Mining UFO Sightings

Markus, Angeliki, Lenka

Agenda

- Introduction to the UFO Sightings Data
- Initial Cleaning Data
- 1. Prediction of countries from longitude / latitude (Markus)
- 2. Prediction of season from the duration in sec (Angeliki)
- 3. Textual analysis of the comments (Lenka)

UFO Sightings Data

Data from Kaggle <u>https://www.kaggle.com/NUFORC/ufo-sightings</u>

- CSV file containing ~80.000 rows of data loaded into a Pandas DataFrame.

df.head()

11 features:

duration duration date datetime latitude citv country longitude state shape comments (hours/min) (seconds) posted This event took 10/10/1949 place in early 2700.0 4/27/2004 29.883056 -97.941111 O tx cylinder 45 minutes san marcos us 20:30 fall around 194... 1949 Lackland AFB, TX. 10/10/1949 7200.0 1-2 hrs 12/16/2005 29.384210 -98.581082 lackland afb tx NaN light 21:00 Lights racing acros...

Initial cleaning

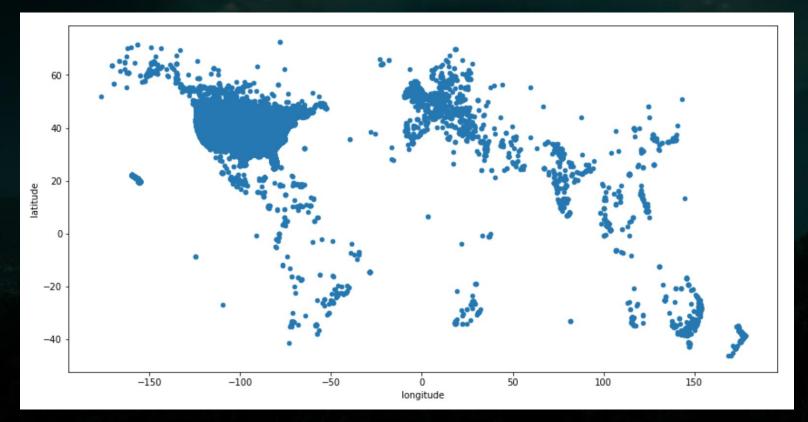
- Stripped of **weird characters** and made duration (sec) and latitude to floats.
- Time duration to sec (already pre-done)
- Cities () -> new countries
 - Only a few countries in Country in %: 0
 - Countries often mention in () in city Ο
 - Retrieved new countries from city Ο

df	=	df.rename	(columns	=	{ '	longitu	ıde	':'longitude'	})
		df['duration	(seconds)']	-	df['duration	(sec	<pre>onds)'].str.strip(</pre>	' [*] ')
		df['duration	(seconds)']	-	dfſ	'duration	(sec	onds)'].astype(flo	at)

df['latitude'] = df['latitude'].replace('33q.200088', '33.200088') df.loc[df['latitude'] == '33.200088']

1		us	82.581676
0:		NaN	6.726867
		ca	3.804789
		gb	2.416041
	saddle lake	au	0.682325
	(canada)	canada	0.648082
	(Carlaua)	uk/england	0.379211
		mexico	0.251116
X		india	0.244775
		de	0.133168
	01 05(117	netherlands	0.126826
us	81.056117	new zealand	0.112875
NaN	12.037544	south africa	0.106534
Inali	12.03/544	brazil	0.081169
ca	3.734502	 australia	0.077364
		spain	0.064681
gb	2.371409	malaysia	0.060877
	0 ((0701	france	0.054535
au	0.669721	japan	0.051999
de	0.130708	philippines	0.050731
ue	0.130708	sweden	0.045657
		belgium	0.045657
		china	0.044389
		norway	0.044389

