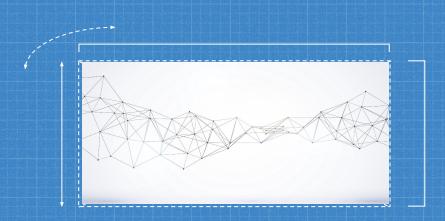
A Graph Neural Network Approach to Low Energy Event Reconstruction in IceCube Neutrino Observatory



Rasmus F. Ørsøe 09-06-2021 pcs557@alumni.ku.dk

Overview

1) The Neutrino and IceCube

The Standard Model, outline of historic experiments, IceCube Detector design, research goals, etc.

2) Graph Neural Networks

Motivation stated through a few fundamental observations, my model.

3) Results

Classification and Regression in MC and in real data

4) Conclusion & Outlook

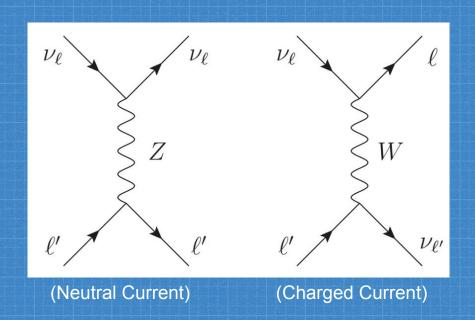
1 The Neutrino

The Neutrino

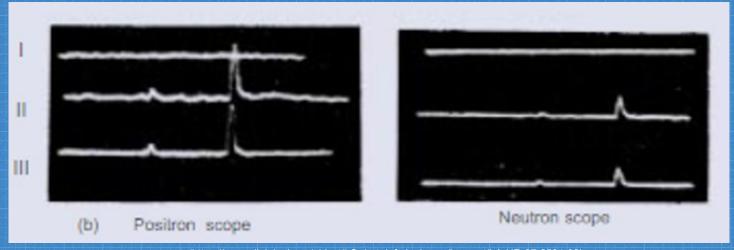
- Proposed by Wolfgang Pauli in 1930
- Explained energy spectrum for electrons in beta-decays

The Neutrino

• Interacts only via weak force (by the standard model)



Finding The Neutrino



(https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-97-2534-02)

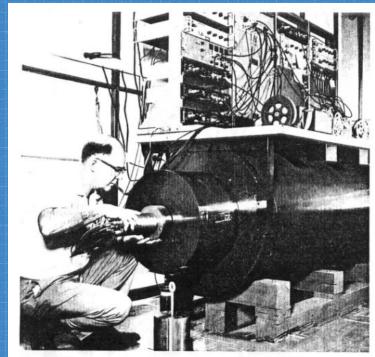
• Cowan-Reines Experiment inverse beta decay:

$$\bar{v_e} + p \longrightarrow e^+ + n$$

Neutrino Oscillation

The Homestake ExperimentCounting solar neutrinos using:

$$\nu_e + \text{Cl}_{37} \longrightarrow \text{Ar}_{37} + \text{e}^-$$



Dr. Ray Davis of Chemistry is shown placing a low level counter in a cut-down navy gun barrel which acts as a shield from stray cosmic radiation. This equipment is used in the Brookhaven Solar Neutrino Experiment.

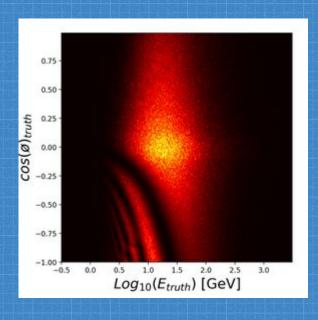
Neutrino Oscillation

$$\begin{pmatrix} v_e \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = U_{12} U_{23} U_{13} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

$$U_{12} = \begin{bmatrix} \cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$U_{23} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{bmatrix}$$

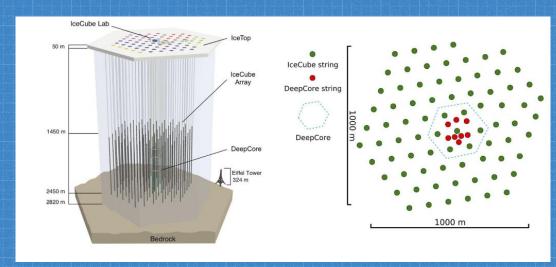
$$U_{13} = \begin{bmatrix} \cos \phi_{13} & 0 & \sin (\phi_{13}) \cdot e^{-ia} \\ 0 & 1 & 0 \\ -\sin (\phi_{23}) \cdot e^{ia} & 0 & \cos \phi_{13} \end{bmatrix}$$



