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Motility at the nanoscale in living
soft matter can be highly complex
as the environment is often com-

partmentalized and hosts both passive and
active processes.1�3 This causes the tracers
of interest, e.g., single molecules, to under-
go heterogeneous dynamics, and their
experimentally observed trajectories are
further complicated by the action of sto-
chastic forces, originating both from the
tracer's thermal fluctuations and from the
inherent noise of the equipment and detec-
tion systems. To identify the locations of
certain types of behaviors in time and space
correctly, a scientist has to be equipped
with experimental and analytical tools
allowing the extraction of signals from noisy
backgrounds. The standard output from
many experiments consists of lengthy time
series recordings of molecular dynamics
or tracking of either endogenous objects
or externally added tracer particles. The
events of interest contained in such time
series may occur randomly in time and fur-
thermore be embedded within random
noise. This renders extraction and the fol-
lowing correct interpretation of the data
challenging. Existing analytical methods to
discriminate active or anomalous behavior
from random noise include the application
of physical models in which thresholds are
assigned to separate Brownian noise from
heterogeneous events.4 Also, transformation

of time recordings into the frequency do-
main is frequently used to extract spectral
information about biophysical processes
and has been applied in the analysis of, e.g.,
acto-myosin networks to identify nonequili-
brium activity fueled by ATP hydrolysis.1

However, spectral analysis based on Fourier
transformations, even short time Fourier
transformations, are best suited for analyzing
stationary processes inwhich the localization
of certain events in the time domain is not
necessary. The abundance of processes in
nature exhibiting nonstationary behavior
renders analysis purely in frequency domain
inadequate since all information regarding
the localization of events in the time domain
is lost.
The localization of events in time is utterly

important, e.g., for understanding signaling
processes, cellular trafficking, or the highly
nonrandom chromosomal organization with-
in the nucleus and how this relates to the
cellular clock. Therefore, we are in need of
general methods that both provide informa-
tion regarding the scale of heterogeneous
events and are able to localize biophysical
events in time. This would allow robust ex-
traction of important information embedded
within time series originating from living cells
and soft matter systems. Inspired by previous
work5,6 and by the challenges met during
the analysis of nanoscale soft matter systems,
Chen et al. present in the current issue of ACS
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ABSTRACT In the study of living soft matter, we often seek to

understand the mechanisms underlying the motion of a single

molecule, an organelle, or some other tracer. The experimentally

observed signature of the tracer is masked by its thermal fluctua-

tions, inherent drift of the system, and instrument noise. In addition,

the timing or length scales of the events of interest are often

unknown. In the current issue of ACS Nano, Chen et al. present a

general method for extracting the underlying dynamics from time

series. Here, we provide an easily accessible introduction to the method, put it into perspective with the field, and exemplify how it can be used to answer

important out-standing questions within soft matter and living systems.

PERSPEC
TIV

E



OTT ET AL. VOL. 7 ’ NO. 10 ’ 8333–8339 ’ 2013

www.acsnano.org

8334

Nano7 a general wavelet-based
method that can discriminate het-
erogeneous behavior from random
noise in time series. They elegantly
do this by applying a multiscale
wavelet transform, thus preserving
both the information contained in
the time domain and the scale of
the heterogeneous events. The suc-
cess rate of themethod in detecting
heterogeneous events is tested
both on simulated data and on real
data obtained from three distinct
areas of science. The methodology
is independent of predefined physi-
cal models, thus making it powerful
for analyzing time series originating
from many different research fields.
As outlined below, we expect this
methodology to advance the field
of nanoscale motility significantly,
thereby answering important ques-
tions regarding fundamental trans-
port mechanisms within living soft
matter systems. In particular, new
information is needed and will arise
on the topic of nuclear organization
and transportation in relation to the
cell cycle, and light will be shed on
the complicated aging mechanisms
that give rise to weak ergodicity
breaking in living organisms and
how this alters the inherent cellular
dynamics.

