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1.  Introduction

Various models of collective cell motion exist in 
the literature, including particle-based models 
[1–4], cellular Potts models [5–7], vertex models 
[8], phase field models [9] and continuum-scale 
models with [10–16] and without cell polarization 
[17, 18]. Often, continuum-scale models have the 
advantage of being analytically more tractable than 
the corresponding particle-based models. However, a 
general problem with most models is how to choose 
the right constitutive relation between quantities, 
such as cell strain and stress or to decide on the right 
functional form of various dissipative processes. 
Observations at the level of individual cells suggest 
that cell deformation is viscoelastic [19, 20], i.e. at 
short time scales, any deformation responds elastically 
to a mechanical loading, whereas loads applied over a 
longer period will be followed by a viscous relaxation 
and thus an irreversible deformation.

Several constitutive relations have been employed 
to describe the deformation of single cells, see, for 
example, [21]. Examples of such relations include a 
Maxwell fluid (figure 1(A)), consisting of a dashpot 
in series with a spring, and a Kelvin–Voigt solid (figure 
1(B)) consisting of a dashpot in parallel with a spring. 
Depending on the coupling of the basic building 
blocks (dashpots and springs) a broad range of fluid-
like and solid-like behaviors can be obtained. One 
prominent example of a basic rheological model is the 
standard linear solid, where the dashpot in the Kelvin–

Voigt element is coupled in series with a spring. When 
subjected to a sudden strain, the stress in the standard 
linear solid model decays exponentially towards a con-
stant non-zero value.

Aggregates of cells in tissues also behave viscoe-
lastically [22]. Based on stress relaxation experiments 
on freely suspended cell monolayers, Harris et al [23] 
used the standard linear solid model to estimate an 
apparent viscosity for Madin–Darby canine kidney 
cell monolayers. Guevorkian et  al [24] obtained an 
apparent viscosity for murine sarcoma cell aggregates 
using a micropipette aspiration technique and the 
standard linear solid model in series with a dashpot.  
Forgacs et al [25] performed parallel plate compres-
sion experiments on chicken cell aggregates and esti-
mated the viscosity using a rheological model of two 
parallel-coupled Maxwell fluid elements. In addition, 
the viscosity of breast cancer tumors has been meas-
ured using ultrasonic shear-wave imaging experi-
ments combined with a Maxwell model [26].

2.  Methods

We shall here consider the Oldroyd-B rheological 
model (see, for example, [27]), which follows from the 
immersion of a Maxwell fluid of viscosity η1 and shear 
modulus G in a Newtonian fluid of viscosity η2 (figure 
1(C)). Defining the total viscosity η0 = η1 + η2, the 
relaxation time λ1 = η1/G and the retardation time 
λ2 = (η2/η0)λ1, the Oldroyd-B constitutive relation 
is:
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σ + λ1
∇
σ= 2η0

(
γ + λ2

∇
γ

)
,� (1)

where 
∇
σ  and 

∇
γ  are the upper convected derivatives of 

the deviatoric stress tensor σ, γ = 1
2 (∇v + (∇v)T) is 

the strain rate tensor and v is the local mean velocity. 
Experiments measuring the stress relaxation of tissue 
after a sudden compression have found that the stress 
relaxes exponentially with one or two characteristic 
time scales depending on the external loading 
conditions [23, 25]. The Oldroyd-B model only 
captures a single characteristic relaxation time scale λ1 
under the same experimental conditions. While more 
rheological elements could be added to account for 
more time scales, we shall here aim at simplicity and 
stick with a description based on a single time scale.

Moreover, the upper convected derivative can 
often be greatly simplified in slowly moving tissues. 
Defining a characteristic time tγ  on which γ  changes, 
a characteristic flow speed Uv  and length scale Lv , the 
upper convected derivative can be cast in dimension-
less form:

∇
γ=

∂γ

∂t
+

tγUv

Lv

{
(v · ∇)γ −

[
γ · (∇v) + (∇v)T · γ

] }
.

� (2)

In the limit where the time scale, Lv/Uv , used for a fluid 
element to traverse a length scale Lv , is large compared 
to the characteristic (relaxation) time tγ , the quantity 
tγUv/Lv  (the Deborah number) is small and the upper 
convected derivative reduces to a partial derivative 
with respect to time,

∇
γ≈ ∂γ

∂t
.� (3)

In the experimental data, we shall consider below that 
the used cell lines have a characteristic flow velocity 
Uv ∼ 1 µm min−1 and a characteristic size of Lv ∼ 20 
μm (see appendix A). The typical relaxation time is 
of the order of a minute. The prefactor in the upper 
convected derivative is therefore relatively small 
tγUv/Lv ∼ 0.05.

