Surveys and databases Visualising

Querying, plotting, dimensionality reduction

Adriano Agnello

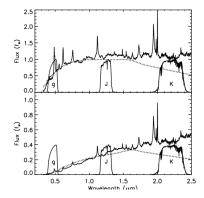
24th April 2019

Adriano Agnello Querying and plotting

Surveys and databases Visualising

Playing with multi-dimensional data

- Part 1: some real-life datasets, surveys and queries.
- Part 2: visualising, PCA, kPCA

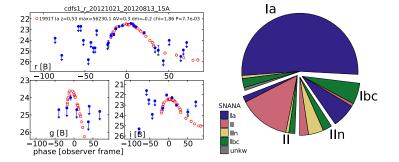

Part 1: surveys, databases, queries & thereabouts

General problem: we have big tables produced by surveys/experiments and need to make sense of them.

Surveys and databases Visualising

Querying a database

Example from astro: spectra, fluxes, colours.

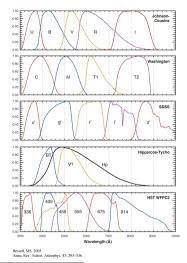


Spectrum: blueprint of an object (more or less)¹. Magnitudes: what we get most of the time.

¹Possible projects for course: classify everything in wide-field astro surveys!

Surveys and databases

Visualising

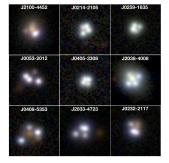


From big data to science: discover, classify, characterise.

크

Visualising

Various magnitude systems for different uses². Each magnitude has a *central wavelength* and a *width*.



²If you're really, really curious: Bessel, M. S. 2005, ARA&A, 43, 293 () () ()

Adriano Agnello

Surveys and databases

Visualising

From big data to science: finding rare objects/events.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

æ

Telescope//experiment (pipelines) \mapsto data, various formats (database) \mapsto catalog tables

ID	ra	dec class	5	subClass	z	zerr	b	lnL	Star_i	. u	mag	gmag) I	mag	imag		zmag	W1	W2	psfg	mag	psfrmag	, psf
123	7678	661968265	35 :	16.878845	5.0	594924	GAL	AXY	STARB	URST	0.	27408:	L :	.21655	2E-05		-57.5	78429	49223	373	-1.1	80048	20.
123	7678	623308578	947 :	17.145415	5.2	240461	GAL	AXY	null	0	.2789	114	0.000	106923	6	-57.	38323	34335	941	-351	.621	6 24.	9244
123	7678	623308644	524	17.274179	5.1	563299	GAL	AXY	null	0	.2926	412	3.324	1989E-0	5	-57.	43434	67194	447	-204	3.57	5 19.	7674
123	7678	622771773	528	17.297309	4.7	099285	GAL	AXY	null	0	.2964	781	6.580	158E-0	5	-57.	87409	50285	643	-808	.24	21.8231	6
123	7678	661968396	91 :	17.230792	4.9	492185	GAL	AXY	null	0	.3512	432	5.510	6663E-0	5	-57.	64526	54554	808	-239	.443	4 21.	5100
123	7678	661968331	270 :	17.112495	4.8	95233	GAL	AXY	null	0	.4003	306	8.68	5785E-0	5	-57.	71357	71029	9507	-261	.369	4 20.	7531
123	7678	661968265	25	16.932224	4.9	781829	GAL	AXY	AGN Ø	.278	9478	3.63	382131	-05	-57.	6529	941984	1515	-72	24.021	3	24.5822	25
123	7678	622771642	595 0	16.988994	4.8	418012	GAL	AXY	null	0	.2760	086	3.28	1616E-0	5	-57.	78161	44436	961	-207	3.65	1 21.	6279
123	7678	661968265	378	16.918275	5.0	09444	GAL	AXY	null	0	.2581	182	3.793	L953E-0	5	-57.	62353	72847	634	-166	6.30	2 20.	2442
123	7678	622771642	99 :	16.963018	4.7	222274	QS0	BR0.	ADLINE	0	.8016	306	5.76	7976E-0	5	-57.	90343	13364	451	-33.	6705	6 19.	6539
123	7678	622771707	950 :	17.151402	4.8	186359	QS0	BR0.	ADLINE	0	.6342	65	0.000	100925	8	-57.	78476	90821	629	-5.1	0530	4 18.	5060
123	7669	702124241	89	15.152699	7.2	441582	QS0	BR0.	ADLINE	0	.9044	501	0.000	192011	2	-55.	55584	04943	891	-1.2	4554	5 19.	2154
123	7669	702124109	52	14.874624	7.3	149651	QS0	BRO	ADLINE	2	.6223	37	0.000	285873	2	-55.	50146	34997	012	-4.9	7213	3 20.	5921
123	7669	702124175	320	15.049748	7.1	94844	GAL	AXY	null	0	.4973	788	0.000	353840	4	-55.	61134	32040	637	-11.	5937	2 21.	0380

