Outplaying humans in bomberman using Deep Q-learning

AML project presentation by Frank de Morrée, Ida Stoustrup and Iestyn Watkin. 12th of June 2019

Outline

The Problem

Methods

Performance Evaluation

Discussion and Conclusions

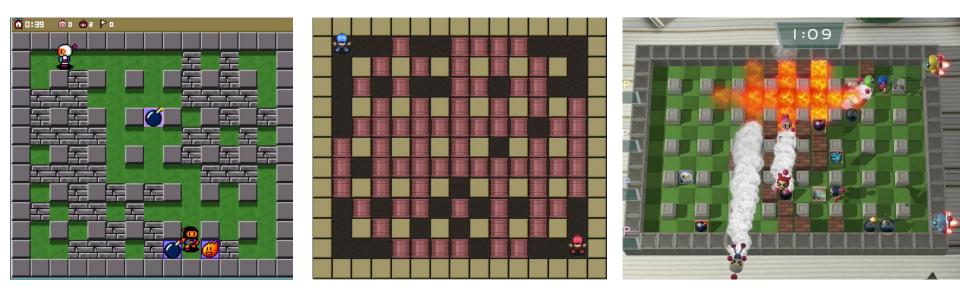
The Problem

Train an ANN agent to play Bomberman successfully

- → Decided to build lightweight version of the game
- → Train using Deep Q-Reinforcement-Learning
- → Evaluate and tweak until our own skills are laughable

Bomberman

"2D checkerboard space with N players whose goal is to blow up enemy players with bombs while avoiding them. The last man standing wins. Bricks may block paths and contain powerups. Originally 1P"

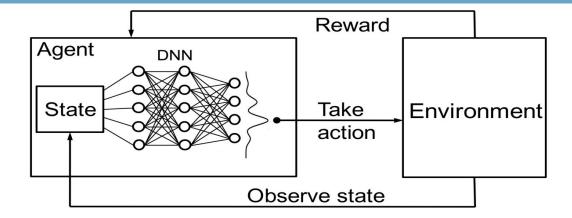


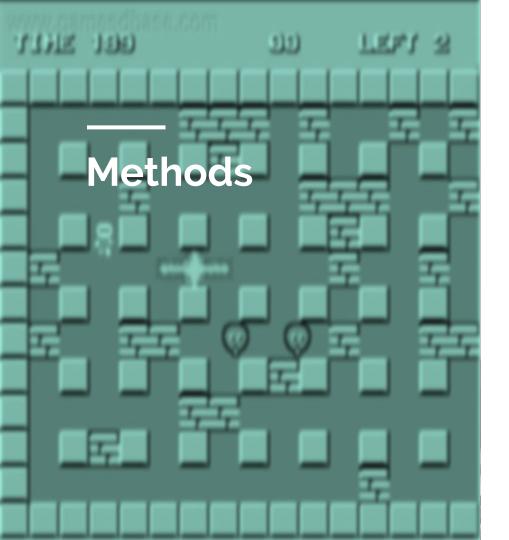
Game Development Phase

- → Player class
 - Full moveset + scoring system
- → Board class
 - Dynamic board size: walls, bricks, players, spawns and bombs
- → Bomb class
 - Timer updates + explosion behaviour
- → Result is an N x M x 6 tensor that is the abstract game

Deep Q-learning

"Program AI agents to act effectively in an discrete action environment. The input is a state, after which the agent chooses an action based on weights. Subsequently, the action is rewarded or punished, the weights updated, and the state of the game updated and given to the agent."





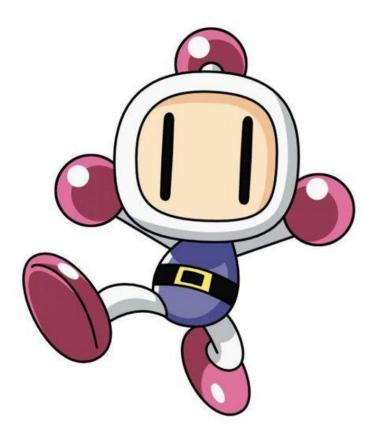
Let's go in depth, easy as ABC

- A. Network architecture
- **B.** Q-function & reward values
- C. Training

Meet A.L.A.N.

