be

R2 =
√

4πgsα′2NM. (3.7)

The volume of S5/ZM will thus be reduced by a factor of M compared to that of a covering
space S5. Furthermore, there will now be MN units of Ramond-Ramond 5-form flux
through the five sphere S5 (and thus AdS5), and since the five sphere contains M copies
of a fundamental domain that are identified by the orbifold group, there will be N units of
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AdS5

AdS5

S5

S5

ZM

ZM ZM

x

x

N=4

N=2

SYM

QGT

Figure 3.1: The scheme of relation between N = 4 SYM, N = 2 quiver gauge theory, and
their corresponding type IIB string theories.

flux per fundamental domain, and hence N units through the orbifold S5/ZM . Finally, the
’t Hooft coupling in each of the domain copies is

λ′ := g2
QGTN = 4πgsNM, (3.8)

which is the same as the ’t Hooft coupling on the original NM D3-branes before orbifolding,
for which the Yang-Mills coupling was equal to 4πgs.

The plan for the rest of the chapter is the following. We start with the gauge side and
present the formalism of orbifolding the “parent” N = 4 SYM theory to its “daughter”
N = 2 QGT, present content fields of the latter, derive the N = 2 bosonic action, and show
that it is SU(2)R ×U(1) invariant. Then we move to the string side and quantise the type
IIB string theory on AdS5 × S5/ZM in the pp-wave background, emphasising differences
between this theory and the one reviewed in section 1.4. Afterwards, the global symmetry
analysis based on [57] allows us to construct the N = 2 MRV operators on the gauge side,
and then match them to the string states. Finally, we derive the dilatation operator for
N = 2 QGT, use it to calculate the one-loop anomalous dimensions of the MRV states.
We compare the results to the string spectrum, derived during the quantisation of string
theory in the triple scaling limit, thereby testing to lowest order the type IIB string theory
on AdS5 ×S5/ZM/N = 2 QGT duality. For a scheme of all this, please refer to figure 3.1.

3.2 N = 2 quiver gauge theory from N = 4 SYM

The N = 2 superconformal quiver gauge theory has the following structure:

• M vector multiplets

(Aa
µ,Φ

a, ψa, ψa
Φ), a = 1, ...,M (3.9)

where Φa is a complex scalar, together with its superpartner - the Weyl fermion ψa
Φ.

Aa
µ is the gauge field, and ψa is the gaugino. All these fields transform in the adjoint

of U(N)(a).

• M bi-fundamental hypermultiplets

(Aa, Ba, χa
A, χ

a
B), a = 1, ...,M. (3.10)

The complex scalar field Aa and its superpartner χa
A transform in the (Na,N

a+1
) of

U(N)(a) × U(N)(a+1). The pair Ba and χa
B transform in the (N

a
,Na+1).
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Figure 3.2: The quiver (moose) diagram. The N = 2 fields come about as “translations”
in quiver space; the quiver space is periodic under M and has a fixed set of M quiver-dots,
representing gauge groups U(N)(a).

This matter content of the gauge theory can be succinctly summarised in the form of a
quiver (moose) diagram (see figure 3.2). It shows M quiver-dots in quiver space where
each dot (fundamental domain) represents the U(N) gauge group, on the string side de-
scribed by a stack of D3-branes, and all the U(N) groups are linked together by matter
in bi-fundamental representation. In this way one can view the vector multiplet fields
(Aa

µ,Φ
a, ψa, ψa

Φ) as “translations” from quiver-dot (a) to the same one (a), whereas the bi-
fundamental hypermultiplet fields (Aa, Ba, χa

A, χ
a
B) come about as translations from quiver-

dot (a) to quiver-dot (a± 1).

3.2.1 The set-up

The orbifold projection of N = 4 SYM theory to N = 2 supersymmetric QGT is, as
discussed in [53] and [56], performed by embedding the orbifold group G = ZM , which is a
subgroup of the bosonic SO(6) R-symmetry, into the gauge group. In the following section,
however, we will refrain to the bosonic subsector of N = 4 theory SYM and orbifold it,
receiving the bosonic N = 2 quiver gauge theory. Let us denote an N = 4 bosonic field in
N = 1 language as Y. This field transforms under the action of an element γ ∈ ZM as
follows

Y −→ U(γ) (Rγ ◦ Y) U†(γ) = Y, (3.11)

where U(γ) is the representation of the element as a matrix of the gauge group, and Rγ is
the corresponding element of the R-symmetry group. Therefore, (3.11) should be viewed
merely as a constraint on the field Y.
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As explained from the point of view of Dp-brane dynamics, if the gauge group of N = 4
SYM is chosen to be U(MN), then the projection by ZM creates a quiver theory that has
a residual U(N)M local symmetry. U(γ) can be chosen as a MN ×MN diagonal matrix

U(γ) = diag
(1, ω, ω2, ... , ωM−1

)
, (3.12)

where each entry is an N × N unit matrix. The field Y of the orbifolded theory is then
defined by the constraint

Y = ωsY U(γ)Y U†(γ). (3.13)

Since ZM ∈ R-symmetry, Rγ will just be a representation of orbifold action on fields with
internal indices, and since we know from section that 1.2.4 that Rmn operator generates
three U(1) Cartan charges of SO(6), J1, J2, and J3, then we realise that Rγ has to act on
the three planes (12-plane, 34-plane, and 56-plane) of S5 embedded in R6 ∼ C3 as well.
Finally, a quick look at the identification (3.2) allows us to write that

Rγ ◦X = ωX, Rγ ◦ Y = ω−1Y, Rγ ◦ Z = Z, (3.14)

and from (3.13) we deduce that

sX = sȲ = +1, sX̄ = sY = −1, sZ = sZ̄ = 0. (3.15)

As a result, we have the following commutation relations

U(γ)

(
X

Ȳ

)
= ω−1·

(
X

Ȳ

)
U(γ), U(γ)

(
X̄

Y

)
= ω+1 ·

(
X̄

Y

)
U(γ),

U(γ)

(
Z

Z̄

)
=

(
Z

Z̄

)
U(γ). (3.16)

Thus, the components surviving the projection are

X =




0 A1

0 A2

0
. . . AM−1

AM 0



, Y =




0 BM

B1 0
B2 0

. . .

BM−1 0



,

Z =




Φ1

Φ2

Φ3

. . .

ΦM



, Aµ =




A1
µ

A2
µ

A3
µ

. . .

AM
µ



, (3.17)

where we pointed out that Aa
µ transforms in the adjoint representation of U(N)(a). These

are the projected fields of N = 4 SYM corresponding to the orbifold projections acting on
the Chan-Paton factors of the open string ending on the NM D3-branes in the covering
space of the orbifold space. Each non-vanishing entry of the above matrices is an N × N
matrix and corresponds to the bosonic field of the N = 2 quiver gauge theory.
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3.2.2 N = 2 QGT bosonic action

In order to obtain the (bosonic) action of N = 2 quiver gauge theory we will orbifold
the bosonic part of the Euclidean N = 4 SYM action (2.3)

SN=4
bosonic =

1

g2
Y M

∫
d4x tr

(
1

4
FµνFµν + DµφmDµφm − 1

2
[φm, φn][φm, φn]

)
. (3.18)

It can be rewritten in terms of the complex scalars (2.84) by the use of a little bit of algebra
as:

trDµφmDµφm = 2trDµWIDµWI , (3.19)

where the appropriate sum is assumed, and

V [φ] ≡ 1

2

6∑

m,n=1

tr [φm, φn]2 =

3∑

I,J=1

(
tr |[WI ,WJ ]|2 + tr |[WI ,WJ ]|2

)
, (3.20)

where we defined

|[A,B]|2 := [A,B][B̄, Ā], (3.21)

yielding

SN=4
scalar =

1

g2
Y M

∫
d4x

[
2trDµWIDµWI − tr |[WI ,WJ ]|2 − tr |[WI ,WJ ]|2

]
. (3.22)

We also note that the vertex could be also expressed in terms of the F-terms and D-terms
by simply applying the Jacobi identity to (3.20), getting

V [φ] ≡ LF + LD, (3.23)

where

LF = −2
3∑

I,J=1

tr [WI ,WJ ][WI ,WJ ], (3.24)

LD =
3∑

I,J=1

tr [WI ,WI ][WJ ,WJ ]. (3.25)

Our aim is to express the N = 4 action in terms of the multiplets of the R-symmetry
of N = 2 theory which, as we know already, is SU(2)R × U(1). The reason is that this is
the symmetry group which does not get broken by the action of G = ZM . For that reason
let us define an SU(2)R scalar doublet (α, β = 1, 2)

χα =

(
W1

W2

)
=

(
X

Ȳ

)
, and its hermitian conjugate χ̄α =

(
W1

W2

)
=

(
X̄

Y

)
, (3.26)

which are nothing but spinors of SU(2) ≃ Spin(3) group, and thus M ∈ SU(2) will act on
χα such that

χα → (Mχ)α = (M) β
α χβ, (3.27)
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where

(M) β
α = exp

[
i

2
ϕj(σj) β

α

]
, (3.28)

with σj (j = 1, 2, 3) being generators of SU(2) - the Pauli matrices. Then, since

χ̄α → χ̄β(M†) α
β , (3.29)

the combination

χ̄αχα → χ̄β(M†) α
β (M) γ

α χγ = χ̄βχβ (3.30)

will always be SU(2) invariant. Therefore keeping in mind that

(χα) = χ̄α, (3.31)

one can prove that

tr[χα, χ̄
β][χβ , χ̄

α] = tr|[W1,W1]|2 + tr|[W2,W2]|2 + tr|[W1,W2]|2 (3.32)

tr[χα, Z][Z̄, χ̄α]+ tr[χ̄α, Z][Z̄, χα]

= tr|[W1,W3]|2 + tr|[W2,W3]|2 + tr|[W1,W3]|2 + tr|[W2,W3]|2 (3.33)

tr[χα, χβ][χ̄β , χ̄α] = 2tr|[W1,W2]|2 (3.34)

and thus we can rewrite the full vertex (3.20) as

V [χ, χ̄, Z] = tr|[χα, χ̄
β]|2 + tr|[χα, χβ]|2 + 2tr|[χα, Z]|2 + 2tr|[χ̄α, Z]|2 + tr|[Z, Z̄ ]|2, (3.35)

giving an explicitly SU(2)R × U(1) invariant N = 4 scalar vertex. The kinetic terms are
trivial to work out, and thus we end up with

SN=4
scalar =

1

g2
Y M

∫
d4x
[
2trDµχαDµχ̄

α + 2trDµZDµZ̄ − V [χ, χ̄, Z]
]
. (3.36)

The last thing to do is to take advantage of the fact that all terms are SU(2)R × U(1)
invariant, and also traced. For that reason orbifolding can be performed in terms of SU(2)R
spinors. We will thus use

χα := χkl
α = δa,b−1 ⊗ (χa

α)IJ ,

χ̄α := χ̄α kl = δa,b+1 ⊗ (χ̄α, a−1)IJ , (3.37)

Z := Zkl = δab ⊗ (Φa)IJ ,

(a not summed) for k, l = 1, . . . ,MN ; a, b = 1, . . . ,M ; and I, J = 1, . . . ,N , and where

χa
α =

(
Aa

B̄a

)
, χ̄α, a =

(
Āa

Ba

)
. (3.38)

For example,

χkl
α χ̄

α lm =
(
δa,b−1 ⊗ χa

α

)kl (
δa,b+1 ⊗ χ̄α, a−1

)lm

= δa,b−1δb,c+1 ⊗ χa
αχ̄

α, b−1 = δab ⊗ χa
αχ̄

α, a, (3.39)
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where the b− 1 index on the second field (χ̄) is fixed by the first delta δa,b−1; all the other
multiplications are performed in complete analogy. Obviously

χa ↔ χa,a+1, χ̄a ↔ χ̄a+1,a. (3.40)

And thanks to that, the kinetic term can be rewritten simply as

trDµχαDµχ̄
α = trDµχ

a
αDµχ̄

α, a, (3.41)

where the trace on the left-hand side is over the NM -dimensional covering space, and the
one on the right-hand side is over the N -dimensional space, but it assumes the sum

∑M
a=1.

Above

Dµχ
a
α = ∂µχ

a
α − i(Aa

µχ
a
α − χa

αAa+1
µ ) ≡ ∂µχ

a
α − i[Aµ, χα] a,a+1, (3.42)

Dµχ̄
α, a = ∂µχ̄

α, a − i(Aa+1
µ χ̄α, a − χ̄α, aAa

µ) ≡ ∂µχ̄
α, a − i[Aµ, χ̄

α] a+1,a. (3.43)

Periodicity condition Ya = Ya+M should be kept in mind.
With this knowledge the vertex ingredients (3.35) can be worked out rather easily to be

tr|[χα, χ̄
β ]|2 = tr|χa+1

α χ̄β, a+1 − χ̄β, aχa
α|2,

tr|[χα, χβ ]|2 = tr|χa
αχ

a+1
β − χa

βχ
a+1
α |2,

tr|[χα, Z ]|2 = tr|χa
αΦa+1 − Φaχa

α|2, (3.44)

tr|[ χ̄α, Z ]|2 = tr|χ̄α, aΦa − Φa+1χ̄α, a|2,
tr|[Z, Z̄ ]|2 = tr|[Φa, Φ̄a]|2.

This all yields the bosonic action for the N = 2 quiver gauge theory

SN=2
bosonic =

1

g2
Y M

∫
d4x

(
1

4
trFa

µνFa
µν + 2trDµχ

a
αDµχ̄

α, a + 2trDµΦaDµΦ̄a

− tr|χa+1
α χ̄β, a+1 − χ̄β, aχa

α|2 − tr|χa
αχ

a+1
β − χa

βχ
a+1
α |2

− 2 tr|χa
αΦa+1 − Φaχa

α|2 −2 tr|χ̄α, aΦa − Φa+1χ̄α, a|2 − tr|[Φa, Φ̄a]|2
)
, (3.45)

where the N = 2 QGT field strength is given by

Fa
µν = ∂µAa

ν − ∂νAa
µ − i[Aa

µ,Aa
ν ]. (3.46)

3.3 Double scaling limit and the DLCQ pp-wave

Now we proceed to presenting the procedure of quantising type IIB string theory on
the AdS5 × S5/ZM orbifold, following Mukhi, Rangamani, and E. Verlinde (MRV) [57]1.
The crucial thing here is to keep the number of elements in the discrete group |G| = M as
a free parameter, and then take it to be infinite (together with N) but in a very specific
way, namely keeping the ratio N/M constant. We can immediately see that the radius of

1In fact, some work on reproducing the pp-wave limit for orbifolded string theories had been done before
MRV (e.g. in [58, 59, 60, 61]), however it is the MRV paper where the limit in which we obtain the DLCQ
string spectrum was first noticed.
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AdS5 (and thus S5) will become infinite in this limit, however it turns out that orbifolding
procedure compactifies one of the directions (we will shortly see which one), and the radius
of this compactification will be held finite.

