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Transit Method





Two problems:

Classification: Planetary 
Candidates vs False Positives

Regression: Planetary Radii 
prediction



Data Analysis - Block plot
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Data Analysis  -
Correlation Matrix

• Spearman Correlation.

• From two highly correlated features can 
choose one to leave out:

Ø E.g.: The insolation is highly 
correlated to the planet’s 
equilibrium temperature.

Ø However, the matrix shows a wrong 
low correlation between the orbital 
period and the isolation.



Probability density of planetary radii
Candidates and false positives Candidates



Random Forest

Main hyperparameters:

§ max_depth = 20
§ max_features = 10
§ n_estimators = 300

PyTorch Neural Network

Structure of the neural network:
§ 1 input layer
§ 2 hidden layers, 8 nodes each
§ 1 output layer

Main hyperparameters:
§ learning_rate = 2e-3
§ batch_size = 25
§ n_epochs = 500

Classification – finding false positives

Feature importance
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Random Forest PyTorch Neural Network

Accuracy 0.83

LogLoss 0.36

Fraction of wrong predictions 0.17

Area Under the ROC Curve 0.919

Accuracy 0.85

LogLoss 0.35

Fraction of wrong predictions 0.15

Area Under the ROC Curve 0.925

Classification – finding false positives

Confusion matrix Confusion matrix



Overall satisfying results from 
classification algorithms:

The Random Forest, LightGBM and Keras
Neural Network present similar results.

PyTorch Neural network model gives the 
best results.

0.83 < Accuracy < 0.85

0.35 < LogLoss < 0.37

0.15 < Wrong predictions < 0.17

0.908 < AUC < 0.925

Classification – finding false positives



Regression – predicting planetary radii
LightGBM model

- performs well for small planets

- Median absolute error: 0.007

- few very large outliers 

- one HUGE outlier (>100,000 Earth 
Radii) was ignored

Mean-Squared-Error ~ 92. 1
Mean-Absolute-Error ~ 1.4



Regression – predicting planetary radii

Keras Neural Network model

- performs slightly worse than 
LightGBM model
- Median absolute Error: 0.14

Mean-Squared-Error ~ 94.0
Mean-Absolute-Error ~ 1.6



Our models should account for 
measurement errors.
Monte Carlo sampling is the 
answer.
Example for PyTorch Neural 
Network classification. 

Original Data, D

Evaluation

D1 D1<i<M

M models trained

DM

M1(D1) M1<i<M

(D1<i<M) Mm(Dm)

Data resampling 



PyTorch
NN

Original No Retraining 
(N=500)

Retraining 
(N=50)

AUC 0.9253 0.9058±0.00014 0.9226±0.00041

Accuracy 0.8479 0.824±0.0002 0.8392±0.00075

LogLoss 0.3467 0.394±0.0003 0.354±0.001

Data resampling 



Stacking Ensemble

Mi(D)Mi(D)

Mensemble(D,M) = ΣMi(D)•wi

Original Data, D

Mi(D)

Can a better model be constructed from en 
ensemble of different heterogenious 
models?

Best classification models give very similar 
predictions: 
• KL divergence: 0.085
• Fischer's Correlation Coefficient: 0.93

Image source: Tang, J., S. Alelyani, and H. Liu. "Data Classification: Algorithms and Applications." 2015



• Ensemble model types: Extreme 
Gradient Boost, Decision Tree, and 
kNN. Support Vector Machine as the 
meta-classifier.

• Ensemble requires more 
hyperparameter optimization, but 
theoretically the best way to 
combine our models. 

• Ensemble performance:
AUC = 0.880
Accuracy = 0.83
LogLoss = 0.418

Stacking Ensemble



Summary and future work

• Models show fair 
performance, both for 
classification and regression. 
• Results robust to adjusting 

for statistical errors.
• Ensemble methods 

ineffective when model 
predictions are similar.