2 IceCube

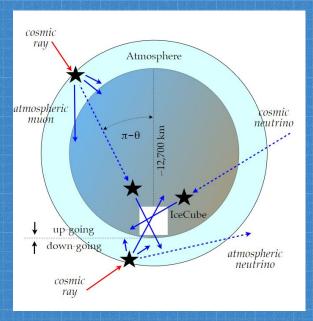
IceCube

- Location: South Pole (In the ice!)
- Largest human-made object by volume
- DeepCore at 2100 2450 meters

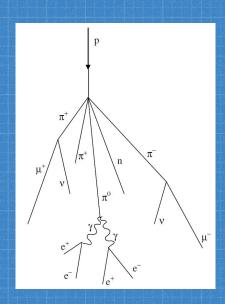


(https://arxiv.org/abs/1806.05696)

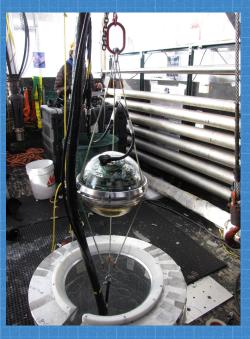
Detecting Neutrinos in IceCube



(https://arxiv.org/pdf/1806.05696.pdf)



(https://www.researchgate.net/publication/317318317_Near-Space_Muon_Flux_Detection_and_Analysis)

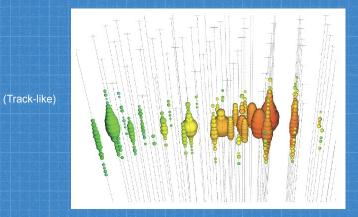


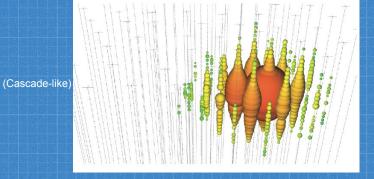
(https://icecube.wisc.edu/gallery/digital-optical-module-dom-development/

Detecting Neutrinos in IceCube

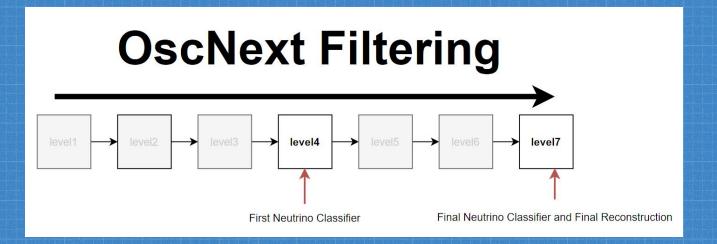
Topology
Cascade
Track(+ Cascade)
Cascade/Double Bang
Cascade + Track
Cascade

(https://arxiv.org/pdf/1311.4767.pdf)



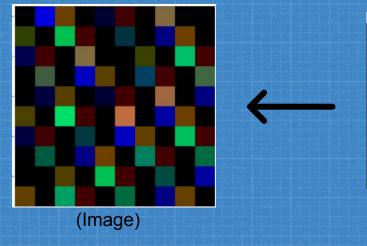


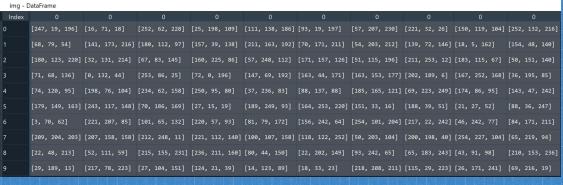
OscNext Filtering Levels



3 Graph Neural Networks

Images at face value



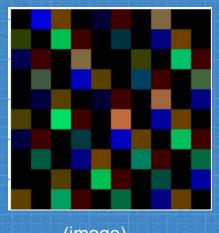


(data)

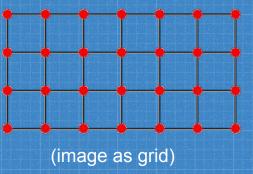
Introduction to GNNs

Images in an abstract sense:

- Images are grid-like structures, where the distance between neighbouring points in the grid is constant
- At every point in the grid we associate values 'red', 'green', 'blue'
- Images are really a special case of graphs



(image)



Introduction to GNNs 16

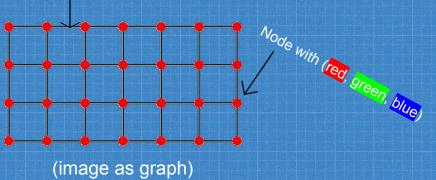
Graphs

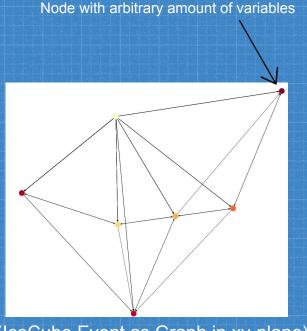
A graph is a generalized image!

Graphs is a collection of

- 1) nodes ("pixels")
- 2) edges (connections between nodes)

Edge connecting neighbouring pixels



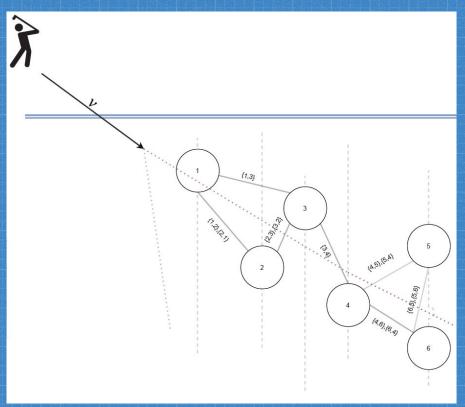


(IceCube Event as Graph in xy-plane)

Introduction to GNNs

Could a graph neural network produce reasonable classification/regression results in IceCube, and if so, how well does it compare to RetroReco?

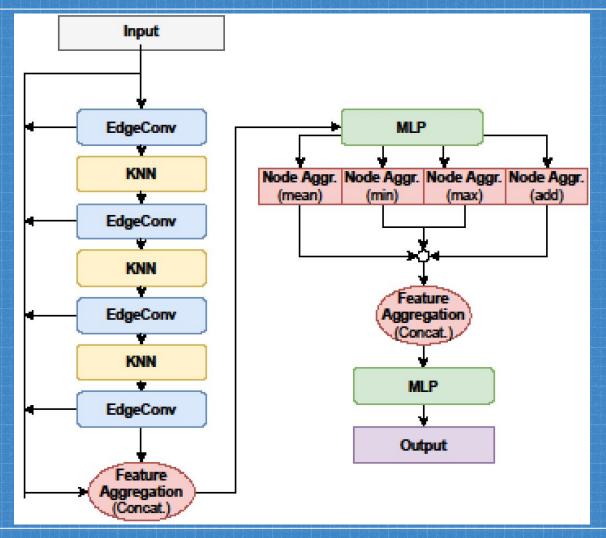
IceCube Events as Graphs



- Pulse + DOM information -> Node
- 8 nearest pulses -> edges
- * Multiple pulses from same DOM is included

2 The Model: dynedge

dynedge



EdgeConv

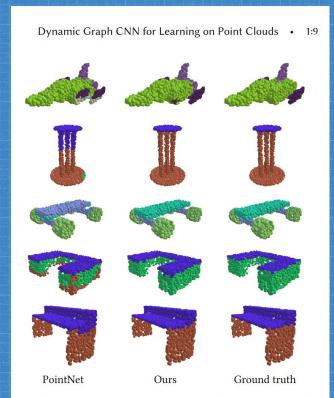


Fig. 7. Compare part segmentation results. For each set, from left to right: PointNet, ours and ground truth.