Why do we take such a limit in the first place? The idea is to look at the geometry seen
by a particle moving on a light-like (null) geodesic along a great circle of the S5 sphere.
This has been successfully done for the smooth manifold S5 in [5] in the context of N = 4
SU(N) supersymmetric Yang-Mills theory (see section 1.4), resulting in a pp-wave in their
limit, which is to take N infinitely large. The crucial part there was to keep gsN

J2 finite,
which on the one hand gave the possibility to take a limit crucial for validity of Maldacena’s
conjecture, and on the other hand gave access to an overlapping spectrum of dual gauge
operators and string states; one is then able to compare these spectra and thus test the
AdS/CFT duality.

In the case of orbifold AdS5 × S5/ZM the situation complicates a little bit since now a
difference in choice of a null geodesic arises: depending whether we will take the trajectory
to lie along the singularities of the orbifold or not (as explained in [58]). If we choose it
to lie along the singular locus we will obtain a pp-wave background that has the ZM ALE
singularity as part of its transverse space, and the result will be the orbifolded version of
maximally supersymmetric pp-wave with the original 16 supercharges of AdS5 × S5/ZM .
Avoidance of the singularities, will result in the maximally supesymmetric background with
the supersymmetry enhanced to 32 supercharges, and this is the case we are interested in.
For that reason we expect that our gauge states, even though they will be the N = 2 gauge
states, will form a multiplet of N = 4 states. Furthermore, as mentioned above, we shall
take N and M large, though keeping N/M constant, and therefore also gsN

M , in analogy to
the BMN case2

The metric of AdS5 × S5/ZM can be written in global coordinates (c.f. section 1.1.1)
as

ds2 =R2
[
− cosh2ρ dt2 + dρ2 + sinh2ρ dΩ2

3

+ dα2 + sin2α dθ2 + cos2α
(
dγ2 + cos2γ dχ2 + sin2γ dφ2

)]
, (3.47)

where dΩ2
3 in the first line is the unit 3-sphere. The second one describes the metric for an S5

embedded in a six dimensional space containing a ZM (ALE) singularity. The relationship
with the complex zi coordinates and the angles of the sphere is

z1 = R cosα cos γ eiχ, z2 = R cosα sin γ eiφ, z3 = R sinα eiθ. (3.48)

This implies that with embedding (3.2) χ and φ can be written in terms of usual 2π-periodic
angles as

χ =
η

M
, φ = − η

M
+ ̺,

η ∼ η + 2π, ̺ ∼ ̺+ 2π,

(3.49)

2The appealing power-difference between gsN
M

and gsN
J2 in the denominator stems from the fact that either

we rescale the coupling constant in the former by 1/M during orbifolding, or we rescale N by a factor of
M in the latter (where J ∼ M for long operators), consistently with the properties of orbifold/quiver gauge
correspondence, presented in section 3.1.
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which on the other hand leads us to the conclusion that the C2/ZM ×C orbifold induces
an S5/ZM orbifold given by the identification

χ ∼ χ+
2πm

M
, φ ∼ φ− 2πm

M
+ 2πm (3.50)

where m is some integer.

In order to take the pp-wave limit, we will consider a particle moving along the θ
direction and sitting at ρ = 0 and α = 0. We define

r ≡ ρR, w ≡ αR, y ≡ γR, (3.51)

and introduce the light cone coordinates

x+ ≡ 1

2
(t+ χ), x− ≡ R2

2
(t− χ). (3.52)

Making the proper substitutions in the metric, and also introducing the mass parameter µ
by rescaling x+ → µx+, and x− → 1

µx
−, we arrive at

ds2 = R2

[
− cosh2 r

R

(
µdx+ +

1

µR2
dx−

)2

+
dr2

R2
+ sinh2 r

R
dΩ2

3

+
dw2

R2
+ sin2 w

R
dθ2 + cos2

w

R

(
dy2

R2
+ cos2 y

R

(
µdx+ − 1

µR2
dx−

)2

+ sin2 y

R
dφ2

)]
,

which in the R→ ∞ limit becomes

ds2 = −4dx+dx− − µ2(r2 + w2 + y2)(dx+)2 + dr2 + r2dΩ2
3 + dw2 +w2dθ2 + dy2 + y2dφ2

≡− 4dx+dx− − µ2
8∑

I=1

(xI)2(dx+)2 +

8∑

I=1

(dxI)2, (3.53)

where the transverse coordinates xI were introduced. There is also a Ramond-Ramond flux
in the geometry (3.53)

F+1234 = F+5678 ∝ µ, (3.54)

in the Penrose limit, thus explicitly showing that the transverse SO(8) invariance of the
metric (3.53) is broken into SO(4) × SO(4) subgroup. One should also notice that putting
µ→ 0 reproduces the string theory in the flat background, as intuitively expected.

The fact that the metric (3.53) is exactly the same as (1.151) is merely a consequence
of the maximally supersymmetric background, however there is a very important difference
between this limit and the standard plane-wave limit [5], namely that here the light-like
direction x− is now compact. From (3.50) we see that the light cone coordinates obey

x+ ∼ x+ +
µπ

M
m, x− ∼ x− +

πR2

µM
m. (3.55)
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This combined shift in x+ and x− has to be accompanied by a simultaneous shift in φ ∼
φ−2π/M . For M → ∞ we see that x+ and φ stay unchanged, whereas x− becomes periodic
in this limit, with the period

πR2

µM
≡ 2πR− =⇒ R− =

α′

µ

√
πgs

N

M
= finite. (3.56)

As a consequence, the corresponding light cone momentum 2p+ is quantised in units of
1/R−, namely

2p+ =
k

R−
, k = 1, 2, 3, ... (3.57)

The conclusion is that the Penrose limit of AdS5×S5/ZM withM → ∞ in this particular
way leads to a Discrete Light Cone Quantisation (DLCQ) of the string on a plane wave
background, in which the null direction x− is periodic, around which the strings can wrap,
as we will see very soon.

3.4 DLCQ quantisation of the type IIB plane-wave string

The string (bosonic) σ-model action3 of the metric (3.53) is given in conformal gauge
by

S = − 1

4πα′

∫ +∞

−∞
dτ

∫ 2π

0
dσ
(
−4∂αx

+∂αx− + ∂αx
I∂αxI − µ2(xI)2∂αx

+∂αx+
)
. (3.58)

The equations of motion are derived to be

∂α∂
αx+ = 0, (3.59)

∂α∂
αxI−µ2xI(∂αx

+∂αx+) = 0. (3.60)

The first equation (3.59) allows us to choose the light-cone gauge

x+ = α′p+τ, (3.61)

which implies that we can rewrite the action (3.58) in this gauge (assuming that the fields
vanish at infinite time)

S l.c. = − 1

4πα′

∫∫
dτdσ

(
∂αx

I∂αxI − η2(xI)2
)
, (3.62)

where η := α′p+µ. Then the second equation of motion (3.60) becomes

(∂α∂
α − η2)xI = 0, (3.63)

which can be solved to (when quantising this string sigma model, we start by using the
oscillator notation consistent with section 1.4)

xI(τ, σ) =

√
α′

2

∑

n∈Z i√
ωn

(
αI

ne
−i(ωnτ+knσ) − α̃I

ne
i(ωnτ+knσ)

)
, (3.64)

3We use the conformally invariant metric ηαβ = diag(−1, +1), c.f. (4.1).



58 Quantisation of orbifolded string theory in the pp-wave limit

where

ω2
n = k2

n + η2, (3.65)

and furthermore the boundary condition for the closed string xI(τ, σ) = xI(τ, σ+ 2π) gives
that kn = n, hence

ωn = sgn(n)
√
n2 + η2. (3.66)

Also, introducing the zero modes

αI
0 =

√
α′

2η

(
pI
0 − i

η

α′x
I
0

)
, (3.67)

we can write down the solution of the transverse coordinates

xI(τ, σ) = cos(ητ)xI
0 +

1

η
sin(ητ)α′pI

0

+ i

√
α′

2

∑

n 6=0

1√
ωn

(
αI

ne
−i(ωnτ+nσ) − α̃I

ne
i(ωnτ+nσ)

)
, (3.68)

and hence the corresponding momenta

pI(τ, σ) = ∂τx
I(τ, σ) = cos(ητ)α′pI

0 − sin(ητ)ηxI
0

+

√
α′

2

∑

n 6=0

√
ωn

(
αI

ne
−i(ωnτ+nσ) − α̃I

ne
i(ωnτ+nσ)

)
. (3.69)

The null direction can be expanded in a very similar fashion, although (3.55) tells us that
the boundary condition will now read

x−(τ, σ + 2π) − x−(τ, σ) = (2πR−)m, (3.70)

meaning that strings can wind around this direction m-times.
The light-cone Hamiltonian and the momentum constraints can be derived from the

condition that the energy-momentum tensor vanishes, namely

2α′p+∂τx
− =

1

2

[
(∂τx

I)2 + (∂σx
I)2 + µ2(xI)2

]
, (3.71)

2α′p+∂σx
− = ∂τx

I∂σx
I , (3.72)

where (3.71) yields

H l.c. =
1

α′p+

∫ 2π

0
dσ

[
1

2
(pI)2 + (∂σx

I)2 + µ2(xI)2
]
. (3.73)

The canonical quantisation of the theory is performed by imposition of the commutation
relations (in the classical picture we have Poisson brackets instead)

[
xI(τ, σ),ΠJ (τ, σ′)

]
= iδIJδ(σ − σ′), (3.74)
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where

ΠJ(τ, σ) ≡ pJ(τ, σ)

2πα′ , (3.75)

and which implies that

[αI
n, α

J
m] = [α̃I

n, α̃
J
m] = δn+m,0 δ

IJ , [αI
n, α̃

J
m] = 0. (3.76)

Clearly, now the Hamiltonian can be rewritten in terms of oscillator modes

H l.c. = µ(α† I
0 αI

0) +
1

α′p+

∞∑

n=1

√
n2 + (α′p+µ)2

[
αI
−nα

I
n + α̃I

−nα̃
I
n

]
. (3.77)

Since the states of the string will be in our model characterised by their discrete light-cone
momentum k , and the wrapping number m, the Fock vacuum can be defined such that it
is annihilated by the positive modes

αI
n|k ,m〉 = α̃I

n|k ,m〉 = 0, n > 1. (3.78)

This could be substituted with just one equation when defining

a†n :=





α−n n > 0
α̃−|n| n < 0

α†
0 n = 0

, and an :=





αn n > 0
α̃|n| n < 0

α0 n = 0
, (3.79)

which ought to be properly normalised of course, and then the condition will read

aI
n|k ,m〉 = 0, n > 1. (3.80)

On top of that we have a level matching condition, as a consequence of the reparametrisation
invariance: equation (3.72), together with (3.70) yield that

km =

∞∑

n=1

nNn, (3.81)

where

Nn =
8∑

I=1

aI †
n aI

n. (3.82)

Other string states (than the ground state) are built by acting with transverse oscillators

P∏

j=1

a
Ij
nj |k ,m〉, (3.83)

and the full level matching condition thus reads

P∑

j=1

nj = km, (3.84)
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and the Hamiltonian

2p− = H =

∞∑

n=0

Nn

√
µ2 + g2

QGT

N

M2

(n
k

)2
, (3.85)

hence the spectrum

E =
P∑

j=1

√
µ2 + g2

QGT

N

M2

(nj

k

)2
. (3.86)

When comparing this to the gauge spectrum we will usually put µ = 1, merely for conve-
nience.

3.5 Identification of charges

The R-symmetry group of the parent gauge theory is SO(6) ∼ SU(4), which has a
subgroup SO(4) × U(1), where SO(4) ≃ SU(2)L × SU(2)R. Accordingly to section 3.2.1,
we identify Aa, Ba, and Φ, with z1, z2, and z3 respectively, and note that (Aa, Ba) form
a doublet under SU(2)L, and (Aa, B̄a) - a doublet under SU(2)R. Then we note that
orbifolding breaks the SU(2)L symmetry, so that the R-symmetry of the original N = 4
SYM, that is SO(6), becomes the SU(2)R × U(1) R-symmetry of N = 2 SYM. These are
the facts that will help us to identify the relevant charges for these symmetries.

There are three important quantum numbers that possess their duals on both sides of
the conjecture. The first one is the string energy i∂t, on the string side, and the conformal
dimension operator ∆ on the gauge side. Two others are U(1) charges, and by convention
they are generated by e4πiJ .

The first one is the U(1)R ⊂ SU(2)R charge, and it acts on the Aa and Ba fields as
follows

Aa → eiξAa, Ba → eiξBa, 0 6 ξ < 2π. (3.87)

This U(1)R charge is generated by e4πiJR , where JR corresponds to the Killing vector

JR =
1

2
(J1 + J2) = − i

2
(∂χ + ∂φ), (3.88)

where J1 ≡ i ∂
∂χ and J2 ≡ i ∂

∂φ . Obviously, the fields Aa and Ba of the hypermultiplet both

have fractional charges 1
2 under JR.

Another U(1) charge is the U(1)L ⊂ SU(2)L is not that obvious since SU(2)L is broken
by orbifolding; it rotates the Aa and Ba fields in the opposite directions in the following
way

Aa → eiζAa, Ba → e−iζBa, 0 6 ζ <
2π

M
, (3.89)

and is generated by e4πiJ̃L , of which J̃L corresponds to the Killing vector

J̃L =
1

2
(J1 − J2) = − i

2
(∂χ − ∂φ), (3.90)
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under which the fields Aa and Ba have fractional charge 1
2M and − 1

2M , respectively. For the

sake of convenience we redefine JL ≡ MJ̃L, and summarise all charges and Killing vectors
as

∆ = i∂t, JL = − i

2M
(∂χ − ∂φ), JR = − i

2
(∂χ + ∂φ), (3.91)

which immediately implies that the light-cone momenta are

H = 2p− = i(∂t + ∂χ) = ∆ −MJL − JR, (3.92)

2p+ = i
(∂t − ∂χ)

R2
=

∆ +MJL + JR

2MR−
. (3.93)

As explained in [5], in order to relate gauge theory to the string states we must look for
operators that have both p− and p+ finite. Since R→ ∞, this means that ∆ and MJL +JR

must be both large, while their difference remains finite. Physical gauge invariant operators
should have half-integral values, for JL and JR, which implies that (a) MJL automatically
becomes large when M → ∞, even when JL is kept fixed, and this on the other hand that
(b) JR scales like like M . The scaling dimension we do not have to worry about since BPS
bound implies that ∆ > MJL + JR. This assures that both p− and p+ stay finite in the
plane wave background.

Aa Ba Āa B̄a Φa Φ̄a χa
A χ̄a

B χa
B χ̄a

A ψ̄a
Φ ψ̄a ψa

Φ ψa

∆ 1 1 1 1 1 1 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2
MJL 1/2 -1/2 -1/2 1/2 0 0 1/2 1/2 -1/2 -1/2 0 0 0 0
JR 1/2 1/2 -1/2 -1/2 0 0 0 0 0 0 1/2 1/2 -1/2 -1/2
H 0 1 2 1 1 1 1 1 2 2 1 1 2 2

Table 3.1: The ∆, JL and JR eigenvalues for bosonic and fermionic operators.

The full list of eigenvalues of all the N = 2 fields is summarised in table 3.1. To what
has been said above we should add that the fields Φa should be neutral under the action of
e4πiJ , for they correspond to translation of the original NM D3-branes along the transverseR2 that is unaffected by the orbifold group. Complex conjugation and supersymmetry give
us the remaining charge assignments for the fermions and all the conjugate fields.

