Extraction of sentiment
from Tweets

Laurent Lindpointner, Orestis Marantos, Giorgos Garidis, Carlos Rodriguez

The project

(®) Featured Code Competition

Tweet Sentiment Extraction $15,000
Extract support phrases for sentiment labels Prize Money

Kaggle - 1,853 teams - 10 days to go (3 days to go until merger deadline)

Data Notebooks Discussion Leaderboard Rules Team My Submissions ‘Submit Predictions

Description “My ridiculous dog is amazing." [sentiment: positive]

Evaluation With all of the tweets circulating every second it is hard to tell whether the sentiment behind a specific
tweet will impact a company, or a person's, brand for being viral (positive), or devastate profit because it
strikes a negative tone. Capturing sentiment in language is important in these times where decisions and
reactions are created and updated in seconds. But, which words actually lead to the sentiment
description? In this competition you will need to pick out the part of the tweet (word or phrase) that
Code Requirements reflects the sentiment.

Timeline

Prizes

Dataset

26804
4172
13782
18553
17264
5120
24916
22545
22406
3067
5458
27110
27260
22664

22215

textID
6675f9536d
7440e87ea2
7d64708739
8c4a57dd60
2f42dffodd
e387566¢3d
cbeea72783
78dcea89e3
0ffb510d8e
632487850
6c21d33903
054d5c4400
df0d124770
f538b035ae

a2fb6bdb96

text

: Aww, that sux! _x3: Eeek for Airline charge...

O dear! HE'S HERE! OMGOGMGO.. U didn't see th...
Um. Why can’t | write **** tonight? | like ***_..
Special mention for the new Mean Girl ... welc...
school for a bit. glad jake got the day off

haha that photo is too funny! | hope he wasn'...
Hey Mia!! Go to bed!! (deangeloredman live...
_sweetye | hope so

You're welcome Tila!! | love you!! Wish | cou...

Or this, for that matter: http://bit.ly/SS6Yp ...

no sorry twitter sucks balls since the replys...
You're cycling tho™ that's good. Healthy eati...
Going to bed. Hung out w. Aaron and Robin then...
made me want taco bell, **** you sara! oh wel...

Is losing money in Vegas...

selected_text

that sux!

O dear! HE'S HERE! OMGOGMGO.. U didn't see tha...
Um. Why can’t | write **** tonight? | like ***...
Special mention for the new Mean Girl ... welc...
glad jake got the day off

hope

Hey Mia!! Go to bed!

| hope so

| love you!

So jealous.

no sorry

You're cycling tho™ that's good. Healthy eatin...
Going to bed. Hung out w. Aaron and Robin then...
made me want taco bell, **** you sara! oh well...

Is losing money in Vegas...

sentiment
negative
neutral
positive
neutral
positive
positive
neutral
positive
positive
negative
negative
positive
neutral
neutral

negative

Natural language processing

Before: Convolutional Neural Networks
(CNN) and Recurrent Neural Networks
(RNN) e.g. LSTMs

Now: Transformers:
Sequence-to-Sequence architecture
NN consisting of an encoder and a
decoder. Supported with an
attention-mechanism.

Metric

Jaccard index

ANB| |ANB|
|AUB| |A|+|B|-|ANB]

J(A, B) =

def jaccard(strl, str2
a = set(strl.lower

)

().split())
b set(str2.lower(

(

)

split())

)
) .
C a.intersection(b)
return float(len(c)) / (len(a) + len(b) - len(c))

Exploratory Data Analysis (EDA)

Training data shape: (27481, 4)
First few rows of the training dataset:

textiD text selected text sentiment

cb774db0d1 I'd have responded, if | were going 1'd have responded, if | were going neutral

549e992a42 Sooo SAD I will miss you here in San Diego!!! Sooo SAD negative

0
1
2 088c60f138 my boss is bullying me... bullyingme negative
3 9642c003ef what interview! leave me alone leave me alone negative
4

358bd9e861 Sons of **** why couldn't they put them on t... Sons of ****, negative

Testing data shape: (3534, 3)
First few rows of the testing dataset:

textiD text sentiment
f87dead7db Last session of the day http://ftwitpic.com/67ezh neutral

96d74cb729 Shanghai is also really exciting (precisely -... positive

eee518ae67 Recession hit Veronique Branquinho, she has to... negative

01082688c6 happy bday! positive
33987a8ee5 http://twitpic.com/4w75p - | like it!! positive

Examples of each sentiment:

Positive Tweet example : 2am feedings for the baby are fun when he is all smiles and coos
Negative Tweet example : Sooo SAD I will miss you here in San Diego!!!

