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Blood Cell Data Introduction
• Kaggle dataset: 12,500 (320 x 240 pixels) 

augmented labeled images of blood cells 

• The diagnosis of blood-based diseases often 
involves identifying and characterizing patient 
blood samples. 

• Automated methods to detect and classify 
blood cell subtypes have important medical 
applications.

• Goal: Classify images into four classes



Data Preparation: Overview
• Compression: 240x320 → 120x160 pixels 

(using Pillow). 

• Data was already pre-augmented to be 
evenly distributed among the four classes.

• Scaling: four different methods.

• Segmentation: Otsu’s thresholding.

• U-Net: fully convolutional network to produce 
masks.

Original (240x320) Compressed (120x160)



Scaling
• Four different ways of scaling the train data:

1) Pixel/channel scaling- Standardize each 
pixel and channel across all images

2) Global scaling- Standardize all pixels 
and channels using one distribution.

3) Channel scaling- Standardize each 
channel.

4) Normalization: divide everything by 255 
to obtain values between 0 and 1
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Segmentation
• Implemented based on Otsu’s threshold values 

across the rgb channels.

• The threshold minimizes intra-class variance 
and maximizes inter-class variance.

• We find the threshold value between the two 
distributions for each channel.

• This mask works well for most images.



U-Net
• Fully convolutional network: classifies every 

pixel within an image as part of some 
prespecified class (semantic segmentation).

• Takes the image as an input and a mask as a 
label. The trained network can predict 
appropriate masks for other unseen images.

• Structure consists of two paths: encoding the 
image and decoding it, outputting a 
classification mask

• Used the masks obtained from segmentation 
and grayscaled images to implement the U-Net.
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Convolutional Neural/Fully Convolutional Networks (CNN/FCN)

• CNNs use filters to assign importances to various 
aspects of the input image.  

• Neural layers are then used to output the target 
parameter.

• FCNs: same as CNNs but with convolutional 
layers instead of neural layers at the end.

• Both use dropout and maxpooling layers.



CNN/FCN Structures

• Both CNN and FCN use five sections 
each with a convolution, maxpool, and 
dropout layer. First maxpool layer pools 
as (3, 4) to transform 120 x 160 to 40 x 
40. 

• CNN ends with a dropout layer and two 
dense layers.

• FCN ends with two more sections without 
maxpooling. The image size has been 
reduced to (1, 1)

• Hidden layers: ReLu as activation.
Output layer: softmax as activation.

• Loss function: categorical crossentropy.

• Best CNN: 3,312,964 trainable parameters. 
Kernel size: 2x2. Dropout rate: 0.3.

• Best FCN: 2,853,892 trainable parameters. 
Kernel size: 2x2. Dropout rate: 0.1.



Aiming for Success/Hyperparameterization 

• Scalings: channel scaling proved the best, 
followed closely by global scaling. 
Channel/pixel scaling and normalization 
had limited accuracies; the latter had 
stability issues.

• Masks: segmentation and U-Net masking 
yielded unstable and inaccurate results.

• Optimizers: Adam proved to be the most 
stable and best performing optimizer 
using a learning rate of 0.001.

• Kernel size: 2 for the convolutional layers 
resulted in the highest accuracies 

• Batch size: 128 was both reliable and 
fast.

• Unable to properly hyperparameterize 
(K-Fold, Talos would crash due to RAM 
limitations).



CNN Results
• Best results were obtained using channel scaling, no segmentation, and no u-net.
• Dropout rate: 0.3; Kernel Sizes: (2,2,2,2,2).

   



FCN Results
• Best results were obtained using channel scaling, no segmentation, and no u-net.
• Dropout rate: 0.1; Kernel Sizes: (2,2,2,2,2).



Summary of CNN and FCN Results
Method Accuracy (10 trials) Model Size (MB) Epoch Number Convergence 

Best CNN (channel 
scaled, no mask)

0.87 ± 0.02
[0.826, 0.887]

39.776155 30 ± 5 100%

Best FCN (channel 
scaled, no mask)

0.882 ± 0.007
[0.870, 0.897]

34.267841 26 ± 8 90%

Kaggle Contributor 
(Top 4 most popular)

Method Accuracy

Paul Mooney CNN 0.838 (max)

nh4cl CNN 0.8376

Kartik Sharma CNN 0.85766

ilovescience CNN 0.8709



Possible Improvements and Refinements.

• Try handmade segmentation with data augmentation for U-Net.