3.6 Matching the string states with the gauge operators

By the use of our dictionary in table 3.1 we can now try to match the appropriate string
states to the gauge theory states and compare their spectra. We continue to follow [57],
where they based to some extent on [5], however important subtleties had to be taken into
account, namely the discrete light-cone momenta k , and the discrete winding m.

Let us first construct the ground state with no winding m. Obviously, this will be a
state with H = 0, thus according to (3.92) with

∆ = MJL + JR. (3.94)
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Inserting this into (3.93), and taking advantage of (3.57) gives

2p+ =
∆

kM
· 2p+, (3.95)

hence

∆ = kM. (3.96)

We can now build the ground state gauge operator by looking at table 3.1 and realising
that the only field that can be used in constructing the ground state is the one that has
H = 0 itself, namely the field Aa, which transforms under a local element of the gauge
group U (x)(a) ∈ U(N)(a) as

Aa → U (x)(a)Aa (U (x)(a))−1, (3.97)

and hence

|k ,m = 0〉 =̂
1√
C

tr
(
A1(x)A2(x) · · ·AkM (x)

)
, C = NkM , (3.98)

which, due to (3.4), can be rewritten as

|k ,m = 0〉 =̂
1√
C

tr
(
A1(x)A2(x) · · ·AM (x)

)k
, C = (NM )k . (3.99)

This gives us an idea that k tells us how many times a “string” of N = 2 fields Aa

wraps around a quiver diagram4, as illustrated in figure 3.3. The normalisation constants
are obtained from calculation of the two-point correlation function in the non-interacting
case, where each Aa is contracted with the corresponding object, according to the usual
contraction rules (they will be discussed more extensively in section 3.8.1).

The first excited state has H = 1, and on the string side it is obtained by acting with
the proper excitation aI †

0 . There are eight bosonic zero mode oscillators, corresponding to
the transverse coordinates xI(τ, σ), thus eight states with H = 1 are expected on the gauge
side. Indeed, four of these are obtained by appropriate combinations of the Φa, Φ̄a, Ba, and

B̄a fields, and four others - of combinations of covariant derivatives D(a)
I . The only thing

we have to be careful about is the insertion of these fields in the ground state (3.98), so
that they remain gauge invariant. Also, these fields can be inserted in any of the k strings
of Aa’s, thus we write (dropping the spacetime dependence)

aΦ,†
0 |k ,m = 0〉 =̂

1√CΦ

kM∑

ℓ=1

tr
(
A1A2 · · ·Aℓ−1ΦℓAℓ · · ·AM (A1 · · ·AM )k−1

)
, (3.100)

and in the same manner for Φ̄a, together with

aB,†
0 |k ,m = 0〉 =̂

1√CB

kM∑

ℓ=1

tr
(
A1A2 · · ·AℓBℓAℓ · · ·AM (A1 · · ·AM )k−1

)
, (3.101)

aB̄,†
0 |k ,m = 0〉 =̂

1√
CB̄

kM∑

ℓ=1

tr
(
A1A2 · · ·Aℓ−1B̄ℓAℓ+1 · · ·AM (A1 · · ·AM )k−1

)
, (3.102)

4Or, in other words, how many times these fields wind around in quiver space.
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Figure 3.3: The ground state of N = 2 theory, seen as kM of Aa fields, wrapping around
a quiver (moose) diagram.

where above

CΦ = M ·NkM+1, CB = M ·NkM+2, CB̄ = M ·NkM . (3.103)

The above sum is rather intuitive, since we need to make sure to integrate the operator
over all possible fluctuations of the bosonic particle in the zero mode. In [5] these insertions
were all equivalent to each other, but here the situation is somewhat different, hence the
sum. Also, we will drop the normalisation of operators hereafter. There are also eight
fermionic modes but we will treat fermions as being outside the scope of this thesis, and
focus solely on the bosonic sector.

An important difference between zero winding m and non-zero winding is that in the
latter case the insertion of impurities5 in various position in the Aa-chain produces phases.
As suggested by [57], we can construct

aΦ,†
n |k ,m〉 =

kM∑

ℓ=1

tr
(
A1A2 · · ·Aℓ−1ΦℓAℓ · · ·AkM

)
ω

mℓ
k , (3.104)

where6 ω = e
2πi
M . Other fields can be inserted with complete analogy to the m = 0 case.

With this phase, one can see that due to the level matching condition (3.84) the winding
in (3.98) has to be put to zero, because inserting the phase in the state and integrating

with the sum according to
∑M

ℓ=1 ω
mℓ
k will kill the whole state, exactly like in the case of

(1.159). The fact, however, that we sum over M non-equivalent insertions of Φa in the Aa-
vacuum in (3.104) implies that it does not vanish identically, unlike in the BMN-case. That

5I will refer to these fields as impurities in the ground state, and the excited states will be impured with
these fields. Also, impurities will be sometimes called magnons.

6The overall phase above ω
mℓ

k = e
2πimℓ

kM is a “naive” Fourier transform, taken in analogy to the BMN
paper [5], however we will see soon that this choice (as well as the one in (3.105)) is reproduces the correct
result when comparing to the plane wave ansatz and solving it (see section 3.8).
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is because the insertions are non-equivalent here, (c.f. with the level matching condition
(3.84)). However, this operator is usually referred to as quasi-protected, because it can be
shown [62] that although it is not fully protected (like the one impurity operator in the
BMN limit), all its non-planar corrections vanish, and therefore the spectrum of this state
in string theory does not receive string loop corrections.

The next thing to do would be to include more impurities like for example the two-
insertion case

aΦ,†
n1
aΦ,†

n2
|k ,m〉 =

kM∑

ℓ1=1
ℓ2>ℓ1

tr
(
A1A2 · · ·Aℓ1−1Φℓ1Aℓ1 · · ·Aℓ2−1Φℓ2Aℓ2 · · ·AkM

)
ω

1
k

P

i niℓi ,

(3.105)

where

P=2∑

i=1

ni = km, (3.106)

and in analogy for P > 2. Notice that for m = 0 the overall phase in (3.105) will still
appear, only that then the level matching condition will read

∑
i ni = 0. In the rest of this

thesis I will refer to the N = 2 QGT states constructed in this section as the “N = 2 MRV
states”.

3.7 Rewriting N = 2 MRV states in N = 4 notation

It would certainly be a good news if we should be able to reproduce our N = 2 MRV
states, from section (3.6), from well known N = 4 states, since then one could apply all
the developed tools for the N = 4 theory and make the analysis more advanced, e.g. the
diagonalisation analysis could be perhaps performed more efficiently.

If we consider the orbifolded matrices (3.17) we will learn that the ground state (3.98)
can be expressed as (we will focus on the k = 1 case first, and then give arguments on how
to generalise it to an arbitrary k )

|k = 1,m = 0〉 =̂ tr(XM ), (3.107)

and will reproduce the state (3.98) M times, merely reflecting the fact that the gauge group
has changed from SU(N) to SU(MN). The one impurity state7 can be written as

aZ, †
n |k = 1,m = 0〉 =̂

M∑

ℓ=1

tr(XℓZXM−ℓ). (3.108)

We could keep inserting these fields in full analogy to what we did in section 1.4, however
based on considerations in section 3.1 we can suspect what kind of a problem will occur
here. Since this notation is inherited from the parent N = 4 theory, we cannot expect that
the N = 2 MRV states with m 6= 0 can be simply reproduced in N = 4 notation. The

7Here, in analogy to the N = 2 states we will focus on the case of Φa ↔ Z impurities, although everything
here can be generalised to any other particle with ease.
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reason for that is that the winding states are not present in the parent theory, but originate
as twisted sectors in the orbifold. Therefore, in order to write down the states with m 6= 0 in
N = 4 notation one has to come up with something a little bit more inventive.

The way out of this problem, as suggested in [57], is use the representation of the element
γ ∈ ZM as a matrix of the gauge group (3.12) to the power of m, namely

Um (3.109)

and insert it in the trace of gauge fields8. For example, the one-impurity state can be
written as

aZ, †
n |k = 1,m〉 =̂ tr(UmZXM ), (3.110)

and also, equivalence of these states (up to the factor of M)9 is rather straightforward to
prove. A slightly more difficult case to show is the P-impurity (P > 1) case, since then the
proof requires symmetrisation over the inserted states (see appendix B) but nevertheless
these states do match, thus

aZ, †
n1
aZ, †

n2
|k = 1,m〉 =̂

M∑

ℓ2>ℓ1

M∑

ℓ1=1

tr(Xℓ1Zn1
Xℓ2−ℓ1Zn2

XM−ℓ2)

=
∑

ℓ1,ℓ2

ω
P

i niℓi tr(UmXℓ1ZXℓ2−ℓ1ZXM−ℓ2), (3.111)

where we defined

Zni := Z · Uni , (3.112)

took advantage of (3.16), and kept in mind that

∑

i

ni = m, (3.113)

which can be easily checked by letting ℓi → ℓi + 1. Obviously the number of impurities
(magnons) can be increased in a straightforward manner.

A generalisation to an arbitrary k can be performed by defining the kMN × kMN
matrix

Ũ(γ) := diag
(1, ω 1

k , ω
2
k , ... , ω

kM−1
k

)
, (3.114)

and consistently rescaling the dimension of matrices considered in (3.17) from MN ×MN
to kMN × kMN , so that for example

(X)kl = δa,b−1 ⊗ (Aa)IJ ,
k, l = 1, ..., kMN
a, b = 1, ..., kM
I, J = 1, ...,N

(3.115)

8I will hereafter refer to it as a “twist-matrix”, as it represents the twisted sectors of orbifolded theory.
9The fact that N = 2 MRV states and N = 4 MRV states are equivalent up to the factor of M is merely

a consequence of the correlation function being equal up to the rescaling of the coupling constant (3.5).
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thus tensoring now the N ×N N = 2 fields with a kM × kM unity matrix; all the other
fields are tensored in analogy to (3.37), based on (3.17). Then, the most general state can
be written as

P∏

i=1

aZ, †
ni

|k ,m〉 =̂

kM∑

ℓP>...>ℓ2>ℓ1

tr(Xℓ1Zn1
Xℓ2−ℓ1Zn2

· · ·ZnP
XkM−ℓP )

=

kM∑

ℓP>...>ℓ2>ℓ1

ω
1
k

P

i niℓi tr( ŨkmXℓ1ZXℓ2−ℓ1Z · · ·ZXkM−ℓP )

=
kM∑

ℓP>...>ℓ2>ℓ1

ω
1
k

P

i niℓi tr(UmXℓ1ZXℓ2−ℓ1Z · · ·ZXkM−ℓP ), (3.116)

and as a consistency check we can again rescale ℓi → ℓi + 1, obtaining the same state
multiplied by an overall phase

ω
1
k

P

i niω−m, (3.117)

and by requiring that it is equal to one (so that the whole state does not vanish) we
reproduce the most general level matching condition (3.84). From now on, I will refer to
the N = 2 MRV states in N = 4 notation as the “N = 4 MRV states”.

3.8 Spectrum comparison

In this section we would like to calculate the one-loop anomalous dimension of the MRV
states. The N = 2 MRV states and the N = 4 MRV states ought to be approached
separately, although we expect the results to be the same. In the case of dealing with the
former we need the N = 2 dilatation operator, which we need to derive, and in the case of
N = 4 MRV states we need to deal with the twist matrix Um inside the state, and therefore
we will treat both cases independently below.

3.8.1 N = 2 MRV states

The N = 2 one-loop anomalous dimension matrix

Since the N = 2 quiver gauge theory can be obtained by the action of the discrete groupZM , which gives us the constraint (3.11), we can use it to obtain the dilatation operator for
the N = 2 QGT. The fact that orbifolding does not destroy the structure of the dilatation
operator can be explained by noting that the N = 4 dilatation operator commutes with the
R-symmetry generators of SO(6), and hence with ZM ⊂ SO(6) with respect to which we
perform orbifolding. As the N = 2 dilatation operator thus ought to be invariant under
SU(2)R ×U(1), we will aim to express it in terms of χa

α and Φa fields. This can be achieved
by applying (3.13) to (2.108), i.e. using the same abbreviation as in (3.37)

(χα)kl = δa,b−1 ⊗ (χa
α)IJ

(χ̌α)kl = δa,b+1 ⊗ (χ̌a−1
α )IJ

Zkl = δab ⊗ (Φa)IJ

Žkl = δab ⊗ (Φ̌a)IJ (3.118)
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where we chose Ψ ≡ χ, and ϕ ≡ Z, and then the dilatation operator for N = 2 QGT after
a somewhat tedious computation becomes

DN=2
2 = N−1

(
Dh

2 + Dh̄
2 + Dhh̄

2

)
, (3.119)

where

Dh
2 = 2

M∑

a=1

tr(χa
α χ

a+1
β χ̌a+1

β χ̌a
α) − 2

M∑

a=1

tr(χa
α χ

a+1
β χ̌a+1

α χ̌a
β) − 2

M∑

a=1

tr(χa
αΦa+1χ̌a

αΦ̌a)

+ 2

M∑

a=1

tr(χa
αΦa+1Φ̌a+1χ̌a

α) + 2

M∑

a=1

tr(Φaχa
α χ̌

a
αΦ̌a) − 2

M∑

a=1

tr(Φaχa
α Φ̌a+1χ̌a

α),

Dh̄
2 = 2

M∑

a=1

tr(χ̄α, a−1χ̄β, a−2 ˇ̄χβ, a−2 ˇ̄χα, a−1) − 2

M∑

a=1

tr(χ̄α, a−1χ̄β, a−2 ˇ̄χα, a−2 ˇ̄χβ, a−1)

− 2

M∑

a=1

tr(χ̄α, a−1Φ̄a−1 ˇ̄χα, a−1 ˇ̄Φa) + 2

M∑

a=1

tr(χ̄α, a−1Φ̄a−1 ˇ̄Φa−1 ˇ̄χα, a−1)

+ 2
M∑

a=1

tr(Φ̄aχ̄α, a−1 ˇ̄χα, a−1 ˇ̄Φa) − 2
M∑

a=1

tr(Φ̄aχ̄α, a−1 ˇ̄Φa−1 ˇ̄χα, a−1),

Dhh̄
2 = 2

M∑

a=1

tr(χa
α χ̄

β, a ˇ̄χβ, aχ̌a
α) − 2

M∑

a=1

tr(χa
α χ̄

β, aχ̌a−1
α

ˇ̄χβ, a−1) + 2
M∑

a=1

tr(χ̄β, a−1χa−1
α χ̌a−1

α
ˇ̄χβ, a−1)

− 2

M∑

a=1

tr(χ̄β, a−1χa−1
α

ˇ̄χβ, aχ̌a
α) + 2

M∑

a=1

tr(χa
α Φ̄a+1 ˇ̄Φa+1χ̌a

α) − 2

M∑

a=1

tr(χa
α Φ̄a+1χ̌a

α
ˇ̄Φa)

+ 2

M∑

a=1

tr(Φ̄aχa
α χ̌

a
α
ˇ̄Φa) − 2

M∑

a=1

tr(Φ̄aχa
α

ˇ̄Φa+1χ̌a
α) + 2

M∑

a=1

tr(χ̄α, a−1Φa−1Φ̌a−1 ˇ̄χα, a−1)