Advanced Learning Artificial Network Absolutely Lit Axploding Neurons

Anachronistic Liability Adulterating Net Angry Lemony Ankle-biting Nonsense



 $\begin{array}{c} \textbf{Conv2D} \rightarrow \textbf{Maxpool} \rightarrow \textbf{Conv2D} \rightarrow \textbf{Fully connected} \\ 5x5 \qquad 2x2 \qquad 3x3 \qquad 2x \end{array}$

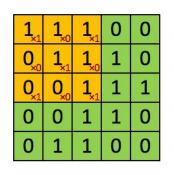
A.L.A.N.'s Input

- → Input is tensor board N x M x 6
- → The full board state consisting of 6 object layers
 - Walls
 - Bricks
 - Players
 - Bombs
 - Enemies
 - Powerups

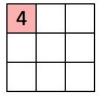
$\textbf{Conv2D} \rightarrow \textbf{Maxpool} \rightarrow \textbf{Conv2D} \rightarrow \textbf{Fully connected}$				
5x5	2x2	3x3	2x	

A.L.A.N.'s first convolutional layer

- → Conv2D identifies features
- → Scans input and convolves
- → Padding



Image

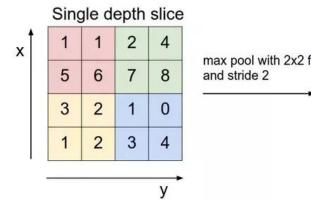


Convolved Feature

Conv2D	$\rightarrow Maxpool -$	→ Conv2D →	Fully connected
5x5	2x2	3x3	2x

A.L.A.N.'s Maxpool layer

→ Maxpool identifies the highest valued features, reducing dimensionality



filters	6		
*	3		

8

 $\begin{array}{c} \text{Conv2D} \rightarrow \text{Maxpool} \rightarrow \textbf{Conv2D} \rightarrow \text{Fully connected} \\ 5x5 \qquad 2x2 \qquad 3x3 \qquad 2x \end{array}$

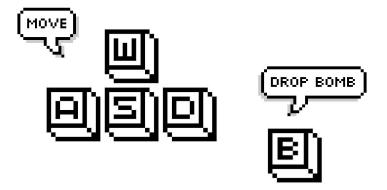
A.L.A.N.'s second convolutional layer

- → 2nd Conv2D
- → Used to find right representation of the game state

A.L.A.N.'s brain: neurons and output

→ Fully connected layers provides output moves.

$Conv2D \rightarrow Maxpool \rightarrow Conv2D \rightarrow \textbf{Fully connected}$				
5x5	2x2	3x3	2x	



$$Q(s,a) = r(s,a) + \gamma \max_{a} Q(s',a)$$

Deep Q-Learning B.

New Q(s,a) = Q(s,a) +
$$\alpha$$
 [R(s,a) + γ maxQ'(s',a') - Q(s,a)

The Q-function tells the agent the quality of a possible action **a** in a particular state **s**

Q Table	:					γ = 0.95
	000 100	000 010	000 001	100 000	010 000	001 000
Î	0.2	0.3	1.0	-0.22	-0.3	0.0
Ţ	-0.5	-0.4	-0.2	-0.04	-0.02	0.0
\Rightarrow	0.21	0.4	-0.3	0.5	1.0	0.0
	-0.6	-0.1	-0.1	-0.31	-0.01	0.0

.

Deep Q-Learning B.

The reward function defines the reward maximising behaviour of Alan

Reinforcement learning rewards

- → Reward shaping
- → Robot arm

<pre>self.rewards = {</pre>	
"kaboomed_brick":	50,
"kaboomed_player":	200,
"lost_life":	-45,
"died":	0,
"invalid_move":	-5,
"spawned_bomb":	-1,
"do_nothing":	-3,
"valid_move":	-1,
"invalid_spawn_bomb":	-5 }

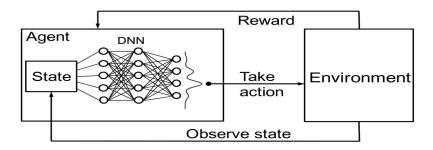
→ Exploration vs exploitation

Deep Q-Learning B.

The replay memory class stabilises the learning procedure and removes correlation

Replay memory

- → Tuples of [State, Action, Observe state, Reward]
- → Batch of 16 states
- → Random update removes



Training A.L.A.N C.

The work before starting the training process summed up

Setup

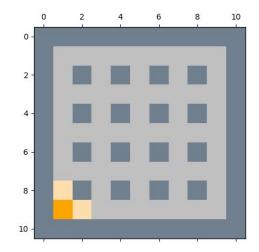
- → A.L.A.N. has moveset
- → A.L.A.N. gets rewards
- → A.L.A.N. maximises rewards
- → Loss function is to be minimised

Training Alan C.