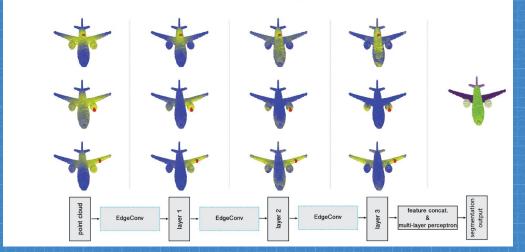
(https://arxiv.org/pdf/1801.07829.pdf)

Dynamic Graph CNN for Learning on Point Clouds

YUE WANG, Massachusetts Institute of Technology YONGBIN SUN, Massachusetts Institute of Technology ZIWEI LIU, UC Berkeley / ICSI

SANJAY E. SARMA, Massachusetts Institute of Technology MICHAEL M. BRONSTEIN, Imperial College London / USI Lugano

JUSTIN M. SOLOMON, Massachusetts Institute of Technology



EdgeConv

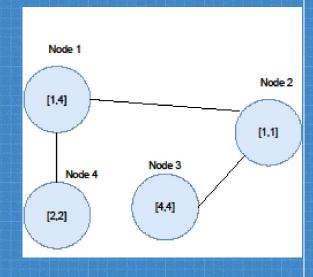
• The update of values of the j'th node is done via $\hat{x}_j = \sum_{k=1}^n f(x_j, x_j - x_k)$

Where f is a learned function (e.g a neural net)

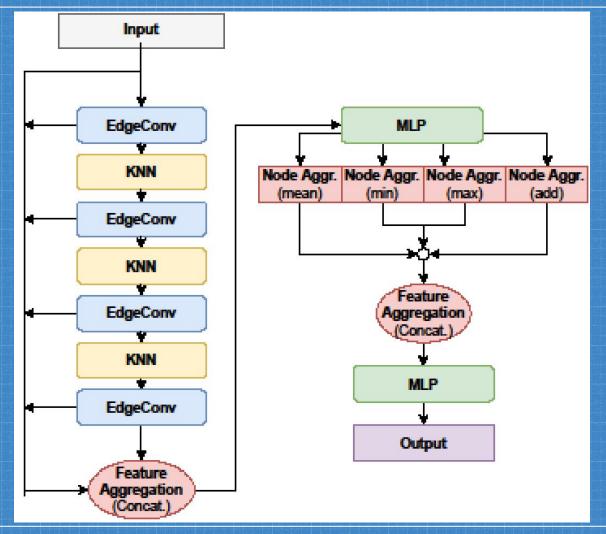
Suppose f = 1 * x + 0. Then the updated values for Node 1 would be:

$$\begin{split} \hat{x}_1 &= f(x_1, x_1 - x_2) + f(x_1, x_1 - x_4) \\ &= f([1, 4], [1, 4] - [1, 1]) + f([1, 4], [1, 4] - [2, 2]) \\ &= f([1, 4], [0, 3]) + f([1, 4], [-1, 2]) \\ &= f([1, 4, 0, 3]) + f([1, 4, -1, 2]) \quad \text{(by concat.)} \\ &= 1 \cdot [1, 4, 0, 3] + 1 \cdot [1, 4, -1, 2] \\ &= [2, 8, -1, 5] \end{split}$$

In a full forward pass, this would be iterated for every node in the graph!



dynedge





3 Results!

Classification

MC RESULTS (1v17)

(classification)

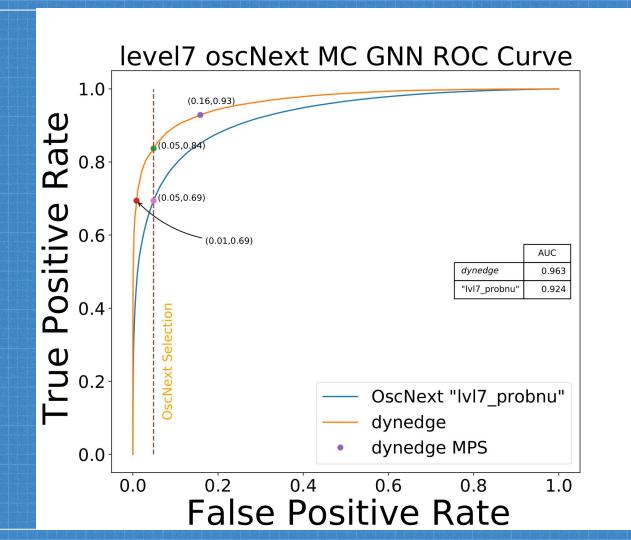
The data shown here originates from:

```
"/data/ana/LE/oscNext/pass2/genie/level7_v02.00/120000"
"/data/ana/LE/oscNext/pass2/genie/level7_v02.00/140000""
/data/ana/LE/oscNext/pass2/genie/level7_v02.00/160000"
    "/data/ana/LE/oscNext/pass2/muongun/level7/130000"
```

A total of 8.1 million events.

level 7 data selection

- ~642.000 events (out of 8.1 mill)
- 50% muon, 50% neutrino
- The neutrino sample has even distribution of neutrino types
- No noise used!