− 2
M∑

a=1

tr(χ̄α, a−1Φa−1 ˇ̄χα, a−1Φ̌a) + 2
M∑

a=1

tr(Φaχ̄α, a−1 ˇ̄χα, a−1Φ̌a)

− 2

M∑

a=1

tr(Φaχ̄α, a−1Φ̌a−1 ˇ̄χα, a−1) − 2

M∑

a=1

tr[Φa, Φ̄a][Φ̌a, ˇ̄Φa] −
M∑

a=1

tr(χa
α χ̌

a
β χ̄

α, a−1 ˇ̄χβ, a−1)
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+

M∑

a=1

tr(χa
α χ̌

a
β

ˇ̄χβ, a χ̄α, a) +

M∑

a=1

tr(χ̌a−1
β χa−1

α χ̄α, a−1 ˇ̄χβ, a−1) −
M∑

a=1

tr(χ̌a−1
β χa−1

α
ˇ̄χβ, a χ̄α, a)

−
M∑

a=1

tr(χa
α

ˇ̄χβ, a+1χ̄α, a+1χ̌a
β) −

M∑

a=1

tr( ˇ̄χβ, a χa+1
α χ̄α, a+1χ̌a

β) −
M∑

a=1

tr(χa
α

ˇ̄χβ, a+1χ̌a+1
β χ̄α, a)

−
M∑

a=1

tr( ˇ̄χβ, a χa+1
α χ̌a+1

β χ̄α, a) −
M∑

a=1

tr(χa
α Φ̌a+1χ̄α, a ˇ̄Φa) +

M∑

a=1

tr(χa
α Φ̌a+1 ˇ̄Φa+1χ̄α, a)

+

M∑

a=1

tr(Φ̌aχa
α χ̄

α, a ˇ̄Φa) −
M∑

a=1

tr(Φ̌aχa
α

ˇ̄Φa+1χ̄α, a) −
M∑

a=1

tr(χa
α

ˇ̄Φa+1χ̄α, aΦ̌a)

−
M∑

a=1

tr(χa
α

ˇ̄Φa+1Φ̌a+1χ̄α, a) −
M∑

a=1

tr( ˇ̄Φaχa
α χ̄

α, aΦ̌a) −
M∑

a=1

tr( ˇ̄Φaχa
α Φ̌a+1χ̄α, a)

−
M∑

a=1

tr(Φaχ̌a−1
α Φ̄a−1 ˇ̄χα, a−1) −

M∑

a=1

tr(Φaχ̌a−1
α

ˇ̄χα, a−1Φ̄a) −
M∑

a=1

tr(χ̌a−1
α Φa−1Φ̄a−1 ˇ̄χα, a−1)

−
M∑

a=1

tr(χ̌a−1
α Φa−1 ˇ̄χα, a−1Φ̄a) −

M∑

a=1

tr(Φa ˇ̄χα, aΦ̄a+1χ̌a
α) −

M∑

a=1

tr(Φa ˇ̄χα, aχ̌a
α Φ̄a)

−
M∑

a=1

tr( ˇ̄χα, a Φa+1Φ̄a+1χ̌a
α) −

M∑

a=1

tr( ˇ̄χα, a Φa+1χ̌a
α Φ̄a) −

M∑

a=1

tr[Φa, Φ̌a][Φ̄a, ˇ̄Φa]

−
M∑

a=1

tr[Φa, ˇ̄Φa][Φ̄a, Φ̌a].

One impurity

So what are the one-loop corrections to the conformal dimension of the N = 2 states?
Obviously, the ground states with H = 0 cannot receive any corrections but then what
about the H = 1 states? We have already mentioned that they are quasi-protected, that
is do not receive non-planar corrections, so what are the planar ones? Let us consider the
one impurity state

ON=2
n =

M∑

a=1

Ψa Oa
n, (3.120)

where

Oa
n = tr(A1A2 · · ·Aa−1ΦaAa · · ·AM ), (3.121)

and we impose the one-particle plane-wave ansatz

Ψa = eipa, (3.122)

which represents the propagation of the particle in the chain of “vacuum” particles Aa.
In order to calculate the anomalous dimension of this operator one needs to find out

how does the N = 2 anomalous dimension matrix operator

Γ̂N=2
one
loop

:=
g2
QGTN

16π2
DN=2

2 (3.123)
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act on the state (3.120). Let us notice that the coupling constant in (3.123) is now g2
QGT

instead of g2
YM. That is because the coupling constant has changed accordingly to the

theory we are dealing with; the rest is just the same as in the case of N = 4 SYM. The
contraction rules are now the following (in analogy to 2.70)

〈(χ̄+ a
α )mn(χ− b

β )kl〉 = 〈(χ+ a
α )mn(χ̄− b

β )kl〉 = I0x δαβ δ
ab δmlδnk,

〈(Φ̄+ a)mn(Φ− b)kl〉 = 〈(Φ+ a)mn(Φ̄− b)kl〉 = I0x δ
ab δmlδnk, (3.124)

(α, β = 1, 2, a, b = 1, ... ,M, m, n, k, l = 1, ... ,N),

and all the other ones zero. In fact, the dilatation operator of N = 2 QGT will now be the
same as in the case of N = 4 SYM, only with g2

YM replaced by g2
QGT (c.f. (2.82)), and that

can be understood, for example, by looking at the way (3.119) acts on our one impurity
state (3.120). Obviously, the action on the “vacuum” chain

· · ·AaAa+1 · · · (3.125)

will be zero, however encountering the impured fields we will have e.g.

DN=2
2 ◦ (ΦA)a,a+1 := DN=2

2 ◦ ΦaAa = ΦaAa −AaΦa+1 = [Φ, A]a,a+1, (3.126)

thus we see that the dilatation operator does not “touch” the overall orbifold structure, sim-
ply either permuting two fields (permutation operator) or leaving them invariant (identity
operator). Thus we can write that

Γ̂N=2
one
loop

◦ ON=2
n =

λ′

8π2

M∑

a=1

Ψa

[
2Oa

n −Oa−1
n −Oa+1

n

]

=
λ′

8π2

M∑

a=1

(2Ψa − Ψa−1 − Ψa+1)Oa
n

=
λ′

8π2
(2 − e−ip − eip)ON=2

n , (3.127)

where λ′ = g2
QGTN , and hence the one-loop anomalous dimension of (3.120)

γ =
λ′

2π2
sin2

(p
2

)
. (3.128)

Now we are almost done, we just have to notice that

Oa
n = Oa+M

n , (3.129)

which simply follows from (3.4), and impose that on (3.122), getting

p =
2π

M
× q, (3.130)

where q is some integer. In order to specify this integer we have to realise that the translation
operator

U ≡ eiP, (3.131)
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P being the overall momentum, which translates each site to the right by one site, acting
on (3.104), with k = 1, gives us the momentum constraint

eiP|phys〉 = ω−m|phys〉 = eip|phys〉, (3.132)

where |phys〉 represents a single trace operator, hence

p = −2πm

M
, (3.133)

and since the level matching condition reads

n = m, (3.134)

therefore q is

q = −n = −m. (3.135)

For that reason our one-loop anomalous dimension in the large M limit will be

γ =
λ′

2M2
n2 =

1

2

g2
QGTN

M2
n2, (3.136)

and this agrees with the spectrum (3.86) when the square root is expanded in small g2
QGT.

Two impurities

We now proceed to the states (3.105). Let us denote the full state as

ON=2
n1,n2

=
∑

ℓ2>ℓ1

Ψℓ1,ℓ2 Oℓ1,ℓ2
n1,n2

, (3.137)

where

Oℓ1,ℓ2
n1,n2

= tr(A1 · · ·Aℓ1−1Φℓ1Aℓ1 · · ·Aℓ2−1Φℓ2Aℓ2 · · ·AM ), (3.138)

but this time the plane-wave ansatz will be as follows

Ψℓ1,ℓ2 ≡ µℓ1
1 µ

ℓ2
2 + S(p2, p1)µ

ℓ1
2 µ

ℓ2
1 , µj := eipj (3.139)

construction of which reflects the fact that, if the system is integrable, then the two excited
particles either pass through each other, or exchange momenta with an amplitude given by
the S-matrix S(p2, p1). The scattering process in non-diffractive if the individual momenta
pj are individually conserved, which for the two-magnon case will always be true, due to
the momentum conservation.

The integrability is assumed since the ground state (3.98) is mapped to the spin-chain
ferromagnetic state |phys〉 = | ↓↓ · · · ↓〉, which is merely an SU(2) analogue of (2.83). This
is because for the SU(2) subsector the indices take on two different values, and thus we
identify them with two positions of the spin: up and down. Likewise, for the SO(6) case
we can identify each site of the chain with the spin which can flip in all of the 6 directions
of the S5 sphere embedded in R6, however as far as we are concerned, this model does
not have an analogue in the real world. The situation with the SU(2) case is completely
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different, as the model of spins flipping up and down is very well known from statistical
physics. One more thing that needs to be taken into account is the winding number m,
which on the gauge dual side becomes a quantum number, and therefore the ground state
ought to be correctly rewritten as |phys〉 = |m = 0; ↓↓ · · · ↓〉. Its excitations are viewed as
the ground state impured with excited spins-up (magnons), for example (3.104) is mapped
to |phys〉 = |m; ↓↓ · · · ↓↑↓ · · · ↓〉, and of course integrated over the insertions of the magnon.

This model is known to be integrable due to existence of L − 1 higher charges Qk

which commute with Hamiltonian (alias anomalous dimension matrix (2.113)), and among
themselves, i.e. [Qk,Qℓ] = 0. And so, in the SU(2) sector

Q2 := HXXX1/2
≡

L∑

ℓ=1

(Iℓ,ℓ+1 − Pℓ,ℓ+1) =
1

2

L∑

ℓ=1

(Iℓ,ℓ+1 − ~σℓ · ~σℓ+1) (3.140)

Q3 :=

L∑

ℓ=1

(~σℓ × ~σℓ+1) · ~σℓ+2, (3.141)

and so on (see [63]).
The procedure of solving the Schrödinger equation goes in analogy to the previous case,

however this time we need to consider separately the case when two excitation particles
meet at ℓ1 = ℓ2. The symmetrisation requirement allows us to recast the problem to the
action of D2 on the wave functions Ψℓ1,ℓ2 . Thus the two Schrödinger equations read

γΨℓ1,ℓ2 =
λ′

8π2
(4Ψℓ1,ℓ2 − Ψℓ1−1,ℓ2 − Ψℓ1+1,ℓ2 − Ψℓ1,ℓ2−1 − Ψℓ1,ℓ2+1) , ℓ1 < ℓ2, (3.142)

and

γΨℓ1,ℓ1 =
λ′

8π2
(2Ψℓ1,ℓ1 − Ψℓ1−1,ℓ1 − Ψℓ1,ℓ1+1) , ℓ1 = ℓ2. (3.143)

The first equation (3.142), when plugging in (3.139), yields that

γ =
λ′

2π2

2∑

i=1

sin2
(pi

2

)
, (3.144)

which can be solved by determining the corresponding momenta pi.
The second equation (3.143) should not be solved separately, unlike (3.142), as it will

not yield anything new, but be rather viewed as an “indication” in determining a proper
constraint from (3.142) for ℓ1 = ℓ2; it can be simply obtained by subtracting (3.143) from
(3.142), getting

2Ψℓ1,ℓ1 = Ψℓ1+1,ℓ1 + Ψℓ1,ℓ1−1, (3.145)

which, by the use of (3.139), determines the S-matrix to be

S(p2, p1) = −µ1

µ2
· µ1µ2 − 2µ2 + 1

µ1µ2 − 2µ1 + 1
= S−1(p1, p2). (3.146)

The boundary condition

Oℓ1,M+1
n1,n2

= O1,ℓ1
n1,n2

=⇒ Ψℓ1,M+1 = Ψ1,ℓ1, (3.147)
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yields the equation

µM
2

(
µ1

µ2

)ℓ1−1

+ S(p2, p1) µ
M
1 = 1 + S(p2, p1)

(
µ1

µ2

)ℓ1−1

, (3.148)

and since it should hold for any value for any value of ℓ1 we conclude that

S(p2, p1) = µM
2 = µ−M

1 , (3.149)

which together with (3.146) gives us

S(p2, p1) = µM
2 , S(p1, p2) = µM

1 , (3.150)

and

(µ1µ2)
M = 1 =⇒ p1 + p2 =

2π

M
× q, (3.151)

where again q is some integer, and again it can be determined by considering the translation
condition

U|phys〉 = eiP|phys〉 = ω−m|phys〉 = ei(p1+p2)|phys〉, (3.152)

hence

q = −m. (3.153)

The equations (3.146), (3.150), and (3.152) determine the Bethe equations

ωmµL
1 = −µ1µ2 − 2µ1 + 1

µ1µ2 − 2µ2 + 1
, ωmµL

2 = −µ1µ2 − 2µ2 + 1

µ1µ2 − 2µ1 + 1
, (3.154)

where obviously L = M + 2. They can be solved in the large M limit as

eip1(M+2) = −ω−m ω−m − 2eip1 + 1

ω−m − 2eip2 + 1
=

−2eip1 + 1 + ω−m

2e−ip1 − 1 − ωm
M→∞

≈
−2eip1 + 2

2e−ip1 − 2
, (3.155)

hence

eip1(M+1) = 1 =⇒ p1
M→∞≈

2π

M
× q, (3.156)

which can be reasonably identified with

q = −n1, (3.157)

because if

p1 =
2π

M
(−n1), p2 =

2π

M
(−n2), (3.158)

then (3.158) together with (3.152) reproduce the level matching condition

n1 + n2 = m. (3.159)

The only thing left now is to write down the expression for the anomalous dimension,
which is in M → ∞

γ ∼= 1

2

g2
QGTN

M2
(n2

1 + n2
2), (3.160)

and again agrees with the string spectrum (3.86).
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3.8.2 N = 4 MRV states

Let us leave out one-impurity states (as they are not that interesting on this side, and
not that difficult to calculate either), and let us focus straight away on the N = 4 MRV
states with two impurities

ON=4
n1,n2

=
∑

ℓ2>ℓ1

Ψℓ1,ℓ2 Oℓ1,ℓ2
n1,n2

, (3.161)

where

ℓth1
↓

ℓth2
↓

Oℓ1,ℓ2
n1,n2 = tr [UmXℓ1−1 Z Xℓ2−ℓ1−1 Z XL−ℓ2 ]

(3.162)

and the plane wave ansatz has the same form as previously, that is (3.139). Also, using
(3.16) we can circle around with the twist matrix Um, passing all the particles in the trace,
yielding the same state with an overall phase

ωm(2−L), (3.163)

and by requiring that it is equal to one so that the whole state does not vanish we arrive at

L = 0 modM + 2. (3.164)

Since the fields are the ones of N = 4 SYM (only in the SU(MN) representation) we
can just use the very well known anomalous dimension matrix for N = 4 theory and write
down the Schrödinger equations for (3.162)

γΨℓ1,ℓ2 =
λ′′

8π2
(4Ψℓ1,ℓ2 − Ψℓ1−1,ℓ2 − Ψℓ1+1,ℓ2 − Ψℓ1,ℓ2−1 − Ψℓ1,ℓ2+2) , ℓ2 > ℓ1 + 1 (3.165)

where10 λ′′ := g2
YMNM , and

γΨℓ1,ℓ1+1 =
λ′′

8π2
(2Ψℓ1,ℓ1+1 − Ψℓ1−1,ℓ1+1 − Ψℓ1,ℓ1+2) , ℓ2 = ℓ1 + 1. (3.166)