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

크

Surveys and databases

Visualising

Querying a database

Queries

Sometimes you can do a bulk download of a catalog table, sometimes it's unfeasible or unnecessary.

SQL: Structured Query Language. Basic syntax: SELECT {fields} FROM {table} WHERE {conditions}

> SELECT TOP 100 objID, ra ,dec FROM PhotoPrimary WHERE ra > 185 and ra < 185.1 AND dec > 15 and dec < 15.1

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Surveys and databases

Visualising

Querying a database

Queries

Sometimes you can do a bulk download of a catalog table, sometimes it's unfeasible or unnecessary. **SQL: Structured Query Language.** Basic syntax: SELECT {fields} FROM {table} WHERE {conditions}

> SELECT TOP 100 objID, ra ,dec FROM PhotoPrimary WHERE ra > 185 and ra < 185.1 AND dec > 15 and dec < 15.1

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Slightly more complicated:

SELECT D.coadd_object_id, W.cntr, D.alphawin_j2000 as desra, D.deltawin_j2000 as desdec, D.mag_auto_i, W.w1mpro, W.w2mpro FROM des_dr1.main AS D JOIN des_dr1.des_allwise AS W on W.coadd_object_id=D.coadd_object_id WHERE (D.galactic_b<-20.0 AND D.mag_auto_i>8.0 AND D.deltawin_j2000>-60.0 AND D.deltawin_j2000<-55.0)</pre>

Q: how many differences can you spot with the simplest query?

Many examples here:

http://skyserver.sdss.org/dr8/en/help/docs/realquery.asp Quote of the day:

"Most of the Al you may need is an SQL SELECT followed by an ORDER BY clause"

э.

Slightly more complicated:

SELECT D.coadd_object_id, W.cntr, D.alphawin_j2000 as desra, D.deltawin_j2000 as desdec, D.mag_auto_i, W.w1mpro, W.w2mpro FROM des_dr1.main AS D JOIN des_dr1.des_allwise AS W on W.coadd_object_id=D.coadd_object_id WHERE (D.galactic_b<-20.0 AND D.mag_auto_i>8.0 AND D.deltawin_j2000>-60.0 AND D.deltawin_j2000<-55.0)</pre>

Q: how many differences can you spot with the simplest query?

Many examples here:

http://skyserver.sdss.org/dr8/en/help/docs/realquery.asp Quote of the day:

"Most of the Al you may need is an SQL SELECT followed by an ORDER BY clause"

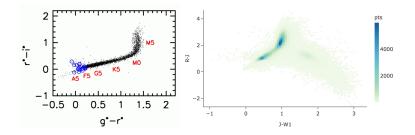
< D > < (2) > < (2) > < (2) >

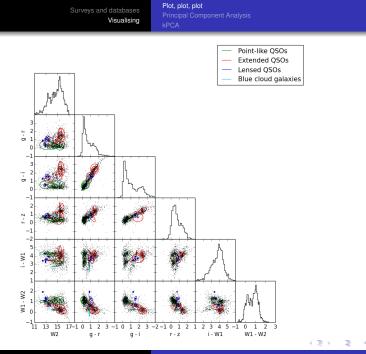
Surveys and databases Visualising kPCA

Part 2: visualising

OK, I have my table: now what?

イロト イポト イヨト イヨ


크


Surveys and databases Visualising kPCA

First things first: look at it!

Do the entries make sense? Are there any missing entries? Are some lines redundant?

Second: plot familiar (and unfamiliar) stuff.