MC RESULTS (1v14)

(classification)

The data shown here originates from:

```
"/data/ana/LE/oscNext/pass2/genie/level4_v02.00/120000"

"/data/ana/LE/oscNext/pass2/genie/level4_v02.00/140000""

/data/ana/LE/oscNext/pass2/genie/level4_v02.00/160000"

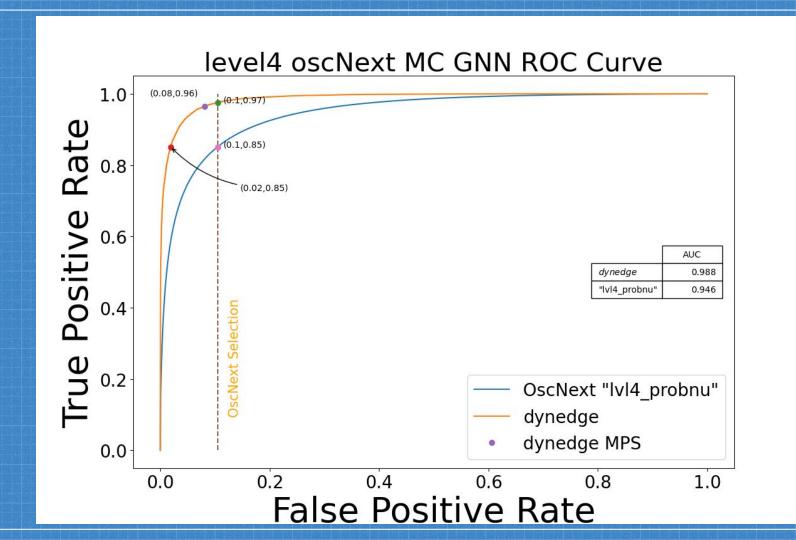
"/data/ana/LE/oscNext/pass2/muongun/level4/130000"

"/data/ana/LE/oscNext/pass2/noise/level4_v02.00"

A total of 15.9 million events.
```

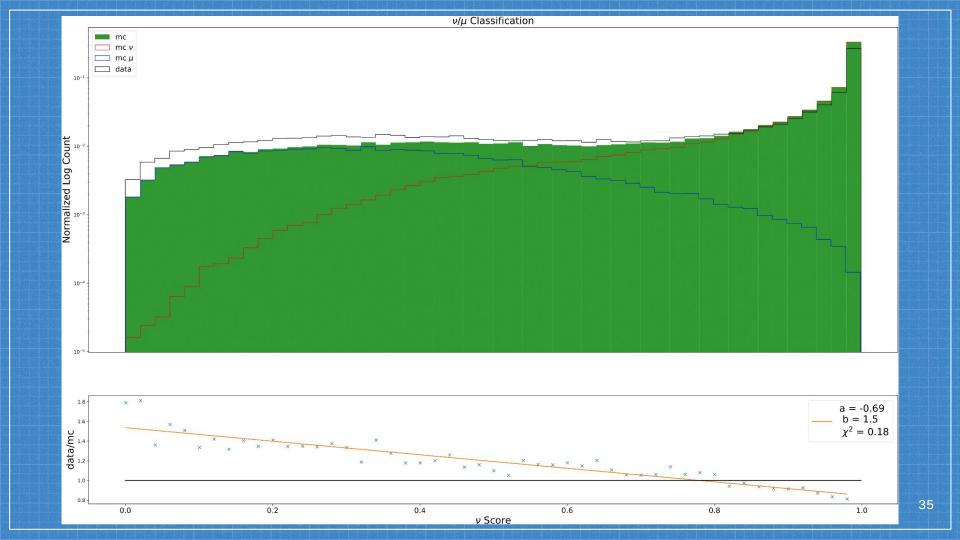
level 4 data selection

- ~600.000 events (out of 15.9 mill)
- Even amount of muons, neutrinos and noise
- The neutrino sample has even distribution of neutrino types



REAL DATA RESULTS

Real data is IC86.11 sample



Regression

(energy_log10, zenith)