Then, like previously, (3.165) yields

γ =
λ′′

2π2

2∑

i=1

sin2
(pi

2

)
=

λ′′

8π2

2∑

i=1

1

u2
i + 1/4

, (3.167)

where for future reference we introduced the so-called Bethe roots

uj :=
1

2
cot
(pj

2

)
, (3.168)

and then the analogy of the equation (3.145) will read

2Ψℓ1,ℓ1+1 = Ψℓ1,ℓ1 + Ψℓ1+1,ℓ1+1, (3.169)

10I want to emphasise again that we are dealing with fields in the SU(MN) representation. For that
reason the action of the dilatation operator will now produce a factor of MN instead of N when contracting
two, nearest-neighbor colour deltas δab .
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implying that

S(p2, p1) = −µ1µ2 − 2µ2 + 1

µ1µ2 − 2µ1 + 1
= S−1(p1, p2), (3.170)

and since

eipj =
cot(pj/2) + i

cot(pj/2) − i
=
uj + i/2

uj − i/2
, (3.171)

then

S(p2, p1) =
u2 − u1 + i

u2 − u1 − i
. (3.172)

So far we have proceeded with close similarity to the N = 2 notation case, however
now let us notice an important subtlety in this case, namely when a dilatation operator
encounters the twist matrix between the fields it acts on. Obviously in the case of

· · ·XUmX · · · (3.173)

the permutation and the identity operators will give the same result when acting on the
sequence above, making the anomalous dimension matrix vanish at this site, however the
situation becomes more interesting when we have for example

· · ·Z UmX · · · (3.174)

since then

I ◦ (Z UmX) = Z UmX (3.175)

P ◦ (Z UmX) = ω−m (XUmZ), (3.176)

therefore the dilatation matrix will be different than in the case of m = 0. However, the way
to deal with this is to impose the proper boundary conditions on the basis in the following
way. If we associate a vacuum particle X at site i with a down-spin site | ↓ 〉ith , and the
excitation particle Z at site i with an up-spin | ↑ 〉ith , then the proper boundary conditions
are defined in the following way

| ↓ 〉(L+1)th = | ↓ 〉1st ,

| ↑ 〉(L+1)th = ω−m | ↑ 〉1st .
(3.177)

Then the dilatation operator becomes exactly the same as in the N = 4 case.
A completely equivalent way of looking at this is to reproduce the Schrödinger equation

for Oℓ1,L
n1,n2, namely

γOℓ1,L
n1,n2

=
λ′′

8π2

[
4Oℓ1,L

n1,n2
−Oℓ1−1,L

n1,n2
−Oℓ1+1,L

n1,n2
−Oℓ1,L−1

n1,n2
−Oℓ1,L+1

n1,n2

]
, (3.178)

but then

Oℓ1,L+1
n1,n2

= ω−m tr
[
UmZXℓ1−2ZXL−ℓ1

]
= ω−mO1,ℓ1

n1,n2
. (3.179)
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Imposing this boundary condition on (3.139) gives

µL
2

(
µ1

µ2

)ℓ1−1

+ S(p2, p1) µ
L
1 = ω−m

[
1 + S(p2, p1)

(
µ1

µ2

)ℓ1−1
]
, (3.180)

hence the quantisation of momenta

(µ1µ2)
L = ω−2m, (3.181)

and

S(p1, p2) = µL
1ω

m =⇒ S(p1, p2)S(p2, p1) = (µ1µ2)
Lω2m = 1. (3.182)

Equations (3.172) and (3.182) yield

ωm

(
ui + i/2

ui − i/2

)L

=
P=2∏

j=1
j 6=i

ui − uj + i

ui − uj − i
, (3.183)

together with the translation condition

ωm

P=2∏

i=1

(
ui + i/2

ui − i/2

)
= 1, (3.184)

giving the full set of Bethe equations. Above, P is the number of magnons (and here it is
specifically equal to 2).

Finally, a few remarks. First of all, let us notice that in spite of difference between two
approaches in calculating the Bethe equations for the MRV states - in the N = 2 notation
case, and in the N = 4 notation case - the result (3.183) is exactly the same as the result
(3.154), only keeping in mind that

µj ≡
uj + i/2

uj − i/2
, (3.185)

and it leads to the same solution

γ ∼= 1

2

g2
YMNM

M2
(n2

1 + n2
2), (3.186)

which is equal to (3.160), as (3.6) implies that λ′ = λ′′.
Secondly, although the comparison above has been done for k = 1, it can be easily

generalised for k > 1, by simply rescaling M → kM in both, the N = 2 notation case
and the N = 4 notation case. One can then convince oneself that the most general free
spectrum (3.86) can be reproduced.

Another thing is that one can notice that the same result as (3.160), and (3.186) could

have been obtained by considering the phases ω
1
k

P

i niℓi as in (3.105) instead of the plane-
wave ansatz. The reason for that is that these phases are a naive Fourier tansform of the
trace operators and merely reproduce the non-interactive spectrum of magnons. As long
as we consider low order in perturbation theory, or a very small number of magnons, the
assumption that they do not interact is reasonable. However, as soon as we add many
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magnons to the trace, or simply calculate higher loops, the phases in (3.105) will become
useless for the comparison of the spectrum. For that very reason one uses the Bethe ansatz
(3.139), as it allows for a relatively straightforward generalisation to a perturbative asymp-
totic Bethe ansatz (PABA), making the more precise calculation of the spectrum possible
[64]. An explicit application of PABA to the case considered in this thesis, meaning type
IIB string theory on AdS5×S5/ZM and the dual N = 2 quiver gauge side, has been studied
in [65]. There, the explicit three-loop spectrum comparison has been performed and the
disagreement at three lopps has been found, exactly like in the case of parent N = 4 SYM
theory.

At the end it is also worth pointing out that another, interesting limit, alternative to the
one in [57], was found by Bertolini, de Boer, Harmark, Imeroni, and Obers (HIOBB) in [66].
It was shown there that the IIB string theory on AdS5 × S5/ZM in the new pp-wave limit
with space-like circle can be quantised, and its states can be matched to the N = 2 QGT
states. The most important difference between the HIOBB limit and the MRV limit is that
in the former case the string spectrum acquires an extra, winding zero-mode, proportional
to the string winding number m, and coming from the space-like circles of the pp-wave.
However, while the string theory in this limit does not become much more complicated
than in the case of MRV limit, the calculations on the gauge side are very difficult since
now there are two fields building a ground state (say, Aa and Ba), making the field theory
computations rather involved. This is also the reason why the gauge spectrum calculations
in [66] have been perfomed for a modest (when compared to the MRV case) set of gauge
states (c.f. [66] and [62, 65]).

Summary

In this chapter we have introduced the procedure of orbifolding the AdS/CFT duality
on both sides. The type IIB string theory on AdS5 × S5 after orbifolding by the discrete
group G = ZM now lives on the AdS5 × S5/ZM orbifold, where G acts only on the S5

through embedding (3.2), thereby breaking its isometry group to SU(2)R ×U(1). Its gauge
dual side is the N = 2 quiver gauge theory with the corresponding R-symmetry.

Basing on this knowledge, we have quantised the string theory AdS5 × S5/ZM in the
pp-wave limit, proceeding in full analogy to the N = 4 case, considered in section 1.4.
The difference in our case, however, is that now the null direction becomes compactified,
causing the strings to wrap m times around it. The global symmetry arguments have led
to establishment of the dictionary between the string states and the quiver gauge invariant
operators; both of them possess an additional quantum number, being the string winding m.
On top of that, we have shown that the quiver N = 2 MRV gauge states can be rewritten
in an N = 4 notation without any loss of information about the original N = 2 state.

Having established the dictionary of orbifolded Maldacena’s conjecture, we have also
orbifolded the N = 4 one-loop dilatation operator to the N = 2 one-loop dilatation operator
in the explicit SU(2)R ×U(1) invariant form, and acted with it on the N = 2 MRV states.
Furthermore, we have shown that action of the original N = 4 one-loop dilatation operator
on the N = 4 MRV states gives the same Bethe equations as in the N = 2 case, at least up
to two impurities in the ground state, yielding the same one-loop anomalous dimension as
the one predicted on the dual string side.

It is rather intuitive that the situation gets more interesting when increasing the level of
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magnonisation, as then we will not be able to neglect the interactions between the magnons.
Fortunately, it turns out that integrability (“obtained” by mapping these states to the
Hamiltonian of an integrable spin chain) implies that, for larger number of magnons than
two, Bethe’s equations will have exactly the same form as (3.183) and (3.184) only for
P > 2. Unfortunalety, solving them is another matter and a fully different approach has to
be undertaken. We will deal with this problem in the next chapter.

It is also worth pointing out that the full set of one-loop Bethe equations for the ZM

orbifold of N = 4 SYM has been worked out by symmetry arguments by Beisert and Robain
in [67].
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Chapter 4

Semiclassical spinning strings in
AdS5 × S5/ZM

Although quantisation of string theory in the pp-wave limit is a very nice way to test
the AdS/CFT correspondence, it is most certainly a very specific one as well. As of today,
it is still unknown how to quantise the string theory on AdS5 × S5 in the fully curved
background, and it is a very bad news since this would provide us with an extremely serious
test of the AdS/CFT duality. It has been noticed, however, that one could find classical
solutions of the full string theory on AdS5 × S5 in curved space, and by taking the limit
of large spins one can show that quantum effects are suppressed, and already the classical
solution yields a good approximation for the full energy [68, 69, 70]. Furthermore, Frolov and
Tseytlin argued in [6] that many of these spinning string solutions have an expansion which
is in qualitative agreement with the loop expansion of gauge theory, and their conjecture
has been confirmed in many cases since, for example in [73, 74, 76]. In this chapter, we will
follow Ideguchi [75] in examining how do the semclassical solutions look for the orbifolded
string theory on AdS5 × S5, namely on AdS5 × S5/ZM .

4.1 Strings rotating in Rt × S5/ZM

4.1.1 Geometry and symmetries

We will start with the Polyakov action for bosonic string theory

S = − 1

4πα′

∫∫
dτdσ ηαβ∂αX

µ∂βX
νGµν ,

α, β = 1, 2
µ, ν = 1, ..., 10

(4.1)

where we specify ηαβ = diag(−1, 1) to be a conformally flat world-sheet metric, bosonic
fields Xµ are functions of world sheet time and space Xµ = Xµ(τ, σ), and Gµν is the
spacetime metric. It is worth noticing that this action yields the following equations of
motion

ηαβ∂α∂βX
µ = 0, (4.2)

and using the “dot-prime” notation, namely

Ẋ := ∂τX, (4.3)

X ′ := ∂σX, (4.4)

79
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one can calculate the variation with respect to the world-sheet metric, demanding that they
hold regardless of the way we rescale it, obtaining (c.f. (1.30))

∂αX · ∂βX − 1

2
ηαβ (−Ẋ2 +X ′2) = 0, (4.5)

which gives to independent equations

Ẋ ·X ′ = 0, (4.6)

Ẋ2 +X ′2 = 0. (4.7)

These two equations reflect the fact that the conformal invariance of the world-sheet requires
that the total 2-dimensional energy momentum tensor vanishes.

The bosonic action (4.1) for AdS5 × S5 ought to manifest its bosonic isometry group1

SO(2, 4) × SO(6), hence

SAdS5×S5 = − R2

4πα′

∫∫
dτdσ

[
G(AdS5)

mn ∂αX
m∂αXn +G(S5)

mn ∂αY
m∂αY n

]
, (4.8)

where we split Xµ = {Xm, Y n} for m,n = 1, 2, ..., 5, and where R2 =
√

4πgsα′2N . The
metric we rewrite in global coordinates, exactly like in (3.47)

ds2AdS5
= dρ2 − cosh2ρ dt2 + sinh2ρ

(
dψ2 + cos2ψ dϕ2 + sin2ψ dξ2

)

ds2
S5 = dα2 + sin2α dθ2 + cos2α

(
dγ2 + cos2γ dχ2 + sin2γ dφ2

)
. (4.9)

Obviously, this metric arises from a parametrisation of the five sphere

x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6 = 1, (4.10)

and the anti-de Sitter space

−y2
0 + y2

1 + y2
2 + y2

3 + y2
4 − y2

5 = −1, (4.11)

by defining2

y0 = cosh ρ sin t x1 = cosα cos γ cosχ
y1 = sinh ρ cosψ cosϕ x2 = cosα cos γ sinχ
y2 = sinh ρ cosψ sinϕ x3 = cosα sin γ cosφ
y3 = sinh ρ sinψ cos ξ x4 = cosα sin γ sinφ
y4 = sinh ρ sinψ sin ξ x5 = sinα cos θ
y5 = cosh ρ cos t x6 = sinα sin θ,

(4.12)

and thus the embedding coordinates are given by

Xm = (ρ, ψ, ϕ, ξ, t), Y m = (α, γ, χ, φ, θ).

where Xm = Xm(τ, σ) and Y m = Y m(τ, σ).

1Due to the fact that we have already discussed orbifolding extensively in chapter (3) we will first describe
the setup for spinning strings in AdS5 ×S

5 and then act with ZM . We are allowed to do this provided that
we keep in mind all the consequences of orbifolding.

2Note that we rescaled the metric by 1

R2 , which is exactly like we did a few times in section 1.1.
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The on-shell generators of conserved charges are

SPQ =

√
λ

2π

∫ 2π

0
dσ (yP ẏQ − yQ ẏP ) = −SQP ≡

√
λSPQ, (4.13)

JMN =

√
λ

2π

∫ 2π

0
dσ (xM ẋN − xN ẋM ) = −JNM ≡

√
λJMN , (4.14)

where P,Q = {0, 1, 2, 3, 4, 5}, and M,N = {1, 2, 3, 4, 5, 6}, and where
√
λ = R2/α′. The

fact that they are antisymmetric tells us that there are 15 + 15 of them, and their Cartan
subalgebra consists of 3+3 generators of SO(2, 4)×SO(6), corresponding to the 3+3 linear
isometries of the AdS5 × S5 metric (4.9), that is: the translations in AdS time t

S50 ≡ E =
√
λ E , (4.15)

translations in the AdS two angles ϕ and ξ

S1 ≡ S12 =
√
λS1, S2 ≡ S34 =

√
λS2, (4.16)

and the rotations in three angles of S5, namely χ, φ, and θ

J1 ≡ J12 =
√
λJ1, J2 ≡ J34 =

√
λJ2, J3 ≡ J56 =

√
λJ3. (4.17)

These conserved charges are (target-space) energy E, two spins S1, and S2, as well as three
angular momenta J1, J2, J3, and in the full quantum theory these should take quantised
values. Therefore, for a solution to have a consistent, semiclassical approximation, that is
to correspond to an eigenstate of the Hamiltonian which carries these quantum numbers, all
other non-Cartan (non-commuting) components of the symmetry generators (4.13), (4.14)
should vanish [69].