Wavelet Analysis (WLA). The so-
called 'wavelet transform' mathe-
matical technique was established
in the 1980s and is nowwidely used
for digital signal processing, such as

in image compression, denoising,
and pattern recognition.8 Wavelet
transform analysis allows for local,
time-resolved, multiscale detection
of dynamic processes in time series,
revealing important features that
various other established signal
analysis techniques, like the Fourier
transform, fail to do. For instance,
the WLA method has been used for
characterizing the rotational and
translational Brownian motion of
a nanostructure that changes size
over time;6 however, it has not yet
found widespread use for the anal-
ysis of soft matter living systems.
The paper of Chen et al. shows that
WLA is a most useful and advanta-
geous technique for nanoscale soft
matter systems as well, and the
following section will take the read-
er through a 'crash-course' on WLA.

The WLA method comprises the
three following steps: (i) To analyze
a given time series (as shown in
Figure 1A), one chooses a wavelet.
Wavelets can take different forms
and their capabilities todetect certain
signal features are well-known.5,8 A
wavelet is a function that is square
integrable and that integrates to zero.
Typically, a wavelet is limited in time
and could be a single oscillation,
e.g., the commonly used Haar wave-
let shown in Figure 1B. (ii) During
the wavelet transform, the time-
dependent data, e.g., the trajectory
of a singlemarker, is transformed into
a time- and scale-dependent repre-
sentation of the original data (shown
in Figure 1C). Mathematically, this in-
volves convolution of the time series
with scaled and translated versions of
thewavelet. Translationsimplymeans
moving the wavelet along the time
axis and forms the basis for locat-
ing the dynamics of interest in
time, whereas scaling is achieved by
stretching/compression of the wave-
let in time and provides information
on the scale of the dynamics. This
scaling of the wavelet allows one to
conduct the time series analysis on
multiple scales without being bound
to a specific scale. In other words,
the transformation returns informa-
tion regarding at which points in time

andonwhich scale the features of the
wavelet match the time series. This
information is given by the color scale
in Figure 1C. In practice, the transfor-
mation is easy to conduct due to the
availability of easily accessible tool-
boxes in, e.g., MATLAB (MathWorks)
andMathematica (WolframResearch).
(iii) In the final step, the researchers
impose a physically motivated restric-
tion to a range of scales on which
the heterogeneous dynamics are ex-
pected to occur, and an adaptive uni-
versal threshold is set. This threshold
(a certaincolorbetweenblueandpink
in Figure 1C) serves as the decision
criterion for classifying the type of
dynamics and identifying dynamical
heterogeneity. In the current issue of
ACS Nano, Chen et al. present a gen-
eral wavelet-based method that can
discriminate heterogeneous behavior
from random noise in time series.

By applying this methodology to
analyzing the trajectories of fluores-
cently labeled endosomes in living
cells, Chen et al. demonstrate the
potential for detecting the switch-
ing between changing dynamics, in
this case between active transport
and passive diffusion (as sketched
in Figure 2).

Furthermore, the authors con-
duct a performance evaluation using
simulated data and show that the
method is rather insensitive tomulti-
ple noise sources. The generality of
the WLA method makes it valuable
for analyzing time series of different
origin.Moreover, it not only provides
themeans for more detailed insights,
but also, importantly, precludes false
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conclusions from being drawn
when blindly assuming homoge-
neous dynamics.

Inside Cells. The dynamics of sin-
gle molecules or organelles inside
living cells are known to be rich,
complex, and of diverse character
and origin.9 Tracing individual mol-
ecules provides insight into the fun-
damental processes responsible for
trafficking, signaling, and gene reg-
ulation inside living cells. There are
several technical challenges con-
nected to retrieving reliable trajec-
tories of individual molecules inside
the living cell. First, the molecules
of interest need to carry a label
(e.g., a fluorescent marker) such that
they can be followed in two or three
dimensions. Some organelles (e.g.,
lipid granules)10 are relatively large
and carry enough contrast them-
selves that they are visible in the
microscope and need no further
labeling. The technique of single
particle tracking is extremely useful
for tracing individual molecules
or particles inside living cells, but
optical traps operated at low laser
powers can also provide traces
with very high temporal and spatial
resolution. A typical time trace is
subject to a significant amount

of noise, not the least of which
are the thermal fluctuations of
the tracer, which are substantial at
physiological temperatures and at
the single-molecule level.

