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The Dataset

● 120 different dog breeds
Train set: 12000 images

Test set: 8580 images



Preprocessing

Original image:
224 x 224 x 3

Pixelated image:
100 x 100 x 3

Resizing Rescaling



First model attempt  ...

Deep Learning with Tensorflow



….was crap/neither deep nor learning



New attempt using pretrained 
Tensorflow model Xception on 
100x100 cropped images:

Xception is a convolutional neural 
network that is 71 layers deep. You 
can load a pretrained version of the 
network trained on more than a million 
images from the ImageNet database



New attempt using pretrained 
Tensorflow model Xception on 
224x224 cropped images:



Deep Learning with Pytorch

ResNet-18 is a convolutional neural 
network that is 18 layers deep.

(fc): Linear(in_features=512, 
out_features=1000, bias=True)





Hyper Parameter 
Optimization - or 

well.. ● Random guess: 0.83 % chance of getting 
the breed correct

● Initial best  with Tensorflow: ~13 %

● Initial best with PyTorch: ~71 %

● Best on Kaggle: 99.99 % correct

Surely we can optimize our models! Right?

skorch for PyTorch provides  compatibility 
with sklearn - great!

TensorFlow already integrated with sklearn - great!



GridSearchCV and Grad 
Student Descent

● GridSearchCV didn’t work - manual approach 
instead

● Change Dropout, Learning Rate, Epochs

● Test amount and size of layers manually - where 
possible

● Test for best learning rate and max epochs with 
GridSearchCV

And they got better
● Random guess: 0.83 % chance of getting 

the breed correct

● Final best  with Tensorflow: ~86 %

● Final best with PyTorch: ~75 %

● Best on Kaggle: 99.99 % correct

Tensorflow was initially.. Not great, but turned 
out best

With more knowledge on data handling we can 
be as good as the Kagglers



Generative adversarial network



GAN results 

Epoch 0

Epoch 100

Epoch 200



•Tune hyperparameters

• Use different optimizers

•Image data augmentation

•Try more complex architectures such as the state of the art models of 
ImageNet

•Deal with overfitting

•Find more data





Inspiration for the GAN was this following kaggle competition: 
https://www.kaggle.com/c/generative-dog-images

GAN

Discriminator model: Sequential keras model with 4 convolutions

Generator model: Sequential keras model with 4 convolutions as well as upsampling

Overall model: also uses weight normalisation



Figure 1 : Defining and transforming the data.
All pre-trained models expect input images normalized in the same way.

For Pytorch approach:



1. ToTensor() - converts the images into tesnors to be used with torch library
2. Normalize (mean, std) - The number of parameters we pass into the mean and 

std arguments depends on the modes of our images, i.e. for an RGB image we 
pass 3 parameters for both the mean and std

3. To normalize a dataset using standardization, we take every value x inside the 
dataset and transform it to its corresponding z value using the following formula:

4. In NN in general we normalize to help the CNN perform better as it helps get data 
within a range and reduces the skewness since it centered around 0. This helps it 
learn faster and better.

5. The value num_workers allows pytorch to perform multi-process data loading. In 
our code we set 4 as the number of workers. This means that there are 4 workers 
simultaneously putting data into the computer’s RAM.

Now we are ready to define and load our train and test data.

1. We have used datasets.ImageFolder to upload the images and then 
dataloaders to pass our arguments

2. The name of the classes are followingly defined as image_datasets.classes

For Pytorch approach:



Input image

Figure 2 : Pytorch. Predicting new images.



Explaining the different layers - How Conv2d works:

Example: Input Shape : (3, 9, 9) — Output Shape : (2, 3, 3) — K : (3, 3) — P : (1, 1) — S : (2, 2) — D : (2, 2) — 
G : 1
From: 
https://towardsdatascience.com/conv2d-to-finally-understand-what-happens-in-the-forward-pass-1bbaafb0b14
8

This applies a 2D convolution and we turn 
several channels into feature/activation maps. 
Arguments: in_channels, out_channels, 
kernel_size:

- in_channels = 3 (because our images are 
RGB)

- out_channels = 64
- kernel_size = 7 (that means that our 

square convolutional kernel is 7x7). 
Kernels are basically filters that act as 
feature detectors from the original input 
image. This filter moves around the 
image, detects the features, and 
produces the feature maps.



Explaining the different layers - How MaxPool works:

The main purpose of the Max Pooling is to down - sample the dimensions 
of our image to allow for assumptions to be made about the features in 
certain regions of the image. Long story short it reduces the 
dimensionality of the image keeping the important features

From:https://medium.com/bitgrit-data-science-publication/building-an-image-classification-model-with-pyto
rch-from-scratch-f10452073212



Explaining the different layers - How fc - Fully Connected works:

FC layers means that every neuron 
from the previous layers connects 
to all neurons in the next.

A good way to think about the fc 
layers is to use the concept of PCA 
principal component analysis that 
selects the good features among 
the feature space

From: 
https://medium.com/bitgrit-data-scienc
e-publication/building-an-image-classifi
cation-model-with-pytorch-from-scratc
h-f10452073212


