Big Data Analysis

Boosted Decision Trees (BDT) &
Random Forests (RF)

“Statistics is merely a quantisation of common sense - Big Data is a sharpening of it!”

Decision tree learning

“Tree learning comes closest to meeting
the requirements for serving as an
off-the-shelf procedure for data mining”,

because it:

* isinvariant under scaling and various other transformations of feature values,
* is robust to discontinuous, categorical, and irrelevant features,

* produces inspectable models.

HOWEVER... they are seldom accurate (i.e. most performant)!

[Trevor Hastie, Prof. of Mathematics & Statistics, Stanford]

Decision Trees

A decision tree divides the parameter
space, starting with the maximal
separation. In the end each part has a
probability of being signal or
background.

® Works in 95+% of all problems!

® Fully uses non-linear correlations.

But BDTs require a lot of data for
training, and is sensitive to
overtraining.

Overtraining can be reduced by
limiting the number of nodes and

number of trees.

Decision trees are from before 1980!!!

oA

X

Background
Signal

Boosting...

. o A
There is no reason, why you can not % Bacl 4
have more trees. Each tree is a simple ackgroun

classifier, but many can be combined! Signal

To avoid N identical trees, one assigns
a higher weight to events that are hard
to classity, i.e. boosting:

1 —err

Boost weight \
First classifier o=

err
/ 1 Neollection \

O/ x1>a \&
YBoost (X) - N) Z ln(ai) ’ hZ(X) S |
collection i /
Parameters in event N Individual tree \;0 Ju
X2>b &

Boosting is from 1997 (AdaBoost).

Boosting...

; A
There is no reason, why you can not X

have more trees_Each tree is a2 simnle BaCkg roun d

classifier, but m

To avoid N ider Rerun oo o

a higher weight
to classity, i.e. b

increasing the weight /

First classifier

/ of misclassified entries - [x

YBoost (X) = 7 —
collection p / /
Parameters in event N Individual tree P }
X2>b &

Boosting is from 1997 (AdaBoost).

Boosting illustrated

Boosting provides a reweighing scheme giving harder cases higher weights.
At the end of training, the trees are collected into an “ensemble classifier”.

.’9..} O
Q0 ‘.O OX | O
S9e0 — ce 0%
(1 C Y
Original Data Weighted data Weighted data

Ensemble
Classifer

0000

X 0000

Where to split?

How does the algorithm decide which variable to split on and where to split?
There are several ways in which this can be done, and there is a difference
between how to do it for classification and regression. But in general, one would

like to make the split, which maximises the improvement gained by doing so.

In Classification, one often uses the average cross entropy (aka. “log-loss”):

N
1 A AN

n=1

Here, Yp, is the truth, while ﬁ&n is the estimate (in [0,1]).

Other alternatives include using Gini coefficients, Variance reduction, and even
ChiSquare. However, in classification the above is somewhat “standard”.

Housing Prices decision tree

Decision tree for estimating the price in the housing prices data set:

@@

i o

e —

_/

I

(" POSTAL_CODE <3110.0)
mse = 1.16202252824e+13
samples = 6986

__Value = 1963348.0471)

("SIZE_OF _HOUSE < 144.5
mse = 2.36452076724e+12
samples = 4941

/\

SCHOOL_DISTANCE_1 < 1695.405

mse = 9.79228685447e+11
samples = 3444
value = 1259853.806

Y

CONSTRUCTION_YEAR =< 1985.5

mse = 5.10892846075e+11
samples = 978
value = 9536961452

value = 1530318.8873)

o

.

("SIZE_OF_HOUSE <235.5
mse = 4.99606026506e+12

samples = 1497

value = 2152551.1784

J

A 4

AN

(" POSTAL_CODE < 3680.0)
mse = 3.68022716583e+12

samples = 1345

value = 2019988.1539

J

o

SIZE_OF_HOUSE < 462.0
mse = 1.3836907023e+13

samples = 7014

value = 2028954.3037

\

False

(POSTAL_CODE < 7980.0
mse = 1.51080057315e+13
samples = 152

__Vvalue =3325559.5197)

CONSTRUCTION_YEAR < 1812.0
mse = 2.97888770906e+14
samples = 28
value = 18397715.3214

mse = 0.0

samples = 1
value = 74000000.0

i

) SUPERMARKET_DISTANCE_1 < 1224.845

SIZEﬁOFﬁHOUSE <975

POSTAL_CODE < 3395.0

CONSTRUCTION_YEAR < 1993.5

(" POSTAL_CODE <4230.5

SUPERMARKET_DISTANCE _1 <

06

1 mse = 4.37090668214e+11 mse = 6.07151144402e+11 mse = 2.25780802539%¢+12 mse = 3.68519260761e+12 mse = 4.84879610682e+12 mse = 3.17195326885e+1
samples = 802 samples = 176 samples = 116 samples = 1229 samples = 100 samples = 52
value = 856331.2918 value = 1397370.0795 value = 3138769.319 value = 1914391.2335 __ Vvalue =2580827.09) value = 4757737.2692
/ __\ \ / __\ / __\ / __\

Housing Prices decision tree

Decision tree for determining, if a house will be sold for more or less than 2Mkr.