Adriano Agnello

Querying and plotting

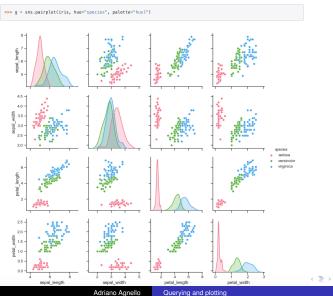
Surveys and databases Visualising kPCA

Python tips and tricks: you should do it yourselves, but someone has already done it for you...

1. Pair plots (with seaborn)

https://seaborn.pydata.org/generated/seaborn.pairplot.html

```
import seaborn as sns; sns.set(style="ticks", color_codes=True)
iris = sns.load_dataset("iris")
g = sns.pairplot(iris, hue="species", palette="husl")
```

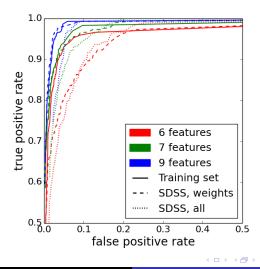

2. Corner plots (with corner)

https://corner.readthedocs.io/en/latest/pages/quickstart.html

```
import corner
fig = corner.corner(samples, labels=["$m$", "$b$", "$\ln\,f$"])
fig.show()
```


seaborn Gallery Tutorial API Site -Page +

Querying and plotting


2

Visualising

Plot, plot, plot Principal Component Analysis kPCA

Separating stuff

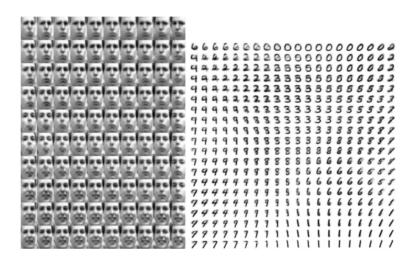
Btw, what is a ROC curve?

But how do I decide which features are important? Should I plot all of them?!

What if I'm dealing with collections of pictures instead of tables with some columns?

Common issue, 1: the dataset may be easier to crunch in a different coordinate system.

Common issue, 2: are there any combinations of features that maximize information?


But how do I decide which features are important? Should I plot all of them?!

What if I'm dealing with collections of pictures instead of tables with some columns?

Common issue, 1: the dataset may be easier to crunch in a different coordinate system.

Common issue, 2: are there any combinations of features that maximize information?

Surveys and databases Visualising Plot, plot, plot Principal Component Analysis kPCA

This is actually done with something more advanced (Kingma & Welling 2014), but still...

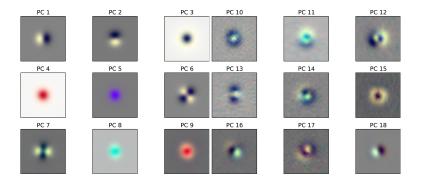
Surveys and databases Visualising Plot, plot, plot Principal Component Analysis kPCA

Principal Component Analysys (PCA)

The maths: we want to transform our feature vectors $\{\mathbf{x}_i \in \mathbb{R}^p\}_{i=1,...,N}$ into others $\{\mathbf{f}_i \in \mathbb{R}^p\}_{i=1,...,N}$ that are uncorrelated. How to? Find eigenvectors of the covariance matrix:

$$C_{k,l} = \frac{1}{N} \sum_{i=1}^{N} x_{i,k} x_{i,l}$$
(1)

$$\mathbf{C} \mathbf{v}_k = \lambda_k \mathbf{v}_k \tag{2}$$


The eigenvectors are the *principal components*. Fraction of explained variance:

$$\operatorname{var}_{(r)} := \frac{\sum_{k=1}^{r} \lambda_k}{\sum_{k=1}^{\rho} \lambda_k}$$
(3)

NB do you need to standardize your dataset?

rveys and databases Visualising kPCA

Example on (simple stuff) images:³

³That's from an old paper of mine, you don't really need to know about it.

