Faculty of Science

KNN and K-means clustering

UNIVERSITY OF COPENHAGEN

Computational Complexity

Linear time
Polynomial time
Non-polynomial time (exponential or worse)

UNIVERSITY OF COPENHAGEN

Constant, linear and superlinear time

O(1)

e Append to a list
O(log (n))

e Search in a sorted sequence
O(n)

e Count events, compare sequences
O(nlog(n))

o FFT

UNIVERSITY OF COPENHAGEN

Polynomial time

O(n?2)

e All-pairs distance
O(n3)

e Matrix multiplication
O (n%)

e CT - reconstruktion

UNIVERSITY OF COPENHAGEN

Non-polynomial time

O(2)

e Knapsack problem
o(n!)

e N-droning problem

UNIVERSITY OF COPENHAGEN

Choices has consequences

1000

— 0(1)

—— Oflog(n)

— 0Oln)

—— Ofn log(n))

— 0In"2)

— 0O[n"3)

800 O[n~4)

—— 0(2"n)
Ofn')

400

200

UNIVERSITY OF COPENHAGEN

Quiz 1

Consider this;
1. How long time does a CPU take to execute a calculation?

2. How long time does a CPU take to read a word from
memory?

3. How long time to read a word from a persistant storage?

What is the consequence of the above answers in a Big Data
setting?

UNIVERSITY OF COPENHAGEN

Ay C @
N G

Faculty of Science

KNN

UNIVERSITY OF COPENHAGEN

K Nearest neighbors

We have an annotated database and we wish to classify new
data-points using that database

The fundamental assumption is that a point is similar to its
neighbors

We can thus guess a class by looking a a set of neighboring
points

KNN is often used as a quick and dirty test to see if machine
learning will work

UNIVERSITY OF COPENHAGEN

4

“WE ARE ALL INDIVIBUALS'”

WE AbE ALL DIFFERENT'”

‘*‘3" A

UNIVERSITY OF COPENHAGEN

K Nearest Neighbors

Simple election

Find the K points nearest in space
Make an election between them

Classify as the same as the most common neighbor

UNIVERSITY OF COPENHAGEN

Algorithm

To classify a new point:

Find distance to all other points
Find the k lowest distances in that list

Select the most common type amongst the k closest as the
class of the unknown

Measuring the distance is non-trivial as it is a means of
adapting the KNN algorithm to a problem.

In this talk we will normalize all parameters to be in the
interval [0:1] and use Euclidian distance

« It is still hard as dimensionality grows

UNIVERSITY OF COPENHAGEN

Complexity

O(n)

UNIVERSITY OF COPENHAGEN

Distances

Usually just Euclidian distance

d(x;, x;) = \/(xn —xn)* + (= xp)* + o+ (p — xp)*

UNIVERSITY OF COPENHAGEN

Other common distances

Manhattan
1 l 1
Chebyshev N
v
n-1 — | 1 1 1
Canberra 4, jy= 5 Pr
k=0 |y=‘,fc | + |y;',k|
Cosine Similarity
Cosine 4 s,)= o0)=

Library exist
import scipy.spatial.distance as dist

UNIVERSITY OF COPENHAGEN

A first artificial example

Huey, Dewey and Louie

UNIVERSITY OF COPENHAGEN

K Nearest Neighbors

Huey, Dewey and Louie share a room, but
has an affinity to stay around their bed.

10

0.8 -

0.6 -

0.4 1

0.2 -

UNIVERSITY OF COPENHAGEN

Generate artificial data

import numpy
import matplotlib.pyplot as plt

data = numpy.zeros((500,3))
data[:,0] = numpy.random.choice([-0.5, 0.0, 0.5],s8ize=500)
data[:, 1:] = numpy.random.normal(0.5, 0.15, (500,2))

#Structure data in label and positions
labels = data[:, 0]

position = data[:, 1:]

#Introduce bias to data
position[:, 0] += labels

#Views for nicer viewing

huey = position[labels == -0.5]
dewey = position[labels == 0.0]
louie = position[labels == 0.5]

plt.plot(huey[:, 0] , huey[:, 1] , 'bo')

plt.plot(dewey[:,0], dewey[:, 1] , 'ro')

plt.plot(louie[:,0], louie[:, 1] , 'go')
plt.show()