Neutral tweet example : I'd have responded, if I were going

Separation in 3 categories:

Neutral: 11117 Positive: 8582 Negative: 7781 Neutral: 1430 Positive: 1103 Negative: 1001

Distribution of Sentiment column in the training set Distribution of Sentiment column in the test set

Analyzing text statistics
Word Count Distribution Word Count Distribution

0
15 20 25 30 0 5 0 15

text length text length

Text length Distribution Text length Distribution

0
60 80 00 20 0 20 40 60

text length text length

Extracting the most common words from text
Positive text Unigram

Top 20 Unigrams in positve text

Negative text Bigram

sentence

. I
unigrams:

Wordclouds for the selected text column

Positive text

Negative text

great, |- ey b ”d
mothers day reall w1 st mlbbed Cant a

bigrams:

na Lo g0

watching

one

Preprocessing - Cleaning & Tokenization

1. Split data: neutral vs. positive & negative tweets

- Selecting whole tweet for neutral tweets gives Jaccard score of 0.97+
2. Clean from train.text, train.selected_text, test.text:

- URLs

- E-mail addresses

- Emojis &

- @-mentions

- Numbers

- Leading white-spaces

- And put everything to lower-case
3. Prepare data to feed into transformer

textID text selected_text sentiment

33 2dc51711bc That's very funny. Cute kids. funny. positive

1. Encode text into vocabulary numbers
- Step 1: Tokenize == <that> <’> <s> <very> <funny> <.> <cute> <kids> <.>
- Step 2: Encode w=p
2. Encode sentiment into vocabulary numbers
- <positive> = <1313> or <negative> =
3. Combine & add separator tokens
- <§>= start token, </s> = separator token, <p> = padding token
- Combine to input_ids vector:

<1313>

4

RoBERTa Model

input_ids, attention_mask (Bs x N.)

|

Model

]

_ _ Tweet + Sentiment embeddings (Bs x N, x 768)
e Create input layers for IDs, Attention]

)
Mask. Dropout: rate 0.2 Dropout: rate 0.2

e Initialize Roberta and create layers

of convolutional layers. Leaky ReLU Leaky ReLU
)

e Optimizer: Adam (learning rate 3e-5
e Loss function: KSLoss S S

Let & be a word embedding mapping W — R"

where W is the word space and

(S (S
™ is an n dimensional vector space then: T -, Dense: 1 neuron
o("king”) — o("man”) 4+ ¢("woman”) = ¢(” queen”) Flatten Flatten
Softmax activation Softmax activation
]]

start pos.prob. (Bs x N;) end pos.prob. (Bs x N;)

NT = number of tokens, Bs = batch size

Hyperparameter Optimization

Optimized 4 hyperparameters with Grid Search:

3. Dropout rate
(randomly set values to zero, prevents overfitting)

4. Distance weight in loss function
(penalizes distributed values more)

Best values:

0.2

0.1

Challenges & what didn’'t work

Py |n00nSiStent |abe”ing/NOise textID text selected_text sentiment
° Trai nlng/CV non-determin iStiC 10651 9984b547fe Had a lovely Mothers Day lovely Mo positive
e Jaccard is strict

Jaccard score Histogram

0.4 0.5 0.6
Jaccard Score

Results
Best Kaggle Jaccard score: 0.704

Bad Jaccard Score:

sentiment: negative

text: her car's is not
terminal. ..

selected text:

prediction:

sentiment: positive
text:

selected_text:
prediction:

sentiment: negative

text: im deffo missing my music
channels

selected_text:

prediction:

Medium Jaccard Score:

sentiment: negative

text: my sharpie is on ink

selected_text:
prediction:

Perfect Jaccard Score:

sentiment: positive

text: juss came backk from berkeleyy ; omg its madd

out there havent been out there in a minute
whassqoodd ?
selected_text:
prediction:

sentiment: negative
text: why are you
selected_text:
prediction:

References

1. Kaggle competition:
https://www.kagale.com/c/tweet-sentiment-extraction

2. What is a Transformer?
https://medium.com/inside-machine-learning/what-is-a-transformer-d07dd1fbe
c04

3. Starter code from Kaggle:
https://www.kagale.com/cdeotte/tensorflow-roberta-0-705

4. Loss function:
https://www.kaggle.com/c/tweet-sentiment-extraction/discussion/147704

We all contributed equally to the project.

https://www.kaggle.com/c/tweet-sentiment-extraction
https://medium.com/inside-machine-learning/what-is-a-transformer-d07dd1fbec04
https://medium.com/inside-machine-learning/what-is-a-transformer-d07dd1fbec04
https://www.kaggle.com/cdeotte/tensorflow-roberta-0-705
https://www.kaggle.com/c/tweet-sentiment-extraction/discussion/147704

