
Applied ML & Big Data Analysis
Final Project

Finding Wally in (2D) Images
Anastasios M, Kerttu MP, Simon JH, Thomas LT
All group members have contributed evenly to this project

Where’s Wally?
A series of children’s puzzle books where the
reader is challenged to find a character named
Wally hidden in a group of illustrated characters.

Our Goal:
Build ML algorithms capable of finding Wally.

Finding Wally is not always an easy task...

What makes finding Wally difficult?

● Small amount of data
(~30 pictures initially).

● Badly annotated data.

● Distinguish between Wally and
Wally’s look-alikes.

● Wally is not always fully visible.
● Wally can get distorted during

upscaling /downscaling.
● Class imbalance (1 Wally in

dozens of no-Wallys per image).

Our approach
Convolutional Neural Networks for object detection

Tiramisu

U-Net

RetinaNet

Faster R-CNN

Train “from scratch”

Transfer learning

Created our own annotated dataset
(81 images in total / 70 for training / 10 + 1 for testing)

Images of
Wally

Where is
Wally?

U-Net
● Training “from scratch”

● Semantic segmentation
(classification of each pixel)

● Saves the “where” along with the “what”

● First used in medical image analysis

“U-Net: Convolutional Networks for
Biomedical Image Segmentation“, May
2015:
https://lmb.informatik.uni-freiburg.de/p
eople/ronneber/u-net/

Arxiv:
https://arxiv.org/abs/1505.0459

7

https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/
https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1505.04597

U-Net Data
Second iteration:
Bounding boxes,
large dataset

First iteration:
Annotated, small
dataset

U-Net

● Computationally heavy
○ resize to 512x512
○ only use 8 filters

● 50 epochs ~ 10 hours

● Needs a lot more training time

Transfer Learning Approach:
Pretrained Models Applied to New Problem

● Initial dataset: COCO (Common Objects in COntext)

● Custom Retraining Dataset: 81 Wally images (70 training, 11 evaluation)

How to deal with complex Wally pictures?

● Data Augmentation: rotation, translation, shear, scaling, horizontal flip, …

● Resizing Input Images for Easier Feature Extraction: 1800x3000

Faster R-CNN Inception v2
● 3rd Generation of R-CNN (Regions with CNN features) Models, i.e. an Object

Detection model using Bounding Boxes for detection

● Implemented through Tensorflow Object Detection API, run on local GPU

Simple overview
of 1st Generation
R-CNN, Oct. 2014

https://arxiv.org/pdf/131
1.2524.pdf

https://arxiv.org/pdf/1311.2524.pdf
https://arxiv.org/pdf/1311.2524.pdf

Faster R-CNN Inception v2
● Initial Model: Downloaded from GitHub and applied

straight away (trained for 200k steps on 36 images)

○ Bad at large images, cannot find large Wally

● 1st Iteration of Model: Retrained base model with

new data (trained for 200k steps, 70 images)

○ Bad at large images, finds large Wally

● 2nd Iteration of Model: Retrained base model with

new params (crashed after 22k steps, 70 images)

○ Better at large images, finds large Wally

Example of train/eval. metrics obtained
with Tensorboard (here mAP)

1st Iter.
of Model

2nd Iter.
of Model
-better!

RetinaNet
● Architecture: Residual Net (ResNet) and modified Feature Pyramid Net (FPN)
● Object Detection with bounding boxes
● Loss functions: Smooth_L1 loss (regression), focal loss (classification)

RetinaNet
● Run on Google Colab

● 53 training and 19 validation annotations

● 11 test images

● Iterations with 50 epochs and

○ 1000 steps ~ 11.25 hours
○ 500 steps in ~ 6 hours (trained model lost

due to runtime limitations)

○ 300 steps ~ 1.6 hours (trained model lost

due to runtime limitations)

○ 150 steps ~ 2 hours

RetinaNet: improvements

● Cross-validation
● Faster GPU for

experimenting

Results

Model: Evaluation Metric:
(Dice Coefficient)

Training Time:
(Best Predictor)

Tiramisu NaN NaN

U-Net 0.41 ~ 10 hours (50 epochs, 3 steps, CPU)

Faster R-CNN 0.45 ~ 5 hours (22k steps, 1 batch, GPU)

RetinaNet 0.27 ~ 11 hours (50 epochs, 1000 steps,
GPU)

Thank you for
your attention!

References

● Data: https://github.com/cparrarojas/find-wally

● Labelling: https://tzutalin.github.io/labelImg/

● Models: https://github.com/fizyr/keras-retinanet;

https://towardsdatascience.com/how-to-find-wally-neural-network-eddbb20b0b90;

https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/

● Object Detection API:

https://www.dlology.com/blog/how-to-train-an-object-detection-model-easy-for-free/?fbclid=IwAR0BMi56uzQx

1XKs2frcdKqKlWGoTOkBRukpBnrcTLj18_UWm5eW6xsHKh8

● Pictures for presentation: https://blog.zenggyu.com/en/post/2018-12-05/retinanet-explained-and-demystified/

https://github.com/cparrarojas/find-wally
https://tzutalin.github.io/labelImg/
https://github.com/fizyr/keras-retinanet
https://towardsdatascience.com/how-to-find-wally-neural-network-eddbb20b0b90
https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/
https://www.dlology.com/blog/how-to-train-an-object-detection-model-easy-for-free/?fbclid=IwAR0BMi56uzQx1XKs2frcdKqKlWGoTOkBRukpBnrcTLj18_UWm5eW6xsHKh8
https://www.dlology.com/blog/how-to-train-an-object-detection-model-easy-for-free/?fbclid=IwAR0BMi56uzQx1XKs2frcdKqKlWGoTOkBRukpBnrcTLj18_UWm5eW6xsHKh8
https://blog.zenggyu.com/en/post/2018-12-05/retinanet-explained-and-demystified/