Inside the cell, most molecules
and organelles exhibit subdiffusion,
i.e., slower diffusion than in normal
Brownian motion. This is the case
for single mRNA molecules inside
bacteria11 and also for lipid granules
inside yeast.10 Interestingly, although
normal Brownian motion would be a
faster way to transportmolecules in a
passivemanner, subdiffusion ismuch
more abundant in living cells than is
Brownian motion. This could be due
to two factors: one is that the cyto-
plasm needs to be tightly packed
and dense in order to accommodate
all the necessary cellular machinery,
and the second is that it might be
advantageous for a process involving
a protein binding to DNA or RNA, for
example, that the proteins or nucleic
acids do not diffuse away quickly
but rather stay in the vicinity of their
correct targets longer, thus increasing
the chance of successful attachment.

In addition to these passive types
of motility, there is also active, bio-
chemical energy-consuming trans-
port inside living cells, for instance

of myosin along actin inside muscle
cells or kinesin-mediated trans-
portation along microtubules,12 as
sketched in Figure 2. Further com-
plicating the picture, a given tracer,
for example an endosome, may
at certain times experience passive
thermal diffusion and at other
times active transport. The chal-
lenge of the scientist is then to
deduce backward, from the ob-
served heterogeneous time trace
to the basic mechanisms governing
the motion.

Another environment displaying
highlyheterogeneous dynamics that
presently is gaining a great deal of
attention is inside the nucleus. Chro-
mosomes are spatially organized
in the nucleus, where diffusion is
extremely slow; it has been shown
that the telomeres certainly do not
explore the entire nucleus.13 In addi-
tion, it was recently shown that
certain genetic sequences mediate
transportation of genetic information
to a specific location.14 Hence, nuclear
transportation is highly regulated and
far from random; however, still very
little is known about the dynamics of
the nucleus that are highly important
for correct genetic regulation and
expression.

Figure 1. Wavelet analysis in a nutshell: (A) time series displaying discrete steps that are masked by stochastic noise. (B) the
commonly used Haar wavelet, its translation, and scaling. (C) result of convoluting the time series shown in (A) with scaled and
translated Haar wavelets. The color map shows the goodness of the match of the wavelet with the time series as the wavelet is
moved in time (horizontal red arrow) and scaled (vertical red arrow). The area between the yellow lines denote the scales of
interest and in the colormap, pink colors signify strong correlations and hence identify the masked steps in the time series
shown in (A)).
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From the single-molecule or par-
ticle trajectories, it can be rather
difficult to distinguish one type of
motion from another and different
measures exist for this purpose.
One frequently applied measure is
the mean square displacement,
MSD = Æ(x(t) � x(t0))

2æ ∼ tR, where
the exponent, R, provides informa-
tion regarding whether the motion
is confined (R = 0), subdiffusive (0 <
R < 1), normal (R = 1), or superdif-
fusive (R > 1). Another useful meth-
od is the mean maximal excursion
method,15 which can be used to
determine the physical nature un-
derlying the observed stochastic
motion. However, two major pro-
blems faced during in vivo detection
are the noise and drift inherently
present in experimental data taken
at the single-molecule level over
extensive periods of time. Also, it
is most often not known a priori

at which time and spatial scales the
phenomenon of interest is taking
place. It is likely that the multiscale
wavelet method presented in this
issue of ACS Nano7 can overcome
someof these challenges as themeth-
od extracts features without limiting
the search to a certain time or spatial
interval, while also being quite robust
with respect to noise.

Ergodic versus Nonergodic Behavior.
Recent reports have shown that time
averages obtained over in vivo single-
particle traces often are not repro-
ducible. In other words, ensemble
averages do not yield the same re-
sults as temporal averages, which
means that one of the hallmarks of
ergodicity is violated.

