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NASA EXOPLANET ARCHIVE

A SERVICE OF NASA EXOPLANET SCIENCE INSTITUTE

Home About Us Data Tools Support

4,401 129
Confirmed Planets TESS Confirmed Planets ¥
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Explore the Archive

Optional Radius (arcsec) @ Advanced Search =

Transit Surveys 107,628,888 Light Curv

Launched in April 2018, TESS is
surveying the sky for two years to|
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b View more Planetand
Candidate statistics

12 Planets, Including Rare Neptune-sized World
June 3, 2021 - New Data

This week's crop of exoplanets includes TOI-1231 b, a Neptune-sized gas
world that orbits a very bright red-dwarf star—a rare occurrence that may
provide opportunities for atmospheric data observations for exoplanet
characterization. (Click for details)

find transiting exoplanets around NASA EXOPLANET SCIENCE INSTITUTE

brightest stars near Earth.
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Two problems:

Classification: Planetary
Candidates vs False Positives

EEB Project Candidates - | community Candidates Cumulative KOI Data
TESS Kepler KELT A M B ad 8 ad-d B8 4o B &= B a - B3
KepID KOI Name Kepler Exoplanet Archive Disposition Using Disposition
Name Disposition Kepler Data Score
@ | & | & | @ | > I
V' 10797460 K00752.01 Kepler-227 b CONFIRMED CANDIDATE 1.0000
V' 10797460 K00752.02 Kepler-227 ¢  CONFIRMED CANDIDATE 0.9690
V' 10811496 K00753.01 CANDIDATE CANDIDATE 0.0000
V' 10848459 K00754.01 FALSE POSITIVE FALSE POSITIVE 0.0000
V' 10854555 K00755.01 Kepler-664 b CONFIRMED CANDIDATE 1.0000
V' 10872983 K00756.01 Kepler-228 d CONFIRMED CANDIDATE 1.0000
V' 10872983 K00756.02 Kepler-228 c  CONFIRMED CANDIDATE 1.0000
V' 10872983 K00756.03 Kepler-228 b  CONFIRMED CANDIDATE 0.9920
v 6721123 K00114.01 FALSE POSITIVE FALSE POSITIVE 0.0000
V' 10910878 K00757.01  Kepler-229 ¢ CONFIRMED CANDIDATE 1.0000
V' 11446443 K00001.01 Kepler-1 b CONFIRMED CANDIDATE 0.8110
V' 10666592 K00002.01 Kepler-2 b CONFIRMED CANDIDATE 1.0000
V' 6922244 K00010.01 Kepler-8 b CONFIRMED CANDIDATE 0.9980
V' 10984090 K00112.02  Kepler-466 c CONFIRMED CANDIDATE 1.0000
v 10419211 K00742.01 FALSE POSITIVE FALSE POSITIVE 0.0000
V' 10464078 K00743.01 FALSE POSITIVE FALSE POSITIVE 0.0000
V' 10480982 K00744.01 FALSE POSITIVE FALSE POSITIVE 0.0000
7 1 IR o o I R S PN

Regression: Planetary Radii
prediction
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Data Analysis -
Correlation Matrix

-insolation

Heq_temp

« Spearman Correlation.

- steff

—st_rad

* From two highly correlated features can
choose one to leave out:

- st_mag

- stlogg

» E.g.: The insolation is highly
correlated to the planet’s
equilibrium temperature.

» However, the matrix shows a wrong
low correlation between the orbital L]

|
!

- depth

- radius

period and the isolation. B

-Jperiod

—{trans_dur

eq_temp

insolation




Probability density of planetary radii

Density

Ordered Values
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Classification - finding false positives

Random Forest PyTorch Neural Network
Main hyperparameters: Structure of the neural network:
= Tinput layer
= max_depth = 20 = 2 hidden layers, 8 nodes each
» max_features =10 = 1output layer

= n_estimators = 300
Main hyperparameters:
Feature importance = learning_rate = 2e-3
= batch_size = 25
= n_epochs =500

0.30 -

0.25 -

0.7 4

— training loss
— validation loss
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Random Forest