UNIVERSITY OF COPENHAGEN

Distance

We are already in range [0:1] so easy

def all dist(observation, data):
return numpy.sqrt((data[:, 0] - observation[0])**2 + (data[:, 1] - observation[l])**2)

UNIVERSITY OF COPENHAGEN

Find the closest neighbors

distances = all dist((0,0), position)
votes = []
for in range(5):
winner = numpy.argmin(distances)
votes.append(labels[winner])
distances[winner] = 1000 #Just set so high that it cannot win again
print(votes)

UNIVERSITY OF COPENHAGEN

Find the closest neighbors

distances = all dist((0,0), position)
votes = []
for in range(5):
winner = numpy.argmin(distances)
votes.append(labels[winner])

distances[winner] = 1000 #Just set so high that it cannot win again
print(votes)

[-0.5, 0.0' 0.0' —0.5, -0.5]

UNIVERSITY OF COPENHAGEN

Tally the votes

import collections
winner = collections.Counter(votes).most common(l)[0][0] #Counter returns a list of tuples

if winner == -0.5:
print('I guess Huey')

elif winner == 0.0:
print('I guess Dewey')
elif winner == 0.5:

print('I guess Louie')

UNIVERSITY OF COPENHAGEN

Tally the votes

import collections
winner = collections.Counter(votes).most common(l)[0][0] #Counter returns a list of tuples

if winner == -0.5:
print('I guess Huey')

elif winner == 0.0:
print('I guess Dewey')
elif winner == 0.5:

print('I guess Louie')

I guess Huey

UNIVERSITY OF COPENHAGEN

Is it robust?

wrong = 0
for _ in range(100):
distances = all dist(numpy.random.normal(0.5, 0.15, 2), position)
votes = []
for in range(5):
winner = numpy.argmin(distances)
votes.append(labels[winner])
distances[winner] = 1000 #Just set so high that it cannot win again
winner = collections.Counter(votes).most common(l)[0][0] #Counter returns a list of tuples
if winner != 0.0:
wrong += 1
print('Got it wrong in',wrong, 'cases of 100')

UNIVERSITY OF COPENHAGEN

Is it robust?

wrong = 0
for _ in range(100):
distances = all dist(numpy.random.normal(0.5, 0.15, 2), position)
votes = []
for in range(5):
winner = numpy.argmin(distances)
votes.append(labels[winner])
distances[winner] = 1000 #Just set so high that it cannot win again
winner = collections.Counter(votes).most common(l)[0][0] #Counter returns a list of tuples
if winner != 0.0:
wrong += 1
print('Got it wrong in',wrong, 'cases of 100')

Got it wrong in 6 cases of 100

UNIVERSITY OF COPENHAGEN

A larger example - Wine classifier

1) Alcohol

2) Malic acid

3) Ash

4) Alcalinity of ash

5) Magnesium

6) Total phenols

7) Flavanoids

8) Nonflavanoid phenols
9) Proanthocyanins
10)Color intensity
11)Hue

12)0D2EB0/0D315 of diluted wines
13)Proline

UNIVERSITY OF COPENHAGEN

A larger example - Wine classifier

1,13.2,1.78,2.14,11.2,100,2.65,2.76,.26,1.28,4.38,1.05,3.4,1050
1,13.16,2.36,2.67,18.6,101,2.8,3.24,.3,2.81,5.68,1.03,3.17,1185
1,14.37,1.95,2.5,16.8,113,3.85,3.49,.24,2.18,7.8,.86,3.45,1480
1,13.24,2.59,2.87,21,118,2.8,2.69,.39,1.82,4.32,1.04,2.93,735
1,14.2,1.76,2.45,15.2,112,3.27,3.39,.34,1.97,6.75,1.05,2.85,1450
1,14.39,1.87,2.45,14.6,96,2.5,2.52,.3,1.98,5.25,1.02,3.58,1290
1,14.06,2.15,2.61,17.6,121,2.6,2.51,.31,1.25,5.05,1.06,3.58,1295
1,14.83,1.64,2.17,14,97,2.8,2.98,.29,1.98,5.2,1.08,2.85,1045
1,13.86,1.35,2.27,16,98,2.98,3.15,.22,1.85,7.22,1.01,3.55,1045
1,14.1,2.16,2.3,18,105,2.95,3.32,.22,2.38,5.75,1.25,3.17,1510
1,14.12,1.48,2.32,16.8,95,2.2,2.43,.26,1.57,5,1.17,2.82,1280
1,13.75,1.73,2.41,16,89,2.6,2.76,.29,1.81,5.6,1.15,2.9,1320
1,14.75,1.73,2.39,11.4,91,3.1,3.69,.43,2.81,5.4,1.25,2.73,1150
l1,14.38,1.87,2.38,12,102,3.3,3.64,.29,2.96,7.5,1.2,3,1547
1,13.63,1.81,2.7,17.2,112,2.85,2.91,.3,1.46,7.3,1.28,2.88,1310
1,14.3,1.%92,2.72,20,120,2.8,3.14,.33,1.97,6.2,1.07,2.65,1280

