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The Ice Cube Neutrino Experiment
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The Data
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The Labels

Target Features
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The 'Graph’ in Graph Neural Networks
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The 'Graph’ in Graph Neural Networks

m Formal Defintion:

Agraph is a triple (V, E, f) where V is a set (the vertices of the graph), I is a set (the edges of the
graph), and f: E — V¥ is a function assigning to each edge its set of vertices, where V'°% means
the set of all tuples (finite sequences) from V.
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The 'Graph’ in Graph Neural Networks
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The 'Graph’ in Graph Neural Networks

m With every node we associate a list of Node
Features
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The 'Graph’ in Graph Neural Networks

m With every node we associate a list of Node
Features

m For every node we define how it's connected
to other nodes (edges)
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The 'Graph’ in Graph Neural Networks

m With every node we associate a list of Node o,
Features e
m For every node we define how it's connected .»/.*

to other nodes (edges)

m Note: This architecture adds a new layer of
complexity!
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Building The Graphs
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Building The Graphs
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Building The Graphs

First approach:

m Node — Dom
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Building The Graphs

First approach:

m Node — Dom y ‘
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Building The Graphs

First approach:

m Node — Dom o !

m Node Features — Dom Measurement and 1 | w ‘H“ |
Xyz-position E| M \M (

m Edges — A timeseries connection m\_l L/,,‘%l;ﬂ
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Building The Graphs

But this is problematic!

m Number of nodes in a graph is not constant
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Building The Graphs

But this is problematic!

m Number of nodes in a graph is not constant

m The fact that some doms does not measure
anything during an event, is information on
it's own!
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Building The Graphs

But this is problematic!

m Number of nodes in a graph is not constant

m The fact that some doms does not measure
anything during an event, is information on
it's own!

m Solution: Add all doms to the graphs, and
give only the doms that measure something
non-zero charge and time.

Neutrino Reconstruction with Graph Neural Networks Peter Bagnegaard, Rasmus F. @rsge 12/28



Building The Graphs

Ignored points
— Edges
® Points in network
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Building The Graphs

Ignored points
—— Edges
+ Points in network
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Building The Graphs

How do we now define the edges?
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Building The Graphs

How do we now define the edges?

@ Cornell University

arXiv.org > physics > arXiv-1902.07987

Physics > Data Analysis, Statistics and Probability
[Submitted on 21 Feb 2019 (v1), last revised 24 Jul 2018 (this version, v2)J

Learning representations of irregular particle-detector geometry with distance-weighted graph networks

Shah Rukh Qasim, Jan Kieseler, Yutaro liyama, Maurizio Pierini
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Building The Graphs

How do we now define the edges?

m Euclidean distance metric was expensive
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Building The Graphs

How do we now define the edges?

m Euclidean distance metric was expensive
m Compromise: A conga-line configuration
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Building The Model

Library: torch-geometric

m Can accept layers from PyTorch library
m Supports CUDA (GPU)
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Building The Model

55 MPtEtorch nn. Modu1e]
|

HERE LAYERS

- forward(self, data):

HERE GOES LOGIC FOR PASSING data BETWEEN LAYERS
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Building The Model

We must specify layers in the model such that:

[batch_size-N_nodes, input_features] — [batch_size, target_values]
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Building The Model

Our main models became:

ass Net(torch.nn.Module):

)._init__
torch.nn.RelU  (inplace=True
TopkPooling (5, ratio
torch.nn.RNNCell(5 , 64
TopKPooling (64, ratio = 0.1

= torch.nn.Linear (64
TopkPooling
.nn3 torch.nn.Linear

0.01

(32, ratio = 0.1
(32, 8

f forward( , data):
et d.

x, edge_index, batch = data.x.float(), data.edge_index, data.batch

NO act tion
.po05 (x, edge_index, None, batch)

1: Pooling laye
x._edge E
= .nn1(x)

,batch

boling layer + N 1 lay Rell actication)
x, edge 1ndnx, _batch, , .pool2(x, edge_index, None,batch)
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Pooling layer + Ne ay NO a
edge_index, _,batch poul)(x s-dqe e )
x = nn3(x
turn x
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Net (torch.nn.Module):
ini )

).__init_ ()
TopKPorﬂ)ng 5,
torch.nn.Linear(5 ,
(64,

TopkPooling ratio

TopKPooling

fon ard( , data):

X, edge lndex, batch = data.x.float(), data.

Pooling layer +
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x = sel7.nn1(x)
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nn2(x)

Peter Bagnegaard, Rasmus F. @rsge

dge_index, data.batch
ion
. index, None, batch)

.pool2(x, edge_index, None, batch)
.pool3(x, edge_index, N

batch)

22/ 28



The Results

Conga vs Random
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The Results

Conga-Line Edge Configuration
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The Results

Random Edge Configuration
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The Results

Non-Linear Model on Conga Configuration

Non-Linear Model on Random Configuration

MSE Loss
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Limitations and Outlook

m graph-sizes and edges

m Could experiment with Data-Class

m Could try to implement more sophisticated models
m Could try different edge configurations
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Appendix

I RasmusOrsoe / NeutrinoReconstructionGNN OUnwatch~ 1 T¥sar 0
<> Code Issues 0 Pull requests 0 Actions Projects 0 Wiki Security 0 Insights Settings

Technical Description of Final Project "Neutrino Reconstruction using Graph Neural Networks' in Big Data course at NBI 2020

Click here for appendix

All Members Contributed Equally
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https://github.com/RasmusOrsoe/NeutrinoReconstructionGNN/