4.1.2 Semiclassical solutions

We are interested in closed strings located in the centre of AdS5, with the time coordinate
proportional to the world-sheet time τ , and rotating in S5 with three different spins, and
for that we make the following ansatz for the embedding field components

t = κτ, ρ = 0 = ψ = ϕ = ξ, α = α0, γ = γ0,
χ = w1τ +m1σ, φ = w2τ +m2σ, θ = w3τ +m3σ,

(4.18)

where α0 and γ0 are constants. Also, the closed string periodicity condition

xM (τ, σ) = xM (τ, σ + 2π) (4.19)

requires that mi, which count the number of times the string wraps around S5 in one of the
three directions χ, φ, or θ, are integer.

Here it is a good point to introduce the orbifolding procedure; its consequences are
practically the same as in chapter 3. First of all we need to go into the covering space
and thus rescale N → NM . Then, the global metric will still be (4.9), but the (dropped)
radius-squared will read R2 =

√
4πgsα′2NM .
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Secondly, we remember that the embedding (3.2) implies the identification (3.50). This,
simultaneously imposed with the periodicity condition (4.19), influences our ansatz in (4.18)
such that (see [71])

m1 = m̃1 +
m

M
, m2 = m̃2 −

m

M
, m3 = m̃3, (4.20)

(m = 0, 1, 2, ...,M − 1), where we first changed mi → m̃i in (4.18), and then defined these
angles again

χ = w1τ +m1σ, φ = w2τ +m2σ, θ = w3τ +m3σ,

where the relation between mi and m̃i is given by (4.20).
Another consequence of orbifolding is that in orbifolded theory we have to restrict string

states to states that are invariant under the orbifolding action e4πJ̃L = e2πi(J1−J2) (c.f.
section 3.5), hence the relation between two angular momenta

J1 − J2 = 0 modM. (4.21)

It is very important to notice the following. String theories living on S5 sphere obey
(bosonic) symmetry SO(6), and hence three commuting Cartan currents J1, J2, and J3.
The action of ZM breaks this symmetry to SU(2) × U(1), which we know has two Cartan
generators. On the other hand, the movement of semiclassical strings spinning in S5/ZM

will still be described by three angular momenta Ji, therefore the equation (4.21) relates
two of these to each other. The fact that this relation is ambiguous merely reflects the
boundary condition (3.4) of U(N)M .

With configuration (4.18) the embedding coordinates become

x1 = cosα0 cos γ0 cos(w1τ +m1σ)
x2 = cosα0 cos γ0 sin(w1τ +m1σ)

y0 = sin(κτ) x3 = cosα0 sin γ0 cos(w2τ +m2σ)
y1 = y2 = y3 = y4 = 0 x4 = cosα0 sin γ0 sin(w2τ +m2σ)

y5 = cos(κτ) x5 = sinα0 cos(w3τ +m3σ)
x6 = sinα0 sin(w3τ +m3σ),

(4.22)

and the σ-model action for semiclassical strings on AdS5 × S5/ZM will turn into

S = − R2

4πα′

∫∫
dτdσ

[
LAdS5

+ LS5/ZM

]
, (4.23)

where R2 =
√

4πgsα′2NM , and

LAdS5
= ηPQ∂αyP ∂

αyQ + Λ̃
(
ηPQyP yQ + 1

)
, P,Q = {0, 1, 2, 3, 4, 5}

LS5/ZM
= ∂αxM∂

αxM + Λ(xMxM − 1) . M = 1, 2, 3, 4, 5, 6

Above, ηPQ = ηPQ = diag(−1,+1,+1,+1,+1,−1), and Λ and Λ̃ are Lagrange multipliers
which are inserted in (4.23) by hand in order to reproduce (4.10) and (4.11) through the
equations of motion. The equations of motion for the AdS5 part are

(∂2 − Λ̃)yP = 0, (4.24)

ηPQ yP yQ = −1, (4.25)
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among which (4.24) yields that

Λ̃ = ηPQ∂αyP ∂
αyQ = κ2, (4.26)

and (4.25) reproduces (4.11). The S5/ZM part gives the following equations of motion

(∂2 − Λ)xM = 0, (4.27)

xMxM = 1. (4.28)

Again, (4.28) trivially satisfies (4.10), and (4.27) can be most easily solved by considering
complex coordinates

(∂2 − Λ)zI = 0, I = 1, 2, 3, (4.29)

where

z1 ≡ x1 + ix2, z2 ≡ x3 + ix4, z3 ≡ x5 + ix6,

which are nothing but (3.48), rescaled by R in accordance with (4.9). Then, using (4.18)
we obtain

Λ = ∂αxM ∂αxM = w2
1 −m2

1 = w2
2 −m2

2 = w2
3 −m2

3 ≡ −ν2. (4.30)

On top of that the conformal invariance of the world-sheet requires that the total 2-
dimensional energy-momentum tensor vanishes (that is in full analogy to (4.6) and (4.7)),
namely

ηPQ(ẏP ẏQ + y′P y
′
Q) + ẋM ẋM + x′Mx

′
M = 0, (4.31)

and

ηPQẏP y
′
Q + ẋMx

′
M = 0. (4.32)

Of these conditions, (4.31), together with (4.18), gives that

−κ2 + (w2
1 +m2

1) sin2α0 cos2γ0 + (w2
2 +m2

2) sin2α0 sin2γ0 + (w2
3 +m2

3) cos2α0 = 0, (4.33)

and (4.32) that

w1m1 sin2α0 cos2γ0 + w2m2 sin2α0 sin2γ0 + w3m3 cos2α0 = 0. (4.34)

This yields all the (semclassical) dynamics for a string moving in AdS5×S5/ZM we need
in order to solve the relevant charges as functions of the quantities introduced in (4.18).
Before we proceed, however, let us now stop for a moment and say something about the
integrability of our model.
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R t
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3 R t

8t τ

t

Figure 4.1: By considering AdS5 space (which can be viewed as a bulk cylinder with bound-
ary Rt×S3) with ρ = ψ = ϕ = ξ = 0, and taking conformal symmetry under consideration,
we come to its very simple representation as a one-dimensional Rt, with time coordinate
proportional to the world-sheet time t ∝ τ .

4.1.3 Remark on integrability

The equations of motion for the σ-model (4.23) and ansatz (4.18), together with con-
formal constraints (4.31) and (4.32), can be rewritten with the help of new coordinates

σ± :=
1

2
(τ ± σ), ∂± = ∂τ ± ∂σ, (4.35)

as

∂+∂−xM − (∂+xN∂−xN )xM = 0, ∂+∂−t = 0, (4.36)

(∂+xM )2 = (∂+t)
2, (∂−xM )2 = (∂−t)2. (4.37)

The equation of motion ∂+∂−t can be solved most generally as

t = f+(τ + σ) + f−(τ − σ), (4.38)

Also, the equations (4.36) and (4.37) are invariant under conformal transformation σ± →
ξ±(σ±), where ξ± is an arbitrary function, so given a solution xM (σ+, σ−) one can always
find a new solution x̃M (σ+, σ−) = xM (ξ+(σ+), ξ−(σ−)). For that reason we can rescale
(∂+xM )(∂+xM ) and (∂−xM )(∂−xM ) such that they are equal to some constant, which is
equivalent to setting

f+(τ + σ) =
1

2
κ(τ − σ), f−(τ − σ) =

1

2
κ(τ − σ), κ = const. (4.39)

Hence

t = κτ. (4.40)

We therefore see that this time-ansatz in (4.18) is a straightforward consequence of restrict-
ing the motion to the Rt part of AdS, together with conformal residual symmetry of the
string world-sheet (see figure 4.1).
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To describe the S5 part better, let us introduce an O(6) vector

~X =




x1

x2

x3

x4

x5

x6



, (4.41)

and define a matrix

gMN := eiπPMN , (4.42)

where

P = ~X · ~Xt, or PMN = xMxN (4.43)

is a projector, due to xMxM = 1, and hence

gMN = 1 − 2PMN . (4.44)

Since g ∈ O(6), it is orthogonal

(g)MN (gt)NP = δMP ,

but also symmetric

(g)MN = (gt)MN ,

hence

(gt)MN = (g−1)MN . (4.45)

Then we define conserved currents in O(6)

j(1)α ≡ g−1∂αg, ∂αj(1)α = 0, (4.46)

which in terms of their components are

( j(1)α )MN = 2(xM∂αxN − xN∂αxM ). (4.47)

The conserved current also satisfies the flatness condition, which in terms of σ± coordi-
nates can be written as

∂+ j
(1)
− − ∂− j

(1)
+ + [ j

(1)
+ , j

(1)
− ] = 0. (4.48)

Then, defining

Dα ≡ ∂α + j(1)α

and having

[Dα, j(1)α ] = 0, (4.49)
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one can construct an infinite “tower” of conserved non-local currents j
(n)
α by the following

iterative procedure

j(n)
α = ǫαβ ∂

βχ(n), j(n+1)
α = Dαχ

(n), χ(0) = 1. (4.50)

And then we get an infinite set of conserved charges

Q(n) ≡
∫ 2π

0
dσ j(n)

τ (τ, σ), (4.51)

where we can see that for example that (c.f. (4.14))

Q
(1)
MN = 2

∫ 2π

0
dσ(xM∂τxN − xN∂τxM ) = 4πJMN . (4.52)

The infinite set of non-local, conserved Nöther charges in (4.51) is a sign of integrability of
semiclassical string theory on Rt × S5 [72]. We also see that since the main implication of
orbifolding in this model is the identification (4.20), the orbifolding procedure is “absorbed”
in coordinates xM . The infinte set of charges (4.51) can thus be always reproduced with the
new coordinates xM , and therefore we expect that the integrability of this model cannot be
spoiled by ZM .

4.1.4 Semiclassical solutions continued

Now we would like to “compress” all the results into the expressions for conserved
charges. Since we specify the motion of strings to Rt × S5/ZM we expect that the only
non-vanishing conserved charges will be the energy E, and three angular momenta JI ,
I = 1, 2, 3, and indeed using (4.13 - 4.17) one can convince oneself that for our ansatz (4.18)
two spins of AdS5 will vanish, leaving all the other charges to be

E = κ,

J1 = sin2α0 cos2γ0 w1,

J2 = sin2α0 sin2γ0w2, (4.53)

J3 = cos2α0 w3,

with the help of which (and (4.30)) we can rewrite (4.33) and (4.34) as

E2 = 2w2
1 sin2α0 cos2γ0 + 2w2

2 sin2α0 sin2γ0 + 2w2
3 cos2α0 − ν2

= 2

3∑

I=1

wIJI − ν2 = 2

3∑

I=1

√
m2

I + ν2 JI − ν2, (4.54)

and

m1J1 +m2J2 +m3J3 = 0, (4.55)

respectively. On top of that, (4.30) itself can be rewritten as

3∑

I=1

JI√
m2

I + ν2
= 1. (4.56)
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Now the aim is to express the energy E in terms of angular momenta JI and winding
numbers mI . In order to do this we first need to solve (4.56) in terms of ν, determining
ν as a function of JI and mI , and then substitute the result into (4.54). The conditions
(4.55) will be imposed at the very end, implying that for a given angular momenta JI the
solution exists only for a special choice of the integers mI .

Thus we first solve (4.56). Assuming that ν2 > m2
I , one can expand the series (4.56) in

m2
I/ν

2 < 1, with the total angular momentum

J ≡
3∑

I=1

JI , (4.57)

as

|ν| =

3∑

I=1

JI√
1 +

m2
I

ν2

= J
(

1 − 1

2ν2

3∑

I=1

m2
I

JI

J +
3

8ν4

3∑

I=1

m4
I

JI

J − . . .

)
,

and then eliminate ν from the right-hand side of the expansion, replacing it with J , ob-
taining

|ν| = J


1 − 1

2J 2

3∑

I=1

m2
I
JI

J +
3

8J 4

3∑

I=1

m4
I
JI

J − 1

2J 4

(
3∑

I=1

m2
I
JI

J

)2

+ . . .


 . (4.58)

Furthermore, since the energy (4.54) can also be expanded in m2
I/ν

2 < 1 as

E2 = 2

3∑

I=1

√
m2

I + ν2 JI − ν2

= 2|ν|J
(

1 +
1

2ν2

3∑

I=1

m2
I

JI

J − 1

8ν4

3∑

I=1

m4
I

JI

J + . . .

)
− ν2, (4.59)

we can again get rid of |ν| by expressing it in terms of J using (4.58), getting

E2 = J 2


1 +

1

J 2

3∑

I=1

m2
I

JI

J − 1

4J 4

3∑

I=1

m4
I

JI

J +
1

4J 4

(
3∑

I=1

m2
I

JI

J

)2

+ . . .


 ,

or

E = J
[
1 +

1

2J 2

3∑

I=1

m2
I

JI

J − 1

8J 4

3∑

I=1

m4
I

JI

J + . . .

]
, (4.60)

where the term ∼
(∑3

I=1m
2
I
JI
J

)2
has vanished. As we are interested, however, in the first

order expansion, the expression we will try to solve will be

E = J +
1

2J
3∑

I=1

m2
I

JI

J + . . . , (4.61)
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with the help of the constraint

3∑

I=1

mIJI = 0, (4.62)

where we take both, E and J to be large such that

E − J = fixed, and
1

J 2
=
g2
QGTN

L2
∼
g2
QGTN

M2
= fixed, (4.63)

and then expand in small J−2, thus exactly like in the case of (3.86). Alternatively, using
(4.15) and (4.17), together with L ≡

√
λJ ,

E = L+
λ

2L2

3∑

I=1

m2
IJI + . . . ,

3∑

I=1

mIJI = 0.

(4.64)

4.1.5 Specification to Rt × S3/ZM

Now we will specify the energy solutions to SU(2) subsector, namely consider strings
spinning in Rt×S3/ZM , by returning to the doublets defined in (2.106). Let us first discuss
the doublet consisting of the particles considered in section 3.8

φSU(2)Z
α =

(
X

Z

)
.

On the field theory side, by an argument of classical scaling dimensions and charges, the
conformal operators composed of these doublets should have J1 X’s, and J3 Z’s. On the
string dual side we thus expect J1,J3 6= 0, and J2 = 0. Since we will be viewing these
states as built of X particles, and “magnonised” with Z’s, then obviously J1 > J3, but also
J3 > 0. The anomalous dimension, together with the constraint (4.55), will now read

γ̃ ≡ E − J =
1

2J 2
(m2

1J1 +m2
3J3), (4.65)

m1J1 +m3J3 = 0. (4.66)

Equation (4.66) tell us that since J1,J3 > 0, then sgn(m1m3) 6 0. Then, knowing that
J1 + J3 = J , we obtain from (4.66)

J1 =
m3

m3 −m1
J , J3 =

m1

m1 −m3
J ,

and insert in (4.65) to get

γ̃SU(2)Z
= − 1

2J m1m3,

which has to be non-negative. Thus if γ =
√
λ γ̃, then

γSU(2)Z
= E − L = − λ

2L
m1m3. (4.67)
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Finally, (4.20) yields that

γSU(2)Z
=

λ

2L

(
m̃1 +

m

M

)
m̃3, (4.68)

where we let m̃3 → −m̃3, so that γ > 0.
In order to calculate now the energy correction for the SU(2)R doublet-case

χSU(2)R
α =

(
X

Ȳ

)

we proceed in full analogy to the previous case. Gauge dual states have J1 X’s, and |J3|
Ȳ ’s, hence on the string side we expect J1,J2 6= 0, and J3 = 0. Furthermore J1 > 0,
J2 < 0, hence sgn(m1m2) > 0, and for that reason

γ =
λ

2L
m1m2.