O® O

L4 @@

@@

OO0 e wTe

('SIZE_OF HOUSE <755
gini = 0.4875
samples = 2477

value = [1434, 1043]
L class =0)

(POSTAL_CODE < 2975.0)
gini = 0.3416
samples = 1638
value = [1280, 358]

True

L class =0

o

('SIZE_OF HOUSE <88.5)

gini = 0.256
samples = 1221
value = [1037, 184]
/ ~ m
(POSTAL_CODE < 2550.0)
gini =0.193
samples = 989
value = [882, 107]
class =0

J

L FODE <2350.0

J

N\

~,

SIZE_OF_HOUSE < 116.5
gini = 0.4863
samples = 417
value = [243, 174]
class =0

POSTAL_CODE < 3395.0
gini = 0.4359
samples = 162
value = [52, 110]
class =1

POSTAL_CODE < 3395.0
gini = 0.376
samples = 255
value = [191, 64]
class =0

v O,

POSTAL_CODE < 3615.0
gini = 0.4521
samples = 7014
value = [2422, 4592]
class =1

POSTAL_CODE < 2695.0
gini = 0.2484
samples = 688

gini

POSTAL_CODE < 3085.0

samples

=0.32
=110

SIZE_OF_HOUSE < 98.5
gini = 0.4882
samples = 52

m =[30.22] \w

POSTAL_CODE < 3175.0
gini = 0.4717
samples = 126

= i|

CONSTRUCTION_YEAR < 1970.5
gini = 0.2173
samples = 129

% [113. 161

Cross Validation

In case your data set is not that large (and perhaps anyhow), one can train on
most of it, and then test on the remaining 1/k fraction.

This is then repeated for each fold... CPU-intensive, but smart for small data
samples.

Dataset
Fold1 Fold2 Fold3 Fold4 Foldd ~ Foldk

» Split the dataset into k randomly sampled independent subsets (folds).

» Train classifier with k-1 folds and test with remaining fold.
» Repeat k times.

10

Random Forests

The many trees in a (forest of) decision trees increases the power of the decision
tree algorithm.

To classify a new object from an input vector, give the input vector to each each of
the trees in the forest. Each tree gives a classification, and we say the tree "votes"
for that class. The forest chooses the classification having the most votes (over all
the trees in the forest).

However, in (boosted) decision trees, the output is correlated, which leads to a
decreased performance. The solution is to train on a Random Forest!

Tree 1 Tree 2 Tree 3 Tree N
(1,1, 2, 4, 5] 2, 1, 3, 4, 5] 2,1, 3, 4, 5] 1,1,3,3,4]
(A, B (A, C] (B, C] (A, C]

| |
e = — S
@ -l % —L
- 4

11

Random Forests

Each tree is grown as follows:

e If the number of cases in the training set is N, sample N cases at random - but
with replacement. This sample will be the training set for growing the tree.

e If there are M input variables, a number m << M is specified such that at each
node, m variables are selected at random out of the M and the best split on
these m is used to split the node. The value of m is held constant.

e Each tree is grown to the largest extent possible. There is no pruning.

The forest error rate depends on two things:
* The correlation between any two trees in the forest. Increasing the correlation

increases the forest error rate.

* The strength of each individual tree in the forest. A tree with a low error rate is
a strong classifier. Increasing the strength of the individual trees decreases the
forest error rate.

Reducing m reduces both the correlation and the strength. Increasing it increases
both. Somewhere in between is an "optimal" range of m - usually quite wide. This
is the only adjustable parameter to which random forests is somewhat sensitive.

Random Forests

Features of Random Forests:

e [t is unexcelled in accuracy among current algorithms.

* It runs efficiently on large data bases.

* [t can handle thousands of input variables without variable deletion.

e [t gives estimates of what variables are important in the classification.

* [t has an effective method for estimating missing data and maintains accuracy
when a large proportion of the data are missing.

e It has methods for balancing error in class population unbalanced data sets.

* [t computes proximities between pairs of cases that can be used in clustering,
locating outliers, or (by scaling) give interesting views of the data.

* The capabilities of the above can be extended to unlabeled data, leading to
unsupervised clustering, data views and outlier detection.

