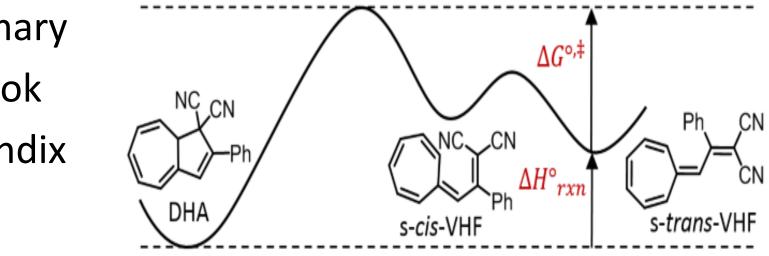
Machine Learning on Molecular Photoswitch Database

Optimizing and predicting properties of molecular solar heat batteries

Outline

- Introduction and Motivation
- Approach
 - One-Hot Encoding
 - Convolutional Neural Network
 - XGBoost (Gradient Boosted Random Forest)
- Summary
- Outlook
- Appendix



Data acquisition

- Considered 7 different positions and 42 substituents for singly and doubly substituted systems.
- 35.588 systems / rows 32.623 converged.
- Over 200.000 simulations.
- 53 features extracted energy and multipoles

X	EWG	EDG
$X \xrightarrow{7} NC CN$ $X \xrightarrow{6} 1 X$ $X \xrightarrow{4} X \xrightarrow{3} X$	-[F, Cl, Br] -CF ₃ -CN -NO ₂ -CHO	-OH -OMe -NH ₂ -NMe ₂ -Me
X NC CN	-CO ₂ H -C(O)Me -C(O)NH ₂ -CCH -SO ₂ Me -CH=NH	-NHC(O)Me -SMe

What we want to do

- Can we predict the properties of a DHA/VHF derivative based only on its substituents and their position?
- Can we predict non-trivial TS properties based on DHA/VHF properties?
- Evaluate performance based on minimizing loss function, accuracy and computation time

Handling the molecule structure

 Substituent position + type ("gene") represented by positional one-hot encoding (7*42 matrix)

Raw data

gene 0-0-2-0-31-0-0 0-0-2-0-0-31-0 0-0-2-0-0-31 31-0-0-2-0-0-0 0-31-0-2-0-0-0 0-0-31-2-0-0-0 0-0-0-2-31-0 0-0-0-2-0-31 31-0-0-2-0-0 0-31-0-0-2-0-0

Flattened, one-hot encoded gene

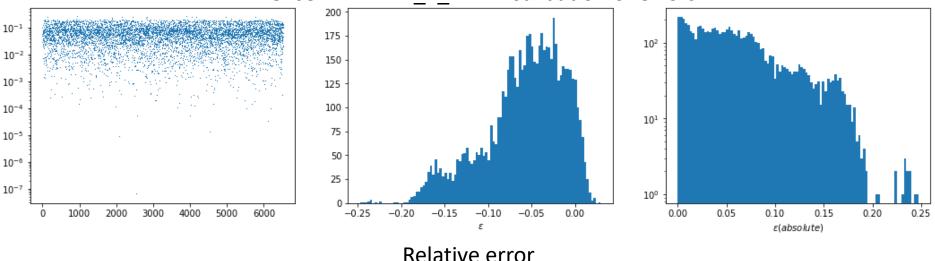
First attempt – Keras Dense Neural Network

 Define Early Stopping conditions to avoid overtraining

```
def DenseNN():
    model = Sequential()

    model.add(Dense(units=294, activation='relu', input_dim=294))
    model.add(Dense(units=256, activation='relu'))
    model.add(Dense(units=128, activation='relu'))
    model.add(Dropout(0.2))
    model.add(Dense(units=64, activation='relu'))
    model.add(Dense(units=16, activation='relu'))
    model.add(Dense(units=16, activation='relu'))
    model.add(Dense(units=1))
    model.compile(loss='logvosh', optimizer='Nadam')
```

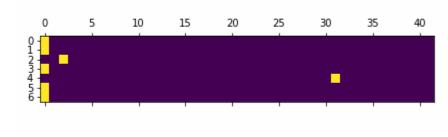
return model



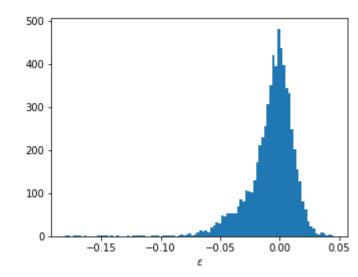
DenseNN – DHA_E_XTB Distribution of errors

