
Alba Garcia Vazquez, Miren
Lamaison, Edwin Vargas, Fynn Wolf

All group members contributed evenly to this project

Blood Cell
Classification

Blood Cell Data Introduction
• Kaggle dataset: 12,500 (320 x 240 pixels)

augmented labeled images of blood cells

• The diagnosis of blood-based diseases often
involves identifying and characterizing patient
blood samples.

• Automated methods to detect and classify
blood cell subtypes have important medical
applications.

• Goal: Classify images into four classes

Data Preparation: Overview
• Compression: 240x320 → 120x160 pixels

(using Pillow).

• Data was already pre-augmented to be
evenly distributed among the four classes.

• Scaling: four different methods.

• Segmentation: Otsu’s thresholding.

• U-Net: fully convolutional network to produce
masks.

Original (240x320) Compressed (120x160)

Scaling
• Four different ways of scaling the train data:

1) Pixel/channel scaling- Standardize each
pixel and channel across all images

2) Global scaling- Standardize all pixels
and channels using one distribution.

3) Channel scaling- Standardize each
channel.

4) Normalization: divide everything by 255
to obtain values between 0 and 1

Scaling
• Four different ways of scaling the train data:

1) Pixel/channel scaling- Standardize each
pixel and channel across all images

2) Global scaling- Standardize all pixels
and channels using one distribution.

3) Channel scaling- Standardize each
channel.

4) Normalization: divide everything by 255
to obtain values between 0 and 1

Segmentation
• Implemented based on Otsu’s threshold values

across the rgb channels.

• The threshold minimizes intra-class variance
and maximizes inter-class variance.

• We find the threshold value between the two
distributions for each channel.

• This mask works well for most images.

U-Net
• Fully convolutional network: classifies every

pixel within an image as part of some
prespecified class (semantic segmentation).

• Takes the image as an input and a mask as a
label. The trained network can predict
appropriate masks for other unseen images.

• Structure consists of two paths: encoding the
image and decoding it, outputting a
classification mask

• Used the masks obtained from segmentation
and grayscaled images to implement the U-Net.

U-Net
• Fully convolutional network: classifies every

pixel within an image as part of some
prespecified class (semantic segmentation).

• Takes the image as an input and a mask as a
label. The trained network can predict
appropriate masks for other unseen images.

• Structure consists of two paths: encoding the
image and decoding it, outputting a
classification mask

• Used the masks obtained from segmentation
and grayscaled images to implement the U-Net.

Convolutional Neural/Fully Convolutional Networks (CNN/FCN)

• CNNs use filters to assign importances to various
aspects of the input image.

• Neural layers are then used to output the target
parameter.

• FCNs: same as CNNs but with convolutional
layers instead of neural layers at the end.

• Both use dropout and maxpooling layers.

CNN/FCN Structures

• Both CNN and FCN use five sections
each with a convolution, maxpool, and
dropout layer. First maxpool layer pools
as (3, 4) to transform 120 x 160 to 40 x
40.

• CNN ends with a dropout layer and two
dense layers.

• FCN ends with two more sections without
maxpooling. The image size has been
reduced to (1, 1)

• Hidden layers: ReLu as activation.
Output layer: softmax as activation.

• Loss function: categorical crossentropy.

• Best CNN: 3,312,964 trainable parameters.
Kernel size: 2x2. Dropout rate: 0.3.

• Best FCN: 2,853,892 trainable parameters.
Kernel size: 2x2. Dropout rate: 0.1.

Aiming for Success/Hyperparameterization

• Scalings: channel scaling proved the best,
followed closely by global scaling.
Channel/pixel scaling and normalization
had limited accuracies; the latter had
stability issues.

• Masks: segmentation and U-Net masking
yielded unstable and inaccurate results.

• Optimizers: Adam proved to be the most
stable and best performing optimizer
using a learning rate of 0.001.

• Kernel size: 2 for the convolutional layers
resulted in the highest accuracies

• Batch size: 128 was both reliable and
fast.

• Unable to properly hyperparameterize
(K-Fold, Talos would crash due to RAM
limitations).

CNN Results
• Best results were obtained using channel scaling, no segmentation, and no u-net.
• Dropout rate: 0.3; Kernel Sizes: (2,2,2,2,2).

FCN Results
• Best results were obtained using channel scaling, no segmentation, and no u-net.
• Dropout rate: 0.1; Kernel Sizes: (2,2,2,2,2).

