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Abstract

In recent years it has been shown that higher-order corrections, namely pole-
dipole corrections, to the blackfold approach reveal that higher dimensional
black branes possess some attributes analogous to conventional elastic ma-
terials. Pole-dipole order corrections to the effective stress-energy tensor of
charged fluid branes living on a submanifold of a background metric result in
bending moments, the effect of which is captured by a relativistic generaliza-
tion of the Young modulus and piezoelectric moduli. Applying the correction
to electrically charged black branes one uncovers that their behaviour is cap-
tured by relativistic generalizations of classical electroelasticity theory. In
the thesis the recent developments on the dynamics of charged blackfolds
and their electroelastic behaviour to higher-order corrections is reviewed.
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"Some people play bingo. Other people do something fun."
- Kim "Kanonarm" Köbke
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Introduction

The idea that a sufficiently large concentration of mass can produce a gravi-
tational field so intense that not even light can escape its pull can be traced
as far back as 1783 when John Michell calculated that a ray of light could
be trapped on a massive body under the assumption that light is affected by
the pull of gravity. At the time there was no sound reasoning as to why a
massless phenomenon such as light should adhere to the force of gravity in
the same way as massive objects do. A rigorous new theory of gravity saw
the light of day as Albert Einstein published his general theory of relativity,
explaining gravity as a curvature of spacetime. A localized matter or energy
source (encoded by the stress-energy tensor Tµ⌫) curves spacetime, captured
by its metric gµ⌫ , according a set of partial differential equations termed the
Einstein field equations,

Rµ⌫ � 1

2

Rgµ⌫ = 8⇡GTµ⌫ . (1)

Test particles in free fall will then move in straight lines in the curved space-
time (called geodesics), governed by the geodesic equation,

d2x�

d⌧ 2
+ �

�
↵�

dx↵

d⌧

dx�

d⌧
= 0, (2)

where the Christoffel symbols ��
↵� depend on the first derivatives of the met-

ric. By looking at some solutions of the field equations one finds that the
existence of objects which curve spacetime sufficiently, so that not even light
can escape, is unavoidable. As an example, the unique spherically symmetric
static solution to the vacuum equations Rµ⌫ = 0 in four dimensions reads

ds2 = �
✓
1� r0

r

◆
dt2 +

✓
1� r0

r

◆�1

dr2 + r2d⌦2. (3)
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This solution is known as the Schwarzschild solution. It contains a singular-
ity at r = 0 where the Riemann curvature is infinite and an event horizon at
r = r0, beyond which even null geodesics are confined. Solutions containing
singularities hidden behind an event horizon are known as black holes. Clas-
sically black holes only absorb, emitting no radiation, and so they must have
a non-existent temperature.

Stephen Hawking however showed by methods of semiclassical gravity, in
which matters fields are given a quantum treatment, that black holes radiate
with a blackbody spectrum and, in consequence, have a non zero temperature
(coined the Hawking temperature) and entropy. To fully understand the
nature of black holes a quantum description of gravity is in order. In 4-
dimensional gravity the uniqueness of solutions is limiting, the unique static
solution in vacuum being the Schwarzschild metric and in the stationary case,
the Kerr metric. For non-static black holes in D > 4 pure gravity (such as
the higher-dimensional generalization of the Kerr black hole, introduced by
Myers and Perry in [1]) there exist no uniqueness theorems, giving rise to
a wide range of new solutions. By far the richest collection of black hole
configurations have been found in five dimensions using special ansätze [2]
[3] [4]. The special ansätze we refer to are based of symmetry properties and
inverse scattering techniques [5] [6] [7] [8]. By examining black hole solutions
where we look at the dimensionality as a tunable parameter, we discover that
some attributes are universal while others are dimensionally dependent, such
as uniqueness and horizon topologies. It has become clear that the analysis
of higher-dimensional solutions provides a larger, more intricate field from
which we can extract knowledge of black holes.

The study of higher-dimensional black holes is especially relevant for
string theory. Type-II string theory is formulated d = 10, which can also
be arrived at from the d = 11 M-theory through duality transformations.
String theory provides a quantum description of gravity and yields a large
variety of black hole solutions. Further understanding of black holes in string
theory might provide answers to long overdue problems. An example is the
information-loss paradox. If a black hole radiates purely thermally then all
information about the original infalling matter would be destroyed once the
black hole has dissipated, in violation with the law of conservation of infor-
mation. A complete quantum description of black holes should resolve this
problem. The objects most fitting for our discussion of black holes in string
theory are p-branes.

In recent years an effective world-volume theory has been presented that
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describes the dynamics of black branes, living on a submanifold embedded
in a dynamical background spacetime, that have two widely separated hori-
zon length scales [9] [10] [11] [12]. Black p-branes carrying Ramond-Ramond
charges of field strength Fp+2 are of high significance to supergravity the-
ories, the low-energy limits of supersymmetric string/M-theories. These
black p-branes can also carry a q-brane charge (0 < q  p), dissolved in
its world-volume, with associated field strength Fq+2. In [13] corrections to
the monopole approximation of the stress-energy tensor are employed to 1st
order revealing fine structure of neutral bent black p-branes. The corrections
result in a dipole of the world-volume stress-energy, controlled by response
coefficients that are interpreted as a relativistic generalization of the Young
modulus of elastic materials. In [14] 1st-order corrections were extended
onto blackfolds carrying q-brane charge, in that case the gauge field acquires
a electric dipole moment analogous to the piezoelectric moduli.

The aim of the thesis is to study higher-order corrections to black p-
branes and review the different concepts and tools needed to develop explicit
expressions of those corrections.

The structure of the thesis will be as follows. Chapter 1 will be an in-
troduction to charged p-brane solutions occurring in the low-energy regime
of string/M-theory. We will present the general procedure of obtaining their
conserved quantities and thermodynamics. BPS states will be discussed as
well as duality transformations and dimensional reduction of solutions and,
leading from that discussion there will be a simple example of a solution gen-
erating technique, which is necessary for the developments in chapter 4. In
chapter 2 the general framework of the blackfold approach for charged black
p-branes will be reviewed. We will demonstrate how the method is used
for charged blackfolds in supergravity carrying a dissolved q-brane charge.
Chapters 3 and 4 will be the main point of this thesis, concentrating on the
pole-dipole corrections to the blackfold approach. In chapter 3 the previ-
ous work done in [13] and [14] will be reviewed, where the effective world-
volume theory is corrected up to dipole order for, first, neutral blackfolds,
then blackfolds carrying higher form charge. In chapter 4 the steps leading to
quantitative expressions describing the bending effects of blackfolds carrying
higher-form charge are reviewed and the results of [14] presented.

3



Chapter 1

Black Branes

What is a brane? A brane is a generalization of a point particle, for example,
a point particle is a 0-brane, a string is a 1-brane, and a p-brane is a arbitrary
p-dimensional generalization. The concept of p-branes arises in supergravity
theories. In supergravity theory, the low energy limit of superstring theory,
in specific cases, a p-brane is the low energy limit of D-branes. The p-brane
solutions occurring in supergravity can be well analyzed by classical methods
and describe the non-perturbative sector of string theory. In this chapter the
necessary concepts and tools needed for our discussion in the coming chapters
are introduced. We take a general look at p-branes in arbitrary dimensions
and the ones arising from d = 10 and d = 11 supergravities. Different string
theories are intimately related to each other as well as M-theory through
duality symmetries. These symmetries are presented, along with an example
of how they are used to produce new solutions. The chapter is concluded
with the introduction of the concept of smeared brane solutions.

1.1 Introductory on branes
Let’s examine a bit the black brane pure gravity solutions to the Einstein field
equations. Neutral black branes can be modeled classically by embedding
p dimensional extended objects into a background metric. A simple way
of introducing the idea is to first take a look at the generalization of the
Schwarzschild solution to arbitrary dimensions, known as the Schwarzschild-
Tangherlini solution

ds2 = �fdt2 + f�1dr2 + r2d⌦2
D�2, f = 1� rD�3

0
rD�3 , (1.1)
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where r0 is the horizon radius. This solution can be modified to represent a
Minkowskian neutral static black brane with a p+1 dimensional world-volume
Wp+1 by adding p extra flat directions to the metric. It is straightforward to
show that such a procedure is also a solution to the Einstein equations. We
write it as

ds2 = �fdt2 +
pP

i=1
dx2

i + f�1dr2 + r2d⌦2
n+1 , f = 1� rn0

rn
, (1.2)

where we have defined n = D�p�3. The position of the brane in directions
transverse the world-volume is characterized by D � p � 1 coordinates. To
make the solution more general we should consider the possibility of velocity
fields living on the world-volume. Let us introduce so called world-volume
coordinates by �a

= (t, xi
). Applying a boost, ua (normalized by uaua = �1),

in the world-volume directions gives us the form

ds2 =

✓
⌘ab +

rn0
rn

uaub

◆
d�ad�b

+ f�1dr2 + r2d⌦n+1. (1.3)

This is the most general form of flat neutral p-brane solution when only
considering pure gravity.

A more suited way of working out black brane solutions in relation to
this thesis is to define an action, incorporating the fields we wish present,
and work out its solutions. In string theory one generally looks for equations
of motion from a specific action, so in context of the continuing discussion
it is useful to look at a generic example. A general charged dilatonic p-
brane solution can be arrived at by defining an appropriate action. The
fields entering the action should then be a graviton, gµ⌫ , a gauge field C[p+1],
with field strength (dC)[p+2], and a scalar dilaton �. The general form of the
action is

S =

1

16⇡G

Z
dDx

p�g

✓
R� 1

2

(d�)2 � 1

2(p+ 2)!

ea�(dC)

2
p+2

◆
, (1.4)

where n = D � p � 3, G is the D-dimensional Newton’s constant and the
exponent, a, is the dilaton coupling constant. Assigning the coupling con-
stant the value a2 ⌘ 4

N
� 2(p+1)n

D�2 yields a special class of solutions which are
relevant to the analysis in chapters 3 and 4. The solutions to each of the
fields are as follows. The line element of the flat dilatonic charged p-brane
reads

ds2 = H� Nn
D�2

⇣
� fdt2 +

pX

i=1

dx2
i

⌘
+H

N(p+1)
D�2

(f�1dr2 + r2d⌦2
n+1). (1.5)
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While the dilaton and gauge field solutions are

e2� = HaN , Ap+1 =

p
N coth↵(H�1 � 1)dt ^ dx1 ^ . . . ^ dxp. (1.6)

With f being defined in the same way as earlier and the function H defined
as

H = 1 +

rn0 sinh
2 ↵

rn
. (1.7)

We need to restrict a2 � 0 in order for the dilaton not to enter as a ghost.
This restriction leads to a limit on N , as it is included in the definition of a,
so

N  2

✓
1

n
+

1

p+ 1

◆
. (1.8)

Notice that taking the boost parameter ↵ ! 0, the solution for the metric
(1.5) becomes the same as for the neutral p-brane (1.2). The radial coordinate
is defined in the directions transverse to the world-volume |x?| ⌘ r. We will
discuss these solutions further in chapter 2 in the context of black branes
carrying higher-form charge, then put this class of solutions to use in the
results of chapter 4, so they play an integral part in context of this thesis.

We can obtain the different branes corresponding to either type-II string
theory or M-theory by plugging in the relevant quantities. For example, we
could plug in D = 11, N = 1, and p = 2, 5, resulting in the solutions for the
M-branes. The H functions are harmonic functions as they are required to
be solutions to the Laplace equation @2

?Hp(r) = 0. The partial differential
operator @? acts only on the coordinates orthogonal to the brane.

The general method of extracting conserved quantities of a system from
the far-region asymptotics of the fields characterizing a given theory is out-
lined in section 1.4.

1.2 Supergravity actions
As a concrete example of an action leading to charged dilatonic p-brane
solutions, we take a look at type-II string theory. In chapter 4, the preceding
discussion of chapters 2 and 3 are given an explicit relation to type-II string
theory, so in this section, we say a few words about it.

Type-II string theories have two sectors of massless modes, NS-NS and
R-R. The low-energy limit of a supersymmetric string theory is called a
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supergravity theory. Let us write the total action for type-IIA supergravity,
split in terms of the different massless sectors and the Chern-Simons term
(that incorporates the intersections of branes),

SIIA = SNS-NS + SR-R + SC-S,

SNS-NS =

1

16⇡G

Z
d10x

p�ge�2�
⇣
R + 4(d�)2 � 1

2

(dB2)
2
⌘
,

SR-R = �1

2

1

16⇡G

Z
d10x

⇣
(dC1)

2
+ (dC3 + dC1 ^ dB2)

2
⌘
,

SC-S = �1

2

1

16⇡G

Z
B2 ^ dC3 ^ dC3.

(1.9)

In type-IIA we have the Cn gauge fields with odd numbered n, the two
independent ones being C1 and C3. In addition to the two forementioned
R-R forms from there exist equally fundamental objects, related through
Hodge duality. The Hodge operator, ⇤ acting on a p-form, maps it to a dual
(D � p)-form. Acting twice with the Hodge operator maps a p-form onto
itself. So, in addition to C1 and C3 we have their (magnetic) duals C7 and
C5. In IIB the dimensionality of the R-R fields is even numbered, consisting
of the axion C0, C2, and C4 which has a self-dual field strength ⇤dC4 = dC4.
The object naturally coupling to the R-R four-form would be a three-brane,
that object would then be a self-dual object, so equal to its magnetically dual
counterpart. Another fundamental dual object in string theory is the NS5-
brane. Consider that the 10d fundamental superstring couples to the NS-NS
two-form B2. The dual of B2 is a six-form potential, then the object it would
couple to is a five-brane. Thus the magnetic dual object to the superstring
is the NS5-brane. One might also note that in four dimensions it is only a
numerical coincidence that the dual to a electrically charged particle is again
a particle.

An in depth review on black holes and p-branes in string theory that
contains a wide variety of subjects relevant to this thesis is [15].

R-R p-brane states are known not be a part of the perturbative spectrum
of string theory. The study of p-branes and their magnetic solitonic duals
probe the structure of non-perturbative string theory.

We refrain from writing and examining the equations of motion of the
supergravity actions since they are not particularly relevant for the purpose
of the thesis. Continuing our discussion of supersymmetric string theory, we
present some of the basics of supersymmetry and the concept of BPS-states.
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1.3 Supersymmetry and BPS-states
A very effective way of probing the non-perturbative aspect of string the-
ory is through the study of solitonic solutions. Solutions of non-linear field
equations of a theory cannot be found as perturbations of linearized field
equations [16]. The stability of these solutions is ensured by the attribute
that they carry a topological charge. Solitons are localized, finite energy so-
lutions of the classical equations of motion for a non-linear field theory. Their
mass density is usually inversely proportional to a positive power of a dimen-
sionless coupling constant so they become very massive at weak coupling and
will be vanishing in the perturbative sector of a field theory. Reviews on su-
pergravity solitons can be found in [15] [17]. Hence, the brane mass will be
very large according to the classical mass formula of quantum theory. How-
ever, we have to address the question of whether the classical mass formula
can be trusted.

Supersymmetric states saturate an inequality resulting from the super-
symmetry algebra. For a four dimensional, N = 2 generator theory a majo-
rana spinor Q is usually written in terms of Weyl spinors Q↵, Q↵̇:

Q =

✓
Q↵

Q↵̇

◆
. (1.10)

We can switch to a basis of creation and annihilation operators defined by

a±↵ =

1p
2

(Q1
↵ ± ✏↵�Q

2⇤
� ). (1.11)

In this new basis the usual extended supersymmetry algebra in the former
basis becomes a fermionic oscillator algebra. Working in rest frame yields
simple anticommutation rules,

{a+↵ , a+†
� } = �↵�(M + Z),

{a�↵ , a†�} = �↵�(M � Z),
(1.12)

with central charge Z. With all the rest of the anticommutators vanishing.
It then naturally follows from unitarity of the operators that

M � a|Z|. (1.13)

This inequality is called the Bogomolny’i bound, with "a" being the coupling
constant of the theory in which we work. This is also generally valid for
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higher N and dimensions. Such states must be annihilated by at least one
of the supersymmetry generators. These states are associated with both the
perturbative and non-perturbative spectrum of string theory. No quantum
corrections are received by BPS states due to the renormalization theorem
of supersymmetry [18]. One can not trust the ADM mass of non-extremal
branes (not saturating the BPS-bound) because quantum corrections are
needed. In 10d the BPS supergravity solutions in string frame are

ds2 = Hp(r)
� 1

2
�� dt2 + dx2

k
�
+Hp(r)

1
2dx2

?,

e� = Hp(r)
1
4 (3�p),

C01...p = g�1
s (1�Hp(r)

�1
).