Regression Metrics

• Energy : error =
$$\frac{Pred.-True}{True}$$

(otherwise numerical difference)

• Error Width :
$$W = \frac{IQR(error)}{1.349}$$

(interquantile range. Factor applied such that w is approximately 1 sigma if the errors are Gaussian)

• Rel. Imp. = 1 - w_dyn/w_retro

MC RESULTS (1v17)

(regression)

The data shown here originates from:

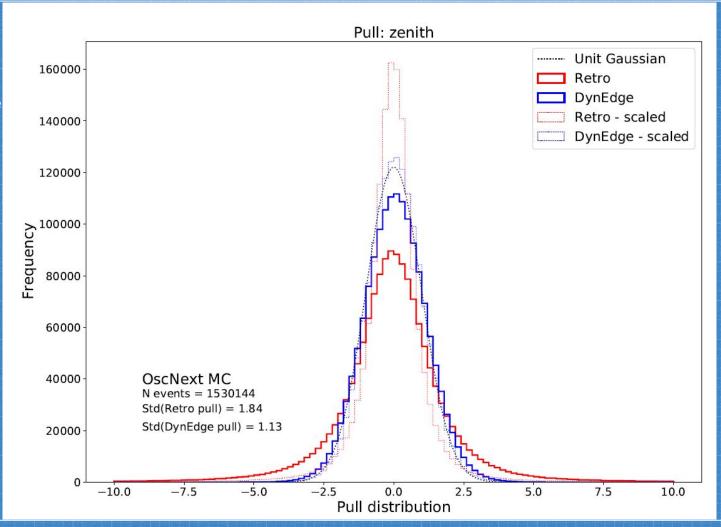
"/data/ana/LE/oscNext/pass2/genie/level7_v02.00/120000"

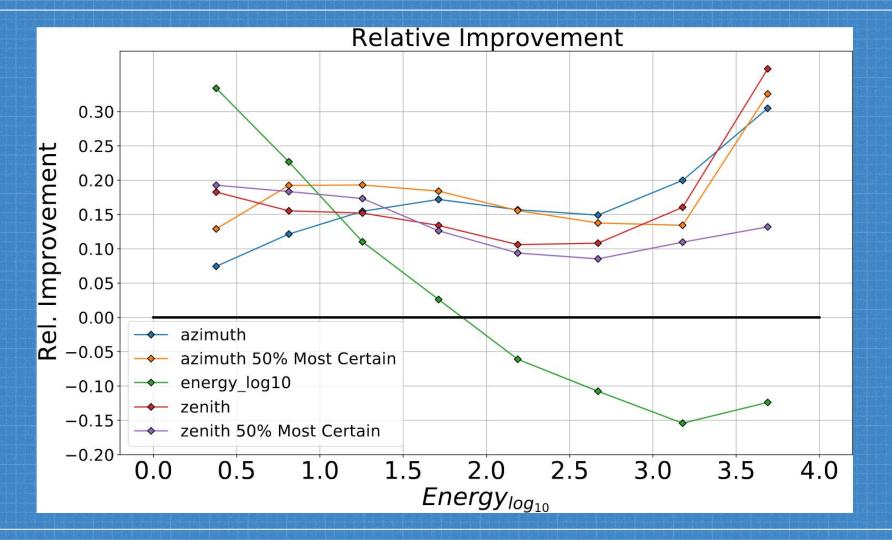
"/data/ana/LE/oscNext/pass2/genie/level7_v02.00/140000"

/data/ana/LE/oscNext/pass2/genie/level7_v02.00/160000"

NOTE:

This version of
RetroReco used a
minimizer that made
it faster but
produces inferior
uncertainties as a
result

