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Playing with multi-dimensional data

Part 1: some real-life datasets, surveys and queries.
Part 2: visualising, PCA, kPCA
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Part 1: surveys, databases, queries & thereabouts

General problem: we have big tables produced by
surveys/experiments and need to make sense of them.
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Example from astro: spectra, fluxes, colours.

Spectrum: blueprint of an object (more or less)1.
Magnitudes: what we get most of the time.

1Possible projects for course: classify everything in wide-field astro surveys!
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A&A 584, A62 (2015)

Fig. 4. Observed spectrum of SN 2012gs obtained with FORS2 on
MJD 56 252.0 (black line) is compared to that of the SN Ic 2007gr at
phase �9d (top) and of the type Ia SN 1991T at phase +14d (bottom). In
both cases it is adopted for SN 2012gs at redshift z = 0.5, as measured
from the narrow emission lines of the host galaxy.

4.3. Comparison with spectroscopic classification

For a small sample of the SN candidates we obtained immedi-
ate spectroscopic classification. Observations were scheduled at
the ESO VLT telescope equipped with FORS2 at three epochs
for a total allocation of two nights. The telescope time alloca-
tion, which was fixed several months in advance of the actual
observations, dictated the choice of the candidates. We selected
transients that were “live” (above the detection threshold) at the
time of observations, and among these, we gave a higher priority
to the brightest candidates with the aim of securing a higher S/N
for the spectra.

For the instrument set-up, we used two di↵erent grisms,
GRIS_300V and GRIS_300I, covering the wavelength range
400–900 nm and 600–1000 nm, respectively, with similar res-
olution of about 1 nm. The choice of the grism for a particular
target was based on the estimated redshift of the host galaxy,
with the GRISM_300I used for redshift z > 0.4.

We were able to take the spectrum of 17 candidates. Spectra
were reduced using standard recipes in IRAF. In three cases, the
S/N was too low for a conclusive transient classification and we
were only able to obtain the host galaxy redshifts. Four of the
candidates turned out to be variable AGNs, in particular Seyfert
galaxies at redshifts between 0.25 < z < 0.5. We stress that, to
maximise the chance of obtaining useful spectra, we tried to ob-
serve the candidate shortly after discovery. This means that, at
the time of observations, we did not yet have a full light curve
and, hence, a reliable photometric classification. Eventually, all
the four AGN exhibit an erratic luminosity evolution that, if
known at the time of spectroscopic observations, would have al-
lowed us to reject them as SN candidates.

Ten transients were confirmed as SNe, and their spectral type
were assigned through cross-correlation with libraries of SN
template spectra using GEneric cLAssification TOol (GELATO,
Harutyunyan et al. 2008) and the Supernova Identification code
(SNID, Blondin & Tonry 2007). The spectroscopically classi-
fied SNe, identified with a label in Table A.2, turned out to be
six type Ia, two type Ic, one type II and one type IIn. In all cases,
the SN type was coincident with the independent photometric

Fig. 5. SN 2012gs light-curve fit, obtained using our tool. The best
match is obtained with SN 1991T and the maximum is estimated to
occur on MJD 56 235.1.

classification, with one exception (SN 2012gs) that was classi-
fied Ic from spectroscopy and Ia from photometry.

As shown in Fig. 4, the spectrum of SN 2012gs can be fit-
ted both by a template of type Ic SN well before maximum or
by a type Ia SN two weeks after maximum, in both cases the
redshift was z ⇠ 0.5. On the other hand, when we consider the
light curve (Fig. 5), it turns out that the spectrum was obtained
two weeks after maximum, and therefore the first alternative can
now be rejected. Therefore, revising the original spectroscopic
classification, SN 2012gs is classified as type Ia.

4.4. Classification uncertainties

The comparison of the photometric and spectroscopic classifica-
tions, even if for a very small sample, confirms that photomet-
ric typing is reliable, in particular when the redshift of the host
galaxy is known. For our photometric tools, we have not yet per-
formed as detailed a testing as has been performed for PSNID. In
particular, Sako et al. (2011) show that PSIND can identify SN Ia
with a success rate of 90%. This appears consistent with the
results obtained from the comparison of PSNID and SUDARE
tools. The performances of photometric classification for CC SN
are more di�cult to quantify, because of both the lack of suitable
spectroscopic samples (Sako et al. 2011), and the limitation of
simulated samples (Kessler et al. 2010). From the comparison
of the CC SN classification of the PSNID and SUDARE tools,
we found di↵erences in the individual classifications of 25% for
type II events and 40% for type Ib/c events. These should be
considered as the lower limit of the uncertainty because the two
codes adopt similar approaches, the main di↵erence being the
choice of templates. On the other hand, the discrepancy on the
overall SN counts of a given type is much lower, typically a few
percent, although for type IIn it is about 40%. Based on these
considerations and while waiting for a more detailed testing, we
adopt the following uncertainties for SN classification: 10% for
Ia, 25% for II, 40% for Ib/c, and IIn.