• Greater RAM: raw images and proper hyperparameterization (Talos).

• Keras has the ability to read images from directory: raw images.

• Add blank pixels to obtain square images.



Conclusion

• Masking and U-Net did not provide any additional accuracy, which was disappointing.

• Global and channel standardizations are useful to push accuracies higher. 
Standardization is necessary to converge reliably.

• Overall, it seems that FCN’s can push accuracy higher but suffer from stability issues (in 
terms of convergence) when compared to similarly structures CNN’s.

• It is possible to automate the detection and classification of blood cell subtypes by using 
ML algorithms. 



The End.



References
Blood cell dataset: https://www.kaggle.com/paultimothymooney/blood-cells

Scaling/standardization: 
https://machinelearningmastery.com/how-to-manually-scale-image-pixel-data-for-deep-learnin
g/ 

Otsu thresholding: https://docs.opencv.org/master/d7/d4d/tutorial_py_thresholding.html

U-Net Implementation - 
https://towardsdatascience.com/understanding-semantic-segmentation-with-unet-6be4f42d4b4
7

Image U-Net - Ronneberger, O., Fischer, P., and Brox, T. U-Net: Convolutional Networks for 
Biomedical Image Segmentation. [arXiv:1505.04597v1]

CNN - Lecture notes and sample class notebook.

FCN - 
https://towardsdatascience.com/implementing-a-fully-convolutional-network-fcn-in-tensorflow-2
-3c46fb61de3b

https://www.kaggle.com/paultimothymooney/blood-cells
https://machinelearningmastery.com/how-to-manually-scale-image-pixel-data-for-deep-learning/
https://machinelearningmastery.com/how-to-manually-scale-image-pixel-data-for-deep-learning/
https://docs.opencv.org/master/d7/d4d/tutorial_py_thresholding.html
https://towardsdatascience.com/understanding-semantic-segmentation-with-unet-6be4f42d4b47
https://towardsdatascience.com/understanding-semantic-segmentation-with-unet-6be4f42d4b47
https://towardsdatascience.com/implementing-a-fully-convolutional-network-fcn-in-tensorflow-2-3c46fb61de3b
https://towardsdatascience.com/implementing-a-fully-convolutional-network-fcn-in-tensorflow-2-3c46fb61de3b


Appendix - Data Preprocessing
1) Check data is balanced for the train and test data. 

Data had already been augmented in the set to 
provide roughly equal distributions.

2) Image compression/resizing: 320x240 → 160x120 
pixels (done using Pillow). Tried full resolution, but 
cumbersome and unreliable (RAM crashes, can only 
train in samples of 1000 which don’t converge). With 
lower resolutions and ‘squaring’, we lose more 
information.

3) Standardizing the data: (best case) the training data 
was standardize so the mean of each rgb channel for 
all images was 0 and the variance equal to 1. This 
values were safe and then applied to standardize the 
test data. 



Appendix: Scaling
• Four different ways of scaling the train data:

1) Pixel/channel scaling- Standardize each 
pixel/channel individually across all images

2) Global scaling- Standardize all pixels and 
channels using one distribution.

3) Channel scaling- Standardize each channel.
4) Normalization: divide everything by 256 to 

obtain values between 0 and 1.



Appendix: Scaling



Appendix: Segmentation

Based on Otsu’s threshold. The threshold value  is found between the two 
distributions for each channel. The graph on the left shows the full pixel distribution 
for one channel. The graph on the right shows the result after applying Otsu’s 
threshold.
 



Appendix - U-Net Structure

U-Net accuracy/convergence result 
and structure:



Appendix - CNN Structure and 
Hyperparameters
The structure of the CNN was the following:



Appendix - FCN Structure and 
Hyperparameters
The structure of the FCN was the following:



Early Attempts with Different Compressions and Unscaled Data

30 x 30 image

60 x 60 image

30 x 40

60 x 80

120 x 160



Appendix: Plots of various results CNN (1 of 2)



Appendix: Plots of various results CNN (2 of 2)



Appendix: Plots of various accuracies FCN (1 of 2)



Appendix: Plots of various accuracies FCN (2 of 2)



Appendix - Confusion matrices CNN

● The two most common errors are 
labeling monocyte and eosinophil 
cells as neutrophil cells. 

● The labeling of lymphocyte cells is 
always the one with the maximum 
accuracy.



Appendix - Confusion matrices FCN

● The two most common errors are 
labeling monocyte and eosinophil 
cells as neutrophil cells. 

