
Classifying Dog Breeds
with Convolutional
Neural Networks

Group 23: Ioannis, Kimi, Linea, Maja and Samy

The Dataset

● 120 different dog breeds
Train set: 12000 images

Test set: 8580 images

Preprocessing

Original image:
224 x 224 x 3

Pixelated image:
100 x 100 x 3

Resizing Rescaling

First model attempt ...

Deep Learning with Tensorflow

….was crap/neither deep nor learning

New attempt using pretrained
Tensorflow model Xception on
100x100 cropped images:

Xception is a convolutional neural
network that is 71 layers deep. You
can load a pretrained version of the
network trained on more than a million
images from the ImageNet database

New attempt using pretrained
Tensorflow model Xception on
224x224 cropped images:

Deep Learning with Pytorch

ResNet-18 is a convolutional neural
network that is 18 layers deep.

(fc): Linear(in_features=512,
out_features=1000, bias=True)

Hyper Parameter
Optimization - or

well.. ● Random guess: 0.83 % chance of getting
the breed correct

● Initial best with Tensorflow: ~13 %

● Initial best with PyTorch: ~71 %

● Best on Kaggle: 99.99 % correct

Surely we can optimize our models! Right?

skorch for PyTorch provides compatibility
with sklearn - great!

TensorFlow already integrated with sklearn - great!

GridSearchCV and Grad
Student Descent

● GridSearchCV didn’t work - manual approach
instead

● Change Dropout, Learning Rate, Epochs

● Test amount and size of layers manually - where
possible

● Test for best learning rate and max epochs with
GridSearchCV

And they got better
● Random guess: 0.83 % chance of getting

the breed correct

● Final best with Tensorflow: ~86 %

● Final best with PyTorch: ~75 %

● Best on Kaggle: 99.99 % correct

Tensorflow was initially.. Not great, but turned
out best

With more knowledge on data handling we can
be as good as the Kagglers

Generative adversarial network

GAN results

Epoch 0

Epoch 100

Epoch 200

•Tune hyperparameters

• Use different optimizers

•Image data augmentation

•Try more complex architectures such as the state of the art models of
ImageNet

•Deal with overfitting

•Find more data

Inspiration for the GAN was this following kaggle competition:
https://www.kaggle.com/c/generative-dog-images

GAN

Discriminator model: Sequential keras model with 4 convolutions

Generator model: Sequential keras model with 4 convolutions as well as upsampling

Overall model: also uses weight normalisation

Figure 1 : Defining and transforming the data.
All pre-trained models expect input images normalized in the same way.

For Pytorch approach:

1. ToTensor() - converts the images into tesnors to be used with torch library
2. Normalize (mean, std) - The number of parameters we pass into the mean and

std arguments depends on the modes of our images, i.e. for an RGB image we
pass 3 parameters for both the mean and std

3. To normalize a dataset using standardization, we take every value x inside the
dataset and transform it to its corresponding z value using the following formula:

4. In NN in general we normalize to help the CNN perform better as it helps get data
within a range and reduces the skewness since it centered around 0. This helps it
learn faster and better.

5. The value num_workers allows pytorch to perform multi-process data loading. In
our code we set 4 as the number of workers. This means that there are 4 workers
simultaneously putting data into the computer’s RAM.

Now we are ready to define and load our train and test data.

1. We have used datasets.ImageFolder to upload the images and then
dataloaders to pass our arguments

2. The name of the classes are followingly defined as image_datasets.classes

For Pytorch approach:

Input image

Figure 2 : Pytorch. Predicting new images.

Explaining the different layers - How Conv2d works:

Example: Input Shape : (3, 9, 9) — Output Shape : (2, 3, 3) — K : (3, 3) — P : (1, 1) — S : (2, 2) — D : (2, 2) —
G : 1
From:
https://towardsdatascience.com/conv2d-to-finally-understand-what-happens-in-the-forward-pass-1bbaafb0b14
8

This applies a 2D convolution and we turn
several channels into feature/activation maps.
Arguments: in_channels, out_channels,
kernel_size:

- in_channels = 3 (because our images are
RGB)

- out_channels = 64
- kernel_size = 7 (that means that our

square convolutional kernel is 7x7).
Kernels are basically filters that act as
feature detectors from the original input
image. This filter moves around the
image, detects the features, and
produces the feature maps.

Explaining the different layers - How MaxPool works:

The main purpose of the Max Pooling is to down - sample the dimensions
of our image to allow for assumptions to be made about the features in
certain regions of the image. Long story short it reduces the
dimensionality of the image keeping the important features

From:https://medium.com/bitgrit-data-science-publication/building-an-image-classification-model-with-pyto
rch-from-scratch-f10452073212

Explaining the different layers - How fc - Fully Connected works:

FC layers means that every neuron
from the previous layers connects
to all neurons in the next.

A good way to think about the fc
layers is to use the concept of PCA
principal component analysis that
selects the good features among
the feature space

From:
https://medium.com/bitgrit-data-scienc
e-publication/building-an-image-classifi
cation-model-with-pytorch-from-scratc
h-f10452073212