Then, using (4.20) we get

γSU(2)R
=

λ

2L

(
m̃1 +

m

M

)(
m̃2 −

m

M

)
. (4.69)

Finally, the SU(2)L-case, that is when gauge states are composed of the SU(2)L doublets

ψSU(2)L
α =

(
X

Y

)
,

and having thus J1 X’s, and J2 Y ’s. Since J1 > J2 > 0, and J3 = 0, the winding momenta
fulfil sgn(m1m2) 6 0, and

γSU(2)L
=

λ

2L

(
m̃1 +

m

M

)(
m̃2 +

m

M

)
, (4.70)

where we let m̃2 → −m̃2. This concludes the lowest order (∼ g2) calculation of circular
2-spin semiclassical energy solutions of our strings in Rt ×S3/ZM . We now proceed to the
dual gauge theory side.

4.2 The dual N = 2 gauge theory side

In order to compare the results from the previous section, we need to calculate anomalous
dimensions as a function of angular momenta γ = γ(JI) of the gauge operators dual to the
strings spinning in Rt×S3/ZM . We will therefore generalise the procedure of diagonalising
the N = 2 dilatation matrix from section 3.8 by examining the case of P > 2. For that
reason, interactions between magnons (even though we still take M → ∞) cannot be
neglected, and the Bethe ansatz procedure will not produce the same eigenvalues as the
free-magnon phases as in (3.104), or (3.105). Instead, we will use so-called rational solutions
and take the thermodynamic limit by letting L → ∞, but since Bethe roots scale like
ui ∼ L, the Bethe equations will become ambiguous; ambiguity for each of P equations will
be reflected by existence of (by assumptions) finite numbers of so called lattice momenta
ñj (j = 1, ...,P) of each of the jth magnon. We will shortly examine this more thoroughly.
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Let us first try to derive Bethe’s equations for an arbitrary number of magnons P. In
fact, it will not be a derivation as much as it will be a proof for I have already mentioned
in the end of chapter 3 that they will be exactly the same as in the P = 2 case. Although
it is rather intuitive that this should be the case (a jth magnon travelling around a chain
will pass the twist matrix only once, leaving the same phase regardless of which magnon
we will push around), it is certainly not that obvious to prove it. Let us do it then, for the
case of Z-impurity, like in section 3.8.

4.2.1 Bethe equations for the full SU(2) subsector

Before presenting the proof, let me just say that when deriving Bethe’s equations for the
N = 4 MRV states in section 3.8 we have used the boundary condition (3.179). Instead,
we could have defined these states such that they obey the boundary condition for the
N = 2 MRV states (3.147), getting exactly the same result (3.183); this means that these
approaches are equivalent. In this section we will undertake the second approach and try
to solve the P-magnon case for N = 4 MRV states by imposing the boundary condition
(3.147).

Let us define the P-magnon N = 2 MRV and N = 4 MRV states

ON=2
n1,...,nP

=
∑

ℓP>...>ℓ1

Ψℓ1,ℓ2,...,ℓP O ℓ1,...,ℓP
n1,...,nP

, (4.71)

ON=4
n1,...,nP

=
∑

ℓP>...>ℓ1

Ψℓ1,ℓ2,...,ℓP Õ ℓ1,...,ℓP
n1,...,nP

, (4.72)

where3

O ℓ1,...,ℓP
n1,...,nP

= tr
(
A1 · · ·Aℓ1−1Φℓ1Aℓ1 · · ·Aℓ2−1Φℓ2Aℓ2 · · ·AℓP−1ΦℓPAℓP · · ·AM

)
, (4.73)

and

Õ ℓ1,...,ℓP
n1,...,nP

= tr
[
UmXℓ1−1ZXℓ2−ℓ1Z · · ·ZXM−ℓP+1

]
, (4.74)

and in this way the both states obey the same boundary conditions (here for the 1st magnon)

(O
Õ

) ℓ2,ℓ3,...,ℓP ,ℓ1+M

n1,...,nP

=

(O
Õ

) ℓ1,...,ℓP

n1,...,nP

(4.75)

which will be imposed on the plane-wave ansatz Ψℓ1,ℓ2,...,ℓP . Now, if this system is integrable
(and we assume it is since we map it to the XXX Heisenberg model as mentioned in section
3.8), we can with clear conscience presuppose it is non-diffractive, and impose the following
ansatz

Ψℓ1,ℓ2,...,ℓP =
∑

σ∈Perm(P)

exp


i

P∑

i=1

pσ(i)ℓi +
i

2

∑

i<j

θσ(i),σ(j)


 ≡

∑

σ∈Perm(P)

Ψℓ1,ℓ2,...,ℓP(σ), (4.76)

as a non-diffractive generalisation of (3.139). Above,

eiθij ≡ S(pi, pj). (4.77)

3Again, although we put k = 1 here, the case of an arbitrary k can be obtained by rescaling M → kM .
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Now, the boundary condition4 reads

Ψℓ1,ℓ2,...,ℓP = Ψℓ2,...,ℓP ,ℓ1+M ≡
∑

σ∈Perm(P)

Ψℓ2,...,ℓP ,ℓ1+M (σ), (4.78)

where

Ψℓ2,...,ℓP ,ℓ1+M (σ′) = exp


i

P∑

i=2

pσ′(i−1)ℓi + pσ′(P)(ℓ1 +M) +
i

2

∑

i<j

θσ′(i),σ′(j)


 . (4.79)

Having thus two different expressions we need to fix the terms on both sides of (4.78), such
that pσ′(i−1) = pσ(i), and thus we demand that

σ′(i− 1) = σ(i), i = 2, 3, ...,P
σ′(P) = σ(1).

(4.80)

Then we can use the fact that

P−1∑

i=1

P∑

j>i

θσ(i),σ(j) =
P∑

j=2

θσ(1),σ(j) +
P−1∑

i=2

P∑

j>i

θσ(i),σ(j)

=

P∑

j=2

θσ(1),σ(j) +

P−2∑

i=1

P−1∑

j>i

θσ′(i),σ′(j)

=

P∑

j=2

θσ(1),σ(j) +

P−1∑

i=1

P∑

j>i

θσ′(i),σ′(j) −
P−1∑

i=1

θσ′(i),σ′(P)

=
∑

i<j

θσ′(i),σ′(j) + 2
P∑

i=2

θσ(1),σ(i),

hence

Ψℓ2,...,ℓP ,ℓ1+M (σ′) = exp


i

P∑

i=2

pσ′(i−1)ℓi + pσ′(P)(ℓ1 +M) +
i

2

∑

i<j

θσ′(i),σ′(j)




= exp


i

P∑

i=1

pσ(i)ℓi + pσ(1)M +
i

2



∑

i<j

θσ(i),σ(j) − 2

P∑

i=2

θσ(1),σ(i)




 ,

and by the use of (4.78) we obtain an SU(2) eigenvalue equation

eip1M = exp

(
i

P∑

i=2

θ1,i

)
=

P∏

i=2

S(p1, pi), (4.81)

which can be easily generalised to an arbitrary jth magnon

eipjM = exp


i

P∑

i=1
i6=j

θji


 =

P∏

i=1
i6=j

S(pj, pi). (4.82)

4In fact it is one of P boundary conditions, however in practice they are all identical.
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On top of that we have a translation condition (which is a P-magnon version of (3.132))

U|phys〉 = ω−m|phys〉, (4.83)

or

Ψℓ1+1,ℓ2+1,...,ℓP+1 = ω−mΨℓ1,ℓ2,...,ℓP , (4.84)

which using (4.76) gives

P∏

i=1

µi =

P∏

i=1

eipi = ω−m. (4.85)

Now we derive the Schrödinger equations in complete analogy to (3.142) and (3.143),
only that now we have (P − 1) of them. They yield one-loop correction of the conformal
dimension

γ =
λ′

8π2

P∑

i=1

1

u2
i + 1/4

, (4.86)

where λ′ = g2
QGTN = g2

YMMN , and the P magnon S-matrix

Sji(u) =
µi

µj
· ui − uj + i

ui − uj − i
, (4.87)

where we redefined

Sji(p) ≡ S(pj , pi). (4.88)

Then (4.82) implies that

µM
j =

P∏

i=1
i6=j

µi

µj
· ui − uj + i

ui − uj − i
=




P∏

i6=j

µi

µj




P∏

i6=j

ui − uj + i

ui − uj − i

= (µj)
1−P




P∏

i6=j

µi




P∏

i6=j

ui − uj + i

ui − uj − i
= (µj)

−Pω−m

P∏

i6=j

ui − uj + i

ui − uj − i
, (4.89)

where we used (4.85). And thus, using (3.185) we rewrite Bethe equations (4.82) and (4.85)
as

ωm

(
ui + i/2

ui − i/2

)L

=

P∏

j=1
j 6=i

ui − uj + i

ui − uj − i
, L = M + P (4.90)

ωm

P∏

i=1

(
ui + i/2

ui − i/2

)
= 1, (4.91)

in agreement with (3.183) and (3.184), and the earlier statement that they hold for P > 2.



4.2 The dual N = 2 gauge theory side 93

4.2.2 Solution

As noted before, although Bethe equations for P = 2 and P > 2 are the same it
does not mean that their solutions are alike. Looking at (3.168), and remembering that
pi ∼ 2π

L × integer, we see that

ui ∼ L,

and thus it is natural to define rescaled Bethe roots

xi :=
ui

L
,

which stay finite at L→ ∞. In the case of Z (Φa) impurities we have P = J3. Taking the
logarithm of (4.90), and keeping in mind that

ln

(
x+ ǫ

x− ǫ

)
ǫ→0−→ 2ǫ

x
, (4.92)

we receive

1

xj
=

2

L

J3∑

i6=j

1

xj − xi
− 2π

(
ñj +

m

M

)
, (4.93)

where 2π
(
ñj + m

M

)
comes as a lattice twisted momentum and stems from the logarithmic

cut of the complex plane. Let us assume that we have an even number of magnons P = 2J .
Up to first approximation, the Bethe roots may be placed around the positions

ui =
−L

2π
(
ñj + m

M

) , (4.94)

however as we increase the number of magnons, the interactions between them cannot be
neglected, and situation gets more complicated when more than one magnon occupies the
same momentum state. Then, since they do not have the same rapidities, the interaction
term pushes the roots apart and the rapidities split in the complex plane. As a result, the
roots form a “string”, roughly parallel to the imaginary axis, with the separation between
the adjacent roots scaling as ∆x ∼ 1/L. Also, since the distribution of roots is invariant
under reflection about the real axis5, and since for 0 < 2J/L ≪ 1/2 it is energetically
favourable to evenly distribute the roots on the ±1 branches, the distribution looks like
that in figure 4.2; see [76, 77]. For that reason, since roots with the same mode number
form a continuous contour in the complex plane in the scaling limit L→ ∞, it is reasonable
to assume that ñj ≡ ñ = 1, 2, 3, . . . , and for the sake of simplicity of our notation we change
ñ→ a. With the same argument, (4.91) can be rewritten in the form

P =
1

L

J3∑

j=1

1

xj
= −2π

(
b+

m

M

)
. (4.95)

5That means that for every root xi there exist a root xj such that xj = x∗i .
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Figure 4.2: Distribution of Bethe roots for large L, which concentrate on 2ñ cuts; here we
sketch only the ñth pair, where ñ = 1, 2, 3 . . . , and m = 0, 1, 2, . . . ,M − 1.

Also, (4.86) can be reexpressed as

γ =
λ′

8π2L2

J3∑

i=1

1

x2
i

. (4.96)

In order to solve (4.93) for (4.96) it is very much helpful to define a resolvent

G(x) :=
1

L

J3∑

j=1

1

x − xj
, (4.97)

thanks to which we can rewrite (4.95) as

G(0) = 2π
(
b+

m

M

)
= −P, (4.98)

and

γ = − λ′

8π2L
G′(0). (4.99)

Next, using the symmetricity of the sum

∑

j 6=i

1

(xj − xi)(x − xj)
=
∑

i6=j

1

(xi − xj)(x − xi)
,

where the summation goes after both i and j, we can write that

∑

j 6=i

1

(xj − xi)(x − xj)
=

1

2

∑

j 6=i

1

xj − xi

(
1

x − xj
− 1

x − xi

)

=
1

2

∑

j 6=i

1

(x − xj)(x − xi)
=

1

2

∑

i,j

1

(x − xj)(x − xi)
− 1

2

∑

j

1

(x − xj)2
. (4.100)
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On the other hand

∑

j

1

xj(x − xj)
=

1

x

∑

j

(
1

xj
+

1

x − xj

)
. (4.101)

Then, multiplying (4.93) by
∑

j
1

x−xj
, and using (4.100) together with (4.101) we obtain

L

x

[
−2π

(
b+

m

M

)
+ G(x)

]
= LG2(x) + G′(x) − 2πL

(
a+

m

M

)
G(x),

or, dropping the terms of the order O(1/L),

xG2(x) = G(x)
[
1 + 2πx

(
a+

m

M

)]
− 2π

(
b+

m

M

)
. (4.102)

It can be solved to be

G(x) =
1

2x

[
1 + 2πx

(
a+

m

M

)
−
√[

1 + 2πx
(
a+

m

M

)]2
− 8πx

(
b+

m

M

)]
, (4.103)

where the minus sign was fixed by the constraint (4.98). Then, G(x) can be expanded
around zero to get that

G′(0) = (2π)2
(
b+

m

M

) [(
b+

m

M

)
−
(
a+

m

M

)]
, (4.104)

hence

γSU(2)Z
=

λ′

2L
(a− b)

(
b+

m

M

)
, (4.105)

and if we redefine a− b ≡ m̃3, b ≡ m̃1, we will reproduce the result (4.68).

