
M5 Forecast - Accuracy
Big Data Analysis Exam

Date: 10th June 2020
Maria, Mads, Andy and Emil

All group members have contributed equally to the project.

M5 Forecasting - Accuracy
Objective: Predict 28 days of item sales into the Future for 3049 items

Data:

- Historical data for past 1941 days.
- Calendar

- Public holidays
- SNAP days
- etc.

- Prices
- Week to week prices for all items.

Motivation: 50.000$

M5 Forecasting - Accuracy

Item level:
time series of individual items
Noisy and low counts
product sold out?

Store level:
Can observe seasonality which we can ideally
reproduce when summing all individual time series

Chosen Models

• Gradient Boosted Trees (LightGBM)

• Long Short-Term Memory (Keras)

• Playtime - Graphs!!

Training
model!

Tree Based - feature engineering (LightGBM)

Tree Based - use predictions in features
simple rolling mean of last
28 days give:
item level: MAE = 1.17
store level = MAE = 721

Long Short-Term Memory (LSTM)

MAE: 1.17

64% of the sales data is 0 (sparse time series).

simple rolling mean of last
28 days give:
item level: MAE = 1.17
store level = MAE = 721

Problems and Outlook

1. Items sales seem random.

The total sale is ok. Perhaps, unsupervised learning can cluster the
time series.

2. Models are underestimating top-selling items.

The data is unbalanced, more weight on the top-selling items.

Ect…
Item 2

Shop 3

Shop 2

Shop 1

Shop 5

Shop 6

Shop 7

Shop 8
Shop 9

Item 1

Shop 4

Edge features:
Price pr. Dag
Sold items pr. Day
Totally: 12200x2

Conditioning:
Event1: [0:29]
Eventtype1: [0:3]
Event2: [0:29]
Eventtype2: [0:3]
Day on month: [0:30]
Weekday: [0:6]
Month: [0:11]
Year: [0:5]
Snap coupon: [0,1]
Totally: 1x9

Graph = 1 day
Totally 1941 graphs

Node features:
Item/Shop: [0,1]
Category ID: [0:2] or -1 if Shop
Item ID: [0:999] or -1 if Shop
Department ID: [0:6] or -1 if Shop
Store ID: [0:9] or -1 if Item
State ID: [0:2] or -1 if Item
Totally: 3050x6

Shop 10

Graph Structure

1 graph = 1 day

Only total sales prediction

Good for structuring complex data

Consists of:

- Node Feature Matrix
- Edge Feature Matrix
- Adjacency matrix

Graph Neural Network

Prediction from 1 day

Last 28 day prediction

No conditioning

Only using prices and sales

MAE = 753

Conditioned GNN

Prediction from 1 day

Last 28 day prediction

Conditioning added

Only using prices and sales

MAE = 556

Conditioned Time Series GNN

Prediction from 3 day

Last 28 day prediction

Conditioning added

Only using prices and sales

MAE = 417

Evaluation of Graph RNN

1 day / 1 graph:

Node features matrix:
3050 x 6
Edge feature matrix:
12200 x 2
Adjacency matrix:
3050 x 3050
Conditioning:
1 x 9

2 days / 2 graphs:

Node features matrix:
2*3050 x 6
Edge feature matrix:
2*12200 x 2
Adjacency matrix:
2*3050 x 2*3050
Conditioning:
1*2 x 9

28 days / 28 graphs:

Node features matrix:
85.400 x 6
Edge feature matrix:
341.600 x 2
Adjacency matrix:
85.400 x 85.400
Conditioning:
28 x 9

Does not predict well

Does require a lot of RAM

We have tried:
- Import and make data for every

iteration --> Slow
- Do not use all data
- Bigger computer / GPU (Kaggle)
- Works for a sinus curve
We have not tried:
- Import data in batches
- Use pytorch’s dataloader
- Dimensionality reduction
- Feature minimizing (SHAP)

Graph Based GRU

Only use small
amount of data, and
only use data from 1
day to predict the
next.

Use all the data and use
data for 28 days at the
time. Load data every
iteration.

Use all the data and use
data for 28 days at the
time. Contain
everything in the
memory.

Bad, constant prediction.

RuntimeError: CUDA out of
memory. Tried to allocate 570.00
MiB (GPU 0; 8.00 GiB total
capacity; 6.12 GiB already
allocated; 132.25 MiB free;
14.61 MiB cached)

Very slow, especially because it
has to use CPU when loading
data for every iteration.