2.1.  Substrate friction
The friction between motile cells and the substrate 
is often considered to be linear in the cell velocity [1, 

10, 17, 18, 28, 29]. That is, the friction is similar to the 
viscous drag on a fluid flowing over a surface at low 
Reynolds numbers. In contrast, measurements on 
individual cells suggest that the traction force exerted 
by a cell is non-trivially related to the filmamentous 
actin speed [30]. The traction force seems to follow an 
increasing trend for low actin speeds, crossing over to 
a decreasing trend for larger actin speeds. It remains 
an open question as to whether these measurements 
can be generalized to the larger scale dynamics of, 
for example, a confluent cell layer. From a modelling 
point of view, various forms of friction can be derived 
from the dynamics of discrete contact points between 
cells and the substrate, see, for example [31]. Here, 
we consider the dynamical consequences of various 
friction terms using, as a starting point, a simple 
stochastic differential equation. In conclusion, we find 
that a term which crosses over to solid friction (or so-
called Coulomb friction) for larger velocities offers 
the best quantitative agreement with our data and is 
consistent with the experimental observation that 
the speed distribution of the cells have exponential 
tails (see figure 3(A)). The Coulomb friction does not 
depend on the speed, only on the velocity direction 
v̂ = v/|v| scaled with a friction coefficient α.

For simplicity, let us for a moment disregard the 
interaction between cells and consider only the bal-
ance between the motility force and friction force of 
an individual cell. We first consider the motility force 
to be a basic stochastic process similar to the Orn-
stein–Uhlenbeck process, which describes a viscously 
damped and stochastically-driven particle. This pro-
cess has also been commonly used to describe cell 
motion [32, 33]. The process is formulated in the cell 
velocity v,

dv

dt
= ψ(v) + ξ(t),� (4)

where the motility force ξ is a Gaussian white-noise 
field of strength 〈ξi(t)ξj(t′)〉 = 2δ(t − t′)δij  and the 
friction (or damping) force is given by ψ(v). Note 
that we have scaled the damping term and time with a 
general amplitude of the noise field.

If the friction force is assumed to be isotropic and 
always acts in a direction opposite to the local velocity, 
it will assume a form

Figure 1.  Rheological diagrams. (A) Maxwell fluid. Under sudden stress, the spring of elastic modulus G deforms instantaneously 
whereas the dashpot deforms at a constant rate like a fluid of viscosity η. When the Maxwell element is released, the spring regains its 
original length, but the dashpot irreversibly maintains its deformation. (B) Kelvin–Voigt solid. Under sudden stress, the Kelvin–
Voigt solid deforms with a characteristic time scale η/G . The deformation is reversible, and, when released, the Kelvin–Voigt solid 
regains its original shape. (C) Oldroyd-B fluid. When subjected to a sudden strain ε0, the stress decays exponentially with a timescale 
η1/G towards zero.

Phys. Biol. 15 (2018) 066004
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ψ(v) = ψ(v)v̂.� (5)

From the stochastic differential equation  (4), 
one obtains the corresponding Fokker–Planck 
equation for the speed distribution,

∂P(v, t)

∂t
= −∇ ·

(
ψ(v)P(v, t)

)
+∇2P(v, t).� (6)

Because of the rotational symmetry of the damping 
term, the equation  only contains the radial term in 
velocity space, i.e.

∂P(v, t)

∂t
− ∂

∂v

(
ψ(v)P(v, t)

)
− ψ(v)P(v, t)

v

+ v
∂

∂v

(
v
∂P(v, t)

∂v

)
= 0.

�

(7)

We find the stationary distribution P(v) by demanding 
that the time derivative vanishes, i.e. we have the 
equation

∂2P

∂v2
+

(
1

v
− ψ

)
∂P

∂v
−
(
∂ψ

∂v
+

ψ

v

)
P = 0.� (8)

For a given ψ(v), the solution to the steady-state 
equation can be written in the form

P(v) = K exp

(∫ v

ψ(v′)dv′
)

� (9)

where K is a normalization constant. In the case 
of Coulomb friction, where for all v �= 0 the term 
ψ(v) = −α is a constant, the steady-state distribution 
becomes an exponential

P(v) = α exp (−αv) .� (10)

A stochastic differential equation  similar to the one 
considered here has been suggested to describe the 
dynamics in granular systems [34].