(1.14)

The function Hp is a harmonic function, as mentioned in section 1.1, a result
of @2

?Hp(r) = 0, and gs is the string coupling constant. The solution of the
Laplace equation is

Hp = 1 +

cpgsNpl
7�p
s

r7�p
. (1.15)

The number of p-branes is written as Np.

1.4 Conserved quantities and thermodynamics

1.4.1 Conserved quantities

A important step is to quantify the physical quantities which are conserved
under the equations of motions of our theory. The standard way of defining
mass and angular momenta is by the method of extracting the information
as if we were looking at a non-relativistic system. It should be noted that
this procedure is only valid for p-branes of p < 7, the reason being that if the
dimension of the brane is larger then the spacetime will not be asymptotically
flat and a linearized gravity approximation will not make sense. We take a
infinitesimal perturbation to the spacetime metric gµ⌫ = ⌘µ⌫ + hµ⌫ , where
hµ⌫ << 1. We should note that linearized gravity is a very useful tool and
comes to use in the coming chapters. The time derivatives are neglected and
we assume the tt-component of the stress-energy tensor to be much larger
than the rest. The gravitational part of the action is the one relevant to
these calculations

S =

Z
dDx

✓p�gR[g]

16⇡GD

+ Lm

◆
. (1.16)
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Where GD is the D dimensional Newton’s constant and Lm is the Lagrangian
of the matter fields. The equations of motion leading from the action are the
D dimensional Einstein equations

Rµ⌫ � 1

2

gµ⌫R = 8⇡GDT
(m)
µ⌫ . (1.17)

We can partially fix the diffeomorphism symmetry of the deviation to the
metric by working in a harmonic gauge,

@⌫(h
µ⌫ � 1

2

⌘µ⌫h�
�) = 0. (1.18)

This harmonic gauge condition makes it possible for us to identify Rµ⌫ =

(@i@i)hµ⌫ . Putting that identification into the Einstein equations results in
a Laplace equation for hµ⌫ , to which a general solution is well known. The
solution reads

hµ⌫(x) =
16⇡GD

(D � 3)⌦D�2

Z
dD�1~y

˜Tµ⌫(|~x� ~y|)
|~x� ~y|D�3 ,

˜Tµ⌫ ⌘ �

T (m)
µ⌫ � 1

(D � 2)

⌘µ⌫T
(m)�
�

�
.

(1.19)

Where ⌦n = area(Sn
). Expanding this expression in moments and evaluating

in rest frame gives us a form convenient for reading the mass and angular
momenta off the metric. Then the ADM mass and angular momenta can
then be read off from the metric

gtt ! �1 +

16⇡GD

(D � 2)⌦D�2

M

rD�3
+ . . .

gij ! 1 +

16⇡GD

(D � 2)(D � 3)⌦D�2

M

rD�3
+ . . .

gti ! 16⇡GD

⌦D�2

xjJ ij

rD�1
+ . . .

(1.20)

Now, lets move on to the definition of the conserved charge. For a p-brane
charged under a R-R potential Cp+1 the relevant field equation is

d ⇤ (dCp+1) / ⇤(Jp+1). (1.21)
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Where Jp+1 is the conserved current of the system. The conserved Noether
(electric) charge of the brane is the integral of the current, or equally, the
integral of the dual field strength of (dC)p+2 over the sphere SD�p�2,

Qe =

Z

SD�p�2

⇤(dC)p+2. (1.22)

We can calculate an associated magnetic charge in a dual frame by simply
replacing ⇤(dC) with (dC) in the integral

Qm =

Z

Sp+2

(dC)p+2 (1.23)

Analogously to conventional four dimensional electromagnetism the potential
obeys the Bianchi identity d([dC]p+2) = 0. From that we can write a purely
topological charge

PD�p�3 =

Z

Sp+2

(dC)p+2. (1.24)

For other branes than Dp-branes these derivations would have been slightly
different but we are concentrating on the cases most relevant to black holes
in string theory. In chapter 4 we will come back to some of these aspects in
discussing a magnetic dual coupling of p-branes to q-form charge.

1.4.2 Black hole thermodynamics

The laws of black hole thermodynamic are in close analogy to the laws of
thermodynamics, first put forth in [19]. They depend on the existence of
classical no-hair theorems which state that a black hole is unique through
the determination of its conserved quantities. The zeroth law states that the
surface gravity, defined assuming the event horizon is a Killing horizon and
denoted as ̂, is constant over the horizon of a stationary black hole. The
surface gravity is determined by evaluating the gradient of the norm of the
generating Killing field at the distance of the horizon from the origin point.
Perturbed stationary black holes yield a relationship between the change in
mass/energy to the change in angular momentum, horizon area, and charge.
The first law states

dM = ̂
dA

8⇡
+ !HdJ + �edQ, (1.25)
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where !H is the horizon angular velocity, !H =

d�
dt
|r=r0 with � as the angular

coordinate of rotation, and �e is the electrostatic potential of a charged
black hole, �e = �Aµk

µ|r=r0 where Aµ is the gauge field and kµ is the Killing
generator. The second law states, assuming the weak energy condition, that
the horizon area cannot decrease with time through any physical processes,

dA

dt
� 0. (1.26)

The third law is that the surface gravity cannot vanish by means of a physical
process such as emission of radiation.

The temperature of a thermally radiating black hole was calculated by
Stephen Hawking by methods of semiclassical gravity and was found to be

TH =

~̂
2⇡

. (1.27)

The Bekenstein-Hawking entropy of a black hole in arbitrary dimension is

SBH =

Ad

4~Gd

, (1.28)

where Gd is the d-dimensional Newton’s constant and Ad is the area of the
event horizon. It is noteworthy that the entropy of a black hole scales as area
rather than, more intuitively, the volume. Susskind and ’t Hooft proposed a
principle in string theory called the holographic principle where the funda-
mental degrees of freedom of a system are characterized by a quantum field
theory in one less dimension and with a Planck-scale ultra-violet cutoff. An
explicit example of a conjecture in string theory that has a precise example of
this principle is the AdS/CFT correspondence (anti-de Sitter/Conformal field
theory). In fact, in context of the conclusion of chapter 4, where we review
the derivation of a set of response coefficients characterizing the bending of
charged black branes, there are signs of relevance and further development in
relation to AdS/CFT. A review on holographic principle and an introduction
to AdS/CFT can be found in the bibliography, [20] [21].

1.5 Dualities and solution-generating techniques
Duality transformations show the equivalence between theories. In superstring/M-
theory we have three dualities, S- T- and U-duality. T-duality exchanges IIA
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and IIB by dimensional uplift and compactification on a torus. S-duality
is a manifestation of the symmetry group of IIB and maps a theory on to
the same IIB theory with an inverse string coupling constant. M-theory is
a eleven dimensional theory, d = 11 being the maximal dimension for su-
persymmetry. The strong coupling limit of IIA is equivalent to M-theory,
related by S-duality. Duality transformations can be utilized to obtain new
solutions from already known solutions. The procedure of this solution gen-
erating technique is done by a uplift-boost-reduction. The known solution
is lifted by adding an additional dimension that possesses a translational
invariance. A boost is then performed along the direction of the new dimen-
sion and finally the extra dimension is compactified by either a Kaluza-Klein
reduction or one of the duality transformations of the theory.

1.5.1 Kaluza-Klein reduction

Kaluza-Klein dimensional reduction is done by compactifying a dimension
of the metric on a circle. This method is of high importance in chapter 4
where it will be used to generate charge from a bent neutral brane solution.
We will provide an example of such a procedure in section 1.5.4. In Einstein
frame a d+ 1 dimensional metric decomposes as

ds2d+1 = e2↵�ds2d + e2��(dz + Aµdx
µ
)

2, (1.29)

↵2
= 1/[2(D � 1)(D � 2)], � = (2�D)↵. (1.30)

With Aµ as a gauge field, � the dilaton, and µ are the d-dimensional spacetime
indices. The Lagrangian density will decompose as

p�gd+1Rd+1 =
p�gd

�
Rd � 1

2

(@�)2 � 1

4

e�2(d�1)↵�F 2
(2)

�
, (1.31)

with F(2) as the field strength of the gauge potential Aµ.
There is an intimate relation between the eleven dimensional M-theory

and type-IIA string theory. They are simply related through dimensional
reduction by compactification on a circle. Denote the 11th coordinate x11

and wrap the dimension on a circle of radius

R11 = gsls. (1.32)
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Then the supergravity fields will decompose as

ds211 = e�2�/3ds210 + e4�/3
(dx11

+ C1µdx
µ
)

2,

(@A3) = e4�/3
(@C3 � 2H3C1) +

1

2

e�/3
(@B2)dx11.

(1.33)

If the direction that the Kaluza-Klein reduction is used to compactify is
boosted then from the lower-dimensional perspective, the off-diagonal com-
ponents of the metric can be interpreted as a gauge-field. Thus by boosting
a direction of a neutral solution and using Kaluza-Klein reduction to com-
pactify that direction we can obtain a new solution charged under a gauge
field.

1.5.2 T-duality

This symmetry is extremely relevant to our discussion in chapters three and
four. It plays an integral role in generating the higher-form charge for elasti-
cally perturbed p-brane solutions in type-II string theory carrying a smeared
q-brane charge (the concept of smearing is introduced at the end of this
chapter).

T-duality is an inherent symmetry property in superstring theory. This
can be demonstrated by noting that, although the massless spectrum of type-
IIA- and B theories differ in ten dimensions, their spectrum matches when an
isometry direction is compactified. T-duality can be seen as a map between
type-IIA string theory compactified on a circle of radius R to type-IIB of
radius l2s/R. The two theories are said to be T-dual to each other with IIA
compactified on a large radius and IIB on a small radius. It can also be per-
formed along a transverse direction, for example to generate a KK monopole.
It generally changes the dimension of a brane depending on whether it is per-
formed along a world-volume direction or transverse to the world-volume.

In addition to exchanging the two type-II theories, T-duality exchanges
the winding and momentum modes of fundamental strings F1. The radius
in string units is interchanged and the string coupling is left unchanged in
one lower dimension. We illustrate this effect on the units by

˜R
˜ls

=

ls
R

,
g̃sq
˜R/˜ls

, ˜ls = ls. (1.34)

A general set of rules, known as Buscher’s rules, tells us how T-duality acts
on the fields of a theory. For an isometry direction, z, Buscher’s rules for the
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string metric Gµ⌫ , the two-form field Bµ⌫ , the scalar dilaton �, and the R-R
fields Cn, acting on NS-NS fields are as follows [15] [22]:

e2�̃ = e2�/Gzz, ˜Gzz = /Gzz, ˜Gµz = Bµz/Gzz,

˜Gµ⌫ = Gµ⌫ � (GµzG⌫z � BµzB⌫z)/Gzz,

˜Bµ⌫ = Bµ⌫ � (BµzG⌫z �GµzB⌫z)/Gzz.

(1.35)

The gauge field transforms as

˜C(n)
µ...⌫↵z = C(n�1)

µ...⌫↵ � (n� 1)

C
(n�1)
[µ...⌫|zG|↵]z

Gzz

. (1.36)

The above equation is not the most general expression, although valid in
special cases.

1.5.3 S-duality

This particular symmetry does not play a role in the developments reviewed
in the next chapters, however it is worth mentioning a few words about it.
Type-IIB string theory has a non-perturbative SL(2, Z) symmetry. That
symmetry is manifested in the S-duality. It maps the coupling constant to
the inverse of another theory, gs ! 1/gs. In the low energy limit it is a
SL(2,R). If we look at the Z2 subgroup of the symmetry, where C0 = 0, we
can observe some direct effects of S-duality. I we define ⌧ = C(0)

+ ie�� we
have

⌧ ! �1/⌧,

B2 $ C2,

C+
4 ! C+

4 .

(1.37)

In terms of the branes of the theory it means an interchange of F1 with D1

and NS5 with D5, while the D3 brane is left invariant.

1.5.4 Solution-generating techniques

Solution-generating techniques are important for our discussion in chapter 4,
the examples of which we look at will be particularly relevant. In chapter 4
the steps leading to a bent neutral p-brane solution are presented and that

15



solution is then used as a seed solution for the particular example shown
in this section. We can obtain new solutions consisting of new desired at-
tributes by employing different solution generating techniques. Kaluza-Klein
reduction will be useful for obtaining solutions carrying a Maxwell charge (a
q = 0 form) and T-duality will make it possible to fairly straightforwardly
obtain black brane solutions with higher form gauge fields.

Let us look at an example of an uplift-boost-reduction procedure with the
purpose of obtaining a dilatonic black p-brane with a Maxwell charge and
KK dilaton coupling from a neutral solution. We can take a D-dimensional
metric ds2D and add m + 1 flat directions by taking a direct product with
Rm+1. It can be checked that such a procedure will also satisfy the Einstein
equations. Let’s write it as

ds2d+1 = ds2D +

mX

i=1

(dyi)
2
+ dx2, (1.38)

with d = p̃+m+n+3. Adding extra dimensions to a solution is known as a
lift. One of the extra dimensions added is separated from the other because
it will be the isometry direction along which the boost and reduction will
be performed. A boost will map a solution to another solution. The next
step is to perform a uniform boost in the t- and x-directions with [c, s]
(c ⌘ cosh, s ⌘ sinh), with rapidity . The relevant metric components
will then be:

g
(d+1)
tt = gttc

2
 + s2,

g(d+1)
xx = gtts

2
 + c2,

g
(d+1)
tx = sc(gtt + 1),

g
(d+1)
tzi = cgtzi ,

g(d+1)
xzi

= sgtzi .

(1.39)

Now that we have the boosted metric we can perform the Kaluza-Klein reduc-
tion on the x-dimension. The dimensional reduction follows decomposition
mentioned before, (1.25) and (1.27). Following that decomposition we find
the expression for the d-dimensional metric, the newly acquired gauge field,
and dilaton,

g(d)µ⌫ = e�2↵�

✓
g(d+1)
µ⌫ � g

(d+1)
µx g

(d+1)
⌫x

g
(d+1)
xx

◆
, Aµ =

g
(d+1)
xµ

g
(d+1)
xx

, e2(2�d)↵�
= g(d+1)

xx .

(1.40)
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If the solution acquired after the uplift-boost-reduction procedure is iden-
tified as a solution in string theory it can be worked on further by using T-
duality. The m remaining directions, which we are left with are produced in
order to gain a higher-form charge. We leave the procedure of using T-duality
until chapter 4, where it is used to compactify the m extra dimensions, given
a particular seed solution identified with type-II string theory.

