
Identifying Kepler Objects
Applied Machine Learning 2021 Final Project

Niels Bohr Institute, University of Copenhagen
17th June 2021

Moritz Bilstein
Beatriz Campos Estrada

Carl Gustav Henning Hansen
Marco Merusi

Vittorio Sguazzo

Transit Method

Two problems:

Classification: Planetary
Candidates vs False Positives

Regression: Planetary Radii
prediction

Data Analysis - Block plot

orbital
period

transit
duration

transit
depth

planetary
radius

insolation equilibrium
temperature

stellar
magnitude

stellar
effective
temperature

stellar
radius

stellar
surface
gravity

Candidate

False positive

Data Analysis -
Correlation Matrix

• Spearman Correlation.

• From two highly correlated features can
choose one to leave out:

Ø E.g.: The insolation is highly
correlated to the planet’s
equilibrium temperature.

Ø However, the matrix shows a wrong
low correlation between the orbital
period and the isolation.

Probability density of planetary radii
Candidates and false positives Candidates

Random Forest

Main hyperparameters:

§ max_depth = 20
§ max_features = 10
§ n_estimators = 300

PyTorch Neural Network

Structure of the neural network:
§ 1 input layer
§ 2 hidden layers, 8 nodes each
§ 1 output layer

Main hyperparameters:
§ learning_rate = 2e-3
§ batch_size = 25
§ n_epochs = 500

Classification – finding false positives

Feature importance

Epoch

Lo
ss

Random Forest PyTorch Neural Network

Accuracy 0.83

LogLoss 0.36

Fraction of wrong predictions 0.17

Area Under the ROC Curve 0.919

Accuracy 0.85

LogLoss 0.35

Fraction of wrong predictions 0.15

Area Under the ROC Curve 0.925

Classification – finding false positives

Confusion matrix Confusion matrix

Overall satisfying results from
classification algorithms:

The Random Forest, LightGBM and Keras
Neural Network present similar results.

PyTorch Neural network model gives the
best results.

0.83 < Accuracy < 0.85

0.35 < LogLoss < 0.37

0.15 < Wrong predictions < 0.17

0.908 < AUC < 0.925

Classification – finding false positives

Regression – predicting planetary radii
LightGBM model

- performs well for small planets

- Median absolute error: 0.007

- few very large outliers

- one HUGE outlier (>100,000 Earth
Radii) was ignored

Mean-Squared-Error ~ 92. 1
Mean-Absolute-Error ~ 1.4

Regression – predicting planetary radii

Keras Neural Network model

- performs slightly worse than
LightGBM model
- Median absolute Error: 0.14

Mean-Squared-Error ~ 94.0
Mean-Absolute-Error ~ 1.6

Our models should account for
measurement errors.
Monte Carlo sampling is the
answer.
Example for PyTorch Neural
Network classification.

Original Data, D

Evaluation

D1 D1<i<M

M models trained

DM

M1(D1) M1<i<M

(D1<i<M) Mm(Dm)

Data resampling

PyTorch
NN

Original No Retraining
(N=500)

Retraining
(N=50)

AUC 0.9253 0.9058±0.00014 0.9226±0.00041

Accuracy 0.8479 0.824±0.0002 0.8392±0.00075

LogLoss 0.3467 0.394±0.0003 0.354±0.001

Data resampling

Stacking Ensemble

Mi(D)Mi(D)

Mensemble(D,M) = ΣMi(D)•wi

Original Data, D

Mi(D)

Can a better model be constructed from en
ensemble of different heterogenious
models?

Best classification models give very similar
predictions:
• KL divergence: 0.085
• Fischer's Correlation Coefficient: 0.93

Image source: Tang, J., S. Alelyani, and H. Liu. "Data Classification: Algorithms and Applications." 2015

• Ensemble model types: Extreme
Gradient Boost, Decision Tree, and
kNN. Support Vector Machine as the
meta-classifier.

• Ensemble requires more
hyperparameter optimization, but
theoretically the best way to
combine our models.