Convolutional NN – Treating the gene as an image

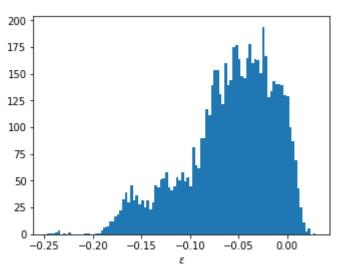
```
def ConvNN(filters=64, kernel_size=7,
           unit1=256, unit2=128, unit3=64, unit4=16,
           dropout1=0.2, dropout2=0.2, dropout3=0.2):
    model = Sequential()
    model.add(Conv2D(filters=filters,
                     kernel size=kernel size,
                     activation='relu', input_shape=(7, 42, 1) ))
    model.add(Flatten())
    model.add(Dense(units=unit1, activation='relu'))
    model.add(Dropout(dropout1)) ##
    model.add(Dense(units=unit2, activation='relu'))
    model.add(Dropout(dropout2))
    model.add(Dense(units=unit3, activation='relu'))
    model.add(Dropout(dropout3)) ##
    model.add(Dense(units=unit4, activation='relu'))
    model.add(Dense(units=1))
```



ConvNN



DenseNN

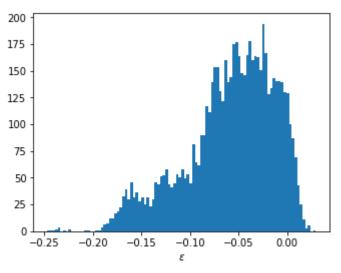


Convolutional NN – Treating the gene as an image

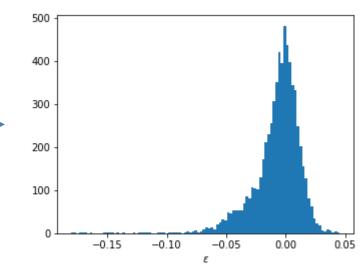
```
def ConvNN(filters=64, kernel_size=7,
           unit1=256, unit2=128, unit3=64, unit4=16,
           dropout1=0.2, dropout2=0.2, dropout3=0.2):
    model = Sequential()
    model.add(Conv2D(filters=filters,
                     kernel size=kernel size,
                     activation='relu', input_shape=(7, 42, 1) ))
    model.add(Flatten())
    model.add(Dense(units=unit1, activation='relu'))
    model.add(Dropout(dropout1)) ##
    model.add(Dense(units=unit2, activation='relu'))
    model.add(Dropout(dropout2))
    model.add(Dense(units=unit3, activation='relu'))
    model.add(Dropout(dropout3)) ##
    model.add(Dense(units=unit4, activation='relu'))
    model.add(Dense(units=1))
    model.compile(loss='logcosh',
```

```
optimizer='Nadam', metrics=['mean_absolute_error'])
return model
```