1.6 Smearing of branes and making black holes
The procedure of smearing branes results in a larger brane solution. It
involves setting up an infinite array of branes, then approximating the sum
by taking their periodicity to be infinitesimally small. Because @2

? is a linear
operator we can construct a multi-center solution, Hp̄. For a multi-center
solution of only one kind of BPS branes the gauge field forces cancel the
gravitational and dilatonic forces, so the system will be in static equilibrium.
Thus from the metric (1.14) of the extremal BPS p-brane, we can write

Hp̄ = 1 + cpgsNpl
7�p
s

X

i

1

|x? � x?i|7�p
. (1.41)

Taking the sum from minus infinity to infinity with the periodicity of the
branes being 2⇡R we can approximate the sum as an integral if we assume
x? >> R. Making appropriate changes of variables makes it possible to
write that integral in a form that is straightforwardly solvable:

Hp̄ ⇡ 1 + cpgsNpl
7�p
s

1

2⇡R

1

r̂7�[p+1]

Z
du

1

p
1 + u2(7�p)

. (1.42)

Which with the integral solved and a little bit of rewriting becomes

Hp̄ ⇡ 1 +


Np

(R/ls)

�
gscp+1

✓
ls
r̂

◆7�[p+1]

. (1.43)

In the limit we applied we can look at an array of branes as making up a linear
density of branes. We call Hp̄ a smeared harmonic function. Comparing this
result with a harmonic function for a (p+ 1) brane we can read off that the
linear density of p-branes is the same as the number of (p+ 1)-branes:

Np+1 =
Np

(R/ls)
. (1.44)
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Through special intersection rules for BPS p-branes we can construct
black hole solutions. The method used is known as the harmonic function
rule. BPS black holes are extremal, so their temperature is zero. The har-
monic function rule is a systematic ansatz for construction of supergravity
solutions of pairwise intersections of BPS branes, developed in [23] [24] [25].
It involves both parallel and perpendicular intersections of branes. We re-
strict ourselves to harmonic functions that only depend on the transverse
coordinates. The metric is factorized into a product structure with respect
to intersection rules that we will not go into here. This procedure results in
smeared intersecting brane solutions. As an example of the harmonic func-
tion rule we can construct a system with a D5 brane with a smeared D1. If

we define a overall transverse coordinate, r2 = x2
? ⌘

4P
i=1

(xi
)

2, in string frame

it gives the metric with the D1 brane smeared in directions x2...x5

ds210 = H1(r)
� 1

2H5(r)
� 1

2
(�dt2 + dx2

1) +H1(r)
1
2H

� 1
2

5 dx2
2...5+

H1(r)
1
2H

1
2
5 (dr

2
+ r2d⌦2

3).
(1.45)

While the dilaton and gauge fields are

e� = H1(r)
1
2H5(r)

� 1
2 , (1.46)

C01 = g�1
s [1�H1(r)

�1
], C01...5 = g�1

s [1�H5(r)
�1
]. (1.47)

Dimensional reduction can be performed for the solution to acquire different
horizons, thus resulting in different entropies. Aside from this example, many
other solutions can be constructed using the harmonic function rule.

The solutions constructed this way are generally extremal. The same
kinds of BPS branes can be put together with the multi-center construction
because they are in static equilibrium with each other. In many cases, non-
extremal branes cannot satisfy this equilibrium, causing them to attract to
each other and thus they will not satisfy the harmonic function rule.
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Chapter 2

The Blackfold Approach

The blackfold approach is a framework in which we capture the long-range
effective dynamics of fluid black branes living on a dynamical submanifold of
a background metric. We call such objects blackfolds. One requirement for
the physical system to which we want to apply the method is that the black
object has two widely separated length scales of its horizon. In four dimen-
sions all black hole horizons are approximately a sphere, the main reason for
which is the Kerr bound J  GM2. In higher dimensions we are not re-
stricted by the Kerr bound and so we can have ultra-spinning black holes. In
the case of a ultra-spinning Myers-Perry black hole, the result of taking the
limit of the length scale associated with the angular momentum being much
larger then the length scale of the mass is a pancaked horizon, equivalent to
a black brane. If we identify the larger scale as R and the smaller, horizon
thickness, as r0, we are able to approximate the dynamics of the blackfold
in expansions of the infinitesimal factor r0/R << 1. This method gives us
the opportunity to discover new higher dimensional black hole solutions by
wrapping black branes along a submanifold of a desired topology [11] [10]
[12]. The discussion of the blackfold approach presented here will mostly
base on the work of [26] and [27] where the blackfold approach is applied to
branes carrying brane currents.
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2.1 Blackfolds

2.1.1 Relevant tools

A few mathematical tools are needed for the discussion of the blackfold ap-
proach. The tools relevant to the world-volume geometry have to be put
forth. Embedding of a black brane with world-volume Wp+1 in a background
metric gµ⌫ is parameterized by two main quantities. First, we note that the
position of the brane in the background metric is written in terms of coor-
dinates Xµ

(�a
). The first embedding quantity we mention is the induced

world-volume metric of the brane,

�ab = gµ⌫@aX
µ@bX

⌫ , (2.1)

where a, b = 0, . . . , p and µ, ⌫ = 0, . . . , D � 1. The second quantity is the
first fundamental form of the submanifold

hµ⌫
= @aX

µ@bX
⌫�ab, (2.2)

which acts as a projection operator onto the world-volume coordinates. We
can similarly define a projector onto the space transverse to the world-volume,

?µ⌫ = gµ⌫ � hµ⌫ . (2.3)

Tensors living in the world-volume Wp+1 can only have well defined covariant
derivatives in the tangential directions, so we define a tangential covariant
derivative as

¯rµ = h⌫
µr⌫ . (2.4)

Lastly we define the extrinsic curvature tensor as

K⇢
µ⌫ = h�

µ
¯r⌫h

⇢
�. (2.5)

2.1.2 The blackfold equations

Let us consider a stress-energy tensor, T µ⌫ , of a black brane. It has a support
on the p + 1 dimensional world-volume. Having no orthogonal components,
it satisfies the tangentiality condition

?⇢
µT

µ⌫
= 0. (2.6)
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We make two basic assumptions of the stress-energy tensor. The first is
that it derives from the dynamics of general relativity, the second being that
spacetime diffeomorphism invariance holds. Since the stress-energy tensor
is vanishing in orthogonal components we write the conservation equations
with the tangential covariant derivative,

¯rµT
µ⇢

= 0. (2.7)

Decomposing the expression into tangential and orthogonal components gives
us specially intrinsic and extrinsic equations of the brane dynamics. The
decomposition can be done in the following way,

¯rµT
µ⇢

=

¯rµ(T
µ⌫h⇢

⌫) = T µ⌫
¯rµh

⇢
⌫ + h⇢

⌫
¯rµT

µ⌫

= T µ⌫h�
⌫
¯rµh

⇢
� + h⇢

⌫
¯rµT

µ⌫

= T µ⌫K⇢
µ⌫ + @bX

⇢DaT
ab.

(2.8)

The D equations can be split into, respectively, D�p�1 extrinsic equations
and p+ 1 intrinsic equations,

T µ⌫K⇢
µ⌫ = 0, (2.9)

DaT
ab
= 0. (2.10)

The extrinsic equation (2.9) is a special case of Carter’s equation [26] [28].
Here we are ignoring any background fields that might couple to the p-brane.
If we define H[p+2] to be the field strength of a given background potential,
Carter’s equation written out fully are [28]

T µ⌫K⇢
µ⌫ =

1

(q + 1)!

?⇢
�Jµ0...µqH

µ0...µq�. (2.11)

The extrinsic equations are generalizations of the geodesic equation for free
point particles to p-branes. The similarity of the extrinsic equations to the
geodesic equation can be seen by writing them explicitly in terms of the
embedding Xµ

(�a
),

T ab
(Da@bX

⇢
+ �

⇢
µ⌫@aX

µ@bX
⌫
) = 0. (2.12)

While the geodesic equation for free falling point particles reads,

d2x�

d⌧ 2
+ �

�
↵�

dx↵

d⌧

dx�

d⌧
= 0. (2.13)
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2.2 Dynamics of blackfolds carrying electric charge
The framework for blackfolds carrying a brane charge was first developed in
[26] [27]. With the inclusion of q-brane charges carried by the p-brane it is
necessary to introduce some new quantities. Aside from our p-brane being
charged under a p-form R-R potential we can have a dissolved q-brane charge
on the world-volume Wp+1. Now we should have a local charge density Qq of
q-branes on the world-volume. We define �q as the local potential conjugate
to the charge density. The induced metric along the world-volume of the q-
brane current we identify as h(q)

ab . In addition we have the global counterparts
to the local charge density and conjugate, Qq (note that Qq = Qq) and �

(q)
H .

This section will start out by outlining the dynamics of branes carrying
a 0-brane (particle) current, then move up to branes carrying string currents
and finally higher form charges. There are a lot of properties that stay
the same in the analysis throughout the different cases. It consists of first
analyzing the form of the stress-energy tensor in presence of a brane charge,
then examine how the extrinsic and intrinsic dynamics look for the relevant
cases.

Let’s start by saying a few words about the simple case of branes carrying
Maxwell charge. When q = 0 the fluid brane retains its spatial isotropy and
is characterized by a eigenvalue energy density ". We can write the stress-
energy tensor in a perfect fluid form,

Tab = "uaub + P (�ab + uaub), (2.14)

with pressure P and a unit-normalized timelike eigenvector u. Defining a
charge density Q on the fluid, we write the particle current proportional to
the velocity vector,

Ja = Qua. (2.15)

Let us move on and examine the attributes of branes carrying higher-form
(q > 0) charge.

2.2.1 Branes carrying a string current

Branes carrying a q > 0 current have a broken isotropy. Normally, with
a spatially isotropic brane the stress-energy tensor would follow the form
of (2.14). Since, in this case, we have a string current, there is a two-form
world-volume current Jab present associated with it. We can define a spacelike
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vector vb = uaJ
ab, which is orthogonal to u. Demanding v to be normalized

to one makes it possible for us to write the two-current as

Jab = Q(uavb � vaub). (2.16)

In the absence of dissipative currents, v is an eigenvector of Tab. The new
velocity vector v characterizes the directions along which the dissolved string
charges lie. Although, not totally isotropic, the stress-energy tensor of the
fluid is still isotropic in transverse spatial directions. So we can rewrite the
stress-energy tensor split in terms of parallel and orthogonal pressures,

Tab = "uaub + Pkvavb + P?(�ab + uaub � vavb). (2.17)

The introduction of the vector v through the string charge breaks the isotropy.
This pressure difference between Pk and P? is essentially the result of the
energy density of the strings �Q. So generally for branes carrying a higher
form charge we have a pressure difference, in this case,

P? � Pk = �Q. (2.18)

Where � is the string chemical potential.
Branes carrying string currents obey some recognizable thermodynamic

relations, on their world-volume thermodynamic equilibrium is satisfied lo-
cally which leads to the first law

d" = T ds+ �dQ, (2.19)

where T is the local temperature. The setting also satisfies the thermody-
namic Gibbs-Duhem relations,

"+ P? = T s+ �Q, (2.20)

dP? = sdT +Qd�, dPk = sdT � �dQ. (2.21)

The current and the stress-energy tensor must obey, respectively, the current
continuity equations and the intrinsic fluid equations,

d ⇤ J = 0, DaT
ab
= 0. (2.22)
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2.2.2 Branes carrying p-brane charge

A p-brane current carried by a fluid brane with world-volume Wp+1 has the
form

J = Qp
ˆV(p+1). (2.23)

Here we have introduced ˆV(p+1) as the volume form on Wp+1. The charge
is assumed to be conserved, and so it must be constant along the world-
volume, @aQp = 0. The characterizing quantities in this case is the same
as for a neutral fluid, the velocity vector u and the energy density ". The
perfect fluid is characterized by the stress-energy tensor and the equation of
state, where Qp manifests. The form of the stress-energy tensor is that of
(2.14). As in the previous case of branes carrying string charge, locally the
fluid satisfies the thermodynamic relations

d" = T ds , "+ P = T s, (2.24)

with local temperature T and entropy density s. The conservation of entropy
can be seen from parallel components of the fluid equations DaT

ab
= 0 to

the local velocity ua and using the thermodynamic relations (2.24),

Da(su
a
) = 0. (2.25)

The transverse part of the equation results in the Euler force equations,

(�ab
+ uaub

)(u̇b + @b ln T ) = 0. (2.26)

The extrinsic elastic dynamics, or the dynamics of the fluid within the
background spacetime, are governed by Carter’s equations (2.11). We will
however neglect background fields as they are not considered in the chapters
to come. The extrinsic equations can thus be written as

� PK⇢
= ?⇢

µsT u̇µ. (2.27)

The interpretation of this equation is that it captures the acceleration in the
orthogonal directions to the world-volume due to the force exerted by the
effect of the extrinsic curvature.
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- Stationary configurations

In continuation of the discussion of branes carrying a p-brane current we
look at stationary configurations. The bent brane solutions we construct in
chapter 4 are stationary so it is informative in context of the later chapters
to look at stationary solutions. The velocity field is now aligned with a
Killing vector k along the world-volume. We assume that k = kµ@µ generates
isometries in both the world-volume and the background spacetime. In that
way we write,

u =

k

|k| , r(µk⌫) = 0, (2.28)

and u̇µ = @µ ln |k|. In this setup the local temperature T is simply the
redshifted global temperature T by the absolute value of the killing vector,

T (�a
) =

T

|k| . (2.29)

With the stationary configuration determined in this way the extrinsic equa-
tions (2.27) take the form

K⇢
= ?⇢µ@µ ln(�P ). (2.30)

It must be specified in which way k is related to the background Killing
vector ⇠, that signifies unit-time translations at asymptotic infinity, to deter-
mine the physical quantities of the system. We write

k = ⇠ + ⌦�. (2.31)

Here � is a spacelike Killing vector orthogonal to ⇠, a generator of rotations,
and ⌦ is a angular velocity constant. The Killing vector ⇠ is assumed to be
orthogonal to spacelike hypersurfaces Bp on the world-volume, and we say
that the unit-normal is

na
=

1

R0
⇠a|Wp+1 , (2.32)

where R0 measures the local gravitational shifts between points on the world-
volume. Working out the properties a little bit and writing integrations
on the world-volume as integrals over the spacelike hypersurfaces Bp with
measure dV(p) [27] results in the mass, angular momentum, and entropy,
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obtained as integrals over spacelike hypersurfaces Bp with a measure dV(p),

M =

Z

Bp

dV(p)Tabn
a⇠b, J = �

Z

Bp

dV(p)Tabn
a�b,

S = �
Z

Bp

dV(p)suan
a.

(2.33)

Although a different way of extracting the conserved quantities, this is ef-
fectively equivalent to what we did before in the simple case of linearized
gravity in chapter 1.

2.2.3 Thermodynamic properties of the blackfold fluid

Moving on to read off the characterizing quantities from the effective stress-
energy tensor will be relevant to the discussion in chapters 3 and 4. Following
the charged dilatonic p-brane solutions of the action presented in section 1.1
with (1.5), conserved quantities and thermodynamics can be calculated from
the effective stress-energy tensor as in terms of the horizon thickness r0 and
charge parameter ↵. We have

" =
⌦(n+1)

16⇡G
rn0 (n+1+nN sinh

2 ↵), P = �⌦(n+1)

16⇡G
rn0 (1+nN sinh

2 ↵). (2.34)

The local temperature T , the local entropy density s, the charge density Qp

and the local chemical potential � are

T =

n

4⇡r0(cosh↵)N
, s =

⌦(n+1)

4G
rn+1
0 (cosh↵)N ,

Qp =
⌦(n+1)

16⇡G
n
p
Nrn0 cosh↵ sinh↵, � =

p
N tanh↵.

(2.35)

The chemical potential � is the value of the difference of the gauge field
estimated at the horizon and at spatial infinity. The Gibbs free energy,
defined as

G = "� T s� �pQp = �P � �pQp (2.36)

takes the form,

G =

⌦(n+1)

16⇡G
rn0 . (2.37)

The parameters r0 and ↵ encode the short scale structure of the geometry of
the black brane. The inclusion of charge results in an additional tension on
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the brane world-volume, which can becomes apparent when certain relations
are worked out between the physical quantities [27].

The Gibbs free energy density can be expressed as

G =

1

n
T s, (2.38)

which can be interpreted as the Smarr relation in a Minkowski background.

2.2.4 Boundaries, extremality, and near-extremality

The fact that the charge Qp has to be conserved restricts blackfolds with p-
brane charges to no open boundaries. It is however possible that the blackfold
meets the end of another brane that carries the charge.

When these kinds of black branes are taken to extremal limits (r0 ! 0 and
↵ ! 1) they reach a point where their horizon becomes degenerate. Most
of those solutions have a singular horizon in the extremal limit but they
can be approached by limits of solutions that have non-degenerate solutions
[29]. Even though the intrinsic dynamics are not that of fluid dynamics, the
extremal limit solutions can have good physical interpretations and we are
able to apply the blackfold method on them.

It can be shown that the ground state of the charged p-brane corresponds
to the extremal limit so we can examine near-extremal p-branes, with a given
charge Qp, by writing the excited states of the stress-energy tensor as

T
(exc)
ab = Tab � T

(ground)
ab . (2.39)

We can obtain the near-extremal limit by taking this difference to be as small
as possible, which happens when the chemical potential � ' p

N [27]. When
N/2� 1/n = 1/(p+ 1) the stress tensor is traceless, resulting in a vanishing
of the dilaton coupling. There are many known cases of these kinds of branes
in string theory.