For completeness, we write the contrasting Gauss-
ian tail achieved when a linear damping term is used, 
−αv ,

P(v) =

√
2α

π
exp

(
−αv2

2

)
.� (11)

At a microscopic level, a velocity-independent 
friction arising from contact with the substrate 
would require the contact area of individual cells to 
be roughly constant, or similarly require the number 
of bonds formed between a cell and the substrate to 
be independent of the cell velocity. For this to be the 
case, the rate of bond formation and breakage would 
have to be equal. In dry friction [35], however, the fric-
tion force is often observed to decrease at larger slip-
velocities, suggesting that the bond formation cannot 
catch up. A decreasing friction force would change 
the tail of the velocity distribution of equation (9). We 
emphasize that the data we shall consider here does not 
reveal a consistent departure from an exponential tail 
at larger velocities.

As suggested from observations of individual 
cells [30], the singular transition of Coulomb fric-

tion when going from no motion to motion might 
not be fully representative of the substrate friction. 
In the following, we therefore consider an approxi-
mately linear friction for small velocities crossing 
exponentially over to a velocity-independent fric-
tion for larger velocites by using a friction term of the 
form ψ(v) = −α tanh(v/w0)v̂. The characteristic 
speed w0 determines the point of crossover to velocity-
independent friction. Note that this friction would still 
result in an exponential speed distribution for larger 
speeds.

2.2.  Equations of motion
The tissues, we consider, are confluent monolayers 
of cells residing on a substrate. The layers are taken 
to be incompressible such that the divergence of 
the local mean velocity vanishes and the projected 
area of each cell is conserved. We model the tissue 
dynamic by a momentum balance equation where 
cell motility is introduced via a persistent random 
forcing. From the considerations in the previous 
section, the interaction between tissue and 
substrate will be given by a friction term of the form 
ψ(v) = −α tanh(v/w0)v̂

∂v

∂t
+ (v · ∇)v = −1

ρ
∇p +

1

ρ
∇ · σ +ψ(v) + m,

� (12)

0 = ∇ · v� (13)

∂m

∂t
+ (v · ∇)m = − 1

λm
m + φ(x, t).� (14)

Here, ρ  is the mean density, p is pressure and σ is the 
deviatoric stress tensor. The term m(x, t) is the force 
driving the cell motility, λm  is a persistence time and φ 
is filtered white Gaussian noise. Note that in contrast 
to the considerations above, the noise term, in the 
case of non-interacting motile cells, would lead to 
persistent random motion. Similar persistent random 
motion has been considered, for example, in [36, 37]. 
As each cell is a coherent body, there is a minimum 
length scale—similar to the cell size—below which the 
velocity field is approximately constant. We therefore 
impose a length scale �m on the random forcing by 
filtering the noise field ξ with a Gaussian function of 

Table 1.  Model parameters.

Symbol Units Description

λ1 time Relaxation time

λ2 time Retardation time

λm time Motility persistence 

time

�m length Motility length scale

βm length4/time2 Motility noise strength

η0 mass/(length·time) Total viscosity

α length/time2 Friction coefficient

w0 length/time crossover to constant 

friction

Phys. Biol. 15 (2018) 066004
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width �m and zero mean to obtain the filtered noise 
field φ(x, t):

φ(x, t) =
1

2π�2
m

∫
ξ(x′, t) exp

(
−|x − x′|2

2�2
m

)
dx′.

� (15)

The strength of the white Gaussian noise field was taken 

to be 〈ξi(x, t)ξj(x′, t′)〉 = βmδ
(2)(x − x′)δ(t − t′)δij 

where the indices i, j  run over the spatial directions 
x, y . It follows that the filtered noise field will have an 
exponentially decaying spatial correlation:

〈φi(x, t)φj(x′, t′)〉 = βm

4π�2
m

exp

(
−|x − x′|2

4�2
m

)
δ(t − t′)δij.

� (16)

We note that the cell motion is strongly over-damped 
(the flow occurs at negligible Reynolds numbers) and 
it is therefore safe to neglect the inertial terms on the 
left-hand side of equation (12).