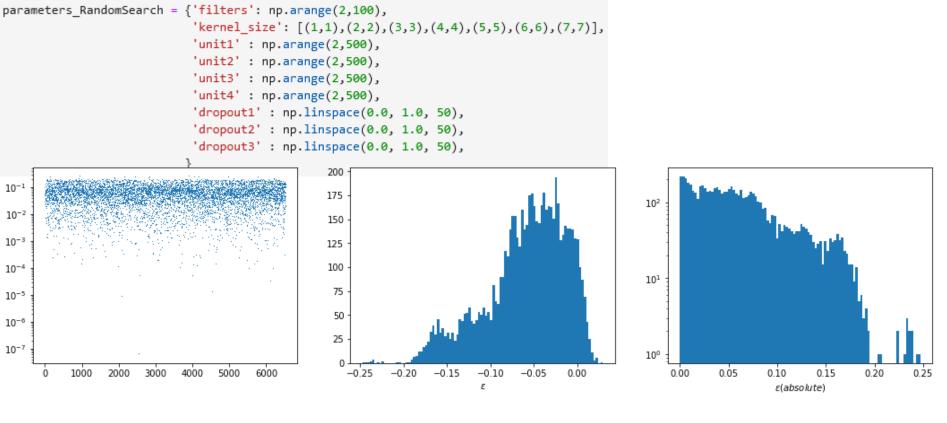
DenseNN

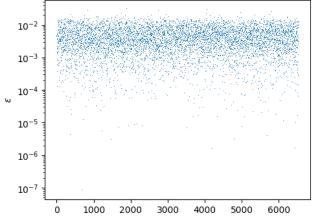


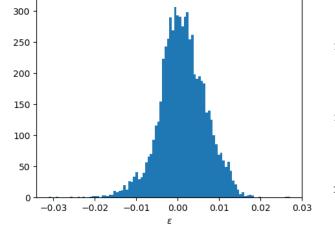
ConvNN

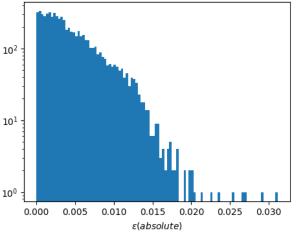


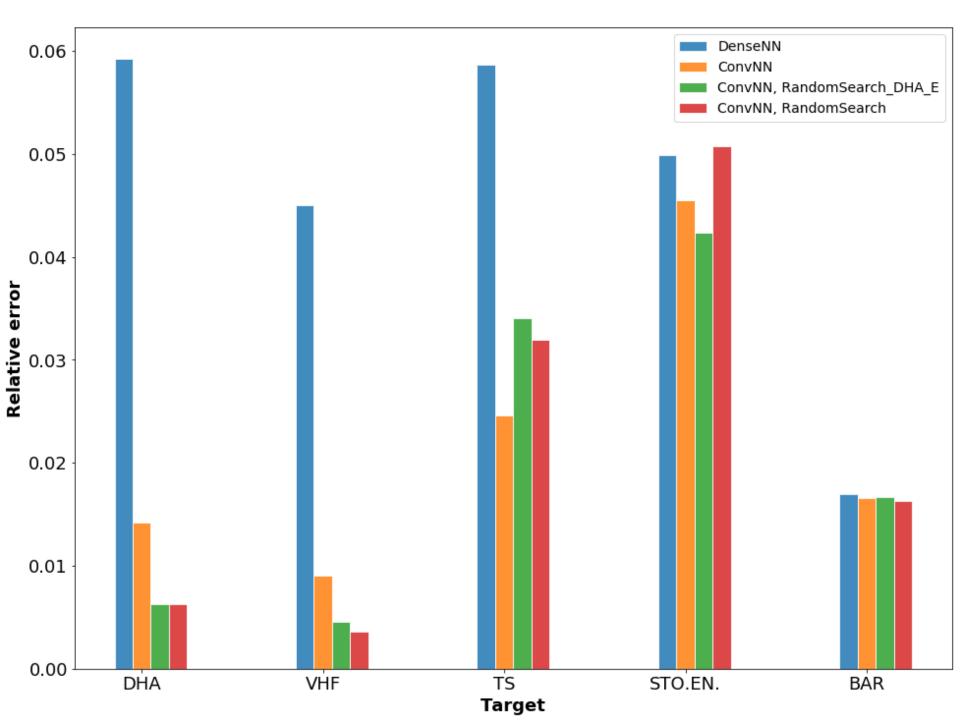
Before and after hyperparameter optimization