Summary of CNN and FCN Results
Method Accuracy (10 trials) Model Size (MB) Epoch Number Convergence

Best CNN (channel
scaled, no mask)

0.87 ± 0.02
[0.826, 0.887]

39.776155 30 ± 5 100%

Best FCN (channel
scaled, no mask)

0.882 ± 0.007
[0.870, 0.897]

34.267841 26 ± 8 90%

Kaggle Contributor
(Top 4 most popular)

Method Accuracy

Paul Mooney CNN 0.838 (max)

nh4cl CNN 0.8376

Kartik Sharma CNN 0.85766

ilovescience CNN 0.8709

Possible Improvements and Refinements.

• Try handmade segmentation with data augmentation for U-Net.

• Greater RAM: raw images and proper hyperparameterization (Talos).

• Keras has the ability to read images from directory: raw images.

• Add blank pixels to obtain square images.

Conclusion

• Masking and U-Net did not provide any additional accuracy, which was disappointing.

• Global and channel standardizations are useful to push accuracies higher.
Standardization is necessary to converge reliably.

• Overall, it seems that FCN’s can push accuracy higher but suffer from stability issues (in
terms of convergence) when compared to similarly structures CNN’s.

• It is possible to automate the detection and classification of blood cell subtypes by using
ML algorithms.

The End.

References
Blood cell dataset: https://www.kaggle.com/paultimothymooney/blood-cells

Scaling/standardization:
https://machinelearningmastery.com/how-to-manually-scale-image-pixel-data-for-deep-learnin
g/

Otsu thresholding: https://docs.opencv.org/master/d7/d4d/tutorial_py_thresholding.html

U-Net Implementation -
https://towardsdatascience.com/understanding-semantic-segmentation-with-unet-6be4f42d4b4
7

Image U-Net - Ronneberger, O., Fischer, P., and Brox, T. U-Net: Convolutional Networks for
Biomedical Image Segmentation. [arXiv:1505.04597v1]

CNN - Lecture notes and sample class notebook.

FCN -
https://towardsdatascience.com/implementing-a-fully-convolutional-network-fcn-in-tensorflow-2
-3c46fb61de3b

https://www.kaggle.com/paultimothymooney/blood-cells
https://machinelearningmastery.com/how-to-manually-scale-image-pixel-data-for-deep-learning/
https://machinelearningmastery.com/how-to-manually-scale-image-pixel-data-for-deep-learning/
https://docs.opencv.org/master/d7/d4d/tutorial_py_thresholding.html
https://towardsdatascience.com/understanding-semantic-segmentation-with-unet-6be4f42d4b47
https://towardsdatascience.com/understanding-semantic-segmentation-with-unet-6be4f42d4b47
https://towardsdatascience.com/implementing-a-fully-convolutional-network-fcn-in-tensorflow-2-3c46fb61de3b
https://towardsdatascience.com/implementing-a-fully-convolutional-network-fcn-in-tensorflow-2-3c46fb61de3b

Appendix - Data Preprocessing
1) Check data is balanced for the train and test data.

Data had already been augmented in the set to
provide roughly equal distributions.

2) Image compression/resizing: 320x240 → 160x120
pixels (done using Pillow). Tried full resolution, but
cumbersome and unreliable (RAM crashes, can only
train in samples of 1000 which don’t converge). With
lower resolutions and ‘squaring’, we lose more
information.

3) Standardizing the data: (best case) the training data
was standardize so the mean of each rgb channel for
all images was 0 and the variance equal to 1. This
values were safe and then applied to standardize the
test data.

Appendix: Scaling
• Four different ways of scaling the train data:

1) Pixel/channel scaling- Standardize each
pixel/channel individually across all images

2) Global scaling- Standardize all pixels and
channels using one distribution.

3) Channel scaling- Standardize each channel.
4) Normalization: divide everything by 256 to

obtain values between 0 and 1.

Appendix: Scaling

Appendix: Segmentation

Based on Otsu’s threshold. The threshold value is found between the two
distributions for each channel. The graph on the left shows the full pixel distribution
for one channel. The graph on the right shows the result after applying Otsu’s
threshold.

Appendix - U-Net Structure

U-Net accuracy/convergence result
and structure:

Appendix - CNN Structure and
Hyperparameters
The structure of the CNN was the following:

Appendix - FCN Structure and
Hyperparameters
The structure of the FCN was the following:

Early Attempts with Different Compressions and Unscaled Data

30 x 30 image

60 x 60 image

30 x 40

60 x 80

120 x 160

Appendix: Plots of various results CNN (1 of 2)

Appendix: Plots of various results CNN (2 of 2)

Appendix: Plots of various accuracies FCN (1 of 2)

Appendix: Plots of various accuracies FCN (2 of 2)

Appendix - Confusion matrices CNN

● The two most common errors are
labeling monocyte and eosinophil
cells as neutrophil cells.