This point does not play a particular role in this thesis but it was worth
mentioning a few words about it. Let us move on to the discussion of fluid
branes carrying a higher-form (q  p) charge.

2.2.5 Black branes with q  p currents

In the coming chapters solutions and dynamics of bent p-branes carrying
higher-form charge is examined, so the discussion of q > 1 is particularly
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important. In chapter 4 a class of stationary bent p-brane solutions in type-
II string theory is obtained that carry smeared q  p charges. We will present
the dynamics and thermodynamic properties for the general case of a p-brane
carrying a arbitrary dissolved q-brane charge, only restricted by 0  q  p.
For the purpose of this thesis it is enough that we constrain ourselves to the
case of a perfect fluid description of the p-brane. This assumption is enough
to construct stationary configurations.

Each of the q-branes living on the world-volume Wp+1 constitutes a
subworld-volume Cq+1, to which we associate a unit volume-form ˆVq+1. The
conserved current is defined through the volume form and the charged den-
sity,

Jq+1 = Qq
ˆVq+1. (2.40)

We will assume that Jp+1 satisfies the continuity equation for the higher-form
current d ⇤ J(q+1) = 0. As we saw before when there is a charge of higher
form than Maxwell (q = 0) charge, the q-brane currents cause a pressure
difference in directions orthogonal and parallel to the brane, making the
fluid anisotropic.

The thermodynamic relations

d" = T ds+
X

q

0

�qdQq, (2.41)

are satisfied locally in the fluid. The prime on the sum indicates that q = p
is not included. Introducing the Gibbs free energy density as

G = "� T s�
X

q

�qQq, (2.42)

we can write the stress-energy tensor as

Tab = T suaub � G�ab �
X

q

�qQqh
(q)
ab . (2.43)

Where h
(q)
ab is the induced metric on the q-brane world-volume Cq+1. The

authors of [27] point out that this form of the stress-energy tensor is not
completely proven to be the universal form of any charged brane, but it
can safely be presumed to be true for a large class of branes and for black
branes in type-II/M supergravity along with their toroidal compactifications.
There are two noteworthy points that can be made at this point. The brane
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densities Qq are constant along their world-volume and can only vary in p�q
directions transverse to the current so they are in a sense quasi-local. The
other point is that the world-volume of two different brane currents with
q  q0 do not necessarily intersect so they can in fact have currents along
different directions.

The Smarr relation for p-branes in type-II/M supergravity, compactified
on a torus reads

" =
n+ 1

n
T s+

X

q

�qQq, (2.44)

which can be rewritten using (2.42) as

G =

1

n
T s. (2.45)

Thus we are able to express the general stress-energy tensor more conve-
niently as

Tab = T s

✓
uaub � 1

n
�ab

◆
�
X

q

�qQqh
(q)
ab . (2.46)

The extrinsic equations for a fluid black p-brane carrying a q-brane charge
now take the form

T s?⇢
µu̇

µ
=

1

n
T sK⇢

+?⇢
µ

X

q

�qQqK
µ
(q), Kµ

(q) = hab
(q)K

µ
ab. (2.47)

Kµ
(q) is the mean curvature vector of the embedding of the q-brane world-

volume in the background spacetime.

2.3 Stationary charged blackfolds
We move on to the determination of the charges, potential, and thermody-
namics of stationary perfect fluid branes carrying a q-brane charge. Again,
as before, they have a velocity vector aligned with a Killing vector. The
temperature redshifts as

T (�a
) =

T

|k| , (2.48)

where T is the global temperature. The local temperature is obtained simply
by redshifting the global temperature. According to the equipotential condi-
tion for electric equilibrium [26], the potential �q(�) in the stationary case
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does not depend on the Killing time nor directions transverse to the current.
The global q-brane potential for the stationary configuration is thus obtained
as an integration over spatial directions along the current,

�

(q)
H =

Z
dq�|h(q)

(�a
)|1/2�q(�), (2.49)

which is a constant.
The relation of the Killing vector k to the killing vector of the background

spacetime is assumed to be the same as the stationary configuration for the
branes carrying a p-brane current. The conserved quantities would then be
obtained in the same way.

The q-brane charge is obtained by considering the spatial sections of Cq+1,
the world-volume of the q-brane, that are orthogonal to the normal na. We
arrive at it by integrating the charge density over transverse directions to the
current, with the introduction of a unit q-form, !(q), orthogonal to na. So we
have

Qq = �
Z

Bp�q

dV(p�q)J(q+1) · (n ^ !(q)) =

Z

Bp�q

dVp�q

q
�h

(q)
ab n

anbQq(�) .

(2.50)
And the global chemical potential becomes

�

(q)
H =

Z
dV(q)

R0q
�h

(q)
ab n

anb

�q(�) . (2.51)

These expressions for a general q-brane current simplify into the special cases
by simply plugging in the appropriate values of q.

The extrinsic equations can be obtained for the stationary configurations
from varying the action

I = �
Z

Wp+1

dp+1�
p��G = ��t

✓
M � TS � ⌦J �

X

q

�

(q)
H Qq

◆
, (2.52)

while keeping T , ⌦, and �

(q)
H constant. This leads to us seeing that the

analogous global first law of thermodynamics for variations of the brane
embedding is equivalent to the extrinsic equations,

dM = TdS + ⌦dJ +

X

q

�

(q)
H dQq . (2.53)
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2.4 Black p-brane solutions with dissolved q-
brane charges

Since our discussion will ultimately lead us obtaining bent brane solutions
carrying smeared higher-form charge it is natural to review the leading order
solutions. The appendix of [26] shows in detail how to obtain black p-brane
solutions carrying dissolved q-brane charge starting from a class of solutions
obtained by Gibbons and Maeda. It is a solution of an action of the same
form as introduced in chapter 1 with (1.4). The details of the derivation
of the solution will not be presented but the outline of the steps leading to
it will be presented as a special class of the Gibbons-Maeda solutions will
become important later.

The Gibbons-Maeda solution is an Einstein-Maxwell-dilaton (EMD) so-
lution of a specific action for a d = n + 3 spherical charged black hole with
event horizon r0 and charge parameter ↵. The desired solution is arrived
at by a sequence of uplifts of the solution. The solution is first uplifted to
n + q + 3 dimensions to obtain q-brane charges in the same number of ex-
tended directions then, again uplifted by p� q extra dimensions, leading to
the final solution.

The starting solution can be put in the form,

ds̃2 = �fh�Ãdt2 + hB̃
(f�1dr2 + r2d⌦2

n+1). (2.54)

In this expression f is defined in the same way as is chapter 1, h is a radial
function that incorporates the charge parameter ↵, and the coefficients ˜A
and ˜B are related to the dilaton coupling ã of the theory. The tilde marks
over the quantities is simply to identify them as the ones associated with the
d-dimensional starting solution, in contrast to the uplifted ones. We write
the first uplift we form a warped product of the original metric, which we
write as g̃µ⌫ with coordinates xµ, and q flat extra dimensions with coordinates
ym,

ds2 = e2↵�(x)g̃µ⌫(x)dx
µdx⌫

+ 2e2��(x)�mn(y)dy
mdyn. (2.55)

We write a (q+1)-from electrical ansatz for the gauge potential in such a way
that, upon compactification is a Maxwell potential, and with the q indices
lying in the added extended directions,

B[q+1] =
˜B[1] ^ dy1 ^ . . . ^ dyp, (2.56)
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where ˜B[1] is the original gauge field. The dilaton � is taken to be proportional
to the original one by � = � ˜�, where � is a undetermined coefficient.

Now, writing the new Ricci scalar in terms of the one of the original
solution and the dilaton and ensuring that the d-dimensional solution also
obeys the D = n + q + 3-dimensional equations of motion we are able to
solve for the dilaton coupling and the other different coefficients. We will
not write the explicit determination of the coefficients here. The uplifted
(n+ q + 3)-dimensional solution we end up with has the metric,

ds2 = �h�A
(fdt2 + d~y2) + hB

(f�1dr2 + r2d⌦2
(n+1)), (2.57)

with

A =

4n

2n(q + 1) + (n+ q + 1)a2
, B =

4(q + 1)

2n(q + 1) + (n+ q + 1)a2
. (2.58)

The new (q + 1)-form gauge field reads

B[q+1] = �p
A+B

rn0
rnh(r)

sinh↵ cosh↵dt ^ ✏, (2.59)

with ✏ ⌘ dy1 ^ . . . ^ dyp. Finally, the dilaton is given by

� = �1

4

(A+B)a lnh(r). (2.60)

Note that the coefficients A and B always enter as A+B so instead of writing
them separately we simply identify them with N = A+B.

The next step to obtaining the black p-brane solutions with diluted gen-
eral q-brane charge (q  p) is to uplift the solution obtained above and
uplifting it by p � q extra extended directions. We will denote the new ex-
tra dimensions collectively by coordinates za. A dimensional reduction is
performed along the ym directions and the uplift procedure for the new di-
rections is precisely the same as we just did above. We will simply write
the solution for the higher-form charged black p-branes. The D = n+ p+ 3

dimensional metric reads

ds2 = �h�A
(fdt2 + d~y2) + hB

(f�1dr2 + r2d⌦2
(n+1) + d~z2), (2.61)

with
N = A+B =

4(n+ p+ 1)

2(q + 1)(n+ p� q) + (n+ p+ 1)a2
. (2.62)
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The solution for the gauge field is

B[q+1] = �
p
N

rn0
rnh(r)

sinh↵ cosh↵dt ^ dy1 ^ . . . ^ dyq, (2.63)

and the dilaton solution reads

� = �1

4

Na lnh(r). (2.64)

As expected, this solution reduced to the previous one when p = q and setting
q = 0 one obtains the general p-brane solutions arising from EMD theory.

We conclude our discussion of the blackfold approach for charged branes
and move on to the extension of the blackfold method to 1st order in multi-
pole expansion of the stress-energy tensor, incorporating the finite thickness
effects of charged black branes.
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Chapter 3

Pole-dipole order charged

blackfolds

To the first order of derivative expansion in the blackfold approach the dy-
namics of black branes can be approximated in a way similar to the approx-
imation of planetary bodies following geodesics as point particles. Higher
order corrections yield effects incorporating a minute thickness and gravita-
tional effects such as backreaction. This chapter will follow the works done
in [13] and [14], where the blackfold approach is extended to first order in
derivative expansion to demonstrate dipole effects arising from bending a
black brane. As well as accounting for dipole moments the correction takes
into account the internal degrees of freedom. The formalism for the bending
effects of charged black branes are arrived at assuming a linear response the-
ory (this assumption is later verified), analogous to classical fluid dynamics
and material science.

Up until now we have worked with a zero thickness stress-energy tensor
with a support on its world-volume. To leading order the ADM stress-energy
tensor of black p-branes is approximated as

T µ⌫
=

Z
dp+1x

p��T µ⌫
(0)

�D(x↵ �X↵
(�a

))p�g
, (3.1)

where � is the induced metric on the brane, T µ⌫
(0) is the monopole source of

the stress-energy, x↵ are the spacetime coordinates, and the location of the
brane world-volume, Wp+1, in the spacetime is given by X↵

(�a
). Our goal

is to extend on this monopole approximation to capture higher order effects.
We will only focus on the fine structure corrections. In order to do that
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we require the gravitational self-reaction effects to be subleading to the ones
that incorporate the bending effects. The corrections are characterized by
power expansions in (r0/R)

n, where n is the codimension. For codimension
n > 2 it has been shown that the self-gravitational corrections are subleading
to the fine structure corrections.

3.1 The effective stress-energy tensor and ef-
fective current

The equations of motion for the first order corrected charged pole-dipole
branes are arrived at by solving the conservation equations for the appropri-
ate effective stress-energy tensor and effective current, so our starting point
of this discussion will be to take a look at the multipole expansion of those
quantities. Earlier in our discussion of the blackfold approach, the branes
were taken to be infinitely thin. The problem is that the effects of bending
don’t manifest themselves unless the brane is of finite thickness. To visualize
this we can picture a metal rod being bent into the shape of a circular arc.
The material of which the rod consists of will stretch at the outer points
from the center of curvature and the inner points will condense, effectively
resulting in a dipole distribution of the material. Allowing higher orders in
the multipole expansion (3.1) of the effective stress-energy tensor will include
the finite thickness effects that we wish to analyze,

T µ⌫
(x↵

) =

Z

Wp+1

dp+1�
p��


T µ⌫
(0)(�

a
)

�D(x↵ �X↵
(�a

))p�g
�

r⇢

✓
T µ⌫⇢
(1) (�a

)

�D(x↵ �X↵
(�a

))p�g

◆
+ ...

�
.

(3.2)

In the expansion, T µ⌫
(0) is the conventional monopole source of the stress-energy

and T µ⌫⇢
(1) is the new structure term that encodes the finite thickness effects.

This expansion is analogous to a conventional multipole expansion used in
electrodynamics for a distribution of charge. Truncating the expression to
zeroth order we obtain the zero thickness expression (3.1) which leads us to
the blackfold equations discussed in the previous chapter but here we are
considering a truncation to the first order which will lead us to the dynamics
of pole-dipole branes in a curved background spacetime.
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The multipole expansion (3.2) is written in a covariant way, invariant
under spacetime diffeomorphisms and reparametrizations of world-volume.
However, T µ⌫ enjoys two other additional symmetries. It is invariant under
two gauge transformations coined by the authors of [30] as "extra symmetry
1" and "extra symmetry 2". A description of them is in order before we
continue as they are an important part of understanding pole-dipole brane
physics. These symmetries will be explained further in the next section.

The stress-energy tensor should fulfill the covariant conservation equa-
tions

r⌫T
⌫µ

= 0, (3.3)

and we wish to write out the equations of motion following from them using
the expansion (3.2). For later convenience let’s decompose T µ⌫⇢

(1) in tangential
and orthogonal components,

T µ⌫⇢
(1) = u

(µ
b j(b)⌫)⇢ + uµ

au
⌫
bd

ab⇢
+ u⇢

aT
µ⌫a
(1) . (3.4)

The reason for the parenthesis around "b" means that it is insensitive to the
symmetrization of the greek indices. Two quantities have been introduced
in this expression, jb⌫⇢ and dab⇢. We give jb⌫⇢ the interpretation of a current
density of transverse angular momenta, where we have defined jaµ⌫ = 2T aµ⌫

(1) .
The components of the angular momenta have the properties jb⌫⇢ = jb[⌫⇢]

and ua
⌫j

b⌫⇢
= 0. Both greek indices should be read to be orthogonal to the

brane world-volume. The other, dab⇢, has the interpretation of the bending
moment of the brane. The bending moment components have the properties
dab⇢ = d(ab)⇢ and uc

⇢d
ab⇢

= 0. The second property of the quantities is just
a consequence of the greek indices being orthogonal to the world-volume.
In section 3.4 the physical interpretation of the various quantities will be
discussed further.

The branes we consider from here on are generally charged under a (q+1)-
form gauge field, except when we take explicit examples leading up to the
(q  p)-form charge. In the same way as we expanded the stress-energy
tensor in multipoles we should expand the total anti-symmetric current tensor
Jµ1...µq+1 which lives on the brane world-volume [31]:

Jµ1...µq+1
(x↵

) =

Z

Wp+1

dp+1�
p��


J
µ1...µq+1

(0) (�a
)

�D(x↵ �X↵
(�a

))p�g

�r⇢

✓
J
µ1...µq+1⇢

(1) (�a
)

�D(x↵ �X↵
(�a

))p�g

◆
+ ...

�
.

(3.5)
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Just the same as with the stress-energy tensor J(0) encodes the monopole
source of the charged q-brane current and J(1) encodes the finite thickness.
The extra symmetries mentioned for the expansion of the stress-energy also
apply in a very similar manner for this expansion of the current tensor,
which we will make clear in the next section. The equations of motion for
the current follow from the conservation equation

rµ1J
µ1...µq+1

= 0. (3.6)

3.2 Symmetry properties of the derivative ex-
pansion

The two forementioned additional symmetry properties enjoyed by the stress-
energy tensor and the charge current will now be given explicit descriptions.