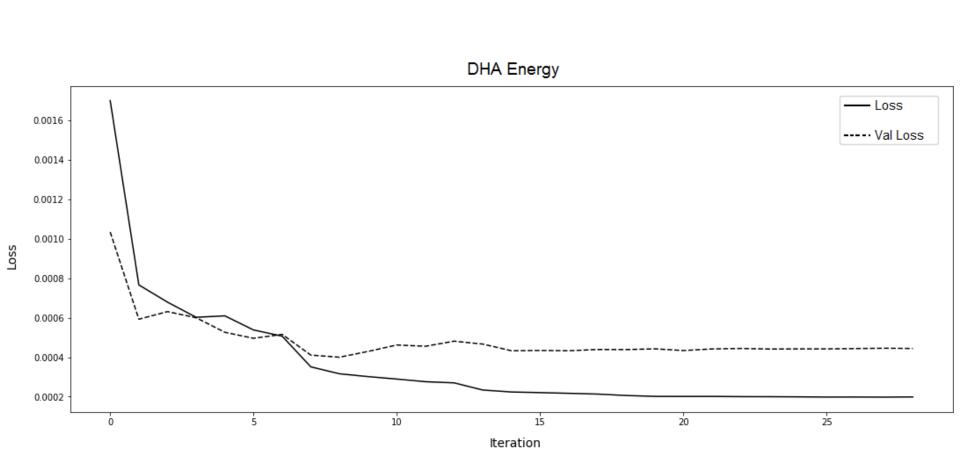




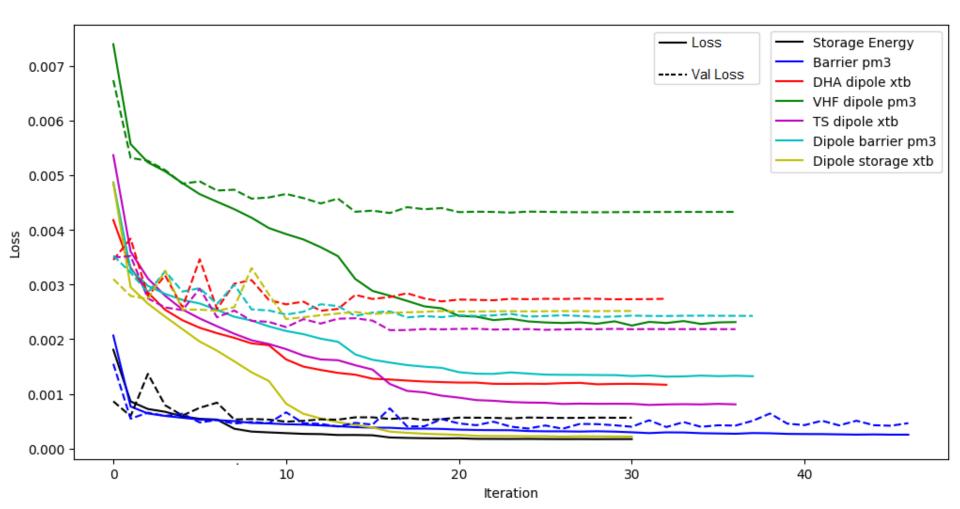


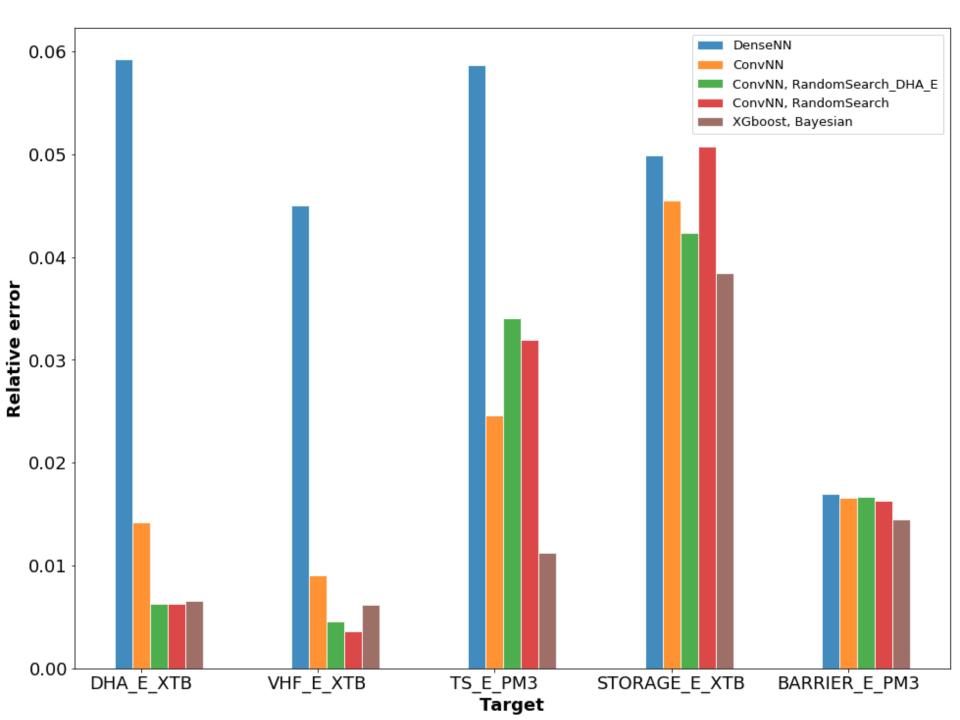


Training vs. Validation Loss

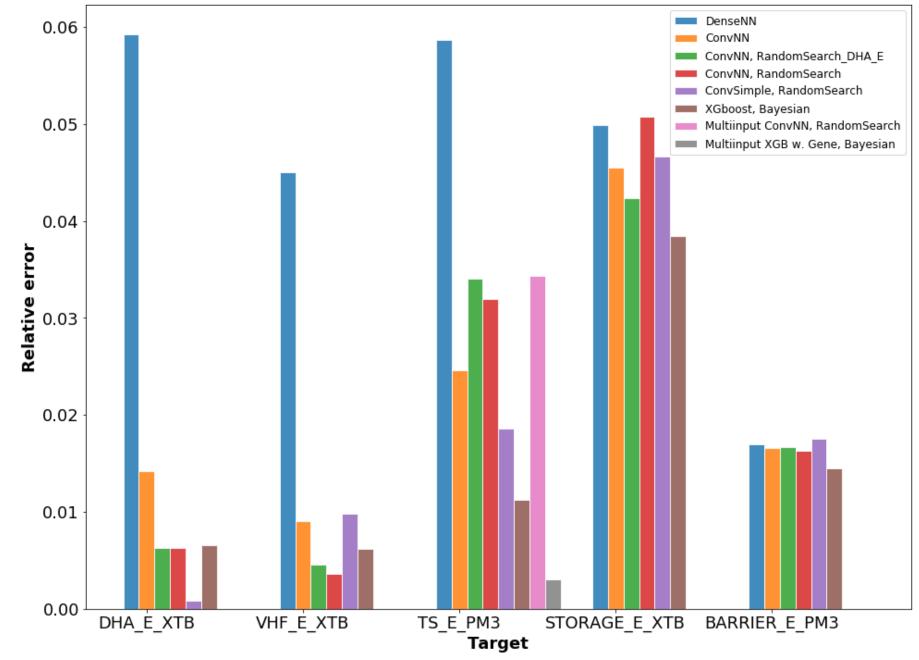


Training vs. Validation Loss

