Mouse Embryos And some very noisy data

Emil Schou Martiny

Data description

Spliced Fluorescent protein unto two genes

Two different proteins

H2B

HEX

Super noisy datasets Varying length 1500 series/cells

T-SNE

T-sne was were the project started This structure is roughly theorized to be: If one protein is high, the other is not.

T-SNE

The quest for a meaningful label

In vivo vs. in vitro gives problems in defining differentiating

Possible labels

- Average
- End point
- Frequency
- Goes up in the end
- Standard deviation of data series

Data preparation

When to Normalize? Before or after padding?

Initial models

LSTM with 1-3 layers

GRU

LSTM? (CNN, GRU, bidirectional etc)

LGboost

- Average
- End point
- Frequency
- Goes up in the end
- Standard deviation of data series

Best result! Random Guessing. There is no signal (I can Find)

Daughter cells

Can we predict them?

- Average
- End point
- Frequency
- Goes up in the end
- Standard deviation of data series

Nope

Reflections on no results

Machine learning has some limits, it is not magic

Maybe there is no signal since it is an in vitro experiment

Time series predictions Two layer LSTM

Some astro data

Problems

Noisy

oscillating around zero, so fewer trends to catch up on

Some improvements

More examples

Questions

Appendix

Packages: LightBGM, Keras Tensorflow, SKlearn

I looped over different models with my different inputs and labels

Multi-layer LSTM with or without dropouts, GRU

Histogram of labels

Green and red bars, shows cutoff

