
Predicting release year of
songs

Rasmus Salmon & Haider al Saadi
50/50 effort

2020 Machine Learning

Working problem:
● Goal: Find out if music is different today

compared to earlier

● In ML: Predicting the release year of a
given song based on objective features

○ Classification of release decade
○ Regression of release year

“Music was much better, when
I was young”

-Parents

Data:
● Use data from the “million song database”

○ Contain derived features from 1 million popular songs ⇒ No audio
○ Created in 2011 ⇒ No newer songs
○ 280 GB of raw data ⇒ Use statistical data from curated subset of the dataset
○ Created by Columbia University and The Echo Nest(MIT startup, now Spotify) ⇒ High quality

Our subset
● No. of observations: 515.345 songs
● Target: Year/decade of release (1920 - 2011)
● Features: 90 attributes outlining the statistical sound profile of each song

(Mean and covariance of a 12-dimensional timbre analysis)
● Train-test-split: Done on an artist level (463.715 in train and 51.630 test)

Data exploration:
Balance: Both train and test data is imbalanced.

Clusters: No clear clusters in low dimensional
representation.

PCA: 75 principal components for 99% variance

25 components for 96% variance

-> High contribution from each variable!

A first approach:

Model: A simple decision tree

Results: Great (We thought)
Clustering: Accuracy of 60 pct.
Regression: MAE of 9.1 years

Problem: Model only “used” part of data

Solution: Resample to get balanced data.

The “new” data: 1.000 songs from each year.

Xgboost model:
● High performance
● Extensive parameter space
● Easy to work with

Regression for release year:
Pattern ⇒ Simpler models fit earlier songs
better and complex models fit later songs
better.

Songs from 1960-1980 is generally predicted
well.

The MAE for each year is in the 10-20 year
range.

Parameter optimization part 1 XGB_classifier
Optimized number of estimators and max depth

As log-loss ratio increases, metric improves? -> metric is bad, but why?

Because test data is unbalanced too!

Also, new music might be more similar
too?

Parameter optimization part 2 (Visuel inspection)

Increase parameter=Better at new,

worse at old.

->Maybe newer decades want big

trees and older want small trees?

Should we rebalance test set?

Discussion:
● What information is contained in the data?

○ Music genre, music style, choose of instruments, production technology, originates from
spotify

● The time measurement?
○ Years and decades are arbitrary

● Other techniques for imbalanced data?
○ Performance metrics, algorithms, more data...

● What did this analysis of the data give us?

Future work:
● Test different types of hyperparameters in Xgboost

○ Learning rate, shrinkage, subsampling...

● Redo analysis with..
○ More balanced data.
○ audio data
○ split the set into old and new

Conclusion:
● Imbalanced data is hard to work with

● Music has changed over time
○ Qualitative difference in ML-models dependent on whether the songs are new or old

● Be very thoughtful when applying models built on this data!

References:
● Thierry Bertin-Mahieux, Daniel P.W. Ellis, Brian Whitman, and Paul Lamere.

The Million Song Dataset. In Proceedings of the 12th International Society for
Music Information Retrieval Conference (ISMIR 2011), 2011.

Appendix

PCA on the data:
We performed PCA on the data. We learned that
we need a lot of variables to capture the
variance of the data, and that we could not spot
clear clusters.

The first approach tree:
Our first approach to analysing the data was a
simple decision tree with a max depth of 8.

Everything seem great intoll we plotted the
result by year.

Clustering: Accuracy of 60 pct.
Regression: MAE of 9.1 years

Balancing the data(sudo and actual code):
-For each year i in the training data:

-Resample n songs with replacement from training data where realese == i
-Add resampled data for year i to combined data for all year
-Next i

Before and after balancing:

Why not balance on decades for classification?
Consider the hypothetical case were the raw data contains 100 songs from 1991
and 1.000 songs from 1998. Resampling on decade would give 10 times the
songs from 1998 compared to 1991 in the final dataset. Thus resampling on the
decade would introduce an “invisible” imbalance to the data.

We therefore resample for the years as this is easier to control.

Why not more samples from each year?
1. By resampling we can create more observations, but we can not create more

variance. Taking a lot of samples from each year would result in some years
being very oversampled. This would result in a final dataset where the
number of observations is equally balanced but not the variance.

2. Analysing a big amount of data takes a lot of computing resources. We ran
into two main issues:
a. Run-time: Due to the limited time frame we wanted to reduce runtime to have more time to

experiment and analyse results. We tried to use parallelism to reduce time but got problems
with memory.

b. Memory: Free cloud computing has a rather low RAM-limit. So trying to run big models in
parallel would instantly make you hit the RAM-limit.

Considerations when splitting into old and new song
● The observation that the models optimal parameters probably significantly

differ for old and new songs implies a split might be beneficial. However
finding an optimal split would be prohibitively expensive time-wise, so the
exact position of the split should be based on the parameters of the problem
being solved and not a “naked” analysis of the data.

● Different behaviour may occur if running this based on years rather than
decades. Therefore splitting subsets close to each other in years might entail
different parameter choices, since the ML model that determines the decade it
belongs to well is not necessarily the ML model that determines the year.

Optimizing the regression:
Increasing the complexity of the model
decreases the error on the test data. However
more complex models simply fitted more data to
the newest years(see next slide). The
relationship seems to be that simple models do
a good job for the earlier songs, and more
complex models do better on later songs. This is
properly due to uneven variance across the
years.

Regression results by complexity:

Optimizing using cross-validation:
One last possibility is to evaluate the models based
on cross-validation.
Classification: Seems that moderately complex
models do better. Might be distorted due to
discontinuous nature of accuracy.
Regression: The simplest model gives the lowest
cross-validation error. However looking at the
results in the previous slide it seem that the
simplest model does not do the best job on the test
data.

Not clear if training data generalizes and therefore
not clear if cross-validations is useful