● The labeling of lymphocyte cells is
always the one with the maximum
accuracy.

Appendix - Confusion matrices FCN

● The two most common errors are
labeling monocyte and eosinophil
cells as neutrophil cells.

● The labeling of lymphocyte cells is
always the one with the maximum
accuracy.

Optimization

• Optimizer: Adam (optimal), Adadelta (crashed), Adamax (worse)
• Adam learning rates: 0.1 (useless), 0.01(useless), 0.001, 0.0001(crashed)
• Dropout rate: 0.1, 0.2, 0.3, 0.4, 0,5 depends on kernel size and scaling maybe
• Kernel size: 2, 3, 2 seems to yield better results but is less stable, could be

indicator for suboptimal structure
• Batch size: 32, 64, 128, 256, not sure, lower numbers look like they are worse.
• Also considered other compression rates and squaring the images, but since

we got the 120 by 160 compression to work, we just moved on with this.
• Once we were set on a structure and saw that global and channel scaling got

the best results, we started optimizing and logging results (see next three
slides). Other results in the lead up to this are not included.

Appendix: Manual Hyperparametrization configurations (1 of 3)
Network Dropout Rate Kernel Sizes Standardization Batch Size Accuracy (6 runs)

FCN 0.2 (2, 2, 2, 2, 2, 1, 1) Global 32 0.874, std = 0.008

FCN 0.5 (2, 2, 2, 2, 2) Channel 128 max .830, 4 non-conv

FCN 0.2 (2, 2, 2, 2, 2) Channel 32 .869 - .898

CNN 0.2 (4, 3, 3, 4, 4) Global 128 0.869, 1 non-conv

FCN 0.1 (2, 2, 2, 2, 2) Channel 16 ~0.88, 1 non-conv

FCN 0.2 (3, 3, 3, 3, 3, 1, 1) Global 256 0.859, std = 0.029

CNN 0.1 (3, 3, 3, 3, 3) Channel 32 Max .86, 3 non-conv

FCN 0.2 (4, 4, 3, 3, 2, 1, 1) Global 128 0.874, std = 0.008

FCN 0.2 (3, 3, 2, 2, 1, 1, 1) Global 128 0.879, std 0.005

Network Dropout Rate Kernel Sizes Standardization Batch Size Accuracy (6 runs)

CNN 0.1 (3, 3, 3, 3, 3) Channel 128 ~0.86 (max 0.87)

FCN 0.3 (2, 2, 2, 2, 2, 1, 1) Global 128 0.875, max 0.8914, 1
non conv

CNN 0.5 (3, 3, 3, 3, 3) Channel 64 0.86 pm 0.02

FCN 0.3 (2, 2, 2, 2, 2, 1, 1) Global 64 0.883, 1 non conv

CNN 0.3 (2, 2, 2, 2, 2) Channel 128 0.879 pm 0.008, .89
max

FCN 0.4 (2, 2, 2, 2, 2, 1, 1) Global 128 0.88, 4 non conv

FCN 0.2 (2, 2, 2, 2, 2, 1, 1) Global 32 0.887, 0.006, 1 non

FCN 0.2 (4, 4, 2, 2, 2, 1, 1) Global 32 0.865, 0.018, 1 non

Appendix: Manual Hyperparametrization configurations (2 of 3)

Appendix: Manual Hyperparametrization configurations (3 of 3)
Network Dropout Rate Kernel Sizes Standardization Batch Size Accuracy (6 runs)

CNN 0.3 (3, 3, 3, 3, 3) Global 128 ~0.88 (little variance)

FCN 0.2 (2, 2, 2, 2, 2, 1, 1) Global 128 0.88, std = 0.01

CNN 0.2 (3, 3, 3, 2, 2) Global 128 0.871

CNN 0.1 (2, 2, 2, 2, 2) Channel 128 ~0.87 (little var)

CNN 0.5 (2, 2, 2, 2, 2) Channel 128 B/w 82% and 88.8%

FCN 0.2 (3, 3, 3, 2, 2, 1, 1) Global 128 0.869, std = 0.02

FCN 0.1 (2, 2, 2, 2, 2) Channel 128 .87 to 0.907

FCN 0.4 (3, 3, 3, 3, 3, 1, 1) Global 128 ~0.88, 1 non conv

FCN 0.2 (2, 2, 2, 2, 1, 1, 1) Global 128 0.886, 2 non

Pictures from convolutional layers and max pooling layers (1of 4)

Pictures from convolutional layers and max pooling layers (2 of 4)

Pictures from convolutional layers and max pooling layers (3 of 4)

Pictures from convolutional layers and max pooling layers (4 of 4)