Confusion matrix

700
True Negative False Positive 600
o Abs.: 760 Abs.: 127
Frac.: 41.30% Frac.: 6.90%
- 500
-400
False Negative True Positive
— Abs.: 180 Abs.: 773
Frac.: 9.78% Frac.: 42.01% -300
-200
0 1
Accuracy 0.83
LoglLoss 0.36
Fraction of wrong predictions 0.17
Area Under the ROC Curve 0.919

Classification - finding false positives

PyTorch Neural Network

. . 800
Confusion matrix
700
True Negative False Positive
o Abs.: 722 Abs.: 162 600

Frac.: 40.07% Frac.: 8.99%

500

-400
False Negative True Positive
- Abs.: 112 Abs.: 806
Frac.: 6.22% Frac.: 44.73% -300
-200
0 1
Accuracy 0.85
LoglLoss 0.35

Fraction of wrong predictions 0.15
Area Under the ROC Curve 0.925



Classification - finding false positives

1.0 1

0.8 -

True Positive Rate

0.2

0.0 -

—— Random Forest model (AUC = 0.919)

LightGBM model (AUC = 0.919)

—— PyTorch NN model (AUC = 0.925)
—— Keras NN model (AUC = 0.908)

- Random classifier

0.0

0.2

0.4 0.6 0.8 1.0
False Postive Rate

Overall satisfying results from
classification algorithms:

0.83 < Accuracy < 0.85
035 < LoglLoss < 0.37
0.15 < Wrong predictions < 0.17
0.908 < AUC < 0.925

The Random Forest, LightGBM and Keras
Neural Network present similar results.

PyTorch Neural network model gives the
best results.



Regression - predicting planetary radii

Radius Prediction vs. Truth (zoomed out)

LightGBM model 160

140

120

- performs well for small planets 5 .,
8 w

- Median absolute error: 0.007 T e
40

- few very large outliers 2‘;

- one HUGE outlier (>100,000 Earth
Radii) was ignored

Mean-Squared-Error ~ 92.1
Mean-Absolute-Error ~ 1.4
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Radius Prediction vs. Truth (zoomed in)

25 50 75 10.0 125 15.0 17.5 20.0
True Radius

Relative Prediction Error Histogram

II|‘||II —H=
20 -15 -10 -05 0.0 05 10

Prediction Error in Earth Radii



Regression - predicting planetary radii

Radius Prediction vs. Truth (zoomed out)

Keras Neural Network model

- performs slightly worse than
LightGBM model

- Median absolute Error; 0.14

Mean-Squared-Error ~ 94.0
Mean-Absolute-Error ~ 1.6
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Data resampling

Our models should account for
measurement errors.

Monte Carlo sampling is the
answer.

Example for PyTorch Neural
Network classification.

Original Data, D

N(D, O-D)NDi F ﬂ F

1<|<M)

l

Evaluation




Data resampling

141

124

104

o N A~ O

Gaussian resampled errors with retraining, N=50

Accuracy

LoglLoss

AUC

—— Original data performance 14
12
10
8
6
4l
2

0.910 0915 0.920  0.925 %082

AUC

0.85

0L . . . .
0.34 035 0.36 0.37 0.38 0.39

All errs resampled, no retraining, N=500

Accuracy

LoglLoss

501

—— Original data performance

0.92

50 1

401

304

20+

104

04
0.81

40

30+

20+

10+

0.82

0.36

PyTorch
NN

AUC
Accuracy

LoglLoss

0.9253
0.8479

0.3467

No Retraining
(N=500)

0.9058+0.00014

0.824+0.0002

0.394+0.0003

Retraining
(N=50)

0.9226+0.00041
0.8392+0.00075

0.354+0.001



Stacking Ensemble

Can a better model be constructed from en
ensemble of different heterogenious
models?