UNIVERSITY OF COPENHAGEN

Read the data

import csv
import numpy

with open('wine.data') as input file:
raw _data = numpy.array([row for row in csv.reader(input file)]).astype(numpy.float)

labels = raw _datal:,
data = raw_data|:,

UNIVERSITY OF COPENHAGEN

Normalization

Since the data for the different columns differ enormously we
need to scale to a common space

« The easy and common approach is to scale to [0:1]

UNIVERSITY OF COPENHAGEN

Normalize

_, hum ¢ = data.shape
for i in range(num c):
data[:, 1] = data[:, 1] / numpy.max(data[:, 1i])

UNIVERSITY OF COPENHAGEN

Distances

Here we have several dimensions so it is easier to write a
generic distance function that is indifferent to dimensions

UNIVERSITY OF COPENHAGEN

Distance function

def all_distances(point, db):
result = []
for entry 1in db:
distance = 0.0
for dim in zip(point, entry):
distance += (dim[0] = dim[1])*=%2
result.append(numpy.sqrt(distance))
return numpy.array(result)

UNIVERSITY OF COPENHAGEN

Classifier

import collections
def classify(point, k=5):
distances = all distances(point, data)
votes = []
for in range(k):
winner = numpy.argmin(distances)
votes.append(labels[winner])
distances|[winner] = 1000
return collections.Counter(votes).most common(1l)[0][0]

UNIVERSITY OF COPENHAGEN

Test

score = 0
for point in raw data:
if point[0] == classify(point[l:]):
score += 1
print('Matched’',6score, ‘of',len(raw_data))

UNIVERSITY OF COPENHAGEN

Test

score = 0
for point in raw_data:
if point[0] == classify(point[1l:], 6):
score += 1
print('Matched',score,'of',len(raw_data))

Matched 176 of 178

UNIVERSITY OF COPENHAGEN

Exercise

The result is quite satisfactory. However, since we are matching
against the database itself, the tested point is itself in the
test set, which is an unfair advantage compared to a real
world scenario. Eliminating this bias is left as an exercise, it
is quite simple though.

Play with different values of K to see if 5 is indeed the best
choice.

UNIVERSITY OF COPENHAGEN

Other uses

Outlier detection

Use a simple static measure, stdev, on the sum of distance to
neighbors

109

0.8 -

0.6 -

0.4 1

0.2 -

UNIVERSITY OF COPENHAGEN

Quiz 2

How does KNN match the problem
you are working on in this class?

UNIVERSITY OF COPENHAGEN

Ay C @
NN G

Faculty of Science

K-means Clustering

UNIVERSITY OF COPENHAGEN

Clustering

Clusters are sets of data points that we deem to be related
« Typically this means that they are of the same class

For clustering we do not have any ground-truth
We often know how many clusters we will need though

UNIVERSITY OF COPENHAGEN

K-means clustering
Very related to k nearest neighbors

Used when we have a dataset where we don’t know the classes
but need to classify elements

For now we will assume we know the number of clusters we are
looking for

UNIVERSITY OF COPENHAGEN

The simple Algorithm

Choose k random points in space as centroids

Find the distance from each data-point to each centroid
Assign data points to the centroid they are closest to
Move the centroids to the center of the points associated
with it

If centroids changed repeat from 2

i o

Ul

UNIVERSITY OF COPENHAGEN

Flow

Done

Generate
Random
centroids

Find all
distances

Find new
centroids

Assign
Clusters

UNIVERSITY OF COPENHAGEN

Complexity

O(nkl)