JWST
TESS

Images source: Wikipedia



Appendix



Data overview/preprocessing
• The data was obtained from the NASA Exoplanet Archive. At this archive, one can find data from 

all NASA exoplanet hunting missions. The data is open source and very easy to download. Data 
here: https://exoplanetarchive.ipac.caltech.edu/cgi-bin/TblView/nph-
tblView?app=ExoTbls&config=cumulative

• We choose to use the Kepler Objects of Interest (KOI) data. This includes all the data for Kepler’s 
telescope first mission. KOI data includes false positives, confirmed as well as candidate planets 
that are yet to be confirmed to be planets.

• Some variables were excluded from the start – there were the variables we knew would have no 
influence on our models . These include variables like the planet IDs or the host star’s positioning 
in the sky (from the observer's point of view).

• There weren’t many missing variables, however we decided to exclude any entries which had 
missing parameters.

• In the final preprocessing we end up with 9200 data entries to build our models on.
• For all models we divide the train and test sets equally (20% test data) and with the same seed to 

ensure consistency when comparing the models.

https://exoplanetarchive.ipac.caltech.edu/cgi-bin/TblView/nph-tblView?app=ExoTbls&config=cumulative


The problems:
• Classification: The classification problem we try solve is to identify 

false positives in the KOI data. 
• Regression: The regression problem we try to solve is to predict 

planetary radii in the KOI data.

Expectations:
• Classification: We expected the classification model to not perform 

as well as it did. This is because we were aware there are some 
outliers in the Kepler data which could make it hard to build solid 
models with an ok performance. 
• Regression: We expected the regression to perform nicely because 

the detecting method is the best to measure planetary radii.



Classification:
Target variable: “Disposition Using 
Kepler Data” (as named on NASA 
exoplanet archive).
Features: Orbital period, transit 
duration, transit depth, planetary 
radius, insolation flux, planetary 
equilibrium temperature, stellar 
magnitude, stellar effective 
temperature, stellar surface gravity 
(log scale), stellar radius.

Target variable: Planetary Radius (in 
Earth radii).
Features: Orbital period, transit 
duration, transit depth, insolation 
flux, planetary equilibrium 
temperature, stellar magnitude, 
stellar effective temperature, stellar 
surface gravity (log scale), stellar 
radius.

Regression:



Data analysis



Data Analysis – Violin plots

Violin plots show the separation between candidate and false positive observations for the 
classification problem. For the majority of the variables, the mean is well separated which drives us to 
make an analysis using these variables as our features.



Data Analysis – correlation matrix

Using Spearman correlation we 
have identified which features have 
a high correlation and could be 
excluded in our models. 
In particular the insolation flux and 
planetary equilibrium temperature 
show a very strong correlation 
(deep blue), which is physically 
expected.



Data analysis – 1vs1 feature correlation plots

Note: outliers can have peculiar influence in this 
type of plot. The period is highly correlated to 
the insolation, however due to the outlier this 
does not seem to be the case just from the plot.

For a deeper analysis of feature correlation,  we used partial plots and compared each feature with 
the others. We have focused our effort on the insolation feature in order to understand if we could 
exclude it in our models.



Classification models



LightGBM Classification
• Started by building a very simplified model with the parameters set to the defaults. The metric for the problem is the binary

log loss. Used gbdt for the boosting type. With the simple model the log loss obtained was 0.372.
• Checked feature importance via shap values obtaining the results shown in the figure on the bottom right.

• The 8 most important features were chosen. This already excludes one of the two highly correlated features (the planet’s 
equilibrium temperature is highly correlated to the insolation flux).

• Hyperparameterization was implemented with Optuna (includes Cross Validation). These are the hyperparameters:

• Good performance overall however the neural networks were better 

• LogLoss = 0.370; AUC = 0.919; 
• The plotted ROC curve is in the presentation slides.



Random Forest classifier
• Random Forest has been implemented. Features selected based on data analysis and Spearman 

correlation.
• Hyperparameters tuning performed with RandomSearch first, narrowing its results with a 

GridSearch as a final step.
• Feature importance has been calculated with importance based on mean decrease in impurity.
• Performance metrics to evaluate the model: LogLoss = 0.3594, accuracy = 0.829 and AUC= 0.919.