Stage 1 - Teenager in room

Process

- → Initial guess at rewards
- → Solved by tweaking rewards and hyperparameters

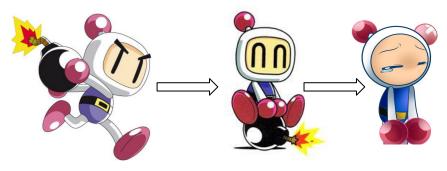


Training

Stage 2 - A.L.A.N. gets PTSD

Process

- → Many negative rewards?
- → After loss of live stopped all movement
- → Solved by tweaking hyperparameters
 - Less punishment

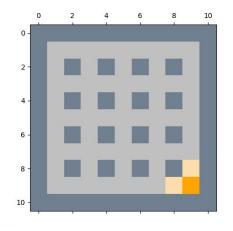


Training

Stage 3 - Lazy Alan

Process

- → Rewarding valid moves?
- → Repeat moves forever
- → Solved by more training and/or tweaking rewards

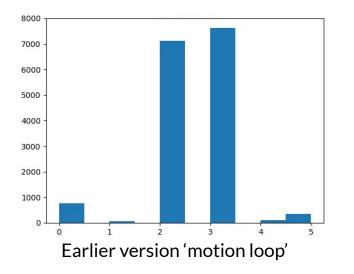


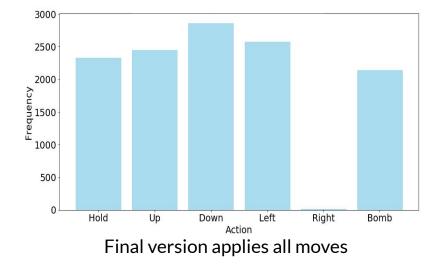
Performance Evaluation

So how did we improve?

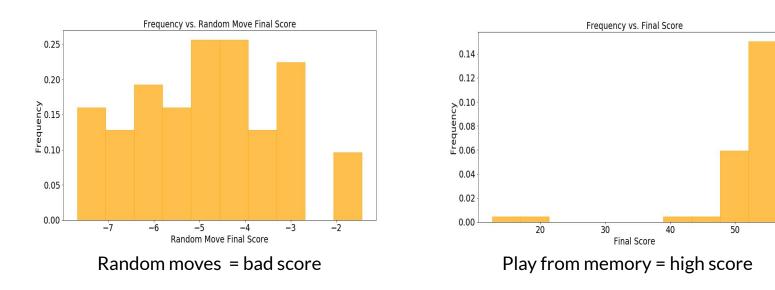
- → Alan's performance is evaluated based on score
- → Not dying
- → Successfully blowing up bricks
- → Gaining as much points as possible

Moves

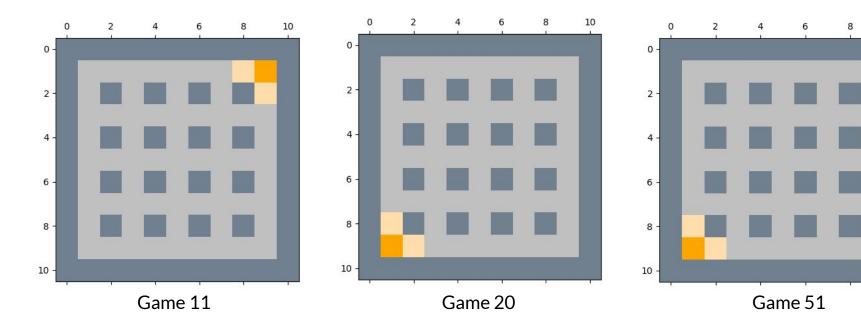




Scoring



A well trained model is consistent.



Discussion and Conclusions

GAME STAR BATTLE

PISSHORD

COPYRIGHT 1990/1991

What did we learn and what's next?

Deep Q-Reinforcement-Learning of Alan the Bomberman ANN

There are still some difficulties but the behaviour is according to plan!

Improvements and lessons learned

- → Thesis sized project = sleepless nights
- → Hyperparameters
 - Trial and error and many configurations work

- \rightarrow Alan loves loopholes
 - Infini bomb drop
 - Suicidal to avoid further punishment
- → More training is more better
 - Validates the agent and

Support our team!

References

Reinforcement Learning with Pytorch

Human-level control through deep reinforcement learning

Deep Reinforcement Learning Course

All group members have contributed evenly to the project, but Ida deserves extra credit for being awesome and managing to figure out a bunch of both the game and the ANN.