UNIVERSITY OF COPENHAGEN

Artificial example

K means clustering

Clustering is used for classification. Here we are going to work with simulated data. We are going to simulate a set of people; children, women and men. We will
assume that children are small, in height and weight, women slightly larger and men larger again. We will simulate data with 20% children, 45% women and
35% men. We will assume that weight is correlated to height.

import numpy
children, women, men = 20, 45, 35
sample = children+women+men

numpy.random.normal(120, 15, children) / 100
21.5 * height children * numpy.random.normal(l.0, 0.05, children)

height children
weight children

height women = numpy.random.normal(170, 5, women) / 100
weight_ women 40.0 * height women * numpy.random.normal(l.0, 0.1, women)

height men = numpy.random.normal(180, 5, men) / 100
weight_men 50.0 * height men * numpy.random.normal(1.0, 0.1, men)

UNIVERSITY OF COPENHAGEN

import matplotlib.pyplot as plt

plt.plot(height children, weight children, 'go')
plt.plot(height women, weight women, ‘'ro')
plt.plot(height men, weight men, 'bo')
plt.show()

&
100 - v

. ...~.“.

2041 @

10 12 14 16 18

UNIVERSITY OF COPENHAGEN

raw_data = numpy.concatenate((numpy.array((height children, weight children)), \
numpy.array((height_women, weight women)) , \
numpy.array((height_men, weight men))), axis = 1)

data = raw_data / numpy.max(raw_data, axis = 1) [numpy.newaxis].T #We transpose to have the data in rows
plt.plot(data[0, :], data[l, :], 'yo')
plt.show()

10 * 0‘
v
' [
0.8 - c.‘o
:2',5'
0.6 - o

0.4 1

0.2 4 o 0%

UNIVERSITY OF COPENHAGEN

def all dist(observation, data):
return numpy.sqgrt((data[0, :] - observation[0])**2 + (data[l, :] - observation[l])**2)

k=3
centroids = numpy.array([data[:, numpy.random.randint(sample)] for _ in range(k)])
distances = numpy.empty((k,sample))
for d in range(k):
distances[d, :] = all dist(centroids[d], data)
winners = numpy.argmin(distances, axis = 0)
clusters = [data[:, winners == i] for 1 imn range(k)]
for cluster, color in zip(clusters, ['go’', 'ro', 'bo']):
plt.plot(cluster([0, :], cluster[l, :], color)
plt.show()

10 A $. ..
0.9 - o':o
08 - ® 0™

07 - 00.‘!“"'

05 -
0.4 -
03 - e °*
oo %
ol o
02| =@ &
0.6 0.7 0.8 0a 10

UNIVERSITY OF COPENHAGEN

def cluster(data, k):
centroids = numpy.array([data[:, numpy.random.randint(sample)] for _ in range(k)])
done = False
while not done:
distances = numpy.empty((k,sample))
for d in range(k):
distances[d, :] = all dist(centroids[d], data)
winners = numpy.argmin(distances, axis = 0)
clusters = [data[:, winners == i] for i in range(k)]
prev_centroids = centroids
centroids = numpy.array([numpy.average(cluster, axis = 1) for cluster in clusters])
if numpy.sum(prev centroids-centroids) == 0:
done=True
for cluster, color in zip(clusters, ['go’', 'ro', 'bo']):
plt.plot(cluster(0, :], cluster[l, :], color)
plt.show()

cluster(data,3)

10 - ~..

L]). ¢
0.9 - X7
0.8 - ¢ o“*'o .

07 o o085 o7
06 - “)!o

0.5 1
0.4 -

0.2 1

UNIVERSITY OF COPENHAGEN

Classifying cancer from 32 parameters

Data is taken from https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29

We simply read all the data, drop the patient ID and place the label into an array of it's own.

import csv
import numpy

with open('wdbc.data') as input file:
text _data = [row for row in csv.reader(input file, delimiter=',')]
for line in text data:
_ = line.pop(0) #We remove the ID - no need for it
known_labels = ','.Jjoin([line.pop(0) for line in text data])
raw_data = numpy.array(text data).astype(numpy.float)
data = raw _data / numpy.max(raw data, axis = 0)