This phenomenon has been ob-
served both for lipid granules in
living yeast cells16 and, at certain
locations, in living endothelial cells,17

as well as for membrane proteins.18

As living organisms undergo life cy-
cles and age over time, it is reason-
able that their physical observables

also change properties with time
and that such systems therefore
violate strict ergodicity.

In the above-mentioned experi-
ments, not all hallmarks of ergodi-
city are broken, only some of them,
and therefore, this effect has been
named 'weak ergodicity breaking'.
The concept of weak ergodicity
breaking is currently highly debated;
it is certainly not yet well-defined
and poses serious challenges to sta-
tistical physics. One of the problems
is the difficulty in pointing out the
signatures that may provide clues as
to the underlying processes from
time traces. Moreover, it is likely that
tracers at certain time scales exhibit
ergodic behavior, possibly well de-
scribed by the fractional Brownian
motion, whereas at other time scales,
the tracer's dynamics may be better
defined by a continuous time ran-
dom walk, which has nonergodic
properties. The scientific community
interested in anomalous diffusion has
long been in need of tools to distin-
guish between different stochastic
models, and it is likely that wide-
spread use of the multiscale wavelet
methodwill significantly advance the
field and expand our knowledge on
the origin of stochastic motion inside
living systems.
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Figure 2. Sketch of the variety of transport mechanisms inside living cells. Proteins restricted to the membrane
perform lateral diffusion, this possibly being complicated by the presence of membrane domains containing other types
of lipids or by tethering or confinement of the protein by the underlying cortical actin mesh. Inside the cell, a tracer
can perform passive thermal diffusion, but this process is hindered by the presence of the cytoskeleton and other
cellular components. Furthermore, molecular motors, for instance kinesin, perform active transportation of cargos inside
the living cell.
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Membrane Dynamics. Membranes
are essential components of living
systems, and the lipids composing
themembranesaswell as theproteins
embedded therein display highly in-
teresting dynamics at different levels.
Within the two-dimensional mem-
brane sheet, proteins undergo differ-
ent types of lateral diffusion dictated
by the phase state of membrane do-
mains as well as by interactions with
cytoskeletal elements (as sketched
in Figure 2). Inside the cytoplasm,
trafficking of endosomal membranes
takes place by vesicle diffusion and
active transport through the cyto-
plasm, a process which is important
to understand in the context of nano-
medicine delivery.19 Super-resolution
microscopy techniques enable locali-
zation ofmultiple fluorescent markers
with spatial resolutiondown to20nm,
and are thus powerful tools to extract
time series displaying heterogeneous
dynamics from living and soft-matter

systems. Recently, experiments per-
formed using stimulated emission de-
pletion (STED) microscopy revealed
that synaptic vesicle mobility in the
boutons of axons performs stick-and-
diffuse motion due to the transient
association of vesicles with cellular
elements2 (Figure 3A). The data anal-
ysis used in ref 2 relied on both
temporal averaging and some user-
defined thresholds to identify 'hot
spots' where vesicles became transi-
ently trapped. TheWLAmethod pre-
sented in this issue of ACS Nano7

would enable amore objective treat-
ment of the raw data obtained from
super-resolution microscopy and
could likely retrieve new hidden dy-
namics embedded within the time
traces acquired.

New developments with ultra-
sensitive high-speed cameras have
allowed tracking of membrane pro-
teins diffusing in the two-dimensional
plasma membrane with impressive

time resolution20,21 (Figure 3B). Data
from such experiments has funda-
mentally contributed to our under-
standing of how the underlying
actin matrix interacts with the mem-
brane and the cytoplasmic domain
of transmembrane proteins. The cy-
toskeleton splits the membrane into
compartments and causes themem-
brane proteins to perform hop-
diffusion between the individual
membrane compartments;21 exam-
ples of such hop-diffusion motility
within membranes are shown in
Figure 3 for a transmembrane pro-
tein (epidermal growth factor recep-
tor, EGFR), a lipid-anchored protein
(CD59), and a glycerophospholipid
(1,2-dipalmitoyl-sn-glycero-3-phos-
phoethanolamine, DPPE).20 In this
context, an unresolved question
remains regarding the effect on
thediffusionalmotion fromdisputed
membrane rafts. It is known that diffu-
sion in liquid disordered domains