• Extra symmetry 1

The first extra symmetry is a consequence of the p+ 1 integrations over the
�-functions in expression (3.2). The symmetry property not only valid to
1st order but to all orders of the multipole expansion. Derivatives in the
world-volume directions are integrated out, a consequence of the multipole
expansion being an expansion in transverse derivatives. This means that
there are components of T µ⌫⇢

(1) which have a gauge freedom. The action of this
symmetry on the monopole and dipole terms in the expansion is expressed
as

�1T
µ⌫
(0) = �ra✏

µ⌫a, �1T
µ⌫⇢
(1) = ✏µ⌫au⇢

a. (3.7)

We have introduced, ✏µ⌫a, symmetric in µ and ⌫, as free parameters except
on the boundary of the world-volume where they are required to vanish,

n̂a✏
µ⌫a|@Wp+1 = 0. (3.8)

We use n̂a as a normal vector to the boundary of the brane world-volume.
Now we can use this transformation to show that the tangential components
of T µ⌫⇢

(1) (that is T µ⌫⇢
(1) ua

⇢), can be gauged away everywhere except for the
boundary of the world-volume,

�1(T
µ⌫⇢
(1) ua

⇢) = ✏µ⌫a. (3.9)

37



Hence, we see that the degrees of freedom for the dipole corrections live only
on the boundary of the world-volume.

The action of this symmetry on the current expansion has the same form
as the one on the structure components of T µ⌫ except for an additional minus
sign in the second expression of (3.7). And so, the dipole structure component
of the current can also be gauged away everywhere except for the boundary.

• Extra symmetry 2

Extra symmetry 2 is a perturbative symmetry, so in fact it is approximate,
not valid to all orders of the multipole expansion. To each of the contributions
in the multipole expansion, T µ⌫

(0) and T µ⌫⇢
(1) we associate an order parameter "̃

and write
T µ⌫
(0) = O(1), T µ⌫⇢

(1) = O("̃). (3.10)

As an example of the order parameter, for a brane of horizon thickness r0
bent over a submanifold of curvature radius R, we have "̃ = r0/R. When we
consider elastic perturbations to the monopole approximation of the stress-
energy tensor (i.e. dipole corrections) we truncate expression (3.2) to first
order and the brane acquires a bending moment. In this case, an ambiguity
arises in the position of the world-volume boundary because of the finite
thickness. This reparametrization invariance of the world-volume surface is
expressed as "extra symmetry 2". The action of the symmetry on each of
the structure components of T µ⌫ is a displacement of O("̃),

X↵
(�a

) ! X↵
(�a

) + "̃↵(�a
). (3.11)

This action to first order demands the following transformation rules for the
structure components:

�2T
µ⌫
(0) = �T µ⌫

(0)u
a
⇢ra"̃

⇢ � 2T
�(µ
(0) �

⌫)
�⇢"̃

⇢, �2T
µ⌫⇢
(1) = �T µ⌫

(0) "̃
⇢. (3.12)

If we took the single pole approximation we would see that �2T
µ⌫
(0) = 0,

making it clear that if our object is infinitely thin we would have no freedom
in choosing the world-volume surface.

Extra symmetry 2 acts in the same way on the current expansion as on
the stress-energy tensor.
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3.3 Equations of motion
Only dipole corrections will be of interest to us here so we will take jb⌫⇢ = 0

to avoid having to deal with the properties that arise when the brane has an
angular momentum. Then, from (3.3) and (3.4) we can write the equations
of motion as [13] [32] [14]

ra
ˆT ab

+ ub
µrarcd

acµ
= dacµRb

acµ, (3.13)

ˆT abK⇢
ab +?⇢

µrarbd
abµ

= dabµR⇢
abµ. (3.14)

Here we have defined the quantity ˆT ab
= T ab

(0) +2d(acµK
b)
cµ. Taking the dipole

term to zero we recover Carter’s extrinsic equations of motion in the ab-
sence of external forces (2.9) and if one assumes the monopole structure
term to be of perfect fluid form we would reobtain the leading order black-
fold equations. These equations of motion are relativistic generalizations of
thin elastic branes [32]. We must supplement them with the integrability
condition dab[µK

⇢]
ab and boundary conditions on the world-volume surface:

dab⇢n̂an̂b|Wp+1 = 0,
�
ˆT abuµ

b � dac⇢Kb
c⇢u

µ
b +?µ

⇢rbd
ab⇢

�
n̂a|Wp+1 = 0. (3.15)

In this section we will go into the equations of motion stepwise higher from
(q = 0) Maxwell charge to (q = 1) string charge and finally the 0 < q  p
higher-form charge.

- Pole-dipole branes carrying q = 0 charge

In the point charge case, (q = 0), of pole-dipole branes carrying Maxwell
charge we have a one-form current Jµ following the form of (3.5). In [14]
the steps of the method to arrive at the equations of motion is presented in
detail. The procedure closely follows the methods of [30] where an arbitrary
tensor field fµ(x

↵
) of compact support is introduced such that

Z
dDx

p�gf⌫(x
↵
)rµJ

µ⌫
= 0 . (3.16)

Derivatives of f(x↵
) are decomposed in parallel and orthogonal components

to the world-volume, then that decomposition and the expansion of Jµ are
plugged into the integral. Requiring the resulting expression to vanish for
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for each component of f results a set of three equations of motion. We are
also left with a boundary term of the integral which manifestly vanishes.
Splitting f up into boundary terms and requiring the terms proportional to
them to vanish leads to boundary conditions on the world-volume. In order
to solve the equations of motion, the structures Jµ

(0) and Jµ⌫
(1) are decomposed

into tangential and orthogonal components,

Jµ
(0) = Ja

(0)u
µ
a + Jµ

?(1), Jµ⌫
(1) = mµ⌫

+ uµ
ap

a⌫
+ Jµa

(1)u
⌫
a, (3.17)

such that mµ⌫ and pa⇢ are transverse in their spacetime indices. Note that
the term Jµa

(1) has the property J
[ab]
(1) = 0. For this specific case of (q = 0) we

make a requirement that Jab
(1) = J

(ab)
(1) . This is because we want the equations

of motion to be invariant under extra symmetries 1 and 2. In later cases
of (q > 0) this requirement is not needed since the effective current enters
with more than just one index. The last term in the decomposition (3.17)
of Jµ⌫

(1) is left neither parallel nor orthogonal to the world-volume for the
reason that it can be gauged away everywhere except on the boundary due
to extra symmetry 1. The expression we can read out from plugging the
decomposition into the equations of motion is the constraint mµ⌫

= m[µ⌫].
Without writing details of the derivation, the equations of motion are found
to be

Jµ
?(1) = ?µ

⌫ra

�
pa⌫ + J⌫a

(1)

�
, (3.18)

ra

�
ˆJa

+ pbµKa
bµ

�
= 0, (3.19)

where we introduce ˆJa
= Ja

(0) � ua
µrbJ

µb
(1). The second equation of the last

two is the world-volume current conservation. With the decomposition, the
boundary conditions become

�
paµ + Jµa

?(1)

�
n̂a|@Wp+1 = 0, (3.20)

Jab
(1)n̂an̂b|@Wp+1 = 0, (3.21)

⇥râJ
â
(1) � n̂a

�
ˆJa

+ paµKa
bµ

�⇤|@Wp+1 = 0, (3.22)

where J â
(1) = Jab

(1)v
â
b n̂a are defined as the boundary degrees of freedom. One

can observe that the mµ⌫ used in the decomposition does not enter further
into the equations of motion nor the boundary conditions that we have writ-
ten.
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Now we can write out the explicit actions of extra symmetry 1 on each
of the quantities we have introduced here to characterize the charge current
to further demonstrate that it leaves the equations of motion invariant:

�1 ˆJ
a
= 0, �1p

aµ
= 0, �1J

â
(0) = 0. (3.23)

Explicit application of extra symmetry 2 on the characterizing structure leads
to

�2 ˆJ
a
= �Jµ

(0)u
b
⇢rb"̃

⇢ � ua
⇢J

b
(0)rb"̃

⇢
+rb

�
Ja
(0)"̃

⇢
�
,

�2p
aµ

= �Ja
(0)"̃

µ, �2J
â
(1) = �J b

(0)v
â
b "̃

an̂a,
(3.24)

where the hatted indices signify that they point in normal directions. The
transformations leave the equations of motion invariant.

- Pole-dipole branes carrying q = 1 charge

Pole-dipole order branes carrying (q = 1) string charge are characterized
by the two-form structure components Jµ⌫

(0) and Jµ⌫⇢
(1) . Following the same

procedure as for the (q = 0) case we can directly get the equations of motion
for this case. Again, we decompose the structures into orthogonal and parallel
components,

Jµ⌫
(0) = uµ

au
⌫
bJ

ab
(0) + 2u

[µ
b J

⌫]b
?(1) + Jµ⌫

?(1), (3.25)

Jµ⌫⇢
(1) = 2u[µ

a m
a⌫]⇢

+ uµ
au

⌫
bp

ab⇢
+ Jµ⌫a

(1) u
⇢
a. (3.26)

As before maµ⌫ and pab⇢ are orthogonal to the brane world-volume in their
spacetime indices. We will not go explicitly into the extra symmetries in this
case and for charge q > 1 as they are natural generalizations of the Maxwell
charge case. That is, the extra symmetries will leave the equations of motion
invariant under the action on the individual components that characterize
the current and the last term in the decomposition of Jµ⌫⇢

(1) can be gauged
away everywhere except on the boundary. The last two components in Jµ⌫

(0)

are related through the dipole contributions of Jµ⌫⇢
(1) via

Jµb
?(1) = ub

⇢?µ
�rc(J

⇢�c
(1) �mc⇢�

), Jµ⌫
?(1) = ?µ

�?⌫
⇢rc(J

⇢�c
(1) �mc⇢�

). (3.27)

Using the decomposition we can now obtain the equations of motion and
boundary conditions. Without going into details we will write the results.
The current conservation equation takes the form

ra

�
ˆJab � 2pc[a(µ)Kb]

cµ

�
= 0, (3.28)
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where ˆJab
= Jab

(0) � ua
µu

b
⌫rcJ

µ⌫c
(1) is the world-volume effective current that

obeys ˆJab
=

ˆJ [ab]. The boundary conditions for bent branes carrying string
charge are �

pbaµ + 2?µ
�J

�ab
(1)

�
n̂b|@Wp+1 = 0, (3.29)

Jµab
(1) n̂an̂b|@Wp+1 = 0, (3.30)

⇥
vb
b̂
râJ

âb̂
(1) � n̂a

�
ˆJab � 2pc[aµKb]

cµ

�⇤|@Wp+1 = 0, (3.31)

where J âb̂
(1) = Jµ⌫c

(1) u
⇢
c n̂(⇢v

â
⌫)v

b̂
µ is defined as the boundary degrees of freedom

with vâµ = ua
µv

â
a. Branes carrying string charge are characterized by the

world-volume effective current, the dipole moment and a boundary current.

- Pole-dipole branes carrying q > 1 charge

Branes carrying general higher form fields q > 1 are characterized by the
structures J

µ1...µq+1

(0) and J
µ1...µq+1⇢

(1) . The steps would be the same as before,
we make a general decomposition of both the structure components, and
analogously introduce the tensors m and p that characterize the dipole con-
tributions that obey certain antisymmetrization requirements. In [14] the
authors conjecture the form of the conservation equations of motion to be of
the form

ra1

�
ˆJa1...aq+1

+ (�1)

q
[(q + 1)!/q!]pc[a1...aq(µ)Kaq+1]

cµ

�
= 0. (3.32)

The boundary conditions are analogous to the ones presented in the string
charge case

�
pa1...aq+1µ

+ (�1)

qq!?µ
�J

�a1...aq+1
�
n̂aq+1 |@Wp+1 = 0, (3.33)

J
µ1...µqaq+1b

(1) n̂aq+1n̂b|@Wp+1 = 0, (3.34)
⇥
vb
b̂
râ1J

â1...âq+1

(1) �n̂a1

�
ˆJa1...aq+1

+(�1)

q
[(q+1)!/q!]pc[a1...aq(µ)Kaq+1]

cµ

�⇤|@Wp+1 = 0.

(3.35)
Where we have introduced the effective world-volume current ˆJa1...aq+1 and
the boundary degrees of freedom J

â1...âq+1

(1) .
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3.4 Physical interpretation
In the previous sections we have introduced some quantities in the equations
of motion that should be given a physical interpretation. Let us start out by
discussing the angular momentum, then move on to the interpretation of the
stress-energy dipole moment and the electric dipole moment. The physical
interpretations we review here are given in [13] [32] [14].

3.4.1 Physical quantities

We start out by assuming a flat spacetime and look at uniform p-branes
extended in x0, ..., xp directions. The total angular momentum J µ⌫

? on the
transverse plane, labeled by µ, ⌫, is defined as a constant time slice integral
⌃ in the bulk spacetime,

J µ⌫
? =

Z

⌃

dD�1x(T 0µx⌫ � T 0⌫xµ
) =

Z

Bp

dp�
p��(2T 0µ⌫

(1)?) + boundary terms.

(3.36)
The monopole structure term does not enter the expression, we thus see that
in the monopole approximation there are no intrinsic angular momenta. The
boundary terms is the expression have been ignored and we will continue
to leave them out, without further noting, in the interpretation of the other
quantities. The intrinsic angular momenta are exclusively encoded by the
dipole structure T aµ⌫

(1)?. The interpretation of jaµ⌫ as a current density of
transverse angular momenta of the pole-dipole branes is justified through
the relation

jaµ⌫ = 2ua
⇢?µ

�?⌫
�T

⇢[��]
(1) = 2T aµ⌫

(1)?, (3.37)

where µ and ⌫ are orthogonal to the world-volume. The conservation of
angular momentum follows from the conservation of the current density of
the angular momenta.

The dipole term introduced before, dab⇢, accounts for the bending moment
of the brane. The total bending moment from the stress-energy tensor can
be computed by

Dab⇢
=

Z

⌃

dD�1x
p�gT µ⌫ua

µu
b
⌫x

⇢
=

Z

Bp

dp�
p��T ab⇢

(1)?, (3.38)

where the ⇢ index is orthogonal to the world-volume. The quantity dab⇢

is given the interpretation of a current density that describes the dipole
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deformations to the intrinsic stress-energy tensor,

dab⇢ = ua
µu

b
⌫?⇢

�T
µ⌫�
(1) = T ⇢ab

(1)?. (3.39)

Note that the definition of the dipole moment (3.38) is the same as the usual
way of writing the classical electrically induced dipole with a charge density
⇢(x), ~D =

R
⌃ dD�1x~x⇢(x) . In the single pole approximation dab⇢ does have a

non-vanishing component, d⌧⌧⇢, where ⌧ is the proper time of the world-line.
However, because of extra symmetry 2 of the stress-energy tensor, the gauge
parameter "̃⇢ can be chosen in such a way that d⌧⌧⇢ is eliminated. Single-pole
branes can thus not possess a bending moment.

In much the same way as we have interpreted the previous quantities we
can assign an intuitive interpretation to pa⇢ and mµ⌫ , by taking the case,
q = 0 as an example. The electric dipole moment P a⇢ of a charged brane is
obtained by evaluating

P a⇢
=

Z

⌃

dD�1x
p�gJµua

µx
⇢
=

Z

Bp

dp�
p��pa⇢. (3.40)

The structure pa⇢ is thus interpreted as a world-volume electric dipole mo-
ment density. Just as for dab⇢, there is one non-vanishing component in the
(p = 0) case that can however be gauged away because of the extra symmetry
2 property of J . For cases p � 1, the dipole terms cannot be gauged away.

In the case of a point particle (p = 0) carrying a Maxwell charge (q = 0)

the object can possess a magnetic dipole moment Mµ⌫ obtained by

Mµ⌫
=

Z

⌃

dD�1x
p�g(Jµx⌫ � J⌫xµ

) =

Z

Bp

dp�
p��mµ⌫ . (3.41)

The quantity mµ⌫ is interpreted as a world-volume density of a magnetic
dipole moment associated with a dynamic charge. It is most natural to as-
sume mµ⌫ to be proportional to the spin current j⌧µ⌫ . We can write this
relation generically for a p-brane with smeared 0-brane charge as mµ⌫

=

�(�b
)uaj

aµ⌫ , for a world-volume function �. This can be naturally extended
to general p-branes carrying smeared q-brane charge. Since we are not con-
sidering any angular momentum in the range of this thesis there will be no
further analysis done on the magnetic dipole moment.