UNIVERSITY OF COPENHAGEN

def

def

all dist(observation, data):
return numpy.sqrt((data[:, 0] - observation[0])**2 + (data[:, 1] - observation[l])**2)

cluster(data, k):
samples, = data.shape
centroids = numpy.array([data[numpy.random.randint(samples), :,] for _ in range(k)])
done = False
while not done:
distances = numpy.empty((k,samples))
for d in range(k):

distances[d, :] = all dist(centroids[d], data)
winners = numpy.argmin(distances, axis = 0)
clusters = [data[winners == i, :] for i in range(k)]

prev_centroids = centroids
centroids = numpy.array([numpy.average(c, axis = 0) for c¢ in clusters])
if numpy.sum(prev_centroids-centroids) == 0:
done=True
return winners

UNIVERSITY OF COPENHAGEN

clusters = cluster(data, 2)
a, b = numpy.bincount(clusters)
if a<b:
labels = labels.replace('M','0")
labels = labels.replace('B','1")
else:
labels = labels.replace('M','1")
labels = labels.replace('B','0")
compare = (numpy.equal(clusters, numpy.array(labels.split(',')).astype(numpy.int)))
print (numpy.bincount (compare), ' (Wrong, Right)')

UNIVERSITY OF COPENHAGEN

clusters = cluster(data, 2)
a, b = numpy.bincount(clusters)
if a<b:
labels = labels.replace('M','0")
labels labels.replace('B',"'1")
else:
labels = labels.replace('M','1")
labels = labels.replace('B','0")
compare = (numpy.equal(clusters, numpy.array(labels.split(',')).astype(numpy.int)))
print (numpy.bincount (compare), ' (Wrong, Right)')

[66 503] (Wrong, Right)

UNIVERSITY OF COPENHAGEN

A common problem

We are extremely sensitive to the choice of initial random
centroids

« We end up with finding local minimum when we really need
a global minimum

UNIVERSITY OF COPENHAGEN

The solution

Choose initial centroids non randomly

Chen Zhang and Shixiong Xia, K-means Clustering Algorithm with
Improved Initial center,” in Second International Workshop on
Knowledge Discovery and Data Mining (WKDD), pp. 790-792, 2009.

F. Yuan, Z. H. Meng, H. X. Zhangz, C. R. Dong, * A New Algorithm to Get
the Initial Centroids,” proceedings of the 3rd International

Conference on Machine Learning and Cybernetics, pp. 26-29, August
2004.

Koheri Arai and Ali Ridho Barakbah, “Hierarchical K-means: an algorithm
for Centroids initialization for k-means,” department of information
science and Electrical Engineering Politechnique in Surabaya, Faculty
of Science and Engineering, Saga University, Vol. 36, No.1, 2007.

UNIVERSITY OF COPENHAGEN

"My Solution”
Choose many more initial centroids

After clustering, fuse the two centroids that are closest to each
other

Repeat until the required number of clusters is met

UNIVERSITY OF COPENHAGEN

Cleaning

If there are outliers in the dataset they will be added to some
cluster and may influence the precision

One may simply remove points that are far from centroids or
from neighbors

UNIVERSITY OF COPENHAGEN

IMPORTANT

In the daily use of KNN and K-means you don’t do it yourself
Use libraries

Scipy and scikit-learn

UNIVERSITY OF COPENHAGEN

Quiz 3

Anybody in class have a problem where
KMC may be used?

UNIVERSITY OF COPENHAGEN

Use cases: Image segmentation

UNIVERSITY OF COPENHAGEN

Use cases: Multi variate data

UNIVERSITY OF COPENHAGEN

Use cases: Outlier detection

HDFCBANK1- 10-minute 14/08/2017 15:28:00 Open 1763.75, Hi 1764.55, Lo 1762.2, Close 1762.2 (-0.1%) Vol 101,500
Stop Loss =1,770.00

Basic Plus

HDFCBANK1

SELL @ :1767.35
Trailing SL : 1771.95 (-4.60)
Target 1 :1758.51
Target 2 :1747.91
Target 3 :1732

Current P/L : 5.15

UNIVERSITY OF COPENHAGEN

Possible dataset

« X-ray images of potatoes
« Rotating while imaging

« Various noise levels

« Find the ones with holes or pins in
« With as much noise present at possible