Map of longitude and latitude



5

Completing the dataset - Countries

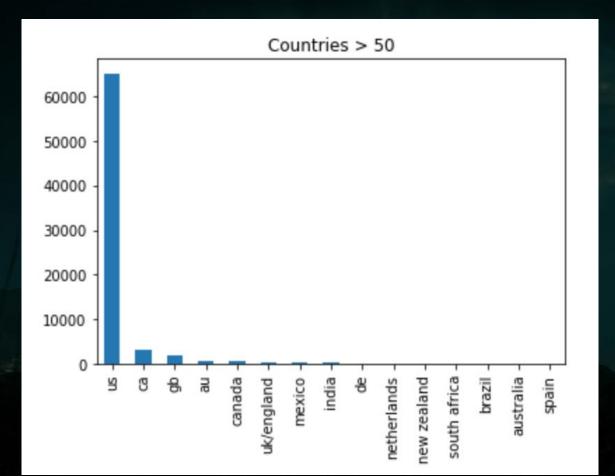
	datetime	city	state	country	shape	duration (seconds)	duration (hours/min)	comments	date posted	latitude	longitude
0	10/10/1949 20:30	san marcos	tx	us	cylinder	2700.0	45 minutes	This event took place in early fall around 194	4/27/2004	29.883056	-97.941111
1	10/10/1949 21:00	lackland afb	tx	NaN	light	7200.0	1-2 hrs	1949 Lackland AFB, TX. Lights racing acros	12/16/2005	29.384210	-98.581082
2	10/10/1955 17:00	chester (uk/england)	NaN	gb	circle	20.0	20 seconds	Green/Orange circular disc over Chester, En	1/21/2008	53.200000	-2.9166 <mark>6</mark> 7
3	10/10/1956 21:00	edna	tx	us	circle	20.0	1/2 hour	My older brother and twin sister were leaving	1/17/2004	28.978333	-96.645833
4	10/10/1960 20:00	kaneohe	hi	us	light	900.0	15 minutes	AS a Marine 1st Lt. flying an FJ4B fighter/att	1/22/2004	21.418056	-157.803611

6

Filling out the blanks

Classification

- Train/Test set
- Simplest solution \rightarrow SKLearn \approx 92 %
- 89 % USA, Continents



Databases of Map Coordinates and Countries Google API

- Google Earth, Google Static Maps
- Online database \rightarrow SLOW
- Restricted Access

Import reverse_geocode

- Offline database \rightarrow FASTER
- 120,000 cities
- Country, City and Coordinate

Reverse_geocode

- k-Dimensional Tree
- Train/Test set \rightarrow NaN
- 97.9 %
- Errors \rightarrow spelling mistakes vs border areas

Reverse_geocode

- k-Dimensional Tree
- Train/Test set \rightarrow NaN
- 97.9 %
- Errors \rightarrow spelling mistakes vs

	. · · ·	country		Country Code	Country
	0	us	0	us	united states
	1	NaN	1	us	united states
	2	gb	2	gb	united kingdom
	3	us	3	us	united states
	4	us	4	us	united states
	5	us	5	us	united states
	6	gb	6	gb	united kingdom
	7	us	7	us	united states
	8	us	8	us	united states
	9	us	9	us	united states
	10	us	10	us	united states
	11	us	11	us	united states
	12	us	12	us	united states
C	13	us	13	us	united states
S	14	us	ei 14	us	united states
	15	us	15	us	united states
	16	us	16	us	united states
	17	us	17	us	united states
	18	NaN	18	bm	bermuda
	19	us	19	us	united states

11

Can we predict the duration of sightings?

Steps covered:

- 1. Import the Data
- 2. Clean up and transform the Data
- 3. Visualize Data
- 4. Split training set and test set
- 5. Fine tune Algorithms (SGDClassifier, AdaBoostClassifier, RandomForestClassifier)
- 6. Compare accuracy scores
- 7. End up with the best prediction model

Change variables ufo_date

ufo_date = ufo_data.datetime.str.replace('24:00', '00:00') # clean illegal values
ufo_date = pd.to_datetime(ufo_date, format='%m/%d/%Y %H:%M') # now in datetime

ufo_data['datetime'] = ufo_data.datetime.str.replace('24:00', '00:00')
ufo_data['datetime'] = pd.to_datetime(ufo_data['datetime'], format='%m/%d/%Y %H:%M')

Add season column to ufo_date

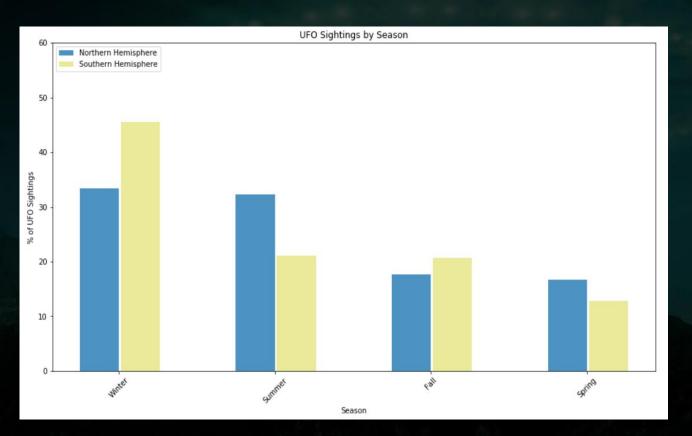
```
ufo_datem = ufo_date.dt.month
spring = range(5,7)
summer = range(7,10)
fall = range(10,12)
seasons = []
```

```
for st_date in ufo_datem:
    # Conversion Process #
    if st_date in spring:
        seasons.append('Spring')
    elif st_date in summer:
        seasons.append('Summer')
    elif st_date in fall:
        seasons.append('Fall')
    else:
        seasons.append('Winter')
```