Assuming a linear response theory, the finite thickness quantities dis-
cussed above can be characterized by a set of linear response coefficients that
determine the (electro)elasticity of charged pole-dipole oder black branes.
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3.4.2 The Young modulus and piezoelectric moduli

In classical mechanics the Young modulus is the ratio of stress to strain of
elastic materials. The bending of an elastic rod will result in a dipole of
stress in the material distribution. The strain of an object in its transverse
direction is captured by the extrinsic curvature tensor K⇢

µ⌫ and the stress
induced by the deformation is encoded by the dipole moment, dab⇢. In [13]
a relativistic generalization of the Young modulus is introduced. Assuming
that we have a brane that will behave according to classical elastic theory,
that is, by a linear response theory, we can write the stress/strain relation as

dab⇢ = ˜Y abcdK⇢
cd, (3.42)

where ˜Y abcd has been introduced as the Young modulus of the brane. Omit-
ting tensor indices, ˜Y = Y I, where Y is the normalized Young modulus and
I signifies the moment of inertia with respect to the world-volume surface
choice. We note that the Young modulus should display the extra symmetry
2 ambiguity of the dipole current density dab⇢, according to the definition
(3.39). The Young modulus obeys the same symmetry property in its indices
as the classical elastic tensor would, ˜Y abcd

=

˜Y (ab)(cd)
=

˜Y cdab. For isotropic
stationary p-branes carrying Maxwell charge the Young modulus takes the
form [32]

˜Y abcd
=� 2

�
�1(k;T,�H)�

ab�cd
+ �2(k;T,�H)�

a(c�d)b

+ �3(k;T,�H)k
(a�b)(ckd)

+ �4(k;T,�H)
1

2

(kakb�cd
+ �abkckd

)

+ �5(k;T,�H)k
akbkckd

�
.

(3.43)

With ka being the Killing vector field of the fluid, moving with k = | �
�abkakb| 12 . We have introduced the dependency of the response coefficients on
the global temperature T , and the global chemical potential �H , determined
by the stationarity of the solution and its effective blackfold fluid form. Due
to the extra symmetry 2 property that the Young modulus must have, some of
the terms in its expression are gauge dependent, so not all of the � coefficients
are independent with respect to the equations of motion. In chapter 4 we
will see this explicitly where the derivation of the response coefficients is
presented for charged black brane solutions.

As shown in the previous chapter, for the simplest anisotropic case of p-
branes carrying a string charge, we need to supplement our expressions by a
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normalized velocity vector va, orthogonal to the velocity vector of the brane
fluid ua. For this reason the expression for the Young modulus, written above,
should be supplemented by extra terms. The classical symmetries that apply
to ˜Y abcd do not necessarily apply to the extra terms. In [14] the response
coefficients are calculated for particular cases of charged black branes carrying
a q > 0 charge. It is found that because of the extra symmetry property, the
extra terms can be transformed away, and thus well described by ˜Y abcd in the
isotropic case. In the case of q > 0 we do however have to introduce a new
non-normalized space-like vector ⇣a, where va = ⇣a/⇣ and ⇣ = |⇣a⇣b�ab|1/2.

In analogy with the introduction to the relativistic Young modulus we
now turn to the case of the electric dipole moment. If we assume the branes
follow classical electroelastic theory, we can write the form of the dipole
moment as

pa⇢ = ̃abcK⇢
bc. (3.44)

This expression is a covariant generalization of the electric dipole moment
of classical piezoelectrics [14]. The piezoelectric moduli obey the symmetry
property ̃abc

= ̃a(bc) and enjoys extra symmetry 2. In the q = 0 case, that
leads to the form

̃abc
= �2

�
1(k;T,�H)�

a(bkc)
+ 2(k;T,�H)k

akbkc
+ 3(k;T,�H)k

a�bc
�
.

(3.45)
As for the Young modulus, the response coefficients of piezoelectric moduli
are not all independent.

The introduction of the piezoelectric moduli can naturally be extended to
cases of smeared q > 0 charge, where we have pa1...aq+1⇢. The electric dipole
moment will have the same interpretation as for the q = 0 case. We must,
as before, note that the response coefficients have an additional dependency
on ⇣a. The higher-form piezoelectric moduli inherit the symmetry properties
of pa1...aq+1⇢, ̃a1...aq+1bc

= ̃[a1...aq+1]bc and ̃a1...aq+1bc
= ̃a1...aq+1(bc). The an-

tisymmetry property in the first q + 1 indices does not have any parallel in
classical piezoelectrics.

3.5 Response coefficients
In [14] a class of bent black brane geometries is constructed and their response
coefficients is measured. This section will outline the framework used to
obtain the coefficients from the large r-asymptotics of a charged bent black
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brane solution and in chapter 4 their derivation for stationary configurations
will be presented.

We work from a special class of solutions to the action,

S =

1

16⇡G

Z
dDx

p�g

✓
R� 1

2

(r�)2 � 1

2(p+ 2)!

ea�H2
q+2

◆
. (3.46)

Again, we see the relevance of the setting of this action as we have mentioned
it in the introduction of black branes in chapter 1 and also in chapter 2 where
the Gibbons-Maeda class of solutions was derived for leading order p-branes
carrying higher-form smeared charge. Now, however we wish to examine the
dipole structures of the solutions. The equations of motions of motion that
lead from the action in the presence of sources are

Gµ⌫ � 1

2

rµ�r⌫�

� 1

2(q + 1)!

ea�
✓
Hµ⇢1...⇢q+1H

⇢1...⇢q+1
⌫ � 1

2(q + 2)

H2gµ⌫

◆
= 8⇡GTµ⌫ ,

(3.47)

r⌫(e
a�H⌫µ1...µq+1

) = �16⇡GJµ1...µq+1 , ⇤�� a

2(q + 1)!

ea�H2
= 0. (3.48)

The stress-energy tensor and the current are given by the multipole expan-
sions (3.2) and (3.5). To measure the response coefficients for the Young
modulus and the piezoelectric moduli we look at the large r-asymptotics.
Far away from the solution, the geometry, and the gauge field are replaced
by effective stress-energy sources and current. The bending moments for the
stress-energy and electric current are related to dipole corrections of the fields
as they approach spatial infinity. The dipole moments for the bending and
the gauge field are related through (3.47) and (3.48) to the dipole corrections
we obtain for the fields approaching spatial infinity, where they have a fall-
off behaviour O(r�n�1

) by definition [13]. For convenience, we decompose
the spacetime metric into the Minkowski metric, and monopole and dipole
contributions, and perform the same decomposition for the gauge field,

gµ⌫ = ⌘µ⌫ + h(M)
µ⌫ + h(D)

µ⌫ +O(r�n�2
), (3.49)

Aµ1...µq+1 = A(M)
µ1...µq+1

+ A(D)
µ1...µq+1

+O(r�n�2
). (3.50)

The labels (M) and (D) indicate the monopole and dipole contributions. The
procedure of extracting the response coefficients is done by considering the
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linearized equations of motion of the action (3.46), assuming that there are
no background fields and that the background metric is asymptotically flat.
The dilaton field receives no bending corrections and is thus unnecessary for
the discussion.

Plugging in the decomposition of the stress-energy tensor into the right-
hand side of the equation of motion (3.47) we see that the dipole contribution
to the metric should satisfy linearized equations of motion

r2
?
¯h(D)
µ⌫ = 16⇡Gdr?µ⌫@r?�

n+2
(r), rµ

¯hµ
⌫ = 0, (3.51)

where
¯h(D)
µ⌫ = h(D)

µ⌫ � h(D)

2

⌘µ⌫ , h(D)
= ⌘µ⌫h(D)

µ⌫ . (3.52)

The Laplacian is in the transverse directions to the brane world-volume, and
r? = r cos ✓ is transverse to the bending direction of the brane. Writing out
the explicit r- and ✓-dependence of the asymptotic dipole contributions will
yield a convenient form to write the dipole contributions to the metric. We
write

h
(D)
ab = f

(D)
ab cos ✓

rn+2
0

rn+1
, h(D)

rr = f (D)
rr cos ✓

rn+2
0

rn+1
,

h
(D)
ij = r2gijf

(D)
⌦⌦ cos ✓

rn+2
0

rn+1
.

(3.53)

With a little bit of rewriting, using the transverse gauge condition, leads to
an expression of the dipole contributions to the metric in terms of the newly
defined f corrections,

ˆdab = ¯f
(D)
ab = f

(D)
ab � f

(D)
⌦⌦ ⌘ab. (3.54)

Through this expression the Young modulus can then be obtained by dab⇢ =
˜Y abcdK⇢

cd after the f ’s are determined in the asymptotic region. The hat-
ted notation of the dipole moments means that we have written dab =

⌦(n+1)r
n
0

16⇡G r20
ˆdab and omitted writing the transverse index r? and we will do

the same for the electric dipole moment.
Using the analogous approach, we can arrive at the electric dipole moment

for a (q  p) charged bent brane through a linearized version of the multi-
pole expansion of the brane current and the structure decomposition. We
introduce asymptotic gauge field coefficients a

(D)
µ1...µq+1 that are independent

of r and ✓. We write electric dipole moment as

p̂a1...aq+1 = a(D)
a1...aq+1

. (3.55)
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The piezoelectric moduli can then be read from pa1...aq+1⇢
= ̃a1...aq+1bcK⇢

bc

after evaluating the asymptotic gauge field and dipole contributions.
In [14], a special class of solutions of the action is considered, namely

generalized Gibbons-Maeda solutions. A bent version is then obtained for a
subset of those solutions. In the last subsection of chapter 2 we presented
the steps that lead to the smeared q-brane charged p-brane solution and the
resulting metric was

ds2 = h�A
(�fdt2 + d~y) + hB

(f�1dr2 + r2d⌦2
(n+1) + d~z), (3.56)

f(r) = 1� rn0
rn

, h(r) = 1 +

rn0
rn

sinh

2 ↵, (3.57)

with ~y labeling the q directions of the gauge field, ~z labeling the p�q smeared
directions, and r0 and ↵ labeling the horizon radius and charge parameter
respectively. The gauge field is given by

A[q+1] = �
p
N

rn0
rnh(r)

cosh↵ sinh↵dt ^ dy1 ^ . . . ^ dyq, (3.58)

and the dilaton reads
� =

1

2

Na log h(r), (3.59)

with N = A+B. The constants A and B depend on p, q, n and a.
The goal is to arrive at the dipole corrections to the metric and gauge

field. The first step towards obtaining them is to generate bent black brane
solutions with smeared q-brane charge and Kaluza-Klein dilaton coupling by
taking an elastically perturbed neutral black brane [13] as a seed solution
for a series of solution generating techniques. The first class considered is
obtained by the m + 1 dimensional uplift and Kaluza-Klein reduction on
the boosted spatial direction, this gives us a bent brane solution carrying
a Maxwell charge. The second class of solutions considered are to type-II
string theory, obtained by a sequence of T-duality transformations, resulting
in higher-form gauge fields. The solutions considered are required to have
N = 1. In the next chapter, the steps of the construction of the seed solution
will be presented along with the solution generating techniques used to obtain
the desired bent solutions. From there on the response coefficients will be
read off the large-r asymptotics using the relations we have outlined in this
section.
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3.6 Thermodynamics
The stress-energy tensor T ab

(0) and world-volume electric current J
a1...aq+1

(0) of
the generated solutions are characterized by thermodynamic quantities which
we present here briefly. The leading order effective stress-energy tensor has
the form

T ab
(0) = "uaub

+ P?

✓
�ab

+ uaub �
qX

i=1

va(i)v
b
(i)

◆
+ Pk

qX

i=1

va(i)v
b
(i), (3.60)

and the leading order world-volume effective current takes the form

J
a1...aq+1

(0) = (q + 1)!Qu[a1va2(1)...v
aq+1]
(q) . (3.61)

The form of the effective world-volume stress-energy tensor and the effective
current have the same form as they would have to leading order as they
receive no corrections to 1st order [9] [33] [31]. The interest is in stationary
solutions and it follows that the energy density ", the parallel, and transverse
pressure, Pk and P? take the form of leading order results [26] presented for
the blackfold effective fluid in chapter 2 with (2.34) and (2.35). The only
difference is in the pressure, the parallel pressure obtains the same form as
the one in (2.34), but the transverse pressure is

P? = �⌦(n+1)

16⇡G
rn0 . (3.62)

The transverse pressure has the same form as the Gibbs free energy except
that it has the opposite sign. The local temperature T , the local entropy
density s, the local charge density Q and the local chemical potential � all
have the same form as before.
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Chapter 4

Derivation of the response

coefficients

In this chapter the techniques and steps leading to an explicit expression
of the response coefficients of the relativistic generalization of the Young
modulus and piezoelectric moduli for charged black p-branes are presented.
The relativistic Young modulus was first measured for neutral black strings
in [13]. The analysis was expanded upon in [33], to more general bent neutral
p-brane solutions. In practice it turns out, in general, to be very difficult to
perturb charged branes to obtain their bent versions. Another way exists
to arrive at these solutions. To obtain the solutions for charged bent black
p-branes a series of solution generating techniques, with a stationary bent
neutral black brane as a seed solution, are used to produce bent solutions
carrying a Maxwell charge, then smeared Dq-brane solutions pertaining to
type-II string theory. We will start this chapter with an introduction to
how bent neutral p-brane solutions are obtained, then present the explicit
steps needed for the seed solution that we will use. The derivation of the
Maxwell charged- and higher-form charged solutions, generated from the seed
solution is presented, then the response coefficients are read from their large-r
asymptotics.
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4.1 The seed solution

4.1.1 Neutral bent black brane solutions

As shown in chapter 1, a basic form of neutral flat black p-brane solutions
to the Einstein equations can be written as

ds2 =

✓
⌘ab +

rn0
rn

uaub

◆
d�ad�b

+ f�1dr2 + r2d⌦2
(n+1), f = 1� rn0

rn
. (4.1)

In [30] the world sheet equations and boundary conditions in pole-dipole
order are obtained for neutral p-branes of finite thickness. A important
technique used in obtaining a bent solutions is matched asymptotic expansion
(MAE for short). The method was introduced in [34], and later refined for
use in [35] [36] [37] [38]. Let us go into the procedure of how to obtain bent
brane solutions by looking at the example of how the perturbed black string
is constructed.

The solution we describe the steps for is a bent Schwarzschild string,
computed by first order in r0/R, where r0 is the horizon thickness and R
is the radius of curvature. This solution is constructed in detail in [9]. The
Einstein equations are solved by using matched asymptotic expansion, where
solution is obtained separately for the near horizon region r << R and the
far, weak field approximation r >> r0. These two zones are then matched
with each other by their boundary conditions. Note that we require that
an overlap zone exists, that is when the horizon thickness is much smaller
than the curvature radius, r0 << R. The geometry of a straight boosted
Schwarzschild black string reads

ds2 =
dr2

1� rn0
rn

+ r2
⇣
d✓2 + sin

2 ✓d⌦2
(n)

⌘

�
✓
1� rn0

rn

◆
(cosh↵dt+ sinh↵dz)2 + (cosh↵dz + sinh↵dt)2.

(4.2)

The steps we take in the method of MAE are as follows, well summarized
in [13]: In the near horizon zone the spacetime geometry is that of the
straight boosted Schwarzschild black string. Like we did to obtain conserved
quantities in chapter 1, we linearize the Einstein equations with the black
string stress-energy tensor and obtain the metric in the far region r >> r0.
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As the source of the linearized gravity we take the ADM stress-energy tensor
of the string to zeroth order in the multipole expansion, Tµ⌫ = T

(0)
µ⌫ �n+2

(r):

T
(0)
tt =

⌦(n+1)r
n
0

16⇡G
(n cosh

2 ↵ + 1),

T
(0)
tz =

⌦(n+1)r
n
0

16⇡G
n cosh↵ sinh↵,

T (0)
zz =

⌦(n+1)r
n
0

16⇡G
(n sinh

2 ↵� 1).