5. The SN sample

As a result of the selection and classification process, we ob-
tained a sample of 117 SNe, 27 of which are marked as probable
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E. Cappellaro et al.: Supernova rates from the SUDARE VST-OmegaCAM search. I.

Table A.2 lists our SNe; for each event we report the coordi-
nates, the host galaxy redshift if available (Col. 4), for photomet-
ric redshift, the 95% lower and upper limits of the P(z) (Col. 5),
the method of redshift measurement (Col. 6) the most proba-
ble SN type (Col. 7) and corresponding Bayesian probability
(Col 8), the best fitting template (Col. 9), redshift (Col. 10), ex-
tinction (Col. 11), flux scaling (Col. 12), and epoch of maximum
(Col. 13). We also list the �2

n (Col. 14), the number of photomet-
ric measurements with, in parenthesis, the number of measure-
ments with S/N ratio >2 (Col. 15) and the integrated right tail
probability of the �2 distribution (P�2 , Col. 16).

In some cases, the P�2 probability is fairly low (15 SNe have
P�2 < 10�4). Sometimes this is because of one or two deviant
measurements, while sometimes there is evidence of some vari-
ance in the light curve, which is not fully represented by the
adopted template selection. We have to consider the possibility
that these events are not SNe.

Also, for some candidates with a small �2, the number of ac-
tual detections (photometric measurements with S/N ratio >2) is
so small that it is not possible to assess the SN nature of the tran-
sient source definitely (for 12 candidates the number of detection
is Ndet <= 7).

To these probable SNe (indicated with PSN in the last col-
umn of Table A.2), we attribute a weight 0.5 in the rate calcula-
tion. The impact of the arbitrary thresholds for P�2 and the Ndet
and the adopted PSN weight will be estimated in Sect. 7.3.

To evaluate the uncertainties of our classification tool, in
the next two sections we compare our derived SN types with
a) photometric classifications that were obtained using the pub-
lic software package SNANA (Kessler et al. 2009) and b) with
the spectroscopic observations of a small sample of “live” tran-
sients, which were observed while still in a bright state.

4.2. Comparison with the photometric classifications
by PSNID in SNANA

To check our procedure and evaluate the related uncertainties,
we performed the photometric classification of our SN candi-
dates using the public code PSNID in the SNANA7 implementa-
tion (Sako et al. 2011; Kessler et al. 2009). Overall, the approach
of PSNID is similar to the one adopted here; besides the imple-
mentation of the computation algorithm, the main di↵erence is
in the template list. In particular, for SN Ia we adopted the fitting
set-up of Sako et al. (2011), while for CC SNe we used the ex-
tended list of 24 templates available in the SNANA distribution8.

For the fit with PSNID, we also set the host-galaxy redshift
as a prior with the same range of uncertainty as in our procedure.
In this case, however, for photometric redshift we also assume a
normal distribution for P(z) with the � provided by the photo-
metric redshift code.

A comparison of the classifications obtained with the two
tools is illustrated in Fig. 3. The pie chart shows the SN clas-
sifications in the four main types using the SUDARE tool, and
the sectors with di↵erent colours within a given wedge show the
PSNID classifications. For two events, marked in grey, the fit
with PSNID fails.

The figure shows that the identification of SN Ia is quite con-
sistent (92% of the type Ia classified by our tool are confirmed by

7 http://das.sdss2.org/ge/sample/sdsssn/SNANA-PUBLIC.
We used SNANA version 10_39k.
8 We used the Nugent SED templates updated by D.Scolnic as il-
lustrated in http://kicp-workshops.uchicago.edu/SNphotID_
2012/depot/talk-scolnic-daniel.pdf

Fig. 3. Comparison of the SN classifications obtained with the di↵erent
tools. The exploded wedges are the SN type fractions obtained with our
SUDARE tool and the coloured sectors are the SNANA classification.

Table 3. Comparison of photometric classification with the di↵erent
tools. In parenthesis we report the events labelled as probable SNe.

SUDARE SNANA Bayesian
Ia 67 72 64.7 (12.7)
II 22 21 23.2 (6.5)
IIn 11 7 10.7 (2.9)
Ib/c 17 15 18.6 (4.8)
All 117 115 117.0 (27.0)

Notes. For Cols. 2 and 3, we count the SN with respect to the most
probable SN type. Column 4 lists, instead, provide the sum the Bayesian
probability for each SN type (in parenthesis is the number of PSN).

PSNID) and there is a good agreement also for the normal type II
(77% of the classifications are matched). The agreement is poor
for type Ib/c and for type IIn (only 40% are matched in both
cases). The latter result is not surprising, considering the wide
range of luminosity evolution: the choice of input templates is
crucial for these classes of SNe.

