Classifying Dog Breeds
with Convolutional
Neural Networks

Group 23: loannis, Kimi, Linea, Maja and Samy

Vrisy
UNIVERSITY OF
COPENHAGEN

Train set: 12000 images

e 120 different dog breeds

Test set: 8580 images
160 - Data Distribution
mm Tain data
e est data
140 -
120 -
@
2 100 -
=
G 8-
3
E e0-
-
=
-
20 -
. Dog breed (Class)

UNIVERSITY OF
COPENHAGEN

Preprocessing

Pixelated image:
100x 100x 3

Original image:

224 x224x 3
]

A A = -

Resizing «

150

175

200

f

Deep Learning Neural Network

A o LA
A7 p N7 e N7)
\ . 27 }'. ,:' \ :\) \:- 4 Labrador
@A ORI IO 1O, ,
@ { Y 3¢ »Maltese
' @RS RO P
2] a\\Y’ :\ 2 }) N2/ ' » Rottweiler
O 7 a2
@ 'nput Layer Hidden Layer @ Output Layer

A

Rescaling

UNIVERSITY OF
COPENHAGEN

Layer (type) Output Shape Param #
conv2d (Conv2D) (None, 224, 224, 16) 448
max_pooling2d (MaxPooling2D) (None, 112, 112, 16) 0
conv2d_1 (Conv2D) (None, 112, 112, 32) 4640
max_pooling2d 1 (MaxPooling2 (None, 56, 56, 32) 0
conv2d_2 (Conv2D) (None, 56, 56, 64) 18496
max_pooling2d 2 (MaxPooling2 (None, 28, 28, 64) 0
dropout (Dropout) (None, 28, 28, 64) 0
flatten (Flatten) (None, 50176) 0

dense (Dense) (None, 128) 6422656
dense_1 (Dense) (None, 120) 15480

Total params:
Trainable params: 6,461,720
Non-trainable params: 0

T

TensorFlow

~

Py

\

First model attempt ...

UNIVERSITY OF
COPENHAGEN

—— Taining Loss

Validation Loss

..was crap/neither deep nor learning

Training and Validation Accuracy
0.250
40
0.225
0.200 38
0175
36
0.150
34
0125
0.100 32
0.075 30
{ —— Training Accuracy
Validation Accuracy
0.050 T T T T T T T T T u T T
0 20 40 60 80 100 0 20 40 60 80 100

4.7

UNIVERSITY OF
COPENHAGEN

New attempt using pretrained
Tensorflow model Xception on
100X100 cropped images:

Xception is a convolutional neural
network that is 71 layers deep. You
can load a pretrained version of the
network trained on more than a million
images from the ImageNet database

045

0.40

035

030

025

020

Training and Validation Accuracy

- Training Accuracy
Validation Accuracy

4 6 8 10

375

350

325

3.00

275

250

225

Training and Validation Loss

- Taining Loss
Validation Loss

+

UNIVERSITY OF
COPENHAGEN

New attempt using pretrained
Tensorflow model Xception on
224x224 cropped images:

08

0.7

05

04

Training and Validation Accuracy

——— Taining Accuracy
Validation Accuracy

2 4 6 8

225

200

175

150

125

100

0.75

0.50

Training and Validation Loss

- Training Loss

Validation Loss

(fc): Linear (in features=512,
out features=1000, bias=True)

4.7

UNIVERSITY OF
COPENHAGEN

trained model Resnetl18

Libraries

ResNet (

(convl): Conv2d (3, 64, kernel_size=(7, 1)
stride=(2, 2), padding=(3, 3), bias=False)

(bnl) :BatchNorm2d (64, eps=le-05, momentum=0.1,
affine=True, track running stats=True)

(relu) : ReLU(inplace=True)

(maxpool) : MaxPool2d(kernel size=3, stride=2,
padding=1, dilation=1, ceil mode=False)

(fc) : Linear(in_ features=512,out features=1000,
bias=True)

torchvision.transforms -
performing transformation
on image data

torch.nn - defining the
neural network

torch.nn.functional -
importing functions like
RelLU

torch.optim - implementing
optimization algorithms
such as Stochastic Gradient
Descent (SGD)

O PyTorch

ResNet-18 is a convolutional neural
network that is 18 layers deep.

O PyTorch

UNIVERSITY OF
COPENHAGEN

275 1 — ftraining_loss
~— validation_loss 0.7 1
2.50 1
06
225 - >
200 1 g 05
" B
Qs S
v
& 04
150 1
125 1 03
100 - i = training_acc
~ validation_acc
0 5 10 15 2 % 0 5 10 15 2 %
Number of epochs Number of epochs
criterion = nn.CrossEntropyLoss() model_ft = train_model(model_ft, criterio
optimizer = optim.SGD(net.parameters(), Ir=0.001, momentum=0.9) n, optimizer_ft, exp_Ir_scheduler, num_ep
ochs=25)

Hyper Parameter
Optimization - or

well..

Surely we can optimize our models! Right?

skorch for PyTorch provides compatibility
with sklearn - great!

TensorFlow already integrated with sklearn - great!

GridSearchCV and Grad
Student Descent

e Test for best learning rate and max epochs with
GridSearchCV

° params = {
‘Ir*: [0.0001, 0.001, 0.1],

'max_epochs': [5, 10, 15, 20, 25, 30]}

GridSearchCV didn't work - manual approach
instead

Change Dropout, Learning Rate, Epochs

Test amount and size of layers manually - where
possible

And they got better

Generative adversarial network

““ag { }» Is it real?
'/

Generated
images

GAN results

Epoch 200

Final Thoughts and Where to Go Next

*Tune hyperparameters

 Use different optimizers
-lmage data augmentation

*Try more complex architectures such as the state of the art models of
ImageNet

*Deal with overfitting

*Find more data

1%
- ed

n02099712-Labrador_retriever

n02111500-Great Pyrenees n02099712-Labrador retriever n02085936-Maltese dog

GAN

Inspiration for the GAN was this following kaggle competition:
https://www.kaggle.com/c/generative-dog-images

Discriminator model: Sequential keras model with 4 convolutions

APPENDIX

Generator model: Sequential keras model with 4 convolutions as well as upsampling

Overall model: also uses weight normalisation

APPENDIX

For Pytorch approach:

1),

1),

dataset_sizes

data transforms = {
'train': transforms.Compose ([

transforms.RandomResizedCrop (224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor (),

transforms.Normalize ([0.485, 0.456, 0.406]1, [0.229,

'test': transforms.Compose ([

transforms.Resize (256),
transforms.CenterCrop (224),
transforms.ToTensor (),

transforms.Normalize ([0.485, 0.456, 0.406]1, [0.2289,

data_dir = '/content/drive/MyDrive/Colab Notebooks/cropped/'
image datasets = {x: datasets.ImageFolder (os.path.join(data dir, x),

0.224, 0.225])

0.224, 0.225])

data_transforms([x])

for x in ['train',6 'test']}

dataloaders = {x: torch.utils.data.DataLoader (image datasets[x], batch size=4,

shuffle=True, num workers=4)

for x in [YErain'; "testrl}

Figure 1 : Defining and transforming the data.
All pre-trained models expect input images normalized in the same way.

{x: len(image datasets([x]) for x in ['train', 'test']}
class_names = image_datasets[':rain‘].classes

For Pytorch approach:

1. ToTensor() - converts the images into tesnors to be used with torch library
Normalize (mean, std) - The number of parameters we pass into the mean and
std arguments depends on the modes of our images, i.e. for an RGB image we
pass 3 parameters for both the mean and std

3. To normalize a dataset using standardization, we take every value x inside the
dataset and transform it to its corresponding z value using the following formula:

I — mean

= std

APPENDIX .

In NN in general we normalize to help the CNN perform better as it helps get data
within a range and reduces the skewness since it centered around 0. This helps it
learn faster and better.

5. The value num_workers allows pytorch to perform multi-process data loading. In
our code we set 4 as the number of workers. This means that there are 4 workers
simultaneously putting data into the computer’s RAM.

Now we are ready to define and load our train and test data.
1. We have used datasets.ImageFolder to upload the images and then

dataloaders to pass our arguments
2. The name of the classes are followingly defined as image_datasets.classes

Input image —

imsize 256
loader = transforms.Compose ([transforms.Scale (imsize), transforms.ToTensor()])

def image loader (image name) :
"""]load image, returns cuda tensor"""
image = Image.open(image name)
image = loader (image) .float()
A P P E N D | X image = Variable (image, requires grad=True)
image = image.unsqueeze (0) #this is for VGG, may not be needed for ResNet
return image.cuda() #assumes that you're using GPU

image = image loader ('/content/drive/MyDrive/Colab Notebooks/cropped/labra.jpg')

outputs = model ft (image)

, preds = torch.max (outputs, 1)
print (class_names([preds[0]])

n02099712-Labrador retriever

Figure 2 : Pytorch. Predicting new images.

Explaining the different layers - How Conv2d works:

This applies a 2D convolution and we turn
several channels into feature/activation maps.
Arguments: in_channels, out_channels,
kernel_size:

- in_channels = 3 (because our images are

RGB)

- out_channels = 64
APPENDIX - kernel_size = 7 (that means that our
square convolutional kernel is 7x7).
Kernels are basically filters that act as
feature detectors from the original input
image. This filter moves around the
image, detects the features, and
produces the feature maps.

Example: Input Shape : (3, 9, 9) — Output Shape : (2,3,3) —K:(3,3)—P:(1,1)—S:(2,2)—D: (2,2)—
G:1

From:
https://towardsdatascience.com/conv2d-to-finally-understand-what-happens-in-the-forward-pass-1bbaafbOb14
8

Explaining the different layers - How MaxPool works:

The main purpose of the Max Pooling is to down - sample the dimensions
of our image to allow for assumptions to be made about the features in
certain regions of the image. Long story short it reduces the
dimensionality of the image keeping the important features

APPENDIX

12 120 | 30| O

8 [12 | 2 0 2 x 2 Max-Pool | 20 | 30
34 | 70 | 37 | 4 112 | 37

112 (100 | 25 | 12

From:https://medium.com/bitgrit-data-science-publication/building-an-image-classification-model-with-pyto
rch-from-scratch-f10452073212

APPENDIX

Explaining the different layers - How fc - Fully Connected works:

From:
https://medium.com/bitgrit-data-scienc
e-publication/building-an-image-classifi
cation-model-with-pytorch-from-scratc
h-f10452073212

FC layers means that every neuron
from the previous layers connects
to all neurons in the next.

A good way to think about the fc
layers is to use the concept of PCA
principal component analysis that
selects the good features among
the feature space