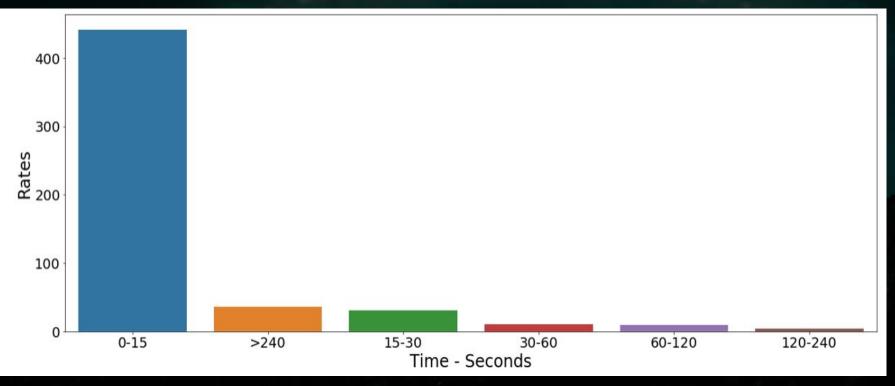
Add hemisphere column to ufo_date

```
hemis = []
for st_loc in ufo_data['latitude']:
    if st_loc >= 0 :
        hemis.append('Northern Hemisphere')
    else:
        hemis.append('Southern Hemisphere')
```

Percentage of UFO sightings in dependence of season and hemisphere



How many seconds was sighted?



• Encode variables

ufo_data['hemisphere'] = ufo_data['hemisphere'].cat.codes

ufo_data['season'] = ufo_data['season'].cat.codes

• Set train and test set

#test and train split using sklearn.model_selection
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(features, labels, test_size = 0.22, random_state = 1)

y_train.shape

(61449,)

• Algorithms: AdaBoostClassifier , SGDClassifier, RandomForestClassifier

• AdaBoostClassifier

print('accuracy score:', accuracy_score(y_test, pred_abc))

accuracy score: 0.3368718629204408

• SGDClassifier

print('accuracy score:', accuracy_score(y_test, pred_sgd))

accuracy score: 0.3170253274101425

RandomForestClassifier

print('accuracy score:', accuracy_score(y_test, pred_rfc))

accuracy score: 0.33716033000634626

Evaluation of ML performance

AdaBoostClassifier:

- Medium accuracy score , slowest
- Each successive tree uses residuals of the previous tree

SGDClassifier:

- Lowest accuracy score
- Requires a number of hyperparameters

RandomForestClassifier:

- Best accuracy score, fastest
- Ensemble of many trees
- Strong predictive power

Textual analysis of Comments

Bag of words

Flying beer barrel shaped metallic object Large...beautiful...a nd brighter than anything l've ever seen....How small I have felt since....

- Cleaning data, removing digits, non-letters, unicode
- Stemming, spellcheck, removing stop words

Count Vectorizer -> Matrix

Create data frame, X = bag_of_words.toarray()
textdf = pd.DataFrame(X, columns=feature_names)

textdf.head()

Create the bag of words feature matrix
count = CountVectorizer(max_features=1000) #Max_feartures optional

bag_of_words = count.fit_transform(text_numpy)

```
# Show feature matrix
X = bag_of_words.toarray()
X.shape
```

(78848, 1000)

	about	above	accross	across	afb	after	afternoon	again	against	ago	 yellow	yellowish	yes	york	you	young	zag	zagging	zig	zoomed
0	0	0	0	0	0	1	0	0	0	0	 0	0	0	0	0	0	0	0	0	0
1	0	0	0	1	1	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	0

Stemming and autocorrect

Stemming streamlines the different grammartic ways a word can be spelled.