Cannot be contained in memory.
Even on Kaggle (16Gb). Benefits
had been large because of GPU.

Never

Conclusion

We are not gonna win…
- But second place?

With great flexibility comes great
preprocessing and optimization

Method Mean Absolute Error

LightGBM 255

LightGBM, Prior prediction as
feature

194

LSTM 189

LSTM 381

GNN 753

CGNN 556

3-Day CGNN 417

Appendix

• Network architectures
• Tree Based methods
• Edge Graph Neural Network
• Graph Based GRU
• James Avery’s ESN example from website adopted to Walmart Data

• ESN Results
• Table of expected results of the models

Tree Based - only known features
simple rolling mean of last
28 days give:
item level: MAE = 1.17
store level = MAE = 721

LightGBM models - technical details

• Drop the first 4 years of data (∼1.5 mio. data points left)

• Divide data set into
• training (all days except last 56)
• validation (next 28 days)
• test (last 28 days)

• For HP optimization:
• 20 combinations using random search
• validation set used to evaluate

LightGBM learning curves

validation RMSE
starts to
increase after
2280 iterationsOnly long-time features

Including short-time features

validation RMSE
starts to
increase after
2550 iterations

● Rolling mean over 28 days shifted 28
days is by far the most dominant
feature

● features such as item price (sell_price),
item id (item_id) and day in the week
(wday) used to tune the average guess

LightGBM - feature importances
Historical sales features at least 28 days back

LightGBM - feature importances’
Add historical sales data 1 and 7 days ago

● Rolling means are still by far the most
dominant features though with the
introduction of less shifted features
means that these become more
important. Here for rolling means
shifted (lag) 1 day (lag1r7 and lag1r28).

LSTM - Technical Details
Dividing the data set:
• Training (all days except last 56)
• Validation (next 28 days)
• Test (last 28 days)

Hyperparameter opt:
• The hyperparameter space of LSTM neural networks is huge, and they are generally to train. Thus, only

a few architectures were manually tested.

• We also tested different approaches to ingest time-series into the LSTM network.

This includes training on the last 720, 360, 180, 56, 28 days and predicting on all 28 days at once.

We also tested a sliding window protocol, using a sliding window of length 28 and 56 to predict only

one day in advance.

LSTM - Learning Total Sales

LSTM networks were quite good for
directly predicting the total sales of
the store with a MAE of 189 Items.

Node
MLP

=
M
L
P

M
L
P

Dropout Edge
MLP

=
M
L
P

M
L
P

Dropout

Node
to

Edge
MLP

=

Node to Edge in

Node to Edge Out

Node features

Edge
to

Node
MLP

=

Node
to

Edge
in

Node
to

Edge
Out

ReLU ReLU ReLU ReLU

M
L
P

1. Graph
Conv

.. Graph
Conv

Node
MLP

Node
to

Edge
MLP

Edge
MLP

Edge
to

Node
MLP

Node
MLP

Node
to

Edge
MLP

Edge
MLP

Edge
to

Node
MLP

Embedding Prediction

M
L
P

NFM

Conditioning
M
L
P

1. Graph Conv

Backpropagation

Conditioning

Dropout

ReLU ReLU

M
L
P

ReLU

.. Graph Conv
M
L
P

Prediction

ReLU

ADJ ADJ NFM: Node Feature Matrix
ADJ: Adjacency Matrix

Edge Graph Neural Network

Graph Recurrent Neural Network

Echo State Networks
Predicts well on training data Does not generalize to validation data

Example1 Example1Example2 Example2

Hidden Variables: 1500
Connections in. Sparse

Matrix: 100
Spectral Radius : 1.5

Tested ML-Algorithms
Tree-based LSTM ESN Graph-based

edgeGNN
Graph-based

GRU

Implementation Easy Difficult Easy Very difficult Very difficult

Performance for
few days

Good Very good Good Medium Very good

Performance for
many days

Medium Good Good Medium Very good

Memory
requirements
for few days

Medium Large Medium Small Small

Memory
requirements
for many days

Large (grows
linearly)

Very Large
(grows

linearly)

Large Incredible
Large (grows >

power2)

Incredible
Large

(grows >
power2)

Training Time Fast Slow Fast Medium Slow