(4.3)

This stress-energy tensor enters into the linearized approximation for the far
zone, ⇤¯hµ⌫ = �16⇡GT

(0)
µ⌫ . The large-r field is now bent along a manifold of

curvature 1/R because it is corrected to first order in 1/R. Note that only
stress-energy components satisfying the conservation equation, rµT

(0)
µ⌫ = 0,

can enter as they are the only ones that can couple to the gravitational field.
Next the near zone is perturbed to order 1/R by using the far field approx-
imation as a boundary condition. Leading from the first order corrected
near zone we can obtain the corrected stress-energy tensor source for the far
zone. The corrected stress-energy tensor can then be used to compute the
corrected far field solution. In principal we could go on and obtain higher
order corrections but we limit ourselves to the first order corrections.

The 1st order corrected stress-energy tensor for the bent boosted Schwarzschild
string was derived in [9], and in [13] the next step was taken for the far field
geometry sourced by that stress-energy was computed.

In order to find the corrections to the far field the metric obtained to
1st order correction is decomposed into the flat Minkowski metric, monopole
contributions, and dipole contributions (as we did in chapter 3),

gµ⌫ = ⌘µ⌫ + h(M)
µ⌫ + h(D)

µ⌫ +O(r�(n+2)
). (4.4)

The monopole correction to the flat metric is the correction from the lin-
earized approximation sourced by the boosted Schwarzschild black string.
The task is then to solve for the dipole corrections to the metric, h(D)

µ⌫ .
We now see how bent black brane solutions can be constructed with the

method of MAE. We move on by reviewing the derivation of the stationary
bent black p-brane seed solution that we later use to generate bent charged
black branes.

53



4.1.2 Obtaining the seed solution

The deformations of the brane geometry in its transverse coordinates is char-
acterized by the extrinsic curvature tensor. This subsection will review the
construction detailed in [33], which is also reviewed in the appendix of [14].
It is in order to define a coordinate system in which will be convenient to
work in for the purpose of the derivation. The coordinate system most adapt
to arriving at a bent neutral solution suitable for the solution generating
techniques is analogous to a Fermi normal coordinate system. Fermi normal
coordinates is a localized coordinate system in the neighborhood of a given
point. The first derivatives of the metric generally vanish at the point which
the normal coordinate system is localized around (therefore, also the Christof-
fel connections). There is a constraint on this system, the world-volume that
the coordinate system is adapted to cannot be geodesically embedded in the
background spacetime. Some of the first derivatives do not vanish as they
encode the embedding of the brane in the world-volume.

Our first step is to construct the background spacetime metric in Fermi
normal coordinates. Let us choose normal world-volume coordinates �a in
a way that all the Christoffel symbols are vanishing on the world-volume,
�

c
ab = 0. It is convenient to write the transverse directions to the world-

volume separately as yi, i = p + 1, . . . , D , such that the brane sits at the
origin yi = 0. The transverse indices we have introduced are raised, lowered,
and contracted using the Cartesian delta symbol �ij. Ignoring corrections to
first order, the flat metric takes the form

ds2 = ⌘abd�
ad�b

+ dyidy
i
+O(�2/R2

int). (4.5)

Here we have omitted that there are in fact two characteristic lengths, the
extrinsic- and extrinsic curvature radius. They are typically of similar order
[39] so only the intrinsic curvature radius is left in the higher order corrections
O(�2/R2

int).
Let us now look at corrections to the metric of first order in y/R. The

only corrections characterizing the brane bending is the extrinsic curvature
tensor Ki

ab [33], and so the induced metric on the brane can be written in
terms of it. The Fermi normal coordinates for the neutral bent p-brane take
the form

ds2 = (⌘ab � 2Ki
abyi)d�

ad�b
+ dyidy

i
+O(y2/R2

). (4.6)
This is the first derivative order form of the metric that describes the back-
ground surrounding the brane.
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Now we can write the slowly fluctuating metric of a first order perturbed
p-brane embedded in a background spacetime with a generic extrinsic per-
turbation,

ds2 =

✓
⌘ab � 2Ki

abyi +
rn0
rn

uaub

◆
d�ad�b

+ f�1dr2 + r2d⌦2
(n+1)

+hµ⌫(y
i
)dxµdx⌫

+O(r2/R2
).

(4.7)

The additional perturbating terms hµ⌫(y
i
) are dependent on r0 and ua and are

linear in Ki
ab, thus of first order in 1/R. In (4.7) f is defined in the same way

as in (4.1). The radial coordinate r is orthogonal to the world-volume, defined
as r =

p
yiyi. With Fermi normal coordinates the transverse perturbations,

induced by the extrinsic curvature, in the directions yi decouple from each
other, so we can view them separately in each normal direction. Thus we
continue on, and confine ourselves to the case where Ki

ab is non-zero in only
one transverse direction, which we label i = ˆi. The coordinate y î is identified
with a direction cosine as

y î = r cos ✓ . (4.8)

The line element (4.7) now takes the form

ds2 =

✓
⌘ab � 2Ki

abr cos ✓ +
rn0
rn

uaub

◆
d�ad�b

+ f�1dr2 + r2d✓

+r2d⌦2
(n+1) + hµ⌫(r, ✓)dx

µdx⌫
+O(r2/R2

).

(4.9)

Furthermore, since the perturbations are of dipole nature we can write hµ⌫(r, ✓) =

cos ✓ˆhµ⌫(r) [9]. The problem of finding the solutions to the Einstein equations
is now distilled to solving a set of coupled ordinary differential equations of
the form

ˆhµ⌫(r)dx
µdx⌫

=

ˆhab(r)d�
ad�b

+

ˆhrr(r)dr
2
+

ˆh⌦⌦(r)(d✓
2
+sin

2 ✓d⌦2
(n)). (4.10)

Direct computation of the Einstein tensor Gµ⌫ , specifically components
Gr✓ and Grr, of (4.9) leads us to the leading order extrinsic equation of motion

T abK î
ab = 0. (4.11)

The leading order stress-energy tensor for the neutral p-brane is

T ab
(0) =

⌦(n+1)

16⇡G
rn0 (nu

aub � ⌘ab). (4.12)
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We look for solutions of the perturbations ˆhµ⌫(r) so that the horizon remains
regular and satisfy the above equation extrinsic equation (4.11) with the
stress-energy tensor (4.12) with dab⇢ = 0. Taking the stress-energy tensor
into account, this condition is equivalent to nuaubKab = K. We have dropped
the ˆi notation and will continue to do so from here on. Since ˆhµ⌫ are of linear
order in the extrinsic curvature they must be proportional to structures of
order 1/R, constructed with Kab, ⌘ab, and ua. With use of the extrinsic
equations of motion, independent terms entering the metric corrections can
be written in terms of five functions

ˆhab(r) = Kabh1(r) + ucu(aKb)ch2(r) +Kuaubh�(r), (4.13)

ˆhrr(r) = Kf�1hr(r), (4.14)
ˆh⌦⌦(r) = Kr2h⌦(r). (4.15)

A coordinate transformation invariance allows us to express the perturba-
tions in terms of four coordinate gauge invariant functions by taking certain
combinations of them. The function h�(r), however, is gauge dependent so a
specific gauge choice is needed to specify the complete metric. It is subject
to an asymptotic boundary condition and its value at r = r0 is constrained
by the requirement of horizon regularity. The specific gauge-choice for h�

is made only for convenience as it will not affect the value of the response
coefficients.

We focus on large r-asymptotics of these four functions that character-
ize the metric perturbations in order to obtain the bending moment of the
stress-energy tensor. In the large-r region the asymptotics of the remaining
functions for the neutral bent p-branes with n > 2 are [14]

h1(r) =
1

n

rn0
rn�1

� ⇠2(n)

n+ 2

rn+2
0

rn+1
+O(r�(n+2)

),

h2(r) = �2

rn0
rn�1

� 2⇠2(n)
rn+2
0

rn+1
+O(r�(n+2)

),

hr(r) =
2

n
r � 3

n2

rn0
rn�1

+

4 + 7n+ 2n2

n2
(n+ 2)

⇠2(n)
rn+2
0

rn+1
+O(r�(n+2)

),

h⌦(r) =
2

n
r � n� 3

n2
(n� 1)

rn0
rn�1

� 4 + 3n+ n2

n2
(n+ 2)(n+ 1)

⇠2(n)
rn+2
0

rn+1
+O(r�(n+2)

),

(4.16)
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where
⇠2(n) =

�[

n�2
n
]�[

n+1
n
]

2

�[

n+2
n
]�[

n�1
n
]

2
=

n tan(⇡/n)

4⇡r20
A2. (4.17)

Here, A has been defined as the constant A = 2r0
�[n+1

n ]2

�[n+2
n ]

. For the compu-
tations at hand it is convenient to parameterize the asymptotics of h� by
coefficients b0, b1, k1, b4, and k2. By choosing b0 = 0 and b1 =

1
2 we are able

to eliminate some leading order terms in hr and h⌦, we do not need them
as they do not characterize the bending effects. Their asymptotic behaviour
can then be written,

hr(r) =


n2 � 6 + (4n2 � 8n)b4

2n2

�
rn0
rn�1

+


(k1 + 2k2) +

4 + 7n+ 2n2

n2
(n+ 2)

⇠2(n)

�
rn+2
0

rn+1
+O(r�n�2

),

(4.18)

h⌦(r) =


3� 2b4(n

2 � 2n)

n2
(n� 1)

�
rn0
rn�1

+


2(k1 � nk2)

n(n+ 1)

+

4 + 3n+ n2

n2
(n+ 2)(n+ 1)

⇠2(n)

�
rn+2
0

rn+1
+O(r�n�2

).

(4.19)

For later convenience we should read off the dipole contributions f (D), de-
scribed in the previous chapter (3.53), that are used to determine the bending
moment. Later, this will make it possible for us to write the dipole contribu-
tions of the charged solutions in terms of the neutral seed solution dipole con-
tributions. From the large-r asymptotics of the metric perturbations (4.16),
(4.18), (4.19), we can write the dipole contributions,

f
(D)
ab (r) = Kab

✓
� ⇠2(n)

n+ 2

◆
+ ucu(aKb)c(�2⇠2(n)) +Kuaubk1,

f (D)
rr (r) = K


k1 + 2k2 +

4 + 7n+ 2n2

n2
(n+ 2)

⇠2(n)

�
,

f
(D)
⌦⌦ (r) = K


2(k1 � nk2)

n(n+ 1)

+

4 + 3n+ n2

n2
(n+ 2)(n+ 1)

⇠2(n)

�
.

(4.20)

Here we could continue, and obtain the dipole moment, from there on read off
the response coefficients and obtain the explicit form of the Young modulus
for neutral bent p-branes but instead we’ll move on to the generating of the
charged solutions.
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4.2 Generating bent branes carrying Maxwell
charge

In chapter 1 it was described how to generate new solutions by an uplift-
boost-reduction procedure. The example shows how we can take a neutral
seed solution, uplift it by adding m+ 1 extra dimensions, boost the solution
in one of the isometry directions, and finally compactify that direction on a
circle. The resulting solution is a charged dilatonic p-brane.

Let us write p̃ instead of p and for the associated parameters for the
bent neutral brane solution acquired in the previous section. The example
presented in chapter 1 can be directly applied by taking the bent neutral
p̃-brane solution, shown in the previous section, as the seed solution for

ds2d+1 = ds2D +

mX

i=1

(dyi)
2
+ dx2. (4.21)

The seed solution (4.9) will enter as ds2D. This new solution has dimension-
ality d = p̃+m+ n+ 3. Following the same procedure as in the example we
arrive at a extrinsically perturbed solution for black p = p̃+m brane carrying
Maxwell charge. We have to obtain the large asymptotics of the generated
solutions to arrive at the dipole corrections, and from the dipole corrections,
calculate the response coefficients. The large-r asymptotics of the generated
bent Maxwell charged brane solutions are written explicitly in the appendix.

The generated charged bent p-branes constitute a bent version of a subset
of Gibbons-Maeda family of solutions which we discussed in chapters 2 and
3. We will denote the critical boost velocity from the neutral seed solution as
ũa. The generated solution can be identified with the Gibbons-Maeda subset
by identifying the dilaton coupling as

a2 = 4(d� 1)

2ã2 =
2(p̃+m+ n+ 2)

p̃+m+ n+ 1

. (4.22)

The critical boost of the neutral solution can be identified with the boost
and charge parameter from the family of solutions in a way that

ũt cosh = ut cosh↵, ũi
= ui

cosh↵, sinh

2 ↵ = ũ2
t sinh

2 . (4.23)

We can write the exponents from the action of the Gibbons-Maeda solutions
correspondingly,

A =

d� 3

d� 2

, B =

1

d� 2

. (4.24)

58



These identifications all correspond to the case of N = 1.

4.3 Generating bent branes carrying higher-form
charge

The new solution can be developed further by using T-duality to compactify
the remaining m isometry directions. Details of the T-duality symmetries
and general examples were presented in chapter 1 and will be employed here
to develop extrinsically perturbed p-brane solutions carrying smeared q-brane
charge with q  p. It is necessary to impose the condition that n+ p̃+m = 7

and m � 1. This will make it possible for us to construct configurations in
D = 10 type-II string theory. The configurations will be consistent with a
truncated action where we set the NS-NS B2 field to zero and only allow one
of the R-R fields. The relevant 10-dimensional action is

S =

Z
d10x

p�g


R� 1

2

(@�)2 � 1

2(q + 2)!

e
3�q
2 �H2

[q+2]

�
. (4.25)

Before writing up the transformations let us write ˆ� = ��, where � is the
original dilaton, to make an identification of the black brane solution before
and the supergravity field. Now, in Einstein frame, the T-duality transfor-
mation taken in an isometry direction z takes the form

gµ⌫ = e
1
8 �̂
(ĝzz)

1
4

✓
ĝµ⌫ � ĝµzĝ⌫z

ĝzz

◆
,

gzz = e�
7
8 �̂
(ĝzz)

� 3
4 ,

e2� =

e
3
2 �̂

ĝzz
,

A[q+2] = A[q+1] ^ dz,

(4.26)

where the hatted entries are the fields before transformation. The next step
is to apply the transformation first on the q = 0 solution generated with the
Kaluza-Klein procedure and applying T-duality on the remaining m isome-
tries to generate a bent p-brane solution carrying a (m+1)-form gauge field.
One ends up with a relation between the m’th transformation and the original
fields

gµ⌫ = e
m
6 �̂ĝµ⌫ , gyiyj = �ije

m�7
6 �̂, � =

3�m

3

ˆ�. (4.27)
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The yi coordinates come from the compactified isometry directions and the
greek indices are the remaining directions. Taking m = 0 we reobtain the
starting solution. One can see that this results overlaps with the Gibbons-
Maeda solutions of (3.56).

We wish to work with the large-r asymptotics of the solution as before.
They are obtained from the generated solution in the previous section by
plugging (A.2), (A.3), (A.5), into the T-duality transformations (4.27) and
noting

A =

1

d� 2

! q + 1

8

, B =

d� 3

d� 2

! 7� q

8

. (4.28)

4.4 Obtaining the response coefficients
For the solutions obtained for the bent black branes carrying Maxwell- and
higher-form charge we will now read off the dipole contributions to the metric
and gauge field. From the dipole contributions it is then possible to read off
the response coefficients to give the Young modulus and the piezoelectric
moduli an explicit form.

4.4.1 The q = 0 case

Generically for a solution of the intrinsic equations with q = 0, stationar-
ity of the overall configuration is required ua

= ka/k, where ka is a Killing
vector along the brane fluid. Accordingly, the global horizon temperature
T and global horizon potential are set to T = |k|T and �H = |k|� [26].
Stationarity, however, is ensured by the fact that the seed solution was con-
structed to be stationary. Because of the stationarity of the solution, we can
write the horizon thickness r0 and charge parameter ↵ in terms of global
thermodynamic quantities,

r0 =
n

4⇡T
|k|

✓
1� �

2
H

|k|2
◆ 1

2

, tanh↵ =

�H

|k| . (4.29)

The world-volume stress-energy tensor components to order O("̃) are

T ab
(0) =

⌦(n+1)

16⇡G
rn0

✓
n cosh

2 ↵uaub � ⌘ab
◆
, T

yiyj
(0) = P?�

yiyj , (4.30)

with a = (t, zi).
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Before arriving at the response coefficients we need to write the dipole
contributions f (D)

µ⌫ . The dipole contributions can be read from the asymptotic
form of the metric (A.3) and gauge field (A.5) obtained by the Kaluza-Klein
procedure. We will denote the dipole contributions of the charged solution
with a hat, ˆf

(D)
µ⌫ . For the charged solution, the dipole contributions can be

written in terms of the dipole contributions of the neutral solution according
to (3.53) and (3.54),

ˆf
(D)
tt =

✓
1 +

d� 3

d� 2

s2

◆
f
(D)
tt , ˆf

(D)
tzi = cf

(D)
tzi ,

ˆf (D)
zizi

=

1

d� 2

s2f
(D)
tt + f (D)

zizi
, ˆf (D)

yiyi
=

1

d� 2

s2f
(D)
tt ,

ˆf (D)
rr =

1

d� 2

s2f
(D)
tt + f (D)

rr , ˆf
(D)
⌦⌦ =

1

d� 2

s2f
(D)
tt + f

(D)
⌦⌦ .