Figure 3. Heterogeneous dynamics in membranes and reconstituted systems. (A) Upper images show stimulated emission
depletion images of fluorescently labeled synaptic vesicles. The lower plot shows the two-dimensional vesiclemotility, which
exhibits signs of stationarity, directional motion, and normal diffusion. Reprinted with permission from ref 2. Copyright 2008
American Association for the Advancement of Science. (B) Upper sketch shows a schematic drawing of the epidermal growth
factor receptor (EGFR) transmembrane protein, the CD59 lipid anchored protein, and the DPPE glycerophospholipid (1,2-
dipalmitoyl-sn-glycero-3-phosphoethanolamine), all specifically attached to quantumdots. The lowerfigure shows the traces
of these proteins and lipids inside the membrane of mouse fibroblast cells, the scale bar is 400 nm. Reprinted from ref 20.
Copyright 2013 American Chemical Society. (C) Upper drawing shows how the sliding of myosin filaments along actin cables
generates tension in the actin network. Lower graph shows that the contractile event is detected by probe particles
embedded in the actin network. Reprinted with permission from ref 1. Copyright 2007 American Association for the
Advancement of Science.

PERSPEC
TIV

E



OTT ET AL. VOL. 7 ’ NO. 10 ’ 8333–8339 ’ 2013

www.acsnano.org

8338

is only approximately twice that in
liquid ordered domains (resembling
these rafts) and it is rather challenging
to detect the dynamic partitioning of
lipids or proteins between different
domains. Here, wavelet analysis could
be an appropriate analytical tool to
improve theanalysesof suchdata and
to contribute to the understanding
of the nanoscale membrane structure
and motility within membranes.

In Vitro Reconstituted Biological Sys-
tems. To elucidate the cellular dy-
namics and cytoskeletal architecture
in a more detailed manner, it is often
beneficial to design and to study an
artificial system composed of only
a few essential components selected
from the complex in vivo system. A
simplified in vitro reconstituted and
minimal system allows for investi-
gation of the influence of one well-
controlled parameter at a time. For
instance, the influenceof thenetwork
structure on tracer diffusion has been
studied successfully in an actin net-
work where the actin concentration
was varied in a controlled manner.22

In this and other in vitro studies
of crowded environments, subdiffu-
sion appears to be the predominant
passive motility mode. To elucidate
how myosin motors collectively re-
model an actin network, the before-
mentioned experiment was further
developed by adding molecular mo-
tors to the actin network.1,23 Myosin
motors from bundles would walk
along the actin filaments and create

substantial tension in the actin net-
work, as depicted in Figure 3C. In the
analysis of Stuhrman et al.,23 theyused
thresholds to segment the time series
locally to discriminate between or-
ientedandrandommotion. Ingeneral,
even reconstituted biological systems
display rich heterogeneity and could
benefit greatly from WLA to extract
quantitative information of the hid-
den dynamics.

OUTLOOK AND FUTURE
CHALLENGES

Wavelet analysis has by nomeans
yet reached its full potential in the
life sciences. A combination of WLA
and new experimental techniques,
like super-resolution microscopy,
provides powerful tools to unravel
detailed kinetics embedded within
time series recordings of processes
in living systems. The examples pre-
sented above point to the fact that
there already exists a huge amount
of data on anomalous diffusion of
tracers displaying heterogeneous dy-
namics. Althoughmuch valid analysis
hasbeendone, existingdata cries out
for more sophisticated methods of
analysis that are capable of extracting
the underlying interesting heteroge-
neous dynamics, which are the foot-
prints of the biological processes.
It is straightforward to use the multi-
scale wavelet method, presented
in the current issue of ACS Nano, to
this overwhelming amount of exist-
ing data and thereby uncover funda-
mental new insights hidden in the
original analyses.
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