Appendix

NN architecture

LSTM Architecture Transformer architecture

Output
Probabilities

Add & Norm

Feed
Forward
[Add & Norm }
[_Add & Norm]
etk Multi-Head
Feed Attention
Forward

{ Add & Norm |

[_Add & Norm]
Add & Norm VB
Multi-Head Multi-Head
Attention Attention

Positional
N e Encoding

Input Output
Embedding Embedding

Outputs
(shifted right)

Preprocessing & Tokenization

Preprocessing Sentimental Tweets

e Firstly we found special cases (URLs, Emojis, Punctuation, Numbers, etc)

find url(string): # Find and return all samples containing URLs

text = re.findall('http[s]?://(?:[a-zA-Z]|[0-9]|[$- @.&+]|[!*\(\),]](?:%[0-9a-fA-F][0-9a-fA-F]))+',string)
return "".join(text) # converting return value from list to string

find emoji(text): # Find and return all samples which contain emojies
emo text=emoji.demojize(text)

line=re.findall(r'\:(.*?)\:',emo_text)

return line

e Secondly we removed non relevant special cases (URLs, Emojis, Punctuation, etc)
remove email(text):

text = re.sub(r'[\w\.-]+@[\w\.-]+',""',str(text))
return text

remove at(text):
text = re.sub(r'[@]+\w+', "', text)
return text

*Neutral Preprocessing investigated separately

e Firstly, we initialized matrices which we used for the tokenization, overlapping of text & selected_text

def preprocess(train):
ct = train.shape[©]
input _ids = np.ones((ct,MAX LEN),dtype='int32')
attention mask = np.zeros((ct,MAX LEN),dtype='int32')
token type ids = np.zeros((ct,MAX LEN),dtype='int32')
start tokens = np.zeros((ct,MAX LEN),dtype='int32')
end tokens = np.zeros((ct,MAX LEN),dtype='int32")

Secondly, we tokenized each text & selected_text and we we begun the overlapping procedure

- k in train.index:
FIND OVERLAP WITHIN STRING & ENCODE INPUT TEXT
textl = " "+" ".join(train.loc[k, "text'].split())
text2 = " ".join(train.loc[k, 'selected text'].split())
idx = textl.find(text2)
chars = np.zeros((len(textl)))
chars[idx:idx+len(text2)]=1
if textl[idx-1]==' ': chars[idx-1] =1
enc = tokenizer.encode(textl)

e Lastly, we found offsets for each word in the text (start, end indices) and positions of the overlapping tokens

POSITIONS OF OVERLAPPING TOKENS

toks = [] # Positions of overlapping tokens

for i,(a,b) in enumerate(offsets): # look for the positions of the overlapping tokens within all tokens
sm = np.sum(chars[a:b]) # num of overlapping charachters in chars, © if none overlap
if sm>0: toks.append(i) # appending if there are overlapping characters for that token

Introducing whitespace before first to assist tokenization
Same here

finding index where overlap begins

chars: vector holding 1s for overlap, © for no overlap
introducing 1 for overlap

1 also for first blank token

transform textl word tokens into vocab numbers

HoH W W W W %

s _tok = sentiment_id[train.loc[k, 'sentiment']] # Getting encoded id of sentiment according to vector defined above
input ids[k, :len(enc.ids)+5] = [0] + enc.ids + [2,2] + [s _tok] + [2] # build encoded Tweet + Sentiment + separtor tokens
attention mask[k,:len(enc.ids)+5] = 1 # ones where there's tokens, 0s where there's none
if len(toks)>0:

start tokens[k,toks[0]+1] = 1 # 1 at token-position of overlap start

end tokens[k,toks[-1]+1] = 1 # same for overlap end

Building the model

Firstly, we need to load the RoBERTa transformer

config = RobertaConfig.from pretrained(PATH+'config-roberta-base.json')

bert model = TFRobertaModel.from pretrained(PATH+'pretrained-roberta-base.h5',config=config)
X = bert model(ids ,attention mask=att ,token type ids=tok)

Secondly, we create the embedding layers for the model and compile it for the
unpadded model, it runs faster. Afterwards, we create a model with padded

variables, it is essential for prediction.

x1 tf.keras.layers.Dropout (DROPOUT RATE) (x[0])
x1 tf.keras.layers.ConvlD(1,1) (x1)