Best classification models give very similar
predictions:

* KL divergence: 0.085

 Fischer's Correlation Coefficient: 0.93

Repeat k times

Training set

Training folds Validation fold

p P. P

All level-1 predictions
L Train

Meta-Classifier

P. Final prediction

Classifiers

Level-1 predictions
in k-th iteration

Image source: Tang, J., S. Alelyani, and H. Liu. "Data Classification: Algorithms and Applications." 2015



Stacking Ensemble

1.0 1
« Ensemble model types: Extreme
Gradient Boost, Decision Tree, and
KNN. Support Vector Machine as the 0.8
meta-classifier.
« Ensemble requires more g
hyperparameter optimization, but @ ™
theoretically the best way to =
combine our models. £
S 0.4
}_
’ Ensemble performance' 0.2 —— Random Forest model (AUC = 0.919)
- <] LightGBM model (AUC = 0.919)
AUC 0880 —— PyTorch NN model (AUC = 0.925)
- —— Keras NN model (AUC = 0.908)
Accuracy 083 —— Ensemble model (AUC = 0.880)
LogLOSS - 0418 0.0{ ¥ ----  Random classifier
0.0 0.2 0.4 0.6 0.8 1.0

False Postive Rate



Summary and future wor

* Models show fair
perfo_rr_nance, both for
classification and regression.

. Results_ robust to adjusting
for statistical errors.

. !Ensemble methods
meff_ective when model
predictions are similar.
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Data overview/preprocessing

The data was obtained from the NASA Exoplanet Archive. At this archive, one can find data from
all NASA exoplanet hunting missions. The data is open source and very easy to download. Data
here: https://exoplanetarchive.ipac.caltech.edu/cgi-bin/TblView/nph-
tblView?app=ExoTbls&config=cumulative

We choose to use the Kepler Objects of Interest (KOI) data. This includes all the data for Kepler's

telescope first mission. KOI data includes false positives, confirmed as well as candidate planets
that are yet to be confirmed to be planets.

Some variables were excluded from the start - there were the variables we knew would have no
Influence on our models . These include variables like the planet IDs or the host star’s positioning
in the sky (from the observer's point of view).

There weren't many missing variables, however we decided to exclude any entries which had
missing parameters.

In the final preprocessing we end up with 9200 data entries to build our models on.

For all models we divide the train and test sets equally (20% test data) and with the same seed to
ensure consistency when comparing the models.


https://exoplanetarchive.ipac.caltech.edu/cgi-bin/TblView/nph-tblView?app=ExoTbls&config=cumulative

The problems:

 Classification: The classification problem we try solve is to identify
false positives in the KOI data.

* Regression: The regression problem we try to solve is to predict
planetary radii in the KOl data.

Expectations:

 Classification: We expected the classification model to not perform
as well as it did. This is because we were aware there are some
outliers in the Kepler data which could make it hard to build solid
models with an ok performance.

* Regression: We expected the regression to perform nicely because
the detecting method is the best to measure planetary radii.



Classification:

Target variable: “Disposition Using
Kepler Data” (as named on NASA
exoplanet archive).

Features: Orbital period, transit
duration, transit depth, planetary
radius, insolation flux, planetary
equilibrium temperature, stellar
magnitude, stellar effective
temperature, stellar surface gravity
(log scale), stellar radius.

Regression;

Target variable: Planetary Radius (in
Earth radii).

Features: Orbital period, transit
duration, transit depth, insolation
flux, planetary equilibrium
temperature, stellar magnitude,
stellar effective temperature, stellar
surface gravity (log scale), stellar
radius.



Data analysis



Data Analysis - Violin plots

Violin plots show the separation between candidate and false positive observations for the
classification problem. For the majority of the variables, the mean is well separated which drives us to
make an analysis using these variables as our features.



Data Analysis - correlation matrix
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Using Spearman correlation we
have identified which features have
a high correlation and could be
excluded in our models.

In particular the insolation flux and
planetary equilibrium temperature
show a very strong correlation
(deep blue), which is physically
expected.
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Data analysis - 1lvsl1 feature correlation plots

For a deeper analysis of feature correlation, we used partial plots and compared each feature with
the others. We have focused our effort on the insolation feature in order to understand if we could
exclude it in our models.

70 1

30 40 50 60 70
insolation

0 » 2 ® 4 % & w0 0 1 2 N o N @ W

insolation insolation . . . . .
Note: outliers can have peculiar influence in this
type of plot. The period is highly correlated to
the insolation, however due to the outlier this

does not seem to be the case just from the plot.