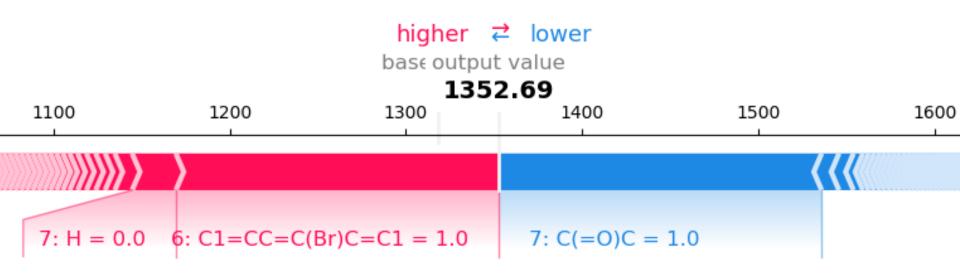


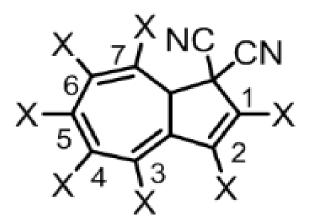


Predicting TS energies from DHA/VHF features

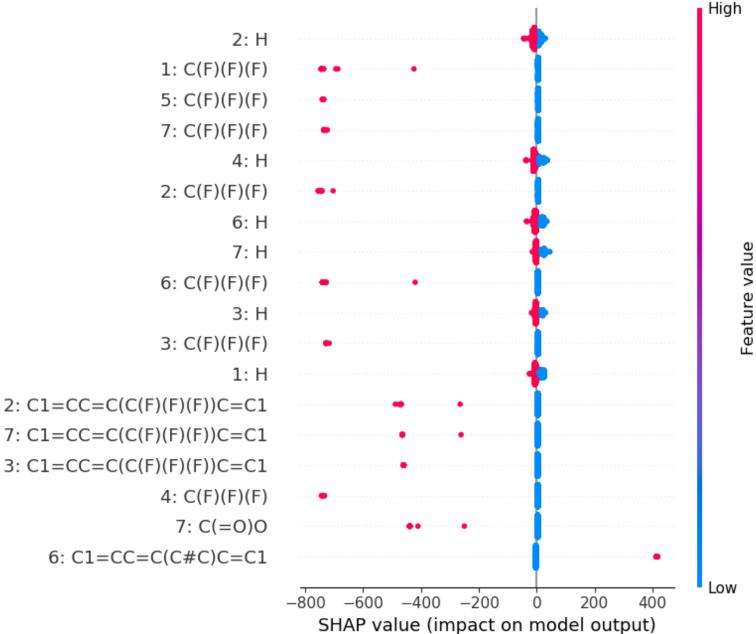


SHAP – which features are most important?