X2 tf.keras.layers.Dropout (DROPOUT RATE) (x[0])
X2 tf.keras.layers.ConvlD(1,1) (x2)

model = tf.keras.models.Model(inputs=[ids, att, tok], outputs=[x1,x2])
model.compile(loss=1loss, optimizer=optimizer)

x1 padded = tf.pad(x1, [[0, 0], [0, MAX LEN - max len]], constant values=0.)
X2 padded = tf.pad(x2, [[0, 0], [0, MAX LEN - max len]], constant values=0.)

padded model = tf.keras.models.Model(inputs=[ids, att, tok], outputs=[x1l padded,x2 padded])

Building the model

We used a Loss function that focuses in penalising how far is out prediction for the
actual position:

class Distanceloss(tf.keras.losses.Loss):
def init (self, distance weight=0.1):
super(). init ()
self. distance weight = distance weight

def call(self, y, pred):
1l = tf.shape(pred)[1]
y =yl:, :11]
pred scalar = tf.math.argmax(pred, axis=1)
y scalar tf.math.argmax(y, axis=1)
Bin cross tf.keras.losses.binary crossentropy(y, pred)
cst tf.cast(tf.math.abs(y scalar - pred scalar), dtype=tf.float32)
return Bin cross + cst * self. distance weight

We use the Adam optimization function
optimizer = tf.keras.optimizers.Adam(learning rate=LEARNING RATE)

Training the model

We fit the un padded model with a Cross Validation. As a callback we implement a
function to save the weights. The weights are used later to run the padded model.

skf = StratifiedKFold(n splits=3,shuffle=True, random state=SEED)
for fold, (idxT,idxV) in enumerate(skf.split(input ids,train.sentiment.values)):

tf.keras.backend.clear session()
model, padded model = build model(**parameters)

sv = tf.keras.callbacks.ModelCheckpoint(PATH + 'Model Weights/%s-roberta-D15-%i.h5'%(VER,fold),
monitor='val loss', verbose=1,
save best only=True,
save weights only=True, mode='auto', save freq='epoch')

model.fit([input ids[idxT,], attention mask[idxT,], token type ids[idxT,1],
[start tokens[idxT,], end tokens[idxT,]],
epochs=3, batch size=32, verbose=DISPLAY, callbacks=[sv],
validation data=([input_ids[idxV,],attention mask[idxV,],token type ids[idxV,]],
[start tokens[idxV,], end tokens[idxV,]1]))

Training the model

We load the weights from the padded model to give them to the unpadded one for
predicting. The prediction gives us the starting and ending positions of the
selected text over the given tweets.

model.load weights(PATH + 'Model Weights/%s-roberta-D15-%i.h5'%(VER,fold))
oof start[idxV,], oof end[idxV,] = padded model.predict([input ids[idxV,],attention mask[idxV,],
token type ids[idxV,]],verbose=DISPLAY)

preds = padded model.predict([input ids t,attention mask t,token type ids t],verbose=DISPLAY)
preds start += preds[0]/skf.n splits
preds end += preds[1l]/skf.n splits

Training the model

We transform back the predicted values obtain and calculate the average Jaccard
index.

K in idxV:
np.argmax(oof start[k,])
np.argmax(oof end[k,])
textl = " "+" ".join(train.loc[k, 'text'].split())

enc = tokenizer.encode(textl)
st = tokenizer.decode(enc.ids[a-1:b])

all.append(jaccard(st,train.loc[k, 'selected text']))
jac.append(np.mean(all))

Hyperparameter Optimization

Code snippet for optimizing Number of convolutional Layers and Kernel Size.

layer_sizes = np.flip(2**np.arange(CONV_LAYERS)*32)

fer conv_size in layer_sizes:
x1 = tf.keras.layers.ConvlD(filters = conv_size, kernel _size=int(KERNEL_SIZE), padding=':
x1 tf.keras.layers.LeakyReLU()(x1)

X2 = tf.keras.layers.ConviD(filters = conv_size, kernel_size=int(KERNEL_SIZE), padding='same’)
X2 = tf.keras.layers.LeakyReLU()(x2)

param_range = { 'Nlayers‘:np.arange(1,6+1) , 'Kernel size':np.arange(l,11
Ksize in enumerate(param Panv=['Vﬁrﬁ=’

__ 5 Lsize in eﬂq”E'et:(param range["?

print(Lsize,Ksize)

parameters = {'KERNEL_SIZE':Ksize ,'CO

Hyperparameter Optimization

Code snippet for hyperparameter optimization on distance weight.

Param_write

jac, preds_start, preds_end, a_larger_b = training{cleaned_train[:num_train_samples],

input_ids_train, attention_mask_train, token_type_ids_train,start_tokens_train,

end_tckens_train,input_ids_t, attention_mask_t, token_type_ids_t,SEED, drop_learn)

The same was repeated for the Dropout rate.