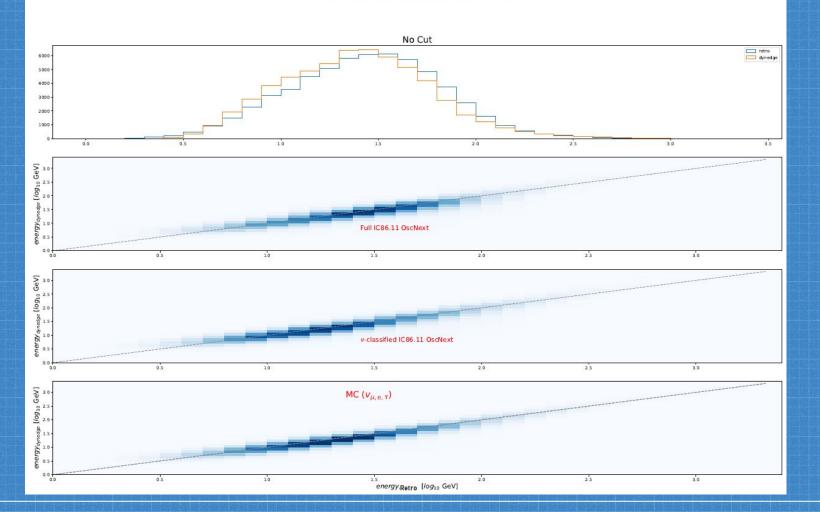


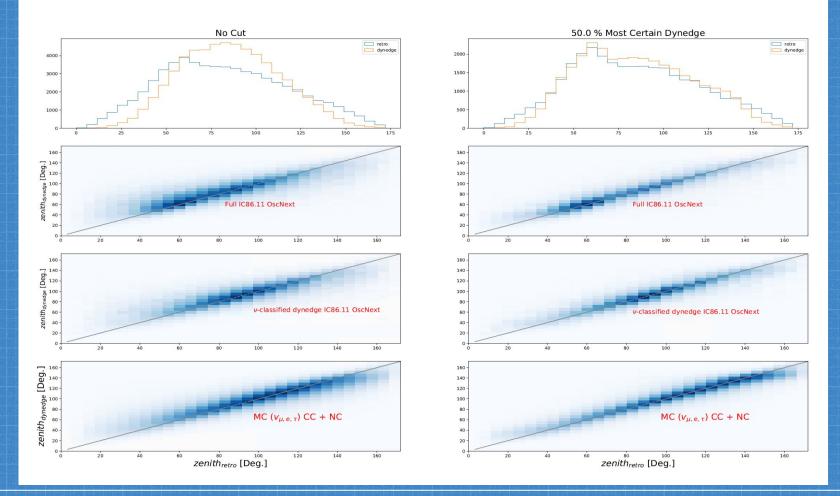


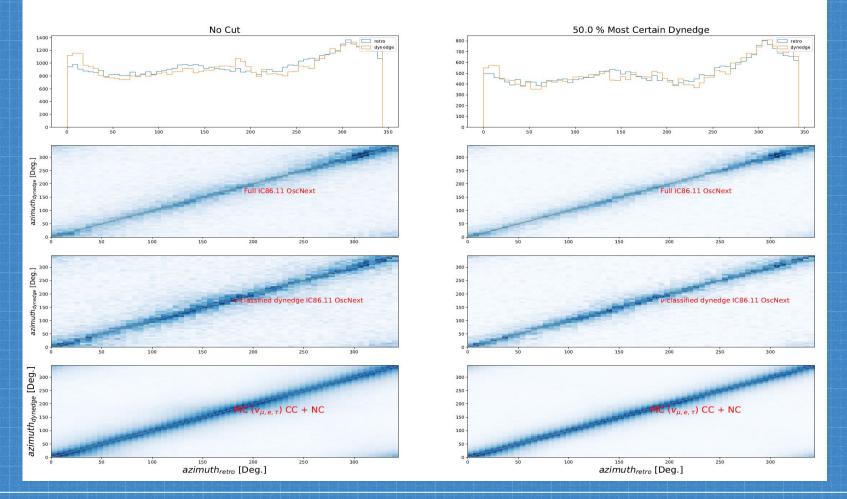
(oscillation plots)

REAL DATA RESULTS

Real data is IC86.11 sample







Conclusion

Conclusion

- Reconstruction Speed: ~15.000 events / s
- 11.7%, 22.4% and 16.3% avg. rel. improvement for azimuth, energy_log10 and zenith at 0 - 1.5 log10 GeV.
- 12% and 15% increased signal at level4 and level7, or factor 5 reduction in FPR.

Outlook

- Integrate dynedge into IceCube Framework (Already started!)
- Do PISA-analysis (with help from TUM) (Already started!)
- DoubleBang Classification with PhD Student Leander (DESY) (Starting Monday)
- Re-iterate the angular uncertainties
- So much more..

Thanks! ANY QUESTIONS?