● The labeling of lymphocyte cells is 
always the one with the maximum 
accuracy.



Optimization

• Optimizer: Adam (optimal), Adadelta (crashed), Adamax (worse)
• Adam learning rates: 0.1 (useless), 0.01(useless), 0.001, 0.0001(crashed)
• Dropout rate: 0.1, 0.2, 0.3, 0.4, 0,5 depends on kernel size and scaling maybe
• Kernel size: 2, 3, 2 seems to yield better results but is less stable, could be 

indicator for suboptimal structure 
• Batch size: 32, 64, 128, 256, not sure, lower numbers look like they are worse.
• Also considered other compression rates and squaring the images, but since 

we got the 120 by 160 compression to work, we just moved on with this.
• Once we were set on a structure and saw that global and channel scaling got 

the best results, we started optimizing and logging results (see next three 
slides). Other results in the lead up to this are not included.



Appendix: Manual Hyperparametrization configurations (1 of 3)
Network Dropout Rate Kernel Sizes Standardization Batch Size Accuracy (6 runs)

FCN 0.2 (2, 2, 2, 2, 2, 1, 1) Global 32 0.874, std = 0.008

FCN 0.5 (2, 2, 2, 2, 2) Channel 128 max .830, 4 non-conv

FCN 0.2 (2, 2, 2, 2, 2) Channel 32 .869 - .898

CNN 0.2 (4, 3, 3, 4, 4) Global 128 0.869, 1 non-conv

FCN 0.1 (2, 2, 2, 2, 2) Channel 16 ~0.88, 1 non-conv

FCN 0.2 (3, 3, 3, 3, 3, 1, 1) Global 256 0.859, std = 0.029

CNN 0.1 (3, 3, 3, 3, 3) Channel 32 Max .86, 3 non-conv

FCN 0.2 (4, 4, 3, 3, 2, 1, 1) Global 128 0.874, std = 0.008

FCN 0.2 (3, 3, 2, 2, 1, 1, 1) Global 128 0.879, std 0.005



Network Dropout Rate Kernel Sizes Standardization Batch Size Accuracy (6 runs)

CNN 0.1 (3, 3, 3, 3, 3) Channel 128 ~0.86 (max 0.87)

FCN 0.3 (2, 2, 2, 2, 2, 1, 1) Global 128 0.875, max 0.8914, 1 
non conv

CNN 0.5 (3, 3, 3, 3, 3) Channel 64 0.86 pm 0.02

FCN 0.3 (2, 2, 2, 2, 2, 1, 1) Global 64 0.883, 1 non conv

CNN 0.3 (2, 2, 2, 2, 2) Channel 128 0.879 pm 0.008, .89 
max

FCN 0.4 (2, 2, 2, 2, 2, 1, 1) Global 128 0.88, 4 non conv 

FCN 0.2 (2, 2, 2, 2, 2, 1, 1) Global 32 0.887, 0.006, 1 non

FCN 0.2 (4, 4, 2, 2, 2, 1, 1) Global 32 0.865, 0.018, 1 non

Appendix: Manual Hyperparametrization configurations (2 of 3)



Appendix: Manual Hyperparametrization configurations (3 of 3)
Network Dropout Rate Kernel Sizes Standardization Batch Size Accuracy (6 runs)

CNN 0.3 (3, 3, 3, 3, 3) Global 128 ~0.88 (little variance) 

FCN 0.2 (2, 2, 2, 2, 2, 1, 1) Global 128 0.88, std = 0.01

CNN 0.2 (3, 3, 3, 2, 2) Global 128 0.871

CNN 0.1 (2, 2, 2, 2, 2) Channel 128 ~0.87 (little var)

CNN 0.5 (2, 2, 2, 2, 2) Channel 128 B/w 82% and 88.8%

FCN 0.2 (3, 3, 3, 2, 2, 1, 1) Global 128 0.869, std = 0.02

FCN 0.1 (2, 2, 2, 2, 2) Channel 128 .87 to 0.907

FCN 0.4 (3, 3, 3, 3, 3, 1, 1) Global 128 ~0.88, 1 non conv

FCN 0.2 (2, 2, 2, 2, 1, 1, 1) Global 128 0.886, 2 non



Pictures from convolutional layers and max pooling layers (1of 4) 



Pictures from convolutional layers and max pooling layers (2 of 4)



Pictures from convolutional layers and max pooling layers (3 of 4)



Pictures from convolutional layers and max pooling layers (4 of 4)