PyTorch feed forward NN for classification
• Sigmoid activation function

• Plateau in training curve is possibly local minimum/saddlepoint, (small 
gradient)

• Similar behaviour at different initial conditions, with various time spent at 
plateau.

• Training time could be reduced with eg. changing Lr

• All features used

• Preprocessed with Quantile scaler

• Binary Cross Entropy

• Training stopped when before validation loss increased.

• Grid search for different combinations of lr and epochs.

• Structure of the neural network:

§ 1 input layer

§ 2 hidden layers, 8 nodes each

§ 1 output layer

• Main hyperparameters:

§ learning_rate = 2e-3, batch_size = 25, n_epochs = 500



Keras NN Classification

• Loss function: binary cross 
entropy
• Learning rate: 0.00095
• Density of the layers and lr 

optimised with kerastuner.

• Log loss: 0.366
• AUC: 0.908



Regression models



LightGBM Regressor
• Started by building a very simplified model with the following parameters:

• In this case, feature importance was not calculated and all variables 
available were used on the regressor model.

• Bayesian Optimization was used to optimize the max_depth, num_leaves
and learning rate of the model. The hyperparameters after were:

• The model had a good performance overall; The results are comparable to 
the Keras Neural Network results.

• MAE = 119.53 – this is before we remove a very influencing outlier from the 
data set with an enormous radius.

• The plotted results are in the presentation slides.



Keras NN Regression 

• Loss function: MSE
• Learning rate: 0.00095
• Density of the layers and lr 

optimised with kerastuner.

• MSE without outlier: 94



Further work



MC resampling

• Gaussian errors resampled within their standard deviances.
• This is strictly only a lower bound on the error, but we can't 

know the fit maximum likelihood landscapes.
• N=50 and N=500 was picked for computation time .
• Resampling was done with corr = 0, to mimic the fact that 

while features are correlated, measurement error is 
independent and a function of the measured feature.



Ensemble model – Level 0 choice

• An Ensemble model has been 
created with stacking architecture

• First step has been the 
development of several models to 
find best 3 classifiers to include in 
layer 0 based on accuracy:

• Random Forest = 83.7
• Decision Tree = 81.08
• Extreme Gradient Boost = 83.1
• K-nearest Neighbors = 75.1
• Support Vector Machine = 71.6



Ensemble model – Level 0 choice

• Hyperparameters tuning has 
been applied for the best 3 of the set.

• Xgboost: learning_rate=0.01, n_estimators
=550, max_depth=20,gamma=0.6, subsam
ple=0.52,colsample_bytree=0.6,seed=27, r
eg_lambda=2, 
booster='dart', colsample_bylevel=0.6, col
sample_bynode=0.5

• Sklearn DT: max_depth = 7



Ensemble model – Level 1 choice

• In order to choose level 1 model, we've 
compared the performances testing 
each model as level 1 choise

• Support Vector Machine has been the 
generalizer that gave better 
performances



Ensemble Model

• Stacking and metaclassifier 
optimized with mlxtend
StackingCVClassifier
• Metaclassifier: Support 

Vector machine
• Models in ensemble: kNN, 

XGboost, sklearn.tree.
• Models hyperparameters 

relatively unoptimized

• Xgboost: learning_rate=0.01, n_estimators=550, 
max_depth=20,gamma=0.6, 
subsample=0.52,colsample_bytree=0.6,seed=2
7, reg_lambda=2, booster='dart', 
colsample_bylevel=0.6, colsample_bynode=0.5

• Sklearn DT: max_depth = 7
• Knn: N_neighbors = 300
• SVM: C=20



Other telescope data tests

• We tried to implement our models for the TESS 
Objects of Interest (TOI) data.

• TESS is a telescope that is currently hunting for 
exoplanets with the transit method. However, it is 
surveying brighter stars than Kepler did.

• The classification did not work. We believe this 
has to do with the fact that the stars observed by 
TESS are brighter and therefore the stellar 
parameters have a different range/scale.

• Curiously, the regression seems to not work so 
bad. It could be that the radius prediction is less 
dependent on stellar parameters (see figures on 
the right).