Classification models



LightGBM Classification

Started by building a very simplified model with the parameters set to the defaults. The metric for the problem is the binary
log loss. Used ghdt for the boosting type. With the simple model the log loss obtained was 0.372.

Checked feature importance via shap values obtaining the results shown in the figure on the bottom right.

The 8 most important features were chosen. This already excludes one of the two highly correlated features (the planet’s

equilibrium temperature is highly correlated to the insolation flux).

Hyperparameterization was implemented with Optuna (includes Cross Validation). These are the hyperparameters:

params = {
"objective": "binary",
"metric": "binary logloss",
"verbosity": -1,
"boosting type": "gbdt",
"feature_pre filter": False,
"lambda 11": 3.1318293273194997,
"lambda 12": 1.388306806703893e-07,
"num_leaves": 31,
"feature_ fraction": 0.9,
"bagging fraction": 0.99,
"bagging freq": 1,

v [
period |
depth |
trans_dur _
st_rad [
steff | NEEE
st_mag -

"min_child_samples": 20 insolation -
! stiogg [
B Class 0
» Good performance overall however the neural networks were better ed-temp N mm Class 1
- LogLoss = 0.370; AUC = 0.919; 00 03 10 L5 20 25

* The plotted ROC curve is in the presentation slides.

mean(|SHAP value|) (average impact on model output magnitude)



Random Forest classifier

« Random Forest has been implemented. Features selected based on data analysis and Spearman
correlation.

* Hyperparameters tuning performed with RandomSearch first, narrowing its results with a
GridSearch as a final step.

* Feature importance has been calculated with importance based on mean decrease in impurity.
« Performance metrics to evaluate the model: LogLoss = 0.3594, accuracy = 0.829 and AUC= 0.919.

Feature importances

0.30 4

#random forest classifier 0.25 4

clf_rf = RandomForestClassifier(bootstrap=True, max_depth=20,
max_features=10,
n_estimators=300, n_jobs=None,
oob_score=False,
random_state=None, verbose=0, 0.10 -
warm_start=False)

Ol G R e S e 0
0.05 1

0.20 4

0.15 1

0.00 -

w T Y £ g © O T £ a

2 2 5 §F B8 P E SE
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= b 2 g
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PyTorch feed forward NN for classification

0.7

— training loss
— validation loss

» Sigmoid activation function 06 |
 Plateau in training curve is possibly local minimum/saddlepoint, (small

gradient) o2
« Similar behaviour at different initial conditions, with various time spent at 04

plateau. , , ' ' ' '

0 100 200 300 400 500
* Training time could be reduced with eg. changing Lr 07
— training loss

* All features used validation loss

0.6

* Preprocessed with Quantile scaler
05
» Binary Cross Entropy

» Training stopped when before validation loss increased. o

» Grid search for different combinations of lr and epochs. 0 100 200 300 40 500

e Structure of the neural network: 07 —
— (wraining loss

H validation loss
= linput layer 06

= 2 hidden layers, 8 nodes each
0.5

= ] output layer

04

* Main hyperparameters:

= learning_rate = 2e-3, batch_size = 25, n_epochs = 500 0 100 200 300 40 500



Keras NN Classification

Model: "sequential”
Layer (type)
input_layer (Dense)
hidden layerl (Dense)
hidden_layer2 (Dense)
hidden layer3 (Dense)
hidden_ layer4 (Dense)
hidden layer5 (Dense)

output (Dense)

Total params: 5,042
Trainable params: 5,042
Non-trainable params: ©

Output Shape Param #
(None, 13)

(None, 96)

(None, 25)

(None, 19)

(None,

(None, 5

(None,

Loss function: binary cross
entropy

Learning rate: 0.00095

Density of the layers and lr
optimised with kerastuner.

Log loss: 0.366
AUC: 0.908



Regression models



LightGBM Regressor e boosting typa:s ‘gnat.