SHAP – which features are most important?



Summary

- Created own data
- Tested 3 different ML models
- Able to predict electrochemical properties from simple molecular representation
- Able to predict non-trivial TS energy from simpler to simulate properties
- Model much faster for evaluation than simulating/synthesizing individual molecules

Outlook

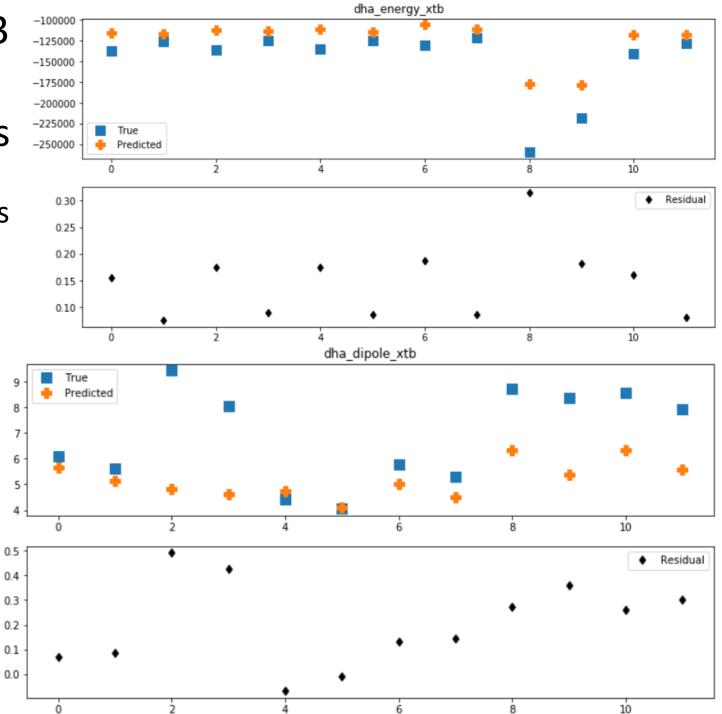
- Dense layers added little increased accuracy
- Hyperparameter search more thorough, but time constraints
- Expanding the database with triply, quadruply substituted VHF

Appendix

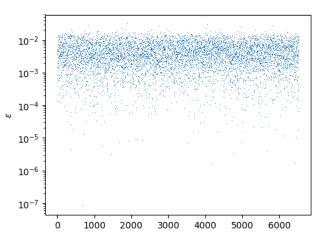
All group members have contributed evenly to the project

