Classification: 1. Classification_FynnWolf_XGBoost.txt: (Model: 327 kb) XGBoost tree for classification, no HP configuration variables determined using Shap 2.Classification_FynnWolf_LightGBM.txt: (Model: 348 kb) LightGBM tree for classification, HP optimization using Bayesian optimization, best value for max_depth=38 and min_sample_leafs=95 variables determined using Shap 3.Classification_FynnWolf_SKlearMLP.txt: (Model: 21 kb) Neural Network from SKlearn for classification, no HP optimization, early stopping variables from LightGBM were used Regression: 1.Regression_FynnWolf_LightGBM.txt: (Model: 292 kb) LightGBM tree for regression, HP optimization using Bayesian optimization, best value for max_depth=187 and min_sample_leafs=475 variables determined using Shap 2.Regression_FynnWolf_SKlearnRandomForrest.txt: (Model: 25 mb) Random forest from SKlearn, no HP optimization variables used from LightGBM 3.Regression_FynnWolf_TensorFlowKeras.txt: (Model: ) Neural Network Keras on Tensorflow, no HP optimization, K-Fold test and early stopping, variables used from LightGBM Clustering: 1.Clustering_FynnWolf_SKlearnKmean.txt: (Model: 651 kb) K-Means clustering from SKlearn, 3 cluster, result looks pretty bad, could not find a way to better it variables determined using permutation importance from SKlearn 2.Clustering_FynnWolf_SKlearnBayesianGaussian.txt: (Model: 82 kb) Bayesian Gaussian mixture from SKlearn, 5 cluster, number of cluster determined by looking at weights, only took cluster over 1%, variables determined using permutation importance from SKlearn 3.Clustering_FynnWolf_SKlearnGaussian.txt: (Model: 46 kb) Gaussian mixture from SKlearn, 3 cluster, tried BIC score to determine numbers of clusters, did not provide any useful information variables determined using permutation importance from SKlearn