
Outplaying humans in
bomberman using
Deep Q-learning

AML project presentation by Frank de Morrée,
Ida Stoustrup and Iestyn Watkin.

12th of June 2019

Outline The Problem

Methods

Performance Evaluation

Discussion and Conclusions

2

The Problem Train an ANN agent to play
Bomberman successfully

➔ Decided to build lightweight
version of the game

➔ Train using Deep
Q-Reinforcement-Learning

➔ Evaluate and tweak until our
own skills are laughable

3

Bomberman
“2D checkerboard space with N players whose goal is to blow up enemy players with bombs while

avoiding them. The last man standing wins. Bricks may block paths and contain powerups. Originally 1P”

4

➔ Player class
◆ Full moveset + scoring system

➔ Board class
◆ Dynamic board size: walls, bricks, players, spawns and bombs

➔ Bomb class
◆ Timer updates + explosion behaviour

➔ Result is an N x M x 6 tensor that is the abstract game
5

Game Development Phase

Deep Q-learning
“Program AI agents to act effectively in an discrete action environment. The input is a state, after which

the agent chooses an action based on weights. Subsequently, the action is rewarded or punished, the

weights updated, and the state of the game updated and given to the agent.”

6

Let’s go in depth, easy as ABC

A. Network architecture

B. Q-function & reward values

C. Training

Methods

7

Meet A.L.A.N.
Advanced Learning Artificial Network
Absolutely Lit Axploding Neurons
Anachronistic Liability Adulterating Net
Angry Lemony Ankle-biting Nonsense

8

Network
Architecture
A.

Conv2D → Maxpool → Conv2D → Fully connected

A.L.A.N.’s Input

➔ Input is tensor board N x M x 6

➔ The full board state consisting of 6 object

layers
◆ Walls
◆ Bricks
◆ Players
◆ Bombs
◆ Enemies
◆ Powerups

9

5x5 2x2 3x3 2x

Network
Architecture
A.

Conv2D → Maxpool → Conv2D → Fully connected

A.L.A.N.’s first convolutional layer

➔ Conv2D identifies features

➔ Scans input and convolves

➔ Padding

10

5x5 2x2 3x3 2x

Network
Architecture
A.

Conv2D → Maxpool → Conv2D → Fully connected

A.L.A.N.’s Maxpool layer

➔ Maxpool identifies the highest valued

features, reducing dimensionality

11

5x5 2x2 3x3 2x

Network
Architecture
A.

Conv2D → Maxpool → Conv2D → Fully connected

A.L.A.N.’s second convolutional
layer

➔ 2nd Conv2D
➔ Used to find right representation of

the game state

12

5x5 2x2 3x3 2x

Network
Architecture
A.

Conv2D → Maxpool → Conv2D → Fully connected

A.L.A.N.’s brain: neurons and output

➔ Fully connected layers provides output

moves.

13

5x5 2x2 3x3 2x

Deep Q-Learning
B.

The Q-function tells the agent the quality of

a possible action a in a particular state s

14

Deep Q-Learning
B.

The reward function defines the reward

maximising behaviour of Alan

15

Reinforcement learning rewards

➔ Reward shaping

➔ Robot arm

➔ Exploration vs exploitation

self.rewards = {

 "kaboomed_brick": 50,

 "kaboomed_player": 200,

 "lost_life": -45,

 "died": 0,

 "invalid_move": -5,

 "spawned_bomb": -1,

 "do_nothing": -3,

 "valid_move": -1,

 "invalid_spawn_bomb": -5 }

Deep Q-Learning
B.

The replay memory class stabilises the learning

procedure and removes correlation

16

Replay memory

➔ Tuples of [State, Action,

Observe state, Reward]

➔ Batch of 16 states

➔ Random update removes

Training A.L.A.N
C.

The work before starting the
training process summed up

17

Setup

➔ A.L.A.N. has moveset

➔ A.L.A.N. gets rewards

➔ A.L.A.N. maximises rewards

➔ Loss function is to be minimised

Training Alan
C.

Stage 1 - Teenager in room

18

Process

➔ Initial guess at rewards

➔ Solved by tweaking rewards and

hyperparameters

Training
C.

Stage 2 - A.L.A.N. gets PTSD

19

Process

➔ Many negative rewards?

➔ After loss of live stopped all movement

➔ Solved by tweaking hyperparameters
◆ Less punishment

Training
C.

Stage 3 - Lazy Alan

20

Process

➔ Rewarding valid moves?

➔ Repeat moves forever

➔ Solved by more training and/or

tweaking rewards

Performance
Evaluation

So how did we improve?

➔ Alan’s performance is evaluated based

on score

➔ Not dying

➔ Successfully blowing up bricks

➔ Gaining as much points as possible

21

Moves

22

Earlier version ‘motion loop’ Final version applies all moves

Scoring

23

Random moves = bad score Play from memory = high score

24

A well trained model is consistent.

Game 11 Game 20 Game 51

Discussion and
Conclusions What did we learn and what’s

next?

25

Deep Q-Reinforcement-Learning
of Alan the Bomberman ANN

There are still some difficulties but the behaviour is according to plan!

Improvements and lessons learned

➔ Thesis sized project = sleepless nights

➔ Hyperparameters
◆ Trial and error and many configurations work

26

➔ Alan loves loopholes
◆ Infini bomb drop
◆ Suicidal to avoid further punishment

➔ More training is more better
◆ Validates the agent and

Support our team!

27

DISCOUNT!
$5,99
with

PROMO CODE
A.L.A.N.0PE

References

Reinforcement Learning with Pytorch

Human-level control through deep reinforcement learning

Deep Reinforcement Learning Course

All group members have contributed evenly to the project, but Ida deserves extra credit for being awesome and
managing to figure out a bunch of both the game and the ANN.

28

https://pytorch.org/tutorials/intermediate/reinforcement_q_learning.html
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://simoninithomas.github.io/Deep_reinforcement_learning_Course/