Surveys and databases Visualising Plot, plot, plot Principal Component Analysis kPCA

Example (from scikit-learn):⁴

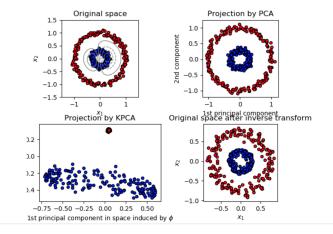
```
>>> import numpy as np
>>> from sklearn.decomposition import PCA
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> pca = PCA(n_components=2)
>>> pca.fit(X)
PCA(copy=True, iterated_power='auto', n_components=2, random_state=None,
svd_solver='auto', tol=0.0, whiten=False)
>>> print(pca.explained_variance_ratio_)
[0.9924...0.0075...]
>>> print(pca.explained_values_)
[6.30061...0.54980...]
```

Methods

fit (X[, y])	Fit the model with X.							
<pre>fit_transform (X[, y])</pre>	Fit the model with X and apply the dimensionality reduction on X.							
get_covariance ()	Compute data covariance with the generative model.							
<pre>get_params ([deep])</pre>	Get parameters for this estimator.							
get_precision ()	Compute data precision matrix with the generative model.							
inverse_transform (X)	Transform data back to its original space.							
<pre>score (X[, y])</pre>	Return the average log-likelihood of all samples.							
<pre>score_samples (X)</pre>	Return the log-likelihood of each sample.							
<pre>set_params (**params)</pre>	Set the parameters of this estimator.							
transform (X)	Apply dimensionality reduction to X.							

Q: Run a PCA on the quark data table, see where the '1' and '0' subsamples lie.

4 https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PC和html 🖹 🕨 👍 🖉 🔍 🔍


Surveys and databases

Visualising

Plot, plot, plot Principal Component Analysis kPCA

Bonus track: kPCA

How it works:5

⁵You can find code for this example on the scikit-learn website. 🗇 🛛 🖘 🖘 👘 🔊 👁

Surveys and databases Visualising kPCA

How the 'kernel trick' works: map feature space $\Phi : \mathbb{R}^p \mapsto \mathcal{H}$ to very-high-dimensional space with its own scalar product $k(\mathbf{x}_i, \mathbf{x}_j) = \langle \Phi(\mathbf{x}_i), \Phi(\mathbf{x}_j) \rangle$. Diagonalize a *big* matrix

$$K_{i,j} = (1/N)k(\mathbf{x}_i, \mathbf{x}_j) \tag{4}$$
$$K\mathbf{a} = \lambda \mathbf{a} \tag{5}$$

Then the components of a given feature vector $\Phi(\mathbf{f})$ in this space, relative to *r*-th component, are

$$t_r = \langle \mathbf{a}_r, \Phi(\mathbf{f}) \rangle = \sum_{i=1}^N a_{r,i} k(\mathbf{x}_i, \mathbf{f})$$
(6)

< ロ > < 同 > < 回 > < 回 >

Theorem: whenever $k(\bullet, \bullet)$ is semi-positive definite, everything exists!

Q: Run a kPCA on the quark data table, see where the '1' and '0' subsamples lie.

So to sum it up:

- data are ugly.
- In the second second
- inspect your data tables, plot stuff.
- one method does not necessarily fit every purpose.
- there is already technology to parse tables, if needed (SQL and thereabouts).
- o datasets can be very-high-dimensional
- PCA, kPCA

So to sum it up:

- data are ugly.
- In the second second
- inspect your data tables, plot stuff.
- one method does not necessarily fit every purpose.
- there is already technology to parse tables, if needed (SQL and thereabouts).
- o datasets can be very-high-dimensional
- PCA, kPCA

Plot, plot, plot Principal Component Analysis kPCA

Summary

So to sum it up:

- data are ugly.
- In the second second
- inspect your data tables, plot stuff.
- one method does not necessarily fit every purpose.
- there is already technology to parse tables, if needed (SQL and thereabouts).
- o datasets can be very-high-dimensional
- PCA, kPCA

So to sum it up:

- data are ugly.
- In the second second
- inspect your data tables, plot stuff.
- one method does not necessarily fit every purpose.
- there is already technology to parse tables, if needed (SQL and thereabouts).
- datasets can be very-high-dimensional
- PCA, kPCA

< < >> < <</p>

So to sum it up:

- data are ugly.
- In the second second
- inspect your data tables, plot stuff.
- one method does not necessarily fit every purpose.
- there is already technology to parse tables, if needed (SQL and thereabouts).
- datasets can be very-high-dimensional

PCA, kPCA

< < >> < <</p>

So to sum it up:

- data are ugly.
- In the second second
- inspect your data tables, plot stuff.
- one method does not necessarily fit every purpose.
- there is already technology to parse tables, if needed (SQL and thereabouts).
- o datasets can be very-high-dimensional
- PCA, kPCA