'objective': 'regression 11',
'metric': '11°',
HINH : H H : H . 'num leaves': 30,
« Started by building a very simplified model with the following parameters: S
. . . 'learning rate': 0.01,
* In this case, feature importance was not calculated and all variables ' feature fraction': 1.0,
available were used on the regressor model. ibagging. fraccioniy .0
bagging freq': 1,
. . . . . . ! b ‘g Oy
- Bayesian Optimization was used to optimize the max_depth, num_leaves S e —
and learning rate of the model. The hyperparameters after were: }
params = {
'boosting type': 'gbdt',
'objective': 'regression 11°',
Emetric N
'num leaves': 601,
'max_depth' : 866,
'learning rate': 0.006,

'feature fraction': 1.0,
'bagging fraction': 1.0,
'bagging freq': 1,
'verbose': 0,

'force_col wise': True

}

 The model had a good performance overall; The results are comparable to
the Keras Neural Network results.

 MAE =119.53 - this is before we remove a very influencing outlier from the
data set with an enormous radius.

» The plotted results are in the presentation slides.



Keras NN Regression

Model: "sequential™

e G I O e s Loss function: MSE
B Learning rate: 0.00095

Density of the layers and Ir
optimised with kerastuner.

hidden layerl (Dense) (None, 96)

hidden layer2 (Dense) (None, 25)

hidden_layer3 (Dense) (None, 19)

hidden_layer4 (Dense) (None,

hidden_layer5 (Dense) (None, 5
output (Dense) (None,
Total params: 5,029

Trainable params: 5,029
Non-trainable params: 0

MSE without outlier: 94



Further work



MC resampling

« Gaussian errors resampled within their standard deviances.

* This is strictly only a lower bound on the error, but we can't
know the fit maximum likelihood landscapes.

* N=50 and N=500 was picked for computation time .

 Resampling was done with corr = 0, to mimic the fact that
while features are correlated, measurement error is
Independent and a function of the measured feature.



Ensemble model - Level 0 choice

An Ensemble model has been
created with stacking architecture

First step has been the
development of several models to
find best 3 classifiers to include in
layer 0 based on accuracy:

Random Forest = 83.7
Decision Tree = 81.08
Extreme Gradient Boost = 83.1
K-nearest Neighbors =75.1
Support Vector Machine = 71.6

Training data

- Model A

' ™
Training data Predictions
: — Model B Generalizer

Training data

-~ Model C

Level 0 Level 1

Predictions

—



Ensemble model - Level 0 choice

 Hyperparameters tuning has
been applied for the best 3 of the set.

« Xgboost: learning_rate=0.01, n_estimators
=550, max_depth=20,gamma=0.6, subsam
ple=0.52,colsample_bytree=0.6,seed=27, r
eg_lambda=2,
booster='dart’, colsample_bylevel=0.6, col
sample_bynode=0.5

« Sklearn DT: max_depth =7



Ensemble model - Level 1 choice

* |In order to choose level 1 model, we've
compared the performances testing
each model as level 1 choise

* Support Vector Machine has been the
generalizer that gave better
performances



Ensemble Model

« Stacking and metaclassifier
optimized with mlxtend
StackingCVClassifier

* Metaclassifier: Support
Vector machine

 Models in ensemble: kNN,
XGboost, sklearn.tree.

* Models hyperparameters
relatively unoptimized

Xgbhoost: learning_rate=0.01, n_estimators=550,
max_depth=20,gamma=0.6,
subsample=0.52,colsample_bytree=0.6,seed=2
7, reg_lambda=2, booster='dart’,
colsample_bylevel=0.6, colsample_bynode=0.5

Sklearn DT: max_depth =7
Knn: N_neighbors = 300
SVM: C=20



1.0

Other telescope data tests

0.8

06

(transformed)

* We tried to implement our models for the TESS

tions

Objects of Interest (TOI) data. E
* TESS is a telescope that is currently hunting for R

exoplanets with the transit method. However, it is 00 .

surveying brighter stars than Kepler did. 00 R N T -

* The classification did not work. We believe this
has to do with the fact that the stars observed by
TESS are brighter and therefore the stellar
parameters have a different range/scale.

e Curiously, the regression seems to not work so
bad. It could be that the radius prediction is less
dependent on stellar parameters (see figures on
the right).