2.3.  Model parameters
The model described above has eight parameters, 
which we have listed in table 1. We can then use the 
viscosity η0, along with the density ρ , the relaxation 
time λm  and a characteristic length �m, to cast the 

model equations in a dimensionless form,

∇p = ∇ · σ − aα tanh(awv)v̂ + m�
(17)

∇ · v = 0� (18)

σ + a1
∂σ

∂t
= 2

(
γ + a2

∂γ

∂t

)
� (19)

m +
∂m

∂t
= φ(x, t)� (20)

〈φi(x, t)φj(x′, t′)〉 = aβ
4π

exp

(
−|x − x′|2

4

)
δ(t − t′)δij,

� (21)

where we have defined the dimensionless control 
parameters:

a1 =
λ1

λm
, a2 =

λ2

λm
, aα =

ρ

η0
�2

mα,

aβ =

(
ρ

η0

)2

λ3
mβm, aw =

�m

λmw0
.

�

(22)

That is, we have five parameters to fit by the numerical 
simulation of equations  (17)–(21). From these five 
parameters, it is not possible to extract all the eight 
parameters in table  1. For example, we can only 
determine the ratio between the friction constant and 
the viscosity as well as the ratio between the viscosity and 
the noisy driving force. We note that we cannot explicitly 
determine the viscosity. In figure 2, we have computed 
the distribution of speed for different values of w0 used in 
the friction term for typical tissue parameters. We see that 
for large w0, we recover the Gaussian tail characteristic 
for the Ornstein–Uhlenbeck process, whereas, when w0 
is smaller than typical speeds in the tissue, we have an 
exponential tail in the speed distribution.

We apply our model to the experimental data 
on epithelial and endothelial tissue from [14, 38]. 
The model is simulated numerically using a pseudo-
spectral method on a two dimensional (2D) periodic 
domain. The Fourier and inverse Fourier transforms 
in the spectral formulation are performed using the 
fast Fourier transform algorithm, and the non-linear 
terms are evaluated in real space. Time integration 
of the stress tensor and the noise term are performed 
using an exponential time differencing scheme [39]. 
In each time step, the velocity field and the pressure is 
found by a relaxation procedure. The periodic 2D com-
putational domain consists of 256 × 256 grid points 
corresponding to a box of length ∼200 μm in physical 
units. The time step was  ∼0.01 min in physical units. 
From the model parameters, we recover parameters 
with physical units for each cell type by matching the 

  0   1   2   3   4   5
w = v/v0

10-2

10-1

100

P
(w

)

w0 = 0.1
w0 = 0.2
w0 = 1.0
w0 = 2.0
w0 = 6.0
OU-process

Figure 2.  Comparison between the Ornstein–Uhlenbeck process and our continuum model of tissue dynamics. The numerical 
simulation is based on equations (17)–(21). For the large cross-over value, w0, in the friction term, we go from a distribution with an 
exponential tail to a distribution with a Gaussian tail.
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simulation mean speed v0 with the experimental mean 
speeds (listed in appendix A) and the simulation veloc-
ity correlation length �0 with the experimental veloc-
ity correlation length. Finally, the main constituent of 
biological tissue is water; we therefore do not consider 
the density ρ  as a free parameter of the model.

3.  Results

We fit the model by performing a parameter grid 
search and by choosing the parameters simultaneously 
resulting in the smallest relative squared error 
between the experimental Pe(v) and simulated speed 
distribution Ps(v), the spatial velocity correlation 
function (simulated Cs

