
Outplaying humans in 
bomberman using 
Deep Q-learning 

AML project presentation by Frank de Morrée, 
Ida Stoustrup and Iestyn Watkin.

12th of June 2019



Outline The Problem

Methods

Performance Evaluation

Discussion and Conclusions

2



The Problem Train an ANN agent to play 
Bomberman successfully

➔ Decided to build lightweight 
version of the game

➔ Train using Deep 
Q-Reinforcement-Learning

➔ Evaluate and tweak until our 
own skills are laughable
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Bomberman
“2D checkerboard space with N players whose goal is to blow up enemy players with bombs while 

avoiding them. The last man standing wins. Bricks may block paths and contain powerups. Originally 1P”
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➔ Player class
◆ Full moveset + scoring system

➔ Board class
◆ Dynamic board size:  walls, bricks, players, spawns and bombs

➔ Bomb class
◆ Timer updates + explosion behaviour

➔ Result is an N x M x 6 tensor that is the abstract game
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Game Development Phase



Deep Q-learning
“Program AI agents to act effectively in an discrete action environment. The input is a state, after which 

the agent chooses an action based on weights. Subsequently, the action is rewarded or punished, the 

weights updated, and the state of the game updated and given to the agent.”
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Let’s go in depth, easy as ABC

A. Network architecture

B. Q-function & reward values

C. Training

Methods
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Meet A.L.A.N.
Advanced Learning Artificial Network
Absolutely Lit Axploding Neurons
Anachronistic Liability Adulterating Net
Angry Lemony Ankle-biting Nonsense
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Network 
Architecture
A.

Conv2D → Maxpool → Conv2D → Fully connected

A.L.A.N.’s Input

➔ Input is tensor board N x M x 6

➔ The full board state consisting of 6 object 

layers
◆ Walls
◆ Bricks
◆ Players
◆ Bombs
◆ Enemies
◆ Powerups
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Network 
Architecture
A.

Conv2D → Maxpool → Conv2D → Fully connected

A.L.A.N.’s first convolutional layer

➔ Conv2D identifies features

➔ Scans input and convolves

➔ Padding
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Network 
Architecture
A.

Conv2D → Maxpool → Conv2D → Fully connected

A.L.A.N.’s Maxpool layer

➔ Maxpool identifies the highest valued 

features, reducing dimensionality
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Network 
Architecture
A.

Conv2D → Maxpool → Conv2D → Fully connected

A.L.A.N.’s second convolutional 
layer

➔ 2nd Conv2D
➔ Used to find right representation of 

the game state
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Network 
Architecture
A.

Conv2D → Maxpool → Conv2D → Fully connected

A.L.A.N.’s brain: neurons and output

➔ Fully connected layers provides output 

moves.
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Deep Q-Learning
B.

The Q-function tells the agent the quality of 

a possible action a in a particular state s
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Deep Q-Learning
B.

The reward function defines the reward 

maximising behaviour of Alan
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Reinforcement learning rewards

➔ Reward shaping

➔ Robot arm

➔ Exploration vs exploitation

self.rewards = {

            "kaboomed_brick": 50,

            "kaboomed_player": 200,

            "lost_life": -45,

            "died": 0,

            "invalid_move": -5,

            "spawned_bomb": -1,

            "do_nothing": -3,

            "valid_move": -1,

            "invalid_spawn_bomb": -5 }



Deep Q-Learning
B.

The replay memory class stabilises the learning 

procedure and removes correlation

16

Replay memory

➔ Tuples of [State, Action,

Observe state, Reward]

➔ Batch of 16 states

➔ Random update removes 



Training A.L.A.N
C.

The work before starting the 
training process summed up
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Setup 

➔ A.L.A.N. has moveset

➔ A.L.A.N. gets rewards

➔ A.L.A.N.  maximises rewards

➔ Loss function is to be minimised



Training Alan
C.

Stage 1 - Teenager in room
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Process

➔ Initial guess at rewards

➔ Solved by tweaking rewards and 

hyperparameters



Training
C.

Stage 2 - A.L.A.N. gets PTSD
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Process

➔ Many negative rewards?

➔ After loss of live stopped all movement

➔ Solved by tweaking hyperparameters
◆ Less punishment



Training
C.

Stage 3 - Lazy Alan
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Process

➔ Rewarding valid moves?

➔ Repeat moves forever

➔ Solved by more training and/or 

tweaking rewards



Performance 
Evaluation

So how did we improve?

➔ Alan’s performance is evaluated based 

on score

➔ Not dying

➔ Successfully blowing up bricks

➔ Gaining as much points as possible
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Moves
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Earlier version ‘motion loop’ Final version applies all moves



Scoring
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Random moves  = bad score Play from memory = high score
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A well trained model is consistent.

Game 11 Game 20 Game 51



Discussion and 
Conclusions What did we  learn and what’s 

next?
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Deep Q-Reinforcement-Learning 
of Alan the Bomberman ANN

There are still some difficulties but the behaviour is according to plan!

Improvements and lessons learned

➔ Thesis sized project = sleepless nights

➔ Hyperparameters 
◆ Trial and error and many configurations work
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➔ Alan loves loopholes
◆ Infini bomb drop
◆ Suicidal to avoid further punishment

➔ More training is more better
◆ Validates the agent and 



Support our team!
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DISCOUNT!
$5,99
with

PROMO CODE
A.L.A.N.0PE
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All group members have contributed evenly to the project, but Ida deserves extra credit for being awesome and 
managing to figure out a bunch of both the game and the ANN.
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