(4.31)

If one takes the rapidity  ! 0, the original neutral solution contributions
are reobtained. The transverse gauge condition gives us the constraint,

(⌘ab ˆfab +m ˆfyy) + ˆfrr + (n� 1)

ˆf⌦⌦ = 0. (4.32)

This leads to a relation, along with a specific gauge choice for k2, which we
write

k1 =
2

1� n
(⇠2(n) + nk2), �˜k⇠2(n)� (n+ 1)(n� 4)

n2
(n2

+ n� 2)

⇠2(n) = k2

✓
2

1� n

◆
.

(4.33)
Through the harmonic gauge condition we can see that ˆf (D)

= 2

ˆf⌦⌦, and the
gauge choice shows us that f

(D)
⌦⌦ = �⇠2(n)˜kK is purely a gauge artifact and

hence, also the dipole terms in those directions.
Expressing the non-vanishing dipole moments in terms of the neutral

dipole coefficients and choosing a specific gauge for ˜k to make contact with the
generalized Gibbons-Maeda solutions one obtains the world-volume bending
moment,

ˆdab =� ⇠2(n) cosh
2 ↵


Kab

(n+ 2) cosh

2 ↵
+ 2ucu(aKb)c +

3n+ 4

n2
(n+ 2)

⌘abK

�

� ¯k⇠2(n)[n cosh

2 ↵uaub � ⌘ab]K.

(4.34)

This form of the bending moment is only valid under the assumption that
Kta = 0 for all a. From the assumption that the bending moment behaves
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according to classical elastic theory,

dab⇢ = ˜Y abcdK⇢
cd, (4.35)

we can now read off the Young modulus of the Maxwell charged bent black
brane. The covariant form of the Young modulus is found to be [14]

˜Y cd
ab =P?r

2
0⇠2(n) cosh

2 ↵


3n+ 4

n2
(n+ 2)

⌘ab⌘
cd
+

1

(n+ 2) cosh

2 ↵
�c(a�

d
b) + 2u(a�

(c
b)u

d)

�

� ¯k⇠2(n)r
2
0

⇥
T

(0)
ab ⌘

cd
+ ⌘abT

cd
(0)

⇤
.

(4.36)

From this result and the relation of the solution parameters r0 and ↵ we can
read off the four non-vanishing response coefficients, only three of which are
found to be independent. The response coefficients obtained from (4.29) and
(3.43) of the bending effects are as follows,

�1(k;T,�H) =
⌦(n+1)

16⇡G
⇠2(n)

⇣ n

4⇡T

⌘n+2

|k|n+2

✓
1� �

2
H

|k|2
◆n

2
✓

3n+ 4

2n2
(n+ 2)

� ¯k

✓
1� �

2
H

|k|2
◆◆

,

�2(k;T,�H) =
⌦(n+1)

16⇡G
⇠2(n)

⇣ n

4⇡T

⌘n+2

|k|n+2

✓
1� �

2
H

|k|2
◆n

2+1
1

2(n+ 2)

,

�3(k;T,�H) =
⌦(n+1)

16⇡G
⇠2(n)

⇣ n

4⇡T

⌘n+2

|k|n
✓
1� �

2
H

|k|2
◆n

2

,

�4(k;T,�H) = �3(k;T,�)n¯k.
(4.37)

We now turn to the dipole contributions to the gauge field. The non-
vanishing dipole terms for the asymptotic gauge field are from (A.5)

a
(D)
t = csf

(D)
tt , a(D)

zi
= sf

(D)
tzi . (4.38)

From this and the relations to the Gibbons-Maeda solutions on can construct
the electric dipole moment (3.44),

p̂a = �⇠2(n) cosh↵ sinh↵[ucKca +
¯kuaK]. (4.39)

Using the bending moment and the electric dipole moment the form of the
piezoelectric moduli can be written a covariant form

̃bc
a = �⇠2(n)r

2
0

✓Q
n
�(ba u

c)
+

¯kJ (0)
a ⌘bc

◆
. (4.40)
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The two response coefficients can be read from the piezoelectric moduli, of
which only one of them is found to be independent. From (3.45) and (4.29)
the electric response coefficients are as follows,

1(k;T,�H) =
⌦(n+1)

16⇡G

⇠2(n)

2

⇣ n

4⇡T

⌘n+2

�H |k|n
✓
1� �

2
H

|k|2
◆n

2

,

3(k;T,�H) = 1(k;T,�H)n¯k.

(4.41)

4.4.2 The q  p case

The T-duality transformations allowed us to generate a higher-form charged
bent brane solution for type-II string theory D = 10. The generated solu-
tions are solutions of the truncated action (4.25) for black p-branes carrying
smeared Dq-charge. For these solutions the leading order stress-energy tensor
takes the form,

T ab
(0) =

⌦(n+1)

16⇡G
rn0
�
n cosh

2 ↵uaub � ⌘ab
�
, T

yiyj
(0) = Pk�

yiyj , (4.42)

with a = (t, zi).
We turn to the calculation of the bending moment and the electric dipole

moment for bent black branes carrying higher-form charge, leading to the
explicit form of their Young modulus and piezoelectric moduli and their
response coefficients. The procedure is the same as in the Maxwell charge
case. Again, noting ˆf as the dipole contributions of the charged solution we
write them in terms of the neutral dipole contributions,
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(4.43)

To obtain the non-zero bending moment components we follow the same
procedure as for the previous case of Maxwell charge. The relations obtained
from the transverse gauge condition all remain the same as before after the T-
duality transformations. The higher-form charge obtained by the T-duality
transformations is always smeared along the bending direction of the brane.
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The directions which the q-brane charge lies is always flat and this never
critically boosted. In chapter 2 an additional set of vectors v

(i)
a , i = 1, ..., q,

is introduced to describe the q directions in which the smeared charge is
located. We now write the bending moment in terms of the Gibbons-Maeda
boost and charge parameters using (4.23),

ˆdab =� ⇠2(n) cosh
2 ↵


Kab

(n+ 2) cosh

2 ↵
+ 2ucu(aKb)c +

3n+ 4

n2
(n+ 2)

⌘abK

�

� ¯k⇠2(n)


n(cosh2 ↵uaub � sinh

2 ↵

qX
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v(i)a v
(i)
b )� ⌘ab

�
K.

(4.44)

The same assumptions for the extrinsic curvature are made here as in the
previous case. The electric dipole moment is obtained as

p̂ba1...aq = �(q + 1)!⇠2(n) cosh↵ sinh↵
⇥
ucv

(1)
[a1
...v(q)aq Kb]c +

¯ku[bv
(1)
a1
...v

(q)
aq ]
K
⇤
.

(4.45)
From this expression, the piezoelectric moduli can be written and the re-
sponse coefficients read from them.

The general form of the bending moment and the electric dipole moment
is the same as in the case of the Maxwell charge, the reason being that the
extrinsic perturbations are always along the smeared directions.

Let’s first look at the case of bent branes carrying a string charge then
examine general higher-form charge. Black branes carrying a string charge
q = 1 have, to leading order, the stress energy tensor (omitting the index (1)

in v)

T ab
(0) =

⌦(n+1)

16⇡G
rn0
�
nuaub � �ab � nN sinh

2 ↵(�uaub
+ vavb)

�
. (4.46)

The equilibrium condition to leading order for solutions with N = 1 is ob-
tained by solving the 1st order corrected extrinsic equations of motion (3.14),
while setting dab⇢ = 0,

n(uaub
cosh

2 ↵� vavb sinh2 ↵)Ki
ab = Ki. (4.47)

And the leading order intrinsic equation (3.13) is solved for q = 1 by requir-
ing, as in the previous case, stationarity and taking the global temperature
and potential, T = |k|T and �H = 2⇡|⇣||k|�. The horizon thickness and
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charge parameter can then be written in terms of the global thermodynamic
quantities,

r0 =
n

4⇡T
|k|

✓
1� 1

2⇡

�

2
H

(|k||⇣|)2
◆ 1

2

, tanh↵ =

1

2⇡

�H

|k||⇣| . (4.48)

The form of the Young modulus, calculated from the bending moments for
p-branes carrying q  p charge, ends up taking the same form as the Young
modulus in the q = 0 case except that we use the leading order stress-energy
tensor T (0)

ab written in the beginning of this section (4.42). The non-vanishing
response coefficients can then be extracted from the Young modulus and take
a form written in terms of the global thermodynamic quantities. Again, since
the Young modulus has the same form as before, of the four non-vanishing
response coefficients, only three are found to be independent. In terms of
(4.48) the response coefficients are as follows,
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(4.49)

The piezoelectric moduli obtained from the electric dipole moment takes
the form

̃cd
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and ̃cd
ab = 

(cd)
[ab] . This form of the piezoelectric moduli is a natural gen-

eralization of the one obtained for the case of q = 0. The non-vanishing
response coefficients corresponding to the piezoelectric moduli only have one
independent component. They read
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(4.51)
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For branes carrying charges 1 < q < p, the Young modulus is again,
simply the same as before except with the general q stress-energy tensor
(3.60). Naturally, the number of independent response coefficients will again
be three. The piezoelectric moduli is a natural generalization to arbitrary q,

̃cd
ba1...aq

= �⇠2(n)r
2
0

✓
(q + 1)!

Q
n
�
(c
[b v

(1)
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...v
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+

¯kJ
(0)
ba1...aq

⌘cd
◆
, (4.52)

with the property ̃cd
ba1...aq

= ̃
(cd)
[ba1...aq ]

. There is only one independent response
coefficient characterizing the piezoelectric moduli.
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Discussion

In chapter 1 we took together the tools needed to go from general relativity
and string theory to the discussion of the theory of blackfolds. The general
idea of what a p-brane is was introduced and it was explained how string
dualities can be used to generate new solutions, which turned out to be of
great use for the developments in [14], reviewed in chapters 3 and 4. A
simple example of smearing a brane solution was presented for the purpose
of clarifying the concept of smeared q-charges carried by a black p-brane.

The main topic of the thesis was the bending effects on charged fluid
black branes embedded in a background spacetime, characterized by two
widely separated horizon length scales. In other words the bending effects
on charged blackfolds. The blackfold approach for charged black p-branes
was reviewed in chapter 2, mainly the work of [26] and [27]. Necessary
concepts concerning the mathematics of embedding of p-branes in a back-
ground spacetime were presented and it was shown how the conservation
of the stress-energy tensor leads to the blackfold equations. The effective
stress-energy tensor and effective world-volume current was discussed for the
cases of branes carrying Maxwell charge and a higher-form charge and the
thermodynamic properties arising from them.

Following the introduction of the blackfold theory of charged black branes,
the framework of the blackfold approach in the 1st order correction of the
multipole expansion of the stress-energy tensor and charge current was re-
viewed, based on [13] [14]. A generalization of the neutral pole-dipole branes
obtained in [13] and [30] was presented for the case of electrically charged
branes. When the blackfold approach is expanded to 1st order correction,
while ensuring that backreaction effects are subleading and assuming a linear
response theory, it is shown that the bending effects of stationary charged
(an)isotropic fluid branes are captured by a relativistic generalization of con-
cepts in classical elastic theory. That is, the Young modulus and piezoelectric
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moduli, each of which is described by a set of response coefficients that char-
acterize the bending of the brane.

With the response coefficients of the charged black branes introduced in
chapter 3 we moved on to the explicit derivation of them for a special class of
solutions in chapter 4. Perturbing charged black brane solutions to first or-
der, to obtain their bent versions, turns out to be a difficult task, so instead,
the route taken to arrive at those solutions was to feed a bent neutral black
brane solution as a seed solution for a series of solution generating techniques.
In chapter 4 we began by introducing the method of matched asymptotic ex-
pansion, used to find bent black brane solutions, then we showed the specific
construction of the solution used to obtain the charged bent black branes. A
uplift-boost-reduction procedure, introduced in chapter 1, was used to obtain
the isotropic bent Maxwell charged brane by compactifying one of the up-
lift directions. Following from that, an anisotropic solution of type-II string
theory, carrying smeared q-charge, was obtained by successive T-duality com-
pactifications of the remaining uplifted directions. From the fact that these
solutions were obtained by use of solution generating techniques it follows
that the charge obtained is always smeared in the bending directions of the
branes.

It is, in fact, natural that fluid branes in the blackfold approach possess
attributes described by generalizations of concepts in fluid dynamics and
material sciences. The blackfold approach is a long wavelength theory and
fluid dynamics and material science are universal long wavelength theories,
so in the blackfold limit we expect them to be analogous to each other.

Finally, the dipole contributions to the metric and gauge field in the large-
r asymptotics of the solutions was derived for the case of 0-brane charge and
(q  p)-brane charge. From the dipole contributions it was possible to use
the framework from chapter 3 to write the Young modulus and piezoelectric
moduli for each case. Expressing the horizon thickness and charge parameter,
r0 and ↵, in terms of global thermodynamic quantities made possible to write
every non-vanishing independent response coefficient in terms of numbers
characterizing the branes. In each case the bending effects were captured by
a total of 3 + 1 = 4 response coefficients, three for the Young modulus, and
one for the piezoelectric moduli. It is of interest to see how more general
bent black brane geometries, where the bending is not only in the smeared
directions but also in the directions which the brane is charged.

The work reviewed in the thesis sheds important light into further un-
derstanding of finite thickness effects of the blackfold approach to charged
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branes in supergravity. A complete characterization of stationary blackfolds
with q > 1 smeared charge has not been developed yet. In that relation,
expanding the approach to higher order approximation is of obvious interest.

The authors of [14] mention the interesting developments that can be
made in context of AdS/CFT, which we briefly mentioned in the thermo-
dynamics section of chapter 1. Finding the metric of a bent D3-brane in
type-IIB string theory, we would expect a measurable extra contribution to
the dipole electric (magnetic) moment which would make it possible to mea-
sure electric (magnetic) susceptibilities. Further, in the context of AdS/CFT,
it is worth examining whether the response coefficients provide clues regard-
ing the microscopics of black holes and branes. Generally, it holds potential
in shedding further light on flat space holography.

Yet to be computed explicitly are the magnetic response coefficients, that
should arise if the angular momentum of the branes considering hadn’t been
put to zero. Naturally, there would be an induced magnetic dipole caused
by the angular motion of the charged brane. Another kind of magnetic
response coefficient can also be derived. Working in a magnetic dual frame,
by calculating the hodge dual of the produced gauge fields ˜A = ⇤A, we could
obtain the magnetic dual of the electric dipole response coefficients.
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Appendix A

Large r-asymptotics of the bent

Maxwell charged solution

For convenience we define the object

Hµ⌫ = cos ✓
h
ˆhµ⌫ � 2rKµ⌫

i
, (A.1)

where ˆhµ⌫ is given by (4.13)-(4.16) and (4.18) and (4.19). The large-r asymp-
totic of the dilaton solution is
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The large-r asymptotics of the generated metric components are
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ũtũ(tHi)t

d� 3

d� 2

rn0
rn

+O
✓
rn+2
0

rn+2

◆
,

gyiyi = 1 +

s2ũ
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where
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with Hij = Hzizj , ⌘ij = ⌘zizj and ũi = ũzi . We have written g⇠i⇠j as the metric
for a (n + 1)-sphere of radius r. In terms of the parameters of the neutral
solution, the large-r asymptotics of the gauge field generated is
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