However, we note that, despite the discrepancy in the clas-
sification of individual events of specific sub-types, there is an
excellent agreement of the event counts in each class, except for
type IIn, as shown in Table 3. This implies that, as far as the
SN rates are concerned, using either classification tools makes
a little di↵erence, with the exception the exception of type IIn
where the di↵erence is ⇠40%.

In Table 3, we also report the SN count for the di↵erent
classes using the Bayesian probability. It appears that, with re-
spect to the count of the most probable type, the number of SN Ia
is slightly reduced, whereas the number of Ib/c increases. This is
not unexpected, given the similarity of the light curves of type Ia
and Ib/c (in many cases an event can have a significant probabil-
ity of being either a type Ia or a type Ib/c) and the fact that type
Ia are intrinsically more frequent than Ib/c. The e↵ect however
is small, <5% in both cases.
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From big data to science: discover, classify, characterise.
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Various magnitude systems for different uses2.
Each magnitude has a central wavelength and a width.

2If you’re really, really curious: Bessel, M. S. 2005, ARA&A, 43, 293
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From big data to science: finding rare objects/events.
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Telescope//experiment
(pipelines) 7→ data, various formats
(database) 7→ catalog tables
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Queries

Sometimes you can do a bulk download of a catalog table,
sometimes it’s unfeasible or unnecessary.
SQL: Structured Query Language. Basic syntax:
SELECT {fields} FROM {table} WHERE {conditions}
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Slightly more complicated:
SELECT D.coadd_object_id, W.cntr, D.alphawin_j2000 as

desra, D.deltawin_j2000 as desdec, D.mag_auto_i,
W.w1mpro, W.w2mpro
FROM des_dr1.main AS D
JOIN des_dr1.des_allwise AS W on
W.coadd_object_id=D.coadd_object_id
WHERE ( D.galactic_b<-20.0 AND D.mag_auto_i>8.0 AND
D.deltawin_j2000>-60.0 AND D.deltawin_j2000<-55.0 )

Q: how many differences can you spot with the simplest query?

Many examples here:
http://skyserver.sdss.org/dr8/en/help/docs/realquery.asp
Quote of the day:
“Most of the AI you may need is an SQL SELECT followed by an ORDER BY
clause”
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Part 2: visualising

OK, I have my table: now what?
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First things first: look at it!
Do the entries make sense? Are there any missing entries? Are
some lines redundant?
Second: plot familiar (and unfamiliar) stuff.
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Python tips and tricks: you should do it yourselves, but someone
has already done it for you...
1. Pair plots (with seaborn)
https://seaborn.pydata.org/generated/seaborn.pairplot.html

2. Corner plots (with corner)
https://corner.readthedocs.io/en/latest/pages/quickstart.html

Adriano Agnello Querying and plotting



Surveys and databases
Visualising

Plot, plot, plot
Principal Component Analysis
kPCA

Adriano Agnello Querying and plotting



Surveys and databases
Visualising

Plot, plot, plot
Principal Component Analysis
kPCA

Separating stuff
Btw, what is a ROC curve?
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But how do I decide which features are important?
Should I plot all of them?!
What if I’m dealing with collections of pictures instead of tables with
some columns?
Common issue, 1: the dataset may be easier to crunch in a different
coordinate system.
Common issue, 2: are there any combinations of features that
maximize information?
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This is actually done with something more advanced (Kingma & Welling
2014), but still...
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Principal Component Analysys (PCA)

The maths: we want to transform our feature vectors {xi ∈ Rp}i=1,...,N
into others {fi ∈ Rp}i=1,...,N that are uncorrelated.
How to? Find eigenvectors of the covariance matrix:

Ck,l =
1
N

N∑

i=1

xi,k xi,l (1)

C vk = λk vk (2)

The eigenvectors are the principal components.
Fraction of explained variance:

var(r) :=

∑r
k=1 λk∑p
k=1 λk

(3)

NB do you need to standardize your dataset?
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Example on (simple stuff) images:3
Mining for lensed QSOs 1461

Figure A2. Composite gri plots of the first 18 principal components of the simulated sample.

The idea underlying ANNs is to use g to construct arbitrarily good
approximations to given functions over the feature space x ∈ Rp. In
particular, any piecewise continuous function g : Rp → R, defined
on a compact subset of Rp , can be approximated by combinations
of the kind

t =
M∑

m=1

βmg(αm · x + a0,m) . (B7)

The number of nodes M depends just on the tolerance that is desired
in order to fit y. The same holds, quite naturally, for multidimen-
sional (piecewise continuous) functions y = (y1, . . . , yK ), mapping
a compact subset of Rp into RK . This is the case of classification
problems, where y gives the membership probabilities to different
classes for an object in feature space. A common choice for the
activation function is the sigmoid g(x) = 1/(1 + e−x).