* [t offers an experimental method for detecting variable interactions.

For these reasons, the Random Forest algorithm has lately been in vogue.

13

XGboost - a neat little story!

14

The HiggsML Kaggle Challenge

CERN analyses its data using a
vast array of ML methods. CERN
is thus part of the community
that developpes ML!

After 20 years of using Machine
Learning it has now become very
widespread (NN, BDT, Random
Forest, etc.)

A prime example was the Kaggle
“HiggsML Challenge”. Most
popular challenge of its time!
(1785 teams, 6517 downloads,
35772 solutions, 136 forums)

Higgs

challenge

I the HiggsML challenge

May to September 2014

When High Energy Physics meets Machine Learning

XGBoost history

History [edit]

XGBoost initially started as a research project by Tiangi Chenl8! as part of the Distributed (Deep) Machine
Learning Community (DMLC) group. Initially, it began as a terminal application which could be configured
using a libsvm configuration file. After winning the Higgs Machine Learning Challenge, it became well known
in the ML competition circles. Soon after, the Python and R packages were built and now it has packages for
many other languages like Julia, Scala, Java, etc. This brought the library to more developers and became

popular among the Kaggle community where it has been used for a large number of competitions.[”]

While Tiangi Chen did not win
himself, he provided a method
used by about half of the teams,
the second place among them!

For this, he got a special award
and XGBoost became instantly
known in the community.

Higgs Boson Machine Learning Challenge

Use the ATLAS experiment to identify the Higgs boson

Higgs |3

challenge'

Overview Data Discussion Leaderboard Rules

Description First Place:

Evaluation « Gabor Melis - Didsd, Hungary, with this code and model documentation

Prizes Second Place:

About The Sponsors « Tim Salimans - Utrecht, The Netherlands, with this code and model documentation

Timeline Third Place:

Winners « Pierre C. - Kremlin-bicétre, France, with this code and model documentation

16

XGBoost history

History [edit]

XGBoost initially started as a research project by Tiangi Chenl8! as part of the Distributed (Deep) Machine
Learning Community (DMLC) group. Initially, it beg_;an as a terminal application which could be configured
using a libsvm configuration file. After winning the Higgs Machine Learning Challenge, it became well known
in the ML competition circles. Soon after, the Python and R packages were built and now it has packages for
many other languages like Julia, Scala, Java, etc. This brought the library to more developers and became
popular among the Kaggle community where it has been used for a large number of competitions.[”]

Whlle Tlanql Chen dld not Wln Hl S Higgs Boson Machine Learning Challenge
himself, he provided a method chalengel=s - EEmrrmommee et

used by about half Of the teamS, Overview Data Discussion Leaderboard Rules
the second place among them!

Overview

Description First Place:

For thisl he got a SpeCia]. award Evaluation « Gabor Melis - Diésd, Hungary, with this code and model documentation

Prizes Second Place:

and XGBOOSt became inStantly About The Sponsors « Tim Salimans - Utrecht, The Netherlands, with this code and model documentation
known in the community. rimle TdPace

Winners « Pierre C. - Kremlin-bicétre, France, with this code and model documentation

17

XGBoost algorithm

The algorithms is documented on the arXiv: 1603.02754

XGBoost: A Scalable Tree Boosting System

Tiangi Chen
University of Washington
tqchen@cs.washington.edu

ABSTRACT

Tree boosting is a highly effective and widely used machine
learning method. In this paper, we describe a scalable end-
to-end tree boosting system called XGBoost, which is used
widely by data scientists to achieve state-of-the-art results
on many machine learning challenges. We propose a novel
sparsity-aware algorithm for sparse data and weighted quan-
tile sketch for approximate tree learning. More importantly,
we provide insights on cache access patterns, data compres-
sion and sharding to build a scalable tree boosting system.
By combining these insights, XGBoost scales beyond billions
of examples using far fewer resources than existing systems.

Keywords

Large-scale Machine Learning

Carlos Guestrin
University of Washington

guestrin@cs.washington.edu

problems. Besides being used as a stand-alone predictor, it
is also incorporated into real-world production pipelines for
ad click through rate prediction [15]. Finally, it is the de-
facto choice of ensemble method and is used in challenges
such as the Netflix prize [3].