If we now impure the MRV states (4.73) and (4.74) with the B̄a(Ȳ ) fields instead of the
Φa(Z) fields as above, we will deal with the case of SU(2)R doublets, and this fact itself
is enough to not to perform any calculations. The reson is that one can express both, the
dilatation operator and the gauge theory states, in terms of these doublets which, as we
know from chapter 3, do survive orbifolding. For that reason, the N = 2 dilatation operator
will be exactly the same as the N = 4 dilatation operator, which means that there is no
need for the twisted boundary conditions (3.177), and therefore the Bethe equations (4.90)
will be the same as for N = 4 SYM theory. Hence, since m = 0 in (4.90), and the translation
condition (4.84) does not change, the equations (4.93) and (4.95) will read

1

xj
=

2

L

|J2|∑

i6=j

1

xj − xi
− 2πa, (4.106)

and

1

L

|J2|∑

j=1

1

xj
= −2π

(
b+

m

M

)
, (4.107)
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respectively. They can be solved in exactly the same way as the previous case to yield the
following anomalous dimension

γSU(2)R
=

λ′

2L

(
a− b− m

M

)(
b+

m

M

)
, (4.108)

which after the identification b = m̃1, and a− b = m̃2 reproduces the result (4.69).
In the case of SU(2)L-doublet we proceed in full analogy to the analysis for the case of

Z (Φa) impurities. The difference is that since now we deal with the Y (Ba) impurities, the
P magnon N = 2 MRV and N = 4 MRV states will be defined as in (4.71) and (4.72), but
where now

O ℓ1,...,ℓP
n1,...,nP

= tr
(
A1 · · ·Aℓ1−1Bℓ1−1Aℓ1−1Aℓ1 · · ·AℓP−1BℓP−1AℓP−1AℓP · · ·AM

)
, (4.109)

and

Õ ℓ1,...,ℓP
n1,...,nP

= tr
[
UmXℓ1−1Y Xℓ2−ℓ1+1Y Xℓ3−ℓ2+1Y · · ·Y XM−ℓP+2

]
, (4.110)

and the same boundary conditions as in (4.75). Obviously the Y (Ba) magnons will meet at
ℓi+1 = ℓi−1 (i = 1, ...,P −1), and thus the Schrödinger equations yield a different analogue
of (3.145)

2Ψℓi,ℓi−1 = Ψℓi,ℓi−2 + Ψℓi+1,ℓi−1, (4.111)

giving a different (than in (4.87)) S-matrix, namely

S(pj , pi) =

(
µi

µj

)2 ui − uj + i

ui − uj − i
, (4.112)

due to which the Bethe equations (4.82) can be easily shown to be

ω2m

(
ui + i/2

ui − i/2

)L

=

P∏

j=1
j 6=i

ui − uj + i

ui − uj − i
, L = M + 2P (4.113)

ωm

P∏

i=1

(
ui + i/2

ui − i/2

)
= 1. (4.114)

In the thermodynamic limit they become

1

xj
=

2

L

J2∑

i6=j

1

xj − xi
− 2π

(
a+

2m

M

)
,

1

L

J2∑

j=1

1

xj
= −2π

(
b+

m

M

)
, (4.115)

hence the anomalous dimension

γSU(2)L
=

λ′

2L

(
a− b+

m

M

)(
b+

m

M

)
, (4.116)

which agrees with (4.70) after the identification b ≡ m̃1, and a− b ≡ m̃2.
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Remark on algebraic curve of AdS5 × S5

Although realisation of existance of semiclassical, spinning string solutions in AdS5×S5

in the large spin limit has been rather successfully tested, as mentioned in the beginning
of this chapter, derivation of the exact solutions is very difficult. The reason for this is
that the complexity of the functions, from which we obtain these solutions, increases with
the complexity of the solutions. The functions that occur are of algebraic, elliptic, or
hyperelliptic type, and many other, often much more involved ones. Even if every solution
can be found using a suitable choice of functions, it will be impossible to understand their
generic structure having infinitely many of them. For that reason, people changed the
approach and started to ask themselves how is the spectrum of string solutions organised?
This kind of classification was performed for bosonic strings on R × S3 in [78] where it
was shown that for each solution of the equations of motion there exists a corresponding,
hyperelliptic curve, and that the quantities such as the energy and Noether charges, were
identified in the algebraic curve. At this point, the logic can be reversed and one can
investigate those curves which correspond to some classical solutions and this, on the other
hand, leads to a solution of the spectral problem in terms of algebraic curves. From these
curves one can read off a lot of information on how to classify string solutions, which is
a step towards understanding how to quantise the classical string theory on AdS5 × S5.
Alternatively, one can study the algebraic curve for the gauge theory, and thus test the
AdS/CFT duality. For the work done in this area see for example [78, 79, 80, 81]. It
would be also interesting to see how does the algebraic curve behave under orbifolding of
AdS/CFT duality by the group G = ZM .

Summary

In this chapter we have considered strings rotating in Rt ×S5 ⊂ AdS5 ×S5, with large,
corresponding quantum numbers. We have examined how does the situation look when we
orbifold the S5 sphere, and it has turned out that we merely have to redefine the winding
modes of the strings spinning in three directions of the S5/ZM sphere according to (4.20).
Afterwards, we have solved the energy of the strings spinning in Rt×S3/ZM ⊂ Rt×S5/ZM

for the winding modes, and then for their total angular momentum, which is supposed to
be taken large. The results (up to one loop) have been compared with the spectrum of
the dual gauge operators in SU(2) bosonic subsector, and for that to happen we had to
derive Bethe’s equations for an arbitrary number of magnons, and then apply the method of
rational solutions to solve the Bethe roots in the limit of very long gauge operators. Finally,
the one-loop agreement has been confirmed.
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Outlook

In this thesis we have presented a review of the work that has been done concerning the
AdS/CFT duality projected by the orbifold group G = ZM . The resulting type IIB string
theory lives on the ten dimensional orbifold AdS5 ×S5/ZM , the global isometry of which is
SU(2, 2)×SU(2)R×U(1) as the orbifolding breaks one of two SU(2)’s in the SO(6) rotation
group of five sphere. On the gauge dual side, SU(2)R × U(1) becomes the R-symmetry of
the corresponding conformal field theory, which in this case is the N = 2 superconformal
quiver gauge theory, with the local gauge group U(N)M .

However, as in the case of original Maldacena’s conjecture, the symmetry arguments are
not enough, and therefore one would like to test this type of string theory on orbifold/quiver
gauge theory duality. As noticed by Mukhi, Rangamani, and Verlinde [57], there is a
very convenient limit in which one can rather easily quantise the IIB string theory on
AdS5 × S5/ZM in the pp-wave limit. This orbifold-analogy of the BMN limit of N = 4
SYM allows for an establishment of the dictionary between the string states and the quiver
gauge states, and for the calculation of the free (non-interactive) energy spectrum on the
string side. The main difference between the MRV limit and the BMN limit is that in
the former case the null direction becomes compactified, and strings can wind around this
direction m times. In fact, after quantisation the winding m becomes a quantum number of
both, string and gauge states, since the states with different values of m do not mix with
each other [62, 65, 75]. It also turns out that the gauge MRV states can be written in both,
the N = 2 notation and in the N = 4 notation, and we map them to the “twisted” spin
chain ferromagnetic states. Afterwards, we calculate the spectrum of MRV operators in the
SU(2) bosonic subsector at one-loop, expecting that it is the same in both notations, up
to the rescaling of the coupling constant of the “parent” and daughter “theories”. For the
N = 2 MRV states we use earlier derived N = 2 one-loop dilatation operator, and for the
N = 4 MRV states we use the “parent” N = 4 one-loop dilatation operator, together with
the twisted boundary conditions. Finally, we find that the one-loop anomalous dimension
of the MRV operators in the SU(2) subsector agrees with the result obtained on the string
side.

Another idea to test our string on orbifold/quiver gauge correspondence was to con-
sider the semiclassical solutions of spinning strings in Rt × S5/ZM , in the limit of large
conserved charges, since then quantum effects are suppressed. After solving the energy of
spinning strings for the angular momenta and winding modes, coming from wrapping of
the strings around three different directions of five sphere, we specify the spinning sector
to a submanifold Rt × S3/ZM , in order to compare it with an SU(2) subsector on the
dual gauge side. The Bethe equations for the MRV states in the SU(2) representation are
solved by the procedure of rational solutions, and the spectrum of spinning strings and their
gauge duals up to one loop agrees perfectly. Having carried all of this out, one might ask
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oneself a question: is further examination of IIB string theory on AdS5 × S5/ZM/N = 2
quiver gauge theory duality worth an effort? After all it shows many of the same properties
as its “parent” duality, like for example the same anomalous dimension matrix (although
modified Bethe’s equations), the same correction to the first and second loop (with the
coupling constant rescaled properly of course), and the same discrepancy at three loops.
However, one has to notice that these tests are performed in the large R-charge limit, and
hence it might be that some effects become suppressed when the number of excitations is
small compared to the length of the spin chain. For that reason, it would be interesting
to study how does the orbifolding procedure influence the spectral (algebraic) curve of the
sigma model on AdS5 × S5, and the distribution of Bethe roots on the gauge side.

Also, orbifolding the original duality by the group G = ZM might be viewed as a first
step towards consideration of more complicated orbifolds, for example non-Abelian orbifolds.
There are various ways of breaking one of SU(2) ∼ SO(3) groups of SO(6) (for example by
orbifolds of polyhedronic type) in order to obtain a theory with N = 2 supersymmetries,
and it would be very interesting to examine if such N = 2 theories are integrable. Obviously,
one does not have to restrict oneself to N = 2 theories but also consider a more general class
of orbifolds that break supersymmetry to N = 1 or even N = 0, and look for integrability.
In spite of some work done in this direction, this certainly is an area that remains rather
unexplored (see [67, 82, 83], and also [84, 85]).
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Appendix A

One-loop integrals

In this appendix we present the formulas necessary for the field theory calculations in
chapter 2, according to the action (2.10). The scalar propagator in our notation will be of
the form

Ixy =
Γ(1 − ǫ)

|12(x− y)2|1−ǫ
. (A.1)

The integrals appearing at the one-loop connected Green’s functions (2.39) are the following

Yx1 x2 x3
= µ2ǫ

∫
d4−2ǫz

(2π)2−ǫ
Ix1zIx2zIx3z,

Xx1 x2 x3 x4
= µ2ǫ

∫
d4−2ǫz

(2π)2−ǫ
Ix1zIx2zIx3zIx4z, (A.2)

H̃x1 x2 x3 x4
=

1

2
µ2ǫ

(
∂

∂x1
+

∂

∂x2

)2 ∫ d4−2ǫz1d
4−2ǫz2

(2π)4−2ǫ
Ix1z1

Ix2z1
Iz1z2

Iz2x3
Iz2x4

.

When evaluated in two-point functions, they yield [48] that

Y00x

I0x
=

1

ǫ(1 − 2ǫ)
f(x), (A.3)

X00xx

I2
0x

=
2(1 − 3ǫ)γ

ǫ(1 − 2ǫ)2
f(x), (A.4)

H̃0x0x

I2
0x

= −2(1 − 3ǫ)(γ − 1)

ǫ2(1 − 2ǫ)
f(x), (A.5)

where

f(x) =
Γ(1 − ǫ)

|12µ2x2|−ǫ
, γ =

Γ(1 − ǫ)Γ2(1 + ǫ)Γ(1 − 3ǫ)

Γ2(1 − 2ǫ)Γ(1 + 2ǫ)
= 1 + 6ζ(3)ǫ3 + O(ǫ4). (A.6)

This, together with the formalism from section 2.3, is enough to derive the one-loop dilata-
tion operator for N = 4 supersymmetric Yang-Mills theory.
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Appendix B

Proof of the equivalence of MRV
states

In this appendix we want to prove that the two magnon N = 4 MRV state

αZ1
−n1

αZ2
−n2

|k = 1,m〉 =
M∑

ℓ2>ℓ1

tr (Xℓ1Zn1
Xℓ2−ℓ1Zn2

XM−ℓ2) (B.1)

is equivalent to the N = 2 MRV state

αΦ1
−n1

αΦ2
−n2

|k = 1,m〉 =

M∑

ℓ2>ℓ1

ω
P

i niℓi tr (A1A2 · · ·Aℓ1−1Φℓ1
1 A

ℓ1 · · ·Aℓ2−1Φℓ2
2 A

ℓ2 · · ·AM ).

(B.2)

In contrary to chapter 3, I enumerated particles with which we impure the ground state,
since this allows to give a crucial argument proving the equivalence of (B.1) and (B.2), up
to the overall factor of M . Since the string creation operators α−n1

and α−n2
commute

with each other there is no given hint which particle in the ground state should appear
on the right-hand side with respect to the other one, and thus it is essential to consider a
symmetric contributions of these states. Let us denote the state (B.1) as

|k = 1,m;Z1, Z2〉N=4, (B.3)

and the state (B.2) as

|k = 1,m; Φ1,Φ2〉N=2. (B.4)

Then the two impurity state

|k = 1,m;Zi, i = 1, 2〉N=4 ≡ 1√
2

(
|k = 1,m;Z1, Z2〉N=4 + |k = 1,m;Z2, Z1〉N=4

)
, (B.5)

ought to be equal to (up to the factor of M)

|k = 1,m; Φi, i = 1, 2〉N=2 ≡ 1√
2

(
|k = 1,m; Φ1,Φ2〉N=2 + |k = 1,m; Φ2,Φ1〉N=2

)
. (B.6)
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The proof goes as follows.
The state (B.1) can be orbifolded by the use of (3.17) as

|k = 1,m;Zi, Zj〉

=

M∑

a=1

M∑

ℓ2>ℓ1

M∑

ℓ1=1

ωni(ℓ1+a)+nj(ℓ2+a)tr (A1+aA2+a · · ·Φℓ1+a
i · · ·Φℓ2+a

j · · ·AM+a)

≡
M∑

a=1

M∑

ℓ2>ℓ1

M∑

ℓ1=1

faij(ℓ1, ℓ2), (B.7)

for i, j = 1, 2 and i 6= j. We can immediately see that the fa=M element of the sum
reproduces (B.2) but what about M − 1 other elements? Let us try to prove that the fa=1

element is the same as the fa=M element. I denote the fa=M element as

fMij (ℓ1, ℓ2) = tr(A1 · · ·Φℓ1
i · · ·Φℓ2

j · · ·AM )ωniℓ1+njℓ2, (B.8)

and the fa=1 element as

f1ij(ℓ1, ℓ2) = tr(A1 · · ·Φℓ1+1
i · · ·Φℓ2+1

j · · ·AM )ωni(ℓ1+1)+nj(ℓ2+1). (B.9)

We now write that

M∑

ℓ2>ℓ1

M∑

ℓ1=1

fMij (ℓ1, ℓ2) =

M∑

ℓ2=1

fMij (1, ℓ2) +

M∑

ℓ2>ℓ1

M∑

ℓ1=2

fMij (ℓ1, ℓ2), (B.10)

and

M∑

ℓ2>ℓ1

M∑

ℓ1=1

f1ij(ℓ1, ℓ2) =

M−1∑

ℓ2>ℓ1

M−1∑

ℓ1=1

f1ij(ℓ1, ℓ2) +

M∑

ℓ1=1

f1ij(ℓ1,M). (B.11)

Clearly,

M∑

ℓ2>ℓ1

M∑

ℓ1=2

fMij (ℓ1, ℓ2) =

M−1∑

ℓ2>ℓ1

M−1∑

ℓ1=1

f1ij(ℓ1, ℓ2), (B.12)

however

M∑

ℓ1=1

f1ij(ℓ1,M) =

M∑

ℓ1=2

fMji (1, ℓ1) + fMij (1, 1), (B.13)

and therefore

M∑

ℓ2>ℓ1

M∑

ℓ1=1

{
f112(ℓ1, ℓ2) + f121(ℓ1, ℓ2)

}

=
M∑

ℓ2>ℓ1

M∑

ℓ1=2

{
fM12(ℓ1, ℓ2) + fM21(ℓ1, ℓ2)

}
+

M∑

ℓ1=1

{
fM12(1, ℓ1) + fM21(1, ℓ1)

}

=

M∑

ℓ2>ℓ1

M∑

ℓ1=1

{
fM12(ℓ1, ℓ2) + fM21(ℓ1, ℓ2)

}
. (B.14)
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Hence,

|k = 1,m;Zi, i = 1, 2〉N=4 = M |k = 1,m; Φi, i = 1, 2〉N=2. (B.15)

This could be generalised to any a = 1, . . . ,M , and also to an arbitrary number of magnons,
keeping in mind that the symmetrisation should be taken accordingly to the number of
inserted particles.

This completes the proof.
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