• Ensemble performance:
AUC = 0.880
Accuracy = 0.83
LogLoss = 0.418

Stacking Ensemble

Summary and future work

• Models show fair
performance, both for
classification and regression.
• Results robust to adjusting

for statistical errors.
• Ensemble methods

ineffective when model
predictions are similar.

JWST
TESS

Images source: Wikipedia

Appendix

Data overview/preprocessing
• The data was obtained from the NASA Exoplanet Archive. At this archive, one can find data from

all NASA exoplanet hunting missions. The data is open source and very easy to download. Data
here: https://exoplanetarchive.ipac.caltech.edu/cgi-bin/TblView/nph-
tblView?app=ExoTbls&config=cumulative

• We choose to use the Kepler Objects of Interest (KOI) data. This includes all the data for Kepler’s
telescope first mission. KOI data includes false positives, confirmed as well as candidate planets
that are yet to be confirmed to be planets.

• Some variables were excluded from the start – there were the variables we knew would have no
influence on our models . These include variables like the planet IDs or the host star’s positioning
in the sky (from the observer's point of view).

• There weren’t many missing variables, however we decided to exclude any entries which had
missing parameters.

• In the final preprocessing we end up with 9200 data entries to build our models on.
• For all models we divide the train and test sets equally (20% test data) and with the same seed to

ensure consistency when comparing the models.

https://exoplanetarchive.ipac.caltech.edu/cgi-bin/TblView/nph-tblView?app=ExoTbls&config=cumulative

The problems:
• Classification: The classification problem we try solve is to identify

false positives in the KOI data.
• Regression: The regression problem we try to solve is to predict

planetary radii in the KOI data.

Expectations:
• Classification: We expected the classification model to not perform

as well as it did. This is because we were aware there are some
outliers in the Kepler data which could make it hard to build solid
models with an ok performance.
• Regression: We expected the regression to perform nicely because

the detecting method is the best to measure planetary radii.

Classification:
Target variable: “Disposition Using
Kepler Data” (as named on NASA
exoplanet archive).
Features: Orbital period, transit
duration, transit depth, planetary
radius, insolation flux, planetary
equilibrium temperature, stellar
magnitude, stellar effective
temperature, stellar surface gravity
(log scale), stellar radius.

Target variable: Planetary Radius (in
Earth radii).
Features: Orbital period, transit
duration, transit depth, insolation
flux, planetary equilibrium
temperature, stellar magnitude,
stellar effective temperature, stellar
surface gravity (log scale), stellar
radius.

Regression:

Data analysis

Data Analysis – Violin plots

Violin plots show the separation between candidate and false positive observations for the
classification problem. For the majority of the variables, the mean is well separated which drives us to
make an analysis using these variables as our features.

Data Analysis – correlation matrix

Using Spearman correlation we
have identified which features have
a high correlation and could be
excluded in our models.
In particular the insolation flux and
planetary equilibrium temperature
show a very strong correlation
(deep blue), which is physically
expected.

Data analysis – 1vs1 feature correlation plots

Note: outliers can have peculiar influence in this
type of plot. The period is highly correlated to
the insolation, however due to the outlier this
does not seem to be the case just from the plot.

For a deeper analysis of feature correlation, we used partial plots and compared each feature with
the others. We have focused our effort on the insolation feature in order to understand if we could
exclude it in our models.

Classification models

LightGBM Classification
• Started by building a very simplified model with the parameters set to the defaults. The metric for the problem is the binary

log loss. Used gbdt for the boosting type. With the simple model the log loss obtained was 0.372.
• Checked feature importance via shap values obtaining the results shown in the figure on the bottom right.

• The 8 most important features were chosen. This already excludes one of the two highly correlated features (the planet’s
equilibrium temperature is highly correlated to the insolation flux).

• Hyperparameterization was implemented with Optuna (includes Cross Validation). These are the hyperparameters:

• Good performance overall however the neural networks were better

• LogLoss = 0.370; AUC = 0.919;
• The plotted ROC curve is in the presentation slides.

Random Forest classifier
• Random Forest has been implemented. Features selected based on data analysis and Spearman

correlation.
• Hyperparameters tuning performed with RandomSearch first, narrowing its results with a

GridSearch as a final step.
• Feature importance has been calculated with importance based on mean decrease in impurity.
• Performance metrics to evaluate the model: LogLoss = 0.3594, accuracy = 0.829 and AUC= 0.919.