vv(r) and experimental 

Ce
vv(r)) and the temporal velocity correlation function 

(simulated Cs
vv(t) and experimental Ce

vv(t)), i.e. the 
parameters that minimize the sum

〈(
Pe − Ps

Ps

)2
〉

v

+

〈(
Ce

vv − Cs
vv

Cs
vv

)2
〉

r

+

〈(
Ce

vv − Cs
vv

Cs
vv

)2
〉

t

,

where the averages are taken over the limited 
ranges shown in figure  3. We note that the choice 
of error function is somewhat arbitrary and that 
individual parts could have been weighted differently. 
Nonetheless, we believe that similar results would be 
obtained from related error functions. The set of best 
fit parameters for each cell type is listed in table  2 
and follows from the limit of pure solid friction 
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Figure 3.  Comparison between model and experimental data. Experimentally measured statistical characteristics are plotted as 
solid colored lines, whereas statistical characteristics of the model fits are displayed as dashed lines. Speed, distance and time are 
rescaled by the mean speed v0, the spatial correlation length �0 and the time scale �0/v0 respectively. (A) The exponential tails of the 
speed distributions are captured by the model. We note, that the experimental and simulated speed distributions are very different 
from the result of an Ornstein–Uhlenbeck process (full black line), which results in a Gaussian tail. (B) The spatial correlation 
function of the model shows a negative dip which is not present in the data, but otherwise matches the experiments. The analytical 
correlation functions in the case of a drag term (calculated in section 2) (C) The temporal correlation functions are closely matched 
by the model.
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also considered in [38]. The model reproduces, 
fairly accurately, the spatial and temporal velocity 
correlations—see figures  3(A)–(C) and where the 
results for both the epithelial and endothelial tissue 
is consistent with the findings in [38]. The choice of 
friction force in the model leads to an exponentially 
decaying tail of the speed distribution. Note that 
the only slight difference between the model and 
experiments is in the spatial correlation function, 
where the model has a slightly more pronounced dip 
than in the experimental data (see figure 3(B)). The 
spatial correlation in the model predominantly enters 
through the correlation length scale introduced by the 
structured noise (see equation (16)). The length scale 
of the noise dominates over the one introduced by the 
viscous forces. Below the length scale of the structured 
noise, our model slightly overestimates the spatial 
correlation, which is also apparent in figure 4 where 
indeed, locally, the correlation in the models seems 
stronger than in the experiments. Figure 4 shows an 
example of a velocity field obtained from a best fit 
together with a random zoom on an experimentally 
measured velocity field. In the experimental data, 
however, the spatial correlation is long ranged, 
probably due to stronger interaction forces between 
the neighboring cells (seen by the slightly slower 
decay in the velocity field in the experimental panel of 
figure 4). To model the cross-over between the small 
and large scale correlations more accurately, we would 

have to generalize further our visco-elastic terms.
Finally, we should mention that numerical simula-

tions where the friction term is replaced by a drag term 

−αv  do not lead to a significant change in the corre-
lation functions. The choice of a drag or a Coulomb 
friction mainly affects the speed distribution. The 
velocity correlation functions can be calculated ana-
lytically when advection of the noise field is neglected 
and when a drag term is used instead of a friction term 
(see appendix B). The resulting analytical correlation 
functions are displayed as black lines in figure 3 and 
closely resemble the simulations.

4.  Conclusions and discussion

In a continuum model of tissue dynamics, we find 
that a solid friction term between cells and a substrate 
in a mono-layered tissue describes the exponential 
tail in the cell speed distribution fairly well. This is 
in contrast to many existing continuum and particle 
models, which typically consider a drag term linear in 
the velocity field and therefore a Gaussian tailed speed 
distribution. In addition to the experimental data 
considered here, a similar exponential tail has been 
observed, for example, for dilute suspensions of the 
MDA-MB-231 cell line [40]. Non-Gaussian tails have 
also been observed experimentally for other types of 
tissue [36, 37, 41]. To our knowledge, little is known 
about the cell–substrate dissipation process on the 
tissue scale, and it would be interesting to obtain firmer 
experimental knowledge on the appropriateness of 
either a linear drag or a Coulomb type friction. By 
modifying the frictional force to make a cross over 
between a drag-like friction at small velocities to 
Coulumb friction at larger velocities, our model can 

Table 2.  Fitted parameters for bulk cell motion.

Cell type λ1 (min) λ2 (min) λm  (min) �m (μm) α (ρ/η0) (μm·min)−1 βm (ρ/η0)
2 (min)−3

4T1 1.6 0.4 7.8 10 0.002 0.003

67NR 2.9 0.7 7.1 12 0.001 0.001

MCF7 1.2 0.3 3.0 9 0.003 0.010

MDA-MB-231 2.2 0.2 4.3 7 0.015 0.125

HUVEC 1.6 0.4 7.8 10 0.002 0.003
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Figure 4.  Bulk velocity fields. (A) Experiment. Human MCF7 cells during bulk motion. (B) Simulation. Velocity field of a 
simulation, where the speed distribution P(v), the temporal velocity correlation Cvv(t) and the spatial velocity correlation Cvv(r) 
have been fitted to the experimentally measured data of the MCF7 cells.
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further capture speed distributions with a Gaussian-
like intermediate range, consistent with experimental 
observations [1].