Approximations as in equation (B8) are the core of ELMs (Huang
et al. 2006), where the weights and biases (αm, a0,m) are held fixed
and the parameters βm are adjusted. Specifically, operating a test set
{x i}i=1,...,Nt with probability vectors

{
yi

}
i=1,...,Nt

, the weights βm

can be found as

βm = W
†
i,m yi , (B8)

where W† is the pseudo-inverse of a matrix W with entries Wi,j =
g(αj · j + a0,j ). We can also add a constant vector β0 in the ap-
proximation t , which is equivalent to having (at least) one of the
activation functions g(αj · x + a0,j ) equal to one. Similarly, we can
regard the coefficients am, 0 as part of the weight vectors αm, if we
embed Rp in Rp+1 as (x1, . . . , xp) $→ (x1, . . . , xp, 1). This is the
convention that we will adopt in what follows.

The approximating solutions t(x ) = (t1, . . . , tk) from ELMs are
not necessarily probability vectors, which are required to have posi-
tive entries that sum to unity. Hence, when using ANNs for classifi-
cation a final transformation tk $→ gk(t) is made, with gk commonly
chosen as the soft-max

gk(t) = exp[tk]
exp[t1] + · · · + exp[tK ]

. (B9)

The ANNs are trained by minimizing a loss function, wich can be
either Rerr + Rreg or Rdev + Rreg, which can be simply implemented
by means of steepest descent methods since the derivatives with

respect to the weights (β, α) can be computed analytically:

Rerr = 1
N

∑

i,k

(yi,k −gk(t i))2 ≡ 1
N

∑

i

Ri (B10)

∂βm,k
Ri =

2
N

(gk(t i) −yi,k)g′
k(t i)g(αm · x i) ≡ δk,ig(αm · x i) (B11)

∂αm,l
Ri =

K∑

k=1

2
N

(gk(t i) −yi,k)g′
k(t i)βk,mg′(αm · x i)xi,l ≡ sm,ixl,i .

(B12)

Given the structure of the ANNs illustrated here, some convenient
back-propagation relations hold among the coefficients, which de-
scend from the additive nature of the loss function. For example,
when the loss function is just Rerr, one has

sm,i = g′(αm · x i)
K∑

k=1

βk,mδk,i . (B13)

The gradients and back-propagation relations can be computed also
for other choices of the loss function along these lines.

If a large number of nodes is used, or if the coefficients are
completely unconstrained, one can overfit peculiar behaviours of
observables in the test set, which are not necessarily present in
other data sets, thus losing predictive power. To avoid this, the
loss function is also computed on some validating sets, with ob-
jects drawn from the same parent distributions as in the test set,
and the optimization on the test set is stopped when the error on
the validating sets does not decrease any more. For the analysis in
Section 4.1, we have assembled 10 validating sets, as to have a char-
acterization of the typical error and its variation over different data
sets. The addition of a regularization term has a similar effect. In
fact, the classification problem corresponds to mapping the feature
space into a classification manifold, parametrized by the member-
ship probabilities (y1, . . . , yK), and regularization helps ensure that
new objects will be mapped smoothly on the classification space.

ELMs offer an alternative to early stopping and regularization.
First, the β coefficients from equation (B8) have the smallest pos-
sible norm among all those that minimize the test-set error Rerr, a

MNRAS 448, 1446–1462 (2015)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/448/2/1446/1051546 by D
anish N

ational Library of Science and M
edicine user on 23 April 2019

3That’s from an old paper of mine, you don’t really need to know about it.
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Example (from scikit-learn):4

Q: Run a PCA on the quark data table, see where the ‘1’ and ‘0’
subsamples lie.

4
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
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Bonus track: kPCA

How it works:5

5You can find code for this example on the scikit-learn website.
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How the ‘kernel trick’ works: map feature space Φ : Rp 7→ H to
very-high-dimensional space with its own scalar product
k(xi ,xj ) = 〈Φ(xi ),Φ(xj )〉. Diagonalize a *big* matrix

Ki,j = (1/N)k(xi ,xj ) (4)
K a = λa (5)

Then the components of a given feature vector Φ(f) in this space,
relative to r−th component, are

tr = 〈ar ,Φ(f)〉 =
N∑

i=1

ar ,ik(xi , f) (6)

Theorem: whenever k(•, •) is semi-positive definite, everything
exists!
Q: Run a kPCA on the quark data table, see where the ‘1’ and ‘0’
subsamples lie.
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Summary

So to sum it up:
1 data are ugly.
2 know where your data come from!
3 inspect your data tables, plot stuff.
4 one method does not necessarily fit every purpose.
5 there is already technology to parse tables, if needed (SQL and

thereabouts).
6 datasets can be very-high-dimensional
7 PCA, kPCA
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