In this paper, we describe XGBoost, a scalable machine
learning system for tree boosting. The system is available as
an open source package®. The impact of the system has been
widely recognized in a number of machine learning and data
mining challenges. Take the challenges hosted by the ma-
chine learning competition site Kaggle for example. Among
the 29 challenge winning solutions published at Kaggle’s
blog during 2015, 17 solutions used XGBoost. Among these
solutions, eight solely used XGBoost to train the model,
while most others combined XGBoost with neural nets in en-
sembles. For comparison, the second most popular method,

Annn vAsma 1 vinbn wvvnn svmand v 11 ARl iAnA MhA Asvvannns

18

XGBoost algorithm

The algorithms is an extension of the decision tree idea (tree boosting), using
regression trees with weighted quantiles and being “sparcity aware” (i.e.
knowing about lacking entries and low statistics areas of phase space).

Unlike decision trees, each regression tree contains a continuous score on each

leaf:
tree1 | tree2

T
Q@%@@ 5@

+2 +0.1 -1 *0.9 0.9

f(g)=2+09=29 f &P »=1-09=-19
Figure 1: Tree Ensemble Model. The final predic-

tion for a given example is the sum of predictions

from each tree.
19

Time per Tree(sec)

XGBoost algorithm

The method’s speed is partly

due to an approximate but fast
algorithm to find the best splits.

32

16}
8t

4l

2+

1t

0.5t
0.25¢
0.125}
0.0625}

0.03125

Algorithm 1: Exact Greedy Algorithm for Split Finding

Basic algorithm

Input: I, instance set of current node

Input: d, feature dimension

gain < 0

G Dicr 9 H <) icr hi

for k=1 tom do

GrL <+ 0, HL <0

for j in sorted(I, by x;;) do
G, (—GL-i-gj, Hy, (—HL—}-hj
GR(—G—GL, Hgr +— H — Hy,

2 G%% G2

G
score «— max(score, HLfLA + Bax H+>\)

end
end
Output: Split with max score

Algorithm 2: Approximate Algorithm for Split Finding

.»».»,_.,AX‘;,».
~x
Sparsity aware algorithm
2 : | 1‘6
Number of Threads

for k=1 tom do

Propose Sk = {sk1, Sk2, - - Sk} by percentiles on feature k.
Proposal can be done per tree (global), or per split(local).
end

for k=1 tom do

Gro = ZjE{jlsk,uijk>sk,u—1} 9i
Hy, +—= Z
end

Follow same step as in previous section to find max
score only among proposed splits. >0

. h.
J€{ilsk,v>%Xjk>8k,0—1} " I

XGBoost algorithm

In order to “punish” complexity, the cost-function has a regularised term also:
L(g) =D UGiyi) + Y QFr)
0 k
1
where Q(f) =T + 5)\wa||2

Table 1: Comparison of major tree boosting systems.

System exact approximate | approximate out-of-core sparsity parallel
greedy | global local aware

XGBoost yes yes yes yes yes yes
pGBRT no no yes no no yes
Spark MLLib | no yes no no partially yes
H20 no yes no no partially yes
scikit-learn yes no no no no no

R GBM yes no no no partially no

21

XGBoost

As it turns out, XGBoost is not only very performant but also very fast...

The most important factor behind the success of XGBoost
is its scalability in all scenarios. The system runs more than
ten times faster than existing popular solutions on a single
machine and scales to billions of examples in distributed or
memory-limited settings. The scalability of XGBoost is due
to several important systems and algorithmic optimizations.

22

XGBoost

As it turns out, XGBoost is not only very performant but also very fast...

The most important factor behind the success of XGBoost
is its scalability in all scenarios. The system runs more than
ten times faster than existing popular solutions on a single
machine and scales to billions of examples in distributed or
memory-limited settings. The scalability of XGBoost is due
to several important systems and algorithmic optimizations.

But this will of course only last for so long - new algorithms see the light of day
every week... day?

shortly after

Meanwhile, LightGBM has seen the light of day, and it is even faster...
Which algorithm takes the crown: Light GBM vs XGBOQOST?

23

https://www.analyticsvidhya.com/blog/2017/06/which-algorithm-takes-the-crown-light-gbm-vs-xgboost/

XGBoost

As it turns out, XGBoost is not only very performant but also very fast...

The most important factor behind the success of XGBoost
is its scalability in all scenarios. The system runs more than
ten times faster than existing popular solutions on a single
machine and scales to billions of examples in distributed or
memory-limited settings. The scalability of XGBoost is due
to several important systems and algorithmic optimizations.

But this will of course only last for so long - new algorithms see the light of day
every week... day?

shortly after

Meanwhile, LightGBM has seen the light of day, and it is even faster...
Which algorithm takes the crown: Light GBM vs XGBOQOST?

Very good blog with introduction to tree based learning

24

https://www.analyticsvidhya.com/blog/2017/06/which-algorithm-takes-the-crown-light-gbm-vs-xgboost/
https://www.analyticsvidhya.com/blog/2016/04/tree-based-algorithms-complete-tutorial-scratch-in-python/