The self-propulsion of cells in the proposed model 
incorporates a length scale and a persistence time of the 
local motility force field, which accounts for the finite 
extent of a single cell and for the tendency of a single cell 
to change its velocity in a certain time scale. Several papers 
have used related but more elaborate approaches, where 
the motility force field evolves in time due to some specified 
dynamics. Basan et al [42] proposed that the local motility 
force tends to align with the tissue velocity, and, combined 
with an assumption of cell locomotion being suppressed 
by neighbors, Zimmermann et al [43] were able to model 
the traction patterns observed experimentally in spread-
ing epithelial tissue [44, 45]. Other authors have envisioned 
the polarization field as a 2D nematic liquid crystal [10, 13, 
29], which allows for complex flow patterns with vortices 
and jets. In contrast to these existing models, the proposed 
motility evolution contains no assumptions of velocity–
motility alignment or nematic behavior.

Including a motility force explicitly, as we have 
done in this paper, has the advantage that the local 
velocity need not be aligned with the local motility 
force. This behavior has been observed in an expanding 
monolayer, where the velocity and the local motility 
(traction) force under certain circumstances were anti 
parallel [45]. A natural next step is therefore to incor-
porate tissue boundaries in the proposed model, such 
that monolayer expansion and the generated tractions 
can be studied. This would also allow the model to be 
compared with, and used to study, the classical scratch-
wound assay experiment [46–48], the observed fin-
gering of tissue edges [48, 49] and the propagation of 
strain rate waves in spreading tissue [50].
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Appendix A.  Cell cultures and experiments

The data used with our model are taken from [14, 
38]. The mean speed and velocity correlation length 

observed in the experiments are listed below.

Appendix B.  Analytical calculation of 
velocity correlation functions

In order to analytically calculate the velocity correlation 
functions of the model, we make two simplifications. 
We neglect the advection of the motility field m(x, t) 

and we replace the non-linear friction term −αv̂  
with the linear drag term −αv . The simplified model 
equation system reads:

∇p = ∇ · σ − αρv + ρm Momentum

balance with drag

∇ · v = 0 Incompressibility

σ + λ1
∂σ

∂t
= 2η0

(
γ + λ2

∂γ

∂t

)
Constitutive relation

m + λm
∂m

∂t
= λmφ(x, t) Motility evolution.

The noise φ(x, t) in the motility evolution is filtered 
white Gaussian noise satisfying:

〈φi(x, t)φj(x′, t′)〉 = βm

4π�2
m

exp

(
−|x − x′|2

4�2
m

)
δ(t − t′)δij.

� (B.1)

Assuming that the initial stress, velocity and motility 
fields vanish σ(x, 0) = v(x, 0) = m(x, 0) = 0, the 
Laplace- and Fourier-transformed velocity field ̃vj(k, s) 
can be isolated. Here, k  is the Fourier transform 
variable, s is the Laplace transform variable and the 
index j runs over the spatial directions x, y . The real 
space, real time velocity field is then:

vj(x, t) =
1

(2π)2

∫
d2k

1

2πi

∫

Γ

ds eik·x+st ṽj(k, s)

=
1

(2π)2

∫
d2k

1

2πi

∫

Γ

ds eik·x+st f (k, s)

×

[
φ̃j(k, s)− kj

kxφ̃x(k, s) + kyφ̃y(k, s)

k2

]
,

where Γ indicates the integration path in the complex 
plane for the inverse Laplace transform, and we have 
defined:

f (k, s) =
1(

aα + a2
a1

k2
)

(
s + 1

a1

)
(

s + 1
)(

s + aα+k2

aαa1+a2k2

) .

� (B.2)

The velocity component correlation is proportional 
to:

Table A1.  Measured characteristics of experimental velocity fields 

in bulk experiments. The correlation length �0 was found by fitting 

a single exponential Cvv(r) = e−r/�0 to the spatial correlation 
functions displayed in figure 3.