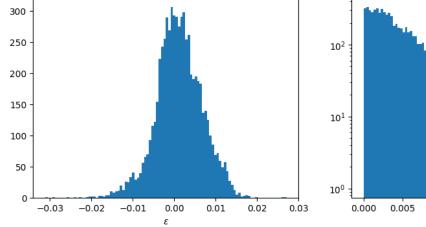
Testing for 3 and 4 substituents

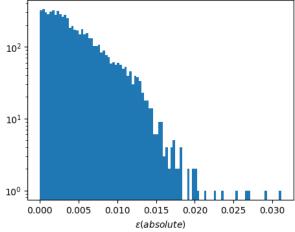
 Model worsens due to steric hindrance

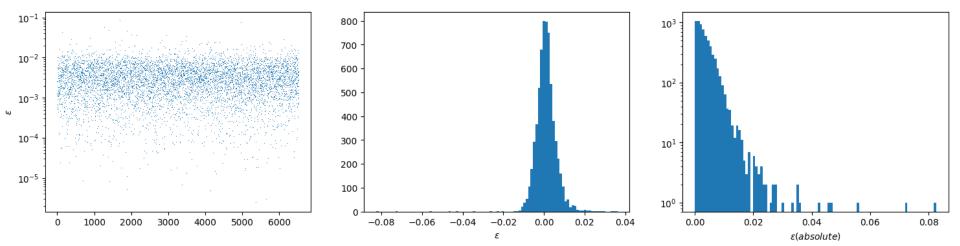


DHA and VHF Energy

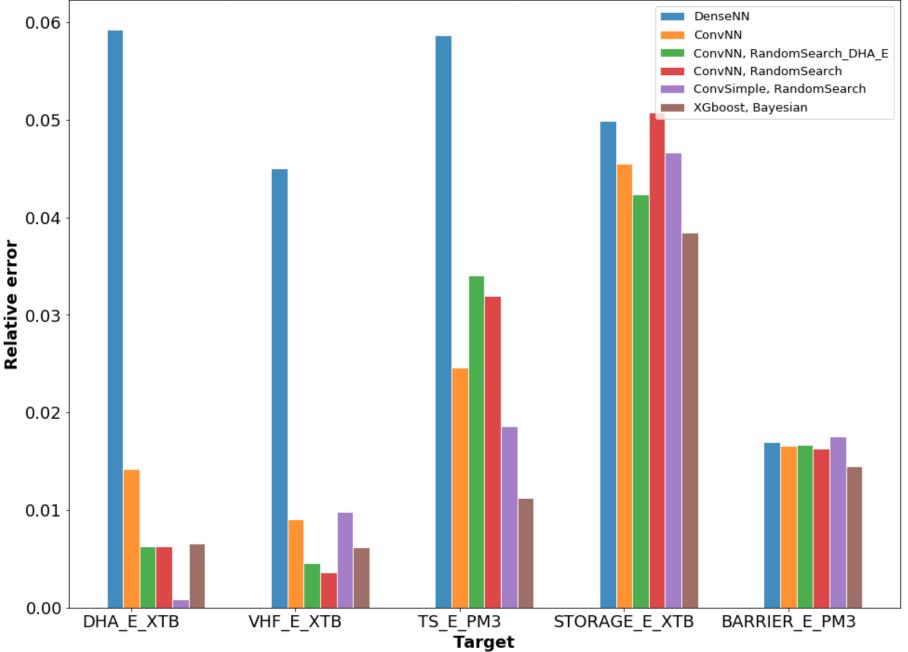








Comparison with Simple ConvNN



Full list of substituents

- ['H', 'F', 'Cl', 'Br', 'C(F)(F)(F)', 'C#N',
- '[N+](=O)([O-])', 'C(=O)[H]', 'C(=O)O',
- 'C(=O)C', 'C(=O)N', 'C#C', 'S(=O)(=O)(C)',
- 'C=N', 'O', 'OC', 'N', 'N(C)(C)', 'C', ٠
- 'N(C(=O)(C))', 'SC', 'C1=CC=C(F)C=C1',
- ٠
- 'C1=CC=C(Cl)C=C1', 'C1=CC=C(Br)C=C1',
- C1=CC=C(C(F)(F)(F))C=C1',

'C1=CC=CC=C1']

٠

- 'C1=CC=C(C#N)C=C1', 'C1=CC=C([N+](=O)([O-]))C=C1', •
- 'C1=CC=C(C(=O)[H])C=C1', 'C1=CC=C(C(=O)O)C=C1',
- C1=CC=C(C(=O)C)C=C1', C1=CC=C(C(=O)N)C=C1', •
- 'C1=CC=C(C#C)C=C1', 'C1=CC=C(S(=O)(=O)(C))C=C1',

'C1=CC=C(N(C)(C))C=C1', 'C1=CC=C(C)C=C1',

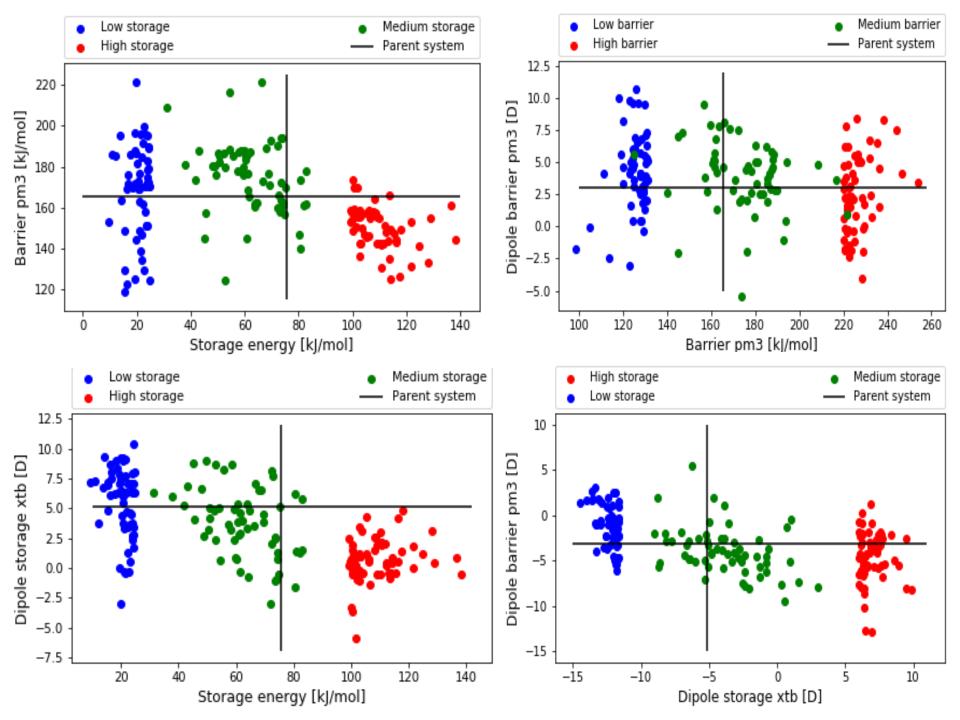
'C1=CC=C(N(C(=O)(C)))C=C1', 'C1=CC=C(SC)C=C1',