PyTorch feed forward NN for classification
• Sigmoid activation function

• Plateau in training curve is possibly local minimum/saddlepoint, (small
gradient)

• Similar behaviour at different initial conditions, with various time spent at
plateau.

• Training time could be reduced with eg. changing Lr

• All features used

• Preprocessed with Quantile scaler

• Binary Cross Entropy

• Training stopped when before validation loss increased.

• Grid search for different combinations of lr and epochs.

• Structure of the neural network:

§ 1 input layer

§ 2 hidden layers, 8 nodes each

§ 1 output layer

• Main hyperparameters:

§ learning_rate = 2e-3, batch_size = 25, n_epochs = 500

Keras NN Classification

• Loss function: binary cross
entropy
• Learning rate: 0.00095
• Density of the layers and lr

optimised with kerastuner.

• Log loss: 0.366
• AUC: 0.908

Regression models

LightGBM Regressor
• Started by building a very simplified model with the following parameters:

• In this case, feature importance was not calculated and all variables
available were used on the regressor model.

• Bayesian Optimization was used to optimize the max_depth, num_leaves
and learning rate of the model. The hyperparameters after were:

• The model had a good performance overall; The results are comparable to
the Keras Neural Network results.

• MAE = 119.53 – this is before we remove a very influencing outlier from the
data set with an enormous radius.

• The plotted results are in the presentation slides.

Keras NN Regression

• Loss function: MSE
• Learning rate: 0.00095
• Density of the layers and lr

optimised with kerastuner.

• MSE without outlier: 94

Further work

MC resampling

• Gaussian errors resampled within their standard deviances.
• This is strictly only a lower bound on the error, but we can't

know the fit maximum likelihood landscapes.
• N=50 and N=500 was picked for computation time .
• Resampling was done with corr = 0, to mimic the fact that

while features are correlated, measurement error is
independent and a function of the measured feature.

Ensemble model – Level 0 choice

• An Ensemble model has been
created with stacking architecture

• First step has been the
development of several models to
find best 3 classifiers to include in
layer 0 based on accuracy:

• Random Forest = 83.7
• Decision Tree = 81.08
• Extreme Gradient Boost = 83.1
• K-nearest Neighbors = 75.1
• Support Vector Machine = 71.6

Ensemble model – Level 0 choice

• Hyperparameters tuning has
been applied for the best 3 of the set.

• Xgboost: learning_rate=0.01, n_estimators
=550, max_depth=20,gamma=0.6, subsam
ple=0.52,colsample_bytree=0.6,seed=27, r
eg_lambda=2,
booster='dart', colsample_bylevel=0.6, col
sample_bynode=0.5

• Sklearn DT: max_depth = 7

Ensemble model – Level 1 choice

• In order to choose level 1 model, we've
compared the performances testing
each model as level 1 choise

• Support Vector Machine has been the
generalizer that gave better
performances

Ensemble Model

• Stacking and metaclassifier
optimized with mlxtend
StackingCVClassifier
• Metaclassifier: Support

Vector machine
• Models in ensemble: kNN,

XGboost, sklearn.tree.
• Models hyperparameters

relatively unoptimized

• Xgboost: learning_rate=0.01, n_estimators=550,
max_depth=20,gamma=0.6,
subsample=0.52,colsample_bytree=0.6,seed=2
7, reg_lambda=2, booster='dart',
colsample_bylevel=0.6, colsample_bynode=0.5

• Sklearn DT: max_depth = 7
• Knn: N_neighbors = 300
• SVM: C=20

Other telescope data tests

• We tried to implement our models for the TESS
Objects of Interest (TOI) data.

• TESS is a telescope that is currently hunting for
exoplanets with the transit method. However, it is
surveying brighter stars than Kepler did.

• The classification did not work. We believe this
has to do with the fact that the stars observed by
TESS are brighter and therefore the stellar
parameters have a different range/scale.

• Curiously, the regression seems to not work so
bad. It could be that the radius prediction is less
dependent on stellar parameters (see figures on
the right).