Cell line

Mean speed v0 

(μm min−1)

Correlation 

length �0 (μm)

4T1 (0.27 ± 0.06) (25.8 ± 0.9)

67NR (0.13 ± 0.03) (26.5 ± 1.1)

MCF7 (0.23 ± 0.02) (19.6 ± 0.7)

MDA-MB-231 (0.7 ± 0.2) (13.7 ± 0.4)

HUVEC (0.5 ± 0.1) (28.0 ± 0.1)
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〈
vi(x, t)vj(x′, t′)

〉

=
1

(2π)2

1

(2πi)2

∫
d2k

∫
d2k′

∫

Γ

ds

∫

Γ′
ds′ eik·x+ik′·x′+st+s′t′ f (k, s) f (k′, s′)

〈[
φ̃j(k, s)− kj

kxφ̃x(k, s) + kyφ̃y(k, s)

k2

]

×

[
φ̃j(k′, s′)− k′j

k′xφ̃x(k′, s′) + k′yφ̃y(k′, s′)

k′2

]〉

∝
∫

d2k

∫

Γ

ds

∫

Γ′
ds′ eik·(x−x′)+st+s′t′

f (k, s) f (k, s′)

s + s′
e−k2

[
δij −

kikj

k2

]
.

�

(B.3)

We note that the term e−k2

 is a result of the noise being 
filtered. If φ had been white Gaussian noise, the term 
would not have been present.

The velocity correlation function Cvv(r, τ) of 
r = |x − x′| and τ = t − t′ > 0 is then proportional 
to:

Cvv(r, τ) ∝ 〈vx(x, t)vx(x′, t′)〉+ 〈vy(x, t)vy(x′, t′)〉

∝
∫

d2k

∫

Γ

ds

∫

Γ′
ds′ eik·(x−x′)+st+s′t′ f (k, s) f (k, s′)

s + s′
e−k2

∝
∫ ∞

0
k J0(kr) dk

∫

Γ

ds

∫

Γ′
ds′ est+s′t′ f (k, s) f (k, s′)

s + s′
e−k2

=

∫ ∞

0
k J0(kr) dk

∫ t′

0
dt1 f (k, t − t1) f (k, t′ − t1)e

−k2

,

where the Fourier transform has been turned into a 
Hankel transform and J0(kr) is the zeroth order Bessel 
function of the first kind. The function f (k, t) can be 
found analytically by applying the inverse Laplace 
transform to equation (B.2) and also the integral over 
t1 can be performed analytically.

Neglecting the transient behavior (t, t′ � 0), we 
find the spatial correlation function for equal times 
τ = t − t′ = 0:

Cvv(r) = Cvv(r, 0)

∝
∫ ∞

0
dk

k J0(kr) e−k2

(
aα + a2

a1
k2
)(

aα + k2
)
(1 + a1)aα +

(
a1 +

a2
a1

)
k2

(
(1 + a1)aα + (1 + a2)k2

) ,

� (B.4)

Figure B1.  Analytically calculated correlation functions. The correlation functions obtained from simulations with friction (full 
blue line) and drag (dotted blue line) are very similar and both well described by the analytically calculated correlation function (full 
black line). The simulations shown here correspond to the case of 4T1 cells, and have the parameters (a0

α, a0
1, a0

2). Panels (A)–(C) 
show the spatial correlation function when the three control parameters aα, a1 and a2 are varied. Only aα has a significant influence 
on the correlation function. Panels (B)–(D) show the temporal correlation function when the three control parameters are varied. 
The temporal correlation is very insensitive to the parameters.
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and the temporal correlation function for a fixed point 
in space r = |x − x′| = 0:

Cvv(τ) = Cvv(0, τ) ∝
∫ ∞

0
dk

k e−k2

(
aα + a2

a1
k2
)2

[
−
(

1

2sa
f1(k)

2 +
1

sa + sb
f1(k) f2(k)

)
eτ sa

−
(

1

2sb
f2(k)

2 + f1(k) f2(k)
1

sa + sb
eτ sb

)]
.

�
(B.5)

Here, we have denoted the two simple poles of f (k, s) as 
sa, sb and defined the two functions f1(k), f2(k):

sa = −1 sb = − aα + k2

aαa1 + a2k2
f1(k) =

sa +
1
a1

sa − sb
f2(k) =

sb +
1
a1

sb − sa
.

�

(B.6)

The integral over k in equations (B.4) and (B.5) was 
performed numerically and the resulting normalized 
correlation functions are plotted in figure  B1 for 
various parameter combinations.
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