- •
- 'C1=CC=C(C=N)C=C1', 'C1=CC=C(O)C=C1',

- 'C1=CC=C(OC)C=C1', 'C1=CC=C(N)C=C1',

Full list of features

array(['name', 'gene', 'smiles', 'dha energy xtb', 'vhf energy xtb', 'storage energy', 'storage density', 'ts dipole pm3', 'vhf dipole pm3', 'dha dipole xtb', 'vhf dipole xtb', 'ts dipole xtb', 'ts energies pm3', 'vhf energies pm3', 'dha_dipole_x_pm3', 'ts_dipole_x_pm3', 'vhf_dipole_x_pm3', 'dha dipole y pm3', 'vhf dipole y pm3', 'ts dipole y pm3', 'dha dipole z pm3', 'ts dipole z pm3', 'vhf dipole z pm3', 'dha dipole x xtb', 'ts dipole x xtb', 'vhf dipole x xtb', 'dha dipole y xtb', 'vhf dipole y xtb', 'ts dipole y xtb', 'dha dipole z xtb', 'ts dipole z xtb', 'vhf dipole z xtb', 'dha_qpole_xx_xtb', 'ts_qpole_xx_xtb', 'vhf_qpole_xx_xtb', 'dha qpole yy xtb', 'vhf qpole yy xtb', 'ts qpole yy xtb', 'dha qpole zz xtb', 'ts qpole zz xtb', 'vhf qpole zz xtb', 'dha qpole xy xtb', 'ts qpole xy xtb', 'vhf qpole xy xtb', 'dha qpole xz xtb', 'vhf qpole xz xtb', 'ts qpole xz xtb', 'dha qpole yz xtb', 'ts qpole yz xtb', 'vhf qpole yz xtb', 'barrier pm3', 'dipole barrier pm3', 'dipole storage xtb'], dtype=object)



Results

					$H_{3}C$
Units of kJ/mol / MJ/kg	vacuum	СН	CH_2Cl_2	MeCN	Ta Tb
$\Delta H_{7a \rightarrow 7b}$	140 /	140 /	141 /	140 /	
MP2	0.52	0.52	0.52	0.52	
$\Delta G_{\mathrm{TS}\leftarrow\mathbf{7b}}$ MP2	-	-	62.7	61.4	Half-life shortened by a factor of 4
$\frac{\Delta G_{\mathbf{TS}\cdot\mathbf{H}^{+}\leftarrow\mathbf{7b}\cdot\mathbf{H}^{+}}}{\mathrm{MP2}}$	65.8	-	59.2	59.9	Half-life shortened by a factor of 2
$\Delta E_{7a \rightarrow 7b}$	133 /	133 /	133 /	133 /	$t_{1/2} \propto \frac{1}{k_r} \propto \exp\left(\frac{\Delta G_{\text{TS} \leftarrow \text{VHF}}}{k_B T}\right)$
CCSD(T) SPE	0.49	0.49	0.49	0.49	$\iota_{1/2} \propto \frac{k_r}{k_r} \propto \exp\left(\frac{-k_BT}{k_BT}\right)$

Table 3 Energy storage capacities and thermal back-reaction barriers calculated at the MP2/6-311+G(d) level of theory and change in single point energy and the corresponding specific energy calculated at the CCSD(T)/6-311+G(d) level of theory on M06-2X/6-311+G(d) optimized structures of systems 7 and $7 \cdot H^+$ in vacuo and solvents.