NLTK library (Natural Language ToolKit), PorterStemmer module (different stemming modules exist)

Autocorrect Library, Spell module -

```
from nltk.stem.porter import PorterStemmer
from autocorrect import spell
stemmer = PorterStemmer()
for i in range(len(feature_names)):
    feature_names[i] = stemmer.stem(spell(feature_names[i]))
len(feature_names) #1000 after first run, 904 after the last run
908
stemmer.stem("having") #Example
'have'
```

Removing stop words

Stopwords are common words such as "the", "a", an", "in"

Frequent words with little value

NLTK Corpus package

import nltk
#nltk.download('stopwords') #- only need this once
from nltk.corpus import stopwords

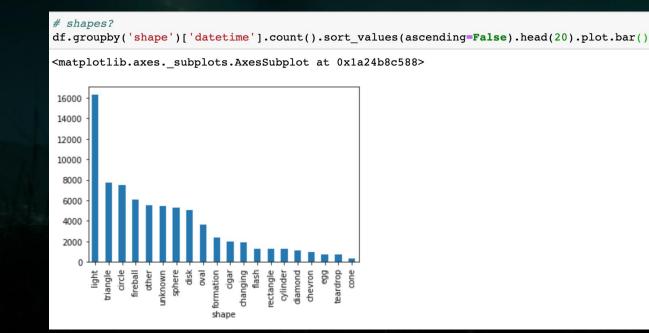
```
for word in feature_names:
    if word in stopwords.words('english'):
        feature_names.remove(word)
```

```
print("Feature names:", len(feature_names))
print("Unique feature names:", len(unique(feature_names)))
```

Feature names: 904 Unique feature names: 707

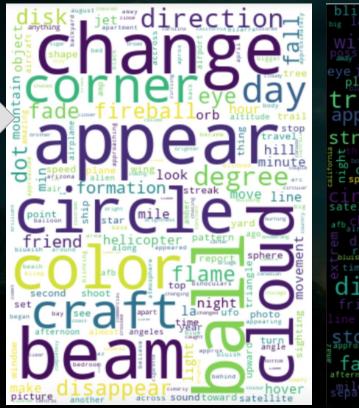
Textual analysis of description - Shape Classification

Classification from the words in comments: **Possible to predict shape?**



WordCloud from words (1000 most frequent from corpus)

Before stemming and spellcheck



degre

After stemming etc

Example and results

X: Bag of words.toArray Y: Shapes

Tried classification algorithms: (accuracy average of 10 runs)

- Guassian Naive Bayes: Accuracy ~ 0.03
- Random Forest Classifier: Accuracy ~0.42 (most accurate)
 AdaBoostClassifier: Accuracy ~0.24 (slowest)

SPLIT DATA IN TRAIN AND TEST

split train and test data
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, shapes)

y_train.shape

(59136,)

AdaBoostClassifier

```
from sklearn.ensemble import AdaBoostClassifier
clf_abc = AdaBoostClassifier()
clf_abc.fit(X_train, y_train)
```

```
# Predict Class
abc_y_pred = clf_abc.predict(X_test)
```

```
abc_accuracy = accuracy_score(y_test, abc_y_pred)
```

abc_accuracy

0.23782467532467533

Reflection on results comments vs. shape

Comments are probably not the best prediction parameters for shape ...

• Why does Random Forest give the best results?

- Parallel algorithm trains all (random chosen) subsets/Decision Trees at the same time.
- Uses best guess for each DT as a "total vote"

• Why is Naive Bayes so much worse?

• Works best when classes are clearly separable - in this case, maybe not so much.

• Why is AdaBoost the slowest?

- Sequential algorithms, that learns from the previous step.
- Why not better than random forest? Not a clear connection between comment and shape.

Word2Vec

- Different models for word embedding in NLP
- Word list -> Vectors with lower dimension than Bag of Words
- Retains semantic meaning / context
- Can compute similar words and group related

Doc2Vec

- Can group related documents by word processing
- Group sightings? (future work)

```
1 sim_words = word2vec.wv.most_similar('cloud')
2 sim words
```

```
[('north', 0.948441743850708),
('disk', 0.9463559985160828),
('lights', 0.9463207721710205),
('large', 0.9457476139068604),
('ufo', 0.944894015789032),
('hovering', 0.9445918798446655),
('sky', 0.9445518255233765),
('observed', 0.9445128440856934),
('like', 0.9445018768310547),
('light', 0.9443306922912598)]
```