
Classification of Insolubles
Data from Niccolo Maffezzoli

Applied Machine Learning, University of Copenhagen, 2021

Kian Gao
Kian Kirchhof
Tobias Særkjær
Mia-Louise Nielsen

(All participants contributed evenly)



The training data
● ~135'000 images in 6 folders
● 6 .csv tables with metadata

Images depict insolubles, particles extracted 
from a Greenland ice core 
- "simulated" data, images gathered

All metadata is automatically collected from 
analysis of ice cores - can be considered as a 
joint dataset (images+tables)

Preliminary plan for types of approaches
5000 entries vs. all entries

1. Gradient Boost, Pytorch and Tensorflow 
multi-classifications based only on data in .csv 
tables

2. Convolutional Neural Networks for 
multi-classification based only on images
(simple NN, ResNet50, ...)

3. Hybrid CNN-based with .csv-data injected into a 
layer of the image-based model
(another reason for including ResNet50)



The training data
The 6 classes are:

● campanian (~44.41%)
● corylus (~5.75%)
● dust (~22.61%)
● grimsvotn (~10.76%)
● qrobur (~8.05%)
● qsuber (~8.42%)

Actual test set will contain other particles as 
well, e.g. fibres from gloves, unknowns etc.
- and probably no pollen

Classes and subclasses (images not to size):

● Dust (~22.61%)

● Ash (~55.17%)
a. campanian
b. grimsvotn

● Pollen (~22.22%)
a. corylus
b. qrobur
c. qsuber

Additionally we want to detect anomalies

This is interesting both for general purposes but also 
because the actual test data will contain other 
particles than the "simulated" test data

a b c

a b



LightGBM model
Gradient boosted decision tree
using numeric data (.csv) only

Simple initial model

RandomizedSearchCV:

learning_rate 0.0555 (?)
max_depth 15
min_data 46
num_leaves 75

Gradient boost performed on 5000 / all 
particles from each class. 

validation acc. 84.53% / 91.11% test-train split (25%)
83.12% / 90.31% cross-valid. (3-fold)

 



Neural network
Dense neural network (Keras) using 
numeric data only

Setting up the network

Dense Neural Network on 5000 / all data particles from each class.

- Input layer: 39, all variables except the proposed drop outs . 
- First layer: 50, relu activation
- Second layer: 25, relu activation
- Multi-Output: 6, softmax activation.

Overall hyperparameters: Learning rate = 0.001, epochs = 30, 

Hyperparameters found by using gridsearch between 25 and 1000 for amount 
of nodes, epochs between 10 and 100.

-

 



Neural network
Dense neural network (Keras) using 
numeric data only

Results

Results - validation accuracy 

Validation accuracy
for 5000 particles from
each class: 84.72%

Validation accuracy
for all particles from
each class: 90.56%



Neural Network



Example scaling then padding for target size:

1) Original

2) Scale

3) Pad

Scaling then 
padding
Target dimensions chosen from 
histograms of image dimensions



Neural network
Convolutional neural network (Keras) 
using images only

Network architecture:

- Convolution (filters=112, ReLu, dropout=0.268)
- Pooling
- Convolution (filters=57, ReLu, dropout=0.268)
- Pooling
- Flatten
- Dense (units=194, ReLu)
- Dense (units=6, softmax)

Optimized categorical cross entropy using Adam with 
learning rate=0.00349

Hyper parameters were optimized using randomized 
search. 

Validation accuracy
after 15 epochs: 
80.95% with 5000 
Images for each class 



Residual Neural 
network
Illustration of residual neural network 
architecture

Regular blocks contain 
multiple layers including 
convolutions, batch 
normalization and activations 
(ReLu).

Shortcuts/skip connection 
contain fewer layer.

The model can be very deep 
and contain many blocks and 
manu shortcut layers.

The output block contains 
dense layers - the last one 
activated with a softmax.

Images stacked to get 3 
channels for the RESNET50 
model.

Block 1

Block 2

Block 3

Shortcut

Input 
block

Output 
block



Residual Neural 
network
Own implementation of residual neural 
network inspired by Google’s RESNET 
architecture

Same architecture with and without numeric data

Numeric data concatenated in the next to last 
dense layer

We experimented with the 
different layers and used 
randomized search to 
choose numbers of filters 
in the convolutional 
layers, in order to 
optimize performance.

Similar accuracy without 
and with numeric data 
(82.70% and 83.09%, 
respectively)



Residual Neural 
network
RESNET50 with pretrained weights

Same architecture without and with numeric data.

Pretrained weights are loaded and fine-tuned 
on our own images.

Numeric data 
concatenated with 
output from 
RESNET50 in the 
final dense layer.

Similar accuracy 
without and with 
numeric data 
(91.38% and 
91.77%, 
respectively)



Model Accuracy

Gradient boost 
5000 / all

83.12% / 90.31%

DNN
5000 / all

84.72% / 90.56%

RF
5000 / all

-% / 78.33%

Simple CNN
5000 from each class

80.95%

Residual CNN
5000 from each class

82.70%

Residual CNN
5000 from each class

83.09%

RESNET50
5000 from each class

91.38%

RESNET50
5000 from each class

91.77%

Comparison
Comparison of results from different 
models



The test data
Complete set is ~3'000'000 
particles across 4 .csv files of 
metadata + images

Otherwise same metadata 
available as for the training set

No labels on particles
No pollen expected

UNSUPERVISED

10'000 first lines from each file

Test data images by quick visual inspection:

A lot of this:

A bit of this:

And a bit of this:



The test data
Illustrating HP impact:

UMAP main HP choices:

metric='euclidean' / 'manhattan'
n_neighborsUMAP=15
densmap=True / False

LocalOutlierFactor (sklearn) HP choice:

n_neighborsLOLF=50

metric='euclidean'
densmap=True

metric='euclidean'
densmap=False

metric='manhattan''
densmap=True

metric='manhattan''
densmap=False



6 outliers
Real images chosen as most 
outlying after UMAP

UMAP main HP choices:

metric='euclidean'
n_neighborsUMAP=10
densmap=True

LocalOutlierFactor (sklearn) HP choice:

n_neighborsLOLF=50



6 outliers
Real images chosen as most 
outlying after UMAP

25738.png

31922.png

5811.png

2984.png

31865.png

168115.png

(enlarged)

("actual size")

(size)



Alternate 
approaches
Prioritizing large amounts of test data

"Manual" pre-sorting

● Sort by image size…

ML-assisted pre-sorting

● Train model on training data (quick exec.), 
predict and discard dust in test data

● Sort by important features (roughness, 
intensity) from e.g. LightGBM

● Predict pollen in test data or just non-dust



Test data
No pollen type (corylus, qrobur, qsuber) 
particles expected in test data

Predicting pollen in test data from 
model trained on training data might 
yield interesting results

Model # pollen predicted

Gradient boost 
all

348 (0.011%)

DNN
all

381 (0.012%)

Pytorch NN
all

12144 (0.4%)

co qr qs

corylus test predictions from LightGBM:



Thanks for 
listening!
Any questions?



Image preparation
Images are different shapes and sizes

6 px ≦ width ≦ 889 px
6 px ≦ height ≦ 859 px

For consistent treatment we need 
uniform image sizes

Immediate options for image preparation

● Direct zero-padding
● Stretching
● Scaling then padding

Direct zero padding would keep the most information 
intact, but also results in very large images; every 
image becomes at least 889 * 859.
For comparison the MNIST data is 28 * 28.

Stretching is undesirable, since shape information is 
skewed, and from visual inspection of the first few 
images it is apparent that shape is important.

Discarding images with at least one dimension 
smaller/larger than xc will preferentially discard from 
the smaller/larger classes which is a problem.



Scaling then 
padding
Target dimensions chosen from 
histograms of image dimensions

We generated histograms showing distributions of 
widths and heights of images.

Only a very few images have at least one dimension 
larger than 400 px:



Scaling then 
padding
Target dimensions chosen from 
histograms of image dimensions

Another look at the distribution of aspect ratios lets us 
decide on scaling then padding to square dimensions:

This leaves us with just one tunable parameter for 
image size.



Simple neural network

Our simple neural network for image classification. Hyperparameters are optimized within the 
specified distributions.



Own RESNET inspired model

Our own implementation of a residual neural network inspired by RESNET50, but with fewer 
layers. We include four shortcuts/skip connections and four residual blocks in this model in 
addition to the input and output blocks. 

Left: input block for model with both images and numeric data as inputs. 
Right: Output block for model with both images and numeric data as inputs. 
We input the numeric data in the next to last dense layer. 

(See next slide for example of residual and shortcut block)



Own RESNET inspired model 2

Below is an example of a convolution/residual block, a shortcut block and the layer where the results 
are added together. This structure is repeated four times in our model between the input and output 
block shown on the previous slide.

We experimented with different layers in order to optimize performance. 



RESNET50

RESNET50 with pre-trained weights with images as inputs. The weights in the layers are fine-tuned 
based on our images.



RESNET50 2

RESNET50 with pre-trained weights with both images and numeric data as inputs. The weights in the 
layers are fine-tuned based on our data.



RESNET50 3 

RESNET50 with pre-trained weights. The weights in the RESNET50 layers 
are frozen (made non-trainable), and the added dense layers after the 
flatten layer are trained on our images. 

The model performs very poorly (even for more epochs) compared to the 
same model without frozen weights (where all layers are trainable - from 
the main slides)



Random Forest

Deep NN model

Quantile transform

Random Forest + Random HP optimization

0.78 accuracy 

NN model (4 Dense layers and 1 drop layer)

0.91 accuracy



Inception Model
Made up of symmetric and asymmetric building 
blocks, including convolutions, average pooling, 
max pooling, concats, dropouts, and fully 
connected layers.

Test using InceptionResV2, InceptionV3 
pretrained model. Add average pooling

dense layer
At the end

InceptionV2Res:88%
InceptionV3: 85%



Appendix 
LightGBM
Gradient boost (LightGBM) using 
numeric data (.csv) only

Feature importances

LightGBM ('split')
Feature Importances

Negligible performance 
difference from dropping

Feature Importances
('gain')



Appendix LightGBM

LightGBM test set example pollen predictions - 348 total (~0.011%)

5 first and 5 last corylus type



Appendix LightGBM

LightGBM test set example ash predictions - 348 total (~0.011%)

5 first and 5 last qrobur type



Appendix LightGBM

LightGBM test set example pollen predictions - 348 total (~0.011%)

5 first and 5 last qsuber type



Appendix LightGBM

LightGBM test set example ash predictions - 133'196 total (~4.317%)
117'328 campanian (~3.803%) + 15'868 grimsvotn (~0.514%)

5 first campanian and 5 grimsvotn types



Appendix UMAP

25738.png

31922.png

5811.png

2984.png

31865.png

31479.png

50 100

50 100

UMAP for n_neighborsUMAP=15, densmap=True, metric='euclidean'
10000 first entries from each .csv file
6 outliers with dot size increased for visibility

n_neighborsLOF set as either 50 or 100

+ dust



Keras Dense Neural Network



Keras Dense Neural Network

Searching in nodes. Very best is 1000/1000, however the simpler 500/250 is almost as good and chosen 
for speed/simplicity. It also had a low std on